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Abstract In the paper, a new hybrid generalized additive wavelet-neuro-
fuzzy-system of computational intelligence and its learning algorithms are
proposed. This system combines the advantages of neuro-fuzzy system of Takagi-
Sugeno-Kang, wavelet neural networks and generalized additive models of
Hastie-Tibshirani. The proposed system has universal approximation properties and
learning capabilities which pertain to the neural networks and neuro-fuzzy systems;
interpretability and transparency of the obtained results due to the soft computing
systems; possibility of effective description of local signal and process features due
to the application of systems based on wavelet transform; simplicity and speed of
learning process due to generalized additive models. The proposed system can be
used for solving a wide class of dynamic data mining tasks, which are connected
with non-stationary, nonlinear stochastic and chaotic signals. Such a system is
sufficiently simple in numerical implementation and is characterized by a high
speed of learning and information processing.
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1 Introduction

Nowadays computational intelligence methods and especially hybrid systems of
computational intelligence [1–3] are wide spread for Data Mining tasks in different
areas under uncertainty, non-stationarity, nonlinearity, stochastic, chaotic condi-
tions of the investigated objects and, first of all, in control, identification, prediction,
classification, emulation etc. These systems are flexible because they combine
effective approximating properties and learning abilities of artificial neural net-
works, transparency and interpretability of the results obtained by using
neuro-fuzzy systems, the possibility of a compact description of the local features of
non-stationary signals, providing wavelet neural networks and more advanced
wavelet-neuro-fuzzy systems.

At the same time in the framework of such directions as Dynamic Data Mining
(DDM) and Data Stream Mining (DSM) [4–6] more (if not the most) of observed
systems appear either ineffective or inoperative in general. It connects with that the
problems of DDM and DSM must be solved (including learning process) in on-line
mode, when the data is fed to the processing sequentially, often in real time. It is
clear that traditional multilayer perceptron trained based on back-propagation
algorithm and requires the pre-determined training sample cannot operate in such
conditions.

It is possible to implement the on-line learning process in the neural networks
whose output signal depends on tuning synaptic weighs linearly, for example, radial
basis function networks [RBFN], normalized radial basis function networks
(NRBFN) [7, 8], generalized regression neural networks (GRNN) [9] and like them
neural networks. However using of architectures that based on kernel activation
functions is complicated, by so-called, course of dimensionality. Especially often
such problem is appeared when using “lazy learning” [10] based on the conception
“neurons on data point” [11].

Neuro-fuzzy systems have undoubted advantages over neural networks and first
of all the significantly smaller number of tuning synaptic weights that allows to
reduce time of learning process. Here it needs to notice the TSK-system [12] and its
simplest version—Wang-Mendel system [13], ANFIS, DENFIS, SAFIS [14, 15]
and etc. However, in these systems to provide the required approximating prop-
erties not only the synaptic weights but also membership functions (centres and
widths) must be tuned. Furthermore, the training process of these parameters is
performed using backpropagation algorithms in batch mode.

Hybrid wavelet-neuro-fuzzy systems [16], having a number of advantages, are
too tedious from computational point of view, which complicates their using in
real-time tasks. For solving such kind of problems, so-called, generalized additive
models [17] are good. But such systems don’t operate under non-stationarity,
nonlinearly and chaotic conditions.

In connection with that the development of hybrid system of computational
intelligence is preferred. This system has to combine main advantages (the learning
ability, the approximation and extrapolation properties, the identification of local
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features of signals, the transparency and interpretability of wavelet neuro-fuzzy
systems) with simplicity and learning rate of generalized additive models.

2 Hybrid Generalized Additive Wavelet-Neuro-Fuzzy
System Architecture

Figure 1 shows the architecture of the proposed hybrid generalized additive
wavelet-neuro-fuzzy system (HGAWNFS).

This system consists of four layers of information processing; the first and
second layers are similar to the layers of TSK-neuro-fuzzy system. The only dif-
ference is that the odd wavelet membership functions “Mexican Hat”, which are

Fig. 1 Hybrid generalized additive wavelet-neuro-fuzzy system architecture
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“close relative” of Gaussians, are used instead of conventional bell-shaped
Gaussian membership functions in the first hidden layer

uliðxiðkÞÞ ¼ ð1� s2liðkÞÞ expð�s2liðkÞ=2Þ ð1Þ

where xðkÞ ¼ ðx1ðkÞ; . . .; xiðkÞ; . . .; xnðkÞÞT � ðn� 1Þ is the vector of input signals,
k ¼ 1; 2; . . . is a current moment of time, sliðkÞ ¼ ðxiðkÞ � cliÞr�1

li ; cli; rli are the
centre and width of the corresponding membership function implying that
c� cli ��c; r� rli � �r; i ¼ 1; 2; . . .; n; l ¼ 1; 2; . . .; h; n is the input number; h is
the membership functions number.

It is necessary to note that using the wavelet functions instead of common
bell-shaped positive membership functions gives the system more flexibility [18],
and using odd wavelets for the fuzzy reasoning does not contradict the ideas of
fuzzy inference, because the negative values of these functions can be interpreted as
non-membership levels [19].

Thus, if the input vector xðkÞ is fed to the system input, then in the first layer the
hn levels of membership functions uliðxiðkÞÞ are computed and in the hidden layer
h vector product blocks perform the aggregation of these memberships in the form

~xlðkÞ ¼
Yn
i¼1

uliðxiðkÞÞ: ð2Þ

This means the input layers transform the information similarly to the neurons of
the wavelet neural networks [20, 21], which form the multidimensional activation
functions providing a scatter partitioning of the input space.

At that, therefore, in the region of input space, which remote from centres
cl ¼ ðcl1; . . .; cli; . . .; clnÞT of multivariable activation functions

Yn
i¼1

ð1� s2liðkÞÞ expð�s2liðkÞ=2Þ; ð3Þ

the provided quality of approximation can be not high that is common disadvantage
of all systems.

To provide the required approximation properties, the third layer of system is
formed based on type-2 fuzzy wavelet neuron (T2FWN) [22, 23]. This neuron
consists of two adaptive wavelet neurons (AWN) [24], whose prototype is a
wavelet neuron of Yamakawa [25]. Wavelet neuron is different from the popular
neo-fuzzy neuron [25] that uses the odd wavelet functions instead of the common
triangular membership functions. The use of odd wavelet membership functions,
which form the wavelet synapses WS1; . . .;WSl; . . .;WSh, provides higher quality of
approximation in comparison with nonlinear synapses of neo-fuzzy neurons.
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In such a way the wavelet neuron performs the nonlinear mapping in the form

f ð~xðkÞÞ ¼
Xh
l¼1

flð~xlðkÞÞ ð4Þ

where ~xðkÞ ¼ ð~x1ðkÞ; . . .;~xlðkÞ; :. . .;~xhðkÞÞT ; f ð~xðkÞÞ—is the scalar output of
wavelet neuron.

Each wavelet synapse WSl consists of g wavelet membership functions
~ujlð~xlÞ; j ¼ 1; 2; . . .; g (g is a wavelet membership function number in the wavelet
neuron) and the same number of the tuning synaptic weights wjl. Thus, the trans-
form is implemented by each wavelet synapse WSl in the k-th instant of time, which
can be written in form

flð~xlðkÞÞ ¼
Xg
j¼1

wjlðk � 1Þ~ujlð~xlðkÞÞ ð5Þ

(here wjlðk � 1Þ is the value of synaptic weights that are computed based on pre-
vious k � 1 observations), and the general wavelet neuron performs the nonlinear
mapping in the form

~f ð~xðkÞÞ ¼
Xh
l¼1

Xg
j¼1

wjlðk � 1Þ~ujlð~xlðkÞÞ ð6Þ

i.e., in fact, this is the generalised additive model [17] that is characterised by the
simplicity of computations and high approximation properties.

The output layer of system is formed by summator unit and it can bewritten in form

Xh
l¼1

Yn
i¼1

uliðxiðkÞÞ ¼
Xh
l¼1

~xlðkÞ ð7Þ

and by division unit, which realizes the normalization for avoiding of “gaps”
appearance in the parameters space.

In such a way the output of HGAWNFS can be written in form

ŷðkÞ ¼
Ph

l¼1

Pg
j¼1 wjlðk � 1Þ~ujlð~xlðkÞÞPh

l¼1 ~xlðkÞ
¼
Ph

l¼1

Pg
j¼1 wjlðk � 1Þ~ujl

Qn
i¼1 uliðxiðkÞÞ

� �
Ph

l¼1

Qn
i¼1 uliðxiðkÞÞ

¼
Xh
l¼1

Xg
j¼1

wjlðk � 1Þ ~ujlð~xlðkÞÞPh
l¼1 ~xlðkÞ

¼
Xh
l¼1

Xg
j¼1

wjlðk � 1Þ~wjlð~xðkÞÞ ¼ wTðk � 1Þwð~xðkÞÞ

ð8Þ

where ~wjlð~xðkÞÞ ¼ ~ujlð~xlðkÞÞ
Ph

l¼1 ~xlðkÞ
� ��1

¼ ~ujl

Qn
i¼1 uliðxiðkÞÞ

� � Ph
l¼1

Qn
i¼1 uli

�
ðxiðkÞÞÞ�1, wðk � 1Þ ¼ ðw11ðk � 1Þ;w21ðk � 1Þ; . . .;wg1ðk � 1Þ; w12ðk � 1Þ; . . .;
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wjlðk � 1Þ; . . .;wghðk � 1ÞÞT , ~wð~xðkÞÞ ¼ ð~w11ð~xðkÞÞ; ~w21ð~xðkÞÞ; . . .; ~wjlð~xðkÞÞ; . . .;
~wghð~xðkÞÞÞT .

3 Adaptive Learning Algorithm of Hybrid Generalized
Additive Wavelet-Neuro-Fuzzy System

The learning process of HGAWNFS is reduced in the simplest case to the synaptic
weights tuning of wavelet neuron in the third hidden layer. For tuning of wavelet
neuron its authors [25] used the gradient procedure which minimizes the learning
criterion

EðkÞ ¼ 1
2

yðkÞ � ŷðkÞð Þ2¼ 1
2
e2ðkÞ ¼ 1

2
yðkÞ �

Xh
l¼1

Xg
j¼1

wjl
~wjlð~xðkÞÞ

 !2

ð9Þ

and it can be written in form

wjlðkÞ ¼ wjlðk � 1Þþ geðkÞ~wjlð~xðkÞÞ ¼ wjlðk � 1Þþ gðyðkÞ � ŷðkÞÞ~wjlð~xðkÞÞ

¼ wjlðk � 1Þþ g yðkÞ �
Xh
l¼1

Xg
j¼1

wjlðk � 1Þ~wjlð~xðkÞÞ
 !

~wjlð~xðkÞÞ

ð10Þ

where yðkÞ is reference signal, eðkÞ is learning error, g is fixed learning rate
parameter.

For the speed acceleration of tuning process of synaptic weights under
non-stationary conditions the exponential weighted recurrent least squares method
can be used in form

wðkÞ ¼ wðk � 1Þþ Pðk�1ÞeðkÞ~wð~xðkÞÞ
bþ ~wT ð~xðkÞÞPðk�1Þ~wð~xðkÞÞ ;

PðkÞ ¼ 1
b Pðk � 1Þ � Pðk�1Þ~wð~xðkÞÞ~wT ð~xðkÞÞPðk�1ÞÞ

bþ ~wT ð~xðkÞÞPðk�1Þ~wð~xðkÞÞ

� �
8<
: ð11Þ

(where 0\b� 1 is forgetting factor), which, therefore, can be numerical unstable
for high tuning parameters number.

Under uncertain, stochastic or chaotic conditions, it is more effective to use the
adaptive wavelet neuron (AWN) [26] instead of common wavelet neuron. In this
case, we can tune not only synaptic weights, but the parameters of centres, widths
and shapes.

The basis of adaptive wavelet neuron is the adaptive wavelet activation function
that was proposed in [22] and can be written in form
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~ujlð~xlðkÞÞ ¼ ð1� ajlðkÞs2jlðkÞÞ expð�s2jlðkÞ=2Þ ð12Þ

where 0� ajl � 1 is the shape parameter of adaptive wavelet function, if ajl ¼ 0 it is
conventional Gaussian, if ajl ¼ 1 it is the wavelet “Mexican Hat”, and if 0\ajl\1
it is some hybrid activation-membership function (see Fig. 3).

Figure 2 shows the adaptive wavelet activation function with different param-
eters a и r.

Basically to tune the centers, widths and shapes parameters we can use opti-
mization of the learning criterion (9) by the gradient procedure (10), calculated the
partial derivative on cjl; r�1

jl and ajl, but for the increasing speed of learning process
we can use the one-step modification of Levenberg-Marquardt algorithm [27] for
tuning all-parameters of each wavelet synapse simultaneously.

By introducing in the consideration ðg� 1Þ-vectors wlðkÞ ¼ ðw1lðkÞ;
w2lðkÞ; . . .;wglðkÞÞT , ~wlð~xlðkÞÞ ¼ ð~w1lð~xlðkÞÞ; ~w2lð~xlðkÞÞ; . . .; ~wglð~xlðkÞÞÞT , clðkÞ ¼
ðc1lðkÞ; c2lðkÞ; . . .; cglðkÞÞT , r�1

l ðkÞ ¼ ðr�1
1l ðkÞ; r�1

2l ðkÞ; . . .; r�1
gl ðkÞÞT , alðkÞ ¼

ða1lðkÞ; a2lðkÞ; . . .; aglðkÞÞT , slðkÞ ¼ ðs1lðkÞ; s2lðkÞ; . . .; sglðkÞÞT , we can write the
learning algorithm in form

wlðkÞ ¼ wlðk � 1Þþ eðkÞ~wlð~xlðkÞÞ
gw þ ~wlð~xlðkÞÞ

�� ��2 ¼ wlðk � 1Þþ eðkÞ~wlð~xlðkÞÞ
gw

;

clðkÞ ¼ clðk � 1Þþ eðkÞ~wc
l ð~xlðkÞÞ

gc þ ~wc
l ð~xlðkÞÞ

�� ��2 ¼ clðk � 1Þþ eðkÞ~wc
l ð~xlðkÞÞ
gc

;

r�1
l ðkÞ ¼ r�1

l ðk � 1Þþ eðkÞ~wr
l ð~xlðkÞÞ

gr þ ~wr
l ð~xlðkÞÞ

�� ��2 ¼ r�1
l ðk � 1Þþ eðkÞ~wr

l ð~xlðkÞÞ
gr

;

alðkÞ ¼ alðk � 1Þþ eðkÞ~wa
l ð~xlðkÞÞ

ga þ ~wa
l ð~xlðkÞÞ

�� ��2 ¼ alðk � 1Þþ eðkÞ~wa
l ð~xlðkÞÞ
ga

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð13Þ
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Fig. 2 Adaptive wavelet activation function: a a ¼ 1;r ¼ 1; b dashed line a ¼ 0:3;r ¼ 1:5;
solid line a ¼ 0:6; r ¼ 0:5; c a ¼ 0;r ¼ 1
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where ~wc
l ð~xlðkÞÞ ¼ 2wlðk � 1Þr�1

l ðk � 1Þðð2alðk � 1Þþ 1Þslð~xlðkÞÞ � alðk � 1Þs3l
ð~xlðkÞÞÞ � expð�s2l ð~xðkÞÞ=2Þ; ~wr

l ð~xlðkÞÞ ¼ wlðk � 1Þð~xðkÞ � clðk � 1ÞÞðalðk � 1Þ
s3l�ð~xlðkÞÞ � ð2alðk � 1Þþ 1Þslð~xlðkÞÞÞ expð�s2l ð~xðkÞÞ=2Þ; ~wa

l ð~xlðkÞÞ ¼ �wlðk � 1Þ
s2l ð~xlðkÞÞ� expð�s2l ð~xðkÞÞ=2Þ; s2l ð~xðkÞÞ ¼ r�1

l ðkÞ � r�1
l ðkÞ � ð~xlðkÞIl � clðk � 1ÞÞ

�ð~xlðkÞIl � clðk � 1ÞÞ, � is direct product symbol, Il is ðl� 1Þ—the unit vector,
gw; gc; gr; ga are nonnegative momentum terms.

For increasing of filtering properties of learning procedure the denominators in
recurrent equation system (13) can be modified in such way

gwðkÞ ¼ bgwðk � 1Þþ ~wlð~xlðkÞÞ
�� ��2;

gcðkÞ ¼ bgcðk � 1Þþ ~wc
l ð~xlðkÞÞ

�� ��2;
grðkÞ ¼ bgrðk � 1Þþ ~wr

l ð~xlðkÞÞ
�� ��2;

gaðkÞ ¼ bgaðk � 1Þþ ~wa
l ð~xlðkÞÞ

�� ��2

8>>>>>><
>>>>>>:

ð14Þ

where 0� b� 1 have the same sense that in the algorithm (11).

4 Robust Learning Algorithm of Hybrid Generalized
Additive Wavelet-Neuro-Fuzzy System

Although the square criterion allows to obtain the optimal evaluation when the
processed signal and disturbances have Gaussian distribution, but when the dis-
tribution has, so-called, “heavy tails” (for example, Laplace and Cauchy distribu-
tion etc.) the evaluation which based on quadratic criterion can be inadequate. In
this case the robust methods with M-criterion are more effective [28].

Introducing for the consideration the modified Welsh robust identification cri-
terion in the form

ERðkÞ ¼ 1� expð�de2ðkÞÞ ð15Þ

where eðkÞ is the learning error, d is positive parameter, which set from empirical
reasoning and defined the size of nonsensitivity zone for the outliers.

Figure 3 shows the comparison the robust identification criterion with different
values of parameter d and least squares criterion.

Providing the sequence of the same transformation we can write the robust
learning algorithm in form
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wlðkÞ ¼ wlðk � 1Þþ kw deðkÞ expð�de2ðkÞÞ~wlð~xlðkÞÞ
.
gw

� �
;

gwðkÞ ¼ bgwðk � 1Þþ ~wlð~xlðkÞÞ
�� ��2;

clðkÞ ¼ clðk � 1Þþ kc deðkÞ expð�de2ðkÞÞ~wc
l ð~xlðkÞÞ

.
gc

� �
;

gcðkÞ ¼ bgcðk � 1Þþ ~wc
l ð~xlðkÞÞ

�� ��2;

8>>>>><
>>>>>:

ð16Þ

r�1
l ðkÞ ¼ r�1

l ðk � 1Þþ kr deðkÞ expð�de2ðkÞÞ~wr
l ð~xlðkÞÞ

.
gr

� �
;

grðkÞ ¼ bgrðk � 1Þþ ~wr
l ð~xlðkÞÞ

�� ��2;
alðkÞ ¼ alðk � 1Þþ ka deðkÞ expð�de2ðkÞÞ~wa

l ð~xlðkÞÞ
.
ga

� �
;

gaðkÞ ¼ bgaðk � 1Þþ ~wa
l ð~xlðkÞÞ

�� ��2:

8>>>>><
>>>>>:

ð17Þ

5 Conclusions

In this paper, the hybrid generalised additive wavelet-neuro-fuzzy system and its
learning algorithms have been proposed. This system combines advantages of
neuro-fuzzy system of Takagi-Sugeno-Kang, wavelet neural networks and gener-
alised additive models of Hastie-Tibshirani.

The proposed hybrid system is characterised by computation simplicity,
improving approximation and extrapolation properties as well as high speed of
learning process. Hybrid generalized additive wavelet-neuro-fuzzy system can be
used to solve a wide class of tasks in Dynamic Data Mining and Data Stream
Mining, which are related to on-line processing (prediction, emulation,
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ER=1−exp(−δe2), δ=15;

E=e2.

Fig. 3 Robust identification
criterion (6) with different
values of parameter d
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segmentation, on-line fault detection etc.) of non-stationary stochastic and chaotic
signals corrupted by disturbances. The computational experiments are confirmed to
effectiveness of developed approach.
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