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Abstract In the last decade, numerous Byzantine fault-tolerant (BFT) replication
protocols have been proposed in the literature. However, practically all of these
solutions were designed and optimized only for certain, typically very limited set of
environment conditions. Despite previous efforts, no existing BFT replication
protocol can guarantee stable and reasonable performance in both correct and faulty
environments. In this article we attempt to address this problem by introducing
Supr, a novel method for effortlessly combining multiple replication protocols into
adaptive BFT solutions, which accommodate to a much wider spectrum of envi-
ronment conditions than the existing BFT systems. Unlike previous approaches,
Supr uses a fine-grained mechanism to monitor the parameters of the execution
environment, which enables detecting and counteracting arbitrary faults exhibited
in the system. To demonstrate its potential, we use Supr to create a sample BFT
solution combining three existing replication protocols, each optimized for different
conditions. The performed experiments demonstrate that our approach not only
significantly outperforms existing solutions in varying environment conditions, but
also does not introduce an observable overhead in stable environments.

Keywords Byzantine fault tolerance � State machine replication � Adaptive BFT �
Distributed systems � Dependability

1 Introduction

The last decade has observed an increased interest in creating and deploying
world-scale, complex distributed systems. As on-line services and cloud environ-
ments become more and more widespread, the demand for guaranteeing their
correctness and fault-tolerance has nowadays become high as never before. Many
contemporary systems use redundancy to guarantee the correctness of the service
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even when some server machines crash. However, the recurring incidents reported
by the major players in the cloud computing market, including Amazon [1] and
Google [8], show that this fault model may not be enough in practical deployments.
As a result, the overall interest has recently been shifting towards systems providing
a correct service even despite Byzantine (arbitrary) faults. Such solutions can not
only tolerate server crashes, but also counteract unpredictable faults, or even
malicious attackers. In practice, such model is typically provided through Byzantine
fault-tolerant (BFT) replication [3]. In such approach the actual service is deployed
on multiple nodes, or replicas, and enhanced with a dedicated coordination protocol
to guarantee consistency.

Following the publication of PBFT by Castro and Liskov [3], countless
Byzantine fault-tolerant replication protocols have been published in the literature
(see for instance [5, 10–12] and references therein). However, each of those
solutions has been designed to operate only in certain, very limited set of envi-
ronment conditions. For instance, PBFT [3] achieves reasonable performance only
in local area networks, and HQ [5] operates best for large number of replicas.
Furthermore, the majority of these protocols have been optimized for the common
case, i.e. fault-free environments, and consequently neglect the performance
achieved when some nodes become faulty. For instance, it has previously been
shown that practically all contemporary BFT replication protocols are prone to a so
called MAC attack [4]. Such vulnerability enables faulty clients to indefinitely
disrupt the progress of the whole protocol without being detected, simply by
appropriately malforming the authentication codes attached to its request. Even
though some BFT replication protocols, such as for instance Aardvark [4], have
been designed to guarantee acceptable performance despite in faulty environments,
they can exhibit more than 10 times worse throughput than the reference solutions
when all nodes are correct. Consequently, despite numerous attempts, none of the
existing Byzantine fault-tolerant replication protocols provides acceptable perfor-
mance in both correct and faulty environments.

In this chapter we attempt to fill this gap by proposing Supr, a novel method for
constructing Byzantine fault-tolerant replication systems. Supr views a BFT solu-
tion as a composition of self-sufficient replication protocols, which can be inde-
pendently implemented, tested and replaced. A BFT service constructed using Supr
actively monitors the properties of the execution environment and processes the
client requests using only the protocol most appropriate for the detected conditions.
As a result, Supr can be used to create solutions optimized for much broader range
of environment conditions than the existing approaches. In order to demonstrate
how the method introduced in this article could be used in practice, we use Supr to
create Dali, the first BFT replication protocol which provides high performance in
correct environments and still guarantees progress during MAC attacks. The con-
ducted experiments demonstrate that Dali not only significantly outperforms
existing BFT replication protocols in varying environment conditions, but also does
not introduce an observable overhead in stable environments.
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2 Related Work

Several existing BFT replication protocols have distinguished both fast and
recovery sub-protocols in order to improve performance in optimistic case, and
guarantee liveness in unfavorable conditions respectively. Zyzzyva [11] applies
speculative execution whenever all replicas are correct and switches to a slower
variant committing the requests only when some claims from the clients have been
received. HQ [5] deploys a lightweight quorum-based protocol in favorable con-
ditions and switches to PBFT when contention is detected. CheapBFT [10] uses an
optimistic protocol requiring less replicas, but falls back to MinBFT [12] when
faults are detected. However, in all these solutions the sub-protocols are tightly
coupled with each other, thus increasing the effort required for proper implemen-
tation, testing and maintenance. Contrarily, Supr is the first generic approach for
creating BFT solutions where each sub-protocol is entirely independent, and can be
implemented, proven and replaced irrespectively of the others.

The concept of constructing BFT solutions comprised of multiple protocol
instances has initially been proposed in Abstract [9]. Apart from acting as a tradi-
tional BFT protocol, each Abstract instance can decide to abort a client request
whenever it cannot provide progress. In such situation, the aborted request is relayed
to a different instance according to a predefined order. However, unlike Supr,
Abstract does not proactively change the instance processing client requests to
improve the achieved performance based on the detected environment conditions.

Bahsoun et al. [2] have recently proposed Adapt, a derivative of Abstract, which
does not require a predefined order in which the instances are aborted. Instead,
Adapt monitors the performance of the execution environment, such as the obtained
throughput or size of incoming requests, and uses these parameters to select the
protocol instance optimal for the detected environment conditions. However,
contrary to Supr, Adapt struggles to provide acceptable performance under arbitrary
faults, as the execution environment monitoring is not directly coupled with pro-
tocol instances. Furthermore, both Abstract and Adapt are likely to involve higher
implementation and maintenance costs than Supr due to possible hidden depen-
dencies between the sub-protocol instances. Finally, although Adapt does not
require a predefined policy, but uses machine learning to determine the most
appropriate instance, this approach can also be applied in Supr without an excessive
effort.

3 Supr Architecture

This section introduces and describes Supr (sub-protocols), a new approach for
effortlessly defining and implementing complex Byzantine fault-tolerant protocols.
Each BFT solution created using the proposed method is viewed as a composition
of so called Supr instances. Every instance represents an independent state machine
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replication protocol, which processes client requests and generates responses, much
like existing BFT protocols. At any moment exactly one instance is active, which
means it is designated to consume the client requests and process them according to
the underlying protocol specific for that instance. The non-active instances on the
other hand do not receive nor execute new client requests, although they still can
communicate with their corresponding instances on other nodes.

In order to oversee execution, Supr deploys on each replica an additional
supervisor module, which is shared between all protocol instances. The supervisor
acts as a multiplexer, intercepting all incoming messages and forwarding them to
the corresponding Supr instance. Apart from that, the supervisor collects the
information about the properties of the execution environment, such as the observed
throughput, average request size in previous batches, etc. These parameters are
reported directly by both active and inactive protocol instances. Additionally,
instances report to the supervisor any issues regarding the protocol execution. These
can include, but are not limited to, faults suspected in the system, observations
about any suspicious behavior or notices concerning insufficient progress. Finally,
the supervisor maintains and manages a transition policy, which defines how the
observations reported by the sub-protocols should affect the selection of the active
instance. The rules included in the policy should typically represent both the design
goals and the properties of every Supr instance, such as unfavorable conditions,
additional assumptions, etc.

The supervisor constantly monitors the information obtained from the
sub-protocols, and by confronting them with the policy, it might decide to change
the active instance by initiating a transition. When that happens, the supervisor
selects the new active instance based on the transition policy and enqueues any
subsequent requests received from the clients, instead of relying them to Supr
instances. Immediately after all the requests received by the previously active
instance have been processed, the supervisor finishes the transition by relaying the
enqueued client messages to the new active instance.

The second module deployed on each replica and shared between all Supr
instances is the sequencer, responsible for assigning unique identifiers to incoming
requests. Instead of using its own protocol-specific method, every instance is
required to query the sequencer module whenever it wishes to assign a client
request with a unique identifier. This approach guarantees that the requests are
ordered between multiple instances, which facilitates transitions between the pro-
tocols. Additionally, the sequencer is responsible for maintaining an identifier
cache, enabling detecting duplicate client requests. The communication pattern
between Supr modules located on a single node, including n sub-protocol instances,
is depicted in Fig. 1. The diagram illustrates the process of message multiplexing
performed by the supervisor and communication between the active instance and
the sequencer module, according to the description presented above.

The process of converting existing implementations of traditional BFT replica-
tion protocols into Supr instances involves modifying the protocol to communicate
with the modules described above and in most cases is straightforward and easy to
perform. Firstly, the code responsible for assigning unique identifiers to incoming

574 M. Zbierski



requests needs to be replaced with a query to the shared sequencer. Secondly, the
implementation of the BFT protocol has to be enhanced to relay progress statistics
to the supervisor wherever applicable, either periodically or on demand. The exact
location where such functionality should be implemented depends on the properties
of the instance and the choice of factors triggering transitions to other instances.
Finally, the messages exchanged by each Supr instance should be enhanced with a
field unique to that instance. This property is used by the supervisor to forward the
received messages to their appropriate destinations, although in some cases this
might not be necessary, for instance when the messages exchanged by the adapted
protocol already differ somehow from the messages issued by the other instances.

4 Dali Protocol

In order to demonstrate how the approach introduced in this article can be applied in
practice, this section uses Supr to create Dali, the first Byzantine fault-tolerant
replication protocol which survives MAC attack, and at the same time does not
degrade the performance achieved in correct environments. Dali consists of three
Supr instances, each implementing an existing BFT replication protocol optimized
for different environment conditions. The remainder of this section first provides a
brief description of these protocols, and then introduces the corresponding transi-
tion policy used by the supervisor.

The first Dali instance uses PBFT [3], a protocol considered as a baseline
solution in the field of Byzantine fault-tolerant replication. PBFT designates a
single replica to perform the role of the primary, i.e. coordinate protocol execution
by imposing a total ordering on client requests. If the remaining servers suspect that
the current primary is faulty, they initiate a vote to elect among themselves the
replica that will perform the role of the next primary. A similar approach is fol-
lowed in the large majority of contemporary BFT replication solutions, including

Fig. 1 Communication pattern between Supr modules located on a single replica
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the protocols used in the remaining Dali instances. PBFT uses a traditional
three-round consensus to guarantee that the identifier assigned by the primary to a
client request is correct. This means that PBFT needs to perform three all-to-all
communication rounds between the replicas before each client request can be
executed. To guarantee communication integrity, the exchanged messages are
enhanced with message authentication codes (MAC).

The second Dali instance implements Zyzzyva [11], a protocol decreasing
replication costs through speculation. Unlike PBFT, Zyzzyva optimistically exe-
cutes client requests without prior consensus. When all replicas are correct, this
requires only one communication round to be performed between the servers.
However, if the clients are unable to receive a consistent response from all replicas
before an assumed timeout, potentially because some nodes are faulty, they issue
claims addressed to the replicas. These are subsequently used to establish a con-
sistent state on all nodes and reach a consensus on a valid response to the corre-
sponding client requests. Consequently, even though Zyzzyva can provide very
high throughput and low latency in correct environments, the additional commu-
nication rounds and the delay imposed by the clients can significantly degrade the
achieved performance whenever some nodes are faulty. Much like in PBFT, the
exchanged messages are authenticated with MACs.

Finally, the third Dali instance deploys Aardvark [4], which, unlike both PBFT
and Zyzzyva, guarantees progress during MAC attacks. Although Aardvark bases
on the same three-round consensus as PBFT, it uses a combination of MACs and
public-key signatures to authenticate the exchanged messages. As a result, the
clients can no longer generate incorrect message authentication codes without being
detected, since public-key signatures provide transferable authentication. However,
at the same time this approach degrades the performance achieved by the protocol,
since public-key signatures are more than an order of magnitude slower than
message authentication codes [3].

As has been already observed in the literature, each of the protocols presented
above performs best in different environment conditions. Zyzzyva provides the best
throughput and latency in correct environments, but can be expected to perform
worse than PBFT in unfavorable conditions, i.e. when some replicas or clients are
faulty [6]. Furthermore, while only Aardvark is resistant to MAC attacks, it pro-
vides the worst performance in correct environments due to the additional cost of
signature verification [4]. Consequently, when designing Dali, we have reflected
these properties in its transition policy. As a result, Dali supervisor select Aardvark
whenever a MAC attack is detected, chooses Zyzzyva if no faults are observed, and
in remaining situations switches to PBFT.

Each Dali instance monitors the protocol execution and informs the supervisor
about the observed anomalies. Dali transition policy uses two main factors to
determine which instance should be activated by the supervisor. The first one is the
frequency of Zyzzyva-specific claims received from the clients and their relation to
the overall number of recently executed requests. When no client claims have been
received for an assumed amount of time, all replicas can be considered correct, and
an optimistic execution of Zyzzyva can be used to increase the overall performance.
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The second decision factor is the frequency of primary changes triggered by an
incorrectly authenticated request. This is because frequent and recurring primary
changes typically indicate a MAC attack. The transition policy used in Dali is
presented in Fig. 2. The quantitative parameters of the policy have been selected
experimentally to minimize the amount of time required to react to changes in
environment conditions, and at the same time prevent premature transitions to less
resilient instances in situations where the faults are not exhibited only temporarily.
Additionally, after each observed premature transition the time intervals used by the
policy are additionally doubled to prevent such situations in the future.

5 Experiments and Evaluation

In order to verify our approach we have created stand-alone implementations of
PBFT, Zyzzyva and Aardvark, and subsequently adapted them as Dali instances
using the Supr approach introduced in this article. Additionally, each implemented
protocol has been enhanced to take advantage of the cost-aware batching opti-
mization introduced by the author [13]. The supervisor module has been setup to
select active instances according to the transition policy described in the previous
section. The test environment consisted of four servers, each equipped with a
3.4 GHz processor, 4 GB RAM and a Gigabit Ethernet controller, plus an addi-
tional machine hosting the client processes, all connected to the same local area
network.

The performed experiments compare the throughput achieved by Dali and its
reference protocols and analyze how Dali reacts to changes in environment con-
ditions. Throughout the tests we consider throughput as the maximum number of
client requests per second that could be processed by the service replicated using
the respective protocol. The experiments do not directly compare Supr to the other
existing adaptive BFT approaches, such as Abstract [9] or Adapt [2], as they would
have to be additionally modified to implement a protocol with a functionality

Fig. 2 A transition graph for Dali
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similar to Dali, since none of them is capable of sufficiently tolerating faults of
malicious origin.

The goal of the first experiment was to analyze the performance achieved by
Dali running PBFT and Zyzzyva instances, and estimate the cost of performing
transitions between them. The experiment started in a correct environment, where
all replicas processed incoming requests according to respective protocols. At a
certain moment, one of the replicas was manually suspended to simulate a node
failure. After some time, the failed replica was restarted, and it subsequently
resumed processing client requests. The throughput achieved by the considered
protocols throughout the duration of the experiment is presented in Fig. 3. While
Dali started the experiment in Zyzzyva instance, the supervisor initiated a transition
to PBFT after the replica failure has been detected, i.e. immediately after enough
client claims have been received. Similarly, after the failed replica was restarted and
the supervisor was no longer receiving client claims, it changed the active instance
back to Zyzzyva.

The throughput achieved by Dali has demonstrated to be practically indistin-
guishable from its reference protocols in both analyzed environment conditions,
with the maximum difference below 5 %, and an average around 1 %. Additionally,
Dali has achieved the highest average throughput of all protocols despite the change
in environment conditions, with an exception of Zyzzyva for requests with large
payloads. However, what cannot be observed in the figure, is that in such case
Zyzzyva provided around 50 % higher request latency than Dali. While we have
configured Dali policy to remain in PBFT in these conditions, in environments
where the high throughput is the most important factor, the policy could be further
modified in favor of Zyzzyva. The time required to perform a transition from
Zyzzyva to PBFT has been dominated by the delay imposed by the clients and has
demonstrated to be very similar to the one observed for Zyzzyva alone. Finally,
although Dali requires more time to switch back to Zyzzyva in order to prevent

(a) (b)

Fig. 3 Comparison of changes in throughput imposed by a single faulty replica. a Payload = 0
kB, b payload = 4 kB
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premature transitions when the replica is still faulty, the switching itself does not
exceed 1 s and still remains at an acceptable level.

The second experiment aimed at analyzing the behavior exhibited by Dali and
the reference protocols during a MAC attack. The test started in a fault-free envi-
ronment, and at a certain moment a single client started periodically issuing
requests with malformed MACs [4]. After some time the faulty client has been
turned off and the execution environment again became correct. Figure 4 presents
the throughput achieved by the analyzed protocols throughout the test. While Dali
started the experiment in Zyzzyva instance, as soon as its supervisor has detected
the MAC attack, exhibited by four consecutive primary changes, it initiated a
transition to Aardvark. Subsequently, the supervisor switched back to Zyzzyva after
no malformed requests had been received for 5 consecutive seconds, as defined by
the transition policy.

During the MAC attack both Zyzzyva and PBFT were unable to process any
incoming requests. This is the result of recurring primary changes triggered by the
replicas due to incorrect message authentication codes generated by the faulty
client. Analogically, while Aardvark maintained progress during MAC attack, it
exhibited even more than 10 times worse throughput than the remaining protocols
whenever the environment was correct. On the other hand, Dali both provided high
throughput in the fault-free environment and exhibited performance similar to
Aardvark during the MAC attack. Although the time spent on performing transi-
tions was slightly larger than in the previous experiment, it oscillated around 1 s
and still be considered acceptable. Finally, as described earlier, the additional 5 s
delay has been introduced by the policy after the end of the MAC attack to provide
a trade-off between the achieved performance and the cost of a premature transition.
However, this delay could be reduced to the level observed for the other transitions,
provided the supervisor is additionally enhanced with appropriate client blacklisting
mechanisms [4].

(a) (b)

Fig. 4 Comparison of changes in throughput imposed by a faulty client issuing malformed
MACs. a Payload = 0 kB, b payload = 4 kB
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6 Conclusion

In this article we have presented Supr, a new method for creating adaptive
Byzantine fault-tolerant replicated services. Unlike previous approaches, Supr
determines the properties of the execution environment based on the notifications
obtained directly from sub-protocol instances. This way the resulting solutions can
react to more subtle environment changes and counteract less evident performance
degradation caused by arbitrary faults. This makes Supr the first generic method for
creating Byzantine fault-tolerant solutions which guarantee high performance in
both correct and faulty environments. Furthermore, not only transforming existing
protocols to Supr instances requires far less effort than in previous approaches, but
also the resulting solution is easier to modify and reason about.

Additionally, to demonstrate that the proposed method can be used in practice,
we have used Supr to create Dali, the first Byzantine fault-tolerant solution which
provides performance competitive with contemporary BFT replication protocols in
correct environments, and at the same time survives the MAC attack [4]. In the
performed experiments Dali has demonstrated to easily outperform the other ana-
lyzed protocols under varying environment conditions. Additionally, while oper-
ating within a single sub-protocol instance, Dali has introduced no observable
overhead over its reference protocols.

However, it is worth noting that Dali is by no means the only adaptive BFT
solution that could be created using Supr. In the future, we plan to extend Dali with
additional sub-protocols to make it adapt even better to different environment
conditions. Additionally, we intend to utilize Supr to create a commercial-grade
BFT replicated service and use it to enhance the scope of performed experiments,
including the additional tests with contemporary fault injection techniques [7].
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