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Abstract. Making effective problem selection decisions is a challenging
Self-Regulated Learning skill. Students need to learn effective problem-selection
strategies but also develop the motivation to use them. A mastery-approach
orientation is generally associated with positive problem selection behaviors
such as willingness to work on new materials. We conducted a classroom
experiment with 200 6th – 8th graders to investigate the effectiveness of shared
control over problem selection with mastery-oriented features (i.e., features that
aim at fostering a mastery-approach orientation that simulates effective
problem-selection behaviors) on students’ domain-level learning outcomes,
problem-selection skills, enjoyment, future learning and future problem selec-
tion. The results show that shared control over problem selection accompanied
by mastery-oriented features leads to significantly better learning outcomes, as
compared to fully system-controlled problem selection, as well as better
declarative knowledge of a key problem-selection strategy. Nevertheless, there
was no effect on future problem selection and future learning. Our experiment
contributes to prior literature by demonstrating that with tutor features to foster a
mastery-approach orientation, shared control over problem selection can lead to
significantly better learning outcomes than full system control.
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1 Introduction

Intelligent Tutoring Systems often are strongly system-controlled learning environ-
ments that adaptively select problems for students based on their knowledge level [13].
Recently, some ITSs have started to grant students control to select their own learning
tasks to elicit higher motivation, which in turn may lead to better learning outcomes [6].
However, prior research has found that students are not good at making effective
problem selection decisions [9]. Fully student-controlled problem-selection was found
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to lead to worse learning outcomes than system-selected problems [2]. Hence some
ITSs created shared student/system control over problem selection (e.g., letting the
system pick problem types while the students select a specific problem from that type)
to prevent students from making suboptimal decisions and achieved comparable
learning outcomes to those achieved with full system control [6]. It is still an open
question how ITSs can be designed to foster better learning outcomes and higher
motivation with shared control over problem selection, as compared to full system
control. In addition, theories of SRL emphasize the important role of motivation in
promoting desirable SRL behaviors [15]. Yet little work with ITSs has adopted a
motivational design (i.e., design to foster motivations) approach to foster appropriate
motivations that will stimulate effective problem-selection behaviors. Most of the
interventions that support SRL processes in ITSs use cognitive and metacognitive
tools, such as prompts and feedback [3, 11]. Furthermore, few of these studies have
measured the lasting effects of the interventions when they are not in effect [1].

We tackle these open questions by applying motivational design to extend an ITS
for equation solving, Lynnette, to help students learn an effective problem-selection
rule, i.e., the Mastery Rule, while fostering a mastery-approach orientation [8]. The
Mastery Rule specifies that students should stop practicing a problem type once it is
fully mastered. An ITS that implements this rule (in a system-controlled manner) led to
better learning outcomes than a fixed curriculum [5]. Our prior classroom studies and
interviews with students revealed that the lack of a mastery-approach orientation might
be a main challenge that keeps students from applying the Mastery Rule when they can
select problems for themselves [8]. A mastery-approach orientation is a type of
achievement goal that is associated with positive learning behaviors such as perse-
verance and willingness to learn new materials [14]. It aligns with the desirable
problem selection behaviors based on the Mastery Rule. It is likely, but unproven that
students with a mastery-approach orientation will apply the Mastery Rule to select
problems and achieve better learning outcomes in the tutor, as compared to full system
control. We therefore added features to foster a mastery-approach orientation. We refer
to these features as the mastery-oriented features.

The current paper describes our classroom experiment that investigated two
research questions: Research Question 1: Compared to full system control over
problem selection, does shared control, supported by mastery-oriented features enhance
students’ (a) problem-selection decisions in the tutor; (b) domain-level learning out-
comes; (c) enjoyment and (d) knowledge of the Mastery Rule? Research Question 2:
Do the mastery-oriented features enhance students’ (a) future problem-selection deci-
sions and (b) future domain-level learning outcomes in an environment with shared
control but without mastery-oriented features, as compared to full system control?

2 Methods

2.1 Experimental Design

The Learning Phase Versus the Future Learning Phase. The classroom experiment
used a two-phase design, with a Learning Phase and a Future Learning Phase, so that
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we could investigate both immediate effects of mastery-oriented shared control
(Research Question (1) and effects on future learning without the mastery-oriented
features (Research Question (2). We created three variations of Lynnette for different
conditions in the two phases, Lynnette-System, Lynnette-Shared and Lynnette-Shared-
Mastery-Oriented. Lynnette-System implements full system control over problem
selection through Bayesian Knowledge Tracing (BKT) and Cognitive Mastery [5], as
in standard ITS. Both Lynnette-Shared and Lynnette-Shared-Mastery-Oriented imple-
ment shared control over problem selection. As shown in Fig. 1, students are free to
select any level they want to practice and decide how much practice they want for each
level. Once the student selects a level, the tutor assigns a specific problem from the
chosen level. Students are able to select problems even after they have fully mastered
that level in these two versions (as calculated by the tutor’s BKT and displayed by the
mastery bars for each level). Only Lynnette-Shared-Mastery-Oriented has the
mastery-oriented features that we describe below. All three Lynnette versions have the
element badges and mastery bars for each level (as seen in Fig. 1).

The experiment started with two conditions in the Learning Phase, and only Levels
1 to 6 were unlocked in this phase. As shown in Table 1, the “Mastery Shared”
condition used Lynnette-Shared-Mastery-Oriented, while the “Standard Tutor” used
Lynnette-System. By comparing these two conditions, we can address Research
Question 1, i.e., whether the mastery-oriented shared control leads to better
problem-selection, learning and enjoyment as compared to full system control. In the
Future Learning Phase, Levels 7 to 9 were also unlocked and the two conditions were
split into four. Half of the participants from the “Mastery Shared” condition were
assigned to use “Lynnette-Shared” and half use “Lynnette-System”. Similarly, half of
the “Standard Tutor” condition switched to “Lynnette-Shared” and half continued using
“Lynnette-System”. The four conditions in the second phase allowed us to investigate
Research Question 2, i.e., the effects of the mastery-oriented features on students’
problem selection and learning outcomes when they are removed in new tutor units
with shared control, compared to full system control.

Fig. 1. Problem selection screen in Lynnette-Shared-Mastery-Oriented in the learning phase
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Mastery Oriented Features in Lynnette. There are four mastery-oriented features in
Lynnette-Shared-Mastery-Oriented that aim at helping students learn the Mastery Rule
and foster a mastery-approach orientation [8]: (1) Tutorial: A tutorial is shown when
students log in to the tutor for the first time. It introduces the concept of Mastery, the
mastery bars, and how to apply the Mastery Rule to select problems. (2) Achievements
and Stars: Two types of Achievements are implemented in the tutor to reward stu-
dents’ good problem selection decisions and perseverance with practicing new prob-
lems, as shown on the right panel of the screen in Fig. 1. Students earn the
Achievements when they select or complete 6 problems in a row. In addition, the
student earns a star each time s/he selects an unmastered problem. (3) Instant Feed-
back Messages on Problem Selection Decisions: Each time the student selects a
problem, either a positive message (e.g., “Good problem selection decision! Water is
still unmastered, so you can learn new skill from it. Don’t be discouraged if you feel it
is difficult. It is ok to make errors when you are learning!”) or a negative message (e.g.,
“You’ve picked Earth but it is already mastered. Your equation solving skill will not
grow if you repeat material you’ve already mastered.”) will pop up and provide
feedback on her/his choice. The language used in the messages emphasizes a
mastery-approach orientation. (4) Problem Selection Recap: The problem selection
recap screen (as shown in Fig. 2) is shown to the students after every 5th problem, in
order to help students review and reflect on their recent problem selection decisions.
The specific problem levels the student has selected are displayed with corresponding
mastery bars showing the percentages of mastery at the time the student selected each
level. The student also receives instant feedback on whether s/he has correctly clicked
the unmastered levels. The names of the problem levels turn green or red when the
student clicks. Green flags a correct click.

2.2 Procedure, Measurements and Participants

The experiment included 294 students from 5 local middle schools. The participants
came from 16 classes, taught by 8 different teachers. Among the 16 classes, 4 were
advanced 6th grade classes, 9 were mainstream 7th grade classes, and 3 were main-
stream 8th grade classes. The participants were randomly assigned to one of the four

Table 1. Conditions of the learning phase and the future learning phase

Learning Phase Future Learning Phase
Conditions Lynnette Version Conditions Lynnette Version

Mastery Shared Lynnette-Shared-
Mastery-Oriented

Mastery to Shared Lynnette-Shared

Mastery to Standard Lynnette-System

Standard Tutor Lynnette-System Standard to Shared Lynnette-Shared

Standard to Standard Lynnette-System
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conditions within each class before the experiment. All conditions followed the same
procedure, summarized in Table 2, consisting of a Learning Phase and a Future
Learning Phase. Three paper tests were given to measure different constructs before
and after each phase of learning. Each equation on the three tests was graded from 0 to
1, with partial credit given where appropriate. The pre-test only had items from Levels
1 to 6. The mid-test and post-test had items that measure equation solving abilities for
all 9 levels. The enjoyment questionnaire was adapted from the Enjoyment subscale of
the Intrinsic Motivation Inventory (IMI). There were three check-box items on the
mid-test to measure the students’ declarative knowledge of applying the Mastery Rule.
The first item tested the students’ understanding of the concept of mastery. The second
item described a scenario and tested whether the students would keep selecting problem
levels that have been mastered. The third item also was scenario-based, and it tested
whether the students were willing to challenge themselves with new problem types to
learn new skills.

3 Results

200 students completed the pre-test and mid-test, and were present in all four class
periods or mastered the first six levels during the Learning Phase. We refer to these 200
students as the Learning-Phase-Sample. 165 students completed the pre-test, mid-test
and post-test. They were present during all 6 class periods (both the Learning and
Future Learning Phases) or mastered all 9 levels. These students constitute the
Future-Learning-Phase-Sample. We report Cohen’s d for effect sizes. An effect size
d of .20 is typically deemed a small effect, .50 a medium effect, and .80 a large effect.
For all ANCOVAs, Teacher was used as a co-variate to account for the variances that
reside within different teachers’ classes.

3.1 The Learning Phase: Research Questions 1.a – 1.d

We first analyzed data from the Learning Phase, to answer Research Questions 1.a-1.d.
The Learning-Phase-Sample was used for all analyses.

Fig. 2. The problem selection recap screen in Lynnette-Shared-Mastery-Oriented
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Problem Selection Decisions (RQ 1.a). To test the hypothesis that mastery-oriented
features will help foster more consistent application of the Mastery Rule, we looked at
the percentage of mastered problems the students selected in the “Mastery Shared”
condition during the Learning Phase (under perfect application of the Mastery Rule, the
students should not select any mastered problems). Twenty out of 102 students
(19.61 %) in the “Mastery Shared” condition selected at least one mastered problem
during the Learning Phase. On average 1.4 % of the problems (SD = 3.8 %) selected
by each student in the condition were mastered problems, indicating good application
of the Mastery Rule when the mastery-oriented features were present.

Learning Outcomes (RQ 1.b). To test the hypothesis that mastery-oriented shared
control over problem selection will lead to greater learning gains than full system
control, we compared the two conditions’ test performance on equation solving. As
shown in Table 3, both conditions scored close to ceiling on the pre-test. An ANCOVA
using the learning gain (Mid-Test-Equations1 minus Pre-Test) as the dependent vari-
able revealed that the main effect of condition is significant (F (1, 192) = 4.486,
p = .035, d = .30). In other words, The “Mastery Shared” condition learned signifi-
cantly more during the Learning Phase than the “Standard Tutor” condition. However,
given the ceiling effect, the students did not improve significantly from pre-test to
mid-test on solving the equations.

Given the ceiling effect on the pre-test, we split the sample based on the median of
the pre-test score (median = .83) into two sub-groups: the Lower-Performing Group
and the Higher-Performing Group. The Lower-Performing Group had 102 students
(mean pre-test = 0.67, SD = 0.18), and the Higher-Performing Group had 98 students
(mean pre-test = 0.98, SD = 0.05). ANCOVAs revealed that overall the two conditions
improved significantly from pre-test to mid-test on Equations1 within the Lower
Performing Group (F (1, 94) = 13.451, p < .000, d = .76). The condition effect was
marginally significant (F (1, 94) = 3.490, p = .065, d = .37), with the “Mastery
Shared” condition improving more than the “Standard Tutor” condition. On the other
hand, there was a significant decrement of the two conditions’ performance from the
pre-test to mid-test within the Higher-Performing Group (F (1, 90) = 25.704, p < .000,

Table 2. Overview of the procedure and measurements of the experiment

Pre-test Learning
phase

mid-test Future
learning
phase

Post-test

• 6 items on equation
solving abilities of
levels 1–6

• 4 41-min
class
periods

• Learning
the first 6
levels

• Mid-Test-Equations1: 6
items on levels 1–6

• Mid-Test-Equations2: 3
items on levels 7–9
• 7 7-point Likert scale items on
enjoyment of using the system
• 3 items on declarative
knowledge of applying the
Mastery Rule

• 2 41-min
class
periods

• All 9 levels
were
unlocked

• Post-Test-Equations1: 6
items on levels 1–6

• Post-Test-Equations2: 3
items on levels 7–9
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d = 1.07), probably representing regression to the mean. No significant condition effect
was found for the learning gains within the Higher-Performing Group.

Enjoyment (RQ 1.c). To test the hypothesis that mastery-oriented shared control over
problem selection will lead to higher enjoyment of using the tutor than full system
control, we compared students’ enjoyment ratings on the mid-test. The “Mastery
Shared” condition reported higher enjoyment (mean = 4.63, SD = 1.59) than the
“Standard Tutor” (mean = 4.52, SD = 1.36). However, an ANCOVA test found the
difference was not statistically significant (F (1, 192) = .450, p = .530, d = .09).

Declarative Knowledge (RQ 1.d). To test the hypothesis that the mastery-oriented
features with shared control will lead to better knowledge of the Mastery Rule, com-
pared to full system control, we analyzed the students’ responses to the three items on
the mid-test. There were 12 options for all three items. The students were instructed to
check all options that apply. We coded the students’ responses to each option as 0 or 1.
On average those in the “Mastery Shared” condition (mean = 0.76, SD = 0.15) scored
significantly higher (F (1, 184) = 8.263, p = .005, d = .59) than those in the “Standard
Tutor” condition (mean = 0.69, SD = 0.17). The “Mastery Shared” condition showed
significantly better declarative knowledge of the Mastery Rule on the mid-test after the
Learning Phase.

3.2 The Future Learning Phase: Research Questions 2.a and 2.B

We performed analyses on students’ problem selection decisions and equation solving
performance. The Future-Learning-Phase-Sample was used for all analyses.

Problem Selection Decisions (RQ 2.a). We tested the hypothesis that the students
exposed to the mastery-oriented shared control over problem selection in the Learning
Phase will transfer and apply the Mastery Rule during the Future Learning Phase with
the shared control. Specifically, we compared students’ problem-selection decisions
between the “Mastery to Shared” condition and the “Standard to Shared” condition. In
the “Mastery to Shared” condition, 15 out of 49 students (30.61 %) selected at least one
mastered problem during the Future Learning Phase, whereas in the “Standard to
Shared” condition, 7 out of 35 (20 %) students selected at least one mastered problem.
Moreover, on average 2.7 % of the problems selected by the “Mastery to Shared”
condition were mastered, while 1.6 % selected by the “Standard to Shared” condition
were mastered. Nevertheless, an ANCOVA test revealed that the difference between
the percentages of these two conditions was not statistically significant.

Table 3. Means and SDs for test performance of levels 1–6 equations on pre-test and mid-test

All sample Lower-performing Higher-performing

Pre-test Mid-test-Equations1 Pre-test Mid-test-Equations1 pre-test Mid-test-Equations1

Mastery shared 0.81 (0.21) 0.85 (0.20) 0.68 (0.20) 0.80 (0.22) 0.98 (0.04) 0.91 (0.14)

Standard tutor 0.84 (0.19) 0.81 (0.21) 0.66 (0.16) 0.70 (0.22) 0.98 (0.05) 0.91 (0.15)
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Learning Outcomes (RQ 2.b). To test the hypothesis that shared control over problem
selection (without mastery-oriented features) will lead to better learning outcomes in
the Future Learning Phase, compared to full system control, we performed ANCOVAs
to analyze students’ learning gains from the mid-test to post-test. Two independent
variables were used in the ANCOVA analyses: (1) whether the students had
mastery-oriented shared control or full system control over problem selection in the
Learning Phase, and (2) whether they had shared versus system control during the
Future Learning Phase. As shown in Table 4, the students’ performance on Equations1
did not change much from mid-test to post-test. An ANCOVA revealed no significant
improvement from the mid-test to post-test for Equations1 for the four conditions.
Also, no significant main effects or interaction were found for Equations1 with the two
independent variables. On the other hand, overall the four conditions improved sig-
nificantly on Equations2 from mid-test to post-test (F (1, 155) = 37.028, p < .000,
d = .98), as well as the whole test (with Equations1 and Equations2 together, F (1,
155) = 16.839, p < .000, d = .66). However, no significant main effects or interaction
were found between the conditions for Equations2 or the whole test.

4 Discussion, Conclusions and Future Work

Our classroom experiment investigated whether mastery-oriented shared control over
problem selection would foster the learning of an effective problem selection strategy,
students’ learning outcomes and enjoyment, as well as future problem selection and
future domain-level learning. We found that shared control over problem selection,
while it was supported with mastery-oriented features, led to better learning outcomes as
compared to full system control in an ITS. Specifically, during the Learning Phase, those
in the mastery-oriented shared control condition improved significantly more than those
in the system-controlled condition on equation solving. Although the two conditions
overall did not improve significantly due to the ceiling effects on the pre-test. Within the
lower-performing group, there were significant learning gains from pre-test to mid-test,
and the condition effect was marginally significant. These results prove that shared

Table 4. Means and SDs for mid-test and post-test equation solving items

Mid-test-equations1 Post-test-equations1 Mid-test-equations2 Post-test-equations2

Mastery to
shared

0.82 (0.23) 0.80 (0.24) 0.38 (0.40) 0.58 (0.40)

Mastery to
standard

0.86 (0.16) 0.85 (0.18) 0.36 (0.40) 0.59 (0.40)

Standard to
shared

0.82 (0.20) 0.86 (0.16) 0.34 (0.41) 0.56 (0.43)

Standard to
standard

0.84 (0.20) 0.86 (0.22) 0.46 (0.45) 0.59 (0.38)
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control accompanied by mastery-oriented features can significantly benefit students’
domain level learning, especially for students with low prior knowledge. How did the
mastery-oriented shared control over problem selection lead to greater learning gains?
First, the students with the mastery-oriented shared control selected almost the same
problems as the system control. They rarely violated the Mastery Rule, put differently,
the students selected mostly unmastered problems as the Cognitive Mastery algorithm
does for the system control. Therefore, we can mostly rule out the possibility that the
difference in learning gains was due to differences in the problem sequences being
practiced. Second, it is likely that the mastery-oriented features (tutorial, feedback,
achievements and problem selection recap screens) might have encouraged the students
to adopt metacognitive strategies such as reviewing, reflecting or summarizing, as a
mastery-approach orientation has been found to be positively associated with use of
such strategies [14]. Prior work has generally found that students with a
mastery-approach orientation achieve better learning outcomes, compared to their
counterparts who focused more on performance relative to others, i.e., with a perfor-
mance orientation [12].

We also found that the mastery-oriented shared control resulted in significantly
better declarative knowledge of the Mastery Rule, as compared to the full system
control condition. It could possibly be attributed to the explicit instructions and
motivational messages from the four mastery-oriented features. On the other hand, the
mastery-oriented shared control did not lead to significantly higher enjoyment of using
the tutor as compared to the full system-controlled tutor. It is likely that the badges, as
well as the mastery bars implemented in the system-controlled condition also made it
enjoyable to students. Prior work on learner control emphasizes its motivational ben-
efits to students [4], but our finding suggests that enabling learner control does not
necessarily enhance students’ enjoyment of the learning experience.

Although the mastery-oriented shared control enhanced students’ learning while it
was in effect, no lasting effect on learning was found with only shared control over
problem selection. For the Future Learning Phase, no significant condition effects were
observed for learning gains on equation solving. In other words, there was apparently
no carry into the next unit of a possible motivational effect on student learning.
Additionally, the equations in this phase were more difficult than the Learning Phase,
and the learning time was reduced to 2 class periods. The students might experience
higher cognitive load when learning more difficult equations within a shorter period of
time, making it difficult to initiate metacognitive processes such as reviewing or
reflecting that relate to a mastery-approach orientation.

Lastly, with respect to problem selection decisions, students with shared control
exhibited good application of the Mastery Rule in both phases. The mastery-oriented
shared control condition selected only about 1 % of mastered problems during the
Learning Phase. Similarly, the two shared control conditions without the
mastery-oriented features in the Future Learning Phase selected around 2 % of mas-
tered problems regardless of whether or not they came from the mastery-oriented
shared control condition. The results regarding problem selection decisions were
slightly surprising, given that in our prior classroom study, students selected 34 %
mastered problems when no Open Learner Model was presented [8]. In other prior
work, we also found students admitting that they would keep selecting easy problems if
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given control over problem selection [7]. There may be two reasons why students made
overall good problem selection decisions in both phases: First, our informal classroom
observations found that the badges and the mastery bars strongly encouraged the
students to complete the levels without repeating already-mastered problems. Although
these two features were designed to make the tutor more fun and reward students’
equation solving progress, not to influence problem selection, they might have moti-
vated the students to make problem-selection decisions based on the Mastery Rule.
A second reason may have been that the environments for this experiment were not
entirely self-regulatory. The students were learning in their math classes and the
teachers sometimes gave informal instructions such as “now you should work on the
newly unlocked levels”. The students were practicing with a “goal” and supervision
from their teachers, which might have influenced their problem selection decisions.

To sum up, the current experiment shows that shared control over problem
selection accompanied by features that foster a mastery-approach orientation in an ITS
leads to significantly better domain-level learning outcomes, as compared to full system
control over problem selection, which is standard practice in ITS. This is a novel
contribution to the literature on the effects of learner control on student learning, which
has generally found that pure learner control leads to worse learning than system
control [2, 10] and that shared control only resulted in learning outcomes that were
comparable to system control [6]. On the other hand, our experiment did not establish
lasting effects of the mastery-oriented features on future learning in a new tutor unit,
with improvement only on declarative knowledge of applying the rule on an immediate
paper test. Future work is warranted to further investigate how to design ITSs that
support learning and motivation of Self-Regulated Learning processes that can transfer
to new learning topics and environments.
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