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Abstract Fault tolerance of spacecraft remains one of the most complex problems
in space missions. There are several ways to implement the “onboard intelligence
allowing the recovery of a spacecraft in case of abnormal situations caused by
hardware or software failures. The most common but inflexible way is “to disperse”
the recovery logic in the source code of the flight control software. Our approach
implies using onboard real-time knowledge base. The rules of the knowledge base
could be added or refined from Earth over the radio channel on a timely basis.
Currently, the rules of an onboard knowledge base should be specified in a table
form, which entails some misunderstandings in the mission team and consequently
leads to errors. The improved approach presented in the paper provides special
tools–the visualizer and the visual builder of rules. The approach allows space
mission operation engineers without special mathematical or programming back-
ground to define, visualize and refine knowledge base rules in a very easy manner.
Tools prototypes are currently introduced at JSC Information Satellite Systems,
Russia.

Keywords Real-Time onboard knowledge base ⋅ Visual builder ⋅ Spacecraft
control system ⋅ Spacecraft’s fault tolerance feature ⋅ Autonomous control

1 Introduction and Background

1.1 Spacecraft Fault Tolerance

The problem of dependability remains one of the most complex problems in
modern space missions. A modern spacecraft has a lot of different onboard systems
and equipment (motion control system, power supply system, telemetry system,
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thermal control system, etc.). Each system, in turn, consists of dozens of devices,
sensors, and aggregates. It is well known that, as a rule, a more complex system is
less reliable (except in cases where complexity is specially designed for providing
dependability). Thus, it is no wonder that there are many faults and failures during
space mission operations. The faults and failures may have a different nature,
different levels of damage and methods of recovery. Abnormal situations related to
such a complex “system of the systems” can be very tricky and require really smart
decision support (in many cases we need reasoning with taking causation rela-
tionships into account) to be compensated.

The success of a space mission depends on the possibility to recover the
spacecraft in case of hardware or software failures. The recovery of conventional
machines exploited on the ground usually involves processes of diagnosis and
repair accomplished by a human. If there are cosmonauts onboard, they can use
their intellect in an abnormal situation to change or fix the failed equipment. The
dramatic history of Apollo 13 is well known as opposed to Salyut 7 rescue expe-
dition [1].

In case of an unmanned mission, the situation is more complicated. To ensure
the overall success of space missions, it is necessary to ensure the “fault tolerance”
feature of a spacecraft. Fault tolerance is one of the most important components of
dependability meaning that even in case of failures a spacecraft remains operational
(possibly with some losses in quality). The standard level of the fault tolerance of a
spacecraft means parrying of the failure of a single device while fully saving the
operational mode [2–5].

Actually, we have a lot of impressing examples of the successful usage of the
fault tolerance feature of a spacecraft for the recovery of the operational mode of a
spacecraft. How can this feature be implemented?

First, it is reasonable to apply the power of human brain. The computers running
intelligent software can assist in this. Probably, we can state that technical diag-
nostics is one of the conventional domains for the application of knowledge bases
and expert systems [6–8]. Spacecraft control processes are implemented by the
ground flight control together with the onboard control system [2, 9, 10]. The
intelligent decision making support systems are widely used both on Earth and
onboard [4]. The only way to utilize the human intelligence to “recover” an
unmanned spacecraft is the remote control (there was an exception—the repair of
the Hubble telescope [11], but this is just an exception). The remote control mode
from the ground control center requires the following. The personnel are engaged in
the processes of the analysis of the state of a spacecraft, decision making, trans-
mitting of the required commands onboard. All the operations should be undertaken
in real-time mode. It is necessary to ensure the continuous work of the ground
complex including telemetry receiving stations, radio command channels, and the
infrastructure of a flight control center. Of course, it involves the work of
well-prepared personnel who have the excellent knowledge of the operational
instructions and are ready to make fast and right decisions. The special methods of
learning can be required for training these people [12, 13].
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But in many practical cases remote control appears to be fully impossible or too
late in time. We mean situations when the radio connection with the ground per-
sonnel is impossible due to spacecraft orbits (e.g. low-earth-orbit satellites with a
short interval of visibility from each of the ground control points, or probes with a
long time of radio signal transmission) [2, 14]. If we face with rapid progress of the
abnormal situation onboard, the remote control is useless.

The alternative way for unmanned missions is the use of “onboard intelligence”
for autonomous control. The term “onboard intelligence” is enclosed in quotes, and
this has a reason behind it. The ways of the implementation of “onboard intelli-
gence” are quite different [15].

Fault tolerance should be envisioned at the initial stage of spacecraft design.
De-signers and onboard system engineers make a lot of efforts to support the
reliability of the spacecraft equipment. The special measures include the intro-
duction of redundancies. Structural redundancy means duplication (some important
units could be doubled or tripled). Functional redundancy means that a system
remains operational even if a failure happens (with the downshifted quality, i.e.
with less precision, etc.). Spacecraft control logic should be specified in the cor-
responding obligatory documentation both for normal operations and for abnormal
situations. The documents include a list of considered failures with the specification
of the level of importance, state diagrams and cyclograms representing the needed
reaction [3, 4, 14]. If the failure has been diagnosed, the compensating reaction has
to be executed. The reaction implies the reconfiguration of the equipment using
“hot” or “cold” reserve or the transition of the spacecraft into one of special modes
providing safety (these modes exclude catastrophic consequences).

Then it is necessary to implement the control logic for the considered abnormal
situations in spacecraft hardware and software. Nowadays, hardware implementa-
tion of onboard control is more a historical issue [9, 16]. The only case when
hardware fault tolerance makes sense is the compensation of very fast crashing
processes (microseconds or less). In other cases, the common approach is using
software [2, 14, 17].

In fact, it is impossible to imagine a space mission without application of
computers. Computers are used from the design stage through lifting to Space,
operations and support till the end of the lifetime of a spacecraft. Currently, all
spacecraft, including micro- and nano-satellites, are equipped with onboard control
computer systems which combine several onboard computers integrated into net-
work. The control functions are executed by a special sort of software—onboard
software (which can also be called “mission-critical flight control software”).
Onboard software consists of hundreds of concurrently running programs [2, 14,
18]. Thus, flight control logic both for normal and abnormal functioning of modern
space missions is hidden in the onboard software.
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1.2 Ways of the Implementation of the Onboard Intelligence

There are several approaches to introducing control logic into software. The most
common but inflexible way is to implement it in the program source code (C, Java,
an assembler, etc.). In such a case, any change in control logic should entail a very
complex, time-consuming and many-staged process of software re-design, coding
and testing (including unit testing, integrity testing, system testing, etc.). When we
evaluate labor and time consumption and total costs, the typical proportion between
hardware and software of the onboard control system can be characterized as 1:10
[5, 16, 19]. Thus, the total cost of the onboard software lifecycle dramatically grows
because of required software maintenance efforts [20]. In aerospace projects (as it
was noticed decades ago [10, 16]), the processes of design, development and
verification of onboard software became a “critical path” of network scheduling,
embracing all works connected with designing and manufacturing of a rocket/space
system as a whole [16, 19].

There are a lot of examples of successful implementation of software changes
and re-uploading them onboard, even when the distance between the Earth and a
deep space probe amounts to millions of kilometers [21–23]. The author knows
impressing similar examples in Russian space missions, but they are not published
enough in English (for example, the recovery of an Earth observation satellite with
the serious change of onboard algorithms and software for operations using another
onboard system) [3]. The uploading of onboard software becomes a “routine
operation” which has already been performed hundreds of times. Let us consider an
example. Jim Erickson, Chief Project Manager of Mars Science Laboratory, states
that Curiosity is much more reprogrammable than previous missions. He even
called it a “software-defined spacecraft” [21]. The flexibility of the software of
Curiosity has sometimes been a problem, because it increases the complexity of the
mission. Let us cite Erickson’s statement: “The more complicated the software, the
more likely you’ll not get everything perfect. You’ll get surprises. Both in devel-
opment, test and in operations”. But this is a situation where flexibility will help,
allowing to redesign the way the rover works in response to a potentially
mission-ending hazard that was never anticipated.

A very important issue is that software testing even in theory cannot guarantee a
total absence of errors. Moreover, onboard software cannot be fully tested for all
possible situations related to the real-time mode of functioning and concurrency [3,
4]. This imperfection reduces the overall effectiveness of space missions.

The dominant trend in modern unmanned space missions is the increase of the
planned active lifetime (till 10–15 years) [4, 14]. It is known that onboard electronics
faces a growing number of faults caused by the long exposure to cosmic hard
radiation. In this case, an abnormal situation emerges, and normal spacecraft oper-
ations could be impossible. New kinds of abnormal situations can appear caused by
unpredictable flight history and history of failures. They cannot be considered at the
stage of designing a spacecraft. The changes in control logic related to these situ-
ations should be formulated and implemented at the operational stage.
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In summary, there is a need in the tools of prompt correction of spacecraft
control logic without the necessity of software re-development and upload. The
technologies of such re-engineering of space operations in real time entail issues
related to the necessity of a timely reaction to an abnormal situation, providing the
safety of a spacecraft, and returning a spacecraft to the operational mode without
direct access of human personnel [3, 4].

A much more flexible and promising approach than the implementation of
control logic in the source code of a program involves the use of some sort of
“intelligent software”. It can provide flexibility and reduction of labor and total
costs.

Intelligent computer software is a term related to a wide spectrum of applica-
tions. The known and well-developed approaches include genetic algorithms, fuzzy
logic, neural networks, knowledge bases, and reasoning systems [24–27]. The very
impressive results in real-time control, presented in public accessed papers, relate to
neural networks [28, 29]. But the use of neural networks requires the process of
network training. Training process involves the repeated input of patterns to the
network (in some cases hundreds or thousands patterns). Unfortunately, there is a
non-zero possibility that the network will never become trained enough.

If we consider the problem domain of space mission control, we should take into
account the following factors. This is a typical “mission critical” application, with
the commercial and/or military customers. In this case, a principle of
“trial-and-error” training is inappropriate. Errors at the stage of operation are not
permissible. In practice, only pre-flight training of a neural network can be con-
sidered. But in this case we still have the insufficient level of confidence because of
the lack of well-defined and documented procedure of decision making. This
problem is related to the “dispersion” of decision making rules in the network,
which leads to the impersonality in responsibility. However, the issue of personal
responsibility is of paramount importance in space missions.

Actually, the principles of neural network training do not fully correspond to the
problem domain because of the following circumstance. The number of patterns we
can use in the training process is limited. But the typical expected lifetime of a
modern spacecraft, as it was stated before, is 10–15 years. Thus, there is a non-zero
possibility of the emergence of an abnormal situation which was not used as a
pattern. In this case, a neural network can make a serious mistake [14, 30, 31].
Probably, this is a reason why, despite the fact that several companies, including AI
Solutions, Interface and Control Systems, and Allied Signal Technical Services,
started attempts to introduce intelligence into onboard software in the end of 1980s,
the manufacturers of spacecraft are skeptical about this idea.

Meanwhile, during designing and manufacturing of a spacecraft, a team of
specialists possesses a sum of certain knowledge about a spacecraft as a controlled
object. This theoretically gives an opportunity to formulate unambiguous rules for
the compensation of each abnormal situation. Thus, rule-based systems such as
knowledge bases and reasoning systems look more suitable than fuzzy logic, neural
network and genetic algorithms. A very interesting rule-based approach is
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“situational control”, which has been developed in the USSR since the end of 1960s
by D. Pospelov, Yu. Klykov, L.S. Zagadskaya, and others [32].

We can state that today the main efforts in the problem domain of intelligent
autonomous control of spacecraft should be aimed at the creation of tools allowing
knowledge acquisition. These tools must utilize the knowledge of spacecraft
designers and system engineers and represent it as well-defined rules, provide
means for checking a set of rules for completeness and consistency, allow onboard
execution of rules in real-time mode. We need a means that would allow the
refinement of onboard control rules during the flight. The specified problem is not
simple. Today, the information about rules is usually represented in verbal form.
These descriptions have a fragmentary nature, lack causation and structural rela-
tionships, and conditions for activation. Some fragments of the knowledge remain
in a specialist’s brain. Formalization, structurization and checking of these rules are
very urgent problems.

2 Framework

This work was performed under the contract with JSC Information Satellite Sys-
tems, Krasnoyarsk region, Russia. Consequently, one of the required features is that
the methods should support “seamless” incorporation into the customer’s existing
onboard software lifecycle processes. All data formats must be compatible with the
customer’s existing programming tools and databases.

To date, such advanced and flexible methodology of autonomous intelligent
con-trol has been already implemented at customer site. A special onboard real-time
interpreter of rules is used for autonomous integrated control of a spacecraft. The
interpreter is periodically started by the dispatcher of the onboard operating system
at fixed time intervals. The rules are incorporated in the so-called “DKD program”

(DKD is the acronym for “Duty Control and Diagnosis” in Russian) [33]. The main
functions of DKD autonomous control program are the detection of abnormal
situations and the execution of the corresponding set of actions needed to eliminate
a failure. Abnormal situations are associated with the patterns of spacecraft state
vectors. A state vector consists of elementary conditions reflecting the current
onboard situation. We can consider a “general” state vector combining the
parameters of all onboard systems (not used in practice), and particular vectors
checked at fixed time intervals (for example, a particular state vector can include
parameters important in the current spacecraft operation mode).

The presence of particular state vectors allows the implementation of a certain
kind of “reasoning”. It means that we go from one proposition (predicate, etc.) to
another. An additional important feature is that during the processing of one par-
ticular state vector we can “activate” checking of another one, if it is necessary.

The DKD program is organized as a set of rules. Each rule combines a state
vector and the required actions. Each recognizable abnormal situation is associated
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with the pattern of a particular state vector of a satellite. First, we should diagnose
the presence of a certain abnormal situation.

Let A = {ASq }, q = 1..S is a set of recognized Abnormal Situations.
Let L = {αi}, i = 1..M is a set of conditions reflecting current onboard situation.
For example, α101 can mean “main gyrodynes are in the operational mode”,

α254—“the second solar panel is not fully opened”, etc.
The full set of conditions forms a “general” satellite state vector. As it was stated

above, in practice a more effective way is to use a set SV of particular state vectors
(subsets of the general state vector).

Then SV → A will be a mapping between patterns of state vectors (in other
words, complex conditions like α101 ^¬α254 ^α120) and Abnormal Situations.

Secondly, a diagnostic program should execute the required set of actions
(sup-ported both by onboard equipment and software modules). Suppose F = K U
P = {fj}, j = 1..N is a set of actions, which can be executed onboard. F unites set
K of commands executed by onboard equipment and the set P of onboard programs.

Similarly, A → 2F will be a mapping between Abnormal Situations and the
powerset of Actions (a set of all possible subsets).

But this model is not fully adequate. More precisely, we often need not a single
action or just a straight step-by-step consequence of actions, but a “cyclogram”

(commonly used term in the aerospace domain), containing pairs (fj, tj) where tj is a
time of fj execution. In other words, a cyclogram represents coordinated synchro-
nized operations.

The specially designed domain-specific language (DSL) is currently used to
specify the rules. The language is specially designed to be easily understood by
non-programmers and differs significantly from C, Fortran or Java. The rule
building is an interactive process supported by a special “REAL” programming
system presented in Fig. 1.

Actually, a designer of the control logic fills up the fields of the tables in a
special database. The tables are logically connected to represent a structure of the
rules. There are a table of onboard parameters, a table of abnormal situations, and a
table of available onboard actions. The designer chooses a specific action to fill up
the table of “recommendations” associated with the specified abnormal situation.

First, all the parameters checked in the conditions contained in state vectors
should be specified, as well as the base of executing actions. Then the user forms a
particular state vector and associates a set of actions with it. Then the special
programming tool converts the database and rules into compact onboard structures.

The verification of rules is performed using a special testing complex. The main
part of this complex is the software for the simulation of functioning of all onboard
systems (both for normal modes and for predicted failures) and the physical
parameters of the flight of a spacecraft. This testing complex is also used for system
testing of all onboard software and for training of spacecraft personnel. The
checked rules are saved into the memory of the onboard control system during
spacecraft manufacturing. The most important feature is that these data can also be
transmitted onboard on a timely basis. Thus, it is possible to change the control
logic without the necessity of full re-development of the software. We can see that
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the onboard rule interpreter is a kind of real-time knowledge base. By the moment
of the launch of a spacecraft several hundred rules are usually specified. At the
operational stage, this number usually increases by 20–30 % [14]. The opportunity
of the specification and updating of rules by non-programmers makes intelligent
autonomous control programs the main and most effective tool for spacecraft “re-
mote repair” during its lifetime.

Onboard DKD interpreter supports real-time logical inference (reasoning) about
the required actions in forward direction—from the signature of an abnormal sit-
uation (the pattern of a particular state vector) to the conclusion about the truth-
fulness of the hypothesis. Activation of inference is performed in cycle with the
individual period for each particular vector, or from one the set of actions activated
by one state vector to another. The result of the interactive construction of the
autonomous control program is a set of tables printed in a dedicated program
document (see Fig. 2).

Despite the fact that the table form of information representation is understood
better than a plain text, it is not the best form ensuring clear and fast understanding.

Fig. 1 Screenshot of “REAL” Programming System
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3 Methods

3.1 Advantages of Visual Form of Information
Representation

The main idea of the proposed approach is to combine the flexibility of autonomous
satellite control, based on the use of the real-time onboard rule interpreter, and the
advantages of the visual form of representation.

There are many reasons for the choice of the visual form of representation of
information. Visual form provides simultaneous perception as opposed to textual
representation limited by the successive impression. The graphical form of repre-
sentation is applied to ensure the better reaction time and accuracy of operations of
railroad station dispatchers, atomic power station personnel, pilots (the head-up
indicator is a good example). The form of information representation is important
not only for human-computer interaction, but for human-human interaction, too. In
the area of knowledge representation, convenience and clearness for a human is of
prime importance. A real-time onboard knowledge base is an example of mission
critical systems where the cost of any error or inaccuracy is unacceptably high. The
set of rules should be complete, consistent and well structured. The used language
makes a “footprint” on the results of thinking. The language should contribute to
clear, correct and fast reasoning; the language can be considered as a tool for
knowledge [34, 35].

Fig. 2 Fragment of DKD Autonomous Control Program specified by existing DSL
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It is a well-known fact that one of the most serious problems of knowledge bases
is knowledge acquisition [15, 36–39]. Frequently, a specialist possessing the
knowledge is not a mathematician or IT professional. Consequently, he or she faces
the problem of the formal representation of the knowledge required by the computer
system. A knowledge engineer could help in such a situation, but we cannot fully
exclude the “broken phone” effect. There is misunderstanding between the partic-
ipants of the process. A number of approaches have been proposed for eliminating
this problem, for example, the use of a restricted subset of natural language [32, 35].
Another way is an interactive mode of introducing rules. An expert system provides
an opportunity to ask clarifying questions. But even in this case we cannot guar-
antee the absence of inaccuracies and errors. With regard to knowledge, it is rea-
sonable to pay attention to the graphical form of representation.

One can say that the human culture is visually oriented. When we want fast,
clear and unambiguous representation, we use graphical form—charts, diagrams,
drawing [34]. The best (or even the only) way of representing an enormous amount
of knowledge is visual communication. Time tables, bargraphs, maps, even pic-
torial icons figure prominently in our routine activities [40]. Additionally, the nature
of control programs (analysis of logical conditions → detection of the situa-
tion → actions) quite corresponds to the graphical form of representation (as
opposed to computational programs). Of course, considering the autonomous
control domain, we need a means to describe not just descriptive knowledge but
also procedural knowledge with “active nature” [15]. The graphics matches the
requirements of specification and design stages.

In practice, as a rule, the requirements to the logic of spacecraft functioning are
represented in the textual form (or, at best—using tables). Consequently, there are
some ambiguities and inconsistencies in the corresponding documents.

Thus, a visual notation and tools for the visual building of onboard real-time
knowledge base rules have been proposed.

3.2 Notation

There are a lot of studies devoted to the problem of visual knowledge representation
[41–46]. But the performed analysis has shown that any known approach should be
very seriously customized if we plan to use it within space missions [35].

The Visual languages for various purposes are being actively developed and
used in Russian Aerospace Industry. The examples known to author include Mars
Design Bureau, Moscow, Arsenal Design Bureau, Saint Petersburg, Progress
Rocket and Space Center, Samara. Unfortunately, the results are practically not
published because of many reasons (including security and other issues, see [47].
The very advanced methodology “GRAFIT-FLOKS” with the considering of fun-
damentals in Human understanding and impression issues was developed and
successfully used for years at Academician Pilyugin Center, Moscow [48]. The
Visual Notation presented in the paper, substantially based on Parondzhanov ideas.
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The notation is not the same, but in some aspects is similar to notation developed at
Academician Pilyugin Center. Visual language consists of the following elements:

• Graphical primitives and lines;
• Text labels located inside or outside of graphical primitives.

Actually, the visual notation is based on commonly-used standard flowcharts. The
actions are represented by rectangles; the primitives for logical conditions also are
intuitively recognizable. But the structure of the flowchart is optimized from the
prospective of ergonomics, clear and precise understanding by a human in accor-
dance with the ideas of Parondzhanov [34]. For example, line-crossing is strictly
prohibited. The control flow is directed only from top to bottom and from left to
right. Straight bottom line from the conditional primitive always corresponds to the
“true” branch. These features made the language more concise and thus more
intuitive and understandable in comparison with conventional flowcharts.

Some updates have been made in relation to the notation designed by Par-
ondzhanov. First, a flowchart represents one particular state vector (mapping 1:1).
A flow-chart consists of several vertical branches which are executed concurrently.
The branches correspond to abnormal situations (or it can be said that one branch is
one visual rule). Each branch contains exactly one logical condition (complex
condition, as a rule), and a set of executed actions. “False” parts are empty. Simple
actions are represented by “regular” rectangles. Actions corresponding to satellite
control commands with the complex internal structure have the code name dis-
played in dedicated field, and the comment in other field. Special “KT” block is
used to represent a fragment of a “cyclogram” where special fields for specifying of
the time of actions are added (the examples can be found in Fig. 3). Delays are

Fig. 3 Screenshot of the Rule’s visualization tool
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represented by the sequence of two rectangles: first marked as “ПAУЗA” (“Delay”
in Russian), and the following rectangle displays the time interval.

4 Practical Results, Discussion and Future Work

One of the causes of errors in mission critical software is the complexity of the
development process itself. Misunderstanding between onboard system specialists,
de-signers of the satellite control logic, programmers and testers leads to the bugs.
In fact, proposed method allows excluding programmers from the development
process. This makes it possible to eliminate one type of errors. In practice, we use
“programming without programmers” [49]. But other errors caused by the inac-
curacies and incompleteness of the rules still preserve and can influence the success
of a space mission. Visual verification method [50] is widely used for checking and
technical diagnostic of machines and equipment. The structure of the used rules can
be visually checked by all the participants of the space mission project. The method
of visual rule checking was successfully introduced at the customer site. The
developed tools allow:

• Visualization and analysis of previously designed Rules
• Visual building of newly introducing rules.

The screenshot of the Visualization tool is presented in Fig. 3.
As the logical dependencies are allowed between the rules (allowing

step-by-step ‘reasoning’), the special feature of the visualizer has been added. We
can see and check these dependencies in graphical form as well (see Fig. 4).

Fig. 4 The screenshot displays the graph of logical dependencies between the rules
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The DKD program is represented by the graph; the nodes correspond to rules (state
vectors), while the edges display the logical dependencies appearing when during
the implementation of one set of actions we find the action that assumes checking of
another particular state vector.

Since the designers of the satellite control logic took part in design and dis-
cussion of the notation of the visual domain specific language, they enjoy oppor-
tunities given by it.

The graphical construction tool supports the creation of an autonomous diag-
nosis program “from scratch”. Initially, the “blank pre-form” of a rule appeared.
The user needs to specify the parameters which should be checked in a particular
state vector. Then the user can introduce a new abnormal situation and a corre-
sponding set of actions in graphical manner.

As of today, the prototypes of visualization and graphical construction tools
have been successfully accepted by the customer. All the tests both at university site
and at customer site were executed using real “DKD” programs developed for real
satellites which are in use now.

These tools were implemented using C++ programming languages and
Graphviz library.

The method and the toolset were documented in accordance with strict industrial
level standards applicable to the development of real-time embedded software
including DO178B. The presented tools can be classified, by some attributes, as the
real-time knowledge base or procedural oriented expert system. Of course, a
fully-functional expert system requires additional features to be introduced. It is
necessary to support the hierarchy of the rules and introduce more automation into
the process of rules verification [14, 51–54].

The presented methods and prototypes of the visualization and graphical con-
struction tools are just first steps in the planned development. The scope of the
contract with the JSC Information Satellite Systems covers both the improvement of
the developed prototypes and the development of other tools. The planned
improvement includes visual language and visual tools for other kinds of autono-
mous control programs (not diagnostic). Another important aspect is to introduce a
feature which will support the detection of incompleteness in the rules of the DKD
diagnostic.

The following additional tools are under development now:

• Verification Tool for Satellite Autonomous Integrated Control Programs;
• Documentation Generation Tool providing an automated template-based gen-

eration and version control system with a guarantee of the strict correspondence
between versions of the program and documentation;

• Networked Integrated Development Environment providing unified access point
for designers of Satellite Autonomous Control Programs with saving of user
workspaces.

All tools together should form “SIPR MP” (Russian acronym for “System for
Intellectual Support for Design and Verification of Integrated Control Programs”).
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The “SIPR MP” is intended to be used as a complex software engineering toolset.
A special stage of the development of “SIPR MP” is dedicated to the collection of
notes and comments from users during the introduction of the system at the cus-
tomer’s site. The found errors should be removed, and the requested improvement
of methods and the software engineering toolset should be provided.

5 Conclusions

The paper presents a flexible approach to the fault tolerance control of satellites
based on an onboard knowledge base and a real-time interpreter of rules. The
architecture of the onboard knowledge base supports the possibility of changing the
rules from Earth on a timely basis over a radio channel. The domain specific visual
language was introduced for knowledge representation. The visual rule builder
provides a clear, user-friendly and unambiguous notation, developed by the
designers of the satellite control logic. The process of satellite control is simplified
by excluding the necessity of coding the control logic in programming languages
and the associated long-term and labor-consuming multi-stage redevelopment cycle
of the software. The prototypes of the developed tools were successfully accepted
by the customer—JSC Information Satellite Systems, Krasnoyarsk region, Russia
(the manufacturer of two-thirds of Russian spacecraft). In future, it is planned to
implement additional tools including a verification tool, an automated documen-
tation generation tool, and integrated development environment.
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