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    Chapter 10   
 Antimicrobial Drug Effl ux Pumps 
in  Salmonella                      

     Kunihiko     Nishino    

    Abstract      Salmonella  species are causative organisms of salmonellosis, and the 
prevalence of multidrug-resistant  Salmonella  has increased dramatically. These 
multidrug-resistant isolates have been found in both humans and animals and thus 
pose a major public health concern. Drug resistance in  Salmonella  has been shown 
to be largely attributable to multiple target gene mutations and to active effl ux by 
pumps. At least ten drug effl ux system genes in the genome of this organism have 
been experimentally identifi ed to date, and some effl ux pump genes encoded in 
plasmids have been also identifi ed. This chapter describes the drug resistance and 
virulence roles of effl ux pumps and their regulation in  Salmonella .  

  Keywords      Salmonella    •   Antimicrobial resistance   •   Effl ux   •   RND effl ux pumps
  •   Plasmid   •   Virulence   •   AcrAB   •   TolC   •   RamA   •   RamR  

10.1       Introduction 

  Salmonella  species exist all over the world and are responsible for causing acute 
gastroenteritis and typhoid/paratyphoid [ 1 ].  Salmonella enterica  serovar 
Typhimurium is contagious in rodents, including mice, causing a systemic infec-
tious disease, closely resembling human typhoid [ 2 ,  3 ]. In humans, it produces 
acute gastroenteritis and is a cause of food poisoning. Fluoroquinolones represent 
the drug of choice for the treatment of a wide range of human infectious diseases, 
and they were also introduced into veterinary medicine in Europe in the late 1980s 
through the early 1990s and the USA in 1995. Following their introduction, 
fl uoroquinolone- resistant strains of  Salmonella  started to emerge [ 4 ]. 
Fluoroquinolone resistance in  S. enterica  serovar Typhimurium has been shown to 
be largely attributable to multiple target gene mutations and to active effl ux by 

        K.   Nishino      (*)
  Institute of Scientifi c and Industrial Research ,  Graduate School of Pharmaceutical Sciences, 
Osaka University ,   Osaka ,  Japan   
 e-mail: nishino@sanken.osaka-u.ac.jp  

mailto:nishino@sanken.osaka-u.ac.jp


262

multidrug transporters [ 5 ,  6 ]. Also, the increasing prevalence of multidrug resis-
tance has been found in  Salmonella  isolates from both humans and animals and thus 
poses an important public health concern [ 7 ,  8 ]. 

 The genome sequences of  Salmonella  spp. indicate the presence of numerous 
effl ux pump genes that encode transporters of various superfamilies and families [ 9 , 
 10 ]. At least ten drug effl ux pump genes in the genome of  S. enterica  serovar 
Typhimurium have been experimentally identifi ed to date [ 11 – 15 ]. Some effl ux 
pump genes encoded on plasmids have been also identifi ed [ 16 – 18 ]. In addition to 
their roles in drug resistance, it was shown that the effl ux pumps contribute to 
 Salmonella  virulence [ 13 ,  15 ,  19 ,  20 ]. Physiological functions of effl ux pumps in 
 Salmonella  have been also reported with roles in metal resistance [ 21 ,  22 ], biofi lm 
formation [ 23 ], colonization [ 11 ], adhesion, and cell invasion [ 19 ]. In this chapter, 
the roles of  Salmonella  effl ux pumps in drug resistance and their physiological 
functions and regulation are described.  

10.2     The AcrAB Effl ux Pump in  Salmonella  

  S. enterica  serovar Typhimurium Tn phoA  mutants with increased susceptibility to 
biological and chemical detergents were reported [ 24 ], and it was found that one 
mutant LX1054 had a defect in a multidrug resistance pump AcrB [ 11 ]. Nikaido 
et al. [ 12 ] found that the previously reported drug-susceptible  S. enterica  serovar 
Typhimurium [ 25 ] carried a mutation in the  acrAB  operon. The mutant of  acrAB  
exhibited increased susceptibility to a wide range of antimicrobial agents including 
antibiotics, bile salts, dyes, detergents, and disinfectants as shown in Table  10.1  [ 12 , 
 13 ]. AcrA and AcrB in  S. enterica  serovar Typhimurium strain LT2 exhibit the 
amino acid identities of 92 and 95 % with those in  Escherichia coli  [ 13 ]. High-level 
fl uoroquinolone resistance in  S. enterica  serovar Typhimurium phage type DT204 
has been previously shown to be essentially due to both multiple target gene muta-
tions and active effl ux by the AcrAB–TolC effl ux system [ 5 ,  6 ]. In other drug- 
resistant isolates of  Salmonella , overexpression of  acrB  is also reported [ 29 ], and 
antimicrobial treatment of  Salmonella  results in the increased expression of  acrB  
[ 30 ,  31 ]. A post-therapy isolate of  S. enterica  serovar Typhimurium (after treatment 
with fl uoroquinolones and β-lactams) was found to carry a Gly288Asp substitution 
in AcrB [ 32 ]. This residue substitution is located in AcrB drug-binding pocket and 
signifi cantly affects the structural and dynamic properties of AcrB, resulting in 
alternated substrate specifi city (i.e., reduced susceptibility to fl uoroquinolone but 
increased susceptibility to doxorubicin and minocycline) [ 32 ]. Low-level exposure 
of  S. enterica  serovar Typhimurium to a biocide, either a quaternary ammonium 
compound, an oxidative compound, or a halogenated tertiary amine compound, in 
the laboratory selected mutants that were cross-resistant to nalidixic acid, cipro-
fl oxacin, chloramphenicol, tetracycline, and/or triclosan [ 33 ]. Among multiple 
mutations carried by these mutants, derepression of AcrAB–TolC expression was 
observed [ 33 ].
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10.3        The  Salmonella  Drug Effl ux Pumps Identifi ed 
by Genomic Information 

 Genomic analyses revealed that  Salmonella  strains possess fi ve putative RND effl ux 
systems (  http://www.membranetransport.org    ). Four of them, AcrAB (AcrA, mem-
brane fusion protein; AcrB, RND transporter), AcrD, AcrEF (AcrE, membrane 
fusion protein; AcrF, RND transporter), and MdtABC (MdtA, membrane fusion 
protein; MdtB and MdtC, RND transporters), have homologs in  E. coli  with approx-
imately ~90 % amino acid identity (Table  10.1 ) [ 13 ]. MdtB and MdtC are each an 
RND pump and usually function as one drug effl ux system [ 34 ]. The last putative 
RND system is the  Salmonella -specifi c MdsABC (MdsA, membrane fusion pro-
tein; MdsB, RND transporter; MdsC, outer membrane protein). In addition to the 
RND pumps, effl ux systems belonging to the major facilitator superfamily (MFS) 
(EmrAB, MdfA, and SmvA), multidrug and toxic compound extrusion (MATE) 

         Table 10.1    Substrate profi les of characterized  Salmonella  effl ux pumps   

 Transporter 
family/effl ux 
pump  Substrates  Reference 

 RND 
 AcrAB  ACR, BAC, CAR, CEF, CHL, CHO, CLX, CTX, CV, DOC, 

DOR, EB, ERY, FOX, FUA, MB, NAF, NAL, NOR, NOV, 
PEN, R6G, RIF, SDS, SUL, TET, TPP, TRI, TRX 

 [ 11 – 13 ,  26 ] 

 AcrD  AZT, CAR, DOC, NAF, NOV, OXA, SDS, SUL  [ 13 ,  27 ] 
 AcrEF  ACR, CHL, CV, DOC, DOR, EB, ERY, NAL, NOR, MB, 

NOV, R6G, SDS, TET, TPP, TRI 
 [ 13 ,  26 ] 

 MdsABC 
(GesABC) 

 ACR, BAC, CHL, CLX, CV, EB, MB, NAF, NOV, THL, TPP  [ 13 ,  22 ,  28 ] 

 MdtABC  DOC, NOV, SDS  [ 13 ] 
 MFS 
 EmrAB  NAL, NOV, R6G, SDS, TRI  [ 13 ,  26 ] 
 MdfA  CHL, DOR, NOR, TET  [ 13 ] 
 SmvA  ACR, EB, MG, NAL, PQ, PY  [ 14 ] 
 MATE 
 MdtK  ACR, DOR, NOR  [ 13 ] 
 ABC 
 MacAB  ERY  [ 13 ] 

   ACR  acrifl avine,  AZT  aztreonam,  BAC  benzalkonium chloride,  CAR  carbenicillin,  CEF  cephalo-
thin,  CHL  chloramphenicol,  CHO  cholate,  CLX  cloxacillin,  CTX  cefotaxime,  CV  crystal violet, 
 DOC  deoxycholate,  DOR  doxorubicin,  EB  ethidium bromide,  ERY  erythromycin,  FOX  cefoxitin, 
 FQ  fl uoroquinolones,  FUA  fusidic acid,  MB  methylene blue,  MG  malachite green,  NAF  nafcillin, 
 NAL  nalidixic acid,  NOR  norfl oxacin,  NOV  novobiocin,  OQX  olaquindox,  OXA  oxacillin,  PEN  
penicillin G,  PQ  paraquat (methyl viologen),  PY  pyronine B,  R6G  rhodamine 6G,  RIF  rifampicin, 
 SDS  sodium dodecyl sulfate,  SUL  sulbenicillin,  TET  tetracyclines,  THL  thiamphenicol,  TPP  tetra-
phenylphosphonium,  TRI  triclosan,  TRX  Triton X-100  
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family (MdtK), and the ATP-binding cassette (ABC) superfamily (MacAB) trans-
porter families were also experimentally identifi ed (Fig.  10.1 ) [ 13 ,  14 ,  35 ].

   The genes of  acrAB ,  acrD ,  acrEF ,  mdtABC ,  mdsABC ,  emrAB ,  mdfA ,  mdtK , and 
 macAB  were cloned into the multicopy number plasmid, and their ability to confer 
drug resistance upon the  Salmonella acrB  mutant was investigated (Table  10.1 ) 
[ 13 ]. The plasmids carrying effl ux operons or genes that confer multidrug resistance 
phenotypes against various antimicrobial compounds are shown in Table  10.1 . It 
was also reported that the deletion mutant of the  smvA  gene showed increased sus-
ceptibility to a range of cytotoxic agents (Table  10.1 ) [ 14 ]. Overproduction of SmvA 
provided acrifl avine resistance in the  Salmonella acrB  mutant (unpublished data). A 
recent study also showed that  Salmonella  EmrAB and AcrEF pumps may have 
additive effects with the major effl ux system AcrAB in decreased susceptibility to 
triclosan [ 26 ]. Deletion of the  tolC ,  acrB , or  acrAB  genes resulted in strains with 
increased susceptibility to various compounds, and the  acrB ,  acrAB , and  tolC  
mutant strains have overlapping substrate susceptibility profi les, which is in agree-
ment with the notion that the encoded proteins interact as a tripartite effl ux complex 
system. The  tolC  mutant was more susceptible to certain compounds including 
novobiocin, deoxycholate, and sodium dodecyl sulfate than the  acrAB  mutant [ 13 , 
 36 ] – suggesting a functional role in other effl ux systems. And a strain with nine 
drug exporters ( acrAB ,  acrD ,  acrEF ,  mdtABC ,  mdsABC ,  emrAB ,  mdfA ,  mdtK , and 
 macAB ) deleted was shown to be more susceptible to novobiocin, deoxycholate, 
and sodium dodecyl sulfate, compared to the ∆ acrAB  mutant. On the other hand, 
strains deleted for the  acrD ,  acrEF ,  mdtABC ,  mdsABC ,  emrAB ,  mdfA ,  mdtK , or 
 macAB  genes exhibited the same drug susceptibility as the wild-type strain [ 13 ]. 
These two lines of data suggest, similar to  E. coli , a predominant if not overwhelm-
ing role of the AcrAB in the drug resistance phenotype. Furthermore, that other 
pump expression is minimal and/or their functions are masked by overlapping sub-
strate repertoires with AcrAB. The expression levels of drug transporter genes 
under laboratory conditions were investigated by streaking out onto X-Gal 
(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) LB agar plate strains in 
which the  E. coli lacZY  genes replaced the chromosomal copy of the drug effl ux 
genes in  Salmonella  [ 13 ]. The  tolC - lacZY  and  acrA - lacZY  strains were blue on 
plates, whereas the  acrD - lacZY ,  emrA - lacZY ,  mdfA - lacZY ,  mdtK - lacZY , and  macA - 
 lacZY  strains were only faint blue. Thus, the AcrAB–TolC effl ux system is expressed 
in the complex laboratory media, whereas the other effl ux systems appear to require 
additional cues for expression [ 13 ]. 

 TolC is required for the function of seven drug effl ux systems AcrAB, AcrD, 
AcrEF, MdsAB, MdtABC, EmrAB, and MacAB in  S. enterica  serovar Typhimurium 
[ 27 ]. Therefore, plasmids carrying the  acrAB ,  acrD ,  acrEF ,  mdsAB ,  mdtABC , 
 emrAB , or  macAB  genes do not confer resistance to the  tolC  mutant, whereas they 
conferred drug resistance in the  acrB  mutant. Plasmids carrying  mdsABC ,  mdfA , or 
 mdtK  provide resistance to the  tolC  mutant, indicating that these three effl ux sys-
tems function without TolC. The crystal structure of TolC (i.e., ST50) from 
 Salmonella  Typhi was recently reported, showing the structural basis for TolC role 
in multidrug effl ux pumps across the outer membrane [ 37 ]. The  Salmonella -specifi c 
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drug effl ux system  mdsABC  operon codes for a putative outer membrane protein – 
MdsC – which is in contrast to the other operons coding for RND-type drug trans-
porter genes. In  E. coli , most operons coding for RND-type drug transporter 
homologs lack genes for outer membrane proteins [ 38 ] because they rely on TolC as 
their outer membrane component [ 39 – 42 ]. Overexpression of both the  mdsABC  and 
 mdsAB  genes produced drug resistance in the ∆ acrB mdsABC  strain. On the other 
hand, overexpression of  mdsABC , but not  mdsAB , resulted in drug resistance to the 
∆ acrB tolC mdsABC  strain. These fi ndings indicate that the drug resistance pheno-
type conferred by the MdsAB system is dependent on the presence of either the 
MdsC or TolC proteins and that the MdsAB system can function with both TolC and 
MdsC outer membrane components [ 13 ,  27 ]. 

 Except for the  acrD  gene, all RND effl ux system genes also code for a mem-
brane fusion protein in the same operon. The overproduction of AcrD yielded mul-
tidrug resistance in the Δ acrB  mutant against β-lactam antibiotics and other agents 
(Table  10.1 ). It was revealed that AcrD requires AcrA and TolC to function 
(Fig.  10.1 ) [ 27 ,  43 ]. One possibility for AcrD utilizing AcrA, coded in a different 
operon, is that AcrD may form a complex with AcrA and TolC when mutations 
occur in AcrB and compensate for the lost function of AcrAB–TolC multidrug 
effl ux system. Another possibility is that AcrA contributes to different biological 
functions by forming complexes with two different RND pumps, AcrB and 
AcrD. Such a functional network of multidrug effl ux pumps may contribute to bac-
terial adaptation to various environmental conditions [ 43 ].  

10.4     Plasmid-Mediated Fluoroquinolone Effl ux Pumps 

 In addition to the effl ux systems encoded in the  Salmonella  genome, plasmid- 
mediated fl uoroquinolone effl ux pumps have been identifi ed. The MFS effl ux 
pump QepA was originally identifi ed in  Escherichia coli  clinical isolate [ 44 ]. 
Resistance levels against ciprofl oxacin, enrofl oxacin, and norfl oxacin were sig-
nifi cantly elevated in  E. coli  transformants harboring  qepA  under AcrB–TolC-
defi cient conditions. The intracellular accumulation of norfl oxacin was decreased 
in a  qepA -expressing  E. coli  transformant [ 44 ]. In  Salmonella ,  qepA  was fi rst 
detected in the clinical isolates obtained in the hospital clinic in Spain [ 45 ]. 
Subsequently,  qepA  was detected in several quinolone-resistant  Salmonella  spp. 
clinical isolates [ 46 ,  47 ]. 

 Plasmid-encoded multidrug effl ux genes  oqxAB  were also identifi ed in 
 Salmonella  [ 18 ,  48 – 51 ]. The quinoxaline-di- N -oxide olaquindox has been a growth 
enhancer in pigs. Its antimicrobial activity is due to inhibition of DNA synthesis 
[ 52 ]. The  oqxAB  genes were originally identifi ed from a conjugative plasmid iso-
lated from  E. coli  [ 53 ]. OqxA, a membrane fusion protein, and OqxB, an inner 
membrane protein, are homologous to several RND family effl ux systems from 
different species. Plasmids containing the  oqxAB  genes yielded high resistance to 
olaquindox in  E. coli . The  oqxAB -encoded pump also conferred high resistance to 
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chloramphenicol [ 53 ]. H + -dependent ethidium effl ux abilities of OqxAB were also 
confi rmed in  E. coli  [ 53 ]. A derivative of the plasmid encoding OqxAB was readily 
transferred to enterobacterial pathogens and transconjugants showed reduced sus-
ceptibility to chloramphenicol, ciprofl oxacin, and olaquindox [ 54 ]. OqxAB were 
found in human clinical isolates on a plasmid in  E. coli  and on the chromosome of 
 Klebsiella pneumoniae . IS26-like sequences fl anked the plasmid-mediated  oqxAB  
genes, suggesting that they had been mobilized as part of a composite transposon 
[ 55 ]. After the fi rst detection of  oqxAB  in  Salmonella  spp. isolated from food [ 47 ], 
the genes were identifi ed in many  Salmonella  isolates which exhibited resistance to 
fl uoroquinolones [ 48 – 51 ,  56 ,  57 ].  

10.5     Virulence Roles of  Salmonella  Drug Effl ux Pumps 

 Drug effl ux systems are evolutionarily ancient and are found throughout the three 
domains of life [ 58 ,  59 ]. These systems are fundamental to the bacterial physiology 
and some have roles other than conferring resistance to antimicrobials. Recognizing 
that the AcrAB–TolC system serves as an important antimicrobial resistance deter-
minant [ 11 ,  12 ], it was also reported that this effl ux system is required for  Salmonella  
resistance to bile salts [ 11 ,  60 ] which are found exclusively associated with higher 
vertebrates. It was shown that the  acrB  mutant of  S. enterica  serovar Typhimurium 
exhibited a reduced capacity to colonize the intestinal tract, and this suggests that 
AcrAB–TolC effl ux system play an important role in mouse intestinal colonization 
[ 11 ]. It was also reported that the deletion of the  macAB  genes attenuated  Salmonella  
virulence, and a strain lacking all drug effl ux systems was avirulent when mice were 
inoculated by the oral route [ 13 ]. These results indicate that drug effl ux genes are 
required for  Salmonella ’s ability to cause a lethal infection in mice. Utilizing similar 
approaches, Buckley et al. [ 19 ] studied the role of effl ux systems on virulence of  S. 
enterica  serovar Typhimurium using effl ux-defective mutants in a chicken model 
and found that mutants defi cient in either  acrB  or  tolC  genes colonized poorly and 
did not persist in the avian gut, indicating that AcrAB–TolC system is essential for 
the colonization of  S. enterica  serovar Typhimurium in chickens. Experiments using 
BALB/c mice by the oral route with isogenic strains harboring deletions in effl ux 
genes showed that the mutation in  tolC  of  S. enterica  serovar Typhimurium attenu-
ated virulence [ 13 ], as reported for an  S. enterica  serovar Enteritidis  tolC  mutant 
[ 61 ]. Inactivation of the MarA or RamA activator (which upregulates AcrAB–TolC 
expression; see Sect.  10.7 ) reduced both the invasion and survival ability of 
 Salmonella choleraesuis  in the host cells and virulence in mice [ 62 ]. 

  Salmonella  MacAB pump plays a role in the detoxifi cation of reactive oxygen 
species, compounds that salmonellae are exposed to at various stages of infection 
[ 63 ]. The  macAB  operon is induced upon exposure to hydrogen peroxide and is 
critical for survival of  S. enterica  serovar Typhimurium in the presence of oxidative 
stress. Furthermore,  macAB  is required for intracellular replication inside murine 
macrophages but is not required for survival in reactive oxygen species-defi cient 
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macrophages [ 63 ]. Bogomolnaya et al. [ 63 ] suggested the presence of a soluble 
anti-peroxide compound secreted by  Salmonella  cells through a MacAB-dependent 
mechanism. In  E. coli , MacAB is involved in the secretion of heat-stable entero-
toxin II [ 64 ], and MacA binds lipopolysaccharide core specifi cally with high affi n-
ity [ 65 ]. Also, it was recently reported that protoporphyrin is exported by 
MacAB–TolC in  E. coli  [ 66 ]. Because high protoporphyrin levels result in produc-
tion of reactive oxygen species [ 67 ], Turlin et al. [ 66 ] proposed that MacAB is 
involved in the effl ux of intracellular protoporphyrin which decreases reactive oxy-
gen species formation in the bacterial cytoplasm, providing a possible explanation 
for the role of MacAB in  Salmonella  pathogenicity.  

10.6     Physiological Functions of  Salmonella  
Drug Effl ux Pumps 

 There are several reports about the physiological functions of  Salmonella  drug 
effl ux systems. The BaeSR two-component signal transduction system activates the 
 acrD  and  mdtABC  expression in response to indole, copper, and zinc. BaeSR, AcrD, 
and MdtABC contribute to copper and zinc resistance in  Salmonella  [ 21 ]; andiron 
and sodium tungstate are inducers of the BaeR regulon suggesting MdtA, AcrD, and 
AcrB exist for the waste disposal of tungstate from the cell [ 68 ]. Additionally, the 
MdsABC pump (also called GesABC) is required for gold resistance and the 
 mdsABC  operon is controlled by GolS which is a MerR-like sensor and highly 
selective for Au ions [ 22 ]. In contrast to heavy metal-specifi c CusCBA RND pump 
of  E. coli , MdsABC, accommodates a large number of substrates including many 
antibiotics (Table  10.1 ) [ 28 ]. 

 Recent studies have showed that defects in effl ux activity impair biofi lm forma-
tion. In  S. enterica  serovar Typhimurium, deletion of any effl ux pump or chemical 
inhibition of the effl ux activity results in compromised ability of  Salmonella  to form 
biofi lm [ 23 ]. The defect of biofi lm formation in effl ux mutants resulted from tran-
scriptional repression of curli biosynthesis genes and consequently inhibition of its 
production, but was not associated with altered aggregative ability or export of any 
biofi lm-promoting factor [ 69 ] (also see Chap.   25    ).  

10.7      Regulation of  Salmonella  Drug Effl ux Pumps 

 The key to understanding how bacteria utilize multidrug effl ux pumps lies in the 
regulation of pump expression. The data currently available show that multidrug 
effl ux pumps are often expressed under precise and elaborate transcriptional con-
trol. For example, expression of  macAB  is controlled by the PhoPQ system, the 
master regulator for the virulence of  Salmonella  (Table  10.2 ) [ 13 ]. A sequence 
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resembling the PhoP binding box exists in the upstream of the  macAB  operon [ 78 ]. 
DNase I footprinting analysis with the purifi ed PhoP protein showed protection of 
the region upstream of the  macA  open reading frame [ 13 ], indicating that the PhoPQ 
two-component signal transduction system controls  macAB  directly. Analysis of 
mRNA levels of drug effl ux genes revealed that the expression of  macAB  is induced 
when the organism infects macrophages [ 15 ]. A recent study also showed that 
hydrogen peroxide induces expression of  macAB  [ 63 ], supporting the induction of 
 macAB  inside macrophages and the existence of additional regulator to control the 
 macAB  genes responsive to hydrogen peroxide.

   Moreover, positive regulation of the multidrug effl ux pump  mdtABC  and  acrD  
genes by the BaeSR two-component signal transduction system was found 
(Table  10.2 ) [ 21 ]. In addition to the roles of MdtABC, AcrD, and BaeSR in multi-
drug resistance, they contribute to copper and zinc resistance in  Salmonella  as 
described above. Both copper and zinc are essential for organisms but can be toxic 
at high levels, and microorganisms express diverse resistance mechanisms. The 
expression of  mdtABC  and  acrD  is induced by copper or zinc, and BaeSR is 
involved in this induction (Table  10.2 ). This fi nding indicates that the MdtABC and 
AcrD effl ux systems have physiological roles in metal homeostasis beyond multi-
drug resistance [ 21 ]. It was also reported that GolS controls MdsABC in response 
to Au ions [ 22 ]. 

      Table 10.2    The known regulators of multidrug effl ux pumps in  Salmonella    

 Effl ux 
pump  Regulator  Regulator family  Inducible signal  Reference 

 AcrAB  RamA  AraC  Bile, indole  [ 70 ] 
 RamR  TetR  Berberine, bile, crystal violet, 

dequalinium, ethidium bromide, 
rhodamine 6G 

 [ 71 ,  72 ] 

 AcrR  TetR  Unknown  [ 73 ] 
 MarA  AraC  Unknown  [ 74 ] 
 SoxS  AraC  Paraquat  [ 75 ] 

 AcrEF  AcrS  TetR  Unknown  [ 76 ] 
 H-NS  Histone-like 

protein 
 Unknown  [ 77 ] 

 AcrD  BaeSR  Two-component 
system 

 Indole, copper, iron, zinc tungstate  [ 21 ,  68 ] 

 CpxAR  Two-component 
system 

 Indole, copper, zinc  [ 21 ] 

 MdtABC  BaeSR  Two-component 
system 

 Indole, copper, zinc, tungstate  [ 21 ,  68 ] 

 CpxAR  Two-component 
system 

 Indole, copper, zinc  [ 21 ] 

 MdsABC  GolS  MerR  Gold  [ 22 ] 
 MacAB  PhoPQ  Two-component 

system 
 Magnesium  [ 13 ] 
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 Mutations in  acrR  contribute to overexpression of  acrAB  and increases resis-
tance to multiple drugs in  Salmonella  [ 73 ]. The histone-like protein (H-NS) modu-
lates multidrug resistance through repression of the  acrEF  genes [ 77 ]. Eaves et al. 
[ 74 ] suggested that  acrB ,  acrF , and  acrD  are coordinately regulated and that their 
expression is also infl uenced by the expression of the transcriptional activators 
 marA  and  soxS . Nikaido et al. [ 75 ] found that  acrAB  induction in response to methyl 
viologen is dependent on SoxS. Indole, bile salts, and an  E. coli -conditioned 
medium were also able to induce the expression of  acrAB  in  Salmonella . The  acrAB  
induction by these three signal sources is completely dependent on the  Salmonella - 
specifi c regulator RamA, indicating that RamA plays a major role in inducing 
 acrAB  (Table  10.2 ) [ 70 ]. RamA belongs to the AraC transcriptional activator fam-
ily, and this gene appears to be specifi c for  Salmonella  serovars and is absent in 
many other Gram-negative microorganisms; notable exceptions are  Klebsiella 
pneumoniae  and  Enterobacter  species [ 79 – 81 ]. The AcrAB induction pathway in 
 Salmonella  is different from that in  E. coli . Bile induces AcrAB in both  Salmonella  
and  E. coli . In  E. coli , the transcriptional factor Rob plays a major role in inducing 
 acrAB  expression in response to bile [ 82 ]. However, bile induction of  acrAB  in 
 Salmonella  is dependent on RamA, not Rob. Other regulators, including MarA, 
SoxS, SdiA, and AcrR, are not involved in AcrAB induction by indole and bile [ 70 ]. 
These facts suggest that RamA is the major regulator of  Salmonella acrAB  and may 
mask the contributions of any other  acrAB  regulators. 

 Abouzeed et al. [ 83 ] demonstrated that the inactivation of the  ramR  gene 
upstream of  ramA  resulted in an increased expression of  ramA  and the AcrAB effl ux 
pump, indicating that RamR is a local repressor of  ramA . Inactivation of  marR , 
 marA ,  soxR , and  soxS  did not affect the susceptibilities of the  S. enterica  serovar 
Typhimurium strain LT2, whereas the disruption of  ramR  resulted in a multidrug 
resistance phenotype with this strain. In  E. coli , multiple regulators, including 
MarA, Rob, SoxS, and SdiA, work together in controlling  acrAB  expression in 
response to  acrAB  inducers. This may be related to the lack of RamA in  E. coli . 
Indeed, overproduction of RamA has induced the drug resistance level of  E. coli  
[ 84 ,  85 ]. There may also be different induction mechanisms for  acrAB  via the 
RamA regulator. Indole was shown to induce  ramA  expression, and such increased 
expression of  ramA  can induce  acrAB , whereas bile binds to RamA. This is remi-
niscent of the binding of bile to the Rob protein involved in regulation of  acrAB  in 
 E. coli  [ 82 ]. It seems that RamA can be converted from a low-activity state to a 
high-activity state in response to bile. More recently, Baucheron et al. [ 71 ] also 
identifi ed a different induction mechanism of  acrAB  in response to bile whereby the 
bile-mediated activation of the  acrAB  and  tolC  multidrug effl ux genes occurs via 
transcriptional derepression of the  ramA  activator gene, likely via the RamR repres-
sor protein controlling expression of  ramA . Indole and bile salts are found in various 
internal human environments, especially in the intestine [ 86 ,  87 ]. Indole is produced 
by many enteric bacterial species [ 87 ], and bile is often present in high concentra-
tions in the intestinal tract [ 86 ]. Therefore, RamA may be required for  Salmonella  
to detect environmental signals and for subsequent induction of the AcrAB–TolC 
system, resulting in excretion of toxic compounds into the surrounding environment 
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in the above examples, the intestine. A recent study showed heterogeneity in  ramRA  
mutations and its differential impact on expression of regulator genes  ramA ,  marA , 
 soxS , and  acrR  and effl ux component genes  acrB ,  acrF ,  emrB , and  tolC , revealing 
deletions that affected RamR-binding site exhibiting a major impact on the  ramA  
transcript level and the multidrug resistance phenotype [ 88 ].  

10.8     Structure of Multidrug Effl ux Pump Regulator 
RamR with Multiple Drugs 

 As described above, RamR and RamA are important regulators for AcrAB–TolC in 
 Salmonella . From the structural and biochemical analysis of RamR, a multidrug 
recognition mechanism of RamR occurs, whereby the DNA-binding activity is con-
trolled by multiple drugs in order to induce  ramA  expression [ 72 ]. Yamasaki et al. 
[ 72 ] identifi ed fi ve substrates of the RamR protein, including berberine, crystal vio-
let, dequalinium, ethidium bromide, and rhodamine 6G (Fig.  10.2 ). Similar 
approaches in crystallizing the TetR family regulators with multiple drugs have 
been also reported in QacR [ 89 ], TtgR [ 90 ], and CmeR [ 91 ]. The molecular weight 
of RamR in solution was calculated to be 36 kDa using gel fi ltration chromatogra-
phy, which was conducted during the purifi cation of the RamR protein. Dissolved 
RamR was found to exist in the dimer form in solution, and the molecular weight of 
the RamR monomer was 21 kDa [ 72 ]. The structure of RamR was initially deter-
mined at a resolution of 2.6 Å by multiple wavelength anomalous dispersion using 
selenomethionine modifi cation. Subsequently, the RamR structure was determined 
at 2.1 Å by molecular replacement. Approximate overall dimensions of the RamR 
dimer were 58 × 47 × 44 Å 3 . RamR is composed of nine α-helices, and the three- 
helix bundle structures formed at the N-terminus maintain a helix-turn-helix motif 
conserved in DNA-binding sites. The structure of the RamR DNA-binding site is 
similar to that of other TetR family regulators. By the surface plasmon resonance 
analysis, it was found that fi ve compounds, berberine, crystal violet, dequalinium, 
ethidium bromide, and rhodamine 6G, bind to the RamR protein. In contrast, tetra-
cycline did not show any indication of binding to RamR. Using a  ramA  reporter 
plasmid, a ß-galactosidase assay showed the enhanced promoter activity of  ramA  
when bacterial cells were treated with berberine, crystal violet, dequalinium, ethid-
ium bromide, or rhodamine 6G. The crystal structures of RamR in complex with 
berberine, crystal violet, dequalinium, ethidium bromide, and rhodamine 6G were 
determined at a resolution of 2.4, 2.2, 2.6, 1.6, and 2.5 Å, respectively [ 72 ]. The 
structure reveals that RamR binds two molecules of berberine, ethidium bromide, or 
rhodamine 6G per dimer. And RamR binds one crystal violet or dequalinium mol-
ecule per dimer. It was originally reported that all the ligands bind to QacR with a 
1:2 stoichiometry (one ligand per QacR dimer) [ 89 ], while either 1:2 or 1:1 stoichi-
ometry has been observed for RamR. Similar observations were reported in TtgR 
[ 90 ]. The orientation of all agents is parallel with the Phe155 of RamR, suggesting 
that all these drugs bind with RamR through π–π stacking interactions. In contrast 
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to the common interaction of all of these drugs with Phe155, each individual drug 
was also found to interact with a different set of amino acid residues other than 
Phe155. The interaction of different sets of amino acid residues with each drug 
indicates that multiple drugs are recognized by the multisite binding of RamR [ 72 ]. 
Comparison of the liganded structures with an unliganded RamR structure reveals 
that drug binding triggers an expansion of the distance between the N-termini of the 
helix-turn-helix motifs in the RamR dimer. This expansion occurred as a result of 
the binding of all of the drugs examined. By the electrophoretic mobility shift assays 

a

c

b

  Fig. 10.2    Regulatory cascade and structure of RamR. ( a ) Model for gene regulation by 
RamR. RamR represses expression of the  ramA  gene, which encodes the activator protein for the 
 acrAB  effl ux pump genes. RamR binds to the intergenic region between the  ramR  and  ramA  genes, 
and RamA binds to the upstream region of  acrAB . ( b ) Crystal structure of the RamR dimer. Each 
monomer is colored as follows: the α-helices are represented in  blue  ( α1 ),  marine  ( α2 ),  sky blue  
( α3 ),  cyan  ( α4 ),  green  ( α5 ),  limon  ( α6 ),  yellow  ( α7a ),  deep olive  ( α7b ),  orange  ( α8a ),  brown  ( α8b ), 
and  red  ( α9 ). ( c ) Multidrug recognition by RamR. Substrate binding site of RamR with a bound 
molecule berberine,  crystal violet , dequalinium, ethidium bromide, or rhodamine 6G. Key residues 
are shown, including residue Phe155, which is involved in π–π stacking interactions with drugs. 
Carbon atoms of drugs and RamR are shown in  magenta  and  green , respectively. Nitrogen, oxy-
gen, and sulfur atoms are shown in  blue ,  red , and  yellow , respectively (Figure is modifi ed from 
Yamasaki et al. [ 72 ])       
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and surface plasmon resonance experiments, RamR substrates interact with their 
recognition sites to reduce the DNA-binding affi nity of RamR, resulting in the 
induction of  ramA  [ 72 ]. Because RamA has also been reported to negatively infl u-
ence virulence in  S. enterica  serovar Typhimurium by downregulating expression of 
the  Salmonella  pathogenicity island 1 [ 92 ], determining the crystal structure of 
RamR is the fi rst step in understanding the structural basis for the function of the 
regulatory proteins that control both drug resistance and virulence in pathogens. 
This effort extended our knowledge of transcriptional regulation mediated by 
RamR, a regulator of multidrug resistance in several enterobacterial pathogens.

10.9        Concluding Remarks 

 Post-genomic research has demonstrated that bacteria possess a large number of 
drug effl ux system genes. As described in this chapter, at least ten drug effl ux sys-
tems in the genome of  S. enterica  have been experimentally identifi ed to date. Under 
normal growth conditions, most of drug effl ux pumps are thought to be weakly 
expressed [ 13 ]. Increased expression of such effl ux systems is possible when muta-
tions occur in their regulatory factors. In fact, various types of mutations in  ramR  
and the  ramR – ramA  intergenic region were identifi ed in multidrug-resistant strains 
of  S . Typhimurium, other  S. enterica  serovars, and  K. pneumoniae , which result in 
increased expression of  ramA  and an increase in effl ux-mediated multidrug resis-
tance [ 83 ,  93 ,  94 ]. Also, it was reported that overexpression of the multidrug effl ux 
operon  acrEF  occurs by insertional activation with IS1 or IS10 elements in 
 S. enterica  serovar Typhimurium DT204  acrB  mutants selected with fl uoroquino-
lones [ 76 ]. A mutation in  acrR , the local repressor of  acrAB , was found for two 
ciprofl oxacin- resistant selected mutants of  S. enterica  serovar Typhimurium [ 73 ]. In 
addition to these mutations, the structural and biochemical analysis showed that 
toxic compounds bind to RamR resulting in the increased effl ux activity of 
 Salmonella  to protect this organism against the compounds [ 72 ]. 

 Association of resistance mechanism with two-component signal transduction 
systems, which control the expression of drug effl ux pumps, has also been identifi ed 
in  Salmonella . These fi ndings suggest that the expression of effl ux systems is tran-
siently induced through some types of stimulation. In fact, this induction occurs as 
a result of various environmental stressors, such as low pH, osmotic changes, met-
als, and oxidative stress. The mechanism by which effl ux pumps are expressed in 
response to the environment suggests that they might be expressed in the growth 
environments of bacteria such as at infection sites. It is reasonable to assume that 
effl ux systems are induced inside hosts because these contribute not only to drug 
resistance but also to bacterial virulence. Therefore, it is necessary to identify the 
regulatory network of multidrug transporters in order to understand their physiolog-
ical functions. Moreover, determining the physiological substrate of effl ux systems 
is an important area of study, which will contribute to the understanding of the role 
of drug effl ux systems in virulence. 
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 The mechanism by which drug effl ux pumps contribute to bacterial virulence has 
three features. Firstly, the effl ux system has the capacity to transport substrates nec-
essary to establish virulence, for example, toxins. Secondly, the effl ux system is 
able to export antibacterial substances present in the host (such as bile acid and 
antimicrobial peptides) in order to protect the bacteria from the host environment. 
Thirdly, it can transport factors contributing to bacterial homeostasis or promoting 
bacterial regulatory functions within the host (such as autoinducers). Currently, sev-
eral research groups and pharmaceutical companies are conducting research to 
develop drug effl ux pump inhibitors. As effl ux systems contribute to multidrug 
resistance and bacterial virulence, effl ux systems are an attractive target for the 
development of new drugs. If an effective inhibitor is found, it could play a role in 
the development of new therapies that could conquer bacterial multidrug resistance 
and virulence.     
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