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Abstract Accurate estimation of biometric parameters recorded from subjects’

wrist or waist, when the subjects are performing various physical exercises, is often

a challenging problem due to the presence of motion artifacts. In order to reduce the

motion artifacts, data derived from a triaxial accelerometer have been proven to be

very useful. Unfortunately, wearable devices such as smartphones and smartwatches

are in general differently oriented during real life activities, so the data derived from

the three axes are mixed up. This paper proposes an efficient technique for real-time

recognition of human activities by using accelerometer data that is based on singu-

lar value decomposition (SVD) and truncated Karhunen-Loève transform (KLT) for

feature extraction and reduction, and Bayesian classification for class recognition,

that is independent of the orientation of the sensor. This is particularly suitable for

implementation in wearable devices. In order to demonstrate the validity of this tech-

nique, it has been successfully applied to a database of accelerometer data derived

from static postures, dynamic activities, and postural transitions occurring between

the static postures.
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1 Introduction

Human activity recognition is one of the most interesting research topics for several

areas such as pervasive and mobile computing, ambient assisted living, surveillance-

based security, sport and fitness activities, healthcare.

Over the recent years sensor technologies especially high-capacity, low-power,

low-cost, miniaturized and lightweight sensors, wired, wireless and hybrid com-

munication network protocols as well as signal processing theory have greatly pro-

gressed.

Wearable sensors, i.e. sensors that are positioned directly or indirectly on the

human body, generate signals (accelerometric, PPG, ECG, sEMG, . . . ) when the

user performs activities. Therefore they can monitor features that are descriptive of

the person’s physiological state or movement.

These sensors can be embedded into clothes, shoes, belts, sunglasses, smart-

watches and smartphones, or positioned directly on the body and can be used to

collect information such as body position and movement, heart rate, muscle fatigue

and skin temperature [3, 4].

Among wearable sensors, accelerometers are probably the most frequently used

for activity monitoring. In particular, they are effective in monitoring actions that

involve repetitive body motions, such as walking, running, cycling, sitting, standing,

and climbing stairs.

On the one hand, activity classification using accelerometers can be obtained

using one or more sensors on the body [7, 12]. However single sensor systems are

more practical and in this case common location choices are the waist, upper arm,

wrist, and ankle [13, 15, 16]. The waist location has been used extensively in phys-

ical activity measurements because it captures major body motions, but algorithms

using waist data can underestimate overall expenditure on activities such as bicycling

or arm ergometry, where the waist movement is uncorrelated to the movement of the

limbs. Therefore several recent studies addressed the problem of detecting human

activities from smartphones and smartwatches [1, 8, 11].

On the other hand, accurate estimation of biometric parameters recorded from

subjects’ wrist or waist, when the subjects are performing various physical exercises,

is often a challenging problem due to the presence of motion artifacts. In order to

reduce the motion artifacts, data derived from a triaxial accelerometer have been

proven to be very useful [6].

Wrist-worn sensor devices can be comfortably used during activities of daily liv-

ing, including sleep, and can remain active during changing of clothes and do not

require special belts or clips, thus increasing the wear time. Therefore smartwatches

for human activity monitoring are becoming very important tools in personal health

monitoring. In particular, exercise routines and repetitions can be counted in order

to track a workout routine as well as determine the energy expenditure of individ-

ual movements. Indeed, mobile fitness coaching has involved topics ranging from

quality of performing such sports actions to detection of the specific sports activity

[5].
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However, wearable devices such as smartphones and smartwatches are in general

differently oriented during human activities, so the data derived from the three axes

are mixed up.

This paper proposes an efficient technique for real-time recognition of human

activities, and transitions between them, by using accelerometer data. The proposed

technique is based on singular value decomposition (SVD) and truncated Karhunen-

Loève transform (KLT) for feature extraction and reduction, and Bayesian classifi-

cation for class recognition. The algorithm is independent of the orientation of the

sensor making it particularly suitable for implementation in wearable devices such

as smartphones where the orientation of the sensor can be unknown or its placement

could be not always correct. In order to demonstrate the validity of this technique, it

has been successfully applied to a database of accelerometer data derived from sta-

tic postures, dynamic activities, and postural transitions occurring between the static

postures.

The paper is organized as follows. Section 2 provides a brief overview of the

human activity classification algorithm. Section 3 presents the experimental results

carried out on a public domain data set in order to show the effectiveness of the

proposed approach. Finally Sect. 4 summarizes the conclusions of the present work.

2 Recognition Algorithm

This section presents a description of the overall algorithm, based on the

dimensionality-reduced singular value spectrum of the data Hankel matrix and on the

Bayesian classifier, that is able to identify human activity classes from accelerometer

data.

A schematic diagram of the activity detection algorithm, is shown in Fig. 1.

2.1 Data Preprocessing and Feature Extraction

Let x, y, z be the accelerometer signals. After a preprocessing stage where the

raw data have been windowed into windows N + L − 1 samples long, the resulting

accelerometer signals have been manipulated as follows.

Let xt = [x(t)… x(t + N − 1)]T , x(i)t = xt+i−1, and Xt = [x(1)t … x(L)t ]. Analogously,

let Yt = [y(1)t … y(L)t ] and Zt = [z(1)t … z(L)t ]. The matrices Xt, Yt, and Zt so built are

the Hankel data matrices of the three accelerometer signals, where x(i)t , y(i)t , z
(i)
t , i =

1,… ,L, represent the observations achieved from the three-axes accelerometer, each

shifted in time by i samples.

The complete matrix of sample signals

Ht = [Xt Yt Zt] ∈ ℝN×3L
(1)
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Fig. 1 Flow chart of the

proposed framework for

human activity classification

(x, y, z are the 3-axial

accelerometer signals)

can be represented by the singular value decomposition (SVD) as

Ht = St𝛬tRT
t =

N∑

i=1
λisirTi , (2)

where, if N < 3L, St =
[
s1 … sN

]
, Rt =

[
r1 … rN

]
, with si, ri being the corresponding

left and right singular vectors, and λi are the singular values in decreasing order

λ1 ≥ λ2 ≥ ⋯ ≥ λN .

By denoting with Ht ∈ ℝN×3L
the data matrix of the accelerometer signals at each

time instant t, in order to apply the human activity classification algorithm, a feature

vector ξt has to be derived from this matrix.

We noticed that different types of activities lead to different distributions of the

energy of the accelerometer signals among its eigenvectors. Thus, a suitable candi-

date for identifying the type of activity is the normalized spectrum of singular values

𝛬t = [λ1 …λN], so as to avoid dependence on the intensity of the activity. Therefore

we choose ξt = 𝛬t∕||𝛬t|| where || ⋅ || represents the norm of a vector.
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In order to face the problem of dimensionality, the usual choice [10] is to reduce

the vector ξt to a vector ktM of lower dimension by a linear non-invertible transform

Ψ (a rectangular matrix) such that

ktM = Ψ ξt , (3)

where ξt ∈ ℝN
, ktM ∈ ℝM

, Ψ ∈ ℝM×N
, and M ≪ N.

It is well known that, among the allowable linear transforms Ψ ∶ ℝN → ℝM
, the

Karhunen-Loève transform truncated to M < N orthonormal basis functions, is the

one that ensures the minimum mean square error.

This normalized singular value spectrum can easily be computed immediately

after having performed the SVD on the accelerometer signals, and used as input to

the Bayesian classifier after a KLT-based dimensionality reduction from N = 96 to

M = 10.

The algorithm developed in this section follows the approach reported in [5] as

it was successfully adopted in the physical exercise identification for photoplethys-

mography artifact reduction.

2.2 Bayesian Classification

Let us refer to a frame ktM[n], n = 0,… ,M − 1, containing features extracted from

the accelerometer signals.

We assume that the observations for all human activities that need to be identified,

are acquired and divided in two sets,  for training and  for testing.

For Bayesian classification, a group of 𝛤 activities is represented by the proba-

bility density functions (pdfs) pγ(ktM) = p(ktM | θγ), γ = 1, 2,… , 𝛤 , where θγ are

the parameters to be estimated during training. Thus we can define the vector

p = [p1(ktM),… , p
𝛤

(ktM)]T .

The objective of classification is to find the model θγ corresponding to the activ-

ity γ which has the maximum a posteriori probability for a given frame ktM ∈ .

Formally:

γ̂(ktM) = argmax

1≤γ≤𝛤

{
p(θγ | ktM)

}
= argmax

1≤γ≤𝛤

{p(ktM | θγ)p(θγ)
p(ktM)

}
. (4)

Assuming equally likely activities (i.e. p(θγ) = 1∕𝛤 ) and noting that p(ktM) is the

same for all activity models, the Bayesian classification is equivalent to

γ̂(ktM) = argmax

1≤γ≤𝛤

{
pγ(ktM)

}
. (5)

Thus Bayesian identification reduces to solving the problem stated by (5).
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The most generic statistical model one can adopt for p(ktM | θγ) is the Gaussian

mixture model (GMM) [14]. The GMM for the single exercise is a weighted sum of

F components densities and given by the equation

p(ktM | θγ) =
F∑

i=1
αi  (ktM | μi,Ci) (6)

where αi, i = 1,… ,F are the mixing weights, and  (ktM | μi,Ci) represents the

density of a Gaussian distribution with mean μi and covariance matrix Ci. It is worth

noting that αi must satisfy 0 ≤ αi ≤ 1 and
∑F

i=1 αi = 1 and θγ is the set of parameters

needed to specify the Gaussian mixture, defined as θγ = {α1,μ1,C1,… ,αF,μF,CF}.

The choice for obtaining an estimate of the mixture parameters is an unsupervised

algorithm for learning a finite mixture model from multivariate data, that overcomes

the main lacks of the standard expectation maximization (EM) algorithm, i.e. sen-

sitiveness to initialization and selection of number F of components [9]. This algo-

rithm integrates both model estimation and component selection, i.e. the ability of

choosing the best number of mixture components F according to a predefined mini-

mization criterion, in a single framework.

3 Experimental Results

We used the “Human Activity Recognition Using Smartphones” data set [2]. This

data set includes data recorded from experiments made by a group of 30 volunteers,

each of which performed six different activities, three belonging to the “static” class,

i.e., standing, sitting, and lying, and three belonging to the “cyclic” class, i.e., walk-

ing, climbing stairs, descending stairs. Data recorded during the transitions occur-

ring between static postures were labeled accordingly as “transitions”. 3-axial linear

acceleration was recorded at a 50 Hz sampling rate and the experiments were video-

recorded to allow accurate manual data labeling.

The signals so gathered were split in 2.56 s long windows with 50 % overlap. Win-

dows containing unlabeled portions of signal had been discarded, as were windows

containing more than 25 % of signal with inconsistent labeling (i.e., a label that dif-

fers from that of the majority of the data points within the window). This yielded

a total of 10991 windows to process, 7808 of which were used for training and the

remaining 3183 for testing. Separation was done so that data recorded by any given

person never occurred both in the training and testing sets.

Data was pre-processed by using these windows to build three N × L Hankel

matrices, one for each acceleration direction, with N = 96 and L = 33. These are

then fed together to the SVD, so as to remove the effect of sensor orientation, and

all the ensuing normalized singular values used, after dimensionality reduction to

M = 10 principal components, as the feature vectors for the classifier.
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As a first experiment, the performance of the classifier in recognizing the exact

activity being performed was assessed. Of course, this method was never intended

to be able to discriminate between all these activities, as by mixing the axes of the

accelerometer output is clearly nigh impossible to discriminate, e.g., between the sta-

tic postures. This is clearly shown if Table 1, where the confusion matrix of this clas-

sification experiment is reported. The resulting performance is reported in Table 2,

yielding an overall accuracy of 52.15 % with an F1-score of 43.22 %.

Table 2 Performance (sensitivity, precision, and F1-score) of the exercise type identifier evaluated

on the whole testing set

Activities Sensitivity (%) Precision (%) F1-score (%)

Standing 88.42 71.92 79.32

Sitting 60.67 75.00 67.08

Lying 67.34 74.72 70.84

Walking 55.73 36.82 44.34

Walking downstairs 31.62 40.92 35.67

Walking upstairs 28.21 38.44 32.54

Stand-to-sit 26.47 23.08 24.66

Sit-to-stand 25.00 13.33 17.39

Sit-to-lie 29.27 48.00 36.36

Lie-to-sit 28.57 31.25 29.85

Stand-to-lie 47.46 37.84 42.11

Lie-to-stand 32.26 25.00 28.17

Fig. 2 Eigenvector projections
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Table 3 Confusion matrix of the human activity class identifier evaluated on the whole testing set

Static Cyclic Transitional

Static 1303 0 17

Cyclic 0 1629 18

Transitional 1 7 208

Table 4 Performance (sensitivity, precision, and F1-score) of the activity class identifier evaluated

on the whole testing set

Activities Sensitivity (%) Precision (%) F1-score [%]

Static 98.71 99.92 99.31

Cyclic 98.91 99.57 99.24

Transitional 96.30 85.60 90.63

Despite these results, it is quite clear from observation of Table 1 that the recog-

nizer very seldom makes mistakes between the three classes of exercises (static pos-

tures, cyclic movements, transitions). A scatter plot of the first two features, shown

in Fig. 2, also confirms this idea, as in just two dimensions the three classes are very

well separated.

This is better assessed by the second experiment, where only these three classes

were considered for training the models. The confusion matrix is shown in Table 3,

and the performance in Table 4. The overall accuracy in this context is 98.65 % and

the F1-score is 96.48 %, denoting the high reliability of the chosen features to dis-

criminate between these classes. It should also be recalled that a number of windows,

5.8 % to be exact, contain up to 25 % of “noise”, i.e., data belonging to different

classes, so some classification error is to be expected.

4 Conclusion

In this paper we present a feature set, based on the dimensionality-reduced singular

value spectrum of the data Hankel matrix, that is suitable to identify human activ-

ity classes from accelerometer data. Since the singular value spectrum is inherently

invariant with respect to rotation matrices, classification accuracy is independent of

the orientation of the sensor, freeing the user from having to worry about its correct

placement.

Experimental results conducted on a public domain data set show the effective-

ness of the proposed approach.
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