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Abstract In timed Petri nets, temporal properties are associated with transitions as
transition firing times (or occurrence times). For net models which can be
decomposed into a family of place invariants, performance analysis can be con-
veniently performed on the basis of its components. The paper presents an approach
to finding place invariants of net models and proposes an incremental method
which, for large models, can significantly reduce the required amount of
computations.
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1 Introduction

Petri nets [6, 7, 10] have been proposed as a formalism for modeling and analysis of
discrete-event systems with asynchronous, interacting components. Computer and
communication networks, manufacturing systems and transportation networks are
just a few examples of such systems. Popularity of net models is due to a simple
and ‘natural’ representation of concurrent and asynchronous activities, typical for
many discrete-event dynamical systems, that, however, cannot be modeled easily
using queueing theory or other traditional modeling and evaluation techniques.
Moreover, a well-developed mathematical foundations exists for the description
and analysis of net models.

In order to study the performance aspects of Petri net models, the duration of
activities must also be taken into account. Several types of Petri nets ‘with time’
have been proposed by assigning ‘firing times’ to transitions or ‘enabling times’ to
places [1, 8, 11]. In timed Petri nets [2, 9, 12, 13], the events occur in ‘real time’,
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i.e., there is a (deterministic or stochastic) duration associated with each transition’s
firing, and different (concurrent) firings of transitions correspond to (concurrent)
activities in the modeled systems. For timed Petri nets, the concept of ‘state’ and
state transitions can be formally defined, and used to derive different performance
characteristics of the model [13].

For a class of Petri net models, structural analysis, based on place invariants
[10], is an attractive approach because it provides an analytical characterization of
the model’s performance, and also it eliminates the exhaustive analysis of the state
space (which can be huge for large models). Structural analysis is based on the set
of place invariants, which—for complex models—can be difficult to find.
Incremental approach reduces the process of finding basic place invariants by first
finding the invariants for very simple submodels of the original models, and then
combining the submodels into more complex ones with invariants determined in a
way that eliminates many steps of the direct approach to finding the invariants.

Section 2 recalls basic concepts of Petri nets and timed nets, their place
invariants and (structural) performance analysis. Finding place invariants is dis-
cussed in Sect. 3 while Sect. 4 introduces the incremental approach and compares it
with the direct approach of Sect. 3. Section 5 provides some concluding remarks.

2 Nets, Net Invariants, Timed Nets and Performance
Analysis

A place/transition (ordinary, i.e., with no arc weights) net N is a triple N ¼ ðP; T ;AÞ
where P is a finite, nonempty set of places, T is a finite, nonempty set of transitions,
and A is a set of directed arcs, A�P� T [ T � P, such that for each transition there
exists at least one place connected with it. For each place p (and each transition t)
the input set, Inp(p) (or Inp(t)), is the set of transitions (or places) connected by
directed arcs to p (or t). The output sets, Out(p) and Out(t), are defined similarly.

A marked Petri net M is a pair M ¼ ðN;m0Þ where N is a Petri net,
N ¼ ðP; T ;AÞ, and m0 is an initial marking function, m0 : P ! f0; 1; . . .g which
assigns a (nonnegative) integer number of tokens to each place of the net.

Let any function m : P ! f0; 1; . . .g be called a marking in a net N ¼ ðP; T ;AÞ.
A transition t is enabled by a marking m iff m assigns at least one token to every

input place of this transition. Every transition enabled by a marking m can fire (or
occur). When a transition fires, a token is removed from each of its input places and
a token is added to each of its output places. This determines a new marking in a
net, new set of enabled transitions, and so on. The set of all markings that can be
derived from the initial marking is called the set of reachable markings. If this set if
finite, the net is bounded, otherwise it is unbounded.

A place p is shared iff it is an input place for more than one transition. A net is
(structurally or statically) conflict-free if it does not contain shared places.
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A marked net is (dynamically) conflict-free if for any marking in the set of
reachable markings, and for any shared place, at most one of transitions sharing the
place is enabled. Only bounded conflict-free nets are considered in this paper.

Each place/transition net N ¼ ðP;T ;AÞ can be represented by a connectivity (or
incidence) matrix C : P� T ! f�1; 0; þ 1g in which places correspond to rows,
transitions to columns, and the entries are defined as:

8p 2 P 8t 2 T : C½p; t� ¼
�1; if t 2 OutðpÞ � InpðtÞ;
þ 1; if t 2 InpðpÞ � OutðpÞ;
0; otherwise:

8
<

:

If a marking mj is obtained from another marking mi by firing a transition tk then
(in vector notation) mj ¼ mi þC½k�, where C[k] denotes the k-th column of C, i.e.,
the column representing tk.

Connectivity matrices disregard ‘selfloops’, that is, pairs of arcs (p, t) and (t, p);
any firing of a transition t cannot change the marking of p in such a selfloop, so
selfloops are neutral with respect to token count of a net. A pure net is defined as a
net without selfloops [10].

A P-invariant (place invariant) of a net N is any nonnegative, nonzero integer
(column) vector I which is a solution of the matrix equation

CT � I ¼ 0;

where CT denotes the transpose of matrix C. It follows immediately from this
definition that if I1 and I2 are P-invariants of N, then also any linear (positive)
combination of I1 and I2 is a P-invariant of N.

A basic P-invariant of a net is defined as a P-invariant which does not contain
simpler invariants. All basic P-invariants I of ordinary nets are binary vectors [10],
I : P ! f0; 1g.

A net Ni ¼ ðPi; Ti;AiÞ is a Pi-implied subnet of a net N ¼ ðP; T ;AÞ, Pi � P, iff:

(1) Ai ¼ A\ ðPi � T \T � PiÞ;
(2) Ti ¼ ft 2 T j9p 2 Pi : ðp; tÞ 2 A _ ðt; pÞ 2 Ag:

It should be observed that in a (pure) net N, each P-invariant I of N determines a
PI-implied (invariant) subnet of N, where PI ¼ fp 2 PjIðpÞ[ 0g; PI is sometimes
called the support of the invariant I; all nonzero elements of I select rows of C, and
each selected row i corresponds to a place pi with all its input (+1) and all output
(–1) arcs associated with it.
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For the Petri net shown in Fig. 1, the connectivity matrix is:

It can be easily observed that the sum of rows 1 and 2, as well as 3 and 4 are
equal to zero, so fp1; p2g and fp3; p4g are basic place invariants. Similarly,
fp5; p6; p7; p8; p9g is also a basic place invariant. Subnets implied by these
invariants are shown in Fig. 2.

The net shown in Fig. 1 has two more place invariants: fp1; p3; p5; p6g and
fp2; p4; p7; p8; p9g.

In timed Petri nets each transition takes a ‘real time’ to fire, i.e., there is a ‘firing
time’ associated with each transition of a net which determines the duration of
transition’s firings.

A conflict-free timed Petri net T is a pair T ¼ ðM; f Þ where:
M is a conflict-free marked Petri net, M ¼ ðN;m0Þ, N ¼ ðP; T ;AÞ,
f is a firing time function which assigns the nonnegative (average) firing time

f ðtÞ to each transition t of the net, f : T ! R�, and R� denotes the set of non-
negative real numbers.

The behavior of a timed Petri net can be represented by a sequence of ‘states’
and state transitions where each ‘state’ describes the distribution of tokens in places
as well as firing transitions of the net; detailed definitions of states and state tran-
sitions are given in [13]. The states and state transitions can be combined into a
graph of reachable states; this graph is a semi-Markov process defined by the timed
net T. For cyclic conflict-free timed nets, such state graphs are simple cycles which
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Fig. 1 Petri net
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represent the cyclic behavior of such nets. Each such timed Petri net contains a
basic invariant subnet with the cycle time equal to the cycle time of the whole net.
All other subnets, with smaller cycle times, will be subjected to some synchro-
nization delays, imposed by the ‘slowest’ subnet that determines the cycle time of
the whole net.

The cycle time of the net, s0, is thus equal to the maximum cycle time if its
invariant subnets [11]:

s0 ¼ maxðs1; s2; . . .; skÞ

where k is the number of subnets covering the original net, and each si, i ¼ 1; . . .; k,
is the cycle time of the subnet i, equal to the sum of occurrence times associated
with the transitions divided by the total number of tokens assigned to the subnet:

si ¼
P

t2Ti f ðtÞP
p2Pi

mðpÞ :

In many cases, the number of basic P-invariants can be reduced by removing
from the analyzed net all these elements which do not affect the performance of
models. Some of such reductions are discussed in [14].

3 Finding Place Invariants

Finding place invariants can be done in several ways [4, 5]. A polynomial algorithm
for finding all place invariants can be derived from the property that the sum of
rows of the connectivity matrix corresponding to a place invariant is equal to zero.
For each place pi, the algorithm starts with the i-th row of a connectivity matrix and
uses other rows to eliminate nonzero elements in the original row. This is performed
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Fig. 2 Invariant implied subnets
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by a recursive procedure “Eliminate” with three parameters, “w” which is the
current working vector (initialized to the i-th row of the connectivity matrix), “u”
which is a set of places constituting the invariant and “r” which ia a set of columns
of the connectivity matrix (i.e., transitions) used for reductions of “w”:

“Inv” is the set of invariants and “add(u,Inv)” adds the invariant “u” to the set.
“Inv” if it is not there; nt is the number of transitions and np is the number of places.
The function “check(w, j)” returns the set of indices of nonzero elements of the sum
of “w” and row “j” of “M”.

“Eliminate” is invoked for consecutive places of the net model:

The initial steps of finding place invariants for the model shown in Fig. 1 are
presented in Table 1; the table shows the vector “w”, the set “u” and the set “r” for
consecutive invocations of “Eliminate”).
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The complete set of basic place invariants for the net shown in Fig. 1 is:

i place invariant implied transitions

1 fp1; p2g t1; t2
2 fp3; p4g t2; t3
3 fp5; p6; p7; p8; p9g t1; t3; t4; t5; t6
4 fp1; p3; p5; p6g t1; t2; t3; t4
5 fp2; p4; p7; p8; p9g t1; t2; t3; t5; t6

so the cycle time is:

s0 ¼ maxðs1; s2; s3; s4; s5Þ

Table 1 Finding place invariants for the net shown in Fig. 1

i w u r

1 −1,+1,0,0,0,0 {1} {}

0.0,0,0,0,0 {1,2} {1} invariant {1,2}

0,+1,0,−1,0,0 {1,5} {1}

0,0,+1,−1.0,0 {1,5,3} {1,2}

0,0,0,0,0,0 {1,5,3,6} {1,2,3} invariant {1,3,5,6}

2 +1,−1,0,0,0,0 {2} {}

0,0,0,0,0,0 {2,1} {1} invariant {1,2}

0,−1,0,0,0,+1 {2,9} {1}

0,0,-1,0,0,+1 {2,9,4} {1,2}

0,0,0,0,−1,+1 {2,9,4,7} {1,2,3}

0,0,0,0,0,0 {2,9,4,7,8} {1,2,3,5} invariant {2,4,7,8,9}

3 0,−1,+,0,0,0 {3} {}

−1,0,+1,0,0,0 {1,3} {1}

0,0, +1,−1,0,0 {3,1,5} {1,3}

��� ��� ��� ���
9 −1,0,0,0,0,+1 {9} {}

0,−1,0,0,0,+1 {9,2} {1}

0,0,−1,0.0,+1 {9,2,4} {1,2}

0,0,0,0,−1,+1 {9,2,4,7} {1,2,3}

0,0,0,0,0,0 {9,2,4,7,8} {1,2,3,5} invariant {2,4,7,8,9}
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where:

s1 ¼ f ðt1Þþ f ðt2Þ;
s2 ¼ f ðt2Þþ f ðt3Þ;
s3 ¼ f ðt1Þþ f ðt3Þþ f ðt4Þþ f ðt5Þþ f ðt6Þ;
s4 ¼ ðf ðt1Þþ f ðt2Þþ f ðt3Þþ f ðt4ÞÞ=2;
s5 ¼ f ðt1Þþ f ðt2Þþ f ðt3Þþ f ðt5Þþ f ðt6Þ:

Other performance characteristics can be derived in a similar way [3].

4 Incremental Approach

In many cases, the components of the model are known in advance and can be used
for incremental approach to finding place invariants of a net model.

For the example shown in Fig. 2, place invariants of simple subnets are obvious
(and even formally can be determined in a single step). Submodels (a) and (c) (i.e.,
subnets implied by place invariants fp1; p2g and fp5; p6; p7; p8; p9g) are combined
using a single transition (t1) which does not change the invariants. The combined
subnet implied by fp1; p2; p5; p6; p7; p8; p9g is merged with the remaining subnet by
transitions t2 and t3, as shown in Fig. 3. This integration can create new invariants,
but all such invariants must contain places connected to t2 and/or t3, so only these
places should be checked for new place invariants.

In general, if two subnets are merged by transitions in a set Tshared , new place
invariants are found by the same procedure as before but restricted to places in the
set Inp(Tshared) and Out(Tshared):

p1 p2
p5

p6

p7

p8

p9

t1

p3 p4

t2

t3

t4

t5

t6

t3

t2

Fig. 3 Merging subnets
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Analysis of the case shown in Fig. 3 corresponds to a part of Table 1 that
includes places p1 to p4, p6 and p7, which is about one half of the total Table.

It should be observed that the gains of the incremental approach actually increase
with the size of the model.

5 Concluding Remarks

Invariant-based performance analysis derives analytical characterization of the
model’s performance provided the model is covered by a family of conflict-free
subnets. If this is the case, the subnets are implied by place invariants of the net
model. Efficient method of finding place invariants uses an incremental approach of
merging simple submodels into more complex ones.

It should be noted that the efficiency of the incremental approach depends upon
ordering the merged models. For instance, if the first step of merging the submodels
shown in Fig. 2 combines submodels (a) and (b) rather than (a) and (c), the
potential advantages of the approach will be lost.

The process of finding place invariants can be simplified in several ways, for
example, by model reductions. Each simple path in the model can be reduced to a
single element because any place invariant must either contain the whole path or
none of its elements. Similarly, parallel paths (i.e., simple paths originating and
terminating in a single transition) can be merged because if a place invariant
contains one of these paths then there must exist another invariant containing the
other path—there is no need to repeat the steps of finding these two invariants
independently.

A similar considerations in the context of deadlock analysis (and finding siphons
in net models) showed that simple net reductions can significantly reduce the
required computations [14].
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