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Abstract The paper proposes a speaker identification scheme for a meeting sce-

nario, that is able to answer the question “is somebody currently talking?”, if yes,

“who is it?”. The suggested system has been designed to identify during a meeting

conversation the current speaker from a set of pre-trained speaker models. Experi-

mental results on two databases show the robustness of the approach to the overlap-

ping phenomena and the ability of the algorithm to correctly identify a speaker with

short audio segments.
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1 Introduction

Speaker identification aims at detecting which speaker a given pool the unknown

speech is derived from, and can be considered as a particular case of the more general

problem of speaker recognition which is addressed to recognize, indentify or verify

individuals using speech [13]. The main tasks involved in a speaker identification

system are feature extraction, speaker modeling, and speaker classification.
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The usually adopted features in speaker identification are the same adopted in

speech recognition, namely Mel frequency cepstral coefficients (MFCCs), perceptual

linear prediction coefficients, etc. [10]. Among these, MFCCs have shown the best

performance due to their particular robustness to the environment and flexibility.

As far as speaker modeling is concerned, assuming an utterance from a speaker is

a random sequence of frames, the Gaussian mixture model (GMM) is widely used in

speaker identification [11]. Since this model falls into the family of statistical model,

it requires training data sampled from the class of speakers to be identified.

For the task of speaker classification, the optimal Bayesian classifier guarantees

the minimum classification error by identifying the speaker model which exhibits

the maximum GMM a posteriori probability [13].

In the classic speaker indentification scenario it is required that the identification

system be able to identify a person when one speaker alone is speaking for a time

interval. In the different scenario of a meeting [3, 8, 14] speech from one speaker

can abruptly change to, or can be overlapped with, speech from another speaker.

In particular overlapping speech can greatly degrade the performance of speaker

identification. These problems are common in Speaker Diarization whose main goal

is to segment audio into speaker-homogeneous regions with the goal of answering

the question “who spoke when?”.

However in diarization system the output is limited to labeling speaker region with

number or letters, without detecting the speaker’s indentity. This goal is performed

without prior training of specific models, as many of such systems work completely

unsupervised. The main operational tasks to be carried out in a speaker diarization

system are: speech activity detection (to separate speech from non-speech), segmen-
tation (to detect speaker changes to segment the audio data), clustering (to group the

segmented regions together into spoken-homogeneous clusters).

The aim of this paper is to derive a robust speaker identification scheme for a

meeting scenario that is able to answer the question “is somebody currently talk-

ing?”, if yes, “who is it?”. Thus this task is performed using results from both the

field of speaker identification and speaker diarization.

The suggested system has been designed to identify during a meeting conversation

the current speaker from a set of pre-trained speaker models. In particular a robust

speaker identification algorithm has been adopted in order to mitigate the problem

of the overlapping speech.

The paper is organized as follows. Section 2 provides a brief overview of the

speaker identification algorithm. Section 3 presents the experimental results carried

out on a data base properly designed to simulate a true meeting including overlap-

ping phenomenon and on the AMI Meeting Corpus. Section 4 summarizes the con-

clusions of the present work.
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2 Speaker Classification Algorithm

The speaker classification algorithm used in this work is based on the approach

[1] used in a classic speaker identification scenario, and it is summarized in the

following.

2.1 Single Frame Classification

We denote with y[n], n = 0,… ,N − 1, a frame representing the power spectrum of

the speech signal, extracted from the time domain waveform of the utterance under

consideration, through a pre-processing algorithm including pre-emphasis, framing

and log-spectrum. Typical duration values for frames range from 20 to 30 ms (usu-

ally 25 ms) and a frame is generated every 10 ms (thus consecutive 25 ms frames

generated every 10 ms will overlap by 15 ms).

In a Bayesian speaker identification scheme, a group of S speakers is represented

by the probability density functions (pdfs)

ps(y) = p(y | 𝜃s), s = 1, 2,⋯ , S (1)

where 𝜃s are the parameters to be estimated using the training set  .

The objective of classification is to find the speaker model 𝜃s which has the maxi-

mum a posteriori probability for a given frame y belonging to the testing set. Using

Bayes’ theorem and assuming that p(𝜃s) and p(y) are independent of S, it results:

ŝ(y) = argmax

1≤s≤S

{
p(𝜃s | y)

}
= argmax

1≤s≤S

{
ps(y)

}
. (2)

The main issue in Bayesian classification is to accurately estimate the pdf ps(y).
To this end the most generic statistical speaker modeling one can adopt for the single

speaker is the GMM [11], is given by the equation

p(y | 𝜃s) =
F∑

i=1
𝛼i  (y | 𝜇i,Ci) (3)

where 𝛼i, i = 1,… ,F are the mixing weights, and  (y|𝜇i,Ci) represents a Gaussian

distribution density with mean 𝜇i and covariance matrix Ci.

𝜃 = {𝛼1, 𝜇1,C1,… , 𝛼F, 𝜇F,CF} , (the index s is omitted for the sake of notation

simplicity) is the set of unknown parameters to be estimated that specify the Gaussian

mixture.

An estimate of 𝜃, with training data can be obtained by themaximum likelihood
(ML)

̂
𝜃ML = argmax

𝜃

{log p( | 𝜃)} (4)
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however as (4) is difficult to be solved analytically since (4) contains the log of a sum,

the usual choice for solving ML estimate of the mixture parameters is the expectation

maximization (EM) algorithm.

The EM algorithm, which has been adopted in this work, is based on the inter-

pretation of  as incomplete data and the set  as the missing part of the complete

data  = { ,}. The complete data log-likelihood, i.e. the log-likelihood of  as

though  was observed, is

log
[
p ( ,|𝜃)

]
=

L∑

𝓁=1

F∑

i=1
h
(𝓁)
i log

[
𝛼i  (y(𝓁)|𝜇i,Ci)

]
. (5)

In general the EM algorithm computes a sequence of parameter estimates { ̂𝜃(p),
p = 0, 1,…} by iteratively performing two steps:

∙ Expectation step: compute the expected value of the complete log-likelihood,

given the training set  and the current parameter estimate ̂
𝜃(p). The result is

the so-called auxiliary function

Q
(
𝜃| ̂𝜃(p)

)
= E

{
log

[
p ( ,|𝜃)

]
| ,

̂
𝜃(p)

}
. (6)

∙ Maximization step: update the parameter estimate

̂
𝜃(p + 1) = argmax

𝜃

{
Q
(
𝜃| ̂𝜃(p)

)}
(7)

by maximizing the Q-function.

Usually for 8 kHz (16 kHz) bandwidth speech, the vector y has a dimension N =
128 (256). So that a too large amount of training data would be necessary to estimate

the pdf p(y|𝜃) and, in any case, with such a dimension the estimation problem is

impractical.

The usual choice is to solve this problem is to reduce the vector y to a vector kM
of lower dimension by a linear transform H such that

kM = H y , (8)

where y is a N × 1 vector, kM an M × 1 vector, H an M × N matrix, and M ≪ N.

The vector kM represents the so-called feature-vector belonging to an appropriate

M-dimension subspace [6, 12].

Principal component analysis (PCA) [7] has proven to be an excellent technique

for dimensionality reduction in many application areas including data compression,

image analysis, visualization to mention just a few. The main property of PCA [5],

is that for a set of observed N-dimensional data vectors y[n], n = 0,… ,N − 1, M
principal axes 𝜙j, j = 1,… ,M, can be derived such that they are orthonormal axes

onto which the retained variance under projection is maximal.
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The PCA of y is derived from the Karhunen-Love transform (KLT), defined by

the couple of equations

y = 𝛷 k , (9)

k = 𝛷

Ty , (10)

where𝛷 =
[
𝜙1,… , 𝜙N

]
is anN ×M matrix and k =

[
k1,… , kN

]T
is the transformed

random vector.

The M principal axes are identified as those corresponding to the M maximal

eigenvalues 𝜆j, j = 1,…M of Ryy𝜙j = 𝜆j𝜙j , j = 1,… ,N , where Ryy is the autocor-

relation function. Thus 𝛷 decomposes as 𝛷 = [𝛷M , 𝛷
𝜂

], and (9) can be rewritten

as:

y = 𝛷 k = 𝛷M kM +𝛷
𝜂

k
𝜂

= xM + 𝜂y , (11)

being ΦM =
[
𝜙1,… , 𝜙M

]
an N ×M matrix, kM an M × 1 vector. In a similar way

(10) becomes: [
kM
k
𝜂

]

=
[
𝛷

T
M

𝛷

T
𝜂

]

y . (12)

In (11) the term

xM = 𝛷M kM , (13)

represents the truncated expansion, and it is equivalent to the approximations

y ≈ xM , k ≈ kT =
(
kM
0

)

, (14)

Thus, as kM is given by kM = 𝛷

T
M y , comparing with (8) yields H = 𝛷

T
M .

On the basis of previous results a Bayesian classification scheme which is consis-

tent with PCA can be derived.

Given a group of S speakers, let us define the pdfs ps(kT ) = p(kT | 𝜃s),
s = 1, 2,… , S , where kT is the truncation of k. Consequently the pdf ps(kT ) =
ps(kM) 𝛿(k𝜂) , represents an approximation of the pdf in (1). Thus (2) becomes:

ŝ(y) = argmax

1≤s≤S

{
ps(kM) 𝛿(k𝜂)

}
= argmax

1≤s≤S

{
ps(kM)

}
. (15)

As you can see comparing (15) with (2), the dimensionality of classification problem

is reduced from N to M, with M < N.
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2.2 Multi Frame Classification

The accuracy of speaker identification can be considerably improved using a

sequence of frames instead of a single frame alone. To this end let us refer to a

sequence of V frames defined as Y = {y(1),… , y(V)} , where y(v) represents the vth

frame. Using (15) we can determine the class each frame y(v) belongs to. Thus the S
sets s =

{
y(v) | y(v) belongs to class s

}
, s = 1,… , S, are univocally determined.

Given Y , we define the score for each class s as

rs(Y) =
∑

y(v)∈s

p(y(v)) (16)

where p(y(v)) represents the probability achieved by the frame y(v).
Finally the multi-frame speaker identification is based on:

ŝ(Y) = argmax

1≤s≤S

{
rs(Y)

}
. (17)

3 Experimental Results

Experiments are conducted using two different corpora, (i) a data base called DBT

that was specifically designed to subject the algorithm to a severe test, where a large

percentage of overlapping speech and different consistency of framing material is

considered, (ii) the well known AMI Meeting Corpus, as it represents a widely

accepted test for the evaluation of speaker diarization system.

3.1 Features Extractor

Figure 1 shows the block diagram of the proposed front-end employed for feature

extraction. At the input of the processing chain a voice activity detection block

drops all non speech segments from the input audio records, exploiting the energy

Fig. 1 The proposed front-end for feature extraction
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acceleration associated with voice onset. The signal is then divided into overlapping

frames of 25 ms (200 samples), with a frame shift of 10 ms (80 samples). Hence

buffering is required for storing overlapping regions among frames. Besides, before

computing the DKLT features, each frame is cleaned up by a noise reduction block

based on the Wiener filter. Further enhancements are then performed by a SNR-

dependent waveform processing phase, that weights the input noise-reduced frame

according to the positions of its smoothed instant energy contour maxima. It is worth

noting that noise reduction introduces an overall latency of 30 ms (3 frames) due to

its algorithm requiring internal buffering.

3.2 Experiments on Data Base DBT

A first set of experiments was carried out on a large database, called DBT, which was

formed by collecting several audio recordings of five different speakers, two females

(A, B) and three males (C, D, E) as reported in Table 1. All recordings extracted

are mono, 8 kilosamples per second, 16 bit. The consistency of DBT database in

terms of number of frames used for each speaker is reported in Table 1. In order

to test several different models, the databases DB1, DB2, and DB3, with different

percentage consistency of training subsets, have been derived.

A meeting scenario has beeen simulated by interleaving 45 audio segments

extracted from database liber liber (http://www.liberliber.it/) to achieve a 20 min

audio track. In the conversation the 5 speakers alternate each other with short turn

durations. More specifically two audio tracks have been derived: in the former the

audio segments follow one another without overlap, in the latter an overlapping of

20 % is taken into account to test the robustness of the algorithm to the overlapping

phenomenon.

The widely adopted metric for diarization performance measurement is the

Diarization Error Rate (DER). It has been introduced by the NIST in 2000 within

the Speaker Recognition evaluation [9] for their speaker segmentation task [4]. The

Table 1 Recordings used for the creation of the identification corpus

Database DBT 80 % DBT 50 % DBT 20 % DBT

Speaker Gender Duration (s) Model 1 Model 2 Model 3 Model 4

A F 761 58903 47122 29451 11780

B F 2593 195591 156472 97795 39118

C M 251 18867 1509 9431 3773

D M 838 63713 50970 31856 12742

E M 1162 91253 73002 45626 18250

Total 5605 428327 342659 214161 85663

Source liber liber (http://www.liberliber.it/). The material was used for training purposes. The con-

sistency of the databases used for modeling is shown in terms of number of frames

http://www.liberliber.it/
http://www.liberliber.it/
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DER is defined as the ratio of incorrectly detected speaker time to total speaker time.

The metric is computed by mapping the system output speaker segment sets to refer-

ence speaker segment sets so as to minimize the total error. By defining the following

errors:

∙ Speaker assignment errors (Espkr): percentage of scored time that a speaker ID is

assigned to the wrong speaker.

∙ Missed detections (Emiss): percentage of scored time that a hypothesized non-

speech segment corresponds to a reference speaker segment.

∙ False alarm detections (Efa): percentage of scored time that a hypothesized speaker

is labelled as a non-speech in the reference.

the final DER is given by

DER = Espkr + Emiss + Efa (18)

Figures 2 and 3 report for speech without and with overlapping respectively, the

value of the DER as a function of the number of frames used in the identification

algorithm and for the four models previously defined. As you can see the DER dras-

tically decreses as the sequence length of frame increases, while only minor differ-

ences are due to the various models. It is worth to notice that due to robustness of the

algorithm, the performance are not appreciably degraded in a meeting conversation

with overlapping.

Tables 2 and 3 report the values of the three parameters (Espkr, Emiss, Efa) that

contribute to the DER.
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Fig. 2 DER in a meeting conversation without overlapping speech as a function of the sequence

length, for different training models
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Fig. 3 DER in a meeting conversation with 20 % of overlapping speech as a function of the

sequence length, for different training models

3.3 Experiments on AMI Meeting Corpus

A second set of experiments evaluating the speaker identification system were per-

formed using meeting audio data from the AMI Meeting Corpus (http://www.idiap.

ch/dataset/ami/). AMI is a large, multi-site and multi-disciplinary project with the

aim of developing meeting browsing technologies that improve work group effective-

ness. As part of the development process, the project is collecting a corpus of 100 h of

meetings using instrumentation that yields high quality, synchronized multi-modal

recording, with, for technical reasons, a focus on groups of four people [2].

Experiments are conducted with a subset of 20 meetings of the AMI Corpus,

belonging to the IDIAP subset (‘IS’ meetings) of the corpus. This subset comprises

38 meetings, each involving four participants engaged in a scenario-based meeting

ranging in duration from 13 to 40 min. The meetings contain approximately 18 %

overlapping speech. The AMI meetings are a convenient choice since the 20 meetings

are split into five different sessions, each one containing four meetings with the same

four participants. One meetings is randomly chosen to train the four speaker models.

The classification with a window length variable from 1 to 4 s is used on the rest

of the data to perform diarization. The amount of speech used (per speaker) to train

the models are shown in Table 4. We also train an additional 60 s room-specific non-

speech model. Surprisingly, with only 60 s of speech per speaker the system is able

to obtain good performance.

http://www.idiap.ch/dataset/ami/
http://www.idiap.ch/dataset/ami/
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Table 2 Speaker identification performance for different training models as function of the

sequence length

Frames E
spkr

(%) E
miss

(%) E
fa

(%) DER (%)

Model 1
400 2.19 1.25 0.00 3.44

350 1.64 1.09 0.54 3.29

300 2.82 2.11 0.23 5.17

250 2.15 4.11 0.58 6.85

200 3.13 5.01 0.94 9.09

150 3.52 5.05 1.88 10.46

100 4.31 3.91 2.66 10.89

50 7.48 2.93 4.93 15.36

1 25.18 4.31 10.90 40.40

Model 2
400 2.19 1.88 0.31 4.38

350 2.19 2.74 0.54 5.48

300 2.35 2.82 0.94 6.11

250 1.95 4.31 0.58 6.85

200 2.35 4.85 1.09 8.30

150 2.82 4.58 2.46 9.87

100 4.15 3.36 3.76 11.28

50 6.26 2.82 5.13 14.22

1 23.15 4.10 11.25 38.51

Model 3
400 3.13 1.56 0.62 5.32

350 3.01 1.92 0.54 5.48

300 3.05 1.64 0.70 5.40

250 2.54 3.52 0.58 6.66

200 4.23 3.60 1.88 9.71

150 4.34 3.40 3.17 10.93

100 6.11 3.44 5.87 15.43

50 10.30 2.50 7.9 20.72

1 27.76 3.89 13.63 45.30

Model 4
400 1.88 4.70 0.62 7.21

350 3.29 4.38 0.27 7.95

300 3.52 3.99 1.17 8.69

250 3.91 3.91 1.37 9.20

200 5.01 4.85 2.19 12.06

150 4.58 5.64 3.87 14.10

100 6.58 4.31 5.17 16.06

50 11.48 3.60 8.26 23.35

1 28.74 4.67 13.76 47.18
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Table 3 Speaker identification performance for different training models as function of the

sequence length

Frames E
spkr

(%) E
miss

(%) E
fa

(%) DER (%)

Model 1
400 8.66 1.23 0.30 10.21

350 8.39 1.08 0.00 9.47

300 9.98 2.08 0.46 12.53

250 9.86 3.09 0.58 13.54

200 8.97 4.02 1.39 14.39

150 10.56 3.36 2.08 16.01

100 10.60 3.17 3.55 17.33

50 13.69 2.39 5.84 21.93

1 29.18 4.06 11.64 44.89

Model 2
400 8.66 2.16 0.30 11.14

350 7.85 1.35 0.00 9.20

300 7.89 3.71 0.46 12.07

250 7.93 3.28 0.58 11.80

200 8.82 4.79 0.92 14.54

150 9.05 4.52 1.97 15.55

100 10.44 2.94 3.17 16.55

50 12.76 2.66 5.14 20.58

1 27.26 4.03 11.38 42.68

Model 3
400 12.38 0.61 0.61 13.61

350 12.18 0.81 1.08 14.08

300 10.67 2.08 0.92 13.69

250 13.54 2.12 1.16 16.83

200 12.69 2.32 2.78 17.79

150 14.39 2.20 4.06 20.66

100 14.54 1.70 6.80 23.05

50 16.67 1.66 9.59 27.93

1 31.57 3.37 14.96 49.91

Model 4
400 11.45 3.71 0.92 16.09

350 11.91 3.25 1.08 16.25

300 12.07 4.17 0.69 16.94

250 14.12 3.86 1.35 19.34

200 13.92 4.95 2.32 21.20

150 14.16 3.59 3.59 21.35

100 14.77 4.02 6.50 25.30

50 17.79 2.47 9.16 29.44

1 32.29 4.51 14.37 51.18

The meeting data contain overlapping speech
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Table 4 DER for IDIAP AMI Corpus using small training model and short sequences of speech

frame

Frames Model

30 (s) 60 (s) 90 (s)

DER (%)

400 12.26 11.90 12.98

300 14.87 12.71 14.33

200 18.93 15.87 16.59

100 28.76 25.96 24.61

4 Conclusion

The paper describes a speaker identification scheme that is able to identify a speaker

in a meeting, that is when speech from one speaker can abruptly change to, or can be

overlapped with, speech from another speaker. Although these problems are common

in speaker diarization, in such a case the output is limited to labeling speaker region

with number or letters, without detecting the speaker’s identity.

Experiments conducted on two distinct database have shown the robustness of

the approach in a meeting scenario.
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