
Review Paper: Paraconsistent Process
Order Control

Kazumi Nakamatsu, Jair Minoro Abe and Seiki Akama

Abstract Wehave already proposed the paraconsistent process order controlmethod

based on an annotated logic program bf-EVALPSN. Bf-EVALPSN can deal with

before-after relations between two processes (time intervals) in its annotations, and

its reasoning system consists of two kinds of inference rules called the basic bf-

inference rule and the transitive bf-inference rule. In this paper, we review how

bf-EVALPSN can be applied to process order control with a simple example.

Keywords Paraconsistent annotated logic program ⋅Bf-EVALPSN ⋅ Process order
control

1 Introduction

We have already proposed the paraconsistent process order control method based

on an annotated logic program bf-EVALPSN [4–6]. Bf-EVALPSN can deal with

before-after relations between two processes(time intervals) in its annotations, and its

reasoning system consists of two kinds of inference rules called the basic bf-inference

rule and the transitive bf-inference rule. In this paper, we review how bf-EVALPSN

can be applied to process order control with a simple example.

K. Nakamatsu (✉)

University of Hyogo, Himeji, Japan

e-mail: nakamatu@shse.u-hyogo.ac.jp

J.M. Abe

Paulista University, Sao Paulo, Brazil

e-mail: jairabe@uol.com.br

S. Akama

C-republic, Kawasaki, Japan

e-mail: akama@jcom.home.ne.jp

© Springer International Publishing Switzerland 2016

I. Czarnowski et al. (eds.), Intelligent Decision Technologies 2016,
Smart Innovation, Systems and Technologies 57,

DOI 10.1007/978-3-319-39627-9_20

227

228 K. Nakamatsu et al.

2 Annotated Logic Program bf-EVALPSN

In this section a special version of EVALPSN, bf-EVALPSN [4, 5] that can deal

with before-after relation between two processes are reviewed briefly. The details of

EVALPSN can be found in [3, 4].

In bf-EVALPSN, a special annotated literal R(pm, pn, t)∶[(i, j), 𝜇] called bf-literal
whose non-negative integer vector annotation (i, j) represents the before-after rela-
tion between processes Prm and Prn at time t is introduced. The integer components

i and j of the vector annotation (i, j) represent the after and before degrees between

processes Prm(pm) and Prn(pn), respectively, and before-after relations are repre-

sented paraconsistently in vector annotations.

Definition 1 An extended vector annotated literal, R(pi, pj, t)∶[(i, j), 𝜇] is called a

bf-EVALP literal or a bf-literal for short, where (i, j) is a vector annotation and

𝜇 ∈ {𝛼, 𝛽, 𝛾}. If an EVALPSN clause contains bf-EVALP literals, it is called a

bf-EVALPSN clause or just a bf-EVALP clause if it contains no strong negation.

A bf-EVALPSN is a finite set of bf-EVALPSN clauses.

We provide a paraconsistent before-after interpretation for vector annotations

representing bf-relations in bf-EVALPSN, and such a vector annotation is called

a bf-annotation. Exactly speaking, there are fifteen kinds of bf-relation according to
before-after order between four start/finish times of two processes.

Before (be)/After (af) are defined according to the bf-relation between each start

time of two processes. If one process has started before/after another one starts, then

the bf-relations between them are defined as “before/after”, which are represented as

the left figure in Fig. 1.

Other kinds of bf-relations are shown as follows.

Disjoint Before (db)/After (da) are defined as there is a time lag between the earlier

process finish time and the later one start time, which are described as the right figure

in Fig. 1.

Immediate Before (mb)/After (ma) are defined as there is no time lag between the

earlier process finish time and the later one start time, which are described as the left

figure in Fig. 2.

xs

xs ys

Pri

Priys Prj Prjxf yf

Fig. 1 Before (be)/After (af) and Disjoint Before (db)/After (da)

Fig. 2 Immediate Before

(mb)/After (ma) and Joint

Before (jb)/After (ja)
Pri ys

xfxs

Prj
yf

xs Pri xf

ys Prj yf

Review Paper: Paraconsistent Process Order Control 229

xs xfPri xs xfPri

ys yfPrj ys yfPrj

Fig. 3 S-included Before (sb)/After (sa) and Included Before (ib)/After (ia)

xs xfPri

ys yfPrj

xs xfPri

ys yfPrj

Fig. 4 F-included Before (fb)/After (fa) and Paraconsistent Before-after (pba)

Joint Before (jb)/After (ja) are defined as two processes overlap and the earlier

process had finished before the later one finished, which are described as the right

figure in Fig. 2.

S-included Before (sb), S-included After (sa) are defined as one process had

started before another one started and they have finished at the same time, which

are described as the left figure in Fig. 3.

Included Before (ib)/After (ia) are defined as one process had started/finished

before/after another one started/finished, which are described as the right figure in

Fig. 3.

F-included Before (fb)/After (fa) are defined as the two processes have started at
the same time and one process had finished before another one finished, which are

described as the left figure in Fig. 4.

Paraconsistent Before-after (pba) is defined as two processes have started at the

same time and also finished at the same time, which is described as the right figure

in Fig. 4.

The epistemic negation over bf-annotations, be, af, db, da, mb, ma, jb, ja,
ib, ia, sb, sa, fb, fa, pba is defined and the complete lattice of bf-annotations

is shown in Fig. 5.

Definition 2 The epistemic negation ¬1 over the bf-annotations is obviously defined

as the following mappings:

¬1(𝚊𝚏) = 𝚋𝚎, ¬1(𝚋𝚎) = 𝚊𝚏, ¬1(𝚍𝚊) = 𝚍𝚋, ¬1(𝚍𝚋) = 𝚍𝚊, ¬1(𝚖𝚊) = 𝚖𝚋,
¬1(𝚖𝚋) = 𝚖𝚊, ¬1(𝚓𝚊) = 𝚓𝚋, ¬1(𝚓𝚋) = 𝚓𝚊, ¬1(𝚜𝚊) = 𝚜𝚋, ¬1(𝚜𝚋) = 𝚜𝚊,
¬1(𝚒𝚊) = 𝚒𝚋, ¬1(𝚒𝚋) = 𝚒𝚊, ¬1(𝚏𝚊) = 𝚏𝚋, ¬1(𝚏𝚋) = 𝚏𝚊, ¬1(𝚙𝚋𝚊) = 𝚙𝚋𝚊.

230 K. Nakamatsu et al.

Fig. 5 The complete lattice

v(12)bf for Bf-annotations

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

afterbefore

knowledge

⊥12

12

be af

db damb majb jasb saib iafb abp af

3 Reasoning Systems in bf-EVALPSN

In order to represent the basic bf-inference rule two literals are introduced: st(pi, t):
“process Pri starts at time t”, and fi(pi, t): “process Pri finishes at time t”. Those
literals are used for expressing process start/finish information and may have one of

the vector annotations, {⊥(0, 0), 𝚝(1, 0), 𝚏(0, 1), ⊤(1, 1)}.
A group of basic bf-inference rules named (0, 0)-rules to be applied at the initial

stage (time t0) are introduced.

(0, 0)-rules Suppose that no process has started yet and the vector annotation of

bf-literal R(pi, pj, t) is (0, 0), which shows that there is no knowledge in terms of the

bf-relation between processes Pri and Prj, then the following two basic bf-inference
rules are applied at the initial stage.

(0, 0)-rule-1 If process Pri started before process Prj starts, then the vector anno-

tation (0, 0) of bf-literal R(pi, pj, t) should turn to 𝚋𝚎(0, 8), which is

the greatest lower bound of {𝚍𝚋(0, 12), 𝚖𝚋(1, 11), 𝚓𝚋(2, 10), 𝚜𝚋(3, 9),
𝚒𝚋(4, 8)}.

(0, 0)-rule-2 If both processes Pri and Prj have started at the same time, then it is

reasonably anticipated that the bf-relation between processes Pri and
Prj will be one of the bf-annotations, {𝚏𝚋(5, 7), 𝚙𝚋𝚊(6, 6), 𝚏𝚊(7, 5)}
whose greatest lower bound is (5, 5) (refer to Fig. 5). Therefore, the

vector annotation (0, 0) of bf-literal R(pi, pj, t) should turn to (5, 5).

Review Paper: Paraconsistent Process Order Control 231

(0, 0)-rule-1 and (0, 0)-rule-2 are translated into the bf-EVALPSN,

R(pi, pj, t)∶[(0, 0), 𝛼] ∧ st(pi, t)∶[𝚝, 𝛼]∧ ∼ st(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(0, 8), 𝛼]
R(pi, pj, t)∶[(0, 0), 𝛼] ∧ st(pi, t)∶[𝚝, 𝛼] ∧ st(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(5, 5), 𝛼]

Suppose that (0, 0)-rule-1 or 2 has been applied, then the vector annotation of

bf-literal R(pi, pj, t) should be one of (0, 8) or (5, 5). Therefore, we need to consider

two groups of basic bf-inference rules to be applied for following (0, 0)-rule-1 and

2, which are named (0, 8)-rules and (5, 5)-rules, respectively.

(0, 8)-rules Suppose that process Pri has started before process Prj, then the vec-
tor annotation of bf-literal R(pi, pj, t) should be (0, 8). We obtain the following infer-

ence rules to be applied for (0, 0)-rule-1.

(0, 8)-rule-1 If process Pri has finished before process Prj starts, and process Prj
starts immediately after processPri finished, then the vector annotation
(0, 8) of bf-literal R(pi, pj, t) should turn to 𝚖𝚋(1, 11).

(0, 8)-rule-2 If process Pri has finished before process Prj starts, and process Prj
has not started immediately after process Pri finished, then the vector

annotation (0, 8) of bf-literal R(pi, pj, t) should turn to 𝚍𝚋(0, 12).
(0, 8)-rule-3 If process Prj starts before process Pri finishes, then the vector annota-

tion (0, 8) of bf-literal R(pi, pj, t) should turn to (2, 8) that is the greatest
lower bound of the set, {𝚓𝚋(2, 10), 𝚜𝚋(3, 9), 𝚒𝚋(4, 8)}.

(0, 8)-rule-1, 2 and 3 are translated into the bf-EVALPSN,

R(pi, pj, t)∶[(0, 8), 𝛼] ∧ fi(pi, t)∶[𝚝, 𝛼] ∧ st(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(1, 11), 𝛼]
R(pi, pj, t)∶[(0, 8), 𝛼] ∧ fi(pi, t)∶[𝚝, 𝛼]∧ ∼ st(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(0, 12), 𝛼]
R(pi, pj, t)∶[(0, 8), 𝛼]∧ ∼ fi(pi, t)∶[𝚝, 𝛼] ∧ st(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(2, 8), 𝛼]

(5, 5)-rules Suppose that both processes Pri and Prj have already started at the

same time, then the vector annotation of bf-literal R(pi, pj, t) should be (5, 5). We

have the following inference rules to be applied for following (0, 0)-rule-2.

(5, 5)-rule-1 If process Pri has finished before process Prj finishes, then the vector

annotation (5, 5) of bf-literal R(pi, pj, t) should turn to 𝚜𝚋(5, 7).
(5, 5)-rule-2 If both processes Pri and Prj have finished at the same time, then the

vector annotation (5, 5) of bf-literal R(pi, pj, t) should turn to 𝚙𝚋𝚊(6, 6).
(5, 5)-rule-3 If process Prj has finished before process Pri finishes, then the vector

annotation (5, 5) of bf-literal R(pi, pj, t) should turn to 𝚜𝚊(7, 5).

Basic bf-inference rules (5, 5)-rule-1, 2 and 3 are translated into the following

bf-EVALPSN,

232 K. Nakamatsu et al.

R(pi, pj, t)∶[(5, 5), 𝛼] ∧ fi(pi, t)∶[𝚝, 𝛼]∧ ∼ fi(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(5, 7), 𝛼]
R(pi, pj, t)∶[(5, 5), 𝛼] ∧ fi(pi, t)∶[𝚝, 𝛼] ∧ fi(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(6, 6), 𝛼]
R(pi, pj, t)∶[(5, 5), 𝛼]∧ ∼ fi(pi, t)∶[𝚝, 𝛼] ∧ fi(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(7, 5), 𝛼]

If one of (0, 8)-rule-1, 2, (5, 5)-rule-1, 2 and 3 has been applied, a final bf-

annotation such as 𝚓𝚋(2, 10) between two processes should be derived. However,

even if (0, 8)-rule-3 has been applied, no bf-annotation could be derived. Therefore,
a group of basic bf-inference rules named (2, 8)-rules should be considered for fol-

lowing (0, 8)-rule-3.

(2, 8)-rules Suppose that process Pri has started before process Prj starts and
process Prj has started before process Pri finishes, then the vector annotation of bf-

literal R(pi, pj, t) should be (2, 8) and the following three rules should be considered.

(2, 8)-rule-1 If processPri finished before processPrj finishes, then the vector anno-
tation (2, 8) of bf-literal R(pi, pj, t) should turn to 𝚓𝚋(2, 10).

(2, 8)-rule-2 If both processes Pri and Prj have finished at the same time, then the

vector annotation (2, 8) of bf-literal R(pi, pj, t) should turn to 𝚏𝚋(3, 9).
(2, 8)-rule-3 If process Prj has finished before Pri finishes, then the vector annota-

tion (2, 8) of bf-literal R(pi, pj, t) should turn to 𝚒𝚋(4, 8).

Basic bf-inference rules (2, 8)-rule-1, 2 and 3 are translated into the bf-EVALPSN,

R(pi, pj, t)∶[(2, 8), 𝛼] ∧ fi(pi, t)∶[𝚝, 𝛼]∧ ∼ fi(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(2, 10), 𝛼]
R(pi, pj, t)∶[(2, 8), 𝛼] ∧ fi(pi, t)∶[𝚝, 𝛼] ∧ fi(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(3, 9), 𝛼]
R(pi, pj, t)∶[(2, 8), 𝛼]∧ ∼ fi(pi, t)∶[𝚝, 𝛼] ∧ fi(pj, t)∶[𝚝, 𝛼] → R(pi, pj, t)∶[(4, 8), 𝛼]

The application orders of all basic bf-inference rules are summarized in Table 1.

Suppose that there are three processes Pri,Prj and Prk starting sequentially, then

we consider to derive the vector annotation of bf-literal R(pi, pk, t) from those of

Table 1 Application orders of basic Bf-inference rules

Vector

annotation

Rule Vector

annotation

Rule Vector

annotation

Rule Vector

annotation

(0, 0) rule-1 (0, 8) rule-1 (0, 12)
rule-2 (1, 11)
rule-3 (2, 8) rule-1 (2, 10)

rule-2 (3, 9)
rule-3 (4, 8)

rule-2 (5, 5) rule-1 (5, 7)
rule-2 (6, 6)
rule-3 (7, 5)

Review Paper: Paraconsistent Process Order Control 233

bf-literals R(pi, pj, t) and R(pj, pk, t) transitively. We describe the rules by vector

annotations.

Transitive Bf-inference Rules

234 K. Nakamatsu et al.

4 Process Order Control in Bf-EVALPSN

In this section, a simple example of the process order control is shown. The process

order control method has the following steps: step 1, translate the safety properties

of the process order control system into bf-EVALPSN; step 2, verify if permission

for starting the process can be derived from the bf-EVALPSN in step1 by the basic

bf-inference rule and the transitive bf-inference rule or not.

We assume a pipeline system consists of two pipelines, PIPELINE-1 and 2, which

deal with pipeline processes Pr0, Pr1, Pr2 and Pr3. The process schedule of those

processes are shown in Fig. 6. Moreover, we assume that the pipeline system has four

safety properties SPR − i(i = 0, 1, 2, 3).

SPR−0 process Pr0 must start before any other processes, and process Pr0 must

finish before process Pr2 finishes,
SPR−1 process Pr1 must start after process Pr0 starts,
SPR−2 process Pr2 must start immediately after process Pr1 finishes,
SPR−3 process Pr3 must start immediately after processes Pr0 and Pr2 finish.

Step 1. All safety properties SPR − i(i = 0, 1, 2, 3) can be translated into the follow-
ing bf-EVALPSN clauses.

SPR − 1
∼ R(p0, p1, t)∶[(0, 8), 𝛼] → st(p1, t)∶[𝚏, 𝛽], (1)

∼ R(p0, p2, t)∶[(0, 8), 𝛼] → st(p2, t)∶[𝚏, 𝛽], (2)

∼ R(p0, p3, t)∶[(0, 8), 𝛼] → st(p3, t)∶[𝚏, 𝛽], (3)

st(p1, t)∶[𝚏, 𝛽] ∧ st(p2, t)∶[𝚏, 𝛽] ∧ st(p3, t)∶[𝚏, 𝛽] → st(p0, t)∶[𝚏, 𝛾], (4)

∼ fi(p0, t)∶[𝚏, 𝛽] → fi(p0, t)∶[𝚏, 𝛾]. (5)

SPR − 1
∼ st(p1, t)∶[𝚏, 𝛽] → st(p1, t)∶[𝚏, 𝛾], (6)

∼ fi(p1, t)∶[𝚏, 𝛽] → fi(p1, t)∶[𝚏, 𝛾]. (7)

SPR − 2
∼ R(p2, p1, t)∶[(11, 0), 𝛼] → st(p2, t)∶[𝚏, 𝛽], (8)

∼ st(p2, t)∶[𝚏, 𝛽] → st(p2, t)∶[𝚏, 𝛾], (9)

∼ R(p2, p0, t)∶[(10, 2), 𝛼] → fi(p2, t)∶[𝚏, 𝛽], (10)

∼ fi(p2, t)∶[𝚏, 𝛽] → fi(p2, t)∶[𝚏, 𝛾]. (11)

Fig. 6 Pipeline process

schedule PIPELINE-1

PIPELINE-2

Review Paper: Paraconsistent Process Order Control 235

SPR − 3
∼ R(p3, p0, t)∶[(11, 0), 𝛼] → st(p3, t)∶[𝚏, 𝛽], (12)

∼ R(p3, p1, t)∶[(11, 0), 𝛼] → st(p3, t)∶[𝚏, 𝛽], (13)

∼ R(p3, p2, t)∶[(11, 0), 𝛼] → st(p3, t)∶[𝚏, 𝛽], (14)

∼ st(p3, t)∶[𝚏, 𝛽] → st(p3, t)∶[𝚏, 𝛾], (15)

∼ fi(p3, t)∶[𝚏, 𝛽] → fi(p3, t)∶[𝚏, 𝛾]. (16)

Step 2. Here, we show how the bf-EVALPSN process order safety verification is

carried out at five time points, t0, t1, t2 and t3 in the process schedule (Fig. 6). We

consider five bf-relations between processes Pr0, Pr1, Pr2 and Pr3 represented by

the vector annotations of bf-literals,

R(p0, p1, t), R(p0, p2, t), R(p0, p3, t), R(p1, p2, t), R(p2, p3, t)

which should be verified based on safety properties SPR − 0, 1, 2 and 3 in real-time.

Initial Stage (at time t0) no process has started at time t0, thus, the bf-EVALP

clauses,

R(pi, pj, t0)∶[(0, 0), 𝛼], where i = 0, 1, 2, j = 1, 2, 3 (17)

are obtained by transitive bf-inference rule TR0; then, bf-EVALP clauses (17) sat-

isfy each body of bf-EVALPSN clauses (1), (2) and (3), respectively, therefore, the

forbiddance,

st(p1, t0)∶[𝚏, 𝛽], (18)

from starting each process Pri(i = 1, 2, 3) is derived; moreover, since bf-EVALP

clauses (18) satisfy the body of bf-EVALPSN clause (4), the permission for start-

ing process Pr0, st(p0, t0)∶[𝚏, 𝛾] is derived; therefore, process Pr0 is permitted for

starting at time t0.

2nd Stage (at time t1) process Pr0 has already started but all other processes

Pri(i = 1, 2, 3) have not started yet; then the bf-EVALP clauses,

R(p0, p1, t1)∶[(0, 8), 𝛼], (19)

are obtained, where the bf-EVALP clause (19) is derived by basic bf-inference rule

(0, 0)-rule-1; moreover, the bf-EVALP clauses,

R(p0, p2, t1)∶[(0, 8), 𝛼], R(p0, p3, t1)∶[(0, 8), 𝛼] (20)

are obtained by transitive bf-inference rule TR1; as bf-EVALP clause (19) does not

satisfy the body of bf-EVALPSN clause (1), the forbiddance from starting process

Pr1, st(p1, t1)∶[𝚏, 𝛽] cannot be derived; then, since there does not exist the for-

biddance, the body of bf-EVALPSN clause (6) is satisfied, and the permission for

236 K. Nakamatsu et al.

starting process Pr1, st(p1, t1)∶[𝚏, 𝛾] is derived; on the other hand, since bf-EVALP
clauses (20) satisfy the body of bf-EVALPSN clauses (8) and (12) respectively, the

forbiddance from starting both processes Pr2 and Pr3,

st(p2, t1)∶[𝚏, 𝛽], st(p3, t1)∶[𝚏, 𝛽] (21)

are derived; therefore, process Pr1 is permitted for starting at time t1.

3rd Stage (at time t2) process Pr1 has just finished and process Pr0 has not fin-
ished yet; then, the bf-EVALP clauses,

R(p0, p1, t2)∶[(4, 8), 𝛼], R(p1, p2, t2)∶[(1, 11), 𝛼], R(p2, p3, t2)∶[(0, 8), 𝛼] (22)

are derived by basic bf-inference rules (2, 8)-rule-3, (0, 8)-rule-2 and (0, 0)-rule-1,
respectively; moreover, the bf-EVALP clauses,

R(p0, p2, t2)∶[(2, 8), 𝛼], R(p0, p3, t2)∶[(0, 12), 𝛼] (23)

are obtained by transitive bf-inference rules TR1-4-6 and TR1-2, respectively; then,
since bf-EVALP clause (22) does not satisfy the body of bf-EVALPSN clause (8),

the forbiddance from starting process Pr2, st(p2, t2)∶[𝚏, 𝛽] cannot be derived; since
there does not exist the forbiddance, the body of bf-EVALPSN clause (9) is satisfied,

and the permission for starting process Pr2, st(p2, t2)∶[𝚏, 𝛾] is derived; on the other
hand, since bf-EVALP clauses (23) satisfy the body of bf-EVALPSN clause (12), the

forbiddance from starting process Pr3, st(p3, t2)∶[𝚏, 𝛽] is derived; therefore, process
Pr2 is permitted for starting, however process Pr3 is still forbidden from starting at

time t2.

4th Stage (at the t3) process Pr0 has finished, process Pr2 has not finished yet,

and process Pr3 has not started yet; then, the bf-EVALP clauses,

R(p0, p1, t3)∶[(4, 8), 𝛼], R(p1, p2, t3)∶[(1, 11), 𝛼], R(p2, p3, t3)∶[(0, 8), 𝛼]

have been already reasoned at the previous stage; moreover, the bf-EVALP clauses,

R(p0, p2, t3)∶[(2, 10), 𝛼], R(p0, p3, t3)∶[(0, 12), 𝛼] (24)

are obtained by basic bf-inference rule (2, 8)-rule-1; then, bf-EVALP clause (24) sat-

isfies the body of bf-EVALP clause (14), and the forbiddance from starting process

Pr3, S(p3, t3)∶[𝚏, 𝛽] is derived; therefore, process Pr3 is still forbidden to start

because process Pr2 has not finished yet at time t3.

Review Paper: Paraconsistent Process Order Control 237

5 Concluding Remarks

In this paper, we have reviewed the process order control method based on a para-

consistent annotated logic program bf-EVALPSN, which can deal with before-after

relation between processes with a small process order safety verification example.

References

1. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theoret. Comput. Sci. 68,
135–154 (1989)

2. da Costa, N.C.A., et al.: The Paraconsistent logics P . Zeitschrift für Mathematische Logic und

Grundlangen der Mathematik 37, 139–148 (1989)

3. Nakamatsu, K., et al.: Annotated Semantics for Defeasible Deontic Reasoning. LNAI, vol. 2005,
pp. 432–440. Springer (2001)

4. Nakamatsu, K., Abe, J.M.: The development of paraconsistent annotated logic program. Int. J.

Reasoning-Based Intell. Syst. 1, 92–112 (2009)

5. Nakamatsu, K., Abe, J.M., Akama, S.: A logical reasoning system of process before-after rela-

tion based on a paraconsistent annotated logic program bf-EVALPSN. J. Knowl. Based Intell.

Eng. Syst. 15, 145–163 (2011)

6. Nakamatsu, K., Abe, J.M.: The paraconsistent process order control method. Vietnam J. Com-

put. Sci. 1, 29–37 (2014)

	Review Paper: Paraconsistent Process Order Control
	1 Introduction
	2 Annotated Logic Program bf-EVALPSN
	3 Reasoning Systems in bf-EVALPSN
	4 Process Order Control in Bf-EVALPSN
	5 Concluding Remarks
	References

