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Abstract In this paper we address the problem of modeling and forecasting of well-

being. First, we apply a graph-based model of a Fuzzy cognitive map to discover

cause-and-effect relationships among indicators of well-being. Second, the discov-

ered model is applied to forecast the future state of well-being. The model is con-

structed using historical multivariate time series containing six consolidated indexes

that represent well-being on the considered territory. Experiments with real-world

data provided evidence for the usefulness of the proposed approach. Moreover, the

interpretation of the obtained FCM graph led to the discovery of unknown depen-

dencies within the data. The analysis of the unknown dependencies requires further

research.

1 Introduction

Estimation of well-being is an important problem and a key factor supporting

decision-making processes in territory management. The estimation of well-being

has raised the active interest of several researchers [3–5, 7, 14, 27, 28]. The estima-

tion of a synthetic well-being index was proposed in [21] where the weighting of the

partial indicators was used. The creation of the territory well-being standard includes

the following: identification of hierarchy of indicators (i.e., the set of primary indi-

cators and levels of their aggregation), identification of significance coefficients of

indicators and identification of normative values of indicators in form of range. This

process is performed by experts using historical data based on territory character-

istics and specifications [27]. The method of estimation of the territory well-being

level is an improvement on the approach to estimation of complex socio-economic
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objects [4]. The theory and estimation of individual and social welfare measures

was proposed in [3]. The social context of well-being was investigated in [14]. The

constriction of well-being indexes has also been investigated in [5, 7].

The approach for the modeling and forecasting of well-being proposed in this

paper is based on the application of the soft-computing model of Fuzzy cognitive

maps. A Fuzzy cognitive map is a knowledge representation tool inheriting different

aspects of fuzzy sets and neural networks [8, 18]. FCMs model knowledge through

fuzzy concepts represented as nodes and relationships between them represented

as weighted arcs. The causal relationships among concepts are either determined

by experts knowledge or by learning when historical data are available. There is a

growing interest in FCMs, especially in the fields of control [30], medicine [29],

computer science [20], time series forecasting [10, 11, 15, 23, 24], decision support

[31], and machine learning [17]. A review of FCM research is given in [26].

In this paper we address the problem of modeling and forecasting of well-being.

The well-being indexes are changing over time and constitute the considered time

series. First, we apply a Fuzzy cognitive map to discover cause-and-effect relation-

ships among indicators of well-being. Second, the discovered model is applied to

forecast the future course of well-being. The forecasted multivariate time series con-

tain six comprehensive indexes representing well-being in the considered territory.

Experiments with real-world data provide evidence for the usefulness of the pro-

posed approach. Moreover, the interpretation of the obtained FCM graph led to the

discovery of unknown dependencies within the data.

The rest of this paper is organized as follows. In Sect. 2 the theoretical background

on the estimation of well-being is presented. Theoretical background related to Fuzzy

cognitive maps is given in Sect. 3. The contribution of this study, i.e., the applica-

tion of FCM to the modeling and forecasting of well-being, is presented in Sect. 4.

Experiments using real-world data are described in Sect. 5. Section 6 concludes the

paper.

2 Estimation of Well-Being

Let us assume that Pk ∈ ℜ, k = 1, 2,… , n denotes real valued indicators related to

well-being (e.g., ‘Alcoholism’, ‘Drug addiction’, etc.) where is the number of all con-

sidered indicators. The estimation of well-being is based on the values of indicators

and consists of the following two steps:

1. Estimation of primary indicators by the calculation of individual well-being

indexes ik. The value of an individual index demonstrates significant improve-

ment if ik > 1. If ik < 1, then it demonstrates significant degradation of the indi-

cator.

2. Estimation of comprehensive indicators by the calculation of consolidated well-

being indexes I applying previously calculated individual indexes. The value of
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the consolidated index is I > 1 or I < 1, which demonstrates an improvement in

or the degradation of the well-being level, respectively.

Every individual index of the kth indicator is calculated by Formula (1):

ik = 1 + 𝛥Pk ⋅ Sk, (1)

where: 𝛥Pk is the compliance coefficient of actual values of the kth indicator with

standard; Sk = ±1 is the coefficient which characterizes the ‘polarity’ of kth indi-

cator, where: Sk = 1, when the change of indicator is proportional to the index and

Sk = −1, when the change of indicator is inversely proportional to the index. The

compliance coefficient 𝛥Pk is calculated using Formula (2):

𝛥Pk =
⎧
⎪
⎨
⎪
⎩

0, for: Pk ∈ [Nk,Zk],
Pk−Zk
Zk−Nk

, for: Pk > Zk,
Pk−Nk

Zk−Nk
, for: Pk < Nk,

(2)

where:Pk is actual value of the kth indicator; [Nk,Zk] is the range of normative values

of kth indicator, Nk is the lower limit of the range, and Zk is the upper limit of the

range. In cases where the value of the indicator Pk falls within the range of normative

values, i.e., Pk ∈ [Nk,Zk], the compliance coefficient 𝛥Pk = 0. In cases where actual

value of indicator is above the upper limit of range, the compliance coefficient has a

positive value 𝛥Pk > 0. In cases where the actual value of the indicator is below the

lower limit of range, the compliance coefficient has a negative value 𝛥Pk < 0.

After the calculation of all individual indexes ik, the consolidated well-being

index I is calculated by Formula (3):

I =
n∑

k=1
uk ⋅ ik, (3)

where: uk > 0 is a significance coefficient of kth indicator, where it is assumed that
∑

uk = 1, and n is the number of all individual indicators.

To illustrate the described calculation procedure, we provide a numerical exam-

ple. Table 1 presents individual indicators used to calculate the comprehensive indi-

cator of ‘psycho-emotional tension’.

Table 1 Individual indexes for the consolidated index ‘Psycho-emotional tension’

k Indicator Pk Nk Zk 𝛥Pk ik uk Sk
1 Children’s drug

addiction

7.16 4.20 7.20 0 1.00 0.21 −1

2 Teenage drug

addiction

180.56 120.00 150.00 1.02 −0.02 0.20 −1

3 Drug addiction 265.38 200.00 250.00 0.31 0.69 0.15 −1

4 Alcoholism 1333.63 1100.00 1300.00 0.17 0.83 0.15 −1
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First, according to Formula (2), for all primary indicators Pk, we calculate com-

pliance coefficients 𝛥Pk. For example, as can be noted in Table 1, the actual value

of ‘Children’s drug addiction’ falls within the normative range, therefore the coeffi-

cient of compliance is identified as: 𝛥P = 0. The actual values of other indicators fall

above the upper limit of the range; therefore, the compliance coefficient is calculated

according to the second condition in Formula (2).

Second, we calculate the individual well-being indexes ik according to Formula

(1). Taking into account the negative polarity Sk for ‘Teenage drug addiction’, the

corresponding individual index is calculated as: i2 = 1 + 1.02 ⋅ (−1) = −0.02.

In the last column of Table 1 we placed significance indexes corresponding to the

individual indexes. Using the values of individual indexes and applying Formula 3,

we calculate the consolidated well-being index. (I) for ‘Psycho-emotional tension’

as I = 0.21 ⋅ 1.00 + 0.20 ⋅ (−0.02) + 0.17 + 0.15 ⋅ 0.69 + 0.15 ⋅ 0.83 = 0.23426.

This method provides the estimation of well-being by assessing the changes in

the indicators values relative to their normative values.

3 Introduction to Fuzzy Cognitive Maps

Let us assume we observe real-valued variables v1, v2,… , vn ∈ V , where: V is the set

of the considered well-being indicators. LetC denotes a set of fuzzy sets, where every

set c ∈ C is a node of the FCM. At time step t ∈ [0, 1,… , te], te ∈ ℵ, the value of

vi(t) is mapped by the fuzzification function to the state of the corresponding concept

ci(t) = 𝜇i(vi(t)). The value of ci(t) is the degree in which vi(t) belongs to the fuzzy set

ci. The fuzzification is usually simplified as a normalization: ci(t) =
vi(t)−min(vi)

max(vi)−min(vi)
.

The FCM is defined as an ordered pair < C,W >, where C is the set of con-

cepts and W is the connection matrix that stores the weights wij ∈ [−1, 1] assigned

to the pairs of concepts. The value wij = 1 expresses full positive and wij = −1 full

negative impact of the ith causal concept on the jth effect concept respectively. The

intermediate values of weights refer to partial causality [8].

The FCM model can be exploited for the prediction of a concept’s states c′i(t) and,

after their defuzzification, the corresponding values of varibles v′i(t). The prediction

is carried out using Eq. (4):

c′j(t) = f (
n∑

i=1,i≠j
wijci(t − 1)), (4)

where n = card(C) is the cardinality of setC, f (x) is the transformation function. The

transformation function restricts the weighted sum of concepts states into the interval

[0, 1]. For the purpose of this study, we use the logistic transformation: f (x) = 1
1+e−gx

,

where g > 0 is the parameter that determines the gain of the transformation.
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After performing the prediction of the concepts state, to obtain the predicted val-

ues of variables v′j(t), denormalization is performed by using the formula: v′j(t) =
c′j(t)(max(vj) − min(vj)) + min(vj).

For the purpose of this paper we decided to apply Mean Absolute Error (MAE),

the simplest approach to the calculation of forecasting errors, which is given by the

following formula:

e = 1
n ⋅ card(T)

card(T)∑

t

n∑

j=1
|v′j(t) − vj(t)|, (5)

where T denotes the considered (learning or testing) period in which the errors were

accumulated, card(T) is the length of the considered period of time calculated in

time steps, and n is the number of variables. v′j(t), vj(t) denotes the predicted and

actual values of the time series, respectively.

The set of concepts C is provided by an expert, and only the matrix W is learned,

using historical data. There are two known approaches to learning FCMs: adaptive

and population-based. Adaptive algorithms are based on the idea of Hebbian learning

borrowed from the theory of artificial neural networks. The adaptive learning meth-

ods involve: DHL [19], BDA [16], AHL [22] and other algorithms. The population-

based approaches for learning FCMs are: RCGA (real coded genetic algorithm) [32],

PSO-based algorithm (applies particle swarm optimization method) [25], simulated

annealing optimization-based algorithm [12], and differential evolution-based algo-

rithm [17].

As reported in the literature [9], the RCGA is one of the most competitive among

the population-based. For that reason, it has been selected to be used in this study.

4 An FCM-Based Model of Well-Being

The first goal of this study is to create an FCM model representing the dependencies

among consolidated indexes of well-being. The resulting FCM model is applied as

a decision support tool for policy makers but also as a predictive model allowing

the forecasting of well-being. To accomplish the aforementioned objective we map

the considered consolidated indexes to the concepts of Fuzzy cognitive maps. The

mapping is shown in Table 2.

Table 2 Mapping between

consolidated indexes and the

concepts of FCM

Index Concept

Population structure c1
Labour market c2
Housing facilities c3
Standard of living c4
Psycho-emotional tension c5
Medical provision c6
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As stated in Sect. 2, all consolidated indexes assume values in the range [0, 1];

therefore, the normalization of the original and denormalization of the forecasted

time series are not required.

For the purpose of this paper, the evolutionary approach based on the RCGA is

applied. The RCGA creates the population of genotypes; each of them is a vector

of weights of a candidate FCM. The goal of the evolutionary algorithm is to opti-

mize the matrix W with respect to the predictive capability of the FCM. The applied

RCGA algorithm relies on the template of a genetic algorithm (Algorithm 1).

Algorithm 1: Genetic Learning of FCM.

Input: Multivariate time series {V(1),V(2),… ,V(te)}.

Output: Optimized matrix: W.

Initialize randomly the first population Pk, k = 1 of genotypes;

While (stopping-criterion is not satisfied) {

Evaluation(Pk);
Pk+1 ← Selection(Pk);
Mutation(Pk+1);
Crossover(Pk+1);
k ← k + 1;

}

return pbest ∈ Pk - the genotype with the highest fitness value;

Index k denotes the number of generations. The constituents of the algorithm are

the following:

∙ Genotype. Every genotype p ∈ P includes the vector of numbers coming from the

matrix W of the candidate FCM. Subsequent rows of W are placed linearly one

after the other into the vector of genotype. The elements on the diagonal of the

matrix W are omitted, as they do not take part in reasoning.

∙ Evaluation of Genotypes. To use the RCGA for learning FCMs, we defined the

fitness function as fitness(FCM) = −e, where e is the accumulated forecasting

error calculated for the learning period.

∙ Selection. During the selection process, a new population Pk+1 of genotypes is

produced. The newly created population is later supplemented using the opera-

tors of mutation and crossover. For the purpose of this paper the elite selection is

applied [13].

∙ Mutation and crossover. To supplement the population, the offspring of the

elite genotypes are produced using standard probabilistic mutation and one-point

crossover. The probabilities of mutation and crossover are the parameters of the

evolution.

∙ Stopping-criteria. The algorithm stops when at least one of the following condi-

tions holds:



Modeling and Forecasting of Well-Being Using Fuzzy Cognitive Maps 247

1. no improvement in the best fitness value has been recognized after krun consecu-

tive generations, krun is the parameter,

2. the maximum number of generations kmax has been reached, kmax is the parameter.

5 Experiments

For the validation of the proposed approach, we use real-world data gathered for

an industrial city in Siberia (Novokuznetsk, Russia). The data, given in Table 3, are

publicly available [1, 2, 6]. For the purpose of our experiments the data has been

divided into learning and testing parts. The learning part contained data from five

years (2005–2010). Testing was performed for three years (2011–2013).

For the learning FCM we used the RCGA algorithm with the following para-

meters: cardinality of the population = 100, maximal number of iterations kmax =
500, number of iterations without the change of fitness krun = 10, probability of

mutation = 0.1, and probability of crossover = 0.8. After numerous trials we set

up the gain of the transformation function as g = 0.5, and the cardinality of the elite

population to 20 %. In Table 4 we present the obtained values of FCM weights.

As can be noted in Table 4, high bidirectional dependency has been found for

the concepts c1 − c2, c1 − c3, c1 − c4. This means that the population structure is

highly positively related to the labor market, housing facilities and standard of liv-

ing. On the other hand, fairly high negative weights have been recognized for the

dependencies related to the concept of psycho-emotional tension. Increased stan-

dard of living may lead to decreased psycho-emotional tension. w45: ‘Standard

of living’ (c4) − > ‘Psycho-emotional tension’ (c5). Moreover, decreased psycho-

emotional tension improve the indicator related to the population structure. w51:

‘Psycho-emotional tension’ (c5) − > ‘Population structure’ (c1).

Further analysis of the obtained dependecies is a challenge for future research

and should be made by the domain specialists. To present the obtained FCM to the

domain experts we illustrate it in Fig. 1. We show only the weights wij ≥ 0.8 and

wij < −0.2

Table 3 Well-being indexes of the comprehensive indicators (Novokuznetsk, 2005–2013)

Indicator 2005 2006 2007 2008 2009 2010 2011 2012 2013

Population structure 0.58 0.78 0.84 0.95 0.85 0.75 0.85 0.8 0.82

Labour market 0.8 0.84 0.82 0.8 0.73 0.25 0.6 0.74 0.76

Housing facilities 0.75 0.81 0.81 0.75 0.74 0.7 0.85 0.87 0.8

Standard of living 0.67 0.71 0.74 0.82 0.76 0.68 0.74 0.75 0.73

Psycho-emotional

tension

0.6 0.54 0.32 0.56 0.46 0.46 0.64 0.74 0.76

Medical provision 0.67 0.8 0.87 0.95 0.91 0.7 0.85 0.87 0.86
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Table 4 Causal dependencies among comprehensive indicators

Concept c1 c2 c3 c4 c5 c6
Population structure c1 – 0.90 0.96 0.82 0.57 0.87

Labour market c2 0.84 – 0.66 0.29 0.58 −0.03

Housing facilities c3 0.87 0.67 – 0.59 −0.03 −0.06

Standard of living c4 0.80 0.87 0.15 – −0.27 0.30

Psycho-emotional tension c5 −0.28 0.06 0.03 0.07 – −0.05

Medical provision c6 −0.07 0.14 −0.04 0.9 0.04 –

Fig. 1 FCM model of

well-being

Table 5 Mean absolute errors

2011 2012 2013

0.0389 0.0510 0.0382

The obtained model has been applied to forecasting future state of well-being. The

forecasting accuracies calculated as MAPE for every year within the testing period

are given in Table 5.

Taking into account that the obtained errors are accumulated over six variables

of the multivariate time series, they can be evaluated as very low. They are also

satisfactory from the considered domain of application. This provides evidence that

the applied FCM model can be effectively used for modeling and forecasting of well-

being.

6 Conclusions

In this study we proposed a new FCM-based model of well-being. The model has

been constructed using real-world data. The discovered model graphically illustrates

the dependencies between the consolidated well-being indexes and as such can be
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a valuable decision support tool for policy makers. Moreover, the obtained model

has been applied to the forecasting of the future course of well-being. The obtained

results are very encouraging and thus motivate our further research in the considered

domain. The limitation of the demonstrated approach is a small amount of available

data. In spite of that, the paper proposes a general approach that can be easily scaled

up in the future.
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