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Abstract The paper presents an advanced method of recognition of patient’s inten-

tion to move of multijoint hand prosthesis during the grasping of objects. In the con-

sidered decision problem we assume that each prosthesis operation can be divided

into sequence of elementary actions and the patient’s intention means his will to per-

form a specific elementary action. A characteristic feature of the explored sequential

decision problem is the dependence between its phases at particular instants which

should be taken into account in the recognition algorithm. The proposed classifica-

tion method is based on multiclassifier (MC) system working in sequential fashion,

dedicated to EMG and MMG biosignals and with dynamic combining mechanism

using the Bayes scheme and Markov model of dependences. The performance of

proposed MC system with 3 different types of base classifiers was experimentally

compared against 3 sequential classifiers for 1—and 2-instant backward dependence

using real data concerning the recognition of six types of grasping movements. The

results obtained indicate that use of MC system dedicated to the sequential scheme

of recognition process, essentially improves performance of patient’s intent classifi-

cation and that this improvement depends on the type of base classifiers and order

of dependence.

Keywords Bioprosthesis ⋅ EMG signal ⋅ MMG signal ⋅ Multiclassifier system ⋅
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1 Introduction

The importance of hands in human life cannot be estimated. The loss of even a sin-

gle hand significantly reduces the human activity. The people who have lost their

hands are doomed to permanent care. Restoring to these people even a hand sub-
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stitute makes their life less onerous. The hand transplantations are still in a medical

experiment, mainly due to the necessity of immunosuppression [17]. An alternative

is to equip these people with cybernetics prostheses.

The activity of human organism is reflected in characteristic biosignals, which

can be measured and next can be applied to the control of the work of technical

devices. Electrical potentials accompanying skeleton muscles (called EMG signals)

are an example of such biosignals. Through the tensing of these muscles, the dis-

abled person may express his/her intentions as to the workings of the prosthesis [1,

2, 5, 15, 18, 22]. Nevertheless, reliable recognition of intended movement using

only the EMG signals analysis is a hard problem hence any attempt to obtain better

classification methods and algorithms is fully justified.

According to the author’s recent experience [11, 13, 18, 19], increasing the effi-

ciency of the recognition stage may be achieved through the following activities:

1. by introducing the concept of simultaneous analysis of two different types of

biosignals, which are the carrier of information about the performed hand

movement—the EMG and mechanomiographic (MMG) signals;

2. by using sequential classification scheme which is based on decomposition of

hand movement on a sequence of elementary actions with Markov model;

3. through the use of multiclassifier system with base classifiers dedicated to the

particular steps of sequential recognition procedure.

The bioprosthesis control system developed in this study includes the above men-

tioned ideas within a common concept in contrast to the earlier author’s works where

above suggestions were considered separately. Taking into account above ideas, the

paper aims to solve the problem of recognition of the patient’s intention to move the

multiarticulated prosthetic hand during grasping and manipulating objects in a skill-

ful manner, by measuring and analyzing multimodal signals coming from patient’s

body. The adopted solution takes into consideration the advantages given by the

fusion of the EMG and MMG signals in the original sequential MC system based on

the Bayes paradigm and Markov model of dependences among elementary actions.

In the proposed MC system new method of dynamic fusion of base classifiers

is developed. The method is dedicated to the sequential recognition scheme with

probabilistic model. This specificity of the MC system is visible through the pool

of base classifiers which are associated with the particular stages of classification

process and the trainable mechanism of fusion based on probabilistic properties of

base classifiers.

The paper arrangement is as follows. Chapter 2 includes the concept of prosthe-

sis control system based on the recognition of patient’s intention in the sequential

scheme and provides an insight into steps of the whole decision control procedure.

Chapter 3 presents the key sequential recognition algorithm based on the multiclas-

sifier system with Markov model of trainable combining algorithm. The experiments

conducted and the results with discussion are presented in Chap. 4. The paper is con-

cluded in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-39627-9_2
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2 Bioprosthetic Hand Control System

As mentioned above, the bioprosthesis control is performed by recognizing its

intended movement on the base of classification of EMG and MMG signals from

user arm stump. This requires the development of three stages: (1) acquisition of

signals; (2) reduction of dimensionality of their representation; (3) classification of

biosignals (recognition of patient’s intention).

Biosignal acquisition and analysis processes influence essentially on the reliabil-

ity of recognition of prosthesis motion control decisions. The acquisition process

should take into account the nature of the measured signals and their measurement

conditions [3]. For the needs of experimental research presented in Chap. 4 the spe-

cial EMG/MMG biosignals measuring system was constructed. The system fully

meets the above requirement, mainly due to the use of differential amplifiers, which

eliminate interferences in EMG signals and special casing, which isolate the micro-

phone from the external sound sources for MMG signals [14].

After the acquisition stage, the recorded signals have the form of strings of dis-

crete samples. Their size is the product of measurement time and sampling frequency.

For a typical motion action, that gives a record of size between 5 and 7 thousand

of samples per channel (time of the order of 5–7 s, and 1 kHz sampling). This pri-

mary representation of the signals hinders the effective classification and requires the

reduction of dimensionality. This reduction leads to a representation in the form of

a signal feature vector. In this study, the sequence of autoregressive (AR) model and

principal component analysis (PCA) is proposed as a feature extraction and reduc-

tion methods, respectively. Former experimental research showed, that both AR and

PCA algorithms are effective methods in respect of the recognition error and the

calculation costs in the biosignal analysis [7, 11].

In the considered control concept we assume that each prosthesis operation con-

sists of specific sequence of elementary actions, and the patient’s intention means

his will to perform a specific elementary action [18]. Thus, prosthesis control is a

discrete process where at the nth stage (n = 1, 2,… ,N) occurs successively:

1. the measurement of EMG and MMG signal parameters (results of AR and PC

analysis) xn (xn ∈  ⊆ 
d
), that represents patient’s will jn (jn ∈  =

{1, 2,… ,M}) (the intention to take a particular action);

2. the recognition of this intention (the result of recognition at the nth stage will be

denoted by in ∈ );

3. the realization of an elementary action an ∈ , uniquely defined as a recog-

nized intention. This means that there is M number of elementary actions  =
{a(1), a(2),… , a(M)}—an exemplary meaning of elementary actions in relation to

a dexterous hand prosthesis is defined in Sect. 4.

The assumed character of control decisions (performing an elementary action)

means that the task of bioprosthesis control is reduced to the recognition of the

patient’s intent in successive stages on the basis of the available measurement infor-

mation. Since the patient’s current intention depends on history, the specificity of

the investigated classification task reveals in the form of input data, which are not

http://dx.doi.org/10.1007/978-3-319-39627-9_4
http://dx.doi.org/10.1007/978-3-319-39627-9_4
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associated only with the direct EMG and MMG signals parameters that manifest the

current intention, but comprise up to an extend the historic information that regards

the preceding course of control process. In the general case, we suppose that the

decision algorithm at the nth instant takes into account the K-instant-backwards-

dependence (K < n). It means, that decision at the nth instant is made on the base of

vector of features

x̄(K)n = (xn−K , xn−K+1,… , xn−1, xn). (1)

In consequence, the classification algorithm at the nth instant is of the following

form:

Ψn(x̄(K)n ) = in, in ∈ . (2)

Figure 1 shows the block diagram for the complete dynamic process of bio-

prosthesis control in the explored sequential decision problem. In this study, mul-

ticlassifier systems will be applied as classifiers (2) for the particular instances of

sequential recognition. In the proposed MC systems, both the pool of base classi-

fiers and the combining mechanism will be constructed using the supervised learn-

ing procedure, what leads to the assumption that a learning set  and a validation

set  are available [8]. In the considered sequential decision problem, the learning

set  consists of m training sequences:

 = {1,2,… ,m}, (3)

where a single sequence

k = ((x1,k, j1,k), (x2,k, j2,k),… , (xN,k, jN,k)) (4)

denotes a single-patient sequence of prosthesis activity that comprises N EMG and

MMG signals observation instants, and the patient’s intentions.

Fig. 1 System of bioprosthesis control via sequential recognition of patient’s intentions
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Similarly, the validation set V consists of r validation sequences  = {1,

2,… ,r} and a single sequence k has the same form as in (4). The next section,

describes the procedure of determining the original MC systems (2) using learning

set  and validation set  , in detail.

3 Multiclassifier System

3.1 Preliminaries

The proposed multiclassifier system is built as a combination of the two following

probabilistic paradigms:

MarkovModel. We will treat the sequential recognition task as a discrete dynamical

process, in which the patient’s intents in successive stages j1, j2,… , jN are observed

values of sequence of random variables J1, J2,… , JN modeled by first-order Markov

chain. The probabilistic formalism for such a dependence is given by the initial prob-

abilities

pj1 = P(J1 = j1) (5)

and by the transition probabilities

pjn,jn−1 = P(Jn = jn|Jn−1 = jn−1). (6)

Meta Bayes Classifier. In the concept of Meta Bayes Classifier (MBC), which origi-

nally was introduced in [12] we suppose that a base classifier 𝜓 is given, which maps

feature space into a set of class numbers, viz.

𝜓 ∶  ⟶ . (7)

The MBC𝜓

MBC
constitutes the specific probabilistic generalization of base classifier

(7) which has the form of the Bayes scheme built over the classifier 𝜓 . This means,

that𝜓
MBC

takes the decision according to the maximum a posteriori probability rule:

𝜓

MBC(𝜓(x) = k) = i ⟷ P(i|𝜓 = k) = max
l∈

P(l|𝜓 = k). (8)

3.2 Fusion of Base Classifiers

Suppose first, that we have the set of N trained base classifiers:

𝜓1(x1), 𝜓2(x2),… , 𝜓N(xN), (9)

which classify the patient’s intents at the 1st, 2nd, . . . , Nth instant, respectively.
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The MC system (2) for nth instant is defined as the MBC classifier (8) constructed

over the set of base classifiers (9) for nth, (n − 1)th, . . . , (n − K)th instants, namely:

Ψn(x̄(K)n ) = 𝜓

MBC(𝜓n−K(xn−K) = i′n−K ,… , 𝜓n−1(xn−1) = i′n−1, 𝜓n(xn) = i′n). (10)

The MC system (10) produces the decision about the patient’s intent at the nth instant

according to the generalized rule (8):

Ψn(x̄(K)n ) = in ⟷ P(in|𝜓n−K(xn−K) = i′n−K ,… , 𝜓n(xn) = i′n) =

= max
l∈

P(l|𝜓n−K(xn−K) = i′n−K ,… , 𝜓n(xn) = i′n), (11)

where:

P(in|𝜓n−K = i′n−K ,… , 𝜓n = i′n) =
P(in, 𝜓n−K = i′N−k,… , 𝜓n = i′n)
P(𝜓n−K = i′N−k,… , 𝜓n = i′n)

. (12)

Since denominator in (12) has no influence on the classification result of algorithm

(11), classifying function of (11) reduces to the nominator, which—assuming that

base classifiers (9) are conditionally independent—after simple calculations has the

following form:

P(in, 𝜓n−K = i′n−K ,… , 𝜓n = i′n) = P(𝜓n = i′n|in)×

×
∑

jn−1

P(𝜓n−1 = i′n−1|jn−1)pinjn−1 ×⋯ ×
∑

jn−K

P(𝜓n−K = i′n−K|jn−K)p(jn−K). (13)

The key element in the algorithm (13) presented above is the calculation of prob-

abilities P(𝜓n = in|jn), i.e. class-dependent probabilities of correct classification and

misclassification for base classifiers (9).

The proposed method of evaluation of these probabilities is based on the original

concept of a hypothetical classifier called Randomized Reference Classifier (RRC)

[20]. The RRC is a stochastic classifier defined by a probability distribution which

is chosen in such a way, that RRC acts, on average, as an modeled base classifier.

It means, that RRC can be considered equivalent to the modeled base classifier, and

therefore it is justified to use the class-dependent probabilities of correct classifica-

tion (misclassification) of RRC as appropriate probabilities for the evaluated base

classifier. In the computational procedure, first these probabilities are calculated for

validation points and then they are generalized on the whole feature space. Details of

the method can be found in [20]. Similarly, initial (5) and transition (6) probabilities

in (13) are estimated using validation set  .
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4 Experiments

4.1 Experimental Setup

Performance of the MC system developed was evaluated in experiments using real

data. The experiments were conducted in the Matlab environment using PRTools 4.1

and Signal Processing Toolbox.

In the control process the grasping of 6 types of objects (a pen, a credit card

(standing in a container), a computer mouse, a cell phone (laying on the table), a

kettle and a tube (standing on the table)) were considered. Our choice is deliber-

ate one and results from the fact that the control functions of simple bioprosthesis

are hand closing/opening and wrist pronation/supination, however for the dexterous

hand these functions differ depending on grasped object [2].

In the considered examples, seven steps (elementary actions) can be distinguished

in the process of grasping with a hand [18]: a0—rest position; a1—grasp prepara-

tion; a2—grasp closing; a3—grabbing; a4—maintaining the grasp; a5—releasing the

grasp; a6—transition to the rest position.

The experiments were carried out on healthy persons. Biosignals were registered

using 8 integrated sensors (containing EMG electrode and MMG microphone in

one casing) located on a forearm (vide Fig. 2). EMG and MMG signals were regis-

tered in specially designed 16-channel biosignals measuring circuit with sampling

frequency 1 kHz. On the base of anatomical analysis of forearm muscles [1], for fur-

(a) (b)

Fig. 2 The layout of the integrated sensors (EMG electrodes and MMG microphones) on the

underside a and top side b of the forearm. Examples of EMG and MMG signals from the

channel 2
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ther processing the following channels (sensors) were selected: channel 1, channel

2, channel 3, channel 5 and channel 8.

The dataset set used to test of proposed classification method consisted of 2940

measurements, i.e. pairs EMG and MMG signals and segment/movement class form-

ing 420 sequences (4). Each sequence lasted 6 s and was preceded with a 10 s break.

The coefficients of AR function for different order of AR model (p = 20, 30, 50, 80
per signal and per channel) were considered as primary feature vector. Next, primary

features were subjected to the PCA feature extraction procedure with the number of

PC’s determined by the 95 % of the total variation rule.

The training and testing sets were extracted from each dataset using two-fold

cross-validation. For combining the MC system, a two-fold stacked generalization

method [21] was used. In this way, the class-dependent probabilities of correct clas-

sification/misclassification for base classifiers and initial/transition probabilities of

Markov chain are calculated for all objects in the original training set, but the data

used for the calculation are unseen during the classifier training.

The experiments were conducted using three different recognition algorithms as

base classifiers (4): (LC) Linear classifier based on normal distribution with the same

covariance matrix for each class; (k-NN) k-nearest neighbors classifier (k after trials

was set to 3); (ANN) feed-forward back-propagation neural network with 1 hidden

layer.

The performace of the proposed MC system for K = 1 (MCS-1) and K = 2
(MCS-2) in the sequential scheme was compared against the following six sequential

classifiers:

∙ the probabilistic algorithm based on the first (second) order Markov dependence

(Markov-1, Markov-2) [10];

∙ the fuzzy algorithm based on the Mamdani inference scheme with 1- (2-)instant-

backward-dependence (Mamdani-1, Mamdani-2) [18];

∙ the fuzzy algorithm based on the fuzzy relation with 1- (2-)instant-backward-

dependence (FRealtion-1, FRelation-2) [9].

4.2 Results and Discussion

Classification accuracies (i.e. the percentage of correctly classified objects) for meth-

ods tested are listed in Table 1. The accuracies are average values obtained over 10

runs (5 replications of two-fold cross validation). Statistical differences between the

performances of the MC systems and the six sequential classification methods were

evaluated using 5 × 2 cv F test [4]. The level of p < 0.05 was considered statistically

significant. In Table 1, statistically significant differences are given under the classifi-

cation accuracies as indices of the method evaluated, e.g. for the dataset with p = 20,

MCS-1(LC) system produced statistically better classification accuracies from the

Mamdani-1, FRelation-1 and FRelation-2 methods.
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Table 1 Classification accuracies of classifiers compared in the experiment

The order of AR model/mean accuracy (%)

No Classifier p = 20 p = 30 p = 50 p = 80 Mean

1 MCS-1(LC) 89.1 89.7 92.5 93.4 91.2

9, 11, 12 11, 12 9, 11, 12 9, 11, 12

2 MCS-1(3NN) 89.7 90.8 92.9 93.7 91.8

9, 10, 11, 12 9, 10, 11, 12 9, 11, 12 9, 11, 12

3 MCS-1(ANN) 92.1 92.7 94.8 95.2 93.7

9, 10, 11, 12 9,10,11,12 9, 10, 11, 12 7, 9, 10, 11, 12

4 MCS-2(LC) 90.7 91.5 93.0 93.9 92.3

9, 10, 11, 12 9,10,11,12 9, 11, 12 9, 11, 12

5 MCS-2(3NN) 91.3 92.1 93.2 94.6 92.8

9, 10, 11, 12 9, 10, 11, 12 9, 11, 12 9, 10, 11, 12

6 MCS-2(ANN) 92.5 92.8 94.9 95.8 94.0

9, 10, 11, 12 9, 10, 11, 12 9, 10, 11, 12 9, 10, 11, 12

7 Markov-1 90.8 92.6 93.5 94.2 92.8

8 Markov-2 91.6 93.2 94.1 94.8 93.4

9 Mamdani-1 85.9 87.3 89.4 90.2 88.2

10 Mamdani-2 87.1 88.8 90.6 91.1 89.4

11 FRelation-1 78.8 80.3 81.6 82.8 80.9

12 FRelation-2 79.7 80.9 82.6 83.6 81.7

The best score for each dataset is highlighted (p denotes the order of AR model)

These results imply the following conclusions: (1) The MC systems produced sta-

tistically significant higher scores in 87 out of 144 cases (4 datasets × 6 classifiers

compared × 6 MCS’s); (2) The MCS-2 system with ANN base classifiers achieved

the highest overall classification accuracy averaged over all datasets it outperformed

the Markov-1, Markov-2, Mamdani-1, Mamdani-2, FRelation-1, FRelation-2 sys-

tems by 1.2, 0.6, 5.8, 4.6, 13.1, 12.3 %, respectively. This results confirm the effec-

tiveness of the use the multiclassifier system in the recognition of patient’s intent; (3)

There occurs a common effect within each classifier (MC system) type: 1-instant-

backwards-dependence is always worse than 2-instant-backwards-dependence. This

confirms the effectiveness of the decomposition of decision procedure into sequence

of simpler classification tasks; (4) When the order of AR model increases then the

accuracy of all methods investigated also increases.

5 Conclusion

The classic methods of analysis of biosignals in the bioprostheses control systems

are widely discussed in the literature [6, 7, 12, 16]. However, the classification stage

still poses a challenge for researching new solutions enabling the reliable recognition
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of human intention. In this study a novel method for recognition of sequence of

elementary actions of grasping movements is proposed. The method, combining the

meta-Bayes concept and Markov model into multiclassifier system and taking into

account theK-instant-backwards-dependence among elementary actions, brings new

possibilities to biosignal analysis. Results obtained in experimental investigations

imply that it is worth trying solution that improves recognition efficiency.

The introduced approach constitutes the general concept of the human-machine

interface, that can be applied for the control of a dexterous hand and an agile wheel-

chair as well as other types of prostheses, exoskeletons, etc. This, however, requires

a further study, mainly in the experimental phase, which would allow to assess and

verify the effectiveness of the adopted concept.
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