Review Paper: Paraconsistent Process Order Control

Kazumi Nakamatsu, Jair Minoro Abe and Seiki Akama

Abstract We have already proposed the paraconsistent process order control method based on an annotated logic program bf-EVALPSN. Bf-EVALPSN can deal with before-after relations between two processes (time intervals) in its annotations, and its reasoning system consists of two kinds of inference rules called the basic bfinference rule and the transitive bf-inference rule. In this paper, we review how bf-EVALPSN can be applied to process order control with a simple example.

Keywords Paraconsistent annotated logic program ⋅ Bf-EVALPSN ⋅ Process order control

1 Introduction

We have already proposed the paraconsistent process order control method based on an annotated logic program bf-EVALPSN [\[4](#page-10-0)[–6](#page-10-1)]. Bf-EVALPSN can deal with before-after relations between two processes(time intervals) in its annotations, and its reasoning system consists of two kinds of inference rules called the basic bf-inference rule and the transitive bf-inference rule. In this paper, we review how bf-EVALPSN can be applied to process order control with a simple example.

K. Nakamatsu (✉) University of Hyogo, Himeji, Japan e-mail: nakamatu@shse.u-hyogo.ac.jp

J.M. Abe Paulista University, Sao Paulo, Brazil e-mail: jairabe@uol.com.br

S. Akama C-republic, Kawasaki, Japan e-mail: akama@jcom.home.ne.jp

[©] Springer International Publishing Switzerland 2016 I. Czarnowski et al. (eds.), *Intelligent Decision Technologies 2016*, Smart Innovation, Systems and Technologies 57, DOI 10.1007/978-3-319-39627-9_20

2 Annotated Logic Program bf-EVALPSN

In this section a special version of EVALPSN, bf-EVALPSN [\[4,](#page-10-0) [5](#page-10-2)] that can deal with before-after relation between two processes are reviewed briefly. The details of EVALPSN can be found in [\[3](#page-10-3), [4](#page-10-0)].

In bf-EVALPSN, a special annotated literal $R(p_m, p_n, t)$: $[(i, j), \mu]$ called *bf-literal* whose non-negative integer vector annotation (i, j) represents the before-after relation between processes Pr_m and Pr_n at time t is introduced. The integer components i and j of the vector annotation (i, j) represent the after and before degrees between processes $Pr_m(p_m)$ and $Pr_n(p_n)$, respectively, and before-after relations are represented paraconsistently in vector annotations.

Definition 1 An extended vector annotated literal, $R(p_i, p_j, t)$: $[(i, j), \mu]$ is called a bf-EVAI P literal or a bf-literal for short, where (i, j) is a vector annotation and *, pj* bf-EVALP literal or a bf-literal for short, where (i, j) is a vector annotation and $u \in \{ \alpha, \beta, \gamma \}$. If an EVAI PSN clause contains bf-EVAI P literals, it is called a $\mu \in {\alpha, \beta, \gamma}$. If an EVALPSN clause contains bf-EVALP literals, it is called a bf-EVALPSN clause or just a bf-EVALP clause if it contains no strong negation. ^A *bf-EVALPSN* is a finite set of bf-EVALPSN clauses.

We provide a paraconsistent before-after interpretation for vector annotations representing bf-relations in bf-EVALPSN, and such a vector annotation is called ^a *bf-annotation*. Exactly speaking, there are fifteen kinds of bf-relation according to before-after order between four start/finish times of two processes.

Before (be)/**After** (af) are defined according to the bf-relation between each start time of two processes. If one process has started before/after another one starts, then the bf-relations between them are defined as "before/after", which are represented as the left figure in Fig. [1.](#page-1-0)

Other kinds of bf-relations are shown as follows.

Disjoint Before (db)/**After** (da) are defined as there is a time lag between the earlier process finish time and the later one start time, which are described as the right figure in Fig. [1.](#page-1-0)

Immediate Before (mb)/**After** (ma) are defined as there is no time lag between the earlier process finish time and the later one start time, which are described as the left figure in Fig. [2.](#page-1-1)

Fig. 1 Before (be)/After (af) and Disjoint Before (db)/After (da)

Fig. 3 S-included Before (sb)/After (sa) and Included Before (ib)/After (ia)

Fig. 4 F-included Before (fb)/After (fa) and Paraconsistent Before-after (pba)

Joint Before (jb)/**After** (ja) are defined as two processes overlap and the earlier process had finished before the later one finished, which are described as the right figure in Fig. [2.](#page-1-1)

S-included Before (sb), **S-included After** (sa) are defined as one process had started before another one started and they have finished at the same time, which are described as the left figure in Fig. [3.](#page-2-0)

Included Before (ib)/**After** (ia) are defined as one process had started/finished before/after another one started/finished, which are described as the right figure in Fig. [3.](#page-2-0)

F-included Before (fb)/**After** (fa) are defined as the two processes have started at the same time and one process had finished before another one finished, which are described as the left figure in Fig. [4.](#page-2-1)

Paraconsistent Before-after (pba) is defined as two processes have started at the same time and also finished at the same time, which is described as the right figure in Fig. [4.](#page-2-1)

The epistemic negation over bf-annotations, be, af, db, da, mb, ma, jb, ja, ib, ia, sb, sa, fb, fa, pba is defined and the complete lattice of bf-annotations is shown in Fig. [5.](#page-3-0)

Definition 2 The epistemic negation \neg ₁ over the bf-annotations is obviously defined as the following mappings:

3 Reasoning Systems in bf-EVALPSN

In order to represent the *basic bf-inference rule* two literals are introduced: $st(p_i, t)$:
"process Pr , starts at time *t*" and $f(p_i, t)$: "process Pr , finishes at time *t*". Those "process Pr_i starts at time *t*", and $f_i(p_i, t)$: "process Pr_i finishes at time *t*". Those its integrals are used for expressing process start/finish information and may have one of literals are used for expressing process start/finish information and may have one of the vector annotations, $\{\bot(0,0), \tau(1,0), \tau(0,1), \tau(1,1)\}.$

A group of basic bf-inference rules named (0*,* 0)*-rules* to be applied at the initial stage (time t_0) are introduced.

(0, 0)-rules Suppose that no process has started yet and the vector annotation of bf-literal $R(p_i, p_j, t)$ is (0,0), which shows that there is no knowledge in terms of the
bf-relation between processes Pr and Pr then the following two basic bf-inference P_j
iwe bf-relation between processes Pr_i and Pr_j , then the following two basic bf-inference
rules are applied at the initial stage rules are applied at the initial stage.

- *(0, 0)-rule-1* If process Pr_i started before process Pr_j starts, then the vector annotation (0, 0) of bf-literal $R(p_i, p_j, t)$ should turn to be(0, 8), which is
the greatest lower bound of $\{A\}b(0, 12)$, mb(1, 11), ib(2, 10), sb(3, 9) the greatest lower bound of $\{db(0, 12), mb(1, 11), pb(2, 10), sb(3, 9),\}$ $ib(4, 8)$.
- (0, 0)-rule-2 If both processes Pr_i and Pr_j have started at the same time, then it is reasonably anticipated that the bf-relation between processes Pr_i and *Pr_i* will be one of the bf-annotations, { $fb(5, 7)$ *,* $pba(6, 6)$ *,* $fa(7, 5)$ } whose greatest lower bound is (5*,* 5) (refer to Fig. [5\)](#page-3-0). Therefore, the vector annotation (0, 0) of bf-literal $R(p_i, p_j, t)$ should turn to (5, 5).

(0*,* 0)-rule-1 and (0*,* 0)-rule-2 are translated into the bf-EVALPSN,

 $R(p_i, p_j, t) : [(0, 0), \alpha] \wedge st(p_i, t) : [\tau, \alpha] \wedge \sim st(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(0, 8), \alpha]$ $R(p_i, p_j, t) : [(0, 0), \alpha] \wedge st(p_i, t) : [\tau, \alpha] \wedge st(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(5, 5), \alpha]$

Suppose that (0*,* 0)-rule-1 or 2 has been applied, then the vector annotation of bf-literal $R(p_i, p_j, t)$ should be one of $(0, 8)$ or $(5, 5)$. Therefore, we need to consider two eroups of basic bf-inference rules to be applied for following $(0, 0)$ -rule-1 and bi-interal $A(p_i, p_j, t)$ should be one of (0, 8) or (3, 3). Therefore, we need to consider
two groups of basic bf-inference rules to be applied for following (0, 0)-rule-1 and 2, which are named (0*,* 8)*-rules* and (5*,* 5)*-rules*, respectively.

(0, 8)-rules Suppose that process Pr_i has started before process Pr_j , then the vecannotation of bf-literal $R(n, n, t)$ should be (0, 8). We obtain the following infertor annotation of bf-literal $R(p_i, p_j, t)$ should be (0, 8). We obtain the following infer-
ence rules to be applied for (0, 0)-rule-1 ence rules to be applied for (0*,* 0)-rule-1.

- $(0, 8)$ -rule-1 If process Pr_i has finished before process Pr_i starts, and process Pr_j starts immediately after process Pr_i finished, then the vector annotation $(0, 8)$ of bf-literal $R(p_i, p_j, t)$ should turn to $mb(1, 11)$.
If process *Pr*, has finished before process *Pr*, starts *, pj*
- (0, 8)-rule-2 If process Pr_i has finished before process Pr_j starts, and process Pr_j has not started immediately after process Pr_j finished, then the vector has not started immediately after process Pr_i finished, then the vector annotation $(0, 8)$ of bf-literal $R(p_i, p_j, t)$ should turn to $db(0, 12)$.
If process *Pr*, starts before process *Pr*, finishes, then the vector at
- *, pj* (0, 8)-rule-3 If process Pr_j starts before process Pr_j finishes, then the vector annota-
tion (0, 8) of bf-literal $R(n, n, t)$ should turn to (2, 8) that is the greatest tion $(0, 8)$ of bf-literal $R(p_i, p_j, t)$ should turn to $(2, 8)$ that is the greatest
lower bound of the set $\{ \pm h(2, 10), \pm h(3, 9), \pm h(4, 8) \}$ lower bound of the set, $\{jb(2, 10), sb(3, 9), ib(4, 8)\}.$

(0*,* 8)-rule-1, 2 and 3 are translated into the bf-EVALPSN,

 $R(p_i, p_j, t) : [(0, 8), \alpha] \wedge f(p_i, t) : [\tau, \alpha] \wedge st(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(1, 11), \alpha]$ $R(p_i, p_j, t) : [(0, 8), \alpha] \wedge f(p_i, t) : [\tau, \alpha] \wedge \sim st(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(0, 12), \alpha]$ $R(p_i, p_j, t) : [(0, 8), \alpha] \wedge \sim f_i(p_i, t) : [\tau, \alpha] \wedge st(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(2, 8), \alpha]$

(5, 5)-rules Suppose that both processes Pr_i and Pr_j have already started at the same time, then the vector annotation of bf-literal $R(p_i, p_j, t)$ should be (5,5). We have the following inference rules to be applied for following (0,0)-rule-2 same time, then the vector annotation of \mathbf{d} -hierar $\mathbf{r}(\rho_i, \rho_j, t)$ should be (*b*) have the following inference rules to be applied for following (0, 0)-rule-2.

- $(5, 5)$ -rule-1 If process Pr_i has finished before process Pr_i finishes, then the vector annotation (5, 5) of bf-literal $R(p_i, p_j, t)$ should turn to $\text{sb}(5, 7)$.
If both processes *Pr* and *Pr* have finished at the same time the
- $(5, 5)$ -rule-2 If both processes Pr_i and Pr_j have finished at the same time, then the vector annotation (5, 5) of bf-literal $R(p_i, p_j, t)$ should turn to pba(6, 6).
If process Pr has finished before process Pr finishes, then the vector
- $(5, 5)$ -rule-3 If process Pr_i has finished before process Pr_i finishes, then the vector annotation (5, 5) of bf-literal $R(p_i, p_j, t)$ should turn to $sa(7, 5)$.

Basic bf-inference rules (5*,* 5)-rule-1, 2 and 3 are translated into the following bf-EVALPSN,

 $R(p_i, p_j, t) : [(5, 5), \alpha] \wedge f(p_i, t) : [\tau, \alpha] \wedge \neg f(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(5, 7), \alpha]$ $\mathcal{P}_j, \mathcal{P}_j, \mathcal{$ $R(p_i, p_j, t) : [(5, 5), \alpha] \wedge f(p_i, t) : [\tau, \alpha] \wedge f(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(6, 6), \alpha]$ $R(p_i, p_j, t) : [(5, 5), \alpha] \wedge \sim f_i(p_i, t) : [\tau, \alpha] \wedge f_i(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(7, 5), \alpha]$

If one of (0*,* 8)-rule-1, 2, (5*,* 5)-rule-1, 2 and 3 has been applied, a final bfannotation such as $\mathfrak{p}(2, 10)$ between two processes should be derived. However, even if (0*,* 8)-rule-3 has been applied, no bf-annotation could be derived. Therefore, a group of basic bf-inference rules named (2*,* 8)-rules should be considered for following (0*,* 8)-rule-3.

(2, 8)-rules Suppose that process Pr_i has started before process Pr_i starts and process Pr_i has started before process Pr_i finishes, then the vector annotation of bfliteral $R(p_i, p_j, t)$ should be $(2, 8)$ and the following three rules should be considered.

- $(2, 8)$ -rule-1 If process Pr_i finished before process Pr_i finishes, then the vector annotation $(2, 8)$ of bf-literal $R(p_i, p_j, t)$ should turn to j b $(2, 10)$.
If both processes *Pr.* and *Pr.* have finished at the same tim $\cdot \frac{p_j}{h}$
- (2, 8)-rule-2 If both processes Pr_i and Pr_j have finished at the same time, then the vector annotation (2, 8) of bf-literal $R(n, n, t)$ should turn to $\text{fb}(3, 9)$ vector annotation (2, 8) of bf-literal $R(p_i, p_j, t)$ should turn to fb(3, 9).
If process *Pr*, has finished before *Pr*, finishes, then the vector annota-*, pj*
- (2, 8)-rule-3 If process Pr_j has finished before Pr_i finishes, then the vector annota-
tion (2, 8) of bf-literal $R(n, n, t)$ should turn to ib(4, 8) tion (2, 8) of bf-literal $R(p_i, p_j, t)$ should turn to $\text{ib}(4, 8)$.

Basic bf-inference rules (2*,* 8)-rule-1, 2 and 3 are translated into the bf-EVALPSN,

 $R(p_i, p_j, t) : [(2, 8), \alpha] \wedge f(p_i, t) : [\tau, \alpha] \wedge \neg f(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(2, 10), \alpha]$ $R(p_i, p_j, t) : [(2, 8), \alpha] \wedge f(p_i, t) : [\tau, \alpha] \wedge f(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(3, 9), \alpha]$ $R(p_i, p_j, t) : [(2, 8), \alpha] \wedge \sim f_i(p_i, t) : [\tau, \alpha] \wedge f_i(p_j, t) : [\tau, \alpha] \rightarrow R(p_i, p_j, t) : [(4, 8), \alpha]$

The application orders of all basic bf-inference rules are summarized in Table [1.](#page-5-0)

Suppose that there are three processes Pr_i, Pr_j and Pr_k starting sequentially, then consider to derive the vector annotation of bf-literal $R(n, n, t)$ from those of we consider to derive the vector annotation of bf-literal $R(p_i, p_k, t)$ from those of

Vector annotation	Rule	Vector annotation	Rule	Vector annotation	Rule	Vector annotation
(0,0)	rule-1	(0, 8)	rule-1	(0, 12)		
			rule-2	(1, 11)		
			rule-3	(2, 8)	rule-1	(2, 10)
					rule-2	(3, 9)
					rule-3	(4, 8)
	rule-2	(5, 5)	rule-1	(5, 7)		
			rule-2	(6, 6)		
			rule-3	(7, 5)		

Table 1 Application orders of basic Bf-inference rules

bf-literals $R(p_i, p_j, t)$ and $R(p_j, p_k, t)$ transitively. We describe the rules by vector annotations annotations.

Transitive Bf-inference Rules

```
TR0 (0,0) \wedge (0,0) \rightarrow (0,0)TR1 (0,8) \wedge (0,0) \rightarrow (0,8)\textbf{TR1} - \textbf{1} \quad (0,12) \land (0,0) \rightarrow (0,12)TR1-2 (1,11) \wedge (0,8) \rightarrow (0,12)TR1 - 3 (1, 11) \wedge (5, 5) \rightarrow (1, 11)TR1 – 4 (2, 8) \wedge (0, 8) \rightarrow (0, 8)\textbf{TR1} - 4 - 1 \quad (2,10) \wedge (0,8) \rightarrow (0,12)TR1 - 4 - 2 \quad (4,8) \wedge (0,12) \rightarrow (0,8)TR1 - 4 - 3 (2,8) \wedge (2,8) \rightarrow (2,8)TR1 - 4 - 3 - 1 (2, 10) \wedge (2, 8) \rightarrow (2, 10)TR1 - 4 - 3 - 2 (4, 8) \wedge (2, 10) \rightarrow (2, 8)TR1 - 4 - 3 - 3 (2, 8) \wedge (4, 8) \rightarrow (4, 8)\textbf{TR1} - 4 - 3 - 4 \quad (3,9) \land (2,10) \rightarrow (2,10)\textbf{TR1} - 4 - 3 - 5 \quad (2,10) \wedge (4,8) \rightarrow (3,9)TR1 - 4 - 3 - 6 (4, 8) \wedge (3, 9) \rightarrow (4, 8)TR1 - 4 - 3 - 7 (3,9) \wedge (3,9) \rightarrow (3,9)\textbf{TR1} - 4 - 4 \quad (3,9) \land (0,12) \rightarrow (0,12)TR1 - 4 - 5 \quad (2,10) \wedge (2,8) \rightarrow (1,11)TR1 - 4 - 6 (4, 8) \wedge (1, 11) \rightarrow (2, 8)\textbf{TR1} - 4 - 7 \quad (3,9) \wedge (1,11) \rightarrow (1,11)TR1 - 5 (2,8) \wedge (5,5) \rightarrow (2,8)TR1 - 5 - 1 (4, 8) \wedge (5, 7) \rightarrow (2, 8)TR1 - 5 - 2 \quad (2,8) \wedge (7,5) \rightarrow (4,8)\textbf{TR1} - \textbf{5} - \textbf{3} \quad (3,9) \land (5,7) \rightarrow (2,10)TR1 - 5 - 4 (2, 10) \wedge (7, 5) \rightarrow (3, 9)TR2 (5,5) \wedge (0,8) \rightarrow (0,8)TR2 - 1 (5,7) \wedge (0,8) \rightarrow (0,12)TR2 - 2 (7,5) \wedge (0,12) \rightarrow (0,8)TR2 - 3 (5,5) \wedge (2,8) \rightarrow (2,8)TR2 - 3 - 1 (5,7) \wedge (2,8) \rightarrow (2,10)TR2 - 3 - 2 (7,5) \wedge (2,10) \rightarrow (2,8)TR2 - 3 - 3 (5,5) \wedge (4,8) \rightarrow (4,8)TR2 - 3 - 4 (7,5) \wedge (3,9) \rightarrow (4,8)TR2 - 4 (5,7) \wedge (2,8) \rightarrow (1,11)TR2 - 5 (7,5) \wedge (1,11) \rightarrow (2,8)TR3 (5,5) \wedge (5,5) \rightarrow (5,5)TR3 - 1 (7,5) \wedge (5,7) \rightarrow (5,5)TR3 - 2 \quad (5,7) \wedge (7,5) \rightarrow (6,6)
```
4 Process Order Control in Bf-EVALPSN

In this section, a simple example of the process order control is shown. The process order control method has the following steps: **step 1**, translate the safety properties of the process order control system into bf-EVALPSN; **step 2**, verify if permission for starting the process can be derived from the bf-EVALPSN in **step1** by the basic bf-inference rule and the transitive bf-inference rule or not.

We assume a pipeline system consists of two pipelines, PIPELINE-1 and 2, which deal with pipeline processes Pr_0 , Pr_1 , Pr_2 and Pr_3 . The process schedule of those processes are shown in Fig. [6.](#page-7-0) Moreover, we assume that the pipeline system has four safety properties $SPR - i(i = 0, 1, 2, 3)$.

- *SPR*−*0* process Pr_0 must start before any other processes, and process Pr_0 must finish before process Pr_2 finishes,
- *SPR*−*1* process Pr_1 must start after process Pr_0 starts,
- *SPR*−2 process Pr_2 must start immediately after process Pr_1 finishes,
- *SPR*−*3* process Pr_3 must start immediately after processes Pr_0 and Pr_2 finish.

Step 1. All safety properties $SPR - i(i = 0, 1, 2, 3)$ can be translated into the following bf-EVALPSN clauses.

$$
SPR - 1
$$

$$
\sim R(p_0, p_1, t) : [(0, 8), \alpha] \to st(p_1, t) : [\mathbf{f}, \beta],
$$
\n
$$
P(\alpha, \beta) : [(0, 8), \alpha] \to st(p_1, t) : [\mathbf{f}, \beta],
$$
\n
$$
(1)
$$

$$
\sim R(p_0, p_2, t) : [(0, 8), \alpha] \to st(p_2, t) : [f, \beta],
$$
\n(2)

$$
\sim R(p_0, p_3, t) : [(0, 8), \alpha] \to st(p_3, t) : [\mathbf{f}, \beta],
$$
\n(3)

$$
st(p_1, t) : [f, \beta] \wedge st(p_2, t) : [f, \beta] \wedge st(p_3, t) : [f, \beta] \rightarrow st(p_0, t) : [f, \gamma], \quad (4)
$$

$$
\sim f_i(p_0, t) : [f, \beta] \to f_i(p_0, t) : [f, \gamma]. \tag{5}
$$

$$
SPR - 1
$$

\n
$$
\sim st(p_1, t) : [f, \beta] \to st(p_1, t) : [f, \gamma],
$$
\n(6)

$$
\sim f_i(p_1, t) : [\mathbf{f}, \beta] \to f_i(p_1, t) : [\mathbf{f}, \gamma]. \tag{7}
$$

$$
SPR - 2
$$

$$
\sim R(p_2, p_1, t) : [(11, 0), \alpha] \to st(p_2, t) : [f, \beta],
$$
\n
$$
(8)
$$

$$
\sim st(p_2, t) : [f, \beta] \to st(p_2, t) : [f, \gamma], \tag{9}
$$

$$
\sim R(p_2, p_0, t) : [(10, 2), \alpha] \to f(p_2, t) : [\mathbf{f}, \beta],
$$
\n(10)

$$
\sim f_i(p_2, t) : [f, \beta] \to f_i(p_2, t) : [f, \gamma]. \tag{11}
$$

$$
SPR - 3
$$

\n
$$
\sim R(p_2, p_2, t) \cdot [(11.0) \, \alpha] \to st(p_2, t) \cdot [f \, \beta]
$$
 (12)

$$
\sim R(p_3, p_0, t) : [(11, 0), \alpha] \to st(p_3, t) : [\mathbf{f}, \beta],
$$
\n
$$
\sim R(p_3, p_1, t) : [(11, 0), \alpha] \to st(p_3, t) : [\mathbf{f}, \beta],
$$
\n(13)

$$
\sim R(p_3, p_1, t) : [(11, 0), \alpha] \to st(p_3, t) : [\mathbf{f}, \beta],
$$
\n
$$
\sim R(p_3, p_2, t) : [(11, 0), \alpha] \to st(p_3, t) : [\mathbf{f}, \beta],
$$
\n(14)

$$
\sim st(p_3, t) : [f, \beta] \to st(p_3, t) : [f, \gamma], \tag{15}
$$

$$
\sim f_i(p_3, t) : [f, \beta] \to f_i(p_3, t) : [f, \gamma]. \tag{16}
$$

Step 2. Here, we show how the bf-EVALPSN process order safety verification is carried out at five time points, t_0 , t_1 , t_2 and t_3 in the process schedule (Fig. [6\)](#page-7-0). We consider five bf-relations between processes Pr_0 , Pr_1 , Pr_2 and Pr_3 represented by the vector annotations of bf-literals,

$$
R(p_0, p_1, t)
$$
, $R(p_0, p_2, t)$, $R(p_0, p_3, t)$, $R(p_1, p_2, t)$, $R(p_2, p_3, t)$

which should be verified based on safety properties $SPR - 0$, 1, 2 and 3 in real-time.

Initial Stage (at time t_0) no process has started at time t_0 , thus, the bf-EVALP clauses,

$$
R(p_i, p_j, t_0): [(0, 0), \alpha], \quad \text{where } i = 0, 1, 2, j = 1, 2, 3 \tag{17}
$$

are obtained by transitive bf-inference rule **TR0**; then, bf-EVALP clauses [\(17\)](#page-8-0) satisfy each body of bf-EVALPSN clauses [\(1\)](#page-7-1), [\(2\)](#page-7-1) and [\(3\)](#page-7-1), respectively, therefore, the forbiddance,

$$
st(p_1, t_0) : [f, \beta], \tag{18}
$$

from starting each process $Pr_i(i = 1, 2, 3)$ is derived; moreover, since bf-EVALP
clauses (18) satisfy the body of bf-EVALPSN clause (4) the permission for startclauses [\(18\)](#page-8-1) satisfy the body of bf-EVALPSN clause [\(4\)](#page-7-1), the permission for starting process Pr_0 , $st(p_0, t_0)$: [f, γ] is derived; therefore, process Pr_0 is permitted for starting at time t_0 .

2nd Stage (at time t_1) process Pr_0 has already started but all other processes $Pr_i(i = 1, 2, 3)$ have not started yet; then the bf-EVALP clauses,

$$
R(p_0, p_1, t_1) : [(0, 8), \alpha], \tag{19}
$$

are obtained, where the bf-EVALP clause [\(19\)](#page-8-2) is derived by basic bf-inference rule (0*,* 0)-rule-1; moreover, the bf-EVALP clauses,

$$
R(p_0, p_2, t_1) : [(0, 8), \alpha], \qquad R(p_0, p_3, t_1) : [(0, 8), \alpha]
$$
 (20)

are obtained by transitive bf-inference rule TR1; as bf-EVALP clause [\(19\)](#page-8-2) does not satisfy the body of bf-EVALPSN clause [\(1\)](#page-7-1), the forbiddance from starting process Pr_1 , $st(p_1, t_1)$: [*f*, β] cannot be derived; then, since there does not exist the forbiddance, the body of bf-EVALPSN clause [\(6\)](#page-7-2) is satisfied, and the permission for

starting process Pr_1 , $st(p_1, t_1)$: [*f*, γ] is derived; on the other hand, since bf-EVALP clauses [\(20\)](#page-8-3) satisfy the body of bf-EVALPSN clauses [\(8\)](#page-7-3) and [\(12\)](#page-8-4) respectively, the forbiddance from starting both processes Pr_2 and Pr_3 ,

$$
st(p_2, t_1): [\textbf{f}, \beta], \quad st(p_3, t_1): [\textbf{f}, \beta]
$$
 (21)

are derived; therefore, process Pr_1 is permitted for starting at time t_1 .

3rd Stage (at time t_2) process Pr_1 has just finished and process Pr_0 has not finished yet; then, the bf-EVALP clauses,

$$
R(p_0, p_1, t_2): [(4, 8), \alpha], \quad R(p_1, p_2, t_2): [(1, 11), \alpha], \quad R(p_2, p_3, t_2): [(0, 8), \alpha] \tag{22}
$$

are derived by basic bf-inference rules (2*,* 8)-rule-3, (0*,* 8)-rule-2 and (0*,* 0)-rule-1, respectively; moreover, the bf-EVALP clauses,

$$
R(p_0, p_2, t_2) : [(2, 8), \alpha], \qquad R(p_0, p_3, t_2) : [(0, 12), \alpha]
$$
 (23)

are obtained by transitive bf-inference rules **TR1-4-6** and **TR1-2**, respectively; then, since bf-EVALP clause [\(22\)](#page-9-0) does not satisfy the body of bf-EVALPSN clause [\(8\)](#page-7-3), the forbiddance from starting process Pr_2 , $st(p_2, t_2)$: [*f*, β] cannot be derived; since there does not exist the forbiddance, the body of bf-EVALPSN clause [\(9\)](#page-7-3) is satisfied, and the permission for starting process Pr_2 , $st(p_2, t_2)$: [f, γ] is derived; on the other hand, since bf-EVALP clauses [\(23\)](#page-9-1) satisfy the body of bf-EVALPSN clause [\(12\)](#page-8-4), the forbiddance from starting process Pr_3 , $st(p_3, t_2)$: [f, β] is derived; therefore, process $Pr₂$ is permitted for starting, however process $Pr₃$ is still forbidden from starting at time t_2 .

4th Stage (at the t_3) process Pr_0 has finished, process Pr_2 has not finished yet, and process Pr_3 has not started yet; then, the bf-EVALP clauses,

$$
R(p_0, p_1, t_3) : [(4, 8), \alpha], \quad R(p_1, p_2, t_3) : [(1, 11), \alpha], \quad R(p_2, p_3, t_3) : [(0, 8), \alpha]
$$

have been already reasoned at the previous stage; moreover, the bf-EVALP clauses,

$$
R(p_0, p_2, t_3) : [(2, 10), \alpha], \qquad R(p_0, p_3, t_3) : [(0, 12), \alpha]
$$
 (24)

are obtained by basic bf-inference rule (2*,* 8)-rule-1; then, bf-EVALP clause [\(24\)](#page-9-2) satisfies the body of bf-EVALP clause [\(14\)](#page-8-4), and the forbiddance from starting process *Pr*₃, *S*(p_3 , t_3)∶[*f*, β] is derived; therefore, process *Pr*₃ is still forbidden to start because process Pr_2 has not finished yet at time t_3 .

5 Concluding Remarks

In this paper, we have reviewed the process order control method based on a paraconsistent annotated logic program bf-EVALPSN, which can deal with before-after relation between processes with a small process order safety verification example.

References

- 1. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theoret. Comput. Sci. **68**, 135–154 (1989)
- 2. da Costa, N.C.A., et al.: The Paraconsistent logics PT. Zeitschrift für Mathematische Logic und Grundlangen der Mathematik **37**, 139–148 (1989)
- 3. Nakamatsu, K., et al.: Annotated Semantics for Defeasible Deontic Reasoning. LNAI, vol. **2005**, pp. 432–440. Springer (2001)
- 4. Nakamatsu, K., Abe, J.M.: The development of paraconsistent annotated logic program. Int. J. Reasoning-Based Intell. Syst. **1**, 92–112 (2009)
- 5. Nakamatsu, K., Abe, J.M., Akama, S.: A logical reasoning system of process before-after relation based on a paraconsistent annotated logic program bf-EVALPSN. J. Knowl. Based Intell. Eng. Syst. **15**, 145–163 (2011)
- 6. Nakamatsu, K., Abe, J.M.: The paraconsistent process order control method. Vietnam J. Comput. Sci. **1**, 29–37 (2014)