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Abstract. Past studies have shown that Bayesian Knowledge Tracing (BKT)
can predict student performance and implement Cognitive Mastery successfully.
Standard BKT individualizes parameter estimates for skills, also referred to as
knowledge components (KCs), but not for students. Studies deriving individual
student parameters from the data logs of student tutor performance have shown
improvements to the standard BKT model fits, and result in different practice
recommendations for students. This study investigates whether individual student
parameters, specifically individual difference weights (IDWs) [1], can be derived
from student activities prior to tutor use. We find that student performance meas‐
ures in reading instructional text and in a conceptual knowledge pretest can be
employed to predict IDWs. Further, we find that a model incorporating these
predicted IDWs performs well, in terms of model fit and learning efficiency, when
compared to a standard BKT model and a model with best-fitting IDWs derived
from tutor performance.
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1 Introduction

Models of student learning have been successfully employed by intelligent tutoring
systems to improve learning outcomes for more than two decades. Student modeling
has been used both to individualize curriculum sequencing [1–3] and/or to individualize
hint messages [4, 5]. Each of the modeling frameworks cited here employs a Bayesian
method to infer student knowledge from student performance accuracy, and Bayesian
modeling systems have been shown to accurately predict students’ tutor and/or posttest
performance [1, 3, 6, 7].

These models generally individualize modeling parameters for individual knowl‐
edge components (KCs, also referred to as skills) [8], but not for individual students.
Several studies have shown that individualizing parameters for students, as well as for
KCs, improves the quality of the models [1, 9–12].
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These approaches to modeling individual differences among students have moni‐
tored student performance after the fact, in tutor logs that have been previously collected
to derive individualized student parameters for the tutor module(s). While these efforts
have proven successful, they complicate the actual use of student modeling within an
ITS module, since the concurrent estimation and use of individualized parameters in a
tutor lesson is generally quite challenging, at best. In this paper we examine whether
parameter estimates can be individualized for students prior to embarking on a tutor
module, based on student performance in earlier activities. In particular, we examine
whether parameter estimates can be individualized based on performance in two activ‐
ities that naturally precede tutor modules: reading on-line instructional text and taking
a conceptual knowledge pretest.

We explore this issue in the Bayesian Knowledge Tracing modeling framework [1]
and in a unit of the Genetics Cognitive Tutor [6]. In the following sections we describe
Knowledge Tracing, the on-line student activities, the predictors derived from students’
reading and pretest activities, and our success in using these predictors to model indi‐
vidual differences in student learning and performance in the tutor.

1.1 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) [1] employs a two-state Bayesian learning model
for each knowledge component (KC) in a tutor curriculum: at any time a student either
has learned or not learned a given KC. BKT employs four parameters to estimate the
probability that a student has learned each KC:

pL0 the probability a student has already learned how to apply a KC
pT the probability a student learns a KC at each opportunity to apply it
pG the probability a student will guess correctly if the KC is not learned
pS the probability a student will make an error when the KC has been learned

Cognitive Tutors employ BKT to implement Cognitive Mastery, in which the curric‐
ulum is individualized to afford each student just the number of practice opportunities
needed to enable the student to “master” each KC.

Individual Differences. Knowledge Tracing and Cognitive Mastery generally employ
best-fitting estimates of each of the four parameters for each individual KC but not for
individual students. In this work, we incorporate individual differences among students
into the model in the form of individual difference weights. Following Corbett and
Anderson [1], four best-fitting weights are estimated for each student, one weight for
each of the four parameter types, wL0, wT, wG, wS. In estimating and employing these
individual difference weights (IDWs), we convert each of the four probability estimates
to odds form (p/(1 – p)), multiply the odds by the corresponding student-specific weight
and convert the resulting odds back to a probability (Eq. 1). Let i represent the parameter
type, (pL0, pT, pG, pS), k represent the KC and s the student. The individually weighted
parameter for each KC and student, piks, is thus:

piks = pik ∗ wis∕ (pik ∗ wis +
(
1 − pik

)
(1)
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where pik is a best fitting parameter estimate for the KC across all students and wis is the
corresponding individual difference weight for the student.

2 Student Activities in This Study

The genetics topic in this study is gene interaction, which examines how two genes can
interact in controlling a single phenotypic trait. When two genes, each with a dominant
and recessive allele, control a single trait, e.g., coat color in cattle, there can be up to
four different resulting phenotypes (four colors). But, there are many ways the two genes
can interact that result in only two or three different phenotypes. The goal of the Genetics
Cognitive Tutor “process-modeling” lesson in this study is to help students understand
and model the different ways two genes can interact to yield two, or three, or four
phenotype values. This study focuses on three activities on this topic that students
completed in succession: reading gene interaction instructional text online, taking a gene
interaction pretest, and finally using the Genetics Cognitive Tutor module on Gene
Interaction Process Modeling.

On-Line Instructional Text. The online instructional text consisted of 23 screens,
structured like pages in a book. Students could move forward and backward through the
screens, one screen at a time. After a student touched each page once a “done” button
appeared and the student could then continue reading, or exit at any time.

Conceptual Knowledge Pretest. Students completed a pretest with nine conceptual
questions divided into three topics. The first three questions focused on general knowl‐
edge of basic Mendelian transmission with 2 genes, the second three questions focused
on process modeling — reasoning about phenotypes that could or could not result from
given gene interactions, and the last three questions focused on abductive (backward)
reasoning, reasoning about gene interactions that could or could not have given rise to
observed phenotypes. This is not a problem-solving pretest; the last six questions are
not similar to the Cognitive Tutor problems. Instead, they required students to reason
about genetics processes and abductive reasoning more abstractly.

Genetics Cognitive Tutor: Gene Interaction Process Modeling. The Genetics Cogni‐
tive Tutor (GCT) lesson consisted of 5 process-modeling problems. In each problem,
students are given a description of how two genes interact to determine a phenotype,
e.g., coat color in cattle. Students (a) map the description onto one of seven gene inter‐
action templates with 3 menus, (b) identify the phenotypes of the four true-breeding
genotypes. (c) model the offspring genotypes and phenotypes resulting from two
different parental crosses, and finally (d) summarize the phenotypes associated with all
possible individual genotypes and how the phenotypes arise.

The Cognitive Model for GCT Process Modeling. There are an average of 45 steps
in each of these tutor problems. Some of the KCs governing these steps are unique to a
problem, while others are applicable in multiple problems. In this analysis we excluded
KCs that occurred only one or two times across the 5 problems. Of the remaining 31
KCs, 28 appeared 5 times across the curriculum and 3 appeared 4 times.
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3 Predictors

Our goal is to examine the feasibility of setting individual difference weights for students
before students begin work in a tutor lesson. Several studies have focused on incorpo‐
rating individual differences into BKT models from the tutor data itself. Corbett and
Anderson [1] showed that a BKT model with the four IDWs described in Sect. 2 was a
better predictor of individual differences in posttest performance than a standard, non-
individualized BKT model. Pardos and Heffernan [10] individualized just the pL0
parameter, the initial probability the student knows a KC before its first application,
based on either the student’s first attempt at each KC within the lesson or on all attempts
at each KC — and found that either individualized method yielded reliably better fits to
multiple data sets than the non-individualized BKT model. Yudelson et al. [11] indi‐
vidualized both learning parameters, pL0 and pT, based on student accuracy in a tutor
lesson, and found that individualizing pT yielded reliably better fits than the non-indi‐
vidualized BKT model, while individualizing pL0 did not reliably improve the goodness
of fit. Lee and Brunskill [9] derived 4 individual difference parameters based on
performance in a tutor module and found that the resulting model recommended substan‐
tially more practice for some students and substantially less practice for others than the
non-individualized model.

Finally, in an alternative approach to BKT, a variety of student modeling frameworks
grounded in Item-Response Theory employ a single individual difference parameter as
a basic component of the model [12–14].

To date, these approaches estimate individual student differences after the fact on
tutor data that has already been collected. We examine whether individual differences
can be modeled based on prior activities that are natural components of an on-line
learning system so that they can be used when a student first begins an ITS module.

3.1 Predictors Derived from Instructional Text Reading Performance

We examine two measures of student reading performance: reading time, and revisiting
pages in the text.

Reading Time. No prior ITS research employs reading rates to individualize parameters
in a learning environment, but there is substantial evidence that reading time varies
measurably with comprehension difficulty, and it follows that reading time may prove
sensitive to individual differences in comprehension difficulty. Harvey and Anderson
[15] showed that reading times for on-line declarative instruction in the ACT Program‐
ming Tutor are sensitive to differences in processing time necessary to encode familiar
vs. novel material. More generally, an extensive research literature demonstrates that
reading time is sensitive to relative comprehension difficulty [16].

Text Pages Revisited. Students can read through the instructional text as they would
pages in a book. Some students may choose to strictly read forward through the text,
while others may choose to revisit earlier pages in the text. Students who re-read text
may be demonstrating a meta-cognitive self-monitoring skill, which, if it transfers to
problem-solving in the tutor may be correlated with p(T), learning rate in the tutor.
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3.2 Predictors Derived from a Conceptual Knowledge Pretest

Some prior projects have employed pretest accuracy to initialize ITS student models [3,
17]. We examine several measures of students’ pretest performance.

Pretest Accuracy. We examine whether students’ pretest accuracy on each of the three
types of pretest questions, general knowledge, process modeling and abductive
reasoning, predicts individual difference in learning or performance in the GCT gene
interaction process modeling lesson.

Pretest Answer Changes. We examine whether changing answers in the pretest from
a correct initial answer to an incorrect final answer, or vice versa, is a predictor of indi‐
vidual differences in learning or performance in the tutor module. Checking and
changing answers may be evidence of a meta-cognitive self-monitoring skill that may
translate into higher learning rates in the tutor module. Alternatively, it may be correlated
with the slip rate in the tutor, p(S), if the students slipped in making the initial error they
are correcting.

Time on Task. Finally we examine whether time to complete the pretest is a predictor
of individual differences in the tutor module.

4 Methods

The data analyzed in this study come from 83 undergraduates enrolled in either a genetics
or introductory biology course. All students were recruited to participate in the study
for pay. Students participated in two 2.5-hour sessions on consecutive days in a campus
computer lab. In this study, the first session focused on gene interaction and students
read the on-line gene interaction instructional text, took the on-line pretest, and used the
gene interaction process modeling tutor module as the first three activities in this session.
The study focuses on modeling the 83 students’ first actions on 12,287 problem steps in
the tutor module.

4.1 Fitting Procedures

First, we found best-fitting group parameter estimates for each of the 4 parameters (pL0,
pT, pG, pS) in the standard BKT (“SBKT”) model for each of the 31 different knowledge
components in the tutor lesson, with nonlinear optimization. The objective function
takes the observed opportunities for a single skill and a set of group parameters as input
and returns the negative log-likelihood (-LogLik). Optimization ultimately returns the
set of group parameters that best fit the skill. Both pG and pS were bounded to be less
than 0.5, as in [18] to avoid paradoxical results that arise when these performance
parameters exceed 0.5 (e.g., a student with a higher probability of knowing a KC is less
likely to apply it correctly.)

Second, we re-fit the tutor data with an individualized BKT model: We obtained four
best-Fitting Individual Difference Weights (IDWs) for each of the 83 students, one
weight for each of the four parameter types, wL0, wT, wG, wS to construct this “FIDW”
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model. As described in Sect. 1 Eq. 1, each student’s four weights are mapped across the
best-fitting group learning and performance parameter estimates for each of the 31 KCs
to individualize these parameter estimates. The objective function takes the fixed group
parameters, the observed opportunities for a student, and a set of IDWs (wL0, wT, wG,
wS) and returns the -LogLik. Optimization ultimately returns the set of IDWs that maxi‐
mize the fit for the student.

Third, we derived 12 predictive features, 6 from the on-line reading data and 6 from
the pretest data to predict these four individual difference weights for the 83 students,
as displayed in Table 1. We performed a factor analysis on log reading times for the 23
individual pages to reduce the number of predictors. The factor analysis yielded a total
of four factors (RTF1, RTF2, RTF3, RTF4), which each account for at least 10 % of the
variance and align with subtopics in the text, as summarized in the table. These four
factors accounted for 54 % of the total variance and additional factors each accounted
for less than 5 % of the variance.

Table 1. 12 Predictor variables extracted from the on-line reading and pretest data

RTF1 Reading: Time for a 5-page intro with familiar content on basic Mendelian genetics
RTF2 Reading: Time for 6 pages with charts of various ways 2 genes can interact
RTF3 Reading: Time for 3 pages on parental crosses with offspring genotypes & traits
RTF4 Reading: Time for 2 pages with full-page diagrams of dominant & recessive alleles
RRNP Reading: Total number of previous pages re-read
RRTD Reading: Total distance traversed (intervening pages) in re-reading text pages
PACC1 Pretest: % Correct for 3 general knowledge questions
PACC2 Pretest: % Correct for 3 process modeling questions
PACC3 Pretest: % Correct for 3 abductive reasoning questions
PCIC Pretest: Number of answers initially incorrect changed to correct
PCCI Pretest: Number of answers initially correct changed to incorrect
PTime Pretest: Total time to complete the pretest

Fourth, we employed each of these 12 variables to independently predict the four
sets of IDWs: wL0, wT, wG, wS. Since these are multiplicative weights, we fit a trans‐
formation of the weights w/(1 + w). This transformation has the property that the neutral
weight 1.0 (which does not modify the corresponding best-fitting group parameter) is
the midpoint of the transformed scale. We built a robust regression model with the 12
predictors for each of the IDWs. Robust regression is less sensitive to outliers, variable
normality, and other violations of standard linear regression assumptions.

Finally, after deriving the 4 predicted IDWs for each of the 83 students, we recal‐
culated the earlier FIDW BKT model with the predicted IDWs, in place of the best-
fitting IDWs to construct the “PIDW” model. In summary, we have three BKT model
variants:

1. SBKT: Standard BKT model with best-fitting group parameter estimates,
2. FIDW: Standard BKT model with Fitted Individualized Difference Weights,
3. PIDW: Standard BKT model with Predicted Individualized Difference Weights.
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5 Results and Discussion

Table 2 summarizes our results. Columns 2 and 3 summarize the overall fit of the
standard BKT and the two IDW models to the tutor data. Column 2 displays root mean
squared error (RMSE) for the fits and column 3 displays Accuracy (the probability a
model correctly predicts students’ correct or incorrect responses, with a 0.5 threshold
on predicted accuracy). As can be seen, the FIDW model with best-fitting IDWs fits the
tutor data best; it reduces RMSE by 8.7 % compared to the standard, non-individualized
SBKT model (0.2794 vs. 0.3059). The new PIDW model with predicted IDWs is about
40 % as successful as the best-fitting FIDW model: The new model reduces RMSE by
3.6 % compared to the standard SBKT model (0.2950 vs. 0.3509). The FIDW model is
also about 2.4 % more accurate than the SBKT model (0.8948 vs. 0.8742) while the
PIDW model is about 0.8 % more accurate than the SBKT model (0.8812 vs. 0.8742).

Table 2. Goodness of fit of the 3 models and differences in practice needed to reach mastery.

Model RMSE Accuracy # Students
needing
less

# Fewer
opportuni‐
ties needed

# Students
needing
more

# More
opportuni‐
ties needed

SBKT 0.3059 0.8742 – – – –
FIDW 0.2794 0.8948 56 17.27 27 27.04

(46) (17.24) (19) (27.37)
PIDW 0.2950 0.8812 54 10.48 27 11.59

(46) (10.96) (19) (13.58)

Even small differences in model fits, such as what we found in this study, can have
large effects on the amount of recommended work assigned to the student [19]. In order
to explore the practical impact of the individualized models, we examined the number
of practice opportunities that were necessary for students to reach mastery under each
of the three models — that is, the number of opportunities required for pL (the probability
the student has learned a rule) to reach 0.95. This analysis is possible because students
completed a fixed curriculum in this study with 4 or 5 opportunities per KC, and most
students reached mastery for all of the KCS in the available number of opportunities
under all three models.

On average students mastered 94 % of the skills under the SBKT model, 90 % under
the FIDW model, and 93 % under the PIDW model. If a student failed to reach mastery
on a KC under one model, we conservatively estimated that the student would reach
mastery on the next opportunity. On average students needed 57.22 total opportunities
to reach mastery of the 31 KCs under the SBKT model, 53.65 total opportunities under
the FIDW model, and 53.71 under the PIDW model.

The bottom two rows in the last four columns of Table 2 show how many students
need less practice to reach mastery under each of the individualized BKT models than
under the standard BKT model, and how many students need more practice. The
numbers in parentheses show how many students are common to the two sets under the
two models. These columns also show how much more or less practice the students need
before the model would consider them to have mastered the KCs.
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Both individualized models, FIDW and PIDW, substantially modify the amount of
practice needed to reach mastery compared to the standard SBKT model. Under the
best-fitting FIDW model, 56 students needed less practice to master all the KCs than
under the standard SBKT model and on average these students required 17.3 fewer
practice opportunities to reach mastery under FIDW than under SBKT. Under the
predicted PIDW model, 54 students needed an average of 10.5 fewer opportunities to
master all the KCS than under the SBKT model. The two individualized model agree
on a set of 46 students who need fewer practice opportunities to reach mastery, but again
the FIDW model requires less practice (17.2 opportunities) of these students than the
PIDW model (11.0 opportunities).

Under both the FIDW and PIDW models, 27 students need more practice opportu‐
nities to reach mastery than under the SBKT model, but students need 27 more practice
opportunities under the FIDW model and only 11.6 more opportunities under PIDW
model. The two models agree on a set of 19 students who need more practice, but again
the FIDW model requires more practice than the PIDW model.

Overall, the FIDW and PIDW models were in 78 % agreement on which students
needed fewer or more opportunities to master all the KCs than under the standard SBKT
model. The new predicted PIDW model reaches roughly 60 % of the potential learning
efficiency gains identified by the best-fitting FIDW model, and does so without the use
of the student tutor performance data.

5.1 The Predictive Models for the Four Individual Difference Weights

Table 3 displays the coefficients for each of the 12 predictors in the regression model
for each of the four IDWs. The predictors that entered reliably into the robust regression
model are highlighted with asterisks.

Table 3. Coefficient summary table (<0.10, *<0.05, **<0.01)

wL0 wT wG wS

(Intercept) 0.0528 0.0785 0.0623 0.8752**

RRTD -0.0314 0.0317 -0.0061 0.0215

RRNP 0.0221 -0.0055 -0.0056 -0.007

RTF1 -0.0046 -0.0834* -0.0193 -0.0089

RTF2 0.0338 0.0335 -0.0627* 0.0053

RTF3 0.0131 0.017 0.0192 -0.0215

RTF4 -0.004 0.0204 -0.052* 0.0029

PACC1 0.3504** 0.1469 0.1109 -0.3038**

PACC2 0.2154. -0.0398 0.563** -0.3021**

PACC3 0.0841 0.4373. 0.144 -0.1699

PCIC 0.0096 -0.0248 -0.0327. 0.005

PCCI 0.0143 -0.0092 0.0352 0.0189

Ptime 0 0.0004. 0 0.0001

RMSE 0.1809 0.2245 0.2055 0.1443
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The most interesting result is that student behaviors in reading the text are, in fact,
reliable predictors of some individual difference weights. Three of the reading time
factors, RTF1, RTF2, RTF4 each reliably predicted one of the four individual differences
weights (wT, wG, and wG respectively). The pages that load on RTF1 specifically are
introductory pages on basic Mendelian transmission that should be familiar to all the
students and this factor is inversely related to wT — the longer students take reading
what should be familiar text, the lower their learning rate in the tutor. However, student
behaviors in re-visiting pages did not reliably predict any IDWs.

Not surprisingly, more pretest variables reliably entered into the four IDW models.
Differences in student accuracy on general knowledge (PACC1) and on process-
modeling (PACC2) — the same type of reasoning as in this tutor unit — each reliably
predict two of the four IDWs. Three other pretest measures, including student accuracy
on abductive reasoning questions (PACC3) — a type of reasoning not employed in this
tutor unit, total time (PTime) and number of changes from an initially incorrect answer
to a correct answer (PCIC) each marginally predicted one IDW.

6 Conclusion

We have developed and discussed a method of inserting individual student differences
into a traditional Bayesian Knowledge Tracing model that employs pre-tutor reading
and test data to predict individual difference weights. This is important because inte‐
grating IDWs into an intelligent tutor is much easier if the IDWs can be assigned before
the student starts working with the tutor. An advantage of our method is that it can be
implemented easily; only a single adjustment needs to be made to each of the group
parameters before the student starts the lesson. This initial attempt to pre-set individual
difference weights is already quite successful.

The goodness of fit of this new predictive PIDW BKT model falls almost midway
between the standard non-individualized SBKT model and the fitted FIDW BKT model.
Further, the individualized practice recommendations for the predictive PIDW BKT
model are similar to the practice recommendations for the fitted FIDW BKT model,
although the new PIDW model does not identify all the opportunities to decrease the
amount of practice for some students, nor the need to increase the amount practice for
other students, that are identified in the best-fitting FIDW model. However, if imple‐
mented, the PIDW model would result in some students needing an average of 18 %
fewer total practice opportunities to reach mastery with other students needing an
average of 20 % more total practice opportunities. This is a potentially meaningful
difference, as it could lead to students spending just the right amount of time with the
tutor to achieve mastery.

An important finding is that student data from the reading the instructional text is a
useful predictor of learning and performance in an intelligent tutor. Three reading time
factors entered reliably into predictive models for individual difference weights in the
study. Several conceptual pretest variables also reliably predicted individual differences
in learning and performance in an ITS. These results suggest that it is possible to assign
IDWs to students before they begin to use the tutor. We expect, but it remains for future
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research to explore, that other individual difference frameworks can also benefit from
using data from the prior to tutor activities as predictors for initial IDW assignment.
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