
Márk Jelasity
Evangelia Kalyvianaki (Eds.)

 123

LN
CS

 9
68

7

16th IFIP WG 6.1 International Conference, DAIS 2016
Held as Part of the 11th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2016
Heraklion, Crete, Greece, June 6–9, 2016, Proceedings

Distributed Applications
and Interoperable Systems

Lecture Notes in Computer Science 9687

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Márk Jelasity • Evangelia Kalyvianaki (Eds.)

Distributed Applications
and Interoperable Systems
16th IFIP WG 6.1 International Conference, DAIS 2016
Held as Part of the 11th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2016
Heraklion, Crete, Greece, June 6–9, 2016
Proceedings

123

Editors
Márk Jelasity
University of Szeged
Szeged
Hungary

Evangelia Kalyvianaki
City University London
London
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-39576-0 ISBN 978-3-319-39577-7 (eBook)
DOI 10.1007/978-3-319-39577-7

Library of Congress Control Number: 2016939991

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© IFIP International Federation for Information Processing 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

The 11th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place at Aquila Atlantis Hotel in Heraklion, Greece, during June 6–9,
2016. It was organized by the Institute of Computer Science of the Foundation for
Research and Technology Hellas and the University of Ioannina, Greece. The Dis-
CoTec series is one of the major events sponsored by the International Federation for
Information Processing (IFIP). It comprises three conferences:

– COORDINATION, the IFIP WG6.1 International Conference on Coordination
Models and Languages

– DAIS, the IFIP WG6.1 International Conference on Distributed Applications and
Interoperable Systems

– FORTE, the IFIP WG6.1 International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues.

Each day of the federated event began with a plenary speaker nominated by one
of the conferences. The three invited speakers were Tim Harris (Oracle Labs, UK),
Catuscia Palamidessi (Inria, France), and Vijay Saraswat (IBM T.J. Watson Research
Center, USA).

Associated with the federated event were also two satellite workshops, that took
place on June 8–9, 2016:

– The 9th Workshop on Interaction and Concurrency Experience (ICE) with keynote
lectures by Uwe Nestmann (Technische Universität Berlin, Germany) and
Alexandra Silva (University College London, UK)

– The Final Public Workshop from the LeanBigData and CoherentPaaS projects

Sincere thanks go to the chairs and members of the Program and Steering Com-
mittees of the involved conferences and workshops for their highly appreciated efforts.
Organizing DisCoTec 2016 was only possible thanks to the dedicated work of the
Organizing Committee, including George Baryannis (Publicity Chair) and Vincenzo
Gulisano (Workshops Chair), with excellent support from Nikos Antonopoulos and
Alkis Polyrakis of PCO-Convin. Finally, many thanks go to IFIP WG6.1 for spon-
soring this event, Springer Lecture Notes in Computer Science for their support and
sponsorship, and to EasyChair for providing the refereeing infrastructure.

April 2016 Kostas Magoutis

Preface

This volume contains the proceedings of DAIS 2016, the 16th IFIP International
Conference on Distributed Applications and Interoperable Systems, sponsored by the
IFIP (International Federation for Information Processing) and organized by the IFIP
Working Group 6.1.

DAIS was held during June 4–7, 2016, in Heraklion, Crete, Greece, as part of
DisCoTec, the 11th International Federated Conference on Distributed Computing
Techniques, together with FORTE (the 36th IFIP International Conference on Formal
Techniques for Distributed Objects, Components and Systems) and COORDINATION
(the 18th IFIP International Conference on Coordination Models and Languages).

There were 34 submissions for DAIS. Each submission was reviewed by at least
three, and on average 3.8, Program Committee members. The committee decided to
accept 13 full papers and three short papers, resulting in an acceptance rate of 38 % for
full papers. Out of the 13 accepted full papers, five were chosen after a shepherding
process, during which a committee member helped the authors implement the
improvements required by the reviewers.

The accepted papers represent a compelling sample of the state of the art in the area
of distributed applications and interoperable systems. Cloud computing and services
received a large emphasis this year. The proceedings include contributions on resource
management (optimizing energy consumption, adaptive optimization of Hadoop
parameters, predicting resource usage, and an investigation of erasure coding libraries
for redundancy) as well as techniques for cloud-based data processing and computing
(shuffling methods, GPU access from virtual machines, and edge-cloud computing). In
the area of decentralized systems, we have contributions on self-organizing DHTs,
decentralized social networks, and content distribution systems. The area of Byzantine
fault tolerance is also represented as well as the emerging area of complex event
processing, where performance, load balancing, and language support are investigated.

The conference was made possible by the work and cooperation of many people
working in several committees and organizations that are listed in these proceedings. In
particular, we thank the Program Committee members for their commitment and
thorough reviews and for their active participation in the discussion and shepherding
phases, and all the external reviewers for their help in evaluating submissions. We
would like to thank the publicity chair, Valerio Schiavoni, for his excellent work in
publicizing DAIS 2016. We would also like to thank Tim Harris, our invited keynote
speaker. Finally, we also thank the DisCoTec general chair, Kostas Magoutis, and the
DAIS Steering Committee chair, Rui Oliveira, for their constant availability, support,
and guidance.

April 2016 Márk Jelasity
Evangelia Kalyvianaki

Organization

DisCoTec Steering Committee

Elie Najm (Chair) Telecom-ParisTech, France
Rocco De Nicola IMT Lucca, Italy
Kurt Geihs University of Kassel, Germany
Farhad Arbab

(Coordination)
CWI, The Netherlands

Rui Oliveira (DAIS) University of Minho, Portugal
Jean-Bernard Stefani

(FORTE)
Inria, France

Alain Girault Inria, France
Uwe Nestmann TU Berlin, Germany
Michele Loreti University of Florence, Italy
Jim Dowling KTH, Sweden
Marjan Sirjani Reykjavik University, Iceland
Frank de Boer CWI, The Netherlands
Lea Kutvonen University of Helsinki, Finland
John Derrick University of Sheffield, UK
Gianluigi Zavattaro University of Bologna, Italy

DAIS Steering Committee

Alysson Bessani Universidade de Lisboa, Portugal
Sara Bouchenak INSA Lyon, France
Jim Dowling KTH Royal Institute of Technology, Sweden
Frank Eliassen University of Oslo, Norway
Pascal Felber Université de Neuchâtel, Switzerland
Karl Goeschka Vienna University of Technology, Austria
Rüdiger Kapitza Technical University of Braunschweig, Germany
Kostas Magoutis FORTH-ICS and University of Ioannina, Greece
Rui Oliveira Universidade do Minho, Portugal
Peter Pietzuch Imperial College London, UK
Romain Rouvoy University of Lille 1, France
Franois Taiani Université de Rennes 1, France

DAIS 2016 Program Committee

Program Committee Chairs

Márk Jelasity University of Szeged, Hungary
Evangelia Kalyvianaki City University London, UK

Publicity Chair

Valerio Shiavonni Université de Neuchâtel, Switzerland

Program Committee Members

Luciana Arantes Université Pierre et Marie Curie-Paris6, France
Carlos Baquero HASLab, INESC TEC and University of Minho,

Portugal
Sonia Ben Mokhtar LIRIS CNRS, France
Alysson Bessani Universidade de Lisboa, FCUL/LaSIGE, Portugal
Andrea Bondavalli University of Florence, Italy
Sara Bouchenak INSA Lyon, France
Jian-Nong Cao Hong Kong Polytechnic University, Hong Kong, SAR

China
Miguel Correia IST/INESC-ID, Portugal
Paolo Costa Microsoft Research Cambridge, UK
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Jim Dowling KTH, Sweden
Frank Eliassen University of Oslo, Norway
Ittay Eyal Cornell University, USA
David Eyers University of Otago, New Zeland
Pascal Felber Université de Neuchâtel, Switzerland
Kurt Geihs Universität Kassel, Germany
Karl M. Goeschka FH Technikum Wien, Austria
Franz J. Hauck University of Ulm, Germany
K.R. Jayaram IBM Research, USA
Vana Kalogeraki Athens University of Economics and Business, Greece
Rüdiger Kapitza TU Braunschweig, Germany
Attila Kertesz University of Szeged, Hungary
Benjamin Mandler IBM, Israel
Evangelos Markatos University of Crete, FORTH-ICS, Greece
Miguel Matos HASLab, INESC TEC and University of Minho,

Portugal
Rene Meier Lucerne University of Applied Sciences and Arts,

Switzerland
Alberto Montresor University of Trento, Italy
Kiran-Kumar

Muniswamy-Reddy
Harvard School of Engineering and Applied Sciences,

USA
Marta Patino Universidad Politecnica de Madrid, Spain
Peter Pietzuch Imperial College London, UK
Hans P. Reiser University of Passau, Germany
Altair Santin Pontifical Catholic University of Paraná, Brazil
Spyros Voulgaris VU University Amsterdam, The Netherlands

X Organization

Additional Reviewers

Abreu, Vilmar
Baraki, Harun
Behl, Johannes
Ceccarelli, Andrea
Dar, Kashif Sana
Gonçalves, Ricardo
Huu Tran, Tam
Kambona, Kennedy
Köstler, Johannes
Lollini, Paolo
Maia, Francisco
Marynowski, João Eugenio
Mendes, Ricardo
Obelheiro, Rafael
Rakotondravony, Noelle

Renaux, Thierry
Robu, Bogdan
Rodriguez Avila, Humberto
Saey, Mathijs
Salaün, Gwen
Sartakov, Vasily
Shoker, Ali
Swalens, Janwillem
Taubmann, Benjamin
Timo, Hönig
Tomaras, Dimitris
Vianello, Valerio
Zacheilas, Nikos
Zoppi, Tommaso

Organization XI

Systems Challenges in Graph Analytics
(DAIS 2016 Keynote)

Dr. Tim Harris

Oracle Labs, Cambridge, UK
timothy.l.harris@oracle.com

Abstract. Graphs are at the core of many data processing problems, whether
that is searching through billions of records for suspicious interactions, ranking
the importance of web pages based on their connectivity, or identifying possible
“missing” friends on a social network. This talk will discuss the challenges in
building large, scalable, in-memory graph analytics systems. Many of these
challenges come from the way that graph algorithms behave differently based on
the structure of the input graph: a planar road network graph can produce a
significantly different load on the machine’s memory system from a
low-diameter social network graph. It can be necessary to select particular
algorithms for these different cases, and to make contrasting decisions over how
the machine’s resources are allocated. Finally, we face challenges simply from
the scale at which we operate: making efficient use of the hardware in new
SPARC machines with over 4000 threads.

Speaker: Tim Harris leads the Oracle Labs group in Cambridge, UK. His research
interests span multiple layers of the stack, including parallel programming,
VMM/OS/runtime-system interaction, and opportunities for specialized architecture
support for particular workloads. He has also worked on the implementation of soft-
ware transactional memory for multi-core computers, and the design of programming
language features based on it. Tim has a BA and PhD in computer science from
Cambridge University Computer Laboratory. He was on the faculty at the Computer
Laboratory from 2000–2004 where he led the department’s research on concurrent data
structures and contributed to the Xen virtual machine monitor project. He was at
Microsoft Research from 2004, and then joined Oracle Labs to found the Cambridge
office in 2012.

Contents

Enhanced Energy Efficiency with the Actor Model on Heterogeneous
Architectures . 1

Yaroslav Hayduk, Anita Sobe, and Pascal Felber

Evaluating the Cost and Robustness of Self-organizing Distributed
Hash Tables . 16

Sveta Krasikova, Raziel C. Gómez, Heverson B. Ribeiro, Etienne Rivière,
and Valerio Schiavoni

Mignon: A Fast Decentralized Content Consumption Estimation in
Large-Scale Distributed Systems . 32

Stéphane Delbruel, Davide Frey, and François Taïani

Privacy-Preserving Data Allocation in Decentralized Online Social
Networks . 47

Andrea De Salve, Paolo Mori, Laura Ricci, Raed Al-Aaridhi,
and Kalman Graffi

An RDMA Middleware for Asynchronous Multi-stage Shuffling in
Analytical Processing. 61

Rui C. Gonçalves, José Pereira, and Ricardo Jiménez-Peris

Holistic Shuffler for the Parallel Processing of SQL Window Functions 75
Fábio Coelho, José Pereira, Ricardo Vilaça, and Rui Oliveira

Providing CUDA Acceleration to KVM Virtual Machines in InfiniBand
Clusters with rCUDA . 82

Ferran Pérez, Carlos Reaño, and Federico Silla

Benchmarking Wireless Protocols for Feasibility in Supporting
Crowdsourced Mobile Computing . 96

João Rodrigues, Joaquim Silva, Rolando Martins, Luís Lopes,
Utsav Drolia, Priya Narasimhan, and Fernando Silva

BFT-Dep: Automatic Deployment of Byzantine Fault-Tolerant Services in
PaaS Cloud . 109

Bijun Li and Rüdiger Kapitza

BFT-Bench: Towards a Practical Evaluation of Robustness and
Effectiveness of BFT Protocols . 115

Divya Gupta, Lucas Perronne, and Sara Bouchenak

http://dx.doi.org/10.1007/978-3-319-39577-7_1
http://dx.doi.org/10.1007/978-3-319-39577-7_1
http://dx.doi.org/10.1007/978-3-319-39577-7_2
http://dx.doi.org/10.1007/978-3-319-39577-7_2
http://dx.doi.org/10.1007/978-3-319-39577-7_3
http://dx.doi.org/10.1007/978-3-319-39577-7_3
http://dx.doi.org/10.1007/978-3-319-39577-7_4
http://dx.doi.org/10.1007/978-3-319-39577-7_4
http://dx.doi.org/10.1007/978-3-319-39577-7_5
http://dx.doi.org/10.1007/978-3-319-39577-7_5
http://dx.doi.org/10.1007/978-3-319-39577-7_6
http://dx.doi.org/10.1007/978-3-319-39577-7_7
http://dx.doi.org/10.1007/978-3-319-39577-7_7
http://dx.doi.org/10.1007/978-3-319-39577-7_8
http://dx.doi.org/10.1007/978-3-319-39577-7_8
http://dx.doi.org/10.1007/978-3-319-39577-7_9
http://dx.doi.org/10.1007/978-3-319-39577-7_9
http://dx.doi.org/10.1007/978-3-319-39577-7_10
http://dx.doi.org/10.1007/978-3-319-39577-7_10

Self-Balancing Job Parallelism and Throughput in Hadoop. 129
Bo Zhang, Filip Křikava, Romain Rouvoy, and Lionel Seinturier

Resource Usage Prediction in Distributed Key-Value Datastores 144
Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira,
João Paulo, José Pereira, and Ricardo Vilaça

A Performance Evaluation of Erasure Coding Libraries for Cloud-Based
Data Stores: (Practical Experience Report) . 160

Dorian Burihabwa, Pascal Felber, Hugues Mercier,
and Valerio Schiavoni

Dynamic Load Balancing Techniques for Distributed Complex Event
Processing Systems . 174

Nikos Zacheilas, Nikolas Zygouras, Nikolaos Panagiotou,
Vana Kalogeraki, and Dimitrios Gunopulos

PAN – Distributed Real-Time Complex Event Detection in Multiple
Data Streams . 189

Lukas Probst, Ivan Giangreco, and Heiko Schuldt

Bringing Complex Event Processing into Multitree Modelling of Sensors. . . . 196
Alexandre Garnier, Jean-Marc Menaud, and Nicolas Montavont

Author Index . 211

XVI Contents

http://dx.doi.org/10.1007/978-3-319-39577-7_11
http://dx.doi.org/10.1007/978-3-319-39577-7_12
http://dx.doi.org/10.1007/978-3-319-39577-7_13
http://dx.doi.org/10.1007/978-3-319-39577-7_13
http://dx.doi.org/10.1007/978-3-319-39577-7_14
http://dx.doi.org/10.1007/978-3-319-39577-7_14
http://dx.doi.org/10.1007/978-3-319-39577-7_15
http://dx.doi.org/10.1007/978-3-319-39577-7_15
http://dx.doi.org/10.1007/978-3-319-39577-7_16

Enhanced Energy Efficiency with the Actor
Model on Heterogeneous Architectures

Yaroslav Hayduk(B), Anita Sobe, and Pascal Felber

University of Neuchâtel, Neuchâtel, Switzerland
{yaroslav.hayduk,anita.sobe,pascal.felber}@unine.ch

Abstract. Due to rising energy costs, energy-efficient data centers have
gained increasingly more attention in research and practice. Optimiza-
tions targeting energy efficiency are usually performed on an isolated
level, either by producing more efficient hardware, by reducing the num-
ber of nodes simultaneously active in a data center, or by applying
dynamic voltage and frequency scaling (DVFS). Energy consumption is,
however, highly application dependent. We therefore argue that, for best
energy efficiency, it is necessary to combine different measures both at
the programming and at the runtime level. As there is a tradeoff between
execution time and power consumption, we vary both independently to
get insights on how they affect the total energy consumption. We choose
frequency scaling for lowering the power consumption and heterogeneous
processing units for reducing the execution time. While these options
showed to be effective already in the literature, the lack of energy-efficient
software in practice suggests missing incentives for energy-efficient pro-
gramming. In fact, programming heterogeneous applications is a chal-
lenging task, due to different memory models of the underlying proces-
sors and the requirement of using different programming languages for
the same tasks. We propose to use the actor model as a basis for efficient
and simple programming, and extend it to run seamlessly on either a
CPU or a GPU. In a second step, we automatically balance the load
between the existing processing units. With heterogeneous actors we are
able to save 40–80 % of energy in comparison to CPU-only applications,
additionally increasing programmability.

1 Introduction

Energy efficiency of data centers and clouds has become a major concern. As
claimed in 2012 by a Greenpeace report [6], current cloud computing systems
consume the same amount of energy as a whole country such as Germany and
India. While going green is from the users’ and operators’ perspective often done
voluntarily or for economic benefits, today’s systems reach physical limitations—
the so-called “power wall”—that enforce focusing on energy-efficiency [5].

Usually, work on improving energy efficiency is limited to isolated strate-
gies. For instance, on a data center level, power consumption is reduced by
adaptively shutting down nodes; on a single system level, power consumption is

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 1–15, 2016.
DOI: 10.1007/978-3-319-39577-7 1

2 Y. Hayduk et al.

reduced by providing more efficient hardware or runtime support and by dynam-
ically adapting the CPU frequency using dynamic voltage and frequency scaling
(DVFS) [4]. While these approaches are effective per se, we believe that software
and hardware have to be considered together to best enable energy-efficient
resource usage. In general, the energy consumption E of an application relates
to its power consumption P and its execution time T (E = P · T). Hence, to
reduce energy consumption, one can either radically (1) reduce the power con-
sumption (usually at the cost of execution time) or (2) reduce the execution time
(usually at the cost of power consumption).

As shown by Trefethen et al. [24] the CPU frequency has a major impact on
power consumption. We therefore exploit the CPU frequency scaling features of
Linux where possible and use predefined “governors”.

To reduce the execution time, a possible way is to exploit all available hard-
ware resources, e.g., graphical processing units (GPUs). Programming applica-
tions that run both on CPUs and GPUs is a challenging task as parts of a
program might be better targeted at a CPU, while other parts are data paral-
lelizable and run more efficiently on GPUs. As it might be necessary to provide
two versions of the same application (e.g., CUDA/C++), we focus our contri-
butions especially on programmable solutions for heterogeneous applications.

As a basis we rely on the actor model [10]. The model offers a high degree of
isolation between its main entities, called actors. Actors enable seamless inter-
operability between heterogeneous components [1], allowing us to differentiate
between actors running on a CPU or GPU and consequently support heteroge-
neous actors. Actors are useful for data parallelizable applications; they, however,
might cause overhead if applications are iterative and maintain state.

In this paper we investigate several strategies for implementing heteroge-
neous actors focusing on iterative applications. We start from a manually crafted
and optimized implementation, in which an actor running in Scala calls the
CUDA/GPU code written in C/C++ using the Java native interface (JNI). Later,
we propose to decouple this design by using a middleware component, RabbitMQ.1

Another solution is to use a domain-specific language (DSL) for generating
both CPU and GPU code. Frameworks such as Delite [21], which provide auto-
matic code generation, expect the entire application to be written with the DSL
and executed by the provided runtime. With actors it is desirable to be able to
decide on a fine-grained level whether a task, encapsulated in an actor, should
execute on a CPU or on the GPU. Therefore, we adapt the actor model by
introducing heterogeneous actors, which can be programmed using Delite DSLs.

From a programmer’s point of view we show that the heterogeneous actors
based on DSLs represent the simplest solution and lead to a reduced energy con-
sumption of up to 40 % in comparison to CPU-only actor implementations, with
JNI actors allowing for savings of up to 80 %. We present our final contribution,
which is a scheduler that balances workload among GPU and CPU resources.

The rest of the paper is organized as follows. We introduce the generic
ideas on power consumption and execution time reduction in Sect. 2, providing

1 http://www.rabbitmq.org.

http://www.rabbitmq.org

Enhanced Energy Efficiency with the Actor Model 3

implementation details on heterogeneous actors in Sect. 3. The load balancing
of actor tasks is introduced in Sect. 4. In Sect. 5 we describe the hardware and
software setup used for evaluation. We present and analyze results in Sect. 6 and
discuss related work in Sect. 7. We conclude in Sect. 8.

2 Improving Energy Efficiency

One way to reduce the energy consumption is to decrease the power consumption
(E = P · T). This can be achieved either by influencing the hardware (e.g.,
by changing the frequency of a CPU), or by lowering the resource usage of
the application itself (e.g., only use a single CPU with a sequential program).
Another way is to focus on the improvement of the application’s performance.
In the following sections we discuss mechanisms for both approaches in detail.

2.1 Reducing Power Consumption

The overall power consumption of a machine is highly influenced by the power
consumption of the CPU. Although CPUs become more and more energy-
efficient, the overall energy consumption increases as we usually trade power for
performance [3]. We focus on two strategies that are easy to configure: (1) the
level of parallelism and (2) the voltage/frequency of a CPU.

If the level of parallelism (i.e., thread count) of an application is not properly
chosen, the performance and the power consumption are negatively affected.
For example, the system scheduler might interfere with the program execution,
impeding the application’s performance.

The power consumption of a CPU can be influenced by changing the CPU fre-
quency. The Linux kernel provides a tool, cpufreq,2 allowing us to configure gover-
nors that automatically set the desired CPU frequency. Specifically, we are inter-
ested in three governors. (1) Performance: the CPU will be automatically set to
the highest available frequency; (2)Powersave: the CPU will be automatically set
to the lowest available frequency; (3) Ondemand (DVFS): the governor moni-
tors the CPU utilization and, if it is on average more than 95 %, the frequency
will be increased. The dynamic approach with the ondemand governor is the most
promising, as it provides DVFS to fit the needs of an application.

2.2 Reducing Execution Time

If the performance gain is significant, it can be translated into a reduction of the
total energy consumption. Concurrent programming is one measure to reduce
execution time. Programming with threads and locks, however, is challenging.

The actor model has been introduced by Hewitt et al. [10] as a popular mech-
anism for implementing parallel, distributed and scalable systems. An actor is an
independent, asynchronous object with an encapsulated state that can only be

2 https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

4 Y. Hayduk et al.

(b)

C/C++
T

data
T

data

Scala RabbitMQ

queue

result queue

A

A

A

P

P

P

queue

CUDAJNI C/C++Scala

A

A

data

data
input buffer

result buffer

result buffer

input buffer

(a)

CUDA

Fig. 1. Heterogeneous actors using (a) JNI and (b) RabbitMQ.

modified locally based on the exchange of messages. Considering a typical data-
parallel algorithm as an example, we can easily design an application with a set
of dedicated worker actors performing the required computations and a separate
coordination entity actor that distributes the data and collects the results. In
contrast to a classical multithreading approach we do not need to account for
synchronizing shared memory accesses. For our actor implementations we use
Akka3, an official platform to manage actors in Scala.

Actors allow for interoperability not only on a single CPU but also across
its boundaries. Communication, however, is not yet supported between different
kinds of processors such as GPUs.

3 Enabling Heterogeneous Actors

To reduce the energy consumption while ensuring programmability, we exploit
heterogeneous computing (CPU/GPU programming) with the help of actors. For
GPU programming CUDA is a de facto standard.4 CUDA provides a C/C++
binding for communicating with the GPU. As a GPU is a co-processor, the
CPU is always necessary for communication, management, and data exchange.
While with C/C++ and CUDA the program would be tightly interwoven, the
actor model provides inherent decoupling by separating tasks into actors. As
stated before, the communication between actors on different processors is not
straightforward. As such, we provide support for actors that are able to run on
either a GPU or a CPU, calling them heterogeneous actors. In what follows, we
present three different possibilities for implementing heterogeneous actors.

JNI. The Java native interface (JNI) can be used for communicating with native
libraries written in C/C++, supporting the communication with the GPU. In
data-parallel programs, actors responsible for interacting with the GPU are ini-
tialized with a portion of input data (see Fig. 1(a)). A copy of the actor-local
data is propagated to the actor-local GPU memory as well. In each GPU actor
the final result is then stored in a result buffer, which can be accessed from either
C or Scala using JNI.

RabbitMQ. An alternative for decoupling CPU and GPU code is to use a
middleware component like RabbitMQ.5 RabbitMQ enables the communication
3 http://akka.io.
4 http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
5 http://www.rabbitmq.org.

http://akka.io
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.rabbitmq.org

Enhanced Energy Efficiency with the Actor Model 5

BalancingPool
Router

actor 1

actor 2

actor 3

1

2

3 GPU

CPU

Heterogeneous Actor

programmed generated

Delite Application ObjectDSL

Scala
C++/
CUDA

JNI
Scala Mediator

Akka Actor

1
2

3

3 2 1

(b)(a)

Fig. 2. (a) Heterogeneous actors using DSLs from the programmer’s view. (b) Balanc-
ingPool Router in Akka.

(via queues) between programs written in different languages and amongst dis-
tributed machines. By using RabbitMQ we can connect CPU actors with GPU
actors. Communication is supported via a proxy (P in Fig. 1(b)) that passes
data from Akka to RabbitMQ. On the C/C++ side, each actor is associated
with one thread (T) that waits for work in its RabbitMQ queue and, once avail-
able, fetches and forwards the data to the GPU for processing. The data is still
isolated and accesses do not have to be synchronized. Upon completion, threads
dispatch their result to the shared RabbitMQ result queue. The results are then
collected and merged by a coordination actor in Akka. With RabbitMQ it is
still necessary to provide both the CPU and the GPU implementations. It also
requires the development of custom code to interact with the communication
middleware (the proxy is not part of Akka).

DSL. For the DSL implementation we base our efforts on Delite [20], a frame-
work that provides high level DSLs and runtime for heterogeneous programming.
Delite expects that the programmer writes the entire application in the provided
DSLs and executes the generated code in a dedicated runtime environment. As
it is not always feasible to write the entire application in a DSL, our goal is to
provide finer control to the programmer such that only some parts of his appli-
cation have to be written in a DSL. In particular, only heterogeneous actors will
be written in one of the Scala-like intuitive DSLs provided by Delite.

To support the execution of generated code from the actor environment,
we need to provide custom communication facilities. Delite currently supports
communication to generated Scala code with an intermediate packaging step
into a Delite application object. To interact with this object (stored in a JAR
file), so-called Scopes are needed as entry points [21]. They are limited, how-
ever, to mapping simple Scala data types to generated Scala code and they
cannot forward data from Scala to the generated C++/CUDA code. As a first
measure, we enhanced Scopes with a JNI method for forwarding data to the
generated C++/CUDA code. We further extended Scopes to automatically load
the generated C++/CUDA code and enable the interaction between Scala and
C++/CUDA, which was not supported by Delite.

Another limitation of Delite is the lack of support for applications that main-
tain state between iterations. Typically, upon start-up the generated C++ code
allocates main memory and GPU memory for storing input and intermediate

6 Y. Hayduk et al.

data. Before completion, Delite cleans all the memory that it used during its
execution. We adapted Delite such that the state-relevant memory (e.g., input
dataset chunks copied to GPU memory) is only cleaned after the last iteration
of the application has been executed. With this measure we avoid copying data
between CPU and GPU at each actor message exchange.

In Fig. 2 we show the overall heterogeneous actor approach. The programmer
must provide actor code targeting the GPU in the Delite DSL (1), which will
generate and build the Delite application object (2). A lightweight mediation
part in Scala (3) is required to convert Akka messages into data structures for
the Delite application object and vice versa. We also provided support for Delite-
generated CUDA code to return the result to the calling Scala code.

4 Resource Load Balancing with Heterogeneous Actors

Since the CPU and the GPU have different performance characteristics, load
imbalances can happen. Hence, this section focuses on efficient workload balanc-
ing strategies for runtime and energy reduction.

To distribute work among actors on a CPU, Akka provides so called Routers
that schedule messages targeted to a set of actors accomplishing a similar task.
Specifically, the BalancingPool router embraces “work-stealing”6 by balancing
workload dynamically among worker actors. When an actor accesses its mailbox
to fetch the next available message to be processed, Akka transparently forwards
that request to a shared message queue started by the BalancingPool Router (see
Fig. 2). Since the mailbox queue is shared, any worker actor should be capable
of processing any message in the queue. Hence, Akka imposes a requirement for
worker actors to be stateless, thus limiting its usage for iterative applications.

To overcome this limitation, we propose to use the following strategies. First,
to enable iterative applications to be used with routers, we encapsulate all state
required for the execution into messages. Each message contains the required
context for having it processed on either the GPU or the CPU. For example, to
avoid copying input data on each iteration, we store a pointer to it in a message.
Also, to avoid synchronization issues between the CPU and the GPU memory,
the message also contains a result object, stored in CPU memory, to which all
implementations write intermediate results for the next iteration.

For actors running on both processing units, both implementations are
required and any of the strategies discussed in Sect. 3 can be used. Also, since
for iterative applications, the behavior will be repetitive, it is likely that the
number of actors running on a CPU/GPU will not change at runtime. Hence,
it is sufficient to find the optimal actor CPU/GPU configuration at startup. As
such, at application start we introduce a brief profiling phase. For each config-
uration (e.g., 0 GPU actors/8 CPU actors; 1 GPU actor/7 CPU actors; etc.),
we measure the execution time using 1 % of messages to be processed. Once
finished, we select the configuration with the lowest execution time and use it
for the processing of remaining messages.
6 The actual implementation more precisely follows a work-sharing approach.

Enhanced Energy Efficiency with the Actor Model 7

To summarize, our approach enables actors, independent of whether they run
on the CPU or GPU, to request work when required, thus leading to reduced
idle time and more balanced workloads.

5 Experimental Setup

Hardware. Our experiments are executed on a server equipped with an AMD
FX-8120 (8 cores, no hyperthreading) CPU and an NVIDIA GeForce GTX 780
Ti (2880 CUDA cores) with 3 GB of RAM. We use a hardware power meter
(Alciom PowerSpy v2.0) that periodically reports the system power in Watts.

Software. We base our evaluations on the well-known k-means [2] algorithm
used for splitting an input dataset into different clusters. K-means is a good
case study as it exhibits iterative and processing-intensive characteristics rep-
resentative for data-parallelism. We further focus on k-means as it is a well-
understood algorithm that can be represented in a straightforward manner in
Delite’s OptiML DSL. As such, we chose depth over breadth regarding our
analysis, presenting the results of k-means only. Despite exclusively focusing
on k-means, the core premise of heterogeneous actors is applicable for imple-
menting other iterative algorithms (e.g., coordinate descent, logistic regression,
deep belief learning with a restricted Boltzmann machine).

We used the thread-based STAMP [17] implementation of k-means as a basis
for creating the actor version. For the actor-based implementation the following
data structures are required: (1) input matrix; (2) current cluster center matrix;
(3) points to cluster center map (holds the current cluster center index for each
input point); (4) per-cluster member count structure (holds the number of points
assigned to each cluster).

Parallel Implementation with Actors. Our actor-based algorithm uses two
types of actors: iteration actors (Algorithm 1) and worker actors (Algorithm 2).
While a typical thread-based version maintains a shared copy of the current
cluster center matrix and the per-cluster member counts, the actor-based version
maintains a private copy of these data structures in each of the worker actors.

Algorithm 1. K-means iteration actor.
Data: input set, number of clusters, number of workers
Result: clusters
Initialize K cluster centers
foreach Worker do

Create workers and pass partial input set
while Termination condition is not met do

Send current cluster centers to worker actors
foreach Worker do

Receive partial results
Compute final cluster centers by merging partial results

8 Y. Hayduk et al.

Algorithm 2. K-means worker actor.
Data: partial input set, current cluster center
Result: local cluster centers, local member count
foreach Assigned input point do

Assign point to the closest cluster center
Update the local cluster centers matrix and member count

Send local cluster centers and cluster counts to iteration actor

The iteration actor then merges the data sent by each of the worker actors to
calculate the final cluster centers.

Heterogeneous Implementation with JNI. For the heterogeneous imple-
mentation we extend the baseline actor implementation. Specifically, we execute
the worker actor code on the GPU, while leaving the iteration actor unchanged
for execution on the CPU. We further preserve the communication patterns
between worker actors and the iteration actor. We reimplemented the worker
actor to access the GPU resources by calling the C/CUDA code using JNI with
the help of shared byte buffers as shown in Fig. 1(a). Each worker actor connects
to a C implementation that starts two CUDA kernels, one for finding the clos-
est cluster center for each input point (on block memory), and one for finding
the total number of points that changed clusters as compared to the previous
iteration (on GPU global memory). Once the GPU execution has finished, the
results are transferred to the result buffer and to the iteration actor.

Heterogeneous Implementation with RabbitMQ. In this implementation
we reused the CUDA code of the worker actor from the JNI implementation,
but adapted the communication pattern between Scala and C/CUDA. Each
worker actor now includes a proxy (as shown in Fig. 1(b)) that is responsible for
marshaling the messages and sending them to the RabbitMQ queue. Once work
is available, the aforementioned CUDA implementation is launched, omitting
the shared byte buffers. In the end, a proxy actor connecting to the iteration
actor transfers the results.

Heterogeneous Implementation using a DSL. We define the worker actor’s
logic using OptiML [19]—a Delite DSL. Next, we write the mediation code to
connect to the generated code (Fig. 2). The mediation code extracts the current
cluster centers from an Akka message, converts them to a Delite array (to map
the Rep data structures in the DSL), and then calls that generated code with
the array as input. Once the result is available, the mediation code converts it
to an Akka message and forwards it to the iteration actor.

Heterogeneous Work Balancing Implementation. For the implementation
of the work balancing use case any of the before mentioned implementations can
be used. We decided to use JNI as it showed the best performance (see Sect. 6).
We define the worker actor code just like in the heterogeneous implementation
with JNI, but the worker actors are able to execute on both the CPU and the
GPU. To enable load balancing, we require stateless actors, hence moved their

Enhanced Energy Efficiency with the Actor Model 9

state to messages (see Sect. 4). The profiling uses 1 % of the overall workload for
testing each possible configuration, hence we allow the programmer to set the
number of desired iterations manually.

System Configuration. K-means is a representative candidate for this evalu-
ation as it is able to work on different input sizes. For the first three implemen-
tations of k-means (CPU/GPU), we chose a default data set from the STAMP
benchmark with 65,536 input rows and 16 clusters. To test the profiling and selec-
tion process of the best share of CPU/GPU actors we use three different datasets:
small (4,096 rows), medium (10,240), large (131,072). We set the worker actor
count to match the CPU core count (i.e., 8). To enable efficient load balancing,
the iteration actor divides the work into more tasks than the number of worker
actors (32 tasks per iteration). As the run times can be considerably reduced
with a GPU, we increased the load to gather reasonable results. The profiling
takes 450 iterations per configuration, with an overall benchmark length of 5,000
iterations. We run each implementation 5 times and take the median execution
time and power readings; the energy is then calculated out of these two values.

6 Results and Discussion

In this section we discuss the results of the different k-means implementations
from Sect. 5 with respect to power consumption and execution time, and relate
them to energy consumption.

6.1 Reducing Power Consumption

We investigate the reduction of power consumption by varying the number of
workers, as well as the governors impacting the frequency of the CPU. The
default governor is ondemand ; its goal is to provide good performance when
work is available and downscaling of the frequency otherwise (DVFS).

On the left side of Fig. 3 we present the power consumption of the three
CPU-only Scala implementations (seq: sequential, par: parallel thread-based,
act: actor). We scale the number of threads/actors (4, 8, 16, 32) in separate runs
and average the results for each chosen frequency. The sequential implementa-
tion consumes the least power since only one core is used while the others are
idling. The ondemand governor depends on CPU utilization and, since k-means
is CPU-intense, power consumption of the ondemand and performance governors
is comparable. The powersave governor sets the CPU to the lowest frequency,
hence power consumption is reduced. The difference between the powersave and
other two governors is 70 W for the parallel implementations and around 40 W
for the sequential implementation.

The middle part of Fig. 3 shows the impact of the governors on the execution
time. The sequential algorithm using the powersave governor is about 3 times
slower than with any other governor. The parallel implementations exhibit a
slowdown of about 2 times if the powersave governor is used.

10 Y. Hayduk et al.

 0

 50

 100

 150

 200
ac

t

pa
r

se
q

power W

 0
 5

 10
 15
 20
 25
 30
 35
 40

ac
t

pa
r

se
q

execution time s
ondemand

performance
powersave

 0

 500

 1000

 1500

 2000

 2500

 3000

ac
t

pa
r

se
q

energy J

 0

 50

 100

 150

 200

ac
t

jn
i

ra
b

ds
l

power W

 0
 2
 4
 6
 8

 10
 12
 14

ac
t

jn
i

ra
b

ds
l

execution time s
ondemand

performance
powersave

 0
 200
 400
 600
 800

 1000
 1200
 1400

ac
t

jn
i

ra
b

ds
l

energy J

Fig. 3. Comparison of the power consumption (left), execution time (middle), and
energy (right) using different governors. The top graphs refer to CPU execution. The
bottom graphs include one bar for CPU-only execution and three bars for mixed exe-
cution (CPU/GPU).

Based on power and execution time measurements, we can compute the
energy consumption as shown in Fig. 3 (right). The actor implementation out-
performs the parallel and the sequential implementations. We can further see
that, while the powersave governor decreases the power consumption, the execu-
tion time is significantly higher. This leads to higher energy consumption than
when using the ondemand and performance governors. In general, the ondemand
governor seems to be the best choice independent of the type of implementation.

6.2 Reducing Execution Time

This section focuses on execution time reduction and its impact on energy con-
sumption. In the heterogeneous implementation, CPU actors cooperate with the
GPU in different ways. We compare the JNI implementation (jni) with Rab-
bitMQ (rab) and DSL actors (dsl) as described in Sect. 5. We also vary the
frequencies for the CPU running the remaining code.

Enhanced Energy Efficiency with the Actor Model 11

Figure 3 shows the power consumption (left), execution time (middle) and
energy consumption (right). We see that the power consumption is not impacted
by the usage of the GPU. The reason is that in this hardware setup the GPU
is more energy-efficient than the CPU, hence running code on the CPU is
more expensive in terms of power consumption. All GPU implementations exe-
cute faster than CPU implementations, yielding lower total energy consumption
(Fig. 3 (right)). The DSL implementation in powersave mode consumes 540 J,
which is lower than the 1,001 J of the actor implementation in ondemand mode.
In contrast to the CPU-only execution, we see that reducing the CPU frequency
with the powersave governor does not have a drastic impact on performance.
Therefore, the best choice would be the powersave governor in the heteroge-
neous scenarios.

With respect to the different implementations, JNI provides the most direct
way of communication with the GPU. This implementation does not provide the
decoupling nor the flexibility for seamlessly exchanging the code to be executed
on the GPU or the CPU. While the RabbitMQ implementation provides the
possibility of exchanging worker (GPU) code, it still requires the programmer
to implement the actual GPU code in C/CUDA. In comparison, by using het-
erogeneous actors with the DSL, programmers only need to provide the worker
code for message processing in one of the Delite DSLs.

In terms of the lines of code required to implement k-means, JNI imple-
mentation is the most energy-efficient one, it requires 336 lines for the k-means
logic written in CUDA and C, as well as 67 lines for providing JNI functional-
ity (communication logic). RabbitMQ uses the same k-means logic as JNI, but
requires another 337 lines for the communication logic. In comparison, our DSL
implementation does not require communication logic because it is automati-
cally generated by Delite. Hence, the overall effort for the DSL implementation
is as low as 39 lines of code.

From a programmer’s point of view heterogeneous actors with DSL represents
the best solution, with better energy efficiency than CPU-only implementations.
However, from an energy-efficiency point of view heterogeneous actors with JNI
are preferable, as with it is possible to reduce the energy consumption of up to
80 % in comparison to a solution running on the CPU.

6.3 Resource Load Balancing with Heterogeneous Actors

This section presents our proposed load balancing approach. We execute the
profiling phase as well as the full run on all datasets and combine the prediction
capability of the profiling phase. Clearly, the execution time of the full running
phase will be a multitude higher than the execution time of the profiling phase.
Therefore, we normalize all values to the execution time of the first configuration.
Figure 4 presents the results for different dataset sizes showing that the profiling
phase can mimic the execution time of the remaining workload reasonably well.
In more detail, for the small dataset we see that the problem is not scaled signif-
icantly to amortize overheads associated with executions on a GPU. When using
the medium dataset we see that the most efficient configuration is composed of

12 Y. Hayduk et al.

Fig. 4. Normalized execution time of the profiling phase as well as of the remaining
workload using different configurations of CPU/GPU actors.

3 GPU actors and 5 CPU actors. When we use a large dataset (e.g., also the
STAMP sample dataset from our former experiments), it is always beneficial to
process all the workload using GPU actors.

The energy consumption reveals the same trends, however, we further noticed
that with increased load, the CPU tends to use its turbo frequencies and hence
draws about 20 W more than in the experiments before. In the case of the large
dataset the CPU has a significantly higher power value if it shares work with
the GPU while the execution time is not reduced significantly. Therefore, from
an energy consumption point of view any sharing of work with the CPU in our
hardware setup would be disadvantageous. With the medium and small dataset
the load is not as high, hence sharing the work between the CPU and the GPU
leads to slightly increased power consumption but lower execution time, and
in total to lower energy consumption.

7 Related Work

In general, research on hybrid computing rarely considers energy efficiency.
Researchers focus more on performance improvements (e.g., [25]) or develop
power estimation models [11,14]. The trend of using graphical processing units
(GPUs) for scientific programming became popular as there is a potential for
significant performance improvement over executing only on a CPU. With the
radical reduction of execution time, GPUs can in turn reduce the total energy
consumption, providing means for energy-efficient programming [13,18]. Nev-
ertheless, if the gains in execution time of GPU implementations are not high
enough, the energy consumption might increase as compared to a CPU-only
implementation [18].

The PEACH framework [9], for example, combines performance and power
metrics to guide the scheduling on both CPU and GPU, but it focuses on defining
a theoretical model rather than a practical implementation capable of working

Enhanced Energy Efficiency with the Actor Model 13

with real-world applications. Researchers working on SEEP [12] aim at help-
ing programmers to produce energy-aware software. Their approach considers
continuous energy monitoring of specific code paths helping to identify energy-
hungry code. They mainly target, however, embedded systems capable of execut-
ing a single task. On the programming language level the authors of [8] divide
a program into phases for which specific CPU frequencies are assigned. This
approach does not only necessitate fine-grained monitoring of energy and exe-
cution time, but also requires that a program exclusively occupies a single core
of a CPU. In [15] the authors propose a hybrid OpenMP/MPI programming
model for power-aware programming. They use this model to steer the level of
parallelism as well as the current frequency of a CPU.

The SPRAT [22] environment can automatically select the proper execution
processor (either CPU or GPU) at runtime for energy efficiency. Migration is,
however, quite expensive as the current state of the application must be saved
when moving from one processor to another. There are a number of approaches
for scheduling work between the CPU and the GPU. They can be broadly divided
into performance/cost models (e.g., HEFT [23]), offline training [16], as well as
work stealing [7]. A performance/cost model requires determining the approxi-
mate runtimes and data transfer times beforehand for each processing unit. For
developers this requirement is hard to meet.

8 Conclusion

In this paper we tackle the problem of reducing energy consumption of parallel
programs in heterogeneous environments. As energy depends on both power con-
sumption and execution time, we investigate the impact of each independently.
We first reduce the power consumption with the help of frequency scaling. We
then reduce the execution time by running parts of an application on a GPU,
while the sequential parts remain on the CPU. We evaluate a number of strate-
gies for heterogeneous actors regarding their energy efficiency and programma-
bility. JNI and RabbitMQ provide a more direct way of accessing a GPU, while
the DSL implementations provide a concise and simple way for building hetero-
geneous actors. In a first step all heterogeneous implementations require manual
assignment to the best processing unit. Hence, our final contribution enables
automatic sharing of resources among actors yielding the highest energy effi-
ciency. Our contributions lead to significant reductions of energy consumption
in the range of 40–80 % as compared to CPU-only implementations.

References

1. Agha, G.: Actors programming for the mobile cloud. In: Symposium on Parallel
and Distributed Computing (ISPDCP), pp. 3–9. IEEE (2014)

2. Alpaydin, E.: Introduction to Machine Learning. MIT press, Massachusetts (2004)
3. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE Com-

put. 40(12), 33–37 (2007)

14 Y. Hayduk et al.

4. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A., et al.: A taxonomy and survey of
energy-efficient data centers and cloud computing systems. Elsevier Adv. Comput.
82(2), 47–111 (2011)

5. Cai, C., Wang, L., Khan, S.U., Tao, J.: Energy-aware high performance comput-
ing: a taxonomy study. In: International Conference on Parallel and Distributed
Systems (ICPADS), pp. 953–958. IEEE (2011)

6. Cook, G.: How clean is your cloud? Report, Greenpeace International, April 2012
7. Faxén, K.F.: Wool-A work stealing library. ACM Comput. Architect. News 36(5),

93–100 (2009)
8. Freeh, V.W., Lowenthal, D.K.: Using multiple energy gears in MPI programs on

a power-scalable cluster. In: Symposium on Principles and Practice of Parallel
Programming (PPoPP), pp. 164–173. ACM (2005)

9. Ge, R., Feng, X., Burtscher, M., Zong, Z.: PEACH: a model for performance and
energy aware cooperative hybrid computing. In: Conference on Computing Fron-
tiers, pp. 1–24. ACM (2014)

10. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: International Joint Conference on Artificial Intelligence
(IJCAI), pp. 235–245. Morgan Kaufmann Publishers (1973)

11. Hong, S., Kim, H.: An integrated GPU power and performance model. In: Interna-
tional Symposium on Computer Architecture (ISCA), pp. 280–289. ACM (2010)

12. Hönig, T., Eibel, C., Kapitza, R., Schröder-Preikschat, W.: SEEP: exploiting sym-
bolic execution for energy-aware programming. In: Workshop on Power-Aware
Computing and Systems (HotPower), pp. 1–4. ACM (2011)

13. Huang, S., Xiao, S., Feng, W.: On the energy efficiency of graphics processing
units for scientific computing. In: International Parallel & Distributed Processing
Symposium (IPDPS), pp. 1–8. IEEE (2009)

14. Kasichayanula, K., Terpstra, D., Luszczek, P., Tomov, S., Moore, S., Peterson,
G.D.: Power aware computing on GPUs. In: Symposium on Application Accelera-
tors in High-Performance Computing (SAAHPC), pp. 64–73. IEEE (2012)

15. Li, D., de Supinski, B.R., Schulz, M., Cameron, K., Nikolopoulos, D.S.: Hybrid
MPI/OpenMP power-aware computing. In: International Parallel & Distributed
Processing Symposium (IPDPS), pp. 1–12. IEEE (2010)

16. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: IEEE/ACM International Symposium on
Microarchitecture (Micro), pp. 45–55. ACM (2009)

17. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: stanford transac-
tional applications for multi-processing. In: International Symposium on Workload
Characterization (IISWC), pp. 35–46. IEEE (2008)

18. Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., Sarrafzadeh, M.: Energy-
aware high performance computing with graphic processing units. In: Workshop
on Power Aware Computing and Systems (HotPower), p. 11. ACM (2008)

19. Sujeeth, A., Lee, H., Brown, K., Rompf, T., Wu, M., Atreya, A., Odersky, M.,
Olukotun, K.: OptiML: an implicitly parallel domain-specific language for machine
learning. In: International Conference on Machine Learning (ICML), pp. 609–616.
ACM (2011)

20. Sujeeth, A.K., Brown, K.J., Lee, H., Rompf, T., Odersky, M., Olukotun, K.: Delite:
a compiler architecture for performance-oriented embedded domain-specific lan-
guages. ACM Trans. Embed. Comput. Syst. 13(4s), 1–25 (2014)

Enhanced Energy Efficiency with the Actor Model 15

21. Sujeeth, A.K., Rompf, T., Brown, K.J., Lee, H.J., Chafi, H., Popic, V., Wu, M.,
Prokopec, A., Jovanovic, V., Odersky, M., Olukotun, K.: Composition and reuse
with compiled domain-specific languages. In: Castagna, G. (ed.) ECOOP 2013.
LNCS, vol. 7920, pp. 52–78. Springer, Heidelberg (2013)

22. Takizawa, H., Sato, K.: SPRAT: runtime processor selection for energy-aware com-
puting. In: International Conference on Cluster Computing (Cluster), pp. 386–393.
IEEE (2008)

23. Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

24. Trefethen, A.E., Thiyagalingam, J.: Energy-aware software: challenges, opportuni-
ties and strategies. Elsevier J. Comput. Sci. 4(6), 444–449 (2013)

25. Yang, C., Wang, F., Du, Y., Chen, J., Liu, J., Yi, H., Lu, K.: Adaptive optimization
for petascale heterogeneous CPU/GPU computing. In: International Conference on
Cluster Computing (Cluster), pp. 19–28. IEEE (2010)

Evaluating the Cost and Robustness
of Self-organizing Distributed Hash Tables

Sveta Krasikova, Raziel C. Gómez, Heverson B. Ribeiro, Etienne Rivière(B),
and Valerio Schiavoni

Université de Neuchâtel, Neuchâtel, Switzerland
{sveta.krasikova,raziel.gomez,heverson.ribeiro,etienne.riviere,

valerio.schiavoni}@unine.ch

Abstract. Self-organizing construction principles are a natural fit for
large-scale distributed system in unpredictable deployment environ-
ments. These principles allow a system to systematically converge to
a global state by means of simple, uncoordinated actions by individ-
ual peers. Indexing services based on the distributed hash table (DHT)
abstraction have been established as a solid foundation for large-scale
distributed applications. For most DHTs, the creation and maintenance
of the overlay structure relies on the exploration and update of an already
stabilized structure. We evaluate in this paper the practical interest of
self-organizing principles, and in particular gossip-based overlay con-
struction protocols, to bootstrap and maintain various DHT implementa-
tions. Based on the seminal work on T-Chord, a self-organizing version of
Chord using the T-Man overlay construction service, we contribute three
additional self-organizing DHTs: T-Pastry, T-Kademlia and T-Kelips.
We conduct an experimental evaluation of the cost and performance of
each of these designs using a prototype implementation. Our conclusion
is that, while providing equivalent performance in a stabilized system,
self-organizing DHTs are able to sustain and recover from higher level
of churn than their explicitly-created counterparts, and should therefore
be considered as a method of choice for deploying robust indexing layers
in adverse environments.

1 Introduction

The scale and complexity of distributed systems have dramatically increased in
the last decade. Among the abstractions that allow building large-scale distrib-
uted services, DHTs (distributed hash tables) play a fundamental role. Applica-
tions of DHTs are numerous, ranging from communication backbone [2,9] to file
systems [3] and media streaming [1]. DHTs are at the heart of many industrial
large-scale storage systems such as Amazon S3/Dynamo [4].

A DHT is a decentralized index, where each node is responsible for a small
disjoint subset of the index. Nodes are organized in some overlay network. The
base structure of this overlay allows establishing routing paths towards the node

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 16–31, 2016.
DOI: 10.1007/978-3-319-39577-7 2

Evaluating the Cost and Robustness of Self-organizing DHTs 17

responsible for a given object (based on the key of this object, typically a hash
of its name or its content). Additional links are added to this base structure in
order to provide faster routing, and to exploit redundancy for tolerating crash
faults. A plethora of DHTs structures have been proposed. For instance, based on
rings [24,25,29], based on a prefix-trees [20], based on the Butterfly graphs [18],
based on De Bruijn graphs [8]; or using clusters of complete graphs [10].

One of the defining characteristics of large-scale distributed systems is their
instability: due to their size, nodes are expected to join and leave regularly, a
phenomenon called churn. Being able to tolerate high levels of churn is a key
requirement for large-scale decentralized systems.

In the classical method to build DHTs, a new node will gradually navigate an
existing structure to find its neighbors, and inform nodes that should connect
to it. Under churn, or when there are concurrent nodes arrivals, this process
may lead to an inconsistent state due to conflicts in the concurrent join or
repair processes. To avoid this, joins and repairs should ideally be performed as
form of transactions, first contacting all nodes involved in the operation, locking
them, applying the change, and finally unlocking them to ensure the atomicity
of the overlay changes. A more widespread method is to have all nodes join in
sequence, but this means that constructing a network requires a time that is
linear in the number of nodes. It is also unclear how this process of sequential
joins can be coordinated without a centralized authority. Both methods are
costly, error-prone and non-scalable. The reason why these issues have received
little attention in the literature (with the exception of [11]) is the overuse of
simulations for DHT evaluations, where simplified models removed the need for
atomic structure updates.

Gossip-based overlay construction has been proposed as an alternative to the
explicit construction and maintenance of overlay networks. When designed prop-
erly, gossip-based algorithms can indeed provide self-stabilization guarantees [5].
This means that they are able to recover from any chaotic or incorrect state, as a
self-stabilizing system is constantly converging to one of its correct states. Gossip-
based protocols are based on simple pairwise interactions between nodes. Nodes
typically only have a limited view of the whole system; this view is nevertheless
sufficient to take local decisions and implement global behaviour without requiring
complex multi-node operations. Two similar frameworks were proposed for gossip-
based overlay construction: Vicinity [26] and T-Man [12]. They offer generic con-
struction services allowing users to specify how nodes select their neighbors in the
target structure. By converging gradually to the perfect set of neighbors on each
node, Vicinity and T-Man create global structures autonomously. The use of a
Peer Sampling Service [14] is required to provide convergence guarantees. Gossip-
based overlay construction protocols allow bootstrapping a new structure from
any state, such as a previously existing structure or even random connections [11].

In their seminal work, the authors of T-Man [12] present the gossip-based
construction of Chord [25] as an application of their framework. The resulting
system, named T-Chord, is evaluated through cycle-based simulations without
considering the impact of churn. We are interested in this work in evaluating
the cost, performance and robustness of gossip-constructed DHTs deployed

18 S. Krasikova et al.

in adverse environments. In addition to T-Chord, we contribute three novel
gossip-constructed DHTs using the T-Man framework, namely T-Pastry (follow-
ing [24]), T-Kademlia (following [20]) and T-Kelips (following [10]). We deployed
all four DHTs in a cluster of up to 600 independent nodes and evaluated the cost,
performance and robustness of the resulting DHTs structures including when
subject to various level of churn. Our findings are the following: the overlays
constructed by gossip provide similar performance to the explicitly-constructed
ones, or better performance, when there is no churn. They impose a perma-
nent but steady bandwidth consumption at each node (typically within 2 to
10 KB/s), but are able to (1) perform better under churn and (2) recover to a
stable structure faster than DHTs using regular, explicit construction. We also
make general observations on the convergence of DHT links using gossip, which
can vary widely in performance depending on the nature of the created graph
and the mean by which each node selects its neighbors.

The rest of the paper is organised as follows. We review related work in
Sect. 2. We present the principles of T-Man in Sect. 3, and its use for constructing
the four DHT structures in Sect. 4. We detail our experimental results in Sect. 5,
before concluding in Sect. 6.

2 Related Work

We discuss related work on the evaluation of DHTs and gossip-based protocols
as deployed systems. We are not aware of any work evaluating the performance
of gossip-constructed DHTs deployed in the field.1

The study of regular DHTs deployed over the internet has sparkled significant
interest in the last decade. The authors of [27] analyze the lookup performances
of Kad, a Kademlia-inspired DHT [20], to identify optimal configuration sweet-
spots for routing efficiency. Several studies reveal that Kademlia presented slow-
ness issues affecting its routing performance [22]. The Vuze/Azureus network has
been subject of a profiling analysis [6] to characterize the dynamics of its under-
lying DHT, in particular in the presence of churn. Similar simulation studies for
Tapestry and OneHop exist [17].The authors of [23] study the performance of the
Bamboo DHT under churn using a real implementation and network emulation.
Analytical studies can help in modeling the expected performance of DHTs, in
stable environments [27] or under churn [28].

Studies of gossip protocols deployed in the wild offer concrete evidence of
their effectiveness but are not numerous. The BuddyCast gossip protocol was
implemented and deployed to support social recommendation, peer and content
discovery, in the context of the Tribler P2P social network [21]. LayStream [19]
stacks multiple gossip-based protocols to provide an efficient and churn-resilient
dissemination overlay for online video-streaming. LayStream uses T-Man [12]
to construct a spanning tree that considers network costs, but does not require
a DHT.
1 The one-hop DHT at the core of S3/Dynamo [4] uses gossip and is deployed, but

it targets a stable data center environment with less faults and a complete graph
structure.

Evaluating the Cost and Robustness of Self-organizing DHTs 19

3 Gossip-Based Overlay Construction

This background section describes the gossip-based overlay construction protocol
T-Man [12], that we use to bootstrap DHTs in the rest of this paper. The
goal of a T-Man instance is to construct for each peer a view, which contains
contact information for a number neighbor peers. Unless otherwise noted, we use
instances for which the view size is bounded to a maximum of c peers. Neighbors
are selected according to a distance function. The basic principle of T-Man is
to periodically look for the “best” neighbors, among the ones in the current
view and candidates obtained by exchanges with other peers. Peers are ranked
according to the distance function, and the c closest are kept as neighbors. In
case of a tie, other criteria can be used for ranking, or simply a random pick.

In order to guarantee convergence, a T-Man instance must rely on an under-
lying instance of the Peer Sampling Service (PSS) [14]. The PSS also creates a
view of bounded size at each peer, but with the goal that the resulting overlay
resembles a random graph as much as possible, guaranteeing a strong resilience
to partitions and good recovery properties. This graph is constantly evolving,
providing a stream of fresh random peers to each node. The PSS is in charge of
inserting new peers in the system and bootstrapping the views for the T-Man
instances. The PSS is typically implemented by means of gossip-based interac-
tions itself. The use of the random peers from the PSS allows nodes to avoid
ending in a state where the current selection of neighbors is a local minima
that is not the global minima, with no possibility to learn about neighbors that
belong to the latter [26].

T-Man interactions follow the classical gossip framework. Each peer features
two threads. The active thread is in charge of initiating exchanges, and the
passive thread is in charge of answering these requests. The active thread triggers
an exchange every Δ time units. It selects the partner either from its T-Man
view or from the PSS; more typically, alternating between the two options. The
partner selection is normally based on the age of the entry, i.e. the time since its
inception by the active thread of the corresponding node during an exchange.
Older links are tested first in order to get rid of links to failed peers within a
bounded time. The initiator selects from its view the set of entries it wishes to
share with the partner (typically, all of them if entries are not associated with

Fig. 1. Convergence of a peer p’s view towards clockwise ring neighbors with T-Man.

20 S. Krasikova et al.

heavy payloads as will be the case in the remainder of this paper). After the
exchange, on both sides peers p and q consider the union of their current view
and the received entries to form a new view in the selectToSend function.
Entries are sorted according to the specific distance function d associated with
this T-Man instance, and on both sides the c first entries are kept as the new view.

We illustrate the process of overlay construction using T-Man with a simple
example of a ring in Fig. 1. This example will be the basis for the two of the
DHT constructions described in the next pages, T-Chord and T-Pastry. Each
peer has a identifier id, drawn from a large circular space (e.g., [0..2m − 1]).
We define distance cw as the clockwise distance on the ring, i.e., cw(p.id, q.id) =
(2m+q.id−p.id) mod 2m. In this example, the size of the view is c = 3, therefore
the goal of peer p is to converge towards its three successors on the ring. We see
that, by interacting with peer q, p learns about peers that minimize distance cw
and eventually converges to the three closest peers.

4 Four Gossip-Based Self-Organizing DHTs

We present in this section the four DHTs used in our evaluation. In the interest
of space, we focus our description on the overlay structure aspect, that is built
using gossip. Other aspects, such as the routing process, data storage and repli-
cation, use the mechanisms presented in the original papers [10,20,24,25]. For
each DHT, we provide a list of T-Man instances (Table 1) used to construct the
different sets of links each node must possess to form the global structure. We
will first present all of the instances as operating independently (as illustrated
on the right hand side of Fig. 3) and revisit this by presenting runtime optimisa-
tions in Subsect. 4.5. There exists two types of links in each structure. Mandatory
links are required to ensure correct routing towards the peer responsible for a
given key. Optional links are not required for correctness but allow to speed up
routing, or provide redundant links for robustness.

4.1 T-Chord

We start by describing the self-organizing version of Chord [25], T-Chord, origi-
nally proposed in [12]. The structure is shown in Fig. 2 (left). A node p is assigned

Fig. 2. Ring-based DHTs: Chord [25] and Pastry [24].

Evaluating the Cost and Robustness of Self-organizing DHTs 21

Table 1. T-MAN instances (inst.) in T-Chord, T-Pastry, T-Kademlia and T-Kelips.

a bit identifier p.id in m = 128 bits, determining its position on a ring. The first
view links to the set of mandatory successors. It uses the cw distance function
defined in the previous section. While the original Chord algorithm uses a single
successor neighbor, using a set of c = 3 successors allows routing around fail-
ures and implementing replication. A single-neighbor view links to the predeces-
sor of the node. The distance function is the counterclockwise distance ccw , where
ccw(p.id, q.id) = (2m+p.id−q.id) mod 2m. Node p is responsible for the range of
keys following its predecessor and including its own key. The predecessor is used in
the original Chord to implement reparation procedures. In T-Chord, the constant
convergence towards the optimal peers does not require the presence of the prede-
cessor. Maintaining it allows to compare against the original structure and speed
up the convergence of the predecessor’s successor list by initiating exchanges that
would otherwise only happen through random selection via the PSS. Finally, a
set of long-range neighbors, or fingers, allows efficient routing on the ring, which
otherwise would take O(N) steps, N being the number of nodes. Each finger must
point to the node that is the immediate successor to the finger destination, cov-
ering increasing portions of the ring. Each finger fi’s destination is at a double
distance on the ring from the destination of the previous finger fi−1: the first fin-
ger points to p.id + 21 and is effectively the first successor, while the last finger
points halfway across the ring to p.id + 2m−1. The distance function is therefore
cw , with the distance computed from this destination rather than from p.id. Fin-
gers allow O(log N) routing costs, but are not mandatory for routing correctness.
We note that there is conceptually one instance of T-Man per finger, leading to
1+1+m−1 = m+1 T-Man instances in addition to the mandatory PSS, as shown
in Fig. 3. We explain in Sect. 4.5 how the exchanges for these multiple instances
can be grouped. Furthermore, in practice only instances for longer fingers need
to be enabled, i.e., instances that target a destination that is before the farthest
successor can be disabled as they would be duplicates of the successors.

22 S. Krasikova et al.

Fig. 3. T-Chord: stack of m + 1 T-Man instances and the PSS on peer P.

4.2 T-Pastry

T-Pastry creates the structure of Pastry [24] by gossip using a set of T-Man
instances. The structure of Pastry as seen from a node p is shown in Fig. 2 (right).
Similarly to Chord, node p has an identifier p.id in m = 128 bits. This identifier
is represented as digits in base 2b. Figure 2 uses b = 2 but our implementations
of T-Pastry and Pastry in Sect. 5 uses b = 4. Each node maintains two sets
of immediate neighbors on the ring, in both directions. These mandatory links
form the leafset. Two instances of T-Man are required, using previously-defined
distance functions cw and ccw and a view size of c = 8 for each. In addition,
each node maintains a routing table (RT). The goal of the RT is to link to nodes
that allow matching a prefix with a target key k that is longer than the common
prefix between p.id and k. The RT allows O(log N) routing hops. For instance,
in Fig. 2, p with p.id starting with 01* links to nodes that allows matching 02*,
2*, 3*, etc. The RT is organized as a set of m

b rows, one per increasing prefix
length, and 2b columns, one per digit value. A key difference with T-Chord
is that multiple nodes can be selected for a given RT entry, e.g., any node in
the upper left quartile of the ring is adequate for the entry 3*. This property
allows selecting any of the eligible nodes for this RT entry, in particular based on
network proximity. We do not make use of this possibility in our implementation,
as our cluster testbed does not have heterogeneous links. Each of the RT entry
can be (conceptually) filled by one T-Man instance for which the distance is set
as pd (binary prefix distance) to a target prefix πi of p.id, of i ∈ [0..mb] digits:
pd(πi, q.id) = 0 if πi = q.id.pre(i)), where q.id.pre(i) is the prefix of q.id of i
digits, and ∞ otherwise. The total number of T-Man instances for the RT is
(m.2b)/b. While this number seems to indicate a large amount of independent
T-Man instances running concurrently, this is merely a conceptual description.
We explain in Subsect. 4.5 how instances are actually grouped and merged by
the runtime.

Evaluating the Cost and Robustness of Self-organizing DHTs 23

4.3 T-Kademlia

Kademlia [20] is a DHT design allowing prefix routing based on the XOR metric.
Nodes have identifiers in m = 160 bits and the structure as seen by a node p
is depicted in Fig. 4 (left). It can be modeled as a binary tree, where for each
prefix π of p.id, a bucket represents the set of nodes with a prefix that differs
in the |π| + 1th bit. For instance, peer p with p.id =1011 and m = 4 considers
4 buckets, containing nodes with prefixes 0, 11, 100, 1010, respectively. The
binary tree is not materialized–instead, the goal of each node is to find at least
one representative neighbor in each bucket, if such a node exists. T-Kademlia
uses m T-Man instances, one per bucket. Each instance Bi with i ∈ [0..m − 1]
is parametrized with a prefix πi of p.id, with |πi| = i − 1, to which one bit is
added, which is the complement of the ith bit of p.id. The distance function
used for each instance Bi is xor , where xor(πi, q.id) = πi ⊕ q.id. The first link
to a bucket is considered mandatory, as routing requires being able to resolve
any prefix towards a destination key. Extra optional links are kept (2 in our
implementation, hence a view size of c = 3 links) in order to tolerate faults.

Fig. 4. Kademlia [20] and Kelips [10] DHTs.

4.4 T-Kelips

Our last DHT is T-Kelips, which emerges the structure of Kelips [10] by using
a total of G =

√
Ñ instances of T-Man, Ñ being an estimation of the num-

ber of nodes provided when bootstrapping the DHT. Such an estimate can be
obtained using a gossip aggregation protocol [13] or using the interval density
approach described in [15] on the PSS’s view. The structure of Kelips is simple
and allows O(1) routing at the cost of O(G) connections, more than for pre-
vious designs. The set of nodes is split into G groups. Each node must know
all members of its group, as well as at least one representative in each of the
other groups. Routing requires two steps: locating the appropriate group for tar-
get key k, as k mod G, and locating the node responsible for k in the group,
this time using advertised responsibility ranges, as done in the O(1) DHT at
the heart of S3/Dynamo [4]. The original Kelips construction mechanisms uses
gossip principles for node detection but without the clear guarantees for con-
vergence allowed by the use of a PSS and T-Man instances stack. We formalize

24 S. Krasikova et al.

T-Kelips as the combination of two views. The first view contains all members
of p’s group. The distance function is same group, or sg , where sg(p.id, q.id) = 0
if p.id mod G = q.id mod G, and ∞ otherwise. Unlike previously mentioned
T-Man instances, the size of this view is unbounded, and all links therein are
mandatory. The remaining G−1 other instances contain each links to one group,
excepting the one p′s belong to. Each instance i ∈ [0..G − 1]\(p.id mod G) is
equipped with distance sg i, defined as sg(i, q.id) = 0 if i = q.id mod G, and ∞
otherwise. The view at each instance is bounded to c = 3. We consider the first
link to be mandatory and the remaining two to be optional.

4.5 Optimisations and Interactions with the PSS

So far we considered multiple, independent instances of T-Man interacting with
the other corresponding instances on other nodes, as illustrated for T-Chord in
Fig. 3. As previously detailed, all instances rely on the existence of the PSS in
order to guarantee convergence. This interaction happens in two forms. First,
gossip partners can be selected from the PSS. We alternate between a selection
in the T-Man view and the PSS view. Second, the nodes in the PSS view are
automatically considered for inclusion in all the views of the locally running T-
Man instances. The use of links provided by the PSS is crucial for some of the
views, such as the RT entries in T-Pastry, where there is no transitivity in the
node selection: either a node has a correct suffix or it does not, and it is not
possible to gradually navigate towards closer and closer neighbors as shown in
the example with distance cw in Fig. 1. Exchanges for multiple T-Man instances
are also grouped: an interaction between two nodes automatically exchanges
views for all T-Man instances shared by the two nodes, and the gossip cycle
Δ is the same for all instances. The implementation allows however defining
each instance separately–the grouping is handled automatically by the T-Man
runtime. This allows a simple and principled definition of the gossip stack while
maximizing convergence speed, and is made possible thanks to the small payload
(a single m bits identifier) associated with each of the entries.

5 Evaluation

We present in this section the evaluation of T-Chord, T-Kademlia, T-Pastry and
T-Kelips using a prototype implementation. For Pastry, we include comparison
figures against an implementation following the explicit construction and main-
tenance mechanisms of the original paper [24]. For space reasons, we leave the
comparison of the other explicitly-constructed DHTs to future work.

We leverage the Splay framework [16] for our experiments. All protocols and
the T-Man runtime are coded in Lua. We use a cluster of 12 dual-core Intel
Core2 machines (24 cores in total), each with 2 GB of RAM and interconnected
using a switched 1 Gbps network. We deploy up to 600 nodes over this cluster.
The PSS we use is an implementation of the framework in [14]. The view size
is c = 10. Two parameters S and H allow setting the compromise between the

Evaluating the Cost and Robustness of Self-organizing DHTs 25

randomness quality of the PSS overlay (S) and the ability to quickly discard
failed peers (H). We use S = c/2−1 = 4 and H = 1. The gossiping period Δ for
both the PSS and T-Man instances is set to 5 s. We consider crash failures only,
and leave the evaluation of the impact of other failures models such as omissions
and fail-recovery failures, to future work.

We study the convergence of the four structures in Sect. 5.1 and their routing
efficiency in Sect. 5.2. The network costs for constructing the four DHTs using
gossip are evaluated in Sect. 5.3. Finally, we conclude in Sect. 5.4 by observing
the behaviour of the protocols under churn and comparing against the explicitly-
constructed Pastry implementation.

5.1 Overlay Convergence in a Stable Network

We start by analyzing the speed of convergence towards the target structure of
the four DHTs. For each node, after each T-Man exchange, the set of neighbors
in each of the views is compared to what would be selected by an omniscient
observer. Mandatory and optional links, as defined in Table 1, are considered
separately. This omniscient selection would pick the c peers with the smaller
distance (e.g., for T-Chord’s successors and fingers, or for T-Pastry’s leafsets)
or, when multiple peers are equally close to the node, consider valid any random
set of c peers among the ones at this distance (e.g., for T-Pastry’s RT entries of
T-Kademlia’s buckets).

Fig. 5. Convergence of links in gossip-based DHTs.

Figure 5 presents convergence results for mandatory (Fig. 5a) and optional
(Fig. 5b) links. We use a representation based on stacked percentiles throughout
this section. The white bar at the bottom represents the minimum value, the
pale grey bar on top the maximal one. Intermediate shades of grey represent the
25th, 50th–the median–, and 75th percentiles. The median time for a T-Pastry
node to learn all of its mandatory links is 5 cycles (25 s). For both T-Chord
and T-Pastry, all nodes reach mandatory links convergence within 12 cycles
(60 s). For T-Kelips, it takes twice as much time, which is explained by the
higher number of mandatory links (O(

√
N) entries, ≈ 50 average in practice).

T-Kademlia has the slowest convergence of mandatory links (up to 65 cycles, or
5.4 min in the worst case). Other experiments (not shown) show that this worst-
case time increases linearly with the network size, leading to poor scalability.

26 S. Krasikova et al.

It is interesting to understand the reason for this slow convergence. The distance
function used, xor , is discrete and transitive: if a node n1 is close to node n2,
who is in turn close to node n3, then there is a higher probability that n1 be
close to n3, than it would be with a random node. This property typically allows
speeding up the overlay convergence, as nodes gradually learn about closer and
closer peers. However, the nature of the overlay built by T-Kademlia prevent
this gradual selection from happening. Indeed, a peer in a bucket Bi of peer
p contains neighbors starting with a prefix πi whose last (ith) bit differs from
the ith bit of p.id. These neighbors may themselves have neighbors that would
minimize p’s xor distance, but they are selected among all eligible neighbors and
in a single bucket (a Bj for which πj has the same i−1 bits as πi and the same ith

bit as p.id). A result is that the probability for these peers to be of interest to p
is the same as the one for peers drawn randomly from the PSS, explaining that
the convergence performance is similar to what would happen by considering
random peers only, and its duration evolves linearly in the number of nodes.
Optional links in T-Kademlia are selected similarly to the mandatory ones, and
their convergence shows similar performance. The same similar behaviour for the
two types of links is displayed by T-Kelips, and for the same reason. Optional
links differ in their definition from mandatory ones for both T-Chord and T-
Pastry. In both cases, the latter are more numerous but can accommodate a
lazy construction. Their convergence is indeed slower–while our evaluation of
the percentage of correct links (not shown) shows that nodes converge quickly
to a high number of correct links on average, the time to get all correct links,
shown in Fig. 5 depends on the few last missing links to be selected and increases
the overall convergence time for the top of the distribution. It is also important
to highlight the impact of the gossiping cycle on the convergence time. Shorter
periods result in faster convergence. However, the bandwidth consumption will
increase. Some solutions propose to dynamically adapt the gossip period [7].

The gossip partner selection strategy (from T-Man, PSS, or alternating
between the two) impacts the convergence speed. Figure 6 presents a sample
evaluation of this factor for the T-Chord DHT. We observe that the partner
selection has a different effect depending on the optionality of links. For manda-
tory links, formed of the successors view, selecting partners from the PSS only is
the fastest, leading to convergence in less than 8 cycles (40 s). Selecting partners

Fig. 6. Partner selection in T-Chord. Fig. 7. Overlays routing efficiency.

Evaluating the Cost and Robustness of Self-organizing DHTs 27

from the view leads to up to 65 cycles (5.4 min) for convergence, with a lin-
ear distribution. The combined (alternating between the two) strategy has good
general case convergence but also incurs outliers converging in up to 26 cycles
(2.2 min). This behavior can be explained based on the nature of the successors
lists. A node p who has node q selected as its current successor can ask for q’s
successors, but it is unlikely that those will be closer to p than they are to q,
and will replace the current successors of p. It is only when p is connected to its
very close neighbors that these will help to converge by sharing their views and
in particular their predecessor. Random interactions are more efficient in this
case for fast convergence. Interestingly, the opposite is true for optional links
(fingers): random interactions through the PSS yield the slowest convergence,
while using the combined approach is slightly faster than using the views only.
For T-Kad we observe that selecting partners from the PSS only is the slowest
option among the strategies, leading to a median convergence time of 24 cycles
(2 min), while selecting from the view yields 9 cycles (45 s) and using the com-
bined strategies requires 11 cycles (55 s). We observe the same lack of pattern
for T-Pastry and T-Kelips but in the interest of space we do not present those
results. This shows that there does not seem to be a one-size fits all for this para-
meter; we leave the automatic adaptation of gossip-based overlay construction
protocol for future work and use the combined selection in the remaining of our
evaluation.

5.2 Routing Efficiency

Our next benchmark evaluates the efficiency of routing in the converged DHTs
structures. We evaluate the routing costs by sending 50 queries per node to
randomly generated keys for a total of 30,000 queries. Figure 7 shows the dis-
tribution of the number of hops in each of the structures, with the exception
of T-Kelips where this number is always 1 (in the same group) or 2 (general
case) by construction. We see that the routing performance is on par with the
expectations, in particular, T-Pastry can deliver queries as efficiently as Pastry:
50 % of the queries reach the destination in at most 2 hops, while outperforming
T-Kademlia and T-Chord, where 50 % of the queries require 4 hops.

Fig. 8. Upload throughput in a static scenario for the four DHTs.

28 S. Krasikova et al.

5.3 Bandwidth Consumption

We evaluate the network bandwidth cost of the gossip-based construction of
DHTs. This aspect has been one of the criticized aspects of gossip-based proto-
cols, in particular for dissemination. With the constant and regular exchanges
of information, even in a stabilized network, gossip-based protocols indeed incur
a constant network cost for these exchanges. We do not consider techniques for
auto-adapting the gossip cycle Δ such as [7] but present in Fig. 8 the bandwidth
consumed by the four DHT, as the distribution of upload costs per node, as a

Fig. 9. Mandatory links convergence and lookup success under churn.

Evaluating the Cost and Robustness of Self-organizing DHTs 29

function of time. As expected, this distribution remains stable over time; with a
small spread that is for the most part due to our fixed-time range aggregation.
For all four DHTs, the bandwidth requirement is around 3 to 10 KB/s, up to
20 KB/s for T-Pastry. We believe these numbers remain reasonable in a wired
environment; we leave the implementation of bandwidth capping mechanisms,
in particular at the level of the aggregation of T-Man instances by the library,
as future work (one solution being to send to a partner only the peers that have
a potential interest for its own views rather than the whole set).

5.4 Behaviour Under Churn

Figure 9 presents the evolution of the overlay structures (convergence of the
mandatory links, compared to an offline trace of online nodes in the system) and
the success rates for lookups, when the system is subject to churn. We compare
the behavior of Pastry to three of the gossip-based DHTs. We leverage Splay’s
ability to replay churn traces and orchestrating the creation and failure of peers.
We use same churn trace for all four systems: the system starts in a stable state
with 150 nodes. During the churn period of 20 min, indicated by the arrow on the
figures and starting at time 10 min, every minute 15 % of the nodes are replaced :
one node goes down and another one goes up. New nodes are fresh nodes and
we leave the consideration of recovering nodes to future work. This results in
the arrival of 450 new nodes and the departure of the same amount of nodes
in the duration of the churn period. The churn period is followed by a stable
period of 10 min. We observe that T-Kademlia is the least affected by churn: the
lookup success rate is close to 100 % and the deviation from the correct state is
insignificant. Once the system stabilizes, it immediately converges to the correct
state again. The high success rate during churn is a result of the presence of
redundant links in the routing table. T-Chord, likewise, converges to the ideal
state right after the end of the churn period. Its lookup correctness is however
more impaired compared to T-Kademlia during the churn. The performance of
regular Pastry is more impaired by churn than that of T-Pastry, as the structure
diverges more from the ideal and the lookup success rate is more impacted.

6 Conclusion

We have presented in this paper the design and evaluation of DHTs using gossip-
based overlay construction principles. Following T-Chord based on T-Man [12],
we presented the design of T-Pastry, T-Kademlia and T-Kelips. We evaluated the
four DHTs using the Splay framework on up to 600 nodes, and under churn. The
results indicate that gossip-based overlay construction is a sound approach for
large and dynamic system: while it requires a constant bandwidth consumption,
it is able to bootstrap overlays in very short times without concerns about the
structure correctness or degradation. For one representative system compared
against its explicitly-constructed counterpart (Pastry), the overlay resulting from
the gossip-based construction shows better ability to handle and recover from
churn.

30 S. Krasikova et al.

Acknowledgments. The research leading to these results has received funding from
CHIST-ERA under project DIONASYS, and from the Swiss National Science Founda-
tion (SNSF) under grant 155249.

References

1. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: high-bandwidth multicast in cooperative environments. In: SOSP
(2003)

2. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scribe: A large-scale
and decentralized application-level multicast infrastructure. IEEE JSAC 20, 100–
110 (2002)

3. Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., Stoica, I.: Wide-area cooper-
ative storage with CFS. In: SOSP (2001)

4. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: SOSP (2007)

5. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
6. Falkner, J., Piatek, M., John, J.P., Krishnamurthy, A., Anderson, T.: Profiling a

million user dht. In: ACM IMC (2007)
7. Felber, P., Kermarrec, A.-M., Leonini, L., Rivière, E., Voulgaris, S.: Pulp: an

adaptive gossip-based dissemination protocol for multi-source message streams.
Springer PPNA 5(1), 74–91 (2012)

8. Fraigniaud, P., Gauron, P.: D2B: A De Bruijn based content-addressable network.
Theorical Computer Science (2006)

9. Gupta, A., Sahin, O.D., Agrawal, D.P., El Abbadi, A.: Meghdoot: content-based
publish/subscribe over P2P networks. In: Jacobsen, H.-A. (ed.) Middleware 2004.
LNCS, vol. 3231, pp. 254–273. Springer, Heidelberg (2004)

10. Gupta, I., Birman, K., Linga, P., Demers, A., Van Renesse, R.: Kelips: Building an
efficient and stable P2P DHT through increased memory and background overhead.
In: IEEE P2P (2003)

11. Jelasity, M., Montresor, A., Babaoglu, O.: The bootstrapping service.In: ICDCSW
2006

12. Jelasity, M., Montresor, A., Babaoglu, O.: T-Man: Gossip-based fast overlay topol-
ogy construction. Computer Networks (2009)

13. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large
dynamic networks. ACM TOCS 23(3), 219–252 (2005)

14. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., Van Steen, M.: Gossip-
based peer sampling. ACM TOCS 25, 8 (2007)

15. Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K.P., Demers, A.J.: Active and
passive techniques for group size estimation in large-scale and dynamic distributed
systems. J. Syst. Softw. 80(10), 1639–1658 (2007)

16. Leonini, L., Rivière, E., Felber, P.: Distributed systems evaluation made simple (or
how to turn ideas into live systems in a breeze). In: NSDI (2009)

17. Li, J., Stribling, J., Morris, R., Kaashoek, F., Gil, T.M.: A performance vs. cost
framework for evaluating DHT design tradeoffs under churn. In: INFOCOM (2005)

18. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy : A scalable and dynamic emulation
of the butterfly. In: ACM PODC (2002)

19. Matos, M., Schiavoni, V., Rivière, E., Felber, P., Oliveira, R.: LayStream: compos-
ing standard gossip protocols for live video streaming. In: IEEE P2P (2014)

Evaluating the Cost and Robustness of Self-organizing DHTs 31

20. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, p. 53. Springer, Heidelberg (2002)

21. Pouwelse, J.A., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema,
D.H., Reinders, M., Van Steen, M.R., Sips, H.J. et al.: Tribler: A social-based
peer-to-peer system. Conc. and Comp.: Pract. and Exp. (2008)

22. Rhea, S., Chun, B.-G., Kubiatowicz, J., Shenker, S.: Fixing the embarrassing slow-
ness of OpenDHT on planetlab. In: WORLDS (2005)

23. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
USENIX ATC (2004)

24. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

25. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM ToN 11, 17–32 (2003)

26. Voulgaris, S., van Steen, M.: VICINITY: a pinch of randomness brings out the
structure. In: Eyers, D., Schwan, K. (eds.) Middleware 2013. LNCS, vol. 8275, pp.
21–40. Springer, Heidelberg (2013)

27. Wang, C.-C., Harfoush, K.: On the stability-scalability tradeoff of DHT deploy-
ment. In: IEEE INFOCOM (2007)

28. Wu, D., Tian, Y., Ng, K.-W.: Analytical study on improving DHT lookup perfor-
mance under churn. In: IEEE P2P (2006)

29. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE JSAC 22,
41–53 (2004)

Mignon: A Fast Decentralized Content
Consumption Estimation in Large-Scale

Distributed Systems

Stéphane Delbruel1(B), Davide Frey2, and François Täıani1

1 Université de Rennes 1, IRISA – ESIR, Rennes, France
{stephane.delbruel,francois.taiani}@irisa.fr

2 Inria, Rennes, France
davide.frey@inria.fr

Abstract. Although many fully decentralized content distribution sys-
tems have been proposed, they often lack key capabilities that make them
difficult to deploy and use in practice. In this paper, we look at the par-
ticular problem of content consumption prediction, a crucial mechanism
in many such systems. We propose a novel, fully decentralized proto-
col that uses the tags attached by users to on-line content, and exploits
the properties of self-organizing kNN overlays to rapidly estimate the
potential of a particular content without explicit aggregation.

Keywords: Decentralized systems · Content consumption · Estimation

1 Introduction

User-generated content (UGC) services have grown extremely fast over the last
few years [1,37]. In order to support this growth, current services typically exploit
private data centers owned by large companies such as Google, Sony and Ama-
zon. These data centers are further augmented with Content Distribution Net-
works (CDNs) and caching servers positioned at points-of-presence (PoP) within
the infrastructure of Internet Service Providers (ISPs) [16].

This approach tends to favor big players, and to concentrate the industry
in the hands of a few powerful actors. For several years now, both academia
and practitioners have therefore sought to explore alternative designs to imple-
ment social online services in general, and UGC video services in particular.
One strategy espouses a fully decentralized organization [2,5,18,24,28], in which
each individual user (through her computer or set-top box) provides resources
to implement the system’s overall services, including storage [24,29,30], index-
ing [9], queries [3,19], recommendation [4–6], caching [13], and streaming [8,14].

To ensure their scalability, most of these services primarily rely on limited
interactions (e.g. with a small set of neighboring nodes) and local information
(e.g. users profiles, bandwidth, latency, tags). The use of local information is

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 32–46, 2016.
DOI: 10.1007/978-3-319-39577-7 3

Mignon: A Fast Decentralized Content Consumption Estimation 33

one of the key reasons why these services scale. Too strong a focus on locality,
however, constrains the range of decisions that can be taken by individual nodes,
and their ability to adapt to phenomena occurring at a global scale.

In an attempt to address this limitation, we focus, in this paper, on the
particular problem of global predictions in large-scale decentralized systems, with
an application to the placement of videos in a decentralized UGC video service.
Being able to predict where a new video is likely to be consumed is a crucial
ability for decentralized services that often lack the tightly integrated global
infrastructure of large players. It can help inform storage and caching decisions
in order to best exploit the resources these services can rely on [32,33].

More precisely, we consider the problem of a newly uploaded videos that must
be stored and replicated within a peer-to-peer system in the countries where it
is more likely to be viewed. We have shown in a previous work that the tags
attached to videos are a good predictor of a video’s view distribution [11]. Unfor-
tunately, individual peers do not by default have access to the past videos and
tags consumed within individual countries, and this information can be costly to
aggregate explicitly. In this paper, we therefore propose Mignon, a novel decen-
tralized content consumption estimation mechanism that is fast and scalable and
eschews the need for any global aggregation. Mignon exploits the properties of
self-organizing similarity overlays [5,21,36] and delivers estimations that are on
average within 0.6% (respectively 13%) of an exhaustive view aggregation on a
MovieLens (respectively YouTube) dataset.

2 Problem Statement and Related Work

We consider a global decentralized P2P UGC service, in which each user con-
tributes her resources to the system. As we focus on video placement and view
prediction, we assume our service can store and retrieve videos from users’
machines [29,31,34]. As is now common in many on-line services, we also assume
that the past activity of users can be used to predict their affinity with new con-
tent (Fig. 1). More precisely, the individual devices of users (Alice and Bob,
label 1) store the list of videos they have consumed (their video profile, label 2).
Each video is associated with a set of descriptive tags provided by its uploading
user [15,17] (label 3). Here for instance, Alice has viewed a BBC video with the
tag ‘news’ , and a video on environmental protection with the tags ‘news’,
and ‘animals’ . The tags of the videos viewed by a user form her tag
profiles (label 4): for Alice and for Bob.

We rely on a tag-based affinity function f that measures a user’s affinity with
new videos (5) [5,11]. The only assumptions we make about f is that its result
is correlated with the probability that this user will watch the video (6).

2.1 Placing New Videos: The Prediction Problem

When uploading a new video, copies of this video should ideally be placed in
storage locations close to where it might be most consumed. This is because

34 S. Delbruel et al.

Alice

Bob

Users Video
Profiles Tags Tag

Profiles

: 2

: 1

: 1

: 1

User-based
Affinity

+ =

+ =

New uploaded video 1 2 3 4 5

6

f

f

Fig. 1. Using tags to predict users’ affinity with a new video

Table 1. Top 3 countries for bollywood (left) and favela (right)

country #views %age

India 200,956,055 39.8%
United-States 124,461,447 24.7%
United-Kingdom 29,506,586 5.8%

country #views %

Brazil 19,834,633 47.9%
United-States 14,468,608 34.9%
United-Kingdom 1,701,496 4.1%

the viewing patterns of many videos in UGC services present clear geographic
trends [7], which are strongly correlated with a video’s tags [11]. Table 1 shows
for instance how the tags “bollywood” and “favela” follow clearly distinctive
geographic distributions in a Youtube dataset analyzed in an earlier work [11].
Correctly predicting the geographic distribution of a video’s views is particularly
important in decentralized systems that often lack the caching infrastructure of
large integrated services. In Fig. 2 for instance, Dave must decide whether to
store his new video in the USA or in France. This decision should be driven by
the video’s likely future popularity in both countries, which can be estimated as
the sum of all user affinities in each country.

Obtaining this aggregated sum efficiently is unfortunately challenging in
a large P2P system. Dave could trigger a P2P aggregation in the USA and
France [27], but such an approach would require computing the similarity
between the new video and every user in each country, a slow and costly opera-
tion.

In this paper, we therefore investigate how such a sum can be efficiently,
rapidly, and accurately estimated in a fully decentralized system while involving
only a small subset of the users in a given country.

Mignon: A Fast Decentralized Content Consumption Estimation 35

Fig. 2. Placing new videos based on aggregated affinity

2.2 Related Work

A number of works have been proposed to perform aggregation operations in
decentralized peer-to-peer systems [20,27]. These works typically use an epi-
demic procedure in which nodes repeatedly interact with other random peers in
a pair-wise fashion. They often further rely on a peer-sampling protocol [22,35]
to maximize the diversity of interactions between peers. Following this strategy,
averaging can for instance be implemented in the following manner: all peers pi
start with an initial value v0i . A given peer pi then periodically selects another
random peer pj returned from the peer sampling service, and both peer update
they respective value to (vi+vj)

2 . This procedure guarantees that all nodes pro-
gressively converge to a value that is increasingly close to the average of all initial
values 1

N

∑N
i=1 vi. The number of rounds required to attain a given aggregate

accuracy primarily depends on the distribution of the original data [20].
This aggregation procedure can be used to estimate the size of a network,

with all nodes but one starting with a value of 0, and one node (the initiator) a
value of 1: all nodes will converge to a value of 1

N [27]. Combined with the above
averaging protocol, such a size estimation can provide an estimate of the sum
of the original peer values

∑N
i=1 vi. Unfortunately, this approach is ill-suited to

our case, as it would require the tags of every new video to be propagated to the
entire network before any estimation may take place, incurring both additional
latency and high network costs for every new upload.

3 Fast Decentralized Sum Estimation

Instead of launching an expensive aggregation every time a new video is
uploaded, we propose a cheaper mechanism to estimate the aggregated affinity of
a video. Our approach exploits a similarity-driven overlay [5] that interconnects
all the users in a country. In the following we first briefly describe similarity-
driven overlays, and then present the details of our approach.

3.1 Self-Organizing Overlays

Similarity-driven overlay networks organize peers according to their similar-
ity [21], with a wide range of applications [3,5,6,12,13]. In this work, we consider

36 S. Delbruel et al.

Alice Bob

Carl

DaveEllie

Frank

similarity measure
profile of Alice profile of Bob

:1 :1 :2 :1

Fig. 3. A self-organizing overlay

RPS layer providing
random sampling

Self-organizing layer

similarity link random link

Alice
Bob

Carl

Dave

Ellie

Alice
Bob

Carl

Dave
Ellie

node

Fig. 4. Overlay architecture

exchange of
neighbors lists

neighborhood
optimization

1 2

Alice Bob

Carl

Dave Ellie

Frank

Fig. 5. Peer-to-peer neighborhood optimization

gossip-based similarity driven overlays, whose working is depicted in Figs. 3, 4
and 5. The machine of each user holds the user’s profile: in our case the list of
viewed videos and their attached tags (Fig. 3). Starting from random neighbor-
hoods the overlay eventually connects each peer to its k most similar other peers
in the network, according to some similarity metric (e.g. Jaccard’s coefficient, or
Cosine Similarity).

This construction uses two greedy mechanisms (Figs. 4 and 5). With the
first mechanism, a peer (e.g. Alice) regularly polls an underlying and constantly
evolving Random Peer Sampling (RPS) overlay [22] to obtain a set of random
peers from the rest of the system. In Fig. 4 for instance, Alice might discover
Dave through the RPS layer. If Dave turns out to be a better neighbor for
Alice than Bob (upper self-organizing layer), Alice will replace Bob by Dave in
her neighborhood. This stochastic process ensures that the system eventually
converges to an optimal state. The convergence might however be very slow.

To speed up convergence, peers use a second ‘neighbor-of-neighbor ’ mecha-
nism (Fig. 5). The intuition is that if Alice is similar to Bob, and Bob to Carl,
then Carl might be similar to Alice. Peers therefore periodically exchange their
current neighbors lists (Step 1 in Fig. 5), and use the new peers they discover
to optimize their neighborhoods (Step 2). This mechanism greatly accelerates
convergence (usually in log(N) rounds [21]), but might get stuck in a local min-
imum, and is therefore complementary to the stochastic mechanism of Fig. 4.

3.2 Mignon: Fast Decentralized Estimation

In this paper we propose Mignon, a protocol that employs the similarity-driven
overlay we have just described to estimate the aggregated affinity of a new video

Mignon: A Fast Decentralized Content Consumption Estimation 37

with all the users in a country. To this end, all the users in a country participate
in a similarity-driven overlay whose similarity function is the affinity function
f of Fig. 1. When one of these users uploads a new video, v, she additionally
creates a new virtual peer Pv, whose profile contains the tags associated with v.

Our estimation problem simply consists in computing the sum of the simi-
larities between Pv and every other user in the country. To compute this sum
exhaustively, either at peer Pv or using a standard aggregation protocol, we
would either have to collect the profiles of all other nodes at Pv, or disseminate
the profile of Pv to every other node. In both cases, the delay and the resulting
network cost would be prohibitive for very large networks.

Instead, in Mignon, the uploading user simply impersonates the virtual peer
by having it join the similarity-based overlay. In a very short time (generally
logarithmic in the size of the network [21]), Pv obtains its k-nearest neighbors.
Once this happens, the uploading user exploits the content of the KNN and
RPS neighborhoods of Pv to estimate the video’s aggregated affinity without
any further network exchanges.

The key to the approach consists in considering the affinity values of users
found in the KNN and RPS views of Pv as samples taken from a monotonically
decreasing function. Figure 6 shows this pictorially in two examples. The black
vertical lines represent the affinity values of the users found in the KNN and
RPS views of Pv. Mignon uses these values to interpolate the function’s shape,
from which we derive an aggregated affinity by integration. The values obtained
from the KNN neighbors constitute the first k consecutive samples, while those
in the RPS represent randomly chosen samples distributed along the rest of the
x-axis. To associate each of them with an x-coordinate (which the RPS does
not indicate), we rely on a network-size estimation protocol [25] that provides
us with the length of the x-axis, and assume that the RPS samples are equally
spaced along this axis.

It should be noted that the inherent cost of size-estimation does not offset the
benefits provided by our approach in terms of delay and network cost. First, the
size estimation protocol does not need to be run for every video upload. Rather,
in a setup consisting of set-top boxes that are almost always on, the protocol can
run every few days. Second, protocols like Sample & Collide [25] can estimate
the size of the network within a reasonable error margin at a minimal cost.
We evaluate the impact of protocols like Sample & Collide in Sect. 4.3. In the
following we describe the two interpolation techniques we use in Mignon.

Trapezoidal Rule. The first technique we consider is the trapezoidal rule, a well-
known method for approximating the integral of a function. The rule replaces
the function to be integrated with a sequence of linear segments and computes
the integral as the sum of the areas of the corresponding trapezoids.

Polynomial Interpolation. As a second estimation mechanism, we consider a
polynomial interpolation. Specifically, we compute the polynomial of degree n−1
that goes through all of the n samples in the KNN and RPS. We then use this

38 S. Delbruel et al.

polynomial to compute the values associated with the users that are not among
the samples.

4 Evaluation

We evaluate Mignon on two distinct datasets. The first consists of an adaptation
of the YouTube dataset we introduced in our previous work [10,18]. It contains
590, 897 videos, each associated with a set of tags —11.18 per video on average,
with a total of 705, 415 distinct tags— and with a popularity vector that provides
an estimated number of views per country. We extracted videos and tags directly
from YouTube, while we computed the number of views for videos and tags by
crossing YouTube data with information from Alexa Internet Inc.1 as described
in [10], with the following equation.

views(v)[c] � p̂yt [c] × pop(v)[c]
∑

γ∈World

(

p̂yt [γ] × pop(v)[γ]
)

× tot views(v)
(1)

where views(v)[c] is the number of views of video v in country c, pyt [c]
is the proportion of Youtube views in country c at the time our data set was
collected, and pop(v)[c] is a popularity vector issued from our ground hypothesis
in [10], i.e. a number proportional to the share of video v’s views in country c. To
evaluate Mignon, we “reinterpreted” this dataset by considering each country as
if it was a single user. Our modified dataset therefore consists of 257 users in a
single country.

Our second dataset, MovieLens, consists of a trace from a movie recommen-
dation system2. It contains a set of movies, each associated with a vector of
ratings (1 to 5 integers) by a subset of the users, and a set of n pairs, each con-
sisting of a tag and a real-valued relevance score. The rating Ru(m) expresses
the interest of a user u in movie m, while the relevance rm(t) score expresses
the importance of a tag t for a given movie m. Based on this information, we
compute the interest score ut of a user u for a tag t as follows.

ut =
1
n

n∑

m=1

(rm(t) ∗ Ru(m)) (2)

Since we want to evaluate Mignon’s ability to estimate the aggregation of a
score value, we consider a synthetic set of new “videos”, whose profile only com-
prises a single tag taken from the dataset. For each such video v, we first select
the set of users in its KNN and RPS views, and then compute its affinity with
these users. We use this sample of affinity values to produce an estimate (noted
âv) of the video’s aggregated affinity with all the users in the system (which we
note av). To assess the performance of different estimation techniques, we define
an estimation ratio: ERv = âv

av
. We evaluate ERv in a variety of configurations

1 http://www.alexa.com/siteinfo/youtube.com.
2 www.movielens.org.

http://www.alexa.com/siteinfo/youtube.com
www.movielens.org

Mignon: A Fast Decentralized Content Consumption Estimation 39

Fig. 6. Interest curve for MovieLens(a) and YouTube(b) datasets. Black vertical lines
represent KNN and RPS samples.

on each of our datasets. Let n be the number of tags in a dataset (and hence of
synthetic videos), we present the distribution of ERv, its mean ER = 1

n

∑n
i=1 ERvi

,

as well as its standard deviation
√

ER2 − ER
2.

Figure 6 exemplifies the affinity score distribution of particular tags (inter-
preted as videos) in each of the two dataset. The curve depicts the affinity score
of each user for the tag in decreasing order, while the vertical bars represent the
data available in the KNN and RPS views.

4.1 Accuracy Comparison

We start our evaluation by comparing the results obtained by Mignon with those
obtained by three baseline approaches that exploit either the KNN or the RPS
views but not both. For Mignon, we consider the two estimation techniques
presented in Sect. 3.2 (the Trapezoidal and Polynomial interpolations). For the
baselines, we tested both these techniques as well as linear and quadratic regres-
sion and selected the three that obtained the best performance. Specifically,
KNN-Trapezoid applies the trapezoid rule on a KNN view without using the
RPS, RPS-Trapezoid also applies the trapezoid rule but on an RPS view
with no KNN, while RPS-Mean simply computes the average similarity of the
nodes in the RPS view and multiplies it by the size of the network. We config-
ured our techniques to use a KNN view size of 15 and an RPS size of 10, while
all the baselines use a single view (RPS or KNN) of size 25.

Figure 7 shows the results on both of our datasets. Figure 7a depicts the
error on the mean estimation ratio, that is |ER − 1|, and shows that combining
the KNN and the RPS views allows Mignon to adapt to multiple data sets.
Specifically, both the Trapezoidal rule and Polynomial interpolation obtain very
good estimates on both datasets with an error on the mean ratio respectively of
0.06 (6%) and 0.01 (1%) on MovieLens and of 0.143 (14.3%) and 0.114 (11.4%)
on YouTube. The baselines, on the other hand, can achieve good performance on

40 S. Delbruel et al.

Fig. 7. Evaluation of the error and the standard deviation for both datasets MovieLens
and YouTube

one of the datasets but not on both. KNN-Trapezoid achieves a very low error
of 0.09 (9%) on YouTube, but a very high error of 0.7 (70%) on MovieLens.
RPS-Mean achieves a very low error of 0.02 (2%) on MovieLens but a high error
of 0.30 (30%) on YouTube, while RPS-Trapezoid achieves errors of 0.13 (13%)
on MovieLens and of 0.21 (21%) on YouTube, worse than both of Mignon’s
approaches on both datasets.

Figure 7b completes the picture by showing the standard deviation of the
estimation ratio. Again, Mignon obtains low standard deviations on both data
sets, contrary to RPS-Trapezoid and RPS-Mean. KNN-Trapezoid also achieves
good standard deviations on both dataset, but with a very high mean error on
MovieLens (Fig. 7a).

4.2 Sensitivity Analysis

Now that we have shown the effectiveness of Mignon’s estimation approach on
multiple datasets, we analyze how the KNN and RPS views impact its perfor-
mance. We present our results in the form of whisker plots in Figs. 8 and 9. Each
box in the plot covers the values between the lower and the upper quartiles; the
point in the box represents the mean, while the line the median. The endpoints
of the whiskers represent the lowest datum still within 1.5 ∗ InterQuartile Range
(IQR) of the lower quartile, and the highest datum still within 1.5 ∗ IQR of the
upper quartile, while the points outside the whiskers represent outliers.

Trapezoidal Rule. Figure 8 shows how the effectiveness of the trapezoid rule
varies when we vary the sizes of the KNN and RPS views. For fairness we main-
tain a total view size of 25 and vary the proportion of nodes in the two views

Mignon: A Fast Decentralized Content Consumption Estimation 41

from |KNN|=2 |RPS|=23 to |KNN|=23 |RPS|=2. Figure 8a shows that larger
KNN views slightly tend to overestimate the total affinity, while large RPS views
slightly tend to underestimate it, with the best performance being achieved with
a KNN view of 15 and an RPS view of 10. Additional tests (results not shown
for space reason) showed that this results primarily from the size of the RPS
view. Varying the KNN size with a constant RPS size has almost no impact,
while varying the RPS size with a constant KNN size results in overestimation
with few RPS nodes and in underestimation with too many RPS nodes.

Fig. 8. Fast decentralized area estimation using the trapezoid rule in the Movielens
dataset(a) and YouTube dataset(b).

Figure 8b complements the above results with the performance of the Trape-
zoid rule on the YouTube dataset. Again, we obtain the best performance with
a KNN-to-RPS ratio of 3/2. With a KNN view of 15 and an RPS view of 10, the
mean estimation ratio settles at 1.14. Moreover, slightly smaller or slightly larger
KNN-to-RPS ratios impact this result only to a limited extent. In our tests, we
observed that this results from the fact that when one view remains constant,
performance consistently improves when increasing the size of the other.

Polynomial Interpolation. Next, we evaluate the effectiveness of Mignon using
polynomial interpolation. To this end, we used the Gregory-Newton interpolation
algorithm as implemented in SciPy. Figure 9 shows the results. Both datasets
exhibit similar behaviors. For low RPS sizes, results resemble those obtained
with the trapezoid rule, with the best performance being achieved with an RPS
of 10 and a KNN of 15. However, results start diverging as soon as the RPS size
goes beyond 15. We experimentally verified that this also occurs when increasing
the RPS size with a constant KNN size, but not when increasing the KNN size
with a constant RPS size.

42 S. Delbruel et al.

Fig. 9. Fast decentralized area estimation using polynomial interpolation in the Movie-
lens dataset(a) and YouTube dataset(b).

To understand the high variability associated with high RPS sizes, we exam-
ine two runs of the Gregory-Newton interpolation algorithm in Fig. 10. Figure 10a
shows a run with 10 RPS nodes, while Fig. 10b shows one with 30. In both fig-
ures, the diamonds represent the real abscissas of the samples on the curve, while
the crosses represent those taken into account by our protocol (see Sect. 3.2). For
KNN samples, the two coincide (points at the extreme left of the curve), but
for the RPS the difference can be very large. This, together with the numerical
instability of the Gregory-Newton’s method causes oscillations at the right end
of the curve. Some oscillations are visible even with an RPS of 10. But with an
RPS of 30, they completely disrupt the estimation.

Fig. 10. Details of the Gregory-Newton interpolation with different RPS sizes in the
Movielens dataset.

Mignon: A Fast Decentralized Content Consumption Estimation 43

Table 2. Mean error percentage for various size-estimation errors, for Polynomial
interpolation(a) and Trapezoidal rule(b).

Error 0% +10% -10%

MovieLens -0.8% +8.8% -11%
YouTube +12.4% +14.9% +8.7%

(a)

Error 0% +10% -10%

MovieLens -0.6% +8.9% -11.1%
YouTube +14.3% +10.4% +17%

(b)

4.3 Influence of Sample & Collide

We now assess the impact of errors on the network-size estimation. As previ-
ously stated, nodes do not need to recompute the size of the network for every
new upload as we assume the network to be relatively stable. Nonetheless, it is
possible to limit the cost of size estimation by means of protocols like Sample
& Collide [26]. Such a protocol yields an estimate with a 10% error at a very
limited network cost. We estimate the impact of this error in Table 2 where we
shows the absolute value of the error on the mean estimation ratio for both
Mignon’s approaches in the presence of a positive or negative error on the esti-
mation size. The data shows that the error on the network size has almost no
impact on YouTube, and a relatively low one on MovieLens.

4.4 Convergence Speed

We conclude by evaluating the time required to compute the estimate using
Mignon. First, let us consider a baseline system that would simply compute the
sum of the affinities of the uploaded video with all the other nodes in the country.
Such a system would either require the uploading node to contact each other
node in the country to compute its affinity, or it would have to disseminate the
video’s profile so that other nodes could evaluate the video’s affinity with them.
Both of these approaches would clearly be difficult to scale to large numbers of
nodes and their convergence time would be comparable, if not worse, than that
required by a KNN protocol to converge from a completely random configuration.

Mignon, on the other hand, takes advantage of the presence of an already
converged KNN protocol. This overlay allows the uploading node to quickly
reach its closest neighbors. To evaluate this difference, we counted the number of
gossip cycles required by a KNN protocol to reach convergence from scratch with
6000 nodes. In each cycle, a node contacts one other node, and is, on average,
contacted by another one. We then added one random node, and counted the
cycles it took to reach convergence again. Convergence from scratch took between
150 and 190 gossip cycles, while convergence after adding a node to an already
converged network took an order of magnitude less (10–20).

5 Conclusion

In this paper, we have proposed Mignon, a new protocol to rapidly estimate the
aggregate affinity of a newly uploaded video in a community of users in a fully

44 S. Delbruel et al.

decentralized manner. Our proposal avoids an explicit and costly aggregation by
relying on the properties of similarity-based self-organizing overlay networks, and
can be used to decide where to place videos in a decentralized UGC system. By
eschewing the need for a central support infrastructure, our approach hints at the
possibility of fast reactive aggregate analytics in decentralized systems. This may
be useful both to promote alternatives to the cloud-centered model of current
UGC video services, but also to improve hybrid P2P/cloud architectures [23,38]
by offloading complex adaptive tasks to the P2P part of a hybrid system.

References

1. Global internet phenomena report: 2h 2013. Technical report, Sandvine Incorpo-
rated (2013)

2. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv. 36(4), 335–371 (2004)

3. Bai, X., Bertier, M., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: Gossiping per-
sonalized queries. In: EDBT (2010)

4. Baraglia, R., Dazzi, P., Mordacchini, M., Ricci, L.: A peer-to-peer recommender
system for self-emerging user communities based on gossip overlays. J. Comput.
Syst. Sci. 79(2), 291–308 (2013)

5. Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: The gossple
anonymous social network. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010.
LNCS, vol. 6452, pp. 191–211. Springer, Heidelberg (2010)

6. Boutet, A., Frey, D., Guerraoui, R., Jégou, A., Kermarrec, A.-M.: WhatsUp decen-
tralized instant news recommender. In: IPDPS (2013)

7. Brodersen, A., Scellato, S., Wattenhofer, M.: YouTube around the world: geo-
graphic popularity of videos. In: WWW (2012)

8. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., Moon, S.: I tube, you tube, every-
body tubes: analyzing the world’s largest user generated content video system.
In: IMC (2007)

9. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In:
ICDCS (2002)

10. Delbruel, S., Frey, D., Täıani, F.: Exploring the geography of tags in youtube
views. Research report RT-0461, IRISA, Inria Rennes, April 2015

11. Delbruel, S., Frey, D., Täıani, F.: Exploring the use of tags for georeplicated
content placement. In: IC2E (2016)

12. El Dick, M., Pacitti, E., Kemme, B.: Flower-cdn: a hybrid p2p overlay for efficient
query processing in cdn. In: EDBT 2009, pp. 427–438. ACM (2009)

13. Frey, D., Goessens, M., Kermarrec, A.-M.: Behave: behavioral cache for web con-
tent. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol. 8460, pp. 89–
103. Springer, Heidelberg (2014)

14. Frey, D., Guerraoui, R., Kermarrec, A.-M., Koldehofe, B., Mogensen, M., Monod,
M., Quéma, V.: Heterogeneous gossip. In: Bacon, J.M., Cooper, B.F. (eds.) Mid-
dleware 2009. LNCS, vol. 5896, pp. 42–61. Springer, Heidelberg (2009)

15. Geisler, G., Burns, S.: Tagging video: conventions and strategies of the youtube
community. In: ACM/IEEE-CS Joint Conference on Digital Libraries (2007)

16. Google Inc.: Google peering and content delivery. https://peering.google.com/
about/ggc.html. Accessed 5 Feb 2015

https://peering.google.com/about/ggc.html
https://peering.google.com/about/ggc.html

Mignon: A Fast Decentralized Content Consumption Estimation 45

17. Greenaway, S., Thelwall, M., Ding, Y.: Tagging youtube - a classification of tag-
ging practice on youtube. In: International Conference on Sciento- & Informetrics
(2009)

18. Huguenin, K., Kermarrec, A.-M., Kloudas, K., Täıani, F.: Content and geograph-
ical locality in user-generated content sharing systems. In: NOSSDAV (2012)

19. Idreos, S., Koubarakis, M., Tryfonopoulos, C.: P2P-diet: an extensible P2P service
that unifies ad-hoc and continuous querying in super-peer networks. In: SIGMOD,
pp. 933–934. ACM (2004)

20. Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay
networks (2004)

21. Jelasity, M., Montresor, A., Babaoglu, O.: T-man: gossip-based fast overlay topol-
ogy construction. Comput. Netw. 53(13), 2321–2339 (2009)

22. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.:
Gossip-based peer sampling. ACM TOCS 25, 8 (2007)

23. Kreitz, G., Niemelä, F.: Spotify - large scale, low latency, P2P music-on-demand
streaming. In: P2P (2010)

24. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., et al.: Oceanstore: an
architecture for global-scale persistent storage. ACM Sigplan Not. 35(11), 190–201
(2000)

25. Le Merrer, E., Kermarrec, A.-M., Massoulie, L.: Peer to peer size estimation in
large, dynamic networks: a comparative study. In: HPDC (2006)

26. Massoulié, L., Le Merrer, E., Kermarrec, A.-M., Ganesh, A.: Peer counting, sam-
pling in overlay networks: random walk methods. In: PODC (2006)

27. Montresor, A., Jelasity, M., Babaoglu, O.: Robust aggregation protocols for large-
scale overlay networks. In: DSN (2004)

28. Pujol, J.M., Erramilli, V., Siganos, G., Yang, X., Laoutaris, N., Chhabra, P.,
Rodriguez, P.: The little engine(s) that could: scaling online social networks. In:
SIGCOMM (2010)

29. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: SIGCOMM (2001)

30. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

31. Saroiu, S., Gummadi, K.P., Gribble, S.D.: Measuring and analyzing the charac-
teristics of napster and gnutella hosts. Multimed. Syst. 9(2), 170–184 (2003)

32. Sastry, N., Yoneki, E., Crowcroft, J.: Buzztraq: predicting geographical access
patterns of social cascades using social networks. In: SNS (2009)

33. Scellato, S., Mascolo, C., Musolesi, M., Crowcroft, J.: Track globally, deliver
locally: improving content delivery networks by tracking geographic social cas-
cades. In: WWW (2011)

34. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001,
pp. 149–160 (2001)

35. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: inexpensive membership man-
agement for unstructured p2p overlays. J. Netw. Syst. Manage. 13(2), 197–217
(2005)

36. Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for
content-based searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005.
LNCS, vol. 3648, pp. 1143–1152. Springer, Heidelberg (2005)

46 S. Delbruel et al.

37. Youtube, LCC: Statistics, viewership. http://www.youtube.com/yt/press/
statistics.html. Accessed 5 Feb 2015

38. Zhao, M., Aditya, P., Chen, A., Lin, Y., Haeberlen, A., Druschel, P., Maggs, B.,
Wishon, B., Ponec, M.: Peer-assisted content distribution in Akamai NetSession.
In: IMC (2013)

http://www.youtube.com/yt/press/statistics.html
http://www.youtube.com/yt/press/statistics.html

Privacy-Preserving Data Allocation
in Decentralized Online Social Networks

Andrea De Salve1,2(B), Paolo Mori2, Laura Ricci1, Raed Al-Aaridhi3,
and Kalman Graffi3

1 Department of Computer Science, University of Pisa,
Largo B. Pontecorvo, Pisa, Italy

{desalve,laura.ricci}@di.unipi.it
2 IIT-CNR, via G. Moruzzi 1, Pisa, Italy

paolo.mori@iit.cnr.it
3 Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany

{alaaridhi,graffi}@hhu.de

Abstract. Distributed Online Social Networks (DOSNs) have been
recently proposed as an alternative to centralized solutions to allow a
major control of the users over their own data. Since there is no cen-
tralized service provider which decides the term of service, the DOSNs
infrastructure exploits users’ devices to take on the online social network
services. In this paper, we propose a data allocation strategy for DOSNs
which exploits the privacy policies of the users to increase the availability
of the users’ contents without diverging from their privacy preferences.
A set of replicas of the profile’s content of a user U are stored on the
devices of other users who are entitled to access the profile according to
U’s privacy policies. The experimental results obtained from the simu-
lations on traces taken from a real social network show the effectiveness
of our approach.

Keywords: Decentralized online social network · Data availability ·
Privacy policy · Peer-to-peer

1 Introduction

A Distributed Online Social Network (DOSN) [7] is an Online Social Network
(OSN) implemented in a distributed and decentralized way. Hence, instead of
being based on a single provider which manages the whole system by storing and
controlling the data representing users’ profiles, a DOSN consists of a (dynamic)
set of nodes, such as a network of trusted servers, a P2P system or an oppor-
tunistic network, which collaborate to implement the social network services.
Therefore, DOSNs shift the control over users’ profiles data to the peers that
build up the DOSN (i.e., to the users these peers belong to), thus solving some,
but introducing new security issues, such as the ones concerning the privacy,
integrity and availability of user data.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 47–60, 2016.
DOI: 10.1007/978-3-319-39577-7 4

48 A. De Salve et al.

The privacy of the contents published in users’ profiles is one of the main issues
inDOSNsbecause, beingpersonal data, these contentsmust beproperly protected.
In particular, DOSN users should be enabled to define their privacy policies, and
the DOSN framework is responsible for properly enforcing these policies in order to
disclose the users’ contents only to authorized friends. On the other hand, DOSNs
are also responsible for data availability [13], because the contents published in the
profile of a user must be kept available even when the owner (i.e., the correspond-
ing peer) is disconnected from the network. Different solutions may be exploited to
guarantee data availability in DOSNs, for instance profiles may be saved on a Dis-
tributed Hash Table (DHT) [3] or directly on the peers of the users’ friends. Most
of the current DOSNs ensure data availability by exploiting a DHT. This implies
that contents are stored on untrusted peers and that cryptographic mechanisms
are used in order to prevent undesired disclosure of the users data to the owners of
the peers storing their profiles. To achieve fine-grained access control, every time a
user u wants to share a content c with a group of n users (according to the privacy
policy defined for c), u encrypts c with a new symmetric key before being stored
and, in turn, that symmetric key is encrypted separately with the individual public
keys of the n users. Finally, the encrypted symmetric keys are distributed to the n
authorized users or directly attached to the content c (see, e.g. [2,11,14]). However,
this kind of scheme is not scalable because the number of asymmetric encryption
operations and the storage cost of encrypted data depend on the number of users
n allowed to read the content c, which is clearly a performance issue because the
number of such users can be quite big and can be changed quite often (e.g. addition
or removal of friends). As a matter of fact, users tend to have a significantly large
number of friends in their networks (e.g. 27 % of 18–29 year old Facebook users
have more than 500 friend1). Recent studies [4,14] have investigated the overhead
introduced by encryption schemes used in current DOSNs in terms of storage and
computational cost by highlighting the impact they have on performance and user
experience.

This paper proposes an alternative approach for preserving the privacy of
the users’ contents and increasing their availability by avoiding the use of data
encryption. The approach consists in modelling the contents belonging to the
profile of user u using a hierarchical data structure, i.e. a tree, and adopting a
proper strategy for allocating the nodes of the tree on the peers of online friends
of u. The idea is to allocate a copy of each content c of the tree on another peer
that is currently online, and whose user v is allowed to access c according to u’s
privacy policy. In this way, there is no need of employing encryption mechanisms
to protect the confidentiality of u’s data once stored on v’s peer, because v is
entitled to access these data according to u’s privacy policy. In fact, v cannot
collect additional information about u by directly inspecting the contents of u
allocated on its devices (e.g., by browsing the files stored in its file systems),
because v would find only the contents that is already allowed to access.

The rest of the paper is structured as follows. Section 2 describes how user’s
profile is modelled through a tree. In Sect. 3 we introduce our content replication

1 Statistics of Facebook are available at http://pewrsr.ch/1dm5NmJ.

http://pewrsr.ch/1dm5NmJ

Privacy-Preserving Data Allocation in Decentralized Online Social Networks 49

strategy. Section 4 describes the general system architecture, while Sect. 5 intro-
duces the main algorithms. Section 6 evaluate the effectiveness of the proposed
data allocation strategy on a real data set taken from a Facebook application.
Section 7 discusses related work, while Sect. 8 reports the conclusions and dis-
cusses future works.

2 Modelling Social Profiles

In our system, the social profile Pu of a user u is hierarchically modelled by a tree
whose nodes correspond to the contents belonging to Pu. Since we have a one to
one mapping between the nodes of the tree Pu and the user’s contents, we use
interchangeably the terms node or content to refer them. Furthermore, we sup-
pose that an unique identifier is assigned to each node of the user’s content tree.
The root of the tree is considered as an entry point for all the contents related to a
profile owner, such as personal information, interests, friendship information, pri-
vate communication, posts, images, comments, etc. Each node of the profile tree
embeds information about the identifiers of the children and parent nodes and is
paired with privacy preferences chosen by the owner. Since we model the profile as
a tree, the privileges on each content can be expressed in terms of operations on
the tree, such as insertion/removal of a children node and reading/changing the
content. Therefore, we can define, for each type of content, four different privileges
corresponding to the operations available on the tree: readData, editData, append-
Child, and removeChild. The readData privilege corresponds to a read operation,
while the other ones correspond to updates of the content or of the tree structure.
For instance, a user may exploit the appendChild operation to add comments to a
post or to a photo published by the profile’s owner. The profile owner specifies the
privacy preferences for each node of the profile tree, i.e. the privileges granted to the
other users in term of the previous operations. Since we model each user’s profile as
a tree of contents, a privacy policy that permit readData privilege to a content in
the hierarchy implies that the same privilege is also permitted to ancestor nodes. In
fact, a property of the hierarchical profile structure is that read permission on one
node depends on the privacy policies of the parent nodes. Specifically, the sequence
of the privacy policies on a hierarchy of contents can only limit the intended audi-
ence In fact, for each node, the user can only specify a privacy policy that restrict
the privileges already granted to the ancestor nodes. On the other hand, a privacy
policy that permit readData privilege to a node in the hierarchy does not imply
that readData privilege is also granted to the descendant nodes in the hierarchy.
An example of a user’s tree structured profile annotated with the corresponding
policies is shown if Fig. 1(a). Since user Charlie can not access the Image1 content,
then he can not access the comments, likes and tags of the Image1.

Privacy policies paired with profile’s content may exploit different aspects
(or attributes) derived from the OSN knowledge. Attributes are used to model
interesting properties of users or contents (such as the tagged users, creation date
of a content or user’s birthday) – as well as the kind of operations performed on
resources (such as read or write of contents).

50 A. De Salve et al.

(a) (b)

Fig. 1. (a) shows the general profile tree data structure which contains posts and
images of the user U. The root of the profile tree and the Images node are intended to
be shared with the entire circle of U ’s friends. Finally, the privacy policies specified by
U for the contents Image1 and Image2 allow access to the set of users {Alice, Bob} and
{Alice, Bob, Charlie}, respectively. While (b) shows the replicas table for the profile
tree of U where names of the nodes are used as content ids. A primary trusted replica
(ptr) and a set of further replicas (tr) are defined for each node.

3 Privacy Preserving Content Replication

DOSNs should guarantee that contents of a user’s profile are available at any
time in the system. In order to ensure higher data availability, contents of a pro-
file tree are replicated on k peers of the DOSN, called trusted replicas, where k
is an input parameter of the system. The idea behind our approach is to exploit
the privacy policies paired with the contents of the user’s profile to define a
privacy-preserving allocation of the profile tree to the available peers of the
DOSN. In particular, our approach allocates a content c of the user’s u profile
tree Pu to the peers who are already allowed to read c according to the privacy
policy defined by u. In order to select the trusted replicas where the contents of
the profile tree Pu could be copied, the privacy policy specified for the content
c is evaluated by using the authorization component of the privacy-preserving
framework and by simulating an access to the content. To this aim, we exploit
the privacy-preserving framework we have proposed in [9] to support users in
the management of their privacy preferences. The framework: (i) allows users to
define flexible privacy policies to regulate the accesses to the content they have
shared by means of a proper Privacy Policy Language, (ii) evaluates the pri-
vacy policy and returns the corresponding authorization decision that indicates
whether or not a user can access the content of another user.

For each content, our framework defines a primary trusted replica (ptr) and
a set of further replicas (tr). When the user is on-line, it acts as primary replica
of its content and it enforces the privacy policies on the content of the profile tree
by its own. If the user crashes abruptly or voluntary leaves the social network,
the availability of its profile is guaranteed by the other replicas. In this case, the
authorization framework is exploited also by the replicas peers to enforce the
privacy policy on the users’ contents stored on their device. Specifically, when a

Privacy-Preserving Data Allocation in Decentralized Online Social Networks 51

user v requests access to the content c of Pu, the replica storing c evaluates the
privacy policies of u (linked to the profile Pu) in order to decide whether to permit
or deny the access to c. From a performance point of view, every time a user
u wants to share a content c with a group of n users (according to the privacy
policy defined for c), our approach avoids a number of encryption operations
proportional to n (which, depending on the choosen policy, is typically of the
order of number of u’s friends or even Friends of Friends). We do not focus in
this paper on the problem of ensuring integrity and authenticity of the profiles’
contents. To this aim, well-established solutions [1,5,6] could be adopted.

4 The System Model

In this section we describe the general architecture of the system we propose
to support the privacy-aware allocation of the user’s contents. In the following,
we assume a one-to-one mapping between users and their peers and we use
interchangeably the terms peer or user to indicate them.

Each user u is bind to its user descriptor Du which contains information
about the IP address of the corresponding peer, the online/offline status of the
peer, the identifier of the root of its profile tree and the current replicas available
for all contents of the profile. Since the descriptor Du must be available to all
the peers which are going to access the profile of u when it is offline, it is stored
on a DHT and may be retrieved by exploiting the identifier of the u. Note that
the DHT is exploited not only to keep track of the content replicas, but it is also
indispensable for peer bootstrapping, addressing and for supporting the search
of new friends.

4.1 The Replication Framework

When a content is created, the user who created it specifies the privacy policy
for that node of the profile tree that best matches its needs. Such policies are
statements of the privacy policy language that specify who has access to the
content in terms of a set of features encoded by attributes.

The association between the contents of a profile tree Pu and the trusted
replica peers where they are stored are maintained in the replicas table Ru (see
Fig. 1(b)) which is located in the user’s descriptor Du of the profile owner. The
replicas table Ru contains, for each content c of Pu, the trusted replica list
Ru(c) = {ptr, tr1 . . . , trk−1}, where ptr is the primary trusted replica, while
tr1 . . . , trk−1} are the other replicas of the content. For maintaining replication
transparency, the trusted replica lists are managed according to a passive repli-
cation model [10] where every user communicates only with ptr, the primary
trusted replica.

When the peer of the profile owner is online, it becomes primary trusted
replica of their contents. Primary trusted replica peers are responsible for the
availability of the contents, for enforcing privacy policies every time a user tries
to access a content and for the selection of the new trusted replicas. Only the

52 A. De Salve et al.

primary replica can elect new replicas for the content and it can add them at
the end of the trusted replica list. The selection of a new trusted replica for a
content c of user profile Pu can be performed: (i) actively by the content owner
u during the online periods since it acts as primary replicas for their contents or
(ii) by the current primary trusted replica of c, when the owner is not online.

Let us denote by tr(c) and ptr(c) respectively, the set of trusted replicas and
the primary trusted replica for the content c and assume that user t wants to
read a content c of the profile Pu of a user u which is offline. t navigates through
the profile of u starting from the root of the profile tree, whose reference is
stored in the descriptor Du (we recall that Du contains a reference to the replica
owning the root of the profile). Recall that each node (content) of the profile
stores the identifier of its children in the tree. The access to a content c thus
requires a sequence of recursive accesses to the descriptor stored on the DHT
to obtain the references to the replicas storing the nodes on the path from the
root of the DHT to the requested content. When the content c has been located,
t accesses the replicas table Ru for that content stored in Du, and locates the
trusted replicas of c (see Fig. 1(b)). If a primary trusted replica is available, t
sends an access request to it. The primary replica checks whether t is authorized
(according to u’s privacy policy) to read the content c and if the case, it send
back to t the requested content. Robustness against peers failure and involuntary
disconnections of replica peer may be ensured through periodical exchanges of
heartbeat messages between the primary trusted replica and the trusted replicas.

5 The Algorithms

In this section we describe the algorithms executed by the peers in order to realize
the contents allocation strategies described above. Initially, we assume that each
user is online and connected to the system. When a peer u leaves the DOSN, it
executes Algorithm 1. Initially, u retrieves its user descriptor Du from the DHT
and notifies its status to the other peers by updating its availability information
(line [2–3]). At the moment of disconnection, u has to update the trusted replica
list tr of each content c it stores, by removing its contact information (line [5–9]),
regardless of the user n to which the content c belongs. In this way, u will no
longer be considered trusted replica for the contents while the replica at the first
position of the in the list tr (if any) will act as the primary trusted replica for
the content. For availability purposes, the trusted replica u which is going to
disconnect from the network, must keep a copy of each stored content c until its
reconnection. Finally, u can leave the underlying DHT network (line 11).

Algorithm 2 specifies the steps performed by a user’s peer u who wants to
join the network. Initially, u retrieves its user descriptor Du and updates its
status information in order to inform other peers about its presence (line [2–3]).
By using the user descriptor Du, u will be able to get its replica table Ru and
to have information about their contents and the replicas available for each of
them. It may happen that the peer u that joins the system is an old trusted
replica peer that reconnects to the DOSN and has old contents stored on its

Privacy-Preserving Data Allocation in Decentralized Online Social Networks 53

Algorithm 1. User u leaves the network
1: procedure leave
2: Du=getUserDescriptor(u);
3: Du.status = OFFLINE;
4: for all c stored in local memory do
5: n=owner(c);
6: Dn=getUserDescriptor(n);
7: Rn=getReplicaTable(Dn);
8: tr(c)=getTrustedReplicas(Rn,c);
9: tr(c) = tr(c) -{u};

10: end for
11: leaveDHT();
12: end procedure

local memory. For each content c of a generic user n stored in the local memory
of user u two different scenarios may occur. When there are trusted replicas
available for the content c (line 9), then the peer u has to synchronize the local
copy of the content with those currently available in the system by sending c to
the current primary replica ptr(c) (line 10). In the case where u is the owner of
c, u becomes the primary trusted replica of c otherwise it can remove the local
copy content (line [11–13]). When there are no trusted replicas for the content
c, the user u will act as primary trusted replica for c and provides a (possibly)
outdated copy of c in the system (line [14–16]). When a user’s peer decides to
behave as a trusted replica for a content c of the profile Pn, it needs to modify the
replica table Rn by adding the contact information of the new trusted replicas
(line 12 and 15). It is worh noting that after the execution of the Algorithm 2
all the contents stored on the local memory of u have been either updated or
provided by u.

At the end of the join procedure, a periodic dataAvailability operation is
initiated.

When a peer u becomes a primary trusted replica for a content c, it has to
periodically check if new trusted replicas are needed and, in this case, it has to
find another peer who is currently online and is allowed to access c according to
u’s privacy policy. Algorithm3 describes the periodic steps performed by primary
trusted replicas in order to ensure that at least k trusted replicas are available for
each content they store. Every intervalA time unit, a primary trusted replica
u selects a content c of the profile Pn stored on its local memory and checks
whether the number of available trusted replicas for c is less then k (line 3–7).
In this case, u executes an election procedure which selects a new trusted replica
for c. User u gets the set of online users F having a friendship relation with n
(the owner of the content) and then use the authorization module of the privacy
preserving framework to evaluate whether a friend f ∈ F is authorized to read
the content c of n (line 8–15). The privacy policy of c is evaluated for each user
f in the set of neighbours by simulating an access request on a user’s content
c and it may only return permit or deny (line 11). The set of feasible trusted

54 A. De Salve et al.

Algorithm 2. User u join the network
1: procedure join
2: Du=getUserDescriptor(u);
3: Du.status = ONLINE;
4: for all c stored in local memory do
5: n=owner(c);
6: Dn=getUserDescriptor(n);
7: Rn=getReplicaTable(Dn);
8: ptr=getPrimaryTrustedReplica(Rn,c);
9: if ptr �= null then

10: synchronizes(c, ptr(c));
11: if n = u then
12: ptr(c) = u
13: end if
14: else � u becomes primary trusted replica of c
15: ptr(c) = u
16: end if
17: end for
18: start dataAvailability(u,Du);
19: end procedure

replica peers where the unencrypted user content c could be copied is composed
of the users who have obtained a permit authorization decision (line 12–14).
Finally, the data availability procedure chooses a trusted replica peer, among
those available, that meets specific performance objectives (line 16). If such user
exists, the content c is copied in clear on its local memory, which is considered
a trusted replica (line 17).

6 Experimental Results

With the aim of evaluating the feasibility of our approach, we have developed a
set of simulations of our system using the P2P PeerfactSim.KOM2 simulator, a
highly scalable simulator written in java. We have also implemented a Facebook
application, called SocialCircles! 3 which exploits the Facebook API to retrieve
the following sets of information: (i) the friendships and profile information of
registered users and (ii) we sampled the Facebook chat status of registered users
and their friends every 8 min for 10 consecutive days (from Tuesday 3 June 2014
to Friday 13 June) in order to derive the average session length of the users [8].

We exploit some reference policies to evaluate our framework. Although the
enforceable privacy policies are expressed by using proper Privacy Policy Lan-
guage [12], for the sake of clarity, we express the policy examples in natural
language. We use policy’s attributes to model friendships, common friends num-
ber, geographic location, common interests and the strength of the relationship

2 Available at www.peerfactsim.com/.
3 Available at http://www.socialcircles.eu/.

www.peerfactsim.com/
http://www.socialcircles.eu/

Privacy-Preserving Data Allocation in Decentralized Online Social Networks 55

Algorithm 3. Periodic actions performed by primary trusted replicas u

Require: k - max number of trusted replicas
1: procedure dataAvailability(u,k)
2: while intervalA do
3: get c ∈ Local memory | ptr(c) = u;
4: n=owner(c);
5: Dn =getUserDescriptor(n);
6: tr=getTrustedReplicas(c);
7: if tr < k then � looks for new trusted replica
8: F =getOnlinePeer(Dn);
9: candidates = ∅;

10: for f ∈ F do
11: result=evaluateAccess(c,READ,f);
12: if result = PERMIT then
13: candidates = candidates ∪ {f};
14: end if
15: end for
16: r=selectTrustedReplica(candidates);
17: tr(c) = tr(c) · r; � trusted replica selection
18: end if
19: end while
20: end procedure

in terms of Dunbar circles, which is a representation of the intensity of the rela-
tionship between two users which can be approximated by using the number of
interactions occurred between users [8]. Consider the user Alice and a content c
of her profile. In the experiments, we consider the following reference policies:

Policy 1. Only users who have a friendship relationship with Alice can read c.
Policy 2. Only users who have a friendship relationship with Alice and at least

k common friends with Alice and can read c.
Policy 3. Users who have a friendship relationship with Alice can read c pro-

vided that they are in a specific Dunbar circle C.
Policy 4. Only users who have a friendship relationship with Alice and common

school information can read c
Policy 5. Only users who have a friendship relationship with Alice and a home

location which is far at most d km from Alice’s home can read c.

The experiment size is set to 3000 peers and contains a subset of the Social-
Circle! Facebook dataset. From minutes 1 to t0 = 200, the simulation is initiated,
each peer joins the DHT and then loads its attribute values. Those users which
represent a user registered to our Facebook application start to create and pub-
lish an empty profile which can be used by their friends to access Posts and
Images of the profile. In our simulation 35 users in total publish their profiles,
in this phase. Afterwards, user churn is activated and around 50 % of the peers
leave the network (see Fig. 2(a)). We used a exponential churn models (which
simulates the temporal absence of hosts) based on the realistic measurements

56 A. De Salve et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

t 0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

U
se

rs
 [

nu
m

be
r]

Time [minutes]

online users

(a) Number of users

 0

 100

 200

 300

 400

 500

 600

t 0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

C
on

te
nt

s
[n

um
be

r]

Time [minutes]

total
posts

images

(b) Number of contents created by users

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

t 0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

T
ru

st
ed

 r
ep

lic
as

 [
nu

m
be

r]

Time [minutes]

Tr k=2
Tr k=4

Tr k=8
Primary k=2

Primary k=4
Primary k=8

(c) Number of trusted replicas

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

t 0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

C
on

te
nt

s
[n

um
be

r]

Time [minutes]

policy 1
policy 2
policy 3
policy 4
policy 5

(d) Privacy policies assigned

 0

 50000

 100000

 150000

 200000

 250000

 300000

t0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

Su
m

 o
f

m
es

sa
ge

 r
ec

ei
ve

d

Time [minutes]

k=2
k=4
k=8

(e) Number of messages

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

t0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

Su
m

 o
f

B
yt

es
 R

ec
ei

ve
d

Time [minutes]

k=2
k=4
k=8

(f) Size of messages

Fig. 2. Contents and trusted replicas created during the simulation.

obtained from our dataset [13] while the network layer is implemented by the
Global Network Positioning (GNP) module based on measurements from the
PingER project.

At the time t0 the set-up phase is finished and those peers which represent a
user registered to the Facebook application start to publish either Posts or Images
with a probability of 0.5. Furthermore, the data availability protocol (Algorithm3)
is started. In Fig. 2(b) we present the number of user’s contents created during the
simulation. A total of 600 data objects were created during the simulation. The
number of profiles in the DOSN is constant and equal to the number of registered
users, while Posts and Images are generated with equal probability and do not
exceed the number of 300 contents. A the moment of the creation of a content, user

Privacy-Preserving Data Allocation in Decentralized Online Social Networks 57

assign to the generated content a privacy policy randomly chosen among those pre-
viously defined, namely: (i) Policy 1, (ii) Policy 2 with a number of common friends
(k) equal to 8, (iii) Policy 3 with Dunbar circle C randomly chosen, (v) Policy 4
and (vi) Policy 5 with distance d equal to 5 km. The Fig. 2(d) shows the number of
contents assigned to each privacy policy.

During the simulation, users publish their contents and select at most k
trusted replicas to increase the availability of each content. We investigated
the availability provided by our approach by selecting the maximum number
of replicas k for each content equals to 2, 4 and 8. In Fig. 2(c) we present the
total number of online trusted replicas available during the simulation. As we
use a passive replication model where the copies of each content are managed by
a primary trusted replicas, we differentiate primary trusted replicas (Primary)
from other trusted replicas (Tr). The number of primary replicas created during
the simulation is almost 100 and the same for all values of k, while the total
number of online trusted replicas depends on the value of k.

Furthermore, we focus on the costs of the data availability service in terms
of message consumption and network traffic and for diffent values of maximum
number of replicas k. Figure 2(e) and (f) present the amount of system messages
and the number of bytes generated by the proposed algorithm. The total number
of messages exchanged in a given time-interval is proportional to the number of
online users in the systems. In order to investigate the rate of available contents in

 0

 100

 200

 300

 400

 500

 600

 700

t 0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

C
on

te
nt

s
[n

um
be

r]

Time [minutes]

available k=2
available k=4
available k=8
unavailable k=2
unavailable k=4
unavailable k=8
real unavailable

(a) Number of contents available

 0

 1

 2

 3

 4

 5

 6

 7

 8

t 0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

Su
m

 o
f

pa
rt

iti
on

 c
on

te
nt

s

Time [minutes]

avg k=4
avg k=8

plus stdDev k=8
plus stdDev k=4

(b) Contents stored on trusted replicas.

 0

 5000

 10000

 15000

 20000

 25000

t 0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

O
pe

ra
tio

ns
 [

nu
m

be
r]

Time [minutes]

total reads
reads permitted
reads denied
reads failed

(c) Operations performed.

 0

 10

 20

 30

 40

 50

t 0+
0

t 0+
50

t 0+
100

t 0+
150

t 0+
200

t 0+
250

t 0+
300

t 0+
350

t 0+
400

D
ur

at
io

n
[s

ec
on

ds
]

Time [minutes]

Average of Duration
95%-Quantil of Duration

(d) Average duration of the operations

Fig. 3. Assessment of contents availability and load.

58 A. De Salve et al.

the network we start reads to the published profiles contents every 5 min. Access
request to the contents may return permit (i.e. user can read the content) or deny
(user can not read the content). Figure 3(c) shows the number of reads operation
performed by online peers. On the basis of the privacy policy defined for the
requested content, the applicant could have or not the right to access it. In order
to assess the availability of our approach, we compute the number of contents
available in the system through trusted replicas by counting the number of times
a content is replicated at least on one online trusted replica. The Fig. 3(a) shows
the number of available/unavailable contents for different values of maximun
number of replica k. It is important to note that our approach guarantees the
availability of the most part of the contents present in the system by selecting
as replicas the peers which can store unencrypted copy of the contents. During
the simulation, an average number of 100 contents (out of 600) are not available
in the system. Since the contents of a profile tree can be accessible only by
authorized user (if any), we have measured the fraction of unavailable contents
that can be accessed by at least one online user in the system. This metric
(named real unavailale) is almost the same for all the values of k and it proves
that the real amount of unavailable contents that can be accessed by online
users is at most 10. As shown by the graph in Fig. 3(a), the maximun number of
trusted replica k selected for each content does not strongly affect the availability
of the system because, over time, contents are incrementally replicated on the
set of peers of the users who can access them. However, higher values of the
maximum number of trusted replicates k increase the robustness of the system
against failures.

We investigated the load of replicas by measuring the average number of
contents stored on each trusted replicas (avg) along with the standard devia-
tion (stdDev). The results given by Fig. 3(b) indicate that our proposed data
availability protocol balances the load uniformly between the different trusted
replicas. The average load is about 2 content stored on each trusted replica for k
equals to 4 and 8 while the standard deviation clearly shows that the most part
of replica peers store in their local memory less then 6 contents. As shown by
the Fig. 3(c), the selected trusted replicas properly enforce the privacy policies
by allowing access only to authorized users. Finally, we assessed the feasibility
of our approach by measuring the time consumed by each operation. Figure 3(d)
shows the average duration (with 95 % C.I.) obtained during the simulation. The
average duration of operations required by our protocol is quite low and equal
to 10 s, regardless of the maximun number of replicas k.

7 Related Work

To the best of our knowledge, none of these previous works take into account
users’ privacy policies to drive the allocation of the data. In order to help users in
protecting their personal content, current DOSNs adopt simple privacy policies
based on a combination of encryption techniques, namely Public Key Infrastruc-

Privacy-Preserving Data Allocation in Decentralized Online Social Networks 59

ture (PKI) and Attribute Based Encryption (ABE). In Diaspora4 users may
agree to act as a local server in order to keep complete control of their data, or
choose to use an existing server. The Diaspora server grants its administrator
read and write access to unencrypted users’ information hosted by its device.
Users rely on the server’s owner to maintain the security, integrity, and reliability
of their data. In Safebook [6] users associate a particular trust level with their
friends and this level is used to select closely related contacts that primarily will
store the user’s data. The trust level of the nodes is directly specified by the users
without taking into account their privacy policies. The user’s data are allocated
by using an access control scheme based symmetric and asymmetric encryption.
PeerSoN [5] exploits local users devices to store their data securely. Users data
are encrypted with the public keys of the users who have access to it. LotusNet
[1] relies on structured architectures where users’ data could be stored and repli-
cated securely by combining symmetric and asymmetric encryption. In Super-
Nova [15] users’ data are kept available by exploiting stranger or users’ friends
peers. The user’s data on stranger peers (or on friend peers) are encrypted by
using a threshold-based secret sharing approach. In LifeSocial.KOM [11] users’
data could be stored and replicated on different peers arranged according to a
DHT. Any data is first encrypted with a new symmetric key, then, this symmet-
ric key is encrypted individually with the public key of the users able to access
the data and attached to the user’s content.

In Cachet [14] users’ data are securely stored and replicated on the peers
of a DHT by using a cryptographic hybrid structure which leverages Attribute
Based Encryption (ABE) and symmetric key. Only users that meet the policy
can decrypt the private key used to encrypt the content.

Persona [2] leverages a hybrid architecture where users store their data either
on their local storage device or on external storage services provided by others
parties. Private user data in Persona is always encrypted with a symmetric key.
In turn, the symmetric key is encrypted with an ABE key or with a traditional
public key.

8 Conclusion and Future Works

This paper proposes a content allocation strategy supporting contents availabil-
ity in a Distributed Online Social Network. The main feature of this allocation
strategy is that it tries to replicate the content of user u without encrypting it
on the peers which are considered trusted, i.e., the peers belonging to users who
can access the content of u according to u’s privacy policy. The experimental
results performed on real data traces show that the proposed approach ensures
high availability of the profiles’ contents.

We plan to extend our system in several directions. The partitioning of the
tree can be optimized in order to store contents belonging to sub-paths of the
tree on the same replica so that the number of DHT accesses during the visit of
a profile is minimized. Finally, even if our approach guarantees an high degree
4 https://joindiaspora.com/.

https://joindiaspora.com/

60 A. De Salve et al.

of availability, we are working on a mechanism to store a content on the DHT
when there are no available trusted replicas.

References

1. Aiello, L.M., Ruffo, G.: LotusNet: tunable privacy for distributed online social
network services. Comput. Commun. 35(1), 75–88 (2012)

2. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an online
social network with user-defined privacy. ACM SIGCOMM Comput. Commun.
Rev. 39(4), 135–146 (2009)

3. Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking up
data in p2p systems. Commun. ACM 46(2), 43–48 (2003)

4. Bodriagov, O., Buchegger, S.: Encryption for Peer-to-Peer Social Networks.
Springer, New York (2013)

5. Buchegger, S., Schiöberg, D., Vu, L.H., Datta, A.: Peerson: p2p social network-
ing: early experiences and insights. In: Proceedings of the Second ACM EuroSys
Workshop on Social Network Systems, pp. 46–52. ACM (2009)

6. Cutillo, L.A., Molva, R., Strufe, T.: Safebook: a privacy-preserving online social
network leveraging on real-life trust. IEEE Commun. Mag. 47(12), 94–101 (2009)

7. Datta, A., Buchegger, S., Vu, L.H., Strufe, T., Rzadca, K.: Decentralized online
social networks. In: Furht, B. (ed.) Handbook of Social Network Technologies and
Applications, pp. 349–378. Springer, New York (2010)

8. De Salve, A., Dondio, M., Guidi, B., Ricci, L.: The impact of users availability on
on-line ego networks: a Facebook analysis. Comput. Commun. 73, 211–218 (2015)

9. De Salve, A., Mori, P., Ricci, L.: A privacy-aware framework for decentralized
online social networks. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R.,
Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 479–490. Springer, Heidelberg
(2015)

10. Ghosh, S.: Distributed Systems: An Algorithmic Approach. CRC Press, Boca
Raton (2014)

11. Graffi, K., Gross, C., Stingl, D., Hartung, D., Kovacevic, A., Steinmetz, R.: Life-
social. KOM: a secure and p2p-based solution for online social networks. In: 2011
IEEE Consumer Communications and Networking Conference, pp. 554–558. IEEE
(2011)

12. Kumaraguru, P., Cranor, L., Lobo, J., Calo, S.: A survey of privacy policy lan-
guages. In: ACM Workshop on Usable IT Security Management (USM 2007), Pro-
ceedings of the 3rd Symposium on Usable Privacy and Security. Citeseer (2007)

13. Mega, G., Montresor, A., Picco, G.P.: On churn and communication delays in social
overlays. In: 2012 IEEE 12th International Conference on Peer-to-Peer Computing
(P2P), pp. 214–224. IEEE (2012)

14. Nilizadeh, S., Jahid, S., Mittal, P., Borisov, N., Kapadia, A.: Cachet: a decentral-
ized architecture for privacy preserving social networking with caching. In: Pro-
ceedings of the 8th International Conference on Emerging Networking Experiments
and Technologies, pp. 337–348. ACM (2012)

15. Sharma, R., Datta, A.: Supernova: super-peers based architecture for decentralized
online social networks. In: Fourth International Conference on Communication
Systems and Networks, pp. 1–10. IEEE (2012)

An RDMA Middleware for Asynchronous
Multi-stage Shuffling in Analytical Processing

Rui C. Gonçalves1(B), José Pereira1, and Ricardo Jiménez-Peris2

1 HASLab, INESC TEC & U. Minho, Braga, Portugal
{rgoncalves,jop}@di.uminho.pt

2 Univ. Politécnica de Madrid & LeanXcale, Madrid, Spain
rjimenez@leanxcale.com

Abstract. A key component in large scale distributed analytical
processing is shuffling, the distribution of data to multiple nodes such
that the computation can be done in parallel. In this paper we describe
the design and implementation of a communication middleware to sup-
port data shuffling for executing multi-stage analytical processing opera-
tions in parallel. The middleware relies on RDMA (Remote Direct Mem-
ory Access) to provide basic operations to asynchronously exchange data
among multiple machines. Experimental results show that the RDMA-
based middleware developed can provide a 75 % reduction of the costs of
communication operations on parallel analytical processing tasks, when
compared with a sockets middleware.

Keywords: Distributed databases · OLAP · Middleware · RDMA

1 Introduction

The proliferation of web platforms supporting user generated content and of
a variety of connected devices, together with the decreasing cost of storage,
lead to a significant growth on data being generated and collected every day.
This explosion of data brings new opportunities for businesses that overcome
the challenge of storing and processing it in a scalable and cost-effective way.
It has thus sparked the emergence of NoSQL database systems and processing
solutions based on the MapReduce [2] programming model as alternatives to the
traditional Relational Database Management Systems (RDBMS) for large scale
data processing.

Briefly, in a MapReduce job, a map function converts arbitrary input data to
key-value pairs. For instance, in the classical word count example, for each input
text file, map outputs each word found as a key and its number of occurrences as
the value. A reduce function computes an output value from all values attached
to the same key. For instance, in the word count example, reduce sums all values
for each key to obtain the global count for each word. Both these operations
can easily be executed in parallel across a large number of servers with mini-
mal coordination: Multiple mappers work on different input files, and multiple
reducers work on different keys.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 61–74, 2016.
DOI: 10.1007/978-3-319-39577-7 5

62 R.C. Gonçalves et al.

The key element of a MapReduce implementation, which needs distributed
coordination, is the shuffling step between map and reduce operations. It gathers
all data elements with the same key on the same server such that they can
be processed together. In classical MapReduce, this is a synchronous step: All
map tasks have to finish before reduce tasks can be started. This impacts the
latency of MapReduce jobs, in particular as multiple map and reduce stages are
often needed to perform data processing operations. Therefore, it restricts the
usefulness of systems based on MapReduce to batch processing, even if, as in
Hive [15], they offer a high-level SQL-like interface.

There has thus been a growing demand for NoSQL solutions that combine
the scalability of MapReduce with the interactive performance of traditional
RDBMS for on-line analytical processing (OLAP). For instance, Impala [6] offers
the same interface as Hive but avoids MapReduce to improve interactive per-
formance. Again, a key element in these data processing systems is the ability
to perform shuffling efficiently over the network. In detail, the shuffling has to
be asynchronous, to allow successive data processing tasks to execute in paral-
lel, and multi-stage, to allow an arbitrarily long composition of individual tasks
in a complex data processing job. Being the component that involves distrib-
uted communication and synchronization, shuffling is the key component for the
performance and scalability of the system.

This paper presents an asynchronous and multi-stage shuffling implementa-
tion that exploits the Remote Direct Memory Access (RDMA) networking inter-
face to add analytical processing capabilities to an existing Distributed Query
Engine (DQE) [7]. The DQE provides a standard SQL interface and full trans-
actional support, while scaling to hundreds of nodes. Whereas the scalability for
on-line transactional processing (OLTP) workloads is obtained executing multi-
ple transactions (typically short lived) concurrently on multiple DQE instances,
for OLAP workloads it is also important to have multiple machines and DQE
instances computing a single query in parallel. That is, as OLAP queries have
longer response times, it is often worth considering intra-query parallelism to
reduce queries response time [8].

The parallel implementation of the DQE for OLAP queries follows the sin-
gle program multiple data (SPMD) [1] model, where multiple symmetric work-
ers (threads) on different DQE instances execute the same query, but each of
them deals with different portions of the data. The parallelization of stateful
operators requires shuffling rows, so that the same worker processes the related
rows. Shuffling is done using a communication middleware that provides all-to-all
asynchronous data transfers, which was initially implemented using non-blocking
Java sockets. In this paper we describe an RDMA-based implementation of the
middleware, which was developed as an alternative to reduce the communication
overheads associated with parallel execution of OLAP queries, and we discuss
aspects considered while redesigning the middleware to leverage from RDMA
technologies.

Our middleware implementation relies on the RDMA Verbs programming
interface, and uses one-sided write operations for data transfers, and send/receive

RDMA Middleware for Asynchronous Shuffling 63

operations for coordination messages. For improved performance, it makes heavy
use of pre-allocated and lock-free data structures to operate. Moreover, it uses
batching to make a more efficient use of network. Experimental results show that
our RDMA-based middleware implementation can provide a 75 % reduction on
communication costs, when compared with a sockets implementation.

The rest of this paper is structured as follows: In Sect. 2, we describe the
requirements for supporting shuffling and the functionality offered by RDMA
networking. Section 3 describes the proposed solution. Section 4 compares the
proposed solution to a sockets-based middleware and Sect. 5 contrasts it to alter-
native proposals. Finally, Sect. 6 concludes the paper.

2 Background

2.1 Shuffling

In the DQE, shuffle operators are used when parallelizing stateful operators to
redirect rows to a certain worker based on a hash-code (computed from the
attributes used as key by the stateful operator being parallelized). Shuffle oper-
ators are also used to redirect all results to the master worker at the end of the
query, or to broadcast rows from sub-queries.

The communication middleware provides efficient intra-query synchroniza-
tion and data exchange, and it is mainly used for exchanging rows in shuf-
fle operators. A push-based approach is followed. When processing a row that
should be handled by other worker, the sender immediately tries to transfer it.
Each receiver maintains shuffle queues (Fig. 1), which are used to asynchronously
receive the rows. The shuffle queues abstract a set of queues used by a worker
to receive rows from the other workers, and they contain an incoming and an
outgoing buffer per each other worker, which are used to temporarily store rows
being exchanged. That is, the rows are initially serialized to the appropriate out-
going buffer (on the sender side), and then the serialized data is transferred to
the matching incoming buffer of the receiver worker, using the communication
middleware. An optimization is made for the case where the receiver worker is
running on the same DQE instance of the sender. In those cases, the shared
session state is used to allow the sender to directly move the rows to the shuffle
queues of the receiver.

Multiple shuffle operators may be required by a parallel query plan, thus
the need for multi-stage shuffling. To reduce the memory cost associated to
buffers – which increases quadratically with the number of workers – there is
a single incoming and a single outgoing buffer shared by all shuffle operators
(multiplexing is used to logically separate data from multiple shuffle operators).

The communication middleware was initially implemented using Java sock-
ets. For this implementation, a communication end-point is created when ini-
tializing a worker, which means to start a server socket and bind it to the IP
address of the machine. Then a non-blocking socket channel is opened between
each pair of workers running on different DQE instances, and the associated
incoming/outgoing buffers are allocated.

64 R.C. Gonçalves et al.

DQE Instance

...

Worker

Worker

DQE Instance

...

Worker

Worker

DQE Instance

...

Worker

Worker

local

in.
out.

in.
out.

...

... Linked list for exchanging
rows with local workers
(one per shuffle queues)

Pair of incoming/outgoing
buffers for exchanging

rows with remote workers
(one per remote worker)

...

Network

Fig. 1. DQE architecture and shuffle queues structure.

When a row is requested by a shuffle operator, the operator starts by polling
its shuffle queues, where it may have received rows from other workers. The
polling process of shuffle queues comprises the following steps:

– Check if there is a row received from a worker from the same DQE instance.
– If no row is available:

• Read (copy) data available on socket channels to incoming buffers.
• Poll the incoming buffers for available rows for the current shuffle operator.

If a row is obtained, it is returned by the shuffle operator. However, polling
shuffle queues may return no rows. In that case, the shuffle operator obtains a
local row from its child task/operator (as defined in the query plan). The row
is hashed to determine the worker that should process it. If it is a row for the
current worker, it is returned by the shuffle operator. Otherwise it is sent to
the appropriate worker, which implies serializing the row to an outgoing buffer,
and writing the data available to the socket channel. As the shuffle operator still
does not have a row to return, it goes back to the polling process and it tries
again to obtain a row for itself. As long as the shuffle operator has local rows to
process from its child operator, it does not block polling the shuffle queues. After
processing all those rows, the worker blocks if polling the shuffle queues returns
no rows. It will poll the shuffle queues again as soon as new data is received. The
only other situation where the worker may block is when there is no free space
on an outgoing buffer when sending a row to a remote worker.

In summary, the push-based asynchronous shuffling approach followed by the
DQE requires the following key functionalities from the communication middle-
ware [5]: ability to send and queue rows on remote workers; ability to retrieve
the rows queued; ability to block a worker when there are no rows to process
(and to wake it up when new rows are received); and ability to block a worker
when a row cannot be immediately copied to a buffer (and to wake it up when
space becomes available).

2.2 RDMA Verbs

RDMA protocols [12] provide efficient and reliable mechanisms to read/write
data directly from the main memory of remote machines, without the involve-
ment of the remote machine CPU, enabling data transfers with lower latency

RDMA Middleware for Asynchronous Shuffling 65

and higher throughput. By providing applications with direct access to network
hardware, RDMA also bypasses typical complex network stacks and operating
system, reducing memory copies and CPU usage. The RDMA Verbs is the basic
programming interface to use RDMA protocols, and it supports data transfers
using either one-sided read/write operations, or two-sided send/receive opera-
tions. Additionally, there is the write with immediate data operation, which is a
one-sided write operation that also triggers a receive operation.

The API is asynchronous, that is, queue pairs – comprised of a send and a
receive queue – are used to queue operation requests for each connection. The
application may choose to receive completion events when requests are finished,
which are posted into a completion queue associated with the queue pair. To
avoid active polling, the application may request to be notified when a comple-
tion event is added to the completion queue (these notifications are sent to a
completion channel).

In our work, we used the jVerbs library [13], a Java implementation of the
RDMA Verbs interface available on the IBM JRE. Besides providing an RDMA
Verbs API for Java, jVerbs relies on modifications of the IBM JVM to reduce
memory copies.

3 Middleware Design and Implementation

In this section we first present the design of the RDMA communication mid-
dleware developed, and we then discuss in detail the implementation decisions
critical to the performance of our solution.

3.1 Design Overview

The RDMA middleware relies on one-sided RDMA write operations to transfer
rows’ data directly between Java memory buffers, and send/receive operations
for coordination.

When initializing workers for a parallel connection, on each DQE instance
running workers, an RDMA server connection is created and bound to the
machine IP address. Then all DQEs are connected with each other, which
requires (i) to pre-allocate and initialize memory buffers, queue pairs, completion
channel, and completion queue; (ii) to start a new thread (the network thread),
which will handle the work completion events; (iii) to start RDMA connections
with all other DQE instances; and (iv) to pre-allocate and initialize the data
structures needed to execute the network requests.

These steps are performed when opening a database connection, where it is
specified the level of parallelism – number of workers to use – for queries executed
using that connection. In this way, the overheads of preparing the network are
avoided during the execution of queries. On the other hand, the resources remain
allocated even if the connection is not being used to run queries.

As described before, when executing a shuffle operator, workers send and
receive rows asynchronously through shuffle queues, which use buffers to serialize

66 R.C. Gonçalves et al.

and temporarily store those rows until they are polled on the receiving side.
However, when using the RDMA middleware, the sender uses an RDMA write
request to transfer the serialized data from one of its outgoing buffers to a remote
incoming buffer. Then, after the network thread receives a work completion
event confirming the execution of the RDMA write request, the receiving side
is notified, and the tail of the local outgoing buffer is updated, to release the
space occupied by the data transferred during the request. The sending side
takes into account the tail position of the remote buffer to determine the free
space available. When there is no space available on the remote buffer, the data
transfer can only occur after the network thread receives a notification updating
the tail of the remote buffer (i.e., releasing space on the remote buffer), thus the
network thread assumes the task of posting the RDMA write request, and the
worker proceeds with its operation, unless the local outgoing buffer is also full.
In this case, instead of spilling data to disk – as it is done in some MapReduce
implementations, for example –, we chose to block the worker, until space is
released.

When workers want a new row to consume, they follow the polling process
described in Sect. 2.1. However, as now data is transferred using RDMA write
operations, some changes are required. Firstly, the workers do not have to copy
data from the channels to their incoming buffers, as the data is transferred
directly to those buffers. Moreover, as the data is transferred without the inter-
vention of the receiving side, the network thread uses the notifications previously
described to keep track of buffers with data available for each worker, and it
wakes up blocked workers when it receives notifications.

3.2 Implementation Decisions

Network and Worker Threads. We use a thread dedicated to track completion of
operations (the network thread). To reduce CPU consumption, this thread blocks
waiting for completion events, and it is in charge of operations that follow a com-
pletion event of a network operation. This includes to process the completion of
RDMA write requests (sending the needed notifications, and updating outgoing
buffer states), as well as processing received notifications (possibly waking up
blocked worker threads). As this thread blocks waiting for completion events, we
decided to not use this thread to post the RDMA write requests, as the requests
would not be posted until the network thread wakes up. Worker threads are
in charge of performing the RDMA write requests to transfer rows, with one
exception: In case there is an ongoing RDMA write request, the new request
is delayed until the previous one completes. As it is the network thread that
tracks the completion of the requests, it is also this thread that will post the
RDMA write requests in those cases. As after returning from the sending opera-
tion workers may want to reuse the memory space that contains the row to send,
the sending operation always serializes the row to the outgoing buffer (even if
it does not perform the RDMA write request). Therefore, if this buffer is full
the worker blocks. The alternative would imply to copy the row to a temporary
buffer, or to spill data to disk, as we mentioned previously. As typically there are

RDMA Middleware for Asynchronous Shuffling 67

many other threads to keep the system busy, we choose this option that avoids
wasting CPU time.

RDMA Connections. A single connection/queue pair is used per pair of
machines, which means that multiple workers share the same connection/queue
pair. In this way, if we have m machines with n workers each, we require m − 1
connections per machine. If we used a connection for each pair of workers, we
would require n × n × (m − 1) connections per machine (i.e., for each of the
n workers on a machine, there would be a connection to each of the n workers
on every other m− 1 machines). We followed this approach to reduce the needs
of on-chip memory of the network card, which can compromise the scalability of
the communications [3]. Regarding memory buffers, we use a single contiguous
memory region per pair of machines, which is later divided in multiple buffers,
to be used by the different pairs of workers.

Notifications. To detect the availability of new received data, we decided to use
send/receive requests to notify the receiving side. The main goal was to avoid
active polling on all incoming buffers, which results in scalability problems. As
receivers are notified when data is written/received, they can easily keep track of
the list of buffers with data available. An alternative would be to use an RDMA
write with immediate data, but this operation is not provided by the jVerbs API.
Moreover, the notifications are also used to notify the sending side that data was
read from a buffer, which is essential to determine when data can be transferred.
To reduce the number of read notifications, they are only sent after reading a
configurable amount of data (an approach similar to the one followed by [3]).
That is, the sender does not have knowledge of the released space immediately.
Although this could make workers block more often when sending rows, our
experiments showed that workers rarely block in these situations.

Batching. In the initial implementation, the middleware was prepared to trans-
fer data as soon as it was available, in order to reduce latency. However, due to
the small size of the rows being transferred, we noticed that this could result in
significant communication overheads, particularly when using an RDMA soft-
ware implementation such as Soft-iWARP [17]. Due to the asynchronous nature
of the DQE, the latency is not critical. Therefore, the middleware provides the
ability to define a minimum threshold of data, that is, the data transfer request
is delayed until a certain amount of data to transfer is available (or a flush
operation is performed). This threshold may be adjusted, namely to take into
account the network hardware characteristics (i.e., we can use lower thresholds
when using network hardware with support for RDMA). Moreover, notifications
are also sent in batches. That is, when performing actions that originate multiple
notifications, the notifications are initially queued, and at the end they are sent
in a batch.

Lock-free Pre-initialized Data-structures. For increased performance, the mid-
dleware makes use of lock-free data structures, allowing worker threads to oper-
ate without blocking, until they have no work to process. The network thread

68 R.C. Gonçalves et al.

blocks waiting for completion events, but the middleware is designed so that
worker threads are not prevented from progress in this case. The incoming and
outgoing buffers are implemented using circular buffers on top of direct byte
buffers (i.e., this memory is outside of the Java garbage-collected heap). These
circular buffers are designed to support a write and a read operation concur-
rently without using locks, to avoid contention when serializing rows. Moreover,
the main data structures needed are initialized during connection, and are reused
for all queries executed with the connection. To reduce overheads associated to
JNI serialization when jVerbs makes RDMA verbs calls to lower level libraries,
jVerbs provides stateful verbs methods (SVM), which cache the serialized state
of the call, enabling this state to be reused in later calls without additional seri-
alization overheads. By making use of this mechanism, and by initializing the
SVM objects during connection, we keep these overheads outside the execution
of queries.

RDMA Writes vs Send/Receive. We decided to use RDMA writes to trans-
fer data. Regarding performance, RDMA write requests usually provide better
latencies and lower CPU usage on the passive side [11]. Even though the latency
is not critical, the lower CPU usage is important to leave more resources for
the worker threads. Moreover, RDMA write requests also simplify the communi-
cation process, as a single connection is used to transfer data between multiple
pairs of buffers. That is, the receiver does not know in advance where the received
data should be placed. Whereas with RDMA write operations it is the sender
that determines where the data is placed on the receiving side, with send/re-
ceive operations this is determined by the receiver. Therefore, to use send/receive
requests the sender would need to tell the receiver in advance the buffer to use
to receive the data. The receiver would then post a receive request with the
appropriate buffer, and tell the sender it could send the actual data (or tell the
sender it cannot send data if there is no buffer space on the receiving side). This
increases the number of requests to transfer data, and it forces the data transfer
operations to be posted one at a time, to make sure that data is placed on the
right buffer on the receiving side, whereas our current solution allows for multi-
ple posted RDMA write requests pending completion. To avoid this, we would
have to either use a single buffer per pair of DQE instances (instead of a single
buffer per pair of workers), or an RDMA connection per pair of workers. The
former solution would impose contention among workers when serializing and
deserializing rows. The latter would increase the number of connections needed,
which would compromise scalability, as we discussed previously in this section.

4 Evaluation

To evaluate the solution developed we conducted performance experiments,
which we report in this section. First we compare the RDMA middleware with
the original sockets middleware in a synthetic benchmark, which simulates the
use of the middleware to execute queries, but that removes all the computation

RDMA Middleware for Asynchronous Shuffling 69

related with the actual query execution, leaving only the shuffle operators. Then
we compare both middleware implementations executing real analytical queries
with the DQE.

The evaluation was conducted using a cluster of 9 servers. All servers have
Intel Core i3 CPUs, with 2 physical cores (4 threads), 8GB of RAM, SATA HDD
(7200 rpm), and GigaBit Ethernet. As the servers do not have network hardware
supporting RDMA, we used Soft-iWARP [17].

4.1 Synthetic Benchmark

In this section we compare the performance of the middleware implementations
using an application that simulates the execution of shuffle operators in real
queries, but without operators that do the actual query computation. That is,
each worker thread of the application executes a “query plan” that essentially
contains two shuffle operators (see Fig. 2). The “rows” are integers generated
sequentially (node Int Generator on Fig. 2), and between the two shuffle oper-
ators a simple transformation is applied to the integers received from the previous
operator to make sure that most of them will be sent to a different worker in
the next shuffle operator.

For these experiments we used a setup with 4 servers running one application
process each, and another setup with 8 servers running one application process
each. The tests were conducted using IBM JRE 8.0-1.10. The size of the buffers
used by the communication middleware was set to 64 KB (the default value).
Each application process generates 5M integers, which are shuffled twice (i.e.,
the shuffle operators of each process handle 10M integers in total).

We measured the execution time with different numbers of workers on each
process, both using the sockets and the RDMA middleware. The execution times
(averages of 8 executions) are reported on Fig. 3. Considering the fastest times
for each middleware in the two setups tested, we can observe that the RDMA
middleware resulted in a reduction of around 75 % of the execution time.

We also used this synthetic application to illustrate the impact of batch-
ing multiple rows before transferring them, as described in Sect. 3.2. Figure 4

Int
Generator

n := n * 3/2 n := n * 3/2

Int
Generator

Fig. 2. Plan used for the synthetic benchmark.

70 R.C. Gonçalves et al.

Fig. 3. Execution times of the synthetic application for the sockets and RDMA mid-
dleware, when varying the number of DQE instances and the number of workers.

Fig. 4. Execution times of the synthetic application with different thresholds for write
requests batching.

shows the execution times using different minimum thresholds for transferring
data, when using 4 processes and 8 processes (in both cases 2 worker threads
per process were used). As we can observe, when using the RDMA middleware
adjusting this threshold can lead to variations on the execution time higher than
25 %. With the used hardware we observed a good performance with a threshold
of 16 KB, which is the value we used in the other tests reported in this section.

4.2 Application Benchmark

We also compared the performance of both middleware implementations using
the DQE to run analytical queries. These tests were conducted using 3 analytical
queries, executed over a TPC-C database [16]. Listing 1.1 shows the queries used,
which expose different combinations of common operators of analytical queries.

For this experiment we used the following setups: 4 servers running DQE
instances and the key-value data store component (HBase), and 1 server run-
ning the remaining services required by the DQE; and 8 servers running DQE
instances and the key-value data store component, and 1 server running the
remaining services required by the DQE. The tests were conducted using HBase
0.98.6, running on Oracle JRE 1.7.0 80-b15, and the DQEs were running on IBM

RDMA Middleware for Asynchronous Shuffling 71

JRE 8.0-1.10. The size of the buffers used by the communication middleware was
set to 64 KB (the default value).

-- Query 1
select ol_o_id, ol_w_id, ol_d_id, sum(ol_amount) as revenue, o_entry_d

from order_line, orders, new_order, customer
where c_id = o_c_id and c_w_id = o_w_id and c_d_id = o_d_id

and no_w_id = o_w_id and no_d_id = o_d_id and no_o_id = o_id
and ol_w_id = o_w_id and ol_d_id = o_d_id and ol_o_id = o_id
and c_state like ’A%’ and o_entry_d > timestamp(’2013-07-01-00.00.00.000000’)

group by ol_o_id, ol_w_id, ol_d_id, o_entry_d
having sum(ol_amount) > 80000.00
order by revenue desc, o_entry_d;

-- Query 2
select 100.00 * sum(case when i_data like ’a%’ then ol_amount else 0 end) /

(1+sum(ol_amount)) as promo_revenue
from order_line, item
where ol_i_id = i_id

and ol_delivery_d >= timestamp(’2013-06-01 00:00:00.000’)
and ol_delivery_d < timestamp(’2013-08-01 00:00:00.000’);

-- Query 3
select ol_number, sum(ol_quantity) as sum_qty, sum(cast(ol_amount as decimal(10,2))) as

sum_amount, sum(ol_quantity) / count(*) as avg_qty, sum(ol_amount) / count(*) as
avg_amount, count(*) as count_order

from order_line
where ol_delivery_d > timestamp(’2013-07-01 00:00:00.000’)
group by ol_number order by sum(ol_quantity) desc;

Listing 1.1. Evaluation Queries.

We measured the execution time of the queries previously presented, running
both without parallelization and with parallelization (with different numbers of
workers), over TPC-C databases with a scale factor of either 15 (for the setup
with 4 + 1 servers) or 30 (for the setup with 8 + 1 servers). The parallel times
were obtained both for the sockets middleware and for the RDMA middleware.
For each different setup, the queries were run 5 times, and the average of the
last 4 runs was considered, to account for cache warm-ups.

Figure 5 shows the executions times obtained for the different setups. As we
can observe from the results obtained, when using 4 DQE instances, the RDMA
middleware resulted in improvements on the maximum speedup between 2.0 %
(from 5.97x to 6.09x, in Query 2) and 16.2 % (from 6.44x to 7.49x, in Query
3), when compared with the sockets middleware. When using 8 DQE instances,
the RDMA middleware resulted in improvements on the maximum speedups
between 6.1 % (from 13.52x to 14.35x, in Query 3) and 14.3 % (from 10.34x to
11.83x, in Query 1).

As it would be expectable, significant improvements were obtained with
Query 1, which is the query that involves more shuffle operators to be parallelized
(thus, more communications). That is, the RDMA middleware is particularly
important to the parallelization of more complex queries. On the other hand,
Query 2 obtained lower benefits from the RDMA middleware, as it performs less
communication. Load balancing issues affecting this query also contribute to the
lower benefits obtained from using the RDMA middleware.

72 R.C. Gonçalves et al.

Fig. 5. Execution times of the analytical queries for the sockets and RDMA middle-
ware, when varying the number of DQE instances and the number of workers.

5 Related Work

Different works explored previously the use of RDMA technologies (and the
RDMA Verbs interface) to improve performance of communications in paral-
lel/distributed systems. Liu et al. [9] proposed an implementation for MPI [4]
(the de facto standard for communication in the high-performance computing
field) based on RDMA writes. Similar to our approach, they use a pool of pre-
allocated buffers, and there is also a match between buffers on sender and receiver
sides, so that the state of the receiver buffer can be “predicted” on the sender
side. Whereas we use a single pair of matching circular buffers, they use a pool
of buffers organized as a ring. Moreover, they rely on active polling to detect
incoming data, which limits scalability. Therefore, they limit RDMA communi-
cation to sub-sets of processes, and use send/receive requests for the remaining
communications. Sur et al. [14] proposed a different approach. They use a ren-
dezvous protocol, where the transfer of data is first negotiated through send/re-
ceive requests, and then RDMA read requests are used to transfer data. This

RDMA Middleware for Asynchronous Shuffling 73

approach is not appropriate to our case, where we have multiple threads commu-
nicating concurrently through the same connection. We choose to use matching
buffers on sender and receiver, together with notifications of read (processed)
data on the receiver, to simplify the coordination between sender and receiver
side, which is particularly important to reduce contention when multiple threads
may try to send data concurrently (an issue not discussed by [14]).

RDMA was used to implement FaRM [3], a distributed computing platform
which exposes the memory of multiple machines of a cluster as a shared address
space. FaRM design has similarities with the solution we propose: It also relies
on circular buffers and RDMA write requests to transfer data, for example.
However, it uses active polling to detect received data, and RDMA writes to
notify the sender of data removed from the buffer by the receiver side. Moreover,
FaRM is designed for minimal latency, whereas in our case we take advantage
of the asynchronous nature of the application using the middleware to batch
multiple messages, increasing latency, but reducing communication overheads,
and improving the overall application performance.

In the recent years, RDMA was also explored to improve different components
of well-known software stacks for distributed computing. Wang et al. [18,19]
provide an alternative shuffling protocol for Hadoop implemented using RDMA,
which uses send/receive requests to request data, and then RDMA write requests
to transfer the data. Lu et al. [10] also used RDMA to improve the performance
of the Hadoop RPC communication.

6 Conclusions

In this paper we presented an RDMA-based communication middleware to
support asynchronous shuffling in parallel execution of analytical queries, dis-
cussing the alternatives considered and the insights acquired with its implemen-
tation. When compared with a previous sockets-based middleware implementa-
tion, experimental results show that our new RDMA implementation enables
a reduction of communication costs of 75 % on a synthetic benchmark, and a
reduction of as much as 14 % on the total execution time of analytical queries,
even when using a software implementation of the RDMA protocol, showing that
redesigning communications to follow an RDMA approach can provide consid-
erable benefits.

Acknowledgements. This research has been partially funded by the European Com-
mission under projects CoherentPaaS and LeanBigData (grants FP7-611068, FP7-
619606), the Madrid Regional Council, FSE and FEDER, project Cloud4BigData
(grant S2013TIC-2894), the Spanish Research Agency MICIN project BigDataPaaS
(grant TIN2013-46883), and the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation –
COMPETE 2020 Programme and by National Funds through the FCT – Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within project POCI-01-0145-FEDER-006961.

74 R.C. Gonçalves et al.

References

1. Darema, F.: The SPMD model: past, present and future. In: Cotronis, Y., Dongarra,
J. (eds.) PVM/MPI 2001. LNCS, vol. 2131, p. 1. Springer, Heidelberg (2001)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

3. Dragojević, A., Narayanan, D., Castro, M., Hodson, O.: FaRM: fast remote mem-
ory. In: USENIX Symposium on Networked Systems Design and Implementation,
pp. 401–414 (2014)

4. Forum, M.P.I.: MPI: A message-passing interface standard. University of Ten-
nessee, Technical report (1994)

5. Gonçalves, R.C., Pereira, J., Jimenez-Peris, R.: Design of an RDMA communica-
tion middleware for asynchronous shuffling in analytical processing. In: CLOSER
- CoherentPaaS/LeanBigData Projects Workshop (to appear)

6. Apache Impala project. http://impala.io
7. Jimenez-Peris, R., Patino-Martinez, M., Kemme, B., Brondino, I., Pereira, J.,

Vilaça, R., Cruz, F., Oliveira, R., Ahmad, Y.: CumuloNimbo: a cloud scalable
multi-tier SQL database. Data Eng. 38(1), 73–83 (2015)

8. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4), 422–469 (2000)

9. Liu, J., Wu, J., Panda, D.K.: High performance RDMA-based MPI implementation
over InfiniBand. Int. J. Parallel Program. 32(3), 167–198 (2004)

10. Lu, X., Islam, N.S., Wasi-Ur-Rahman, M., Jose, J., Subramoni, H., Wang, H.,
Panda, D.K.: High-performance design of Hadoop RPC with RDMA over Infini-
Band. In: International Conference on Parallel Processing, pp. 641–650 (2013)

11. MacArthur, P., Russell, R.D.: A performance study to guide RDMA programming
decisions. In: ACM International Conference on High Performance Computing and
Communication & IEEE International Conference on Embedded Software and Sys-
tems, pp. 778–785 (2012)

12. Mellanox Technologies: RDMA Aware Networks Programming User Manual (2015)
13. Stuedi, P., Metzler, B., Trivedi, A.: jVerbs: ultra-low latency for data center appli-

cations. In: 4th Annual Symposium on Cloud Computing, pp. 10:1–10:14 (2013)
14. Sur, S., Jin, H.W., Chai, L., Panda, D.K.: RDMA read based rendezvous protocol

for MPI over InfiniBand: design alternatives and benefits. In: ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pp. 32–39 (2006)

15. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

16. Transaction Processing Performance Council: TPC Benchmark C Standard Spec-
ification, Revision 5.11 (2010)

17. Trivedi, A., Metzler, B., Stuedi, P.: A case for RDMA in clouds: turning supercom-
puter networking into commodity. In: Asia-Pacific Workshop on Systems (2011)

18. Wang, Y., Que, X., Yu, W., Goldenberg, D., Sehgal, D.: Hadoop acceleration
through network levitated merge. In: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 57:1–57:10 (2011)

19. Wang, Y., Xu, C., Li, X., Yu, W.: JVM-bypass for efficient Hadoop shuffling.
In: International Symposium on Parallel and Distributed Processing, pp. 569–578
(2013)

http://impala.io

Holistic Shuffler for the Parallel Processing
of SQL Window Functions

Fábio Coelho(B), José Pereira, Ricardo Vilaça, and Rui Oliveira

INESC TEC & Universidade do Minho, Braga, Portugal
facoelho@inesctec.pt, {jop,rmvilaca,rco}@di.uminho.pt

Abstract. Window functions are a sub-class of analytical operators that
allow data to be handled in a derived view of a given relation, while
taking into account their neighboring tuples. Currently, systems bypass
parallelization opportunities which become especially relevant when con-
sidering Big Data as data is naturally partitioned. We present a shuffling
technique to improve the parallel execution of window functions when
data is naturally partitioned when the query holds a partitioning clause
that does not match the natural partitioning of the relation. We eval-
uated this technique with a non-cumulative ranking function and we
were able to reduce data transfer among parallel workers in 85% when
compared to a naive approach.

1 Introduction

Window functions (WF) are a sub-group of analytical functions that allow to
easily formulate analytical queries over a derived view of a given relation R.
They allow operations like ranking, cumulative averages or time series to be
computed over a given data partition. Listing 1.1 presents one window function
that is expressed in SQL by the operator OVER, together with a partition by
(PC) and an order by (OC).

Listing 1.1. Window Function example.

select rank () OVER(Pa r t i t i on By A Order By B) from R

The growing Big Data trend is shifting the processing of these functions to
cloud environments deploying computation to a distributed mesh of computing
nodes, where data and processing are naturally partitioned. The distributed
execution of queries leverages on data partitioning as a way to attain gains
associated with parallel execution. Nevertheless, the partitioning strategies are
typically governed by a primary table key, which only benefits the cases where
the partitioning of a query matches that same key as depicted in Fig. 1. When
the query has to partition data according to a different attribute in a relation,
it becomes likely that the members of each partition will not all reside in the
same node, which compromises the final result for a subgroup of non-cumulative
analytical operators, such as rank, since all members of a distinct partition need
to be handled by a single entity, in order not to incur in unnecessary sorting
steps, which is the most costly operation [3].

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 75–81, 2016.
DOI: 10.1007/978-3-319-39577-7 6

76 F. Coelho et al.

Fig. 1. Data partitioning according to the primary key (PK).

In this paper we propose an Holistic shuffler which according to the par-
titioning considered by the ongoing window function will instruct workers to
handle specific partitions according to the data sizes they hold, minimizing data
transfer among workers. We present the design and action of the shuffler which
is based on prior knowledge of the data size distribution of each column in the
relation, reflecting the data size held in each partition rather than considering
the actual data value as seen in common use of database indexes. The prelimi-
nary evaluation of our mechanism shows that our approach is able reduce data
transfer by 85 % when compared with a naive approach.

Roadmap: In the remainder of this paper, Sect. 2 introduces the distribution
considered and Sect. 3 presents the design and architecture of the Holistic Shuffler
we propose. Section 4 accesses our approach. Section 5 briefly reviews related
work and overviews our contributions.

2 Data Transfer Statistics

The use of indexes [5], histograms [6] and other heuristics are now a staple fea-
ture in modern database systems, as they allow to expedite operations, avoiding
full scan operations over relations. More recently, these strategies started to
be present in cloud infrastructures [4], allowing for processing on primary and
secondary attributes.

Fig. 2. Partition and Global Histogram construction.

Histograms are commonly used by query optimizers as they provide a fairly
accurate estimate on the data distribution, which is crucial for a query planner.
An histogram allows to map keys to their observed frequencies. Database systems
use these structures to measure the cardinality of keys or key ranges. Without
histograms, the query planner would have to assume uniform distribution of data,

Holistic Shuffler for the Parallel Processing of SQL Window Functions 77

leading to incorrect partitioning, particularly with skewed data [7], a common
characteristic of non synthetic workloads.

When a query engine has to generate parallel query execution plans to be
dispatched to distinct workers, each one holding a partition of data; having
histograms like the aforementioned ones is an asset, but it does not completely
present an heuristic that could be used to enhance how parallel workers would
share preliminary and final results. This is so as such histograms only introduce
and insight about the cardinality of each partition key. In order to improve
bandwidth usage, thus reducing the amount of traded information, the histogram
also needs to reflect the volume of data existing in each node, instead of just
considering the row cardinality.

2.1 Histogram Construction

The cornerstone of the contribution we present is based on merging the knowl-
edge for row cardinality and average row size for each partition. Both could be
seen as global metrics that a given query engine may be able to produce and
maintain, as this type of information is already used for similar purposes. The
cadence at which the histogram should be updated was left outside of the scope
of this paper due to space constraints. Nevertheless we note it as a relevant
topic, since the optimal performance of any heuristic based approach is entirely
connected with its own representativity. Figure 1 presents the result of hash par-
titioning a relation in 3 workers, according to key PK. The histogram to be built
will consider the cardinality of each value in each attribute of the relation for
each single partition. Since the construction of the histogram should not be done
during query planning time, it cannot know beforehand the partitioning clauses
induced by queries. As such, we consider all distinct groups of values in each
attribute. Each partition will contribute to the histogram with the same num-
ber of attributes as the original relation, plus a key, reflecting the data in that
partition. Afterwards, each worker should be able to share its partial histogram
with the remainder workers in order to produce the global histogram.

Algorithm 1. Histogram Construction in Partition n

1: procedure count distinct keys(attr)
2: foreach key : attr
3: count ← count(distinct)
4: size ← size(key)
5: hist Pn(key, attr) ← (count, size)

6: Pn ← [attr1, attr2, attrn]
7: hist Pn ← [key, attr1, attr2, attrn]
8: function Global Histogram(Pn)
9: for each attr : Pn

10: count distinct keys(attr)

78 F. Coelho et al.

Algorithm 1 governs how each partition histogram (hist Pn) should be built.
Briefly, each attribute (attr) is traversed and for each key, the total number of
distinct occurrences of that key is computed, together with its size. The pair
of values is then added to the histogram. The tables in Fig. 2(a), (b) and (c)
present the resulting histograms for each partition according to Fig. 1.

When all workers have completed computing the histogram regarding its
own physical partition, they need to share it with a designated worker, so that
the global histogram is also computed. The global histogram will traverse each
physical partition histogram and evaluate, for each key, which is the physical
partition that holds the largest volume (in size, evaluating the cardinality ×
average row size). The table in Fig. 2(d) depicts the final result of the global
histogram. The global histogram will have the same number of attributes of each
partition histogram. Please note that the keys for both the physical partition and
the global histograms are not the primary keys of the relation, but rather the
distinct values found in each attribute during the construction of each partition
histogram. Therefore, we provide a brief example on how to read this histogram.
Consider that a given query requires data to be partitioned according to attribute
A. Then, the histogram informs that key 1 and 2 have the largest volume of data
respectively in partitions p1,p3 and, and regarding key 3, partitions p2 and p3
both hold the same volume.

3 Holistic Shuffler

The Holistic Shuffler leverages on the data distribution data collected by the
Global Histogram in order to expedite shuffling operations. The Shuffle operator
can be translated into a SEND primitive that forwards a bounded piece of data
to a given destination, considering the underlying network to be reliable. During
the workflow for processing a window operator, there are two different moments
where data needs to be shuffled. The first moment occurs immediately after the
operator starts, and its goal is to reunite partitions, thus fulfilling the locality
requirement. The second moment occurs in the end of the operator and it is
intended to reconcile partial results in order to produce the final result.

Both operators define distinct goals regarding the destinations that need to
be chosen for each forwarding operation. Therefore, we establish two shuffle oper-
ators, the local shuffle and the global shuffle contemplating each set of require-
ments. The Local Shuffle will dispatch rows of a given partition to the worker
responsible for that partition as dictated by the Global histogram. Algorithm2
depicts the behavior of the operator. As each row is read from scanning the
partition, the value contained in that row for the attribute that dictates the
partition clause is collected (partition). This value is then used together with
the partitioning attribute to obtain the destination worker from the global his-
togram. If this row is not meant to be handled by the ongoing worker, then it is
forwarded to the correct worker.

Holistic Shuffler for the Parallel Processing of SQL Window Functions 79

Algorithm 2. Local Shuffle Operation
1: worker id

2: row ← [key, attr1, attrn]

3: hist Pn ← [key, row]

4: partition by ← attr1
5: function LShuffle(local partition)

6: for each row : local partition

7: partition ← row[attr1]

8: destination ← hist pn[partition, attr1]

9:
10: if worker id �= destination then

11: SEND(destination, row)

Algorithm 3. Global Shuffle Operation
1: worker id

2: master worker ← hist Pn

3: function GShuffle(aggregated data)

4: foreach row : aggregated data

5:
6: if worker id �= master worker then

7: SEND(master worker, row)

The Global Shuffle will forward all aggregated rows to the worker that will
hold the overall largest data volume, which will from now on designate as master
worker. By instructing the workers that hold the least volume of data, we are
promoting the minimal usage of bandwidth possible. Algorithm3 reflects the
behavior for the Global Shuffle operator. The input data considered by the Global
Shuffler is composed by the ordered and aggregated rows, both produced by
earlier stages of the worker work flow. Such rows will now have to be reconciled
by a common node, which for this case will be dictated by the master node,
as previously stated. Upon start, the Global Shuffle operator will interrogate
the histogram regarding the identity of the master node. Afterwards, as each
aggregated row is handled by the operator, it is forwarded to the master worker,
if the master node is not the current one.

4 Evaluation

Along the current Section, we present the preliminary evaluation for the contri-
butions we propose. In order to evaluate our contribution, we used RX-Java [2]
to simulate the parallel execution of the window operator in several workers.
This framework establishes bindings to the Java language, enabling it to use
the semantics of Reactive Programming [1]. We selected this framework as it
allows to establish a series of data streams, mimicking the window operator data
flow. Throughout the evaluation, we employed a single ranking query (Listing 4)
holding a window function over a synthetically-generated relation as in TPC-
C’s Order Line relation, holding 10 distinct attributes. The values considered
for each of these attributes were distributed according to TPC-C’s specification.
The generated data composes 100 distinct partitions, each one with 500 rows.
Globally, the Order Line relation held 500 K tuples.

select rank () OVER (pa r t i t i o n by OL D ID order by OL NUMBER)
from Order Line

The experiments were performed on a system with an Intel i3-2100-3.1 GHz
64 bit processor with 2 physical cores (4 virtual), 8 GB of RAM memory and
SATA II (3.0 Gbit/s) hard drives, running Ubuntu 12.04 LTS as the operating
system.

80 F. Coelho et al.

 1
 2
 4
 8

 16
 32
 64

 128
 256

 0 2 4 6 8 10 12

K
 tu

pl
e

ro
w

s

workers

Naive Holistic

(a) Average Forwarded Rows for both stages

 1

 2

 4

 8

 16

 32

 64

 0 2 4 6 8 10 12

K
 tu

pl
e

ro
w

s

workers

Naive Holistic

(b) Forwarded Rows for the Shuffle Local

Fig. 3. Comparison results between the Naive and Holistic approach.

For comparison purposes, we report the results by using a naive approach
and our Holistic Shuffler. The naive approach, instead of using any knowledge to
forward data, disseminates all data among all participating workers. The results
in both pictures are depicted according to a logarithmic scale, in the average of
5 independent tests for each configuration.

The Holistic technique we propose required in average only 14.7 % of the rows
required for the Naive approach to reunite all the partition in each computing
node, as depicted in Fig. 3(a). The large difference is justified by the fact that the
naive approach reunites partitions by forwarding data among all participating
nodes, which intrinsically creates duplicates in each node, growing in proportion
to the number of nodes. The Local Shuffling stage is depicted in Fig. 3(b), in
which we varied the number of computing nodes that participate in the compu-
tation of the ranking query, verifying the number of rows that were forwarded
according to each technique.

5 Related Work and Conclusion

Despite its relevance, optimizations considering this operator are scarce in the
literature. The work by [3] or [8] are some of the exceptions. Respectively, the
first overcomes optimization challenges related with having multiple window
functions in the same query, while the second presents a more broad use of
window functions, showing that it is possible to use them as a way to avoid
sub-queries and reducing execution time down from quadratic time.

In this paper we proposed an Holistic Shuffler, tailored to be used for the
efficient parallel processing of queries with non-cumulative window functions.
The design is based on a statistical method that can be used to reduce the
amount of data transfered among computing nodes of a distributed query engine,
where data is naturally partitioned. Moreover, the preliminary evaluation we
present shows that by applying this methodology we were to reduce in average
85 % of data transferred among computing nodes. As future work, we plan to
translate this approach to a real query engine.

Acknowledgments. This work was part-funded by project LeanBigData: Ultra-
Scalable and Ultra-Efficient Integrated and Visual Big Data Analytics (FP7-619606),

Holistic Shuffler for the Parallel Processing of SQL Window Functions 81

and by the ERDF – European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation - COMPETE 2020 Pro-
gramme within project �POCI-01-0145-FEDER-006961�, and by National Funds
through the FCT – Fundação para a Ciẽncia e a Tecnologia (Portuguese Foundation
for Science and Technology) as part of project UID/EEA/50014/2013.

References

1. Reactive programming (2015). http://reactivex.io
2. Reactive programming for java (2015). https://github.com/ReactiveX/RxJava
3. Cao, Y., Chan, C.Y., Li, J., Tan, K.L.: Optimization of analytic window functions.

Proc. VLDB Endowment 5(11), 1244–1255 (2012)
4. Chen, G., Vo, H.T., Wu, S., Ooi, B.C., Özsu, M.T.: A framework for supporting

DBMS-like indexes in the cloud. Proc. VLDB Endowment 4(11), 702–713 (2011)
5. Garcia-Molina, H.: Database Systems: The Complete Book. Pearson Education,

India (2008)
6. Poosala, V., Ganti, V., Ioannidis, Y.E.: Approximate query answering using his-

tograms. IEEE Data Eng. Bull. 22(4), 5–14 (1999)
7. Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved histograms for selec-

tivity estimation of range predicates. ACM SIGMOD Record 25, 294–305 (1996).
ACM

8. Zuzarte, C., Pirahesh, H., Ma, W., Cheng, Q., Liu, L., Wong, K.: Winmagic: sub-
query elimination using window aggregation. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pp. 652–656. ACM
(2003)

http://reactivex.io
https://github.com/ReactiveX/RxJava

Providing CUDA Acceleration to KVM Virtual
Machines in InfiniBand Clusters with rCUDA

Ferran Pérez, Carlos Reaño(B), and Federico Silla

DISCA, Universitat Politècnica de València, 46022 Valencia, Spain
ferpelo@upv.es, carregon@gap.upv.es, fsilla@disca.upv.es

Abstract. There is a trend towards using graphics processing units
(GPUs) not only for graphics visualization, but also for accelerating sci-
entific applications. But their use for this purpose is not without dis-
advantages: GPUs increase costs and energy consumption. Furthermore,
GPUs are generally underutilized. Using virtual machines could be a
possible solution to address these problems, however, current solutions
for providing GPU acceleration to virtual machines environments, such
as KVM or Xen, present some issues. In this paper we propose the use
of remote GPUs to accelerate scientific applications running inside KVM
virtual machines. Our analysis shows that this approach could be a pos-
sible solution, with low overhead when used over InfiniBand networks.

Keywords: CUDA · KVM · Virtualization · InfiniBand · HPC

1 Introduction

Virtual machine (VM) technologies such as KVM [1], Xen [7], VMware [6], and
VirtualBox [3] appeared several years ago in order to address some of the con-
cerns present in computing. One of the issues addressed by VMs was data and/or
process isolation. That is, without the use of VMs, in a computing cluster pro-
viding service to different institutions and companies, each of the nodes of the
cluster should only host processes from a single owner if data or process iso-
lation is a requirement. This guarantee for data security, in addition to some
other concerns, led in general to low CPU and system utilization, presenting the
additional indirect drawbacks of an unnecessarily increased power consumption
as well as an increased hardware acquisition cost and higher space and cooling
requirements. Virtualization technologies addressed all these concerns by cre-
ating virtual computers that are concurrently executed within a single cluster
node thus sharing the CPU in that node as well as other subsystems and, there-
fore, increasing overall resource utilization. Acquisition and maintenance costs
are also reduced because a smaller amount of computers are required to address
the same workload, thus reducing also energy consumption needs. Finally, data
isolation is expected because different VMs manage separate address spaces,

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 82–95, 2016.
DOI: 10.1007/978-3-319-39577-7 7

Providing CUDA Acceleration to KVM Virtual Machines with rCUDA 83

thus making not possible that a process being executed in one VM addresses
memory belonging to other VM.

The importance that VMs have acquired in data centers can be understood
just by considering all the support included for them in current mainstream
multicore processors from Intel or AMD. Actually, although VMs were known in
the past to noticeably reduce application performance with respect to executions
in the native (or real) domain, the virtualization features included in current
CPUs allow VMs to execute applications with a negligible overhead [15].

However, despite the many achievements accomplished in the field of VMs,
they still do not efficiently support the current trend of using graphics process-
ing units (GPUs). This trend allows that many high-performance computing
(HPC) clusters deployed in current datacenters and other computing facilities
benefit from server configurations that include several multicore CPU sockets
and one or more GPUs. In this way, these heterogeneous configurations notice-
ably reduce the time required to execute applications from areas as different as
data analysis (Big Data) [36], chemical physics [32], computational algebra [13],
and finance [16], to name just a few. Unfortunately, the lack of efficient GPU
support in current VMs makes that, when using these virtualization technolo-
gies, applications being executed in the virtualized domain cannot easily access
GPUs in the native domain.

The reason why VMs cannot take advantage of the benefits of using GPUs
is mainly due to the fact that current GPUs do not feature virtualization capa-
bilities. Furthermore, in those cases where it is possible for applications within
VMs to access real GPUs, by using the PCI passthrough mechanism [35], for
example, accelerators cannot be efficiently shared among the several VMs con-
currently running inside the same host computer. These limitations impede the
deployment of GPGPU computing (general-purpose computing on GPUs) in the
context of VMs. Fortunately, GPU virtualization solutions such as V-GPU [5],
dOpenCL [22], DS-CUDA [30], rCUDA [14,31], vCUDA [33], GridCuda [26],
SnuCL [23], GVirtuS [17], GViM [19], VOCL [37], and VCL [12] may be used
in VM environments, such as KVM, VirtualBox, VMware, or Xen, in order to
address their current concerns with respect to GPUs. These GPU virtualization
frameworks detach GPUs from nodes, thus allowing applications to access virtu-
alized GPUs independently from the exact computer they are being executed at.
In this regard, the detaching features of remote GPU virtualization frameworks
may turn them into an easy and efficient way to overcome the current limitations
of VM environments regarding the use of GPUs.

In this paper we explore the use of remote GPU virtualization in order to
provide CUDA acceleration to applications running inside KVM VMs. The aim
of this study is to analyze which is the overhead that these applications experi-
ence when accessing GPUs outside their VM. For this study we make use of the
rCUDA remote GPU virtualization framework because it was the only solution
that was able to run the tested applications.

The rest of the paper is organized as follows. Section 2 thoroughly reviews pre-
vious efforts to provide GPU acceleration to applications being executed inside
VMs and further motivates the use of general GPU virtualization frameworks

84 F. Pérez et al.

to provide acceleration features to VMs. Later, Sect. 3 introduces in more detail
rCUDA, the remote GPU virtualization framework used in this study. Next,
Sect. 4 addresses the main goal of this paper: studying the performance of real
GPU-accelerated applications when executed within KVM VMs. Finally, Sect. 5
summarizes the main conclusions of our work.

2 Remote GPU Virtualization Solutions

Providing acceleration services to VMs is, basically, the same problem as sharing
a GPU among the VMs concurrently running in the host computer or, in a more
general perspective, sharing a GPU among several computers.

Sharing accelerators among several computers has been addressed both with
hardware and software approaches. On the hardware side, maybe the most
prominent solution was NextIO’s N2800-ICA [2], based on PCIe virtualiza-
tion [24]. This solution allowed to share a GPU among eight different servers
in a rack within a two-meter distance. Nevertheless, this solution lacked the
required flexibility because a GPU could only be used by a single server at a
time, thus preventing the concurrent sharing of GPUs. Furthermore, this solu-
tion was expensive, what maybe was one of the reasons for NextIO going out
of business in August 2013. GPU manufacturers have also tried to tackle the
problem with virtualization enabled accelerators, but so far this GPUs are ori-
ented towards the graphics acceleration usage, not compute. Nvidia GRID1 only
supports CUDA enabled VMs under Citrix XenServer and even in this case, the
GPU resources are not shared between the VMs, each one has a reserved disjoint
segment of the accelerator. The AMD FirePro S-series2 solution is more flexible,
but it only supports OpenCL and it is still oriented towards graphics.

A cheaper and more flexible solution for sharing accelerators, in the context
of a server hosting several VMs, is PCI passthrough [35,38]. This mechanism
is based on the use of the virtualization extensions widely available in current
HPC servers, which allow to install several GPUs in a box and assign each of
them, in an exclusive way, to one of the VMs running at the host. Furthermore,
when making use of this mechanism, the performance attained by accelerators
is very close to that obtained when using the GPU in a native domain. Unfortu-
nately, as this approach assigns GPUs to VMs in an exclusive way, it does not
allow to simultaneously share GPUs among the several VMs being concurrently
executed at the same host. In order to address this concern, there have been
several attempts, like the one proposed in [21], which dynamically changes on
demand the GPUs assigned to VMs. However, these techniques present a high
time overhead given that, in the best case, two seconds are required to change
the assignment between GPUs and VMs.

As a flexible alternative to hardware approaches, several software-based GPU
sharing mechanisms have appeared, such as V-GPU, dOpenCL, DS-CUDA,
rCUDA, SnuCL, VOCL, VCL, vCUDA, and GridCuda, for example. Basically,
1 http://www.nvidia.com/object/nvidia-grid.html.
2 http://www.amd.com/en-us/solutions/professional/virtualization.

http://www.nvidia.com/object/nvidia-grid.html
http://www.amd.com/en-us/solutions/professional/virtualization

Providing CUDA Acceleration to KVM Virtual Machines with rCUDA 85

Application

Wrapper libraries
CUDA libraries

Framework
daemon

Hardware
Software

Client side Server side

GPU

CUDA Runtime API

Communication
Channel

Fig. 1. Architecture usually deployed by GPU virtualization frameworks.

these software proposals share a GPU by virtualizing it, so that they provide
applications (or VMs) with virtual instances of the real device, which can there-
fore be concurrently shared. Usually, these GPU sharing solutions place the
virtualization boundary at the API level (Application Programming Interface),
which can either be OpenCL [18] or CUDA [29] in the GPGPU field. Never-
theless, we will focus on CUDA-based solutions because CUDA is more widely
used. In general, CUDA-based virtualization frameworks aim to offer the same
API as the NVIDIA CUDA Runtime API [10] does.

Figure 1 depicts the architecture usually deployed by these virtualization
solutions, which follow a distributed client-server approach. The client part of the
middleware is installed in the computer (either native or virtual) executing the
application requesting GPU services, whereas the server side runs in the native
domain owning the actual GPU. Communication between client and server sides
may be implemented by means of shared-memory mechanisms if both ends are
located at the same physical computer or by using the network fabric if they are
placed at different computers. The architecture depicted in Fig. 1 is used in the
following way: the client middleware receives a CUDA request from the accel-
erated application and appropriately processes and forwards it to the server.
There, the middleware receives the request and interprets and forwards it to
the GPU, which completes the execution of the request and returns the execu-
tion results to the server middleware. Finally, the server sends back the results
to the client middleware, which forwards them to the accelerated application.
Notice that remote GPU virtualization frameworks provide GPU services in a
transparent way and, therefore, applications are not aware that their requests
are actually serviced by a remote GPU instead of by a local one.

CUDA-based GPU virtualization frameworks may be classified into two
types: (1) those intended to be used in the context of VMs and (2) those devised
as general purpose virtualization frameworks to be used in native domains,
although the client part of these latter solutions may also be used within VMs.
Frameworks in the first category usually make use of shared-memory mecha-
nisms in order to transfer data from main memory inside the VM to the GPU in

86 F. Pérez et al.

the native domain, whereas the general purpose virtualization frameworks in the
second type make use of the network fabric in the cluster to transfer data from
main memory in the client side to the remote GPU located in the server. This is
why these latter solutions are commonly known as remote GPU virtualization
frameworks.

Regarding the first type of GPU virtualization frameworks mentioned above,
several solutions have been developed to be specifically used within VMs, as
for example vCUDA [33], GViM [19], gVirtuS [17], and Shadowfax [28]. The
vCUDA technology supports only an old CUDA version (v3.2) and implements
an unspecified subset of the CUDA Runtime API. Moreover, its communication
protocol presents a considerable overhead, because of the cost of the encoding
and decoding stages, which causes a noticeable drop in overall performance.
GViM is based on the obsolete CUDA version 1.1 and, in principle, does not
implement the entire CUDA Runtime API. gVirtuS is based on the old CUDA
version 2.3 and implements only a small portion of its API. For example, in
the case of the memory management module, it implements only 17 out of 37
functions. Furthermore, despite it being designed for KVM VMs, it requires a
modified version of KVM. Nevertheless, although it is mainly intended to be
used in VMs, granting them access to the real GPU located in the same node,
it also provides TCP/IP communications for remote GPU virtualization, thus
allowing applications in a non-virtualized environment to access GPUs located
in other nodes. Regarding Shadowfax, this solution allows Xen VMs to access
the GPUs located at the same node, although it may also be used to access
GPUs at other nodes of the cluster. It supports the obsolete CUDA version 1.1
and, additionally, neither the source code nor the binaries are available in order
to evaluate its performance.

In the second type of virtualization framework mentioned above, which
provide general purpose GPU virtualization, one can find rCUDA [14,31], V-
GPU [5], GridCuda [26], DS-CUDA [30], and Shadowfax II [4]. rCUDA, further
described in Sect. 3, features CUDA 7.0 and provides specific communication
support for TCP/IP compatible networks as well as for InfiniBand fabrics. V-
GPU is a recent tool supporting CUDA 4.0. Unfortunately, the information
provided by the V-GPU authors is unclear and there is no publicly available ver-
sion that can be used for testing and comparison. GridCuda also offers access to
remote GPUs in a cluster, but supporting an old CUDA version (v2.3). Although
its authors mention that their proposal overcomes some of the limitations of the
early versions of rCUDA, they later do not provide any insight about the suppos-
edly enhanced features. Moreover, there is currently no publicly available version
of GridCuda that can be used for testing. Regarding DS-CUDA, it integrates a
more recent version of CUDA (4.1) and includes specific communication support
for InfiniBand. However, DS-CUDA presents several strong limitations, such as
not allowing data transfers with pinned memory. Finally, Shadowfax II is still
under development, not presenting a stable version yet and its public information
is not updated to reflect the current code status.

It is important to notice that although remote GPU virtualization has tra-
ditionally introduced a non-negligible overhead, given that applications do not

Providing CUDA Acceleration to KVM Virtual Machines with rCUDA 87

1998 2000 2002 2004 2006 2008 2010 2012 2014
0
2
4
6
8

10
12
14
16

IB SDR
IB DDR

IB QDR

ConnectX-3 (IB FDR)

Connect-IB
(IB FDR x2)

PCIe 1

PCIe 2

PCIe 3PCIe (x16) InfiniBand

Year

Th
eo

re
tic

al
Th

ro
ug

hp
ut

(G
B/

s)

Fig. 2. Comparison between the theoretical bandwidth of different versions of PCI
Express x16 and those of commercialized InfiniBand fabrics and network adapters.

access GPUs attached to the local PCI Express (PCIe) link but rather access
devices that are installed in other nodes of the cluster (traversing a network fab-
ric with a lower bandwidth), this performance overhead has significantly been
reduced thanks to the recent advances in networking technologies. For exam-
ple, as depicted in Fig. 2, the theoretical bandwidth of the InfiniBand network
is 12.5 GB/s when using the Mellanox Connect-IB dual-port adapters [8]. This
bandwidth is very close to the 15.75 GB/s of PCIe 3.0× 16. This makes that the
bandwidth achieved by InfiniBand Connect-IB network adapters and that of the
NVIDIA Tesla K40 GPU are very close. Moreover, the previous generation of
these technologies (NVIDIA Tesla K20 GPU and InfiniBand ConnectX-3 net-
work adapter), provides performance figures that are also very close: the Tesla
K20 GPU used PCIe 2.0, which achieves a theoretical bandwidth of 8 GB/s,
whereas InfiniBand ConnectX-3 (which uses PCIe 3.0× 8) provides 7 GB/s. As
a result, when using remote GPU virtualization solutions in both hardware gen-
erations (Tesla K40 & Connect-IB and Tesla K20 & ConnectX-3), the path com-
municating the main memory in the computer executing the application and the
remote accelerator presents a similar bandwidth in all of its stages. This band-
width is very close to the one initially attained by the traditional approach using
local GPUs, as shown in Fig. 3. These small differences in bandwidth cause that
the initial non-negligible performance overhead of remote GPU virtualization
solutions is now noticeably reduced, thus boosting the performance of GPU vir-
tualizing frameworks. Furthermore, when remote GPU virtualization solutions
are considered at the cluster level, it has been shown in [20] that they provide a
noticeable reduction on the execution time of a given workload composed of a set
of computing jobs. Moreover, important reductions in the total energy required
to execute such workloads are also achieved [9]. All these aspects have defini-
tively turned remote GPU virtualization frameworks into an appealing option,
hence motivating the use of such frameworks in order to provide GPU services to
applications being executed inside VMs. As mentioned before, we will make use
of the rCUDA framework in our study because it was the sole solution being able
to run the tested applications. In next section we present additional information
on rCUDA relevant to the work presented in this paper.

88 F. Pérez et al.

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

Copy Size (MB)

Ba
nd

w
id

th
(M

B/
s)

rCUDA+ConnectX-3+Tesla K20
CUDA+Tesla K20

CUDA+Tesla K40
rCUDA+Connect-IB+Tesla K40

Fig. 3. Bandwidth test for copies between pinned host memory and GPU memory,
using CUDA and a remote GPU virtualization framework (rCUDA) over InfiniBand
employing different cards: ConnectX-3 single port and Connect-IB dual port. Both
cards employ PCIe 3.0. The former makes use of 8 PCIe lanes whereas the latter uses
16 PCIe lanes. The CUDA accelerators used in the plot are an NVIDIA Tesla K20
(PCIe 2.0× 16) and an NVIDIA Tesla K40 (PCIe 3.0× 16). Notice that the Tesla K20
GPU and the ConnectX-3 network adapter went into the market at the same time,
approximately. The same holds for the Tesla K40 GPU and the Connect-IB network
adapter.

3 rCUDA: Remote CUDA

The rCUDA middleware supports version 7.0 of CUDA, being binary compati-
ble with it, which means that CUDA programs using rCUDA do not need to be
modified. Furthermore, it implements the entire CUDA Runtime API (except for
graphics functions) and also provides support for the libraries included within
CUDA, such as cuFFT, cuBLAS, or cuSPARSE. Furthermore, the rCUDA mid-
dleware allows a single rCUDA server to concurrently deal with several remote
clients that simultaneously request GPU services. This is achieved by creating
independent GPU contexts, each of them being assigned to a different client [31].

rCUDA additionally provides specific support for different interconnects [31].
Support for different underlying network fabrics is achieved by making use of
a set of runtime-loadable, network-specific communication modules, which have
been specifically implemented and tuned in order to obtain as much performance
as possible from the underlying interconnect. Currently, two modules are avail-
able: one intended for TCP/IP compatible networks and another one specifically
designed for InfiniBand.

Regarding the InfiniBand communications module, as explained by the rCU-
DA developers in [31], it is based on the InfiniBand Verbs (IBV) API. This API
offers two communication mechanisms: the channel semantics and the memory
semantics. The former refers to the standard send/receive operations typically
available in any networking library, while the latter offers RDMA operations
where the initiator of the operation specifies both the source and destination of
a data transfer, resulting in zero-copy transfers with minimum involvement of
the CPUs. rCUDA employs both IBV mechanisms, selecting one or the other
depending on the exact communication to be carried out [31].

Providing CUDA Acceleration to KVM Virtual Machines with rCUDA 89

Moreover, independently from the exact network used, data exchange
between rCUDA clients and remote GPUs located in rCUDA servers is pipelined
so that higher bandwidth is achieved, as explained in [31]. Internal pipeline
buffers within rCUDA use preallocated pinned memory given the higher through-
put of this type of memory.

4 Impact of KVM Virtual Machines on Real Applications

In order to gather performance figures, we have used a testbed composed of
two 1027GR-TRF Supermicro nodes running the CentOS 6.4 operating system.
Each of the servers includes two Intel Xeon E5-2620 v2 processors (six cores
with Ivy Bridge architecture) operating at 2.1 GHz and 32 GB of DDR3 SDRAM
memory at 1600 MHz. They also own a Mellanox ConnectX-3 VPI single-port
InfiniBand adapter3, which uses a Mellanox Switch SX6025 (InfiniBand FDR
compatible) to exchange data at a maximum rate of 56 Gb/s. The Mellanox
OFED 2.4-1.0.4 (InfiniBand drivers and administrative tools) was used at both
servers. Furthermore, the node executing the rCUDA server includes an NVIDIA
Tesla K20 GPU (which makes use of a PCIe 2.0× 16 link) with CUDA 7.0 and
NVIDIA driver 340.46. On the other side, at the client node, the OFED has
been configured in order to provide 2 virtual instances (virtual functions) of
the InfiniBand adapter. One of these virtual functions will be used in the tests,
for comparison purposes, by applications being executed at the native domain
of the node whereas the other virtual function will be provided to a VM by
using the PCI passthrough mechanism in order to assign it to the virtualized
computer in an exclusive way. In addition to the use of virtual functions (virtual
instances), we will also make use, for comparison purposes, of the original non-
virtualized InfiniBand adapter, which will be referred to as physical function in
the experiments. On the other hand, the VM has been created using qemu-kvm
version 0.12.1.2, installed from the official CentOS repositories and has later
been configured to have 16 cores and 16 GB of RAM memory.

Figure 4 graphically depicts the configurations to be used in the experiments
presented in this section. First, the configuration where an accelerated appli-
cation running in the native domain of the client machine communicates with
the remote node using a non-virtualized InfiniBand adapter will be denoted
in the performance plots as PF-Rem (Physical Function to Remote node).
In a similar way, a configuration where the application is being executed in the
native domain of the client node but makes use of the virtual copy (virtual func-
tion) of the InfiniBand adapter will be labeled as VF-Rem (Virtual Function to
Remote node). Finally, when the application is being executed inside the KVM
VM, we will refer to this configuration as VM-Rem (Virtual Machine to Remote

3 Notice that the new Mellanox InfiniBand Connect-IB network adapters are already
available. These adapters feature a PCIe 3.0× 16 connector, that, in addition to their
dual-port configuration, provides an aggregated bandwidth larger than 12 GB/s.
Nevertheless, the Mellanox driver is not ready yet to provide support for VMs. This
is why in this work we use the previous ConnectX-3 adapters.

90 F. Pérez et al.

Network

rCUDA Server

PCIe GPU

Client Computer

PCIevirtual
domain

native
domain

PCIe

PCIe
VF
PF

VM

Fig. 4. Testbed used in the experiments presented in this paper. The client node, host-
ing the KVM VM, owns an InfiniBand ConnectX-3 network adapter, which has been
virtualized. The server node also owns an InfiniBand ConnectX-3 network adapter.
Notice that the tests in this paper will always use the real instance of this latter
adapter, which has not been virtualized.

node). In all the three configurations, the remote node used a non-virtualized
InfiniBand card.

The applications analyzed in this section are CUDASW++, GPU-BLAST
and LAMMPS, all of them listed in the NVIDIA Popular GPU-Accelerated
Applications Catalog [11].

CUDASW++ [27] is a bioinformatics software for Smith-Waterman protein
database searches that takes advantage of the massively parallel CUDA architec-
ture of NVIDIA Tesla GPUs to perform sequence searches. In particular, we have
used its latest release, version 3.0, for our study, along with the latest Swiss-Prot
database and the example query sequences available in the application website4.

GPU-BLAST [34] has been designed to accelerate the gapped and ungapped
protein sequence alignment algorithms of the NCBI-BLAST5 implementation
using GPUs. It is integrated into the NCBI-BLAST code and produces identi-
cal results. We use release 1.1 in our experiments, where we have followed the
installation instructions for sorting a database and creating a GPU database.
To search the database, we then use the query sequences that come with the
application package.

LAMMPS [25] is a classic molecular dynamics simulator that can be used to
model atoms or, more generically, as a parallel particle simulator at the atomic,
mesoscopic, or continuum scale. For the tests below, we use the release from
Feb. 1, 2014, and benchmarks in.eam and in.lj installed with the application.
We run the benchmarks with one processor, scaling by a factor of 5 in all three
dimensions (i.e., a problem size of 4 million atoms).

Figure 5 shows the execution times for these three applications when run in
the four different scenarios under analysis: execution with CUDA with a local
GPU in a native domain (label CUDA) and with rCUDA in the three remote
scenarios (labels rCUDA PF-Rem, rCUDA VF-Rem, and rCUDA VM-Rem).
Additionally, the performance of these applications when executed within the
VM, using the GPU of the host by leveraging the PCI passthrough mechanism,
is also analyzed (label CUDA VM-PT). Every experiment has been performed
ten times, so that the figures show the averaged results. For the experiments
involving executions in the native domain, the VM was shut off in order to avoid
interferences.

4 http://cudasw.sourceforge.net.
5 http://www.ncbi.nlm.nih.gov.

http://cudasw.sourceforge.net
http://www.ncbi.nlm.nih.gov

Providing CUDA Acceleration to KVM Virtual Machines with rCUDA 91

14
4

18
9

22
2

37
5

46
4

56
7

65
7

72
9

85
0

10
00

15
00

20
05

25
04

30
05

35
64

40
61

45
48

47
43

51
47

54
78

0

2

4

6

8

10

12

CUDA
CUDA VM-PT
rCUDA PF-Rem
rCUDA VF-Rem
rCUDA VM-Rem

Query Length

E
xe

cu
tio

n
tim

e
(s

)

(a) Execution time of CUDASW++ application.

E
xe

cu
tio

n
tim

e
(s

)

2
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

04
25

04
26

01
27

01
28

00
29

00
30

00

0

10

20

30

40

50

60

70

80

90

Sequence length

CUDA
CUDA VM-PT
rCUDA PF-Rem
rCUDA VF-Rem
rCUDA VM-Rem

(b) Execution time of GPU-BLAST application.

E
xe

cu
tio

n
tim

e
(s

)

in.eam in.lj
Input model

0

10

20

30

40

50

CUDA
CUDA VM-PT
rCUDA PF-Rem
rCUDA VF-Rem
rCUDA VM-Rem

(c) Execution time of LAMMPS application.

Fig. 5. Execution time with respect to CUDA of the several applications when executed
in different local and remote scenarios.

Regarding CUDASW++, Fig. 5(a) shows that execution times of this appli-
cation in the different scenarios considered are very similar. As expected, exe-
cuting the application within the VM using a remote GPU (rCUDA VM-Rem)
introduces the larger overhead with respect to CUDA, 0.804 % on average. When
the PCI passthrough mechanism is used from inside the VM (CUDA VM-PT),

92 F. Pérez et al.

the application experiences an overhead (0.475 % on average) comparable to the
one achieved when executing the application in the native domain using the
remote GPU (rCUDA PF-Rem and rCUDA VF-Rem, 0.323 % and 0.358 % on
average, respectively).

Next, Fig. 5(b) presents results for the GPU-BLAST application. It can be
seen that this application presents several peaks at sequence lengths equal to 600,
1400, 2000, 2404, 2701, and 2800. Notice that rCUDA mimics the behavior of
CUDA for all of these peaks in all the scenarios under study, therefore, analyzing
the reasons of this behavior is out of the scope of this paper. Regarding the
overhead, in this case we can see an almost constant overhead of about 10 % when
VMs are used (CUDA VM-PT and rCUDA VM-Rem), being the later a little
inferior. Surprisingly, in the case of executions using the rCUDA framework from
the native domain, the application is slightly accelerated, 0.451 % on average.
A deeper analysis of these experiments shows that KVM is introducing some
overhead not related with the use of rCUDA or the InfiniBand network. In this
way, the application presents periods of time in which the GPU is not used and
the overhead is introduced by KVM in tasks not involving the GPU, such as
CPU computations and I/O operations.

Finally, Fig. 5(c) shows results for LAMMPS. It can be seen that the lower
execution time is achieved in the native domain, as expected. Furthermore,
executing the application from the inside of the VM using the GPU in the
host (CUDA VM-PT) introduces a negligible overhead of 0.3 % and 1.1 % for
the in.eam and in.lj input models, respectively. The use of the rCUDA frame-
work, however, introduces a larger overhead. When used from the native domain
(rCUDA PF-Rem and rCUDA VF-Rem) execution time increases, respectively,
up to 13 % and 8 % for the in.eam and in.lj benchmarks. Lastly, executing this
application inside the VM increases the execution time up to 17 %. The rea-
son for the larger overhead shown in these experiments is that here, unlike in
previous applications, the total amount of data transferred to/from the GPU
is significantly higher (see Table 1), thus meaning a higher use of the network
fabric, which translates in more overhead when using rCUDA.

Table 1. Summary of rCUDA overhead when applications are being executed inside
the KVM VM (rCUDA VM-Rem), related with data transferred to/from the GPUs,
for the applications under analysis.

Application rCUDA VM-Rem Total amount of data
overhead transfers to/from GPU

CUDASW++ 0.804 % 0.20 GB

GPU-BLAST 2.835 % 1.76 GB

LAMMPS 16.68 % 5.00 GB

As a summary, in Table 1 we present rCUDA overhead when applications are
being executed inside the KVM VM (labeled as rCUDA VM-Rem in previous

Providing CUDA Acceleration to KVM Virtual Machines with rCUDA 93

figures). As we can observe, the overhead is directly related with total amount of
data transferred to/from the GPUs. Thus, we can conclude that the more data
transfers, the more overhead.

5 Conclusions

In this paper we have analyzed the use of the remote GPU virtualization mech-
anism in order to provide acceleration services to scientific applications running
inside KVM virtual machines in InfiniBand clusters. This approach overcomes
the issues of other methods, such as the PCI passthrough mechanism, allowing
the concurrent sharing of GPUs by multiple virtual machines.

The main conclusion from the paper is that remote GPU virtualization frame-
works could be a feasible option to provide acceleration services to KVM virtual
machines. In this manner, our experiments have shown that the performance expe-
rienced by GPU-accelerated applications, running inside a virtual machine and
accessing a remote GPU, mainly depends on data transferred to/from the remote
GPU: the more data the application transfers to the remote GPU, the more over-
head it will show with respect to using a local GPU.

Acknowledgment. This work was funded by Generalitat Valenciana under Grant
PROMETEOII/2013/009 of the PROMETEO program phase II. The authors are
grateful for the generous support provided by Mellanox Technologies and the equipment
donated by NVIDIA Corporation.

References

1. Kernel-based Virtual Machine. http://www.linux-kvm.org. Accessed: Jan 2016
2. NextIO, N2800-ICA — Flexible and manageable I/O expansion and virtualization.

http://www.nextio.com/. Accessed: Mar 2012
3. Oracle VM VirtualBox. http://www.virtualbox.org/. Accessed: Jan 2016
4. Shadowfax II - scalable implementation of GPGPU assemblies. http://keeneland.

gatech.edu/software/keeneland/kidron. Accessed: Jan 2016
5. V-GPU: GPU virtualization. http://www.zillians.com/products/vgpu-gpu-

virtualization/. Accessed: Jan 2016
6. VMware virtualization. http://www.vmware.com/. Accessed: Jan 2016
7. Xen Project. http://www.xenproject.org/. Accessed: Jan 2016
8. Mellanox, Connect-IB Single and Dual QSFP+ Port PCI Express Gen3x16

Adapter Card User Manual (2013). http://www.mellanox.com/related-docs/
user manuals/Connect-IB Single and Dual QSFP+ Port PCI Express Gen3 x16
Adapter Card User Manual.pdf

9. rCUDA: Virtualizing GPUs to reduce cost and improve performance (2014).
http://www.rcuda.net

10. CUDA API Reference Manual 7.0 (2015). https://developer.nvidia.com/cuda-
toolkit

11. NVIDIA Popular GPU-Accelerated Applications Catalog (2015). http://www.
nvidia.es/content/tesla/pdf/gpu-accelerated-applications-for-hpc.pdf

http://www.linux-kvm.org
http://www.nextio.com/
http://www.virtualbox.org/
http://keeneland.gatech.edu/software/keeneland/kidron
http://keeneland.gatech.edu/software/keeneland/kidron
http://www.zillians.com/products/vgpu-gpu-virtualization/
http://www.zillians.com/products/vgpu-gpu-virtualization/
http://www.vmware.com/
http://www.xenproject.org/
http://www.mellanox.com/related-docs/user_manuals/Connect-IB_Single_and_Dual_QSFP+_Port_PCI_Express_Gen3_x16_Adapter_Card_User_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/Connect-IB_Single_and_Dual_QSFP+_Port_PCI_Express_Gen3_x16_Adapter_Card_User_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/Connect-IB_Single_and_Dual_QSFP+_Port_PCI_Express_Gen3_x16_Adapter_Card_User_Manual.pdf
http://www.rcuda.net
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.es/content/tesla/pdf/gpu-accelerated-applications-for-hpc.pdf
http://www.nvidia.es/content/tesla/pdf/gpu-accelerated-applications-for-hpc.pdf

94 F. Pérez et al.

12. Barak, A., Ben-Nun, T., Levy, E., Shiloh, A.: A package for OpenCL based het-
erogeneous computing on clusters with many GPU devices. In: 2010 IEEE Inter-
national Conference on Cluster Computing Workshops and Posters (CLUSTER
WORKSHOPS), pp. 1–7. IEEE (2010)

13. Barrachina, S., Castillo, M., Igual, F.D., Mayo, R., Quintana-Ort́ı, E.S., Quintana-
Ort́ı, G.: Exploiting the capabilities of modern GPUs for dense matrix computa-
tions. Concurrency Comput.: Pract. Experience 21(18), 2457–2477 (2009)

14. Duato, José, Igual, Francisco D., Mayo, Rafael, Peña, Antonio J., Quintana-Ort́ı,
Enrique S., Silla, Federico: An efficient implementation of GPU virtualization in
high performance clusters. In: Lin, Hai-Xiang, Alexander, Michael, Forsell, Martti,
Knüpfer, Andreas, Prodan, Radu, Sousa, Leonel, Streit, Achim (eds.) Euro-Par
2009. LNCS, vol. 6043, pp. 385–394. Springer, Heidelberg (2010)

15. Felter, W.: An updated performance comparison of virtual machines and linux
containers. IBM Research Report (2014)

16. Gaikwad, A., Toke, I.M.: GPU based sparse grid technique for solving multidimen-
sional options pricing PDEs. In: Proceedings of the 2nd Workshop on High Per-
formance Computational Finance, WHPCF 2009, pp. 6: 1–6: 9. ACM, New York
(2009)

17. Giunta, G., Montella, R., Agrillo, G., Coviello, G.: A GPGPU transparent vir-
tualization component for high performance computing clouds. In: D’Ambra, P.,
Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 379–
391. Springer, Heidelberg (2010)

18. Group, K.O.W: OpenCL 1.2 Specification (2011)
19. Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar, V., Ran-

ganathan, P.: GViM: GPU-accelerated virtual machines. In: Proceedings of the 3rd
ACM Workshop on System-level Virtualization for High Performance Computing,
pp. 17–24. ACM (2009)

20. Iserte, S., Gimeno, A.C., Mayo, R., Quintana-Ort́ı, E.S., Silla, F., Duato, J., Reaño,
C., Prades, J.: SLURM support for remote GPU virtualization: Implementation
and performance study. In: 26th IEEE International Symposium on Computer
Architecture and High Performance Computing, SBAC-PAD 2014, Paris, France,
22–24 October, pp. 318–325 (2014)

21. Jo, H., Jeong, J., Lee, M., Choi, D.H.: Exploiting GPUs in virtual machine for
BioCloud. BioMed Res. Int. 2013, 1–11 (2013)

22. Kegel, P., Steuwer, M., Gorlatch, S.: dopencl: Towards a uniform programming
approach for distributed heterogeneous multi-many-core systems. In: 2012 IEEE
26th International Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), pp. 174–186, May 2012

23. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: SnuCL: An OpenCL framework for
heterogeneous CPU/GPU clusters. In: Proceedings of the 26th ACM International
Conference on Supercomputing, ICS 2012, pp. 341–352. ACM, New York (2012)

24. Krishnan, V.: Towards an integrated IO and clustering solution using PCI express.
In: 2007 IEEE International Conference on Cluster Computing, pp. 259–266. IEEE
(2007)

25. Laboratories, S.N.: LAMMPS Molecular Dynamics Simulator (2013). http://
lammps.sandia.gov/

26. Liang, T.Y., Chang, Y.W.: GridCuda: a grid-enabled CUDA programming toolkit.
In: 2011 IEEE Workshops of International Conference on Advanced Information
Networking and Applications (WAINA), pp. 141–146. IEEE (2011)

http://lammps.sandia.gov/
http://lammps.sandia.gov/

Providing CUDA Acceleration to KVM Virtual Machines with rCUDA 95

27. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD instructions.
BMC Bioinform. 14(1), 1–10 (2013)

28. Merritt, A.M., Gupta, V., Verma, A., Gavrilovska, A., Schwan, K.: Shadowfax:
scaling in heterogeneous cluster systems via GPGPU assemblies. In: Proceedings
of the 5th International Workshop on Virtualization Technologies in Distributed
Computing, VTDC 2011, pp. 3–10. ACM, New York (2011)

29. NVIDIA: CUDA C Programming Guide 7.0 (2015)
30. Oikawa, M., Kawai, A., Nomura, K., Yasuoka, K., Yoshikawa, K., Narumi, T.: DS-

CUDA: a middleware to use many GPUs in the cloud environment. In: Proceedings
of the 2012 SC Companion: High Performance Computing, Networking Storage
and Analysis, SCC 2012, pp. 1207–1214. IEEE Computer Society, Washington,
DC (2012)

31. Peña, A.J., Reaño, C., Silla, F., Mayo, R., Quintana-Ort́ı, E.S., Duato, J.: A
complete and efficient CUDA-sharing solution for HPC clusters. Parallel Comput.
40(10), 574–588 (2014)

32. Playne, D.P., Hawick, K.A.: Data parallel three-dimensional cahn-hilliard field
equation simulation on GPUs with CUDA. In: PDPTA, pp. 104–110 (2009)

33. Shi, L., Chen, H., Sun, J.: vCUDA: GPU accelerated high performance computing
in virtual machines. In: IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2009, pp. 1–11. IEEE (2009)

34. Vouzis, P.D., Sahinidis, N.V.: Gpu-blast: Using graphics processors to accelerate
protein sequence alignment. Bioinformatics 27(2), 182–188 (2010)

35. Walters, J.P., Younge, A.J., Kang, D.I., Yao, K.T., Kang, M., Crago, S.P., Fox,
G.C.: GPU-Passthrough performance: a comparison of KVM, Xen, VMWare ESXi,
and LXC for CUDA and OpenCL applications. In: 7th IEEE International Con-
ference on Cloud Computing (CLOUD 2014) (2014)

36. Wu, H., Diamos, G., Sheard, T., Aref, M., Baxter, S., Garland, M., Yalamanchili,
S.: Red fox: an execution environment for relational query processing on GPUs. In:
Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2014, pp. 44: 44–44: 54. ACM, New York (2014)

37. Xiao, S., Balaji, P., Zhu, Q., Thakur, R., Coghlan, S., Lin, H.,Wen, G., Hong, J.,
Chun Feng, W.: Vocl: An optimized environment for transparentvirtualization of
graphics processing units. In: Proceedings of the 1st Innovative Parallel Computing
(InPar) (2012)

38. Yang, C.T., Wang, H.Y., Ou, W.S., Liu, Y.T., Hsu, C.H.: On implementation
of GPU virtualization using PCI pass-through. In: 2012 IEEE 4th International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 711–
716. IEEE (2012)

Benchmarking Wireless Protocols for Feasibility
in Supporting Crowdsourced Mobile Computing

João Rodrigues1, Joaquim Silva1, Rolando Martins1(B), Lúıs Lopes1,
Utsav Drolia2, Priya Narasimhan2, and Fernando Silva1

1 CRACS/INESC-TEC, Faculty of Science, University of Porto, Porto, Portugal
{joao.rodrigues,joaquim.silva,rmartins,lblopes,fds}@dcc.fc.up.pt

2 ECE, Carnegie Mellon University, Pittsburgh, USA
udrolia@andrew.cmu.edu, priya@cs.cmu.edu

Abstract. Recent advances in mobile device technology have triggered
research on using their aggregate computational and/or storage resources
to form edge-clouds. Whilst traditionally viewed as simple clients, smart-
phones and tablets today have hardware resources that allow more
sophisticated software to be installed, and can be used as thick clients
or even thin servers. Simultaneously, new standards and protocols, such
as Wi-Fi Direct and Wi-Fi TDLS (Tunneled Direct Link Setup), have
been established that allow mobile devices to talk directly with each
other, as opposed to over the Internet or across Wi-Fi access points. This
can, potentially, lead to ubiquitous, low-latency, device-to-device (D2D)
communication. In this paper, we study whether D2D protocols can sup-
port mobile-edge clouds by benchmarking different protocols and config-
urations for a specific application. The results show that decentralized
device-to-device techniques can be used to efficiently disseminate multi-
media contents while diminishing contention in the wireless infrastruc-
ture, allowing for up to 65% traffic reduction at the access points.

1 Introduction and Motivation

Mobile devices are now ubiquitous [1]. The increase in the sheer number of
devices has also led to the increase in the density of devices, i.e. more often than
not, there will be multiple mobile devices in proximity of each other. Moreover,
these devices are now equipped with multi-core processors, multi-GB memory
and multiple communication interfaces. This trend has been leveraged by a new
class of systems, mobile edge-clouds [2–8]. These systems aggregate computation
and storage resources across nearby mobile devices to enable resource-efficient
applications.

Simultaneously, new standards and protocols, such as Wi-Fi Direct and
Wi-Fi TDLS (Tunneled Direct Link Setup), have been established that allow
mobile devices to talk directly with each other, as opposed to over the Internet
or across Wi-Fi access points. This can, potentially, lead to ubiquitous, low-
latency, device-to-device (D2D) communication.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 96–108, 2016.
DOI: 10.1007/978-3-319-39577-7 8

Benchmarking Wireless Protocols for Feasibility in Supporting 97

We believe that these new D2D protocols can boost the efficiency of mobile
edge-clouds. Since these systems are meant for scenarios where devices are in
proximity of each other, D2D communication seems like a natural fit. For exam-
ple, let us consider the following scenario: watching video replays on mobile
devices at live events, e.g. soccer match. There is a growing market of apps
that provide users within (and outside) the venue with almost real-time statis-
tics and multimedia contents like the number of kilometers a player has run or
video replays for goals or interesting events [9,10]. If a fan chooses to watch a
video replay, the content is downloaded from the central servers through sta-
dium installed access points (Wi-Fi or cellular), and then played on the device.
If, however, the venue is crowded, the large number of requests can stress the
infrastructure [11,12].

One way to solve this problem is to use mobile edge-clouds. In this way, you
and your neighbours may form a local cache for the server contents - users of
the service can be encouraged to share in several ways, e.g., sweepstakes of team
merchandise or lower rates for the service. For example, before asking the server
for a video replay, your app might ask the other phones in the mobile network
whether they have a copy of the video. If a copy of the replay is located, your
app can retrieve it directly from a neighboring device. Our first hypothesis is
that such retrievals can be accelerated through D2D protocols. Moreover, if the
retrievals in mobile edge-clouds are done over infrastructural access points, the
access points would be congested in-turn leading to high-latency downloads and
an overall bad user-experience. Our second hypothesis is that D2D protocols can
alleviate such infrastructural stress.

In this paper, we study whether D2D protocols can support mobile-edge
clouds by benchmarking different protocols and configurations for a specific
application. The results suggest that decentralized, device-to-device techniques
can be used to efficiently disseminate multimedia contents while diminishing
contention in the wireless infrastructure, e.g., central servers and access points,
namely through the use of TDLS and WiFi-Direct.

The remainder of this paper is structured as follows. Section 2 describes the
scenarios we are interested in exploring and the experimental setup. Section 3
describes the application we developed to perform the experiments. Sections 2
and 4 describe the experimental setup, the results obtained and discusses their
implications. Section 5 overviews related research work and, finally, Sect. 6 ends
the paper with the conclusions and future work.

2 Assumptions and Scenarios

We make the following assumptions: (a) all the devices are non-rooted since
we are interested in improvements that can be readily implemented in current
infrastructures and do not rely on invasive procedures for the devices; (b) we
do not control the usage of the radio channels and the choice of the radio band,
2.4 GHz or 5 GHz, for communication; (c) all devices are within radio range and
can make requests and transfer contents using direct connections or using an

98 J. Rodrigues et al.

AP or a hot-spot as an intermediate; (d) there is no application-level routing or
discovery mechanisms, we only use what is provided by the underlying wireless
protocols; (e) in the scenarios that involve mobile servers, the latter have all the
files that will be requested by the clients, and that would otherwise be present
at the central server in a traditional infrastructure, and; (f) clients know the
location of the servers from the start.

We define a set of content dissemination scenarios for downloading video
replays from a soccer game in a stadium (Fig. 1). In all scenarios we assume
WiFi is used for communication. In the case of pure WiFi, all scenarios include
a traditional, dedicated, access point that the devices use for communication.
When using WiFi with TDLS, the access point is used only for the initial contact
between the nodes. In the case of WiFi-Direct, this role is performed by a mobile
device known as the “group owner”.

Fig. 1. (a) WCS - central server, access point, mobile clients, using WiFi. (b) WMS -
access point, mobile servers, mobile clients, using WiFi. (c) WTS - access point, mobile
servers, mobile clients, using WiFi/TDLS. (d) WDMS - group owner, mobile server,
mobile clients, using WiFi-Direct.

In the first scenario (WCS - WiFi Central Server) we have a main server, part
of the infrastructure of the stadium, acting as the source of the video replays. The
server is connected to access points in the stadium via high-speed Ethernet links.
Each access point handles tens of devices in the part of the venue it provides
coverage [12]. All mobile devices are clients.

In the second scenario (WMS - WiFi Mobile Server) we remove the main
server, and just stick with the access point. Part of the mobile devices in the

Benchmarking Wireless Protocols for Feasibility in Supporting 99

venue will act as servers (servers only) for the multimedia contents, thus provid-
ing the same content as the central server in the previous scenario.

In the third scenario (WTMS - WiFi TDLS Mobile Server) we use the access
point only for the first contact between the devices. TDLS then allows the devices
to communicate directly and transfer data. Again, part of the devices in the
venue will act as the servers for the video replays. As in the previous scenario,
mobile servers are not also clients and contain all the content that might be
provided by the central server.

In the fourth scenario (WDMS - WiFi Direct Mobile Server) the configuration
is similar to WMS with the access point replaced by one of the devices acting as
a hot-spot, known as “group owner”. All communication between mobile servers
and clients must go through the group owner.

We identified an additional scenario, similar to WTS, in which the access
point is replaced with the group owner. Here, however, we use TDLS to allow
servers and clients to communicate directly (mostly) without the intervention of
the group owner. We did not experiment with this last configuration. We were
not able to form networks of more than 5 or 6 devices using WiFi-Direct and thus
present only preliminary results for the WDMS scenario. This difficulty arises
not only from the fact that we are using non-rooted devices, and thus cannot
fully control operating system configurations, but mostly because most network
card drivers/firmware are proprietary software.

3 Test Application

We developed Java/Android applications to implement the clients and servers in
the aforementioned scenarios. The servers, both fixed, in the first scenario, and
mobile, in the others, follow the standard client-server architecture. The server
waits for a connection from a client; when one is received, they launch a new
thread that examines the request and transfers the requested file. The mobile
clients are tailored to be used with the Android Debug Bridge (ADB) tool. We
developed a template from which all client behaviours could be implemented by
extending a base class. This class has three main methods that are overridable for
different scenarios, namely: startApp, transferFiles and endApp. startApp
executes a sequence of checks to ensure that a client will run correctly, e.g., if
the device is connected to the correct WiFi network. It also initializes a logger
in order to record information about the run, and fills a work queue with the
file requests, a permutation of the file names, to be downloaded by the device.
Each file is mapped to a set of predefined servers that can provide it. The clients
choose one of these for each download. After that, method transferFiles is
called to download the files, which are transfered, one by one, after selecting
appropriate servers. Once a transfer finishes, the next file on the queue begins to
be downloaded. When all files are downloaded, the application calls the endApp
method to perform all the necessary cleanup.

The execution of the application by the devices starts simultaneously thanks
to a barrier implemented (a shared file is used for this) at the end of the startApp

100 J. Rodrigues et al.

method. The devices also synchronize before ending, again by using a barrier at
the beginning of the endApp method. We used a set of shell scripts to automate
the execution of the application and to control the devices through the Android
Debug Bridge (ADB). The adb command line tool allows to execute ordinary
Linux shell commands remotely on Android devices, e.g., ls, cp. This allows,
for example, uploading all log files from the devices to a server for processing
and commanding all experiments using simple scripts.

Fig. 2. Algorithm for running the experi-
ments.

For better control, we decided to
use ADB through the USB interface
(instead of WiFi), with all devices
connected to the control computer
through an USB hub. Figure 2 shows
the basic procedure for running the
experiments. The procedure takes
three arguments: n, the number of
devices, m, the number of servers and,
l, the number of times the experiment
is to be repeated. We start each run by
rebooting the mobile devices to ensure
that all devices are in similar circum-
stances and that there are no extra
processes running that could interfere
with the results. Afterwards, the run-
Servers procedure sends a command
to all the server devices to start the

local server application. Next, runClients starts the local client application at
each client device, that in turn calls the startApp entry point. Once all the runs
are performed, the logs are copied from the devices to a desktop computer for
analysis.

4 Experiments and Results

Our experimental setup is composed of the following hardware: 1 Asus
RT-AC56U router (AP), 20 non-rooted HTC Nexus 9 tablets, 2 Trust USB
hubs (10 ports each) and 1 desktop computer. The layout of the deployment can
be seen in Fig. 3. The devices were placed on top of a table, side-by-side, in a
4 × 5 pattern, as in a typical of stadium seats arrangement. They all run Android
Lollipop 5.1.1 (API level 22) on top of which our test software was executed.
The devices were connected to a control desktop computer via the Android
Debug Bridge.

The experiments were setup in such a way that we guarantee that all the
content requested by the clients during the runs exists in all servers. In each
experiment, clients must download 20 video files, each 3 Mbytes in size from the
servers. This size represents a video clip with 10 s duration and encoded with
H264 video codec using 480 × 270 (width×height) as the frame size, a typical

Benchmarking Wireless Protocols for Feasibility in Supporting 101

format used by mobile apps. Before starting the transfer, each client computes
a random permutation of the 20 file names using a uniform distribution, to even
out the requests for each individual file during an experiment. Accesses are also
performed randomly in time, as each client waits a random time interval, within
given bounds, before requesting the next file of the sequence. For each scenario,
we run a set of experiments with a varying number of mobile servers/clients.
Each experiment was repeated 8 times to smooth out statistic flukes.

Fig. 3. The experimental setup.

The average download time for each video
is represented in the graphs in the next
sections, together with the bars for the 95 %
confidence intervals. The values for power dis-
sipation are given as the average per down-
load, as measured using the Android API
(android.os.BatteryManager) The instanta-
neous current intensity and the voltage (mostly
constant) are read periodically to compute the
dissipated power which is then integrated over
the complete experiment to get the total energy
spent per download.

To characterize the radio environment, we
performed a WiFi analysis on our campus and
detected that the 2.4 Ghz band was extensively
utilized by various services, while the 5Ghz band
usage was minimal. All the experiments were
performed using the 802.11n for packets exchanged between the AP and the
devices; 802.11ac was used whenever packets were exchanged device-to-device1.

4.1 Single Server

We start by restricting the experiments to only one server (infrastructural or
mobile), and experiment with four scenarios: WCS, WMS, WTMS, and WDMS.
The results for WiFi-Direct (WDMS) are just preliminary. We vary the number
of mobile clients downloading videos from 1 to 16. Figure 4 shows the average
download time per file. Figure 5 shows the total traffic processed by the AP,
in the WCS, WMS and WTMS scenarios. For Fig. 5, given that the amount of
traffic for WCS is exactly the same amount as in the case of WMS (we only
accounted for outgoing traffic), we decided not to show it for clarity. Note the
small 95 % confidence interval error bars.

In Fig. 4 WMS is clearly the worst performer, taking almost twice as much
time comparing to the other scenarios. This is due to the presence of two wireless
hops in the communication path, more specifically, from the mobile client device
to the AP and then from the AP to the mobile server device. WCS wins as a
result of the much faster link between the central server and the AP. As we

1 As a note, Android TDLS implementation switches automatically between the 2.4
and 5GHz bands and this is neither controlable and observable from the API.

102 J. Rodrigues et al.

1 2 4 6 8 16
0

2

4

6

8

10

Number of devices

T
im

e
[s

]

Download Time

WCS

WMS

WTMS

WDMS

Fig. 4. Average download time per file.

1 2 4 6 8 16
0

250

500

750

1,000

1,250

Number of devices

M
eg

a
B

y
te

s
[M

B
]

Traffic

WCS

WMS

WTMS

Fig. 5. Traffic handled by the AP.

stated, WiFi-Direct could only be used up to 5 devices - 4 clients and 1 server.
We present only experiments with 1, 2 and 4 clients. It is hard to extrapolate the
behaviour for larger number of clients but for low numbers of clients the results
are similar to the best performer (WCS).

1 2 4 6 8 16
0

150

300

450

600

Number of devices

Jo
ul

e
[J

]

Energy Consumed

WCS
WMS

WTMS
WDMS

Fig. 6. Average energy consumed per
experiment.

The behaviour of WTMS is more
subtle. While the 802.11z [13] specifi-
cation extension allows for a peer to
have multiple links to different base
stations, in practice only 2 channels
were available from the server at any
given time, leading us to conclude that
only one channel is available per radio
(since our test devices, Nexus 9, have
2 radios), and thus no multiplexing
is performed. This is visible in Fig. 5,
where no traffic is routed through the
AP up to 2 clients. The introduc-
tion of additional clients only shows
limited savings on the traffic being
routed through the AP. This is due
to the 802.11z’s mandatory periodical

switch-over to the base channel (the regular AP’s WiFi communication channel)
to process buffered messages (by the AP).

Given this, if there are only two clients then the two radios can be used to
setup TDLS channels. Adding more clients will result in the traffic being routed
through the AP, that in turn, will lead to the server device to spend more airtime
on one of the available channels to communicate with the AP. This will effectively
only allow for 1 offloading channel to be available.

Benchmarking Wireless Protocols for Feasibility in Supporting 103

Figure 6 shows the energy consumed per experiment. The figure shows some
similarity to Fig. 4 which is expected since our application uses almost exclu-
sively the WiFi hardware to send/receive replays; it does not play the videos
on arrival, it just stores them. Hence, download time is an excellent proxy for
energy consumption. We observed this correspondence for the other experiments
we performed and therefore will not present more graphs on energy consump-
tion in this paper. In absolute value, the energy spent in the downloads is rather
small. For example, given the 25.5 Wh specification of the battery from the
Nexus 9, this is equivalent to about 91000 J. The energy spent per download in,
e.g., the WCS scenario, with 1 server and 1 client, is about 50 J/20 downloads
= 2.5 J, corresponding to 0.002 % of the total charge; this value grows to 0.02 %
when using 16 clients.

4.2 Multiple Servers

We extended our experiments to examine the impact of introducing multiple
mobile servers in the mobile scenarios WMS and WTMS. Figures 7 and 8 show
the results obtained. In WTMS we introduced an extra level of refinement. In
one case we let the clients choose a random server for each file to be downloaded
from a predefined set - this is shown as WTMSD in the graphs. The alternative
process is to statically map each file to a specific server from the start, potentially
decreasing competition between clients - this is shown as WTMSS . We increase
the number of servers, from 1 to 8, while using a fixed number of clients (12).

1 2 4 6 8
0

2

4

6

8

Number of servers

T
im

e
[s

]

Download Time

WMS

WTMSD

WTMSS

Fig. 7. Average download time per file.

1 2 4 8
200

400

600

800

Number of servers

M
eg

a
B

y
te

s
[M

B
]

Traffic

WMS

WTMSD

WTMSS

Fig. 8. Traffic handled by AP.

Figure 7 shows the average download time with an increasing number of
servers. The introduction of TDLS clearly decreases the download time, with the
static assignment performing slightly better than the random assignment. This is
due to the better client distribution that the static approach provides, decreasing
the possibility of clients overloading a subset of the servers. The results show

104 J. Rodrigues et al.

a slight increase of 20 % in the download time with WTMS scenarios from 4
servers relative to the WCS scenario (for 12 clients) (c.f. Fig. 4). This, however,
is compensated by a 65 % decrease in the traffic handled by the AP under WTMS
with 8 servers (note that, in WMS as in WCS all traffic goes through the AP).
Relative to the WMS scenario we also observe a 33 % decrease in the download
time.

We resorted to simulation using ns-3 to better understand the behaviour
of TDLS, namely, how the number of successful TDLS links varied with the
number of available servers in the WTMS (static) scenario. Since there is no
native support in ns-3 for TDLS, we had to implement our own code to mimic
the behaviour of the radio interfaces. Based on the available documentation and
on our empirical experience we deduced that the Nexus 9 allows the use of 2
simultaneous channels that can be any combination of 802.11n and 802.11ac.
To simulate this behaviour, we implemented each ns-3 node with 3 network
interfaces (2 × 802.11ac, 1 × 802.11n), so that at any given time we can have
2 channels as in the Nexus 9. So, although the nodes have 3 software radio
interfaces, if we have 1 or 2 clients connected to a server, the server node can
only use 2 TDLS interfaces. If more than 2 clients are connected to a server, then
we can only use 1 TDLS interface, and all the other connections are done via
802.11n (through the AP). An auxiliary class manages the TDLS connections,
parametrized on the percentage of successfully established TDLS links.

We ran several simulations varying the percentage of TDLS connection suc-
cess. The results show that, to explain the traffic values from Fig. 8, the percent-
age of successful TDLS links must vary from 50 % with 1 server to 60 %–65 %
with 8 servers. We attribute this variation to the fact that, with more servers
available, there are less clients per server. For example, with 8 servers we have
16 (2 × 8) 802.11ac channels available and hence, with 12 clients we can more
easily establish TDLS connections, despite the extra global radio interference
that leads to collisions.

Also, it is apparent from Fig. 7 that, in WTMS, the performance does not
improve significantly beyond 4 servers. To understand why this happens we
performed another experiment where we reduced the number of downloads from
20 to 1 and increased the size of the file to be dowloaded from 3 MB to 60 MB,
so that, overall, the amount of traffic is identical.

Figures 9 and 10 show the results of the experiment. By decreasing the num-
ber of downloads per experiment, we observed a decrease in the amount of traffic
going through the AP (Fig. 10). This lead us to conclude that the initial setup for
TDLS channels is causing a significant overhead. Since we are unable to inspect
the internal behaviour of the network driver, we infer that the creation of a TDLS
channel requires multiple attempts, probably due to contention and interference,
resulting in a performance degradation. By decreasing the number of downloads
(and thus the number of TDLS tunnel negotiations), the expected behaviour was
verified with the introduction of additional servers, namely, each server is able
to support 2 distinct channels, with 1 being allocated to the AP base channel in
the presence of 3 or more clients. For example, in the case of 4 servers, there were

Benchmarking Wireless Protocols for Feasibility in Supporting 105

1 2 4 6 8
0

25

50

75

100

Number of servers

T
im

e
[s

]
Download Time

WTMS BIG

Fig. 9. Average download time while using
a 60 MB file.

1 2 4 6 8
0

100

200

300

400

Number of servers

M
eg

a
B

y
te

s
[M

B
]

Traffic

WTMS BIG

Fig. 10. Traffic handled by AP while using
a 60 MB file.

3 clients statically allocated with each server (statically assigned, represented by
WTMSS), while with 8 servers, we had 4 servers assigned with 2 clients and 4
servers assigned with 1 client.

The download time and amount of traffic tend to lower with the introduction
of additional servers, as depicted in Figs. 9 and 10. However, there is a substantial
amount of variation on the results due to the negotiation process of the TDLS
links. As stated in 802.11z, if during the setup of a direct link the driver detects
a beacon then the negotiation is aborted; or if the amount of traffic on a channel
is high enough then the TDLS link could be renegotiated to a different channel,
with the traffic between the two peers being redirected through the AP during
that time.

4.3 Discussion

The fastest download time is achieved by the traditional infrastructure, mostly
because it uses a very fast wired 1Gbit/s network between the server and the
AP, and also because the AP did not reach saturation in our experiments, even
with the highest number (16) of clients. However, the use of multiple servers in
an ad-hoc network of devices, all within radio reach, allowed significant removal
of traffic from the AP, up to a maximum of 65 % less traffic using 8 servers.
The corresponding download time for files is 20 % higher than the one observed
for the traditional server/AP infrastructure, which, in absolute figures, for 3MB
files, results in a delay of ≈ 1 s. Energy-wise, the cost of transfer is small for
the Nexus 9, with a nominal battery capacity of about 91000 J, amounting to
0.02 % with the maximum number of clients competing for the files. Smartphone
batteries have typical capacities an order of magnitude smaller and thus we would
expect each download to require a few tenths of percent of the battery. Since
each user individually is not expected to make many downloads during a game,
battery shortage is, evidently, not a limitation. Thus, the user experience is not

106 J. Rodrigues et al.

significantly diminished by the use of an ad-hoc network of devices to distribute
contents while there are considerable gains in terms of removing stress from
the AP.

5 Related Work

Managing the aggregate computational/storage resources of ad-hoc networks
of mobile devices, such as smartphones and tablets, has become a hot topic of
research in recent years. This results mostly from ongoing technological advances
and the widespread use of the devices. Several projects have explored the tech-
nology’s many angles, e.g., offloading, crowdsourcing, cost models, protocols,
security, and its applications to distinct areas, e.g., commerce, learning, health,
entertainment [14,15].

FireChat [6] is a proprietary mobile app, developed by Open Garden, that
allows smartphones to organize into a wireless mesh network and exchange mes-
sages using available technologies such as Bluetooth or Wi-Fi. The iOS version
uses Apple’s Multipeer Connectivity Framework [16] that enables services to be
advertised and discovered between nearby iOS devices using different wireless
protocols. Services can be provided through personal area type-of networks using
infrastructure WiFi, peer-to-peer WiFi and Bluetooth.

Bonjour [17] focus on three main areas: Addressing (allocating IPs to
Devices), Naming (creating alias for each network device) and Service Discov-
ery. The discovery works similarly to a publish-subscribe, where nodes advertise
their services which then other nodes can use them. In order for devices in a
network to be discovered, upon turning on the bonjour service, they send a
announce themselves to the network. At the same time, other nodes in the net-
work, already running a Bonjour Service, periodically ask the network what
devices are available.

Alljoyn [18] is an, open source, agnostic network framework that allows dif-
ferent types of devices and apps to discover and communicate in an abstract
way, hiding the complexity of distinct network protocols and hardware. Generi-
cally, it publishes APIs over the network through a general bus, which permits
distinctive network technologies to be used, such as Wi-Fi, Wi-Fi Direct, Blue-
tooth, Ethernet and PowerLine. To the best of our knowledge only infrastructure
WiFi is actually implemented. Regarding the network formation, Alljoyn, uses a
super peer paradigm, mesh of stars network, where the leaf nodes are connected
to router nodes and these act as bridges to the others router nodes.

Efforts to transform mobile networks into actual computational and/or stor-
age resources have been the subject of fundamental work. In [19,20] Hadoop was
successfully ported into mobile devices connected though WiFi to perform map
reduce computations. The goal was to identify the problems that might arise
from porting a system developed for full-fledged cloud servers to a resource-
starved cloud of devices. Doolan et al. [3] try a different approach by adapting
the well established Message Passing Interface (MPI) for mobile systems, with
the goal of performing parallel processing over these platforms.

Benchmarking Wireless Protocols for Feasibility in Supporting 107

In [21] the authors study the trade-offs between offloading computation to
an infrastructure cloud versus retaining the computation within a mobile edge-
cloud. They present two diverse workloads for mobile edge-clouds based on the
distribution of data and motivate the use of edge-clouds for one of them, specif-
ically when data is inherently distributed in the edge-cloud it is better (in terms
of latency and power consumption) to process them in an in-situ manner as
opposed to transferring them to the infrastructural-cloud for processing.

6 Conclusions

In this paper, we study whether D2D protocols can be used to efficiently disem-
inate multimedia contents in networks of mobile devices. We do this by bench-
marking different protocols and configurations for a specific application. Our
first hypothesis, that the download speed would be improved with D2D pro-
tocols was not vindicated, although the number of devices we used (and had
available) was really not enough to take the AP close to saturation, in which
case we would expect such improvements. The observed difference and corre-
sponding extra energy usage is small and does not degrade user experience. On
the other hand, the experiments suggest that our second hypothesis, that the
use of D2D protocols could significantly remove load from the AP, is valid for
we observed a decrease in traffic up to 65 % for a multiple server configuration.

Thus we conclude that D2D protocols that take advantage of existing wireless
technologies can indeed be used to efficiently disseminate multimedia contents
and, especially, to diminish the load in the traditional wireless infrastructure, a
critical problem for service providers in large sports venues, while maintaining
a good user experience.

We plan to expand this line of work to include network overlays in order to
create a fully decentralized and self organizing mesh that leverages the different
underlying wireless protocols.

Acknowledgment. This work has been sponsored by projects HYRAX (CMUP-
ERI/FIA/0048/2013), funded by FCT, and SMILES (NORTE-01-0145-FEDER-
000020), funded by NORTE 2020, under PORTUGAL 2020, and through the ERDF
fund.

References

1. Global mobile statistics 2013. http://mobiforge.com/. Accessed 19 Feb 2016
2. Drolia, U., Mickulicz, N., Gandhi, R., Narasimhan, P.: Krowd: A key-value store for

crowded venues. In: Proceedings of the 10th International Workshop on Mobility
in the Evolving Internet Architecture, MobiArch 2015, pp. 20–25. ACM (2015)

3. Doolan, D.C., Tabirca, S., Yang, L.T.: MMPI a message passing interface for
the mobile environment. In: Proceedings of the 6th International Conference on
Advances in Mobile Computing and Multimedia, MoMM 2008, pp. 317–321. ACM,
New York (2008)

http://mobiforge.com/

108 J. Rodrigues et al.

4. Marinelli, E.E.: Hyrax: Cloud computing on mobile devices using mapreduce, Mas-
ter’s thesis, Master’s Thesis, Carnegie Mellon University (2009)

5. Yan, T., Marzilli, M., Holmes, R., Ganesan, D., Corner, M.: mcrowd: A platform for
mobile crowdsourcing. In: 7th ACM Conference on Embedded Networked Sensor
Systems (SenSys 2009), pp. 347–348. ACM, New York (2009)

6. OpenGarden’s FireChat App. http://opengarden.com/firechat/. Accessed 19 Feb
2016

7. A security, private internet and tactical cloud at the edge. Kurzweil News, August
2013

8. Wait, P.: Darpa creates cloud using smartphones, Information Week, August 2013
9. YinzCam. http://www.yinzcam.com/. Accessed 19 Feb 2016

10. Agile stadiums bring digital content to sports fans, June 2015. http://goo.gl/
4BHxr6. Accessed 19 Feb 2016

11. Kapustka, P., Stoffel, C.: State of the Stadium Technology Survey, Technical report
(2014)

12. Erman, J., Ramakrishnan, K.: Understanding the super-sized traffic of the super
bowl. In: Proceedings of the 2013 Conference on Internet Measurement Conference,
IMC 2013, pp. 353–360. ACM (2013)

13. 802.11z Amendment 7: Extensions to Direct-Link Setup. http://goo.gl/acQa0i
14. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: A survey. Future

Gener. Comput. Syst. 29(1), 84–106 (2013)
15. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing:

architecture, applications, and approaches. Wireless Commun. Mobile Comput.
13(18), 1587–1611 (2013)

16. Apple’s Multipeer Framework. https://goo.gl/332lwR. Accessed 19 Feb 2016
17. Apple’s Implementation of Bonjour. https://www.apple.com/support/bonjour/.

Accessed 19 Feb 2016
18. Alljoyn Framework. https://allseenalliance.org/framework. Accessed 19 Feb 2016
19. Marinelli, E.E.: Hyrax: cloud computing on mobile devices using mapreduce. Mas-

ter’s thesis, Carnegie Mellon University (2009)
20. Teo, C.L.V.: Hyrax: Crowdsourcing mobile devices to develop proximity-based

mobile clouds. Ph.D. dissertation, Carnegie Mellon University (2012)
21. Drolia, U., Martins, R., Tan, J., Chheda, A., Sanghavi, M., Gandhi, R.,

Narasimhan, P.: Motivating mobile edge-clouds. In: 10th IEEE International Con-
ference on Ubiquitous Intelligence and Computing (UIC 2013) (2013)

http://opengarden.com/firechat/
http://www.yinzcam.com/
http://goo.gl/4BHxr6
http://goo.gl/4BHxr6
http://goo.gl/acQa0i
https://goo.gl/332lwR
https://www.apple.com/support/bonjour/
https://allseenalliance.org/framework

BFT-Dep: Automatic Deployment of Byzantine
Fault-Tolerant Services in PaaS Cloud

Bijun Li(B) and Rüdiger Kapitza(B)

TU Braunschweig, Braunschweig, Germany
{bli,kapitza}@ibr.cs.tu-bs.de

Abstract. Cloud computing has been a massive trend over the recent
years and eased the deployment of scalable distributed applications.
While initially renting out virtual machines was the predominant form
of cloud computing, nowadays Platform as a Service (PaaS) solutions
are emerging. The main advantages of the latter are a faster and easier
application deployment as well as built-in support for horizontal scala-
bility. However, when it comes to services with more demanding depend-
ability requirements, currently provided deployment mechanisms quickly
become insufficient, forcing cloud customers to fall back into manual, self-
made strategies.

In this paper, we present BFT-Dep, a framework for deploying
Byzantine fault-tolerant (BFT) services in a PaaS cloud automatically.
BFT-Dep leverages the existing PaaS functionality to address specific
deployment requirements and provides tailored support to set up and
manage replicated services. It flexibly integrates BFT protocols as an
independent service layer, thereby alleviating the complexity that the
deployment of such systems entails. An initial prototype of BFT-Dep
has been implemented on top of the open-source PaaS platform Open-
Shift and a first evaluation shows its practicability.

Keywords: Automatic application deployment · Platform as a Service
(PaaS) cloud · Byzantine fault tolerance

1 Introduction

Cloud computing [22] offers a new form of resource provisioning, where services
and applications are no longer hosted on local computing resources but on shared
ones provided by remote infrastructures. Customers, i.e. software developers, are
offered with services delivered over the Internet without having to manage and
maintain the underlying hardware or system software that hosts these services.

B. Li—This research was supported by Siemens Rail Automation Graduate School
(iRAGS). We would thank Torgen Hauschild, Marcel Kessler, Philipp Markiewka,
Matthias Natho, Manuel Nieke, Mathias Rudnik for their contributions to this paper.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 109–114, 2016.
DOI: 10.1007/978-3-319-39577-7 9

110 B. Li and R. Kapitza

Although delivering virtual machines is the most common form of cloud offer-
ing, Platform as a Service (PaaS) clouds [7,12,13,16], are getting increasingly
popular. PaaS clouds aim at helping customers to quickly deploy and run their
applications without considering infrastructure management tasks. Contrary to
lower-level cloud services, non-functional properties like horizontal scalability are
often part of the built-in features of these platforms. This makes PaaS clouds
particularly appealing for more critical applications. However, if the applica-
tions depend on state, current PaaS solutions fall short as they lack deployment
strategies for dependable stateful services. When services need to be replicated
for high availability, the deployment is not a question of configuring indepen-
dent service instances anymore, but of setting up and coordinating collaborating
and highly interconnected replicas. This becomes even more complex, if the sys-
tems are supposed to tolerate not only crash faults but also Byzantine faults.
For all that, cloud customers have to implement and maintain custom solutions,
contradicting the primary goal of an automatic deployment in PaaS clouds.

This paper presents BFT-Dep, a novel application deployment framework
that automatically sets up Byzantine fault-tolerant (BFT) [6] applications in
PaaS clouds. Based on state-machine replication [18], BFT is able to tolerate
crashes as well as arbitrary faults. By encapsulating BFT replicas into PaaS
conform services, BFT-Dep simplifies the deployment of replicated applications
without requiring changes to the cloud itself, and handles coordination among
replicas automatically. An initial realization of BFT-Dep has been implemented
as an extension of the popular open-source PaaS cloud OpenShift [16] and by
using BFT-SMaRt [3,4] to enable replication.

Research works, which integrate Byzantine fault-tolerance protocols into
cloud infrastructures to tolerate Byzantine failures have been proposed [2,8,
11,19]. Also at middleware level, BFT has been combined with multi-tier web
services to guarantee their heterogeneous reliability requirements [15]. Unlike
them, our work is targeting the automatic deployment of reliable applications
as an enhancement and extension of PaaS cloud functionality thereby making
BFT services easier to deploy and manage.

The remainder of the paper is organized as follows: Sect. 2 explains the system
design of BFT-Dep, Sect. 3 shows an implementation of BFT-Dep on a popular
open-source PaaS cloud with interim evaluation results, and Sect. 4 concludes the
paper and indicates future works.

2 System Design

An integral part of replicated Byzantine fault-tolerant services is the agreement
protocol. It is responsible for coordinating the order in which requests must be
executed by the stateful replicas to ensure the consistency of non-faulty ones.
Consequently, to enable an easy deployment of BFT systems, the agreement
protocol has to be integrated into the PaaS platform. BFT-Dep achieves this
by introducing a BFT agreement layer that is separated from the application
replicas (see Fig. 1). The BFT agreement layer can be realized using a common

Automatic Deployment of BFT Services in PaaS Cloud 111

Fig. 1. Architecture of BFT-Dep

BFT protocol implementation [1,6,14]. In principle this follows separation of
agreement and execution stages [21] and the typical assumptions for Byzantine
fault-tolerant systems are made. A minimum of 3f + 1 replicas are required to
tolerate up to f Byzantine faults. Faulty replicas may crash or behave arbitrarily
and maliciously. However, they are unable to break cryptographic techniques so
that they cannot corrupt authenticated messages without being noticed. Note
that enforcing fault tolerance of the cloud infrastructure itself is out of scope, as
it is an orthogonal issue and has been addressed before [5].

We build the BFT agreement layer by containerizing a BFT protocol, e.g.
using Docker [9], into the software stack of a PaaS platform as a built-in service.
Thus a BFT replica can be deployed and operated in the same way as any other
service instances of a PaaS cloud. This way, BFT-Dep is able to leverage as much
as possible the existing PaaS cloud facilities and is to a large extent immune to
cloud architecture changes. When deploying applications, BFT-Dep first creates
and configures a set of BFT replicas to establish the BFT agreement layer and
then instantiates replicas for the customer’s application. BFT-Dep guarantees
that the application replicas together with their associated BFT replicas are
distributed over different hosts of the cloud for fault independence. Each BFT
replica exposes an access entry point to the clients. Upon receiving requests,
the replicas of the BFT agreement layer first order them and then forward the
requests to the corresponding application replicas. To do so, each BFT replica
needs to connect to the application replica that locates on the same host to keep
communication latency low. Application replicas then generate replies and send
them back to the client through the BFT agreement layer, and the client will
eventually verify the replies.

3 Implementation

We chose OpenShift Origin v3 [17] to implement BFT-Dep. Since BFT-Dep
assumes a container-based PaaS model, it is not bound to a specific platform

112 B. Li and R. Kapitza

but can be applied to most PaaS clouds built upon containers. Furthermore,
BFT-SMaRt [3,4], a well-known BFT protocol implementation written in Java,
was chosen for evaluation.

3.1 BFT Replicas Generation

BFT Image. OpenShift uses Docker containers [9] that are built from Docker
images for application deployment and management. A Dockerfile containing all
necessary commands is needed for assembling an image. For building the BFT
replica image, we use an off-the-shelf Java image as the basis and customize
it to import the BFT-SMaRt source code. The necessary ports for connecting
to other replicas as well as the associated application replica are declared. We
eventually push the built image to a Docker Hub [10] repository, so that it can
be conveniently imported to the PaaS cloud as an image stream for creating
BFT containers.

BFT Pods and Services. In OpenShift, the smallest deployable and manage-
able unit, the so-called pod, is responsible for holding the runtime environment
of a set of containers. In BFT-Dep, we specify a JSON file to explicitly describe
the features of BFT replica pods. A unique name as well as a label are assigned
to distinguish pods. When creating replicated BFT pods, the BFT image is
imported and the ports declared in the image need to be opened by the pod
as well. BFT-Dep enforces those pods’ allocations by assigning each one to an
individual host of the PaaS installation, as replicas should always be distributed
to different machines. We achieve this by specifying a hostPort item in the BFT
pod description file so that according to the default scheduling policy, pods with
the same hostPort number cannot be allocated onto the same host.

The unit service in OpenShift is defined as an abstraction of one or multiple
pods, being responsible for exposing a stable service entry point regardless of
underlying pod changes. A label selector is used to find all matching pods for
the same service. We build BFT services upon individual BFT pods to forward
external traffic. A temporary helper pod is used to configure and setup a cluster.
It collects IP addresses of all BFT pods to update their host settings and then
starts the BFT-SMaRt replica inside each pod. This way, BFT-SMaRt replicas
can eventually connect to each other to agree on the order of client requests.

3.2 BFT Application Deployment and Networking

In OpenShift, customers use a template (a description file) to package applica-
tion runtime dependencies for deployment. BFT-Dep offers a specific template
for deploying BFT services and replicated applications. When using this tem-
plate, BFT services are automatically generated and so are the application repli-
cas, while their allocations are enforced by BFT-Dep as explained above. Each
BFT service thereby connects to the application replica on the same host via
socket connections. BFT services first order the received requests via public IPs,

Automatic Deployment of BFT Services in PaaS Cloud 113

and forward to the corresponding application replicas for execution, and even-
tually send the replies back to the clients.

3.3 Interim Evaluation

We installed OpenShift v3 on a cluster of AWS EC2 instances (all in US East),
composed of one master and four plain nodes. Each EC2 instance is equipped
with an elastic IP for public accesses from PaaS customers and clients.

We have conducted an interim evaluation of our preliminary BFT-Dep
prototype using a simple key-value store application and the YCSB bench-
mark [20]. A workload of combined read and update operations is used for
testing three deployment scenarios, as shown in Fig. 2: (1) BFT and application
deployed on EC2 instances together, (2) BFT and application deployed in Open-
Shift together, and (3) BFT and application deployed by BFT-Dep separately.
Results of average latency indicate that the extra delay of using BFT-Dep intro-
duced by the socket connections between BFT replicas and application services
is low.

5 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Number of clients

A
ve
ra
ge

la
te
nc
y
(m

s)
of

re
ad

EC2-read
OpenShift-read
BFT-Dep-read

5 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Number of clients

A
ve
ra
ge

la
te
nc
y
(m

s)
of

up
da

te EC2-update
OpenShift-update
BFT-Dep-update

Fig. 2. Evaluation of read and update latencies with YCSB benchmark.

4 Conclusion and Future Works

We presented BFT-Dep, a framework leveraging existing PaaS facilities to
address reliability demands of stateful application services. By integrating BFT
protocols into the cloud platform as a built-in service layer, BFT-Dep offers cus-
tomers the capability of automatically deploying and coordinating fault-tolerant
applications while the PaaS platform itself can be left unchanged. Our prelim-
inary BFT-Dep prototype has been implemented on top of OpenShift. The
interim evaluation shows that the overhead that is added by a containerized
BFT protocol implementation is low.

For future works, we plan to make BFT-Dep more generically applicable and
enable reconfiguration and distribution changes as supported by BFT-SMaRt.

114 B. Li and R. Kapitza

References

1. Behl, J., Distler, T., Kapitza, R.: Consensus-oriented parallelization: how to earn
your first million. In: Proceedings of the 16th Annual Middleware Conference,
Middleware 2015, pp. 173–184. ACM (2015)

2. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: Depsky: dependable
and secure storage in a cloud-of-clouds. ACM Trans. Storage (TOS) 9(4), 12 (2013)

3. Bessani, A., Sousa, J., Alchieri, E.E.: State machine replication for the masses with
bft-smart. In: 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pp. 355–362. IEEE (2014)

4. Bft-smart. https://github.com/bft-smart/library
5. Brenner, S., Garbers, B., Kapitza, R.: Adaptive and scalable high availability for

infrastructure clouds. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol.
8460, pp. 16–30. Springer, Heidelberg (2014)

6. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of
the third USENIX Symposium on Operating Systems Design and Implementation
(OSDI 1999), pp. 173–186 (1999)

7. Cloud foundry. https://www.cloudfoundry.org/
8. Cogo, V.V., Nogueira, A., Sousa, J., Pasin, M., Reiser, H.P., Bessani, A.: FITCH:

supporting adaptive replicated services in the cloud. In: Dowling, J., Täıani, F.
(eds.) DAIS 2013. LNCS, vol. 7891, pp. 15–28. Springer, Heidelberg (2013)

9. Docker. https://www.docker.com/
10. Docker hub. https://hub.docker.com/
11. Garraghan, P., Townend, P., Xu, J.: Using byzantine fault-tolerance to improve

dependability in federated cloud computing. Int. J. Softw. Inform. 7(2), 221–237
(2013)

12. Google app engine. https://cloud.google.com/appengine/
13. Heroku. https://www.heroku.com/
14. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative

byzantine fault tolerance. ACM SIGOPS Oper. Syst. Rev. 41(6), 45–58 (2007)
15. Merideth, M.G., Iyengar, A., Mikalsen, T., Tai, S., Rouvellou, I., Narasimhan, P.:

Thema: Byzantine-fault-tolerant middleware for web-service applications. In: 2005
24th IEEE Symposium on Reliable Distributed Systems (SRDS), pp. 131–140.
IEEE (2005)

16. Openshift. https://www.openshift.com/
17. Openshift origin v3. https://github.com/openshift/origin
18. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-

roach: a tutorial. ACM Comput. Surv. 22, 299–319 (1990)
19. Verissimo, P., Bessani, A., Pasin, M.: The tclouds architecture: Open and resilient

cloud-of-clouds computing. In: 2012 IEEE/IFIP 42nd International Conference on
Dependable Systems and Networks Workshops (DSN-W), pp. 1–6. IEEE (2012)

20. https://github.com/brianfrankcooper/YCSB
21. Yin, J., Martin, J.P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating agree-

ment from execution for byzantine fault tolerant services. In: Proceedings of the
Nineteenth ACM SIGOPS Symposium on Operating Systems Principles (SOSP
2003), pp. 253–267. ACM (2003)

22. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet serv. appl. 1(1), 7–18 (2010)

https://github.com/bft-smart/library
https://www.cloudfoundry.org/
https://www.docker.com/
https://hub.docker.com/
https://cloud.google.com/appengine/
https://www.heroku.com/
https://www.openshift.com/
https://github.com/openshift/origin
https://github.com/brianfrankcooper/YCSB

BFT-Bench : Towards a Practical Evaluation
of Robustness and Effectiveness

of BFT Protocols

Divya Gupta1, Lucas Perronne1, and Sara Bouchenak2(B)

1 Univ. Grenoble Alpes, LIG, Grenoble, France
{Divya.Gupta,Lucas.Perronne}@imag.fr

2 Univ. Lyon, INSA Lyon, LIRIS, Lyon, France
Sara.Bouchenak@insa-lyon.fr

Abstract. Byzantine Fault Tolerance (BFT) is an interesting means to
make computing systems resilient in presence of failures and attacks.
That being said, designing and implementing BFT protocols is a hard
and tedious task. This first comes from the inherent complexity of design-
ing BFT distributed protocols, reasoning about their correctness, and
implementing the software prototype of the protocols in a consistent and
efficient way. Another reason that makes BFT protocols hard and error
prone is the lack of tools for testing and evaluating protocols imple-
mentations in various and realistic settings. Furthermore, BFT proto-
cols differ in many aspects, ranging from the faulty behaviors they han-
dle, to the communication patterns and cryptographic mechanisms they
apply. Thus, a comprehensive benchmarking environment is still miss-
ing to easily analyze and compare the effectiveness and performance of
these protocols. In this paper, we present BFT-Bench, the first bench-
marking framework for evaluating and comparing BFT protocols in prac-
tice. BFT-Bench includes different BFT protocols implementations, their
automatic deployment in a distributed setting, the ability to define and
inject different faulty behaviors and workloads, and the online monitoring
and reporting of performance and dependability measures. The experi-
mental results of the evaluation of BFT-Bench show the effectiveness of
the framework, easily allowing an empirical comparison of different BFT
protocols, in various workload and fault scenarios.

Keywords: Fault tolerance · Byzantine faults · Fault injection ·
Performance · Robustness · Benchmarking

1 Introduction

Cloud computing environments are now increasingly common. With their expan-
sion, unpredictable events such malicious attacks, network delays, data cor-
ruption, and other types of Byzantine faults require specific fault tolerance

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 115–128, 2016.
DOI: 10.1007/978-3-319-39577-7 10

116 D. Gupta et al.

mechanisms. Byzantine Fault Tolerance (BFT), based on state machine replica-
tion, consists in replicating the critical service in several replicas running on
different nodes, and thus, ensuring service availability despite failure occur-
rence [13]. When clients access the service, this is done through a specific BFT
communication protocol that ensures that client requests are processed by repli-
cas in the same order.

There has been a large amount of work on Byzantine Fault Tolerance (BFT)
protocols. Early efforts have explored the practicality of Byzantine Fault Tol-
erance, with PBFT protocol [6]. Other efforts have been made to improve the
performance of the protocols and reduce the cost they induce due to many mes-
sage rounds and cryptographic operations. Thus, some BFT protocols focus on
improving performance in fault-free cases [2,9,15], while other protocols improve
performance in presence of failures, each one proposing and applying techniques
to counter specific types of faults such as network contention, system overload,
etc. [3,7].

However, there has been very little in the way of empirical evaluation of
BFT protocols. Evaluations of the protocols have often been conducted in an
ad-hoc way, which makes them difficult to reproduce, and compare with new
protocols. Moreover, it is generally admitted that BFT protocols are too complex
to implement, thus, re-implementing them each time a new protocol must be
compared with existing ones is not realistic.

In this paper, we present BFT-Bench, a benchmarking environment for eval-
uating performance and robustness of Byzantine fault tolerance systems. BFT-
Bench enables the definition of various execution scenarios and faultloads, their
automatic deployment in an online system, and the production of various mon-
itoring statistics. This provides a means to analyze and compare the effective-
ness of the protocols in various situations. BFT-Bench is an open framework
that includes state-of-the-art BFT protocols, and may be extended with new
BFT protocols. In addition, the paper presents an evaluation with BFT-Bench,
empirically comparing different BFT protocols, and exhibiting their level of per-
formance and robustness in different scenarios.

The remainder of the paper is structured as follows. Section 2 discusses the
related work. Section 3 presents BFT-Bench. Section 4 describes the experimen-
tal evaluation, and Sect. 5 concludes the paper.

2 Related Work

A Byzantine fault tolerant system is able to counter arbitrary faults, ranging
from hardware crash, to message corruption, network congestion, or any other
misbehavior. In the following, we review the related work on Byzantine fault
tolerance, and BFT benchmarking.

BFT from Theory to Practice. BFT State Machine Replication (SMR) con-
sists in replicating the underlying service in several replicas, to ensure service
availability and correctness despite fault occurrence [13]. Such a service handles

Practical Evaluation of BFT Protocols 117

requests coming from concurrent clients. Thus, to ensure consistency among ser-
vice replicas, an agreement protocol is applied to guarantee that client requests
are executed in the same order by correct service replicas. Reaching an agreement
requires 3f + 1 replicas to handle upto f arbitrary faults [11].

BFT Performance Improvement in Fault-Free Conditions. One of the
main drawbacks of BFT was its cost. Thus, several protocols were proposed to
enhance the performance of BFT protocols while maintaining their correctness.
A first family of BFT protocols aims at improving the performance of the pro-
tocols in the absence of faults. They usually run a lightweight version of the
protocol in fault-free cases, and switch to a more robust version of the protocol
at fault occurrence. This is interesting in scenarios where faults occur rarely, and
where it is more interesting to provide priority to fault-free cases. Examples of
such protocols are Zyzzyva [9], Chain [15], and Aliph [2], allowing to improve
clients request throughput/latency.

BFT Performance Improvement in Presence of Faults. Another family
of BFT protocols intends to improve performance in presence of faults. Roughly
speaking, these protocols provide practical and efficient mechanisms to specifi-
cally handle some misbehaviors (i.e., fault types). Aardvark [7], Prime [1], Spin-
ning [16], and RBFT [3] are examples of such protocols.

BFT Simulation and Benchmarking. General performance benchmarks
have been proposed to evaluate the performance of application servers, web
servers, data management systems, etc. Other solutions consider benchmarking
dependability to provide a means to characterize system behavior in presence of
faults. They consider different underlying systems such as MapReduce [12], or
web servers [8]. Less effort has been done for benchmarking BFT systems. BFT-
SMaRt is a replication engine that implements a BFT protocol; it interestingly
includes a tool for evaluating the BFT protocol [4]. However, it is limited to the
assessment of that particular protocol. Simulators of BFT protocols were also
proposed [10,14]; in contrast, in this paper we consider the empirical evaluation
of BFT. Thus, there is a need for a comprehensive benchmarking environment
to help researchers and practitioners to conduct empirical studies and better
analyze and evaluate the performance and robustness of BFT protocols.

3 BFT-Bench Framework

BFT-Bench framework allows empirical evaluation and comparison of state-of-
the-art and new Byzantine fault-tolerance systems. Figure 1 describes the major
components of BFT-Bench: (i) several BFT protocols implementations, (ii) fault
scenarios to be injected in the underlying BFT system, (iii) load to be injected
in the running underlying system, and (iv) monitoring statistics to report per-
formance and dependability statistics the system.

118 D. Gupta et al.

Fig. 1. Overview of BFT-Bench

Thus, BFT-Bench enables automatic deployment of the experiments in a
distributed system that consists of several nodes running the replicas of the
BFT protocol, and one or multiple nodes emulating clients sending concurrent
requests to the BFT system.

3.1 BFT Protocols

BFT-Bench is intended to be an open framework that can be extended with
new BFT protocols to evaluate, new fault models. In this paper, the following
state-of-the-art BFT protocols are considered: PBFT for being the first practical
BFT protocol [6]; Zyzzyva, Chain, and Aliph for their performance efficiency
in fault-free conditions [2,9,15]; Aardvark, and RBFT as instances of robust
protocols that improve performance in presence of failures [3,7]. These protocols
were chosen for their variety of features, their variety of communication patterns
as described in Fig. 2, and their variety in terms of fault types the protocols
prototypes actually handle (see Sect. 3.2).

Practical BFT Protocol. PBFT’s communication pattern is used as a baseline
many other protocols such as Aardvark and RBFT [3,7]. In PBFT, upon a client
request the primary sends pre-prepare messages to other replicas with assigned
sequence number to the request. Then, prepare messages and commit messages
are exchanged to agree on the sequence number. If PBFT suspects the primary
to be malicious, it undergoes a view change to replace the primary by another
replica.

Protocols Enhancing Performance in Fault-Free Conditions. Zyzzyva is
a speculative, high throughput BFT protocol [9]. Its design is meant to bypass

Practical Evaluation of BFT Protocols 119

Fig. 2. Examples of communication patterns of BFT protocols

the expensive agreement steps of PBFT in fault-free settings. In such scenario,
the clients send their requests to the primary in charge of assigning sequence
numbers. The primary then forwards the ordered requests to the other replicas,
which speculatively execute these requests and send the responses to the clients.
If a client receives 3f + 1 consistent matching responses, it commits. Otherwise,
clients apply additional steps such as collecting commit certificates and creating
proofs of misbehaviors to trigger view change.

Chain protocol, as its name suggests and as described in Fig. 2(b), follows a
chain-like communication pattern where clients send requests to the head replica,
which itself sends messages to its successor replica, and so on [15]. Chain greatly
benefits from batch optimization where multiple messages are sent in one batch,
which improves system throughput, with a peak of performance when the system
is completely saturated (i.e., when the network link between any two servers
is fully loaded). However, Chain by itself is unable to ensure Byzantine fault
tolerance, and must rely on a protocol switching mechanism when subject to
failures.

Aliph protocol involves several sub-protocols [2]. Its initial configuration,
Quorum, is dedicated to provide high performance if the system does not involve
asynchrony, contention, or failures. When facing contention, Quorum is replaced
by Chain. Finally, upon occurrence of Byzantine behaviors, Chain is replaced by
a backup protocol that handles Byzantine faults, for example PBFT. In Quorum,
clients directly send requests to all replicas. These replicas independently execute
the requests, updates their local history and reply to the clients. Note that
the ordering phase commonly performed by the primary replica is skipped in
Quorum, thus providing a better response time. Thus, in Aliph the client side of
the protocol is responsible of managing inconsistencies, and relies on a panicking
mechanism to trigger sub-protocol switching.

120 D. Gupta et al.

Protocols Enhancing Performance in Presence of Faults. Aardvark pro-
totype implements efficient fault tolerance mechanisms for faults such as inten-
tional message delay, network flooding, or clients sending corrupted requests to
the system [7]. To handle these fault types, Aardvark uses mechanisms such
as replica blacklisting or digital signatures, to minimize the impact of faulty
components on the overall system performance.

RBFT strengthens the architecture of PBFT and incorporates adaptive
mechanisms to deal with different faulty behaviors [3]. RBFT runs f + 1 multi-
ple instances of the same BFT protocol in parallel but the requests are executed
only by one of the instances called master instance, while other f instances are
called backup instances. Each backup instance has its own primary which orders
the incoming requests in order to monitor the difference of throughput between
the master instance and itself. If the performance at backup and master instance
differs by a given threshold at not less than 2f + 1 replicas, the primary replica
at master instance is considered faulty and a view change is triggered, where a
new primary is elected at every instance.

3.2 Fault Injection

In the following, we first describe the fault types that are handed by state-of-the-
art BFT protocols presented in Sect. 3.1, and how BFT-Bench injects them in a
running system. We then present how to describe a faultload, i.e. fault scenario
to be injected by BFT-Bench.

Fault Types Examples

Replica Crash. Upon a replica crash, the replica stops and does not participate
in any further communication with the clients or the other replicas of the BFT
protocol. In practice, BFT-Bench remotely connects to the target replica node
and kills the replica process. Note that the implementation of this fault type
injection is BFT protocol-independent, thus, it does not require changes to BFT
protocols prototypes.

Message Delay. When a replica starts delaying messages, it slows down all future
operations of the protocol depending on these messages, thus, leading to degra-
dation in performance. As a result, this Byzantine behavior is especially critical
when it occurs at the primary replica. In practice, BFT protocols prototypes are
extended to integrate the injection of this type of fault. When BFT-Bench trig-
gers this type of fault, instead of sending messages according to the protocol
specifications, the replica process sleeps during a given delay, before resuming
to send any messages to other replicas.

Network Flooding. Network flooding is a common denial-of-service attack. It is
meant to overload the network with malicious messages which can not be said
invalid until verified. This verification of messages is computation-intensive and

Practical Evaluation of BFT Protocols 121

prevents the system from focusing on correct messages. In practice, BFT pro-
tocols prototypes are extended to integrate the injection of this type of fault.
When BFT-Bench triggers this type of fault, the faulty replica transmits cor-
rupted messages of a chosen size to other replicas.

System Overload. Overloading the system with a large number of concurrent
client requests can affect system performance to a large extent. Although none
of the servers behave maliciously in this attack, but continuous increase in con-
current clients can eventually deteriorate the performance or lead to system
thrashing. To inject this behavior, BFT-Bench remotely connects to the node in
charge of emulating concurrent clients, and starts additional client processes.

Faultload. A faultload in BFT-Bench is described in a file. Each line of the
faultload file consists of the following elements: the time at which a fault occurs
(relative to the beginning of the experiment), the type of fault that occurs, where
the fault occurs, and optionally, additional parameters that depend on the type
of fault. A fault belongs to one of the fault types handled by BFT protocols
prototypes, and introduced in Sect. 3.2. A fault occurs in one of the BFT pro-
tocol replicas; this replica may be either explicitly specified in the faultload or
randomly chosen among the set of replicas.

Thus, a faultload in BFT-Bench may contain the following element to
describe the injection of fault of type crash:
< [fault trigger time], replica crash, replicax >

It may contain the following element to describe the injection of fault of
type message delay, specifying among others the delay to be injected, and the
duration of occurrence of this type of fault:
< [fault trigger time], message delay, replicax, ([injected message delay], [fault
occurrence duration])>

A faultload in BFT-Bench may also contain the following element to describe
the injection of fault of type network flooding, specifying among others the size
of the message used for flooding, and the duration of occurrence of this type of
fault:
< [fault trigger time], network flooding, replicax, ([flooding message size], [fault
occurrence duration])>

The overall architecture of BFT-Bench fault injection is presented in Fig. 3.
In this example, the cluster has N + 2 nodes, where N = 3f + 1 nodes are BFT
replicas, one node hosts concurrent clients emulator, and one node runs BFT-
Bench. BFT-Bench faultload injector uses faultload to determine which type
of fault is to be triggered, at what time this fault will be injected, and other
required fault parameters. The fault injector runs a daemon that communicates
directly with the replicas to trigger faults. For instance, in case of replica crash,
the daemon waits until the fault trigger time is reached, then calls remotely
interacts with the target replica to actually trigger the fault.

122 D. Gupta et al.

$
'

Fig. 3. Architecture of faultload injection

3.3 Load Injection

The workload is first characterized by number of concurrent clients sending
requests to the BFT system. Client requests are executed in FIFO order in
a closed loop, where a clients submits a request, waits for the request to get
processed and receives a response, before sending another request. The workload
is also characterized by the size of client request/response messages exchanged
with the BFT system. It is an important parameter as large size messages affect
BFT system performance, due to time consuming cryptographic operations exe-
cuted by BFT protocols. BFT-Bench includes a client emulator implementing
multi-client behavior, where each client process sends requests to the underly-
ing BFT system, and receives the corresponding responses. In BFT-Bench, the
workload may contain one or several elements as follows to describe the load to
be injected:
< [load injection time], [#concurrent clients], [request message size], [response
message size], [request processing time], [load injection duration])>

3.4 Monitoring

BFT-Bench produces performance statistics for evaluating and comparing the
performance of BFT protocols. Throughput and Latency are the main perfor-
mance parameters considered when evaluating Byzantine Fault Tolerance pro-
tocols, both experimentally and theoretically. Latency is the time elapsed from
the moment a client submits a request until the complete response is received
by this client. Throughput is measured as the number of client requests han-
dled by the system per unit of time. Latency and throughput are measured by
BFT-Bench at the client-side, and thus include network communication times
between the client and the replicas. Furthermore, BFT-Bench produces low-level
system monitoring information such as cpu, memory and network usage, that
can help better explaining the behavior and possible bottlenecks of the system.

Practical Evaluation of BFT Protocols 123

3.5 On Extensibility of BFT-Bench

BFT-Bench is an open framework intended to help BFT protocol designers and
practitioners to easily evaluate their protocols. BFT-Bench includes, among oth-
ers, existing implementations of BFT protocols. In this paper, we illustrated the
use of BFT-Bench with several state-of-the-art BFT protocols prototypes. In
the following, we describe how to integrate a new BFT protocol prototype to
BFT-Bench, and benefit from its benchmarking features. Although most of the
components of BFT-Bench framework are general and can be easily reused for
new BFT protocols, there are some exceptions that we describe below. Workload
injection is based on the client emulator program that comes with a BFT proto-
col prototype. Such a program is pretty simple, and its reuse to allow dynamic
workload variation as provided by BFT-Bench is straightforward. For the imple-
mentation of faultload injection for faults like replica crash or system overload,
the implementation is independent from the actual BFT protocol prototype.
This is not the case of faults of type message delay or network flooding that
need an extension of the underlying BFT protocol prototype.

4 Experimental Evaluation

4.1 Experimental Setup

The experiments presented in this paper were conducted on a cluster of
Grid’5000 [5]. Each node hosts two Quad-Core Intel Xeon E5420, with 2.50 GHz,
8 GB of RAM, and 160 GB of storage; nodes are connected through 1 GB
Ethernet. BFT-Bench framework currently includes six BFT protocols, namely
PBFT, Chain, RPFT, Aardvark, Aliph, Zyzzyva [2,3,6,7,9,15]. We used the
original C++ code of these protocols. When needed by the evaluated BFT pro-
tocol, multiple virtual network interfaces are created on a single physical network
interface controller to exploit the robustness of protocol, e.g., Aardvark, RBFT.

For each protocol under evaluation, four nodes are used for running the
replicas of the service (i.e., application), thus, f = 1. Two other nodes are used
for the experiments, one for emulating the clients that concurrently send requests
to the replicated service, and one node for hosting BFT-Bench. Similarly to state-
of-the-art evaluations, each replica runs an echo service [6]. Client request size
and client response size are 4 KB each. Furthermore, to emulate the computation
performed by the service, a delay of 100 (±10%) µs is introduced before sending
the response to the client. The results of the experiments are obtained after a
warm-up phase of 180 s, to let the system reach a stable stage before actually
measuring the behavior of the system. The graphs presented in the following are
obtained after the warm-up phase.

4.2 Evaluation in Presence of Replica Crash

In this use case, five concurrent clients access the replicated service, when the
crash of the primary replica of the service occurs. Thus, the following faultload
is provided to BFT-Bench, which triggers a fault at time 300 s:

124 D. Gupta et al.

<300 s, replica crash, {primary}>
Figure 4 presents the measured latency and throughput. Upon crash of the

primary, PBFT induces a sudden increase in latency, and throughput drops
sharply. This is due to the view change mechanism used by the protocol to replace
the faulty primary. Aliph follows the same pattern since it switches to PBFT
upon fault occurrence. Upon crash, Chain cannot maintain its pipeline structure
as the successor of the crashed server never receives any message. In theory,
Chain must switch to PBFT upon crash, but unfortunately this mechanism is
not present in the Chain prototype. Zyzzyva prototype implements only the
fault free version of the protocol and, thus, does not deal with fault occurrence.
In Aardvark and RBFT where clients broadcast requests to all replicas, and
because of the absence of a crash handling mechanism at client side, this fault
is not handled.

Fig. 4. Performance evaluation in presence of replica crash

4.3 Evaluation in Presence of Message Delay

In this use case, a replicated service is accessed by two concurrent clients, when
the service starts misbehaving by inducing intentional and unjustifiable message
delay. The following faultload is provided to BFT-Bench to inject this misbe-
havior in the running replicated service:
<300 s, message delay, replicax, (500 ms, 300 s)>

Here, starting from time 300 s there is a message delay of 500 ms, and this
misbehavior continues during 300 s (i.e., until the end of the experiment). Since
the BFT protocols under evaluation use different architectures and communica-
tion patterns, message delays are introduced by BFT-Bench in different ways
to these protocols, as explained in the following. For instance in case of PBFT,
Aardvark, RBFT, and Zyzzyva, a delay is injected at the primary replica-side,
when this replica receives a client request and sends the initial message to other
replicas for processing that request (i.e., usually known as the pre-prepare phase
in these protocols). In case of Chain, a message delay is injected before the head
replica initiates the communication protocol with the other replicas. For Aliph
which does not have a dedicated replica (i.e., no primary, no head), a chosen
replica induces message delay.

Practical Evaluation of BFT Protocols 125

Fig. 5. Performance evaluation in presence of intentional message delay

Figure 5 presents the results of these experiments. We can observe that the
impact of this type of fault is different from one protocol to another. For instance,
Fig. 5(a) shows that message delay faults induce a latency increase of two orders
of magnitude for PBFT, Zyzzyva, Aliph, Chain protocols, and a latency increase
of one order of magnitude for Aardvark. Interestingly, due to its robustness to
this type of fault, RBFT is able to smoothly tolerate this misbehavior without
a perceptible impact on performance.

4.4 Evaluation in Presence of Network Flooding

In this case, ten clients concurrently access a replicated service, when the ser-
vice starts misbehaving by inducing network flooding. The following faultload
is provided to BFT-Bench to inject this misbehavior in the running replicated
service:
<300 s, network flooding, replicax, (4 KB, 300 s)>

Thus, starting from time 300 s, replicax starts sending corrupted messages
of size 4 KB to other replicas, during 300 s. Figure 6 presents the results of
these experiments. Interestingly, Aardvark and RBFT are robust in case of such
misbehavior. They are able to detect that a replica performs network flooding,

Fig. 6. Performance evaluation in presence of network flooding. Results of Aliph after
fault occurrence are not included; Aliph switches to PBFT when fault occurs and
demonstrates similar behavior as PBFT.

126 D. Gupta et al.

and counter it by black-listing that replica [3,7]. In contrast, PBFT has bad
performance in case of network flooding, since it is not able to tolerate this type
of misbehavior. Aliph, which switches to PBFT when faults occur, demonstrates
similar behavior as PBFT, although for clarity purposes its results after fault
occurrence are not included in Fig. 6.

4.5 More Complex Scenario

This use case illustrates a more complex scenario where a fault tolerant service
faces a Byzantine fault, in addition to service contention. Here, the following
faultload is used by BFT-Bench:
<200 s, message delay, (replicax, 500 ms, 600 s)>
And in order to increase service contention, the following workload is provided
to BFT-Bench:
<0 s, 2, 4 KB, 4 KB, 100 µs, 400 s>
<400 s, 5, 4 KB, 4 KB, 100 µs, 200 s>
<600 s, 10, 4 KB, 4 KB, 100 µs, 200 s>

Thus, the replicated service is first accessed by two concurrent clients. Then
at time 200 s, the service starts misbehaving by inducing abnormal message
delay of 500 ms, during 600 s (i.e., until the end of the experiment). In addition,
the service load increases from 2 clients at the beginning of the experiment to
5 clients at time 400 s, and then to 10 clients at time 600 s. And as described in
Sect. 4.1, client request and response message sizes are 4 KB.

Figure 7 presents the results of the experiment. We can observe that RBFT
is able to transparently tolerate the Byzantine fault of type message delay when
service contention is not too high. However, when 10 clients concurrently access
the service, RBFT is no more able to handle contention and terminates. In case
of Aardvark, the Byzantine fault tolerant service is able to face message delay
fault, but at the expense of a performance overhead of one order of magnitude.
Interestingly, Aardvark smoothly handles service contention increase without
a perceptible impact on performance. This holds up to a given service load,
where with 10 concurrent clients, Aardvark is no more able to handle contention,

Fig. 7. Performance evaluation - combination of message delay and system overload

Practical Evaluation of BFT Protocols 127

and terminates. Zyzzyva and Chain are able to face the Byzatine fault of type
message delay. But they induces a high performance overhead of two orders of
magnitude when such a fault occurs. In addition, when the service has a high
contention (10 concurrent clients), Chain-based replicated service is three orders
of magnitude slower, while Zyzzyva crashes. PBFT and Aliph (which switches
to PBFT upon fault occurrence) have similar behavior after the occurrence of
the fault at time 200 s, with a drop of latency of two orders of magnitude. After
a while, PBFT and Aliph undergo a view change, i.e. they replace the faulty
primary by a new primary. This has a direct impact on service performance
which drastically improves.

5 Conclusion

Performance and dependability are important requirements of today’s computing
systems. Byzantine Fault Tolerance (BFT) is a general approach to make these
systems, theoretically, tolerate arbitrary faults. BFT protocols were extensively
investigated in the last years, and various prototypes were proposed. However,
to the best of our knowledge, there is no practical solution to precisely identify
the varying nature of Byzantine behaviors, no general tool for real-time injec-
tion of these misbehaviors in a system, and no reusable environment for the
empirical evaluation of various BFT protocols. This paper presents BFT-Bench,
the first framework for evaluating BFT implementations under different faulty
behaviors and workloads. BFT-Bench framework includes several state-of-the-
art BFT protocols, automatically deploys them, injects different types of faults
at different rates, and produces performance and dependability measures. The
evaluation results show that BFT-Bench is able to successfully compare various
BFT protocols, in various faulty behaviors. We wish to make BFT benchmarking
easy to adopt by developers and end-users of BFT protocols. BFT-Bench frame-
work aims to help researchers and practitioners to better analyze and evaluate
the effectiveness and robustness of BFT systems. Although this paper concen-
trates on presenting the current version of BFT-Bench with some BFT protocols
and their related fault types, we believe that the proposed approach can be easily
extended to other BFT protocols, and other faulty behaviors.

Acknowledgement. This work was supported by AMADEOS (Architecture for
Multi-criticality Agile Dependable Evolutionary Open System-of-Systems), a collabo-
rative project funded under the European Commission’s FP7 (FP7-ICT-2013-610535).
The experiments were conducted on the Grid’5000 experimental testbed, developed
under the INRIA ALADDIN development action with support from CNRS, RENATER
and several Universities, as well as other funding bodies.

References

1. Amir, Y., Coan, B.A., Kirsch, J., Lane, J.: Byzantine replication under attack.
In: The 38th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2008) (2008)

128 D. Gupta et al.

2. Aublin, P.-L., Guerraoui, R., Knezevic, N., Quéma, V.: The next 700 BFT proto-
cols. ACM Trans. Comput. Syst. 32(4), 1–45 (2015)

3. Aublin, P.-L., Mokhtar, S.B., Quéma, V.: RBFT: redundant byzantine fault tol-
erance. In: The IEEE 33rd International Conference on Distributed Computing
Systems (ICDCS 2013) (2013)

4. Bessani, A.N., Sousa, J., Alchieri, E.A.P.: State machine replication for the masses
with BFT-SMART. In: The 44th IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN 2014) (2014)

5. Cappello, F., Caron, E., Dayde, M., Desprez, F., Jégou, Y., Primet, P., Jeannot,
E., Lanteri, S., Leduc, J., Melab, N., et al.: Grid’5000: a large scale and highly
reconfigurable grid experimental testbed. In: The 6th IEEE/ACM International
Workshop on Grid Computing (2005)

6. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: The 3rd Symposium
on Operating Systems Design and Implementation (OSDI 1999) (1999)

7. Clement, A., Wong, E.L., Alvisi, L., Dahlin, M., Marchetti, M.: Making byzan-
tine fault tolerant systems tolerate byzantine faults. In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI 2009) (2009)

8. Durães, J., Vieira, M., Madeira, H.: Dependability benchmarking of web-servers.
In: The 23rd International Conference on Computer Safety, Reliability and Security
(Safecomp’2004) (2004)

9. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.L.: Zyzzyva: speculative
byzantine fault tolerance. ACM Trans. Comput. Syst. 27(4), 1–39 (2009)

10. Lee, H., Seibert, J., Hoque, E., Killian, C., Nita-Rotaru, C.: Turret: a platform for
automated attack finding in unmodified distributed system implementations. In:
The 34th International Conference on Distributed Computing Systems (ICDCS
2014) (2014)

11. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

12. Sangroya, A., Serrano, D., Bouchenak, S.: Benchmarking dependability of MapRe-
duce systems. In: The IEEE International Symposium on Reliable Distributed
Systems (SRDS) (2012)

13. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

14. Singh, A., Das, T., Maniatis, P., Druschel, P., Roscoe, T.: BFT protocols under
fire. In: The 5th USENIX Symposium on Networked Systems Design and Imple-
mentation (2008)

15. van Renesse, R., Schneider, F.B.: Chain replication for supporting high through-
put and availability. In: The 6th Symposium on Operating Systems Design and
Implementation (OSDI 2004) (2004)

16. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C.: Spin one’s wheels? byzan-
tine fault tolerance with a spinning primary. In: SRDS (2009)

Self-Balancing Job Parallelism and Throughput
in Hadoop

Bo Zhang1, Filip Křikava2(B), Romain Rouvoy1, and Lionel Seinturier1

1 University of Lille/Inria, Villeneuve-d’ascq, France
{bo.zhang,romain.rouvoy,lionel.seinturier}@inria.fr

2 Czech Technical University, Prague, Czech Republic
krikava@gmail.com

Abstract. In Hadoop cluster, the performance and the resource con-
sumption of MapReduce jobs do not only depend on the characteristics
of these applications and workloads, but also on the appropriate setting
of Hadoop configuration parameters. However, when the job workloads
are not known a priori or they evolve over time, a static configuration
may quickly lead to a waste of computing resources and consequently to a
performance degradation. In this paper, we therefore propose an on-line
approach that dynamically reconfigures Hadoop at runtime. Concretely,
we focus on balancing the job parallelism and throughput by adjusting
Hadoop capacity scheduler memory configuration. Our evaluation shows
that the approach outperforms vanilla Hadoop deployments by up to
40 % and the best statically profiled configurations by up to 13 %.

1 Introduction

Along the years, Hadoop has emerged as the de facto standard for big data
processing and the MapReduce paradigm has been applied to large diversity of
applications and workloads. In this context, the performance and the resource
consumption of Hadoop jobs do not only depend on the characteristics of appli-
cations and workloads, but also on an appropriately configured Hadoop environ-
ment. Next to the infrastructure-level configuration (e.g. the number of nodes
in a cluster), the Hadoop performance is affected by job- and system-level para-
meter settings. Optimizing the job-level parameters to accelerate the execution
of Hadoop jobs has been a subject to a lot of research work [2,9,13–16].

Beyond job-level configuration, Hadoop also includes a large set of system-
level parameters. In particular, YARN (Yet Another Resource Negotiator), the
resource manager introduced in the new generation of Hadoop (version 2.0)
defines a number of parameters that control how the applications (e.g. MapRe-
duce jobs) are scheduled in a cluster which influence jobs performance. Among
YARN parameters, the MARP (Maximum Application Master Resource in Per-
cent : yarn.scheduler.capacity.maximum-am-resource-percent) property directly
affects the level of MapReduce job parallelism and associated throughput. This
property balances the number of concurrently executing MapReduce jobs versus

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 129–143, 2016.
DOI: 10.1007/978-3-319-39577-7 11

130 B. Zhang et al.

the number of the corresponding map/reduce tasks. An inappropriate MARP
configuration will therefore either reduce the number of jobs running in parallel
resulting in idle jobs, or reduce the number of map/reduce tasks and thus delay
the completion of jobs. However, finding an appropriate MARP value is far from
trivial. On the one hand, the diversity of MapReduce applications and workloads
suggests that a simple, one-size-fits-all application-oblivious configuration, will
not be broadly effective—i.e. one MARP value that works well for one MapRe-
duce application/workflow combination might not work for another [22]. On
the other hand, YARN configuration is static and as such it cannot reflect any
changes in workload dynamics. The only possibility is to do a best-effort config-
uration based on either experience or a static profiling in the case the jobs and
workloads are known as a priori. However, (1) this might not be always possible,
(2) it requires additional work, and (3) any unpredictable workload changes (e.g.
a load peak due to node failures) will cause performance degradation.

In this paper, we therefore focus on dynamic MARP configuration. The main
contributions are the following:

(1) an analysis of the effects of the MARP parameter on the MapReduce job
parallelism and throughput, and

(2) a feedback control loop that self-balances MapReduce job parallelism and
throughput.

Our evaluation shows that our approach systematically achieves better perfor-
mance than static configurations. Concretely, we outperform the default Hadoop
configuration by up to 40 % and up to 13 % for the best-effort statically profiled
configurations, yet without any need for prior knowledge of the application or
the workload shape, nor any need for any learning phase.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
architecture of YARN. The motivation of our research is placed in Sect. 3.
Section 4 illustrates the memory and performance issues usually faced by Hadoop
clusters. Section 5 describes the methodology we adopt and Sect. 6 evaluates our
solution using various Hadoop benchmarks. We discuss related work in Sect. 7
before concluding in Sect. 8.

2 Overview of YARN

YARN is a cluster-level computing resource manager responsible for resource
allocations and overall jobs orchestration. It provides a generic framework for
developing distributed applications that goes beyond the MapReduce program-
ming model. It consists of two main components (cf. Fig. 1): a per-cluster
ResourceManager acting as a global computing resource arbiter and a per-node
NodeManager responsible for managing node-level resources and reporting their
usage to the ResourceManager.

Figure 1 depicts the architecture of YARN. The ResourceManager contains a
scheduler that allocates resources for the running applications, like the Job-
Tracker in previous version of Hadoop. However, ResourceManager does not

Self-Balancing Job Parallelism and Throughput in Hadoop 131

compute node1
...

co
nt

ai
ne

rs

NodeManager

compute noden

co
nt

ai
ne

rs

NodeManager

control node

ResourceManager

reports node status

(2) negotiates containers

(3) requests containers

(4) allocates
containers

(4) allocates
containers

MRAppMaster

Client

(1) submits jobs

YarnChild

YarnChild

YarnChild

Fig. 1. High-level YARN architecture.

do any application monitoring or status tracking. This responsibility is left
for the per-job instance of Application Master (AM). AM is an application-
specific process that negotiates resources from the ResourceManager and collab-
orates with the NodeManager(s) to execute and monitor its individual tasks. The
scheduling is based on the application resource requirements and it is realized
using an abstract notion of containers. Essentially, each computing node is par-
titioned into a number of containers which are fixed-size resource blocks running
AMs and their corresponding tasks.

3 Motivation

To understand the limitation of static configuration, we first study how the
number of tasks to be processed and the MARP affects the overall completion
time of Hadoop jobs. All experiments were performed using an Hadoop cluster
made of 11 physical hosts1 (1 control node and 10 compute nodes) deployed on
the Grid5000 infrastructure. We use Hadoop 2.6.0.

Figure 2a reports on the completion time of the three applications provided
by the HiBench benchmark suite [11]: Wordcount, Terasort, and Sort. For each
of the input workloads—i.e. 30MB and 3GB—we observe the impact of the
MARP parameter on the mean completion time of 100 jobs. To guarantee the
comparisons visible, the values are normalized according to the absolute comple-
tion time of the vanilla Hadoop configuration—i.e. MARP = 0.1. The absolute
completion time can be found at the paper web companion page:
https://spirals-team.github.io/had-loop/DAIS2016.html
1 2 Intel Xeon L5420 CPUs with 4 cores, 15GB RAM, 298GB HDD.

https://spirals-team.github.io/had-loop/DAIS2016.html

132 B. Zhang et al.

0.8

0.9

1.0

1.1

1.2

20 40 60
Value of MARP (%)

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(n

or
m

al
iz

ed
)

Wordcount
Terasort
Sort
Input Data Size=3GB
Input Data Size=30MB

(a) Effects of different MARP configura-
tions, job type and job size on mean com-
pletion time of 100 jobs.

0.90

0.95

1.00

1.05

10 20 30 40
Value of MARP (%)

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(n

or
m

al
iz

ed
)

150 jobs
100 jobs
50 jobs
10 jobs

(b) Effects of different MARP configura-
tions and load peak stress on mean com-
pletion time.

Time (s)

Jo
b

ar
riv

al
 ra

te
 (p

er
 m

in
s)

0 500 1000 1500 2000

0
5

10
15

20

(c) A job distributions generated by
SWIM used for W1.

0.85

0.90

0.95

1.00

10 20 30 40
Value of MARP (%)

C
om

pl
et

io
n

T
im

e
(n

or
m

al
iz

ed
)

W1
W2
W3
W4

(d) Effects of different MARP configura-
tions and different SWIM generated work-
loads on overall completion time.

Fig. 2. Effects of MARP and an example of job distributions in SWIM.

As expected, the vanilla configuration does not provide the best configuration
for any of the workloads. Furthermore, one can observe that the best performance
is not achieved by a single value of MARP, but rather tends to depend on the
type and the size of the job. In particular, increasing the value of MARP—thus
allowing more jobs running in parallel—tends to benefit the smaller Hadoop
jobs, while large jobs complete faster when more resources is dedicated to the
YarnChild containers which are responsible for processing requests.

Next, we stress the Hadoop cluster by running a different number of jobs in
parallel in order to observe the impact of a load peak on the job mean com-
pletion time. Figure 2b shows the performance when running Terasort with 3GB
workload under various stress conditions. Compared to Fig. 2a, one can observe
that by increasing the number of concurrently running jobs, the optimal value of
MARP differs from the previous experiment. Therefore, while a MapReduce job
can be profiled for a best-effort MARP configuration in a specific Hadoop cluster,
any unpredictable changes in the workload dynamics will lead to a performance
degradation.

Self-Balancing Job Parallelism and Throughput in Hadoop 133

Finally, we consider heterogeneous workloads. Concretely, we use SWIM (Sta-
tistical Workload Injector for Mapreduce) [3] to generate 4 realistic MapReduce
workload. SWIM contains several large workloads (thousands of jobs), with com-
plex data, arrival, and computation patterns that were synthesized from histori-
cal traces from Facebook 600-nodes Hadoop cluster. The proportion of job sizes
in each input workloads has been scaled down to fit our cluster size using a Zipfian
distribution (see http://xlinux.nist.gov/dads/HTML/zipfian.html). (cf. Fig. 2c).

As previously observed for homogeneous workloads, Fig. 2d demonstrates
that not a single MARP value fits all the workloads and the best configura-
tion can only be set by having a deep understanding of the Hadoop jobs and
their dynamics.

Synthesis. These preliminary experiments demonstrate that the MARP con-
figuration clearly impacts Hadoop performances. They show that the default
value is not optimal. While one can profile the different applications to identify
the best-effort static configuration, we have shown that any unforeseen change
in the workload dynamics can degrade the overall performance. We therefore
advocate for a self-adaptive approach that continuously adjusts the MARP con-
figuration based on the current state of the Hadoop cluster. In next section, we
will analyse How MARP affects the system performance of the Hadoop cluster.

4 Memory Consumption Analysis

In this section, we focus on memory consumption (YARN can manage CPU and
memory, but in this paper, we only consider memory) and analyze the causes of
the performance bottlenecks.

In an Hadoop cluster, the memory can be divided into four parts: Msystem,
MAM , MY C , and Midle. Msystem is the memory consumed by the system compo-
nents—i.e. ResourceManager, NodeManager in YARN and NameNode, DataNode
in HDFS. Msystem is constant in a Hadoop cluster.

The other three parts represents the memory held by NodeManager(s) as a
result of processing MapReduce jobs:

MAM is the memory allocated to all the MRAppMaster containers across all
compute nodes. This is controlled by the MARP configuration—i.e. M∗

AM =
Mcompute × MARP. During the processing of jobs, MAM � M∗

AM .
MY C is the memory used by all the YarnChilds to process map/reduce tasks

across all the concurrently running jobs on all the computing nodes. This
part directly impacts the job processing rate. A larger MY C means that the
more map/reduce tasks can be launched in parallel and the faster ongoing
jobs are completed.

Midle is the unused memory across all the computing nodes. High Midle value
together with pending jobs is a symptom of a waste of resources.

Their relationship with the overall computing memory of a Hadoop cluster,
Mcompute, can be expressed as follows: Mcompute = MAM +MY C +MIdle. Upon
starting an Hadoop cluster, Mcompute is fixed (unless new computing nodes are
enlisted or existing discharged from the cluster).

http://xlinux.nist.gov/dads/HTML/zipfian.html

134 B. Zhang et al.

MARP

MARP

MRAppMaster 1

YarnChild 1-3

YarnChild 1-2

YarnChild 1-1

MRAppMaster 1

YarnChild 3-1

YarnChild 3-2

YarnChild 1-1

MRAppMaster 2

MRAppMaster 3

MRAppMaster 4

MRAppMaster 5

LoJTLoJP

Fig. 3. LoJP and LoJT in Hadoop.

4.1 Loss of Jobs Parallelism

The maximum number of concurrently running jobs, Nmax, in an Hadoop cluster
is Nmax = M∗

AM

Mcontainer
where Mcontainer is the NodeManager container size (by

default it is 1GB). The smaller the MARP value is, the smaller Nmax will be
and the less jobs will be able to run in parallel.

In the case the number of running jobs equals to Nmax, all available applica-
tion master containers are exhausted and ResourceManager cannot schedule any
more jobs. Therefore, Mcompute = M∗

AM+MY C+Midle. Where Midle will emerge
with a low Nmax. When the number of running jobs reaches Nmax, MAM = M∗

AM

and no more pending jobs can be run even though M∗
AM + MY C < Mcompute.

Therefore, we can observe that the lower M∗
AM + MY C is, the higher Midle is.

This indicates a memory / container waste that in turn degrades performances.
We call this situation the Loss of Jobs Parallelism (LoJP). Figure 3 illustrates
such a situation. An Hadoop cluster with 8 containers has the MARP value set
too low, allowing only one job to be executed at a time. Any pending job have
to wait until the current job has finished, despite the fact that some containers
are unused.

4.2 Loss of Job Throughput

As shown in the previous section, small Nmax limits the jobs parallelism within
an Hadoop cluster. However, large Nmax may also impact the job performance.
By increasing Nmax (or M∗

AM) in order to absorb Midle, Mcompute can be rewrit-
ten as follow: Mcompute = MAM + MY C .

In this case, when an Hadoop cluster processes a large number of concurrent
jobs, MAM becomes a major part of Mcompute and thus it limits MY C . MRApp-
Master is a job-level controller and it does not participate in any map/reduce
task processing. Therefore, a limited MY C decreases significantly the processing
throughput of an Hadoop cluster. This symptom is identified as a Loss of Job

Self-Balancing Job Parallelism and Throughput in Hadoop 135

0

20

40

0 2000 4000 6000
Time (s)

M
em

or
y

(G
B

)

Total Memory for jobs
Maximum Memory for MRAppMaster

Fig. 4. Amplitude of memory drops depending on the MARP value.

Throughput (LoJT) and is also illustrated in Fig. 3. In this case, we have set
the MARP too high, which allows many jobs to run in parallel, yet the actual
processing capacity is limited by the low number of available container for run-
ning YarnChild.

4.3 Large Drops of Memory Utilization

Depending on the size of the jobs and the memory used in YarnChild containers,
the dynamic allocation of resources can result in abruptly large drops of memory
utilization (cf. Fig. 4). This is especially true when the tasks are rather fast to
complete.

These memory drops usually appear at the end of concurrently running jobs.
When a job comes to the end, all its corresponding MY C will be quickly released.
But its MRAppMaster is still running to organize data, and to report results to
users. Due to the running MRAppMaster, idle jobs cannot get the permission to
access memory for processing. Meanwhile, if other concurrently running jobs do
not have enough unscheduled map/reduce tasks to consume these Midle (released
MY C), the memory utilization will drop. A higher MARP value means more
concurrently running jobs, which probably have more unscheduled map/reduce
tasks to avoid the memory drops, and vice versa.

The memory drops cause temporarily high Midle, and therefore reduce the
average memory utilization—i.e. this phenomenon also contributes to perfor-
mance degradation. Moreover, the frequent and large memory drops can also
disturb the users to accurately detect the state of the Hadoop cluster.

5 Memory Consumption Balancing

Based on the previous section, we propose a self-adaptive approach for dynami-
cally adjusting the MARP configuration based on the current state of the cluster.

136 B. Zhang et al.

5.1 Maximizing Jobs Parallelism

The symptom of LoJP—i.e. small Nmax, large Midle leading to decrease the
memory utilization— can be detected from the ResourceManager component and
fixed by increasing the MARP parameter. However, it should not consequently
cause LoJT (cf. Section 4.2). We therefore propose a greedy algorithm to gradu-
ally increase the MARP parameter (cf. Algorithm 1). It is a simple heuristics that
periodically increments MARP by a floating step (inc) until a given threshold
(TLoJP) is reached—i.e. the overall memory consumption MU = MAM + MY C

falls below the threshold MU < TLoJP . Both, the current MU and MARP values
can be observed from ResourceManager. Once the increment becomes effective,
ResourceManager will continue to schedule any pending jobs until the Nmax

limit is reached. A short delay between the increment steps (delay) is therefore
required to let the cluster settle and observe the effects of the increment.

Algorithm 1. Fixing LoJP by incrementing MARP.
procedure LoJP(TLoJP , inc, delay)

MU ← actual memory utilization
if MU < TLoJP then

MARP ← current MARP value
MARP ← MARP + inc
reload(MARP)
sleep(delay)

5.2 Maximizing the Job Throughput

The LoJT symptom is more difficult to detect since, at the first glance, the
Hadoop cluster appears to fully utilize its resource. However, this situation can
be also a result of the cluster saturation with too many jobs running in parallel.
It therefore requires to better balance the resources allocated to MAM and MY C .
Algorithm 2 applies another greedy heuristics to gradually reduce the amount
of memory allocated to MRAppMaster by a floating step (dec) until we detect
that the overall memory utilization (MU) falls below the maximum memory
utilization threshold TLoJT .

To avoid an oscillation between the two strategies, we combine them in a
double-threshold (TLoJP , TLoJT , where TLoJP < TLoJT) heuristic algorithm
that ensures that they work in synergy (cf. Algorithm3). When memory usage
is higher than 0.9, it is enough to prove that LoJP disappears. Meanwhile, an
stably over-high memory usage (e.g. 0.95) is probably caused by LoJT. The
increment and decrement steps are not fixed. Instead, they are computed in
each loop iteration based on the difference between the memory utilization and
the target threshold. This allows the system to automatically achieve the trans-
lation between rapid and fine-gained tuning—i.e. if the MU is near a threshold,
the square root will be small, while shall the memory utilization be far from a
threshold, the increment or decrement will be large.

Self-Balancing Job Parallelism and Throughput in Hadoop 137

Algorithm 2. Fixing LoJT by decrementing MARP.
procedure LoJT(TLoJT , dec, delay)

MU ← actual memory utilization
if MU > TLoJT then

MARP ← current MARP value
MARP ← MARP − dec
reload(MARP)
sleep(delay)

Algorithm 3. Balancing LoJP and LoJT.
procedure Balance(delay)

Mcompute ← overall maximum memory
TLoJP ← 0.9 × Mcompute

TLoJT ← 0.95 × Mcompute

loop
MU ← actual memory utilization
if MU < TLoJP then

LoJP(TLoJP ,

√
TLoJP−MU

Mcompute
, delay)

else if MU > TLoJT then

LoJT(TLoJT ,

√
MU−TLoJT

Mcompute
, delay)

5.3 Handling Drops of Memory Utilization

Drops of memory utilization are caused by the completion of map/reduce tasks
that release large blocks of memory. Such memory fluctuation can result in
MARP oscillations when the Algorithms 1, 2 and 3 will be constantly scaling
up and down the MARP value. To prevent this, we use a Kalman filter to
smooth the input—i.e. the memory utilization. It helps to stabilize the value
and eliminate the noise induced by the memory fluctuation [18]. Concretely, we
apply a 1D filter defined as: M(t + δt) = A · M(t) + N(t). where M refers to
the state variable—i.e. the memory usage—A is a transition matrix and N the
noise introduced by the monitoring process.

6 Evaluation

In this section, we evaluate the capability of our self-balancing approach to
address the problem of MapReduce job parallelism and throughput. We start
with an quick overview of the implementation of the self-balancing algorithm
followed by a series of experiments. The evaluation has been done using a clus-
ter of 11 physical hosts deployed on the Grid5000 infrastructure, the same as
we used in Sect. 3. We use Hadoop 2.6.0. Additional configuration details and
experiment raw values are also available at the paper web companion page.

138 B. Zhang et al.

6.1 Implementation Details

The implemation is based on the feedback control loop that implements the
balancing algorithm introduced in the previous section. It follows the classical
MAPE (Monitor-Analyze-Plan-Execute) decomposition [12].

The control loop is implemented in Java and runs on the control node along-
side with YARN. The memory information are collected using the Resource-
Manager services. The MARP value is accessed via YARN configuration and
is changed by the YARN ResourceManager admin client (yarn rmadmin com-
mand). For the Kalman filter, we used the jkalman library2. It can smooth the
memory utilization to avoid unnecessary MARP adjustments. The completion
time of one map task is about 10 seconds. It is a reasonable value for delay to
ensure the capture of memory fluctuation.

6.2 Job Completion Time

We start the evaluation by running the same set of MapReduce benchmark as
we did at the beginning in Sect. 3—i.e. Wordcount, Terasort and Sort
from the HiBench benchmark suite, each with two datasets (30MB and 3GB).
Figure 5 shows the mean job completion time of 100 jobs using, the vanilla
Hadoop 2.6.0 configuration (MARP = 10%), the best-effort statically profiled
configuration where the values were obtained from our initial experiments (cf.
Fig. 2a), and finally our self-balancing approach (dyn). The values were normal-
ized to the vanilla configuration.

For each of the considered applications and workloads, our self-balancing
approach outperforms both other configurations. Often the difference between
the statically profiled configuration and our dynamic one is small. This is because
the best-effort MARP value already provides a highly optimal configuration so
the applications cannot execute much faster. The important thing to realize is

10 40 dyn 10 30 dyn 10 50 dyn 10 20 dyn 10 30 dyn 10 20 dyn

MARP value (%)

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(n

or
m

al
iz

ed
)

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Wordcount 30MB Terasort 30MB Sort 30MB
Wordcount 3GB Terasort 3GB Sort 3GB

Fig. 5. Performance comparisons of 3 HiBench applications and 2 datasets.

2 http://sourceforge.net/projects/jkalman.

http://sourceforge.net/projects/jkalman

Self-Balancing Job Parallelism and Throughput in Hadoop 139

10 20 dyn 10 30 dyn 10 30 dyn 10 dyn

MARP value (%)

Av
er

ag
e

C
om

pl
et

io
n

Ti
m

e
(n

or
m

al
iz

ed
)

0.
80

0.
85

0.
90

0.
95

1.
00

10 jobs 50 jobs 100 jobs 150 jobs

(a) Performance comparisons of Terasort
configured with 3GB under 4 workloads.

10 20 dyn 10 20 dyn 10 35 dyn 10 20 dyn

MARP value (%)

C
om

pl
et

io
n

Ti
m

e
(n

or
m

al
iz

ed
)

0.
80

0.
85

0.
90

0.
95

1.
00

W1 W2 W3 W4

(b) Performance comparisons of 4 SWIM
workloads.

Fig. 6. Performance comparisons

that our approach adapts to any application and does not require any profiling
effort. It continuously finds a MARP configuration under which the application
executes at least as fast as under the best-effort configuration.

Next, we evaluate how the approach performs under different workload sizes.
Figure 6 shows the completion time of the Terasort with 3 GB input data size
benchmark under varying number of concurrently running jobs—i.e. 10, 50, 100
and 150. In this case, the self-balancing algorithm outperforms the other config-
urations in all but the first case of a small number of jobs. The reason is that
our solution always starts with the default MARP configuration which is 10 %
and converges towards the optimal value (20 % in this case) along the execution.
However, the overall completion time of the 10 jobs is too short and the jobs
finish before our algorithm converges. Furthermore, the dynamic MARP values
are also available at the paper web companion page.

Finally, we evaluate our approach with 4 time-varying workloads generated
by SWIM. We use the same workloads as we presented in Sect. 3. The job size
distribution varies across the different workloads: each job has only one reduce
task and a varying number of map tasks chosen randomly from a given map
size set. The actual configuration of the 4 workloads is given in Table 1. Each
map task manipulates (reads or writes) one HDFS block; in our case 64MB. The
complete input size of the workload is shown in the last column.

Figure 7 compares the per-job completion time distributions for static and
dynamic MARP values. For each workloads, one can observe that, compared

Table 1. Configuration of SWIM workloads.

#Jobs #Maps Map size set Total input size

W1 500 10460 {5, 10, 40, 400} 335 GB

W2 500 25605 {5, 10, 50, 100, 300, 400} 819 GB

W3 1000 5331 {1, 2, . . . , 35} 342 GB

W4 500 15651 {26, 27, . . . , 50} 500 GB

140 B. Zhang et al.

Fig. 7. The comparison of per-job completion time distribution observed for static and
dynamic configuration parameters.

to the vanilla configuration, our approach can significantly reduce the job com-
pletion times (e.g. up to 40 % in W1). It also systematically delivers a better
performance than the best-effort configurations.

The job-level accelerations can be accumulated and lead to the improvement
of workloads-level performance. The overall completion times of the four SWIM
workloads is further shown in Fig. 6. Similarly, our approach outperforms all the
other configurations.

7 Related Work

Recently, the performance optimization for MapReduce systems has become a
main concern in the domain of Big Data. This has resulted in a number of
different approaches that aim to improve Hadoop performances.

Auto-Configuration in Hadoop. AROMA [14] is an automatic system that
can allocate resources from a heterogeneous cloud and configure Hadoop para-
meters for the new nodes to achieve the service-quality goals while minimizing
incurred cost. But, the VMs in the Cloud require to be provisioned and installed
with the required Hadoop system a priori. Changlong et al. [15] also propose a
self-configuration tool named AACT to maintain the performance of an Hadoop
cluster. However, the adjustment of configurations for parallel requests are likely
to conflict each others. The purpose of Starfish [9] is to enable Hadoop users and
applications to get good performance automatically throughout the data life-
cycle in analytics. Starfish measures the resource consumption of MapReduce
jobs like CPU cycles and I/O throughput of HDFS to estimate average map
execution time. However, the prediction may largely differ from the runtime sit-
uation. In concurrent case, due to its complex analytic steps, the over-head will
also increase significantly. Gunther [16] is a search-based approach for Hadoop
MapReduce optimization. It introduces an evolutionary genetic algorithm to
identify parameter setting, resulting in near-optimal job performance. But, due
to the complexity of the genetic algorithm, identifying an optimal configuration
requires Gunther to repeat computing, thus causing performance to degrade.

Self-Balancing Job Parallelism and Throughput in Hadoop 141

Many other researches focusing on dynamic configuration like [19,20,23] also
exist. Authors design self-adaptive models to optimize system performance, but
their compatibility needs to be reconsidered for YARN.

Scalability at Runtime. Ghit et al. [5] have investigated a multi-allocation
policies design, FAWKES, which can balance the distribution of hosts among
several private clusters. In this case, FAWKES is focused on the dynamic redis-
tribution of compute nodes between several clusters while the sum of compute
nodes is fixed. However, due to the strict isolation between users, the clusters
need to frequently grow or shrink to balance the scales, thereby penalizing each
cluster. Chen et al. [2] propose a resource-time-cost model, which can display
the relationship among execution time, input data, available system resource
and the complexity of Reduce function for an ad-hoc MapReduce job. This
model is a combination of the white-box [8] and machine-learning approaches.
Its main purpose is to identify the relationship between the amount of resources
and the job characteristics. Hadoop clusters can benefit from this research to
optimize resource provisioning while minimizing the monetary cost. Finally,
Berekmeri et al. [1] introduce a proportional-integral controller to dynamically
enlist and discharge existing compute nodes from live Hadoop cluster in order
to meet a given target service-level objectives.

Other Optimization Approaches. Some other studies look beyond Hadoop
configuration optimization and scalability to library extensions and runtime
improvements. FMEM [24] is a Fine-grained Memory Estimator for MapReduce
jobs to help both users and the framework to analyze, predict and optimize mem-
ory usage. iShuffle [6] decouples shuffle-phase from reduce tasks and converts it
into a platform service. It can proactively push map output data to nodes via a
novel shuffle-on-write operation and flexibly schedule reduce tasks considering
workload balance to reduce MapReduce job completion time. Seokyong et al. [10]
propose an approach to eliminate fruitless data items as early as possible to
save I/O throughput and network bandwidth, thus accelerating the MapRe-
duce data processing. Benjamin et al. [7] deal with a geo-distributed MapRe-
duce system by a two-pronged approach, which provide high-level insights and
corresponding cross-phase optimization techniques, to minimize the impact of
data geo-localization. Manimal [13] performs static analysis of Hadoop programs
and deploys optimizations, including B-tree indexing, to avoid reads of unneeded
data. Panacea [17] is a domain-specific compiler which performs source-to-source
transformations for jobs to reduce the synchronization overhead of iterative jobs.
Twister [4] introduces a new in-memory MapReduce library to improve the per-
formance of iterative jobs. Some researches like [21,25] propose new MapReduce
task scheduler to improve resource utilization while observing job completion
time goals.

Since our contribution works on the YARN level, we believe that it comple-
ments these approaches.

142 B. Zhang et al.

8 Conclusion

Optimizing the performance of Hadoop clusters has become a key concern for big
data processing. In YARN, inappropriate memory usage may lead to significant
performance degradation. In this paper, we propose a self-adaptation approach
based on a closed feedback control loop that automatically balances the memory
utilization between YARN MapReduce processes. We have shown that it out-
performs the default Hadoop configuration as well as the best-effort statically
profiled ones. While in this paper we focus on MapReduce, our approach works
on YARN level and therefore we plan to look for other applications based on
YARN. For the further work, CPU management of YARN will be considered as a
new part of this research. Furthermore, we look forward to explore the potential
of this research on multi-queues basis, and also focus on HDFS I/O throughput
to complement our approach with a support for I/O intensive jobs.

Acknowledgments. This work is partially supported by the Datalyse project www.
datalyse.fr. Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organizations (see https://www.
grid5000.fr).

References

1. Berekmeri, M., Serrano, D., Bouchenak, S., Marchand, N., Robu, B.: A control
approach for performance of big data systems. In: IFAC World Congress (2014)

2. Chen, K., Powers, J., Guo, S., Tian, F.: CRESP: towards optimal resource provi-
sioning for MapReduce computing in public clouds. IEEE Trans. Parallel Distrib.
Syst. 25, 1403–1412 (2014)

3. Chen, Y., Ganapathi, A., Griffith, R., Katz, R.H.: The case for evaluating MapRe-
duce performance using workload suites. In: IEEE/ACM MASCOTS (2011)

4. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.:
Twister: a runtime for iterative MapReduce. In: HPDC (2010)

5. Ghit, B., Yigitbasi, N., Iosup, A., Epema, D.H.J.: Balanced resource allocations
across multiple dynamic MapReduce clusters. In: ACM SIGMETRICS (2014)

6. Guo, Y., Rao, J., Zhou, X.: iShuffle: Improving hadoop performance with shuffle-
on-write. In: Proceedings of the 10th International Conference on Autonomic Com-
puting (ICAC 2013) (2013)

7. Heintz, B., Chandra, A., Sitaraman, R., Weissman, J.: End-to-end optimization
for geo-distributed MapReduce. IEEE Trans. Cloud Comput. PP(99), 1–14 (2014)

8. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-based optimization
of MapReduce programs. PVLDB 4(11), 1111–1122 (2011)

9. Herodotou, H., Lim, H., Luo, G., Borisov, N.: Starfish: a self-tuning system for big
data analytics. In: Conference on Innovative Data Systems Research (2011)

10. Hong, S., Ravindra, P., Anyanwu, K.: Adaptive information passing for early state
pruning in MapReduce data processing workflows. In: Proceedings of the 10th
International Conference on Autonomic Computing (ICAC 2013) (2013)

www.datalyse.fr
www.datalyse.fr
https://www.grid5000.fr
https://www.grid5000.fr

Self-Balancing Job Parallelism and Throughput in Hadoop 143

11. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: Proceedings of the 26th
International Conference on Data Engineering (ICDE)

12. IBM: An Architectural Blueprint for Autonomic Computing, 4 edition. Technical
report, IBM (2006)

13. Jahani, E., Cafarella, M.J., Ré, C.: Automatic optimization for MapReduce pro-
grams. Proc. VLDB Endow. 4, 385–396 (2011)

14. Lama, P., Zhou, X.: AROMA: automated resource allocation and configuration of
mapreduce environment in the cloud. In: ICAC (2012)

15. Li, C., Zhuang, H., Lu, K., Sun, M., Zhou, J., Dai, D., Zhou, X.: An Adaptive
auto-configuration tool for hadoop. In: ICECCS (2014)

16. Liao, G., Datta, K., Willke, T.L.: Gunther: search-based auto-tuning of MapRe-
duce. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097,
pp. 406–419. Springer, Heidelberg (2013)

17. Liu, J., Ravi, N., Chakradhar, S., Kandemir, M.: Panacea: towards holistic opti-
mization of MapReduce applications. In: CGO (2012)

18. Nzekwa, R., Rouvoy, R., Seinturier, L.: A flexible context stabilization approach
for self-adaptive application. In: Proceedings of the 8th Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom). IEEE (2010)

19. Padala, P., Hou, K., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Mer-
chant, A.: Automated control of multiple virtualized resources. In: Proceedings of
the 2009 EuroSys (2009)

20. Padala, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.,
Salem, K.: Adaptive control of virtualized resources in utility computing environ-
ments. In: Proceedings of the 2007 EuroSys (2007)

21. Polo, J., Becerra, Y., Carrera, D., Torres, J., Ayguade, E., Steinder, M.: Adaptive
MapReduce scheduling in shared environments. In:14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 61–70 (2014)

22. Ren, K., Gibson, G., Kwon, Y., Balazinska, M., Howe, B.: Hadoop’s adolescence:
a comparative workloads analysis from three research clusters. In: SC Companion
on High Performance Computing, Networking Storage and Analysis (2012)

23. Wang, Y., Wang, X., Chen, M., Zhu, X.: Power-efficient response time guarantees
for virtualized enterprise servers. In: Real-Time Systems Symposium (2008)

24. Xu, L., Liu, J., Wei, J.: FMEM: a fine-grained memory estimator for MapReduce
jobs. In: Proceedings of the 10th International Conference on Autonomic Comput-
ing (2013)

25. Zhang, W., Rajasekaran, S., Wood, T., Zhu, M.: MIMP: deadline and interfer-
ence aware scheduling of hadoop virtual machines. In: IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, May 2014

Resource Usage Prediction in Distributed
Key-Value Datastores

Francisco Cruz(B), Francisco Maia, Miguel Matos, Rui Oliveira, João Paulo,
José Pereira, and Ricardo Vilaça

INESCTEC and Minho University, Braga, Portugal
{fmcruz,fmaia,miguelmatos,rco,jtpaulo,jop,rmvilaca}@di.uminho.pt

Abstract. In order to attain the promises of the Cloud Computing par-
adigm, systems need to be able to transparently adapt to environment
changes. Such behavior benefits from the ability to predict those changes
in order to handle them seamlessly. In this paper, we present a mech-
anism to accurately predict the resource usage of distributed key-value
datastores. Our mechanism requires offline training but, in contrast with
other approaches, it is sufficient to run it only once per hardware con-
figuration and subsequently use it for online prediction of database per-
formance under any circumstance. The mechanism accurately estimates
the database resource usage for any request distribution with an average
accuracy of 94%, only by knowing two parameters: (i) cache hit ratio;
and (ii) incoming throughput. Both input values can be observed in real
time or synthesized for request allocation decisions. This novel approach
is sufficiently simple and generic, while simultaneously being suitable for
other practical applications.

1 Introduction

The ability to predict how a system will behave is critical in Cloud Comput-
ing systems. Accurate prediction would allow administrators to make better
informed decisions on resource allocation, systems configuration or even the
technology to use. Currently, this typically requires extensive testing while still
lacking the desirable accuracy levels. This is particularly true for massive scale
distributed key-value datastores (often named NoSQL databases), Notably, their
highly desirable performance, scalability and availability properties cannot be
achieved without careful resource allocation and judicious data placement, which
requires extensive testing.

In this paper we demonstrate that, for distributed key-value datastores, it
is possible to achieve accurate performance prediction, in real-world scenarios,
resorting to only a small fraction of the systems resources. NoSQL datastores
make heavy use of buffer caching, specially to improve the performance of read
requests. In this work we show that the success of such caching layer is directly
related to the datastore’s resource consumption and we leverage such relation for
resource prediction purposes. In fact, it is known that, for a given throughput, the

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 144–159, 2016.
DOI: 10.1007/978-3-319-39577-7 12

Resource Usage Prediction in Distributed Key-Value Datastores 145

higher the cache hit ratio, the lower the resource usage of the NoSQL datastore.
This is true since each cache hit avoids resource consumption stemming from
lower layer access. Moreover, contrary to relational databases, which due to
their inherent complexity require more elaborate models, in this work we show
that for distributed key-value datastores this correlation is actually enough to
accurately predict resource usage of any workload. Such accurate prediction of
resource usage then allows system optimization, preparation, and simulation
under different conditions. This is particularly important if we aim to effectively
deploy NoSQL data stores in the pay-as-you-go model, which is common in the
Cloud Computing paradigm.

Contributions. (a) We provide a mechanism to build a read operation resource
usage model and a write operation resource usage model. Both models are hard-
ware dependent, meaning they need to be rebuilt when the hardware changes,
but they are generated only once per hardware configuration and can then be
used to predict the resource usage for any workload. (b) Leveraging these models,
we are able to predict a NoSQL datastore resource usage, only by knowing two
parameters: (i) the cache hit ratio and (ii) the incoming throughput. From our
experiments using HBase, we accurately predict resource usage for any request
distribution and any throughput of read-only and a mix of read and update
operations. We achieve an average prediction accuracy of 94 %.

Roadmap. The rest of this paper is organized as follows. We begin by providing
some background about caching mechanisms and NoSQL datatores in Sect. 2.
Section 3 presents evidence on the correlation between the cache hit ratio of
NoSQL datastores and resource usage. Section 4 focuses on the prediction of
resource usage for read-only operations while Sect. 5 focuses on write operations.
We validate our mechanism using HBase and mixed (read/write) workloads in
Sect. 6, present related work in Sect. 7 and conclude with Sect. 8.

2 Background

Caching mechanisms. Databases make use of buffer caching to improve their
read performance. By keeping most frequently accessed data in fast access struc-
tures (either implemented by software or hardware) performance can be signifi-
cantly improved. As a result, the flow of a read request usually takes the following
path: (i) the client issues a request to read some tuple; (ii) the database veri-
fies if the requested tuple is in cache; (iiia) if it does the tuple is returned to
the client, (iiib) otherwise the database tries to fetch the tuple from secondary
memory. When using caching one of the main goals is to try to maximize the
percentage of requests that are served from cache, also known as the cache hit
ratio. A high hit cache rate means that a good number of requests are being
served exclusively by the cache, thus avoiding higher CPU and I/O costs from
using less efficient storage mediums. When the data size exceeds the cache size,
eventually, some data in the cache needs to be removed to give room to more
frequently accessed data. This is handled by cache replacement algorithms [23].

146 F. Cruz et al.

There are several cache replacement algorithms, however one of the most widely
used algorithms is the Least Recently Used (LRU) algorithm [25]. Under this
replacement algorithm when the cache is full, the algorithm discards data that
was least recently used. This algorithm is the one typically used by distributed
key-value datastores [12,18].

Distributed key-value datastores. Distributed key-value datastores run in a
distributed setting with tenths to hundreds of nodes, usually composed of com-
modity hardware. The application data is partitioned and these partitions are
assigned to the available nodes according to a data placement strategy. Contrast-
ing with relational database management systems (RDBMS), these datastores
only provide a simple key-value interface to manipulate data by means of put,
get, delete, and scan operations and they do not offer strong consistency crite-
ria. Complex operations like joining and aggregation are not present and data
is denormalized. Considering these characteristics, the success of caching mech-
anisms is key for performance. In this paper, we focus on HBase which is one
of the most successful and widely used key-value datastores [12]. Inspired by
BigTable [4], HBase’s data model implements a variant of the entity-attribute-
value (EAV) model and can be thought of as a multi-dimensional sorted map.
This map is called HTable and is indexed by the row key, the column name
and a timestamp. HBase follows a hierarchical architecture where there is a
Master node and there is one or more slave nodes called Regionservers. The
row range of a HTable is horizontally partitioned into Regions and distributed
over different nodes. Each Region is stored as an append-only file in the Hadoop
Distributed File System (HDFS) [3], whose instances are called DataNodes. Usu-
ally, RegionServers are co-located with DataNodes to promote the locality of the
data being served by the RegionServer. HBase has a block cache implementing
the LRU replacement algorithm. Several key-values are grouped into blocks of
configurable size and these blocks are the ones used in the cache mechanism.
The block size within the block cache is a parameter but defaults to 64 KB.

3 Interdependence of Resource Usage and Cache Hit
Ratio

Let us consider a server usage metric related to the CPU waiting time on I/O
operations (I/Owait), the time spent on user space (CPUuser) and the time spent
on kernel space (CPUsystem) in the form: Serverusage = I/Owait + CPUuser +
CPUsystem. In the following we show the cache hit ratio is effectively related to
server usage. To this end, we set up three experiments using a HBase deployment
and YCSB [6] as the workload generator. These experiments cover a wide spec-
trum of possible behaviors. With these we are able to show a clear and direct
relationship between the cache hit ratio and server usage in NoSQL systems,
which lays the foundation for the rest of the paper.

Experimental setting: In all experiments, one node acts as master for both
HBase and HDFS, and it also holds a Zookeeper [14] instance running in stand-
alone mode, which is required by HBase. Our HBase cluster was composed of 1

Resource Usage Prediction in Distributed Key-Value Datastores 147

RegionServer, configured with a heap of 4 GB, and 1 DataNode. HBase’s LRU
block cache was configured to use 55 % of the heap size, which HBase translates
into roughly 2.15 GB. The RegionServer was co-located with the DataNode. The
YCSB workload generator ran in a separate node and was configured with a
readProportion of 100 % (read-only), and with a fixed throughput of 2000 oper-
ations per second with 75 client threads. All experiments were set to run for
30 min with 150 s of ramp up time and the results are the computed average of 5
individual runs. The server usage was logged every second in the RegionServer/-
DataNode machine using the UNIX top command. The top command gives us
the CPUidle metric that is converted to our Serverusage metric in the form:
Serverusage = 100% − CPUidle. By the end of each experiment, we gathered
the RegionServer ’s achieved cache hit ratio. All nodes used for these experiments
have an Intel i3 CPU at 3.1 GHz, 8 GB of main memory, a 7200 RPM SATA disk,
and are interconnected by a switched Gigabit network.

First Experiment: In this first experiment, a single region was populated using
the YCSB generator with 4,000,000 records (4.3 GB). This means that the region
cannot be fitted entirely into the block cache: about 1.1 millions records (1.21 GB)
remain on secondary memory and must be brought into main memory when
requested. There were four different scenarios each with a differently configured
request popularity:

1. A uniform popularity distribution, that is all records have equal probability
of being requested (the case where the cache hit ratio is minimum);

2. A hotspot popularity distribution, where 50 % of the requests access a subset
of keys that account for 30 % of the key space;

3. A zipf scrambled popularity distribution, highly skewed, but because it is
scrambled it means the most popular keys are spread across the key space;

4. A zipf clustered popularity distribution, highly skewed, and clustered, mean-
ing the most popular keys are contiguous, which makes them fall in the same
cache block.

The results for this experiment are depicted in Table 1. As expected, the uniform
request popularity is the one that achieves the lower cache hit ratio (phit = 49%),
and thus consumes more server resources (58.35 %) while the zipf clustered
request popularity has the higher cache hit ratio (93 %). This is true because
popular keys are found in the same block, which is maintained in memory avoid-
ing cache misses.

Second experiment: We set up a second experiment, to demonstrate that the
behavior observed in the first experiment is independent of request popularities.
This experiment is identical to the first one except for the region size, which has
now 2,000,000 records (2.14 GB). As a result the region fits entirely into the block
cache, thus the expected cache hit ratio is 100 %. Table 2 depicts the results. As
all data is served only by the block cache, the different request popularities are,
as expected, irrelevant to server resource consumption and all distributions use
roughly the same resources.

148 F. Cruz et al.

Table 1. Average Serverusage and cache hit ratio (phit) with a region larger than the
block cache.

Distribution phit Average Serverusage #Records

Uniform 49% 58.35 % 4,000,000

Hotspot 56% 46.19 % 4,000,000

Zipf Scrambled 68% 35.91 % 4,000,000

Zipf Clustered 93% 19.28 % 4,000,000

Table 2. Average Serverusage and cache hit ratio (phit) with a region that fits in block
cache.

Distribution phit Average Serverusage #Records

Uniform 100% 12.29 % 2,000,000

Hotspot 100% 12.14 % 2,000,000

Zipf Scrambled 100% 12.92 % 2,000,000

Zipf Clustered 100% 12.89 % 2,000,000

Third experiment: In this experiment we show that two different distributions,
with different data sizes but with the same cache hit ratio, will have the same
server resources consumption if subject to the same fixed throughput. We used
a similar setting to the first experiment’s but changed the number of records
of the uniform distribution to 2,141,881(2.3 GB) so its cache hit ratio could
also be 93 %. The throughput is again fixed at 2000 operations per second.
Table 3 depicts the results that support our claim that, for a given throughput,
an identical cache hit ratio, regardless of the data size and the distribution results
in the same resource consumption.

Correlation between server usage and cache hit ratio: A correlation
test using the Fisher’s z transformation [11] with the data from the previous
experiments, shows that in fact there is a negative correlation for p-value <
0.001, making it statistically significant. Based on these results, we argue that it
is possible to estimate the server usage given the incoming throughput and the
cache hit ratio and, in the following sections, we show how this can be done.

Table 3. Average Serverusage and cache hit ratio (phit) results for 2 distributions with
different sizes, but with same cache hit ratio.

Distribution phit Average Serverusage #Records

Zipf Clustered 93% 19.28 % 4,000,000

Uniform 93% 19.76 % 2,141,881

Resource Usage Prediction in Distributed Key-Value Datastores 149

4 Estimating Resource Usage of Read Operations

Previous section demonstrated that there is an intrinsic relation between resource
usage and cache hit ratio. The cache hit ratio reflects not only the data size,
but also the underlying distribution of requests which, in combination with an
incoming throughput, corresponds to a given server usage. Furthermore, for a
fixed throughput this relation is univocal: for some throughput if two distinct
workloads consume the same amount of resources, then they must have the same
cache hit ratio. In this section, we show how the server usage of any workload can
be estimated simply by knowing its cache hit ratio and incoming throughput.
We build on the aforementioned properties to build a tridimensional model, that
models the server usage for a NoSQL datastore, when the cache hit ratio and the
throughput vary. The objective is to build a model that, for a given hardware
configuration, a given hit cache ratio and certain request throughput of an HBase
node, allows us to predict the resource consumption of such node. To achieve this
we require an initial training step, which is hardware dependent. Consequently,
each generated model is only valid for a single hardware configuration but is
required to be generated only once. Once we have the model we are able to
predict HBase node resource usage for any given workload. As shown previously,
request distribution is irrelevant in terms of the relationship between hit cache
ratio and resource consumption. Taking advantage of this observation we always
consider the uniform distribution in the generation of the prediction models. In
fact, such model will still be valid if, on runtime, a different request distribution
is observed.

In order to generate the model, our approach is to judiciously choose a num-
ber of representative combinations of cache hit ratio and throughput, test them
against the desired hardware configuration and then, by using linear interpola-
tion between the different server usage levels measured, we are able to build a
tridimensional model that correlates data size, with throughput and expected
server usage. Notably, with this approach we are able to achieve very high levels
of accuracy. At this point, it is important to note that, for a generic workload
generator, it is not possible to define the desired cache hit ratio. Instead we can
only set the data size and desired throughput. However, we can take advantage
of a simple approach proposed by Che et al. [5] that provides an estimation
without error of the cache hit ratio for the uniform distribution. This way, we
can represent the cache hit ratio by its correspondent data size when building
the model. Therefore, in the remainder of this section we will mention data sizes
implicitly mentioning their correspondent cache hit ratios. Another reason for
choosing the uniform distribution is because it allows to reduce the overall train-
ing time since it represents the worst case for LRU caches (lowest possible hit
ratio for a given data size), thereby the time it takes to populate the data in the
NoSQL database is smaller.

Regarding the process of choosing the representative measures to take, let’s
begin by looking at an illustrative example. Figure 1 shows the behavior of incom-
ing throughput when data sizes increase for a fixed server usage percentage. Note
that, if the data size is smaller than the cache size then only the throughput

150 F. Cruz et al.

0
0 cache size

Data Size

Th
ro

ug
hp

ut
Fig. 1. Typical relation between cache size and throughput for a fixed Serverusage.

impacts server usage. In this case, the cache hit ratio is always 100 % and the
throughput constant for all possible data sizes between 0 and cache size. For
larger data sizes, the cache hit ratio drops and cache swapping begins, which in
turn means that in order for the server usage to stay the same the throughput
must decrease. As a result, this is a boundary point (where data size equals to
the cache size). This observation allows us to reduce the number of points to
calculate for that section as we just need to build the model from that point
onwards. Then, other observations help us choosing the points to measure. For
data sizes slightly larger than the boundary point, there is a big drop on through-
put in order to resource usage to remain the same. This drop can be more or less
abrupt depending on the speed of the secondary memory. In order to capture
this behavior in the model we need to increase the number of tested combina-
tions of pairs data size and throughput immediately after the boundary point.
Conversely, when the data size is largely increased we can be confident of a long
and flat tail, thus not requiring many training points to achieve high accuracy.

The uniform distribution server usage model is automatically generated
resorting to a developed Python script and using YCSB as the workload gener-
ator1. Generally, this script has 2 main parameters: (i) a list of cache hit ratios
and (ii) a list of targeted server usage levels. Hit cache ratios are, as explained
earlier, converted to data sizes using the Che’s approximation. Then, resorting to
a binary search, the script tries to find the necessary throughput of read opera-
tions to achieve each specific percentage of server usage for each data size defined
as input. Fixing the server usage level and allowing the throughput to be exper-
imentally calculated via the script, allows us to have a representative number of
server usage levels without having to test multiple cache hit ratio and through-
put combinations in order to have a usable model. When a sufficient number of
points for a specific server usage level are found and we resort to interpolation
between those points. Namely, using the monotonic spline interpolation of the R
project2 embedded into the Python script. This process is repeated for each of
the targeted server usage levels. This list does not comprehend all of the possible
values between 0 and 100 %. Instead, from our experience we noted that a few of
them is sufficient (usually 5 equally spaced). Furthermore, by again using linear
interpolation between the different server usage levels we achieve very accurate
1 All the scripts used in this work are openly available at github.com/fmcruz/suhcr/.
2 http://www.r-project.org.

http://github.com/fmcruz/suhcr/
http://www.r-project.org

Resource Usage Prediction in Distributed Key-Value Datastores 151

0

5

10

15

20

25

30

35

0 2.1
 100%

3.6
60%

4.2
 50%

5.3
 40%

8.4
 25%

12
 15%

Data Size (GB)
 Correspondent cache hit ratio (%)

Th
ro

ug
hp

ut
 (o

ps
/s

 x
 1

03)

Server usage
80%
70%
60%
50%
40%
30%
20%
12.5%
5%

Fig. 2. Instantiation of the server model for read operations based on a uniform dis-
tribution.

results, and ultimately build a tridimensional model that correlates data size,
with throughput and expected server usage.

Model Instantiation in Our Cluster. We ran the automatic server model
generator in our cluster using the same setting as the experiments of Sect. 3. The
generated server model is as depicted in Fig. 2. There were defined 10 different
cache hit ratios: 100 %, 95 %, 90 %, 80 %, 70 %, 60 %, 50 %, 40 %, 25 %, and 15 %.
These cache hit ratios were then transformed in their data size equivalents to
be used as input in the model generator. The first point is the boundary point
corresponding to 2,000,000 of YCSB records. As previously stated, for data sizes
slightly larger than the cache size we need to increase the density of points
tested to ensure the model is more accurate. Thus, the next point is only a 5 %
decrease, and the subsequent 6 points are decreases of 10 % in the cache hit
ratio. On the other hand, predicting a flat long tail from that point on, we just
defined 2 points much more apart from each other, 25 % and 15 % of cache hit
ratio, corresponding to 8,000,000 and 12,000,000 records.

In Fig. 2 the solid lines correspond to the 5 targeted levels of server usage,
namely 80 %, 60 %, 40 %, 20 % and 5 %. It is general practice in frameworks
for automated elasticity of NoSQL datastores [17] that the rule governing the
addition of new nodes indicate 80 % as the maximum usable CPU before a new
node is needed in the cluster. This is an empirical higher bound on usable CPU to
accommodate operating systems processes, account for possible load spikes and
compactions. Therefore, the highest defined level was 80 %. When eventually the
generator has finished searching for the throughput needed to reach the targeted
levels of server usage for the various data sizes, it then interpolates the data that
resulted in the represented continuous curves. Finally, we just need to do a final
and linear interpolation between these curves. The curves that correspond to the
linear interpolation are represented by dotted lines for the server usage levels of
70 %, 50 %, 30 % and 12.5 %, which are example levels.

Model Accuracy. Revisiting the first experiment of Sect. 3, we can now use
the generated model to estimate the server usage for the different distributions.

152 F. Cruz et al.

Table 4. Observed serverusage and Estimated serverusage results under four different
distributions.

Distribution Observed usage Estimated usage Accuracy

Uniform 58.35 % 58.35 % 100 %

Hotspot 46.19 % 45.87 % 99.31 %

Zipf Scrambled 35.91 % 36.29 % 98.94 %

Zipf Clustered 19.28 % 19.15 % 99.33 %

The results are depicted in Table 4. As can be seen, the estimated server usage
is almost the same as the observed average server usage, despite all four dif-
ferent distributions with very different cache hit rates. It should be noted that,
as expected, the approach predicts the server usage of the uniform distribution
with accuracy of 100 % due to the similarity between the input usage levels of
the model and the ones used in the test. We can also use the generated model
to accurately estimate the server usage when the incoming throughput varies.
In that regard, we set up two different experiments using the exact same setting
as in the experiments of Sect. 3. For every data point there were 3 independent
runs, and the results presented are the computed average. In the first experi-
ment, we populated the HBase instance with 4,000,000 records (4.3 GB). The
YCSB’s client was configured to use the zipf clustered distribution with 100 %
read operations, and for a fixed throughput ranging from 250 ops/s to 10,000
ops/s. We also wanted to validate what happens when using a data size not
used in the model generator. As a result, we populated the HBase cluster with
3,000,000 records (3.15 GB), and this time using the zipf scrambled distribution,
which yields a much lower cache hit ratio (78.8 %). As a result, the configured
read throughput ranged from 250 ops/s to 7,000 ops/s. The results for each
experiment are depicted in Fig. 3(a) and in Fig. 3(b). They show the estimated
server usage compared to the observed one. The estimated results are drawn
from our approach using the generated model for read operations, and observ-
ing the cache hit ratio as provided by HBase exported metrics. As expected,
the estimated server usage in both experiments is very similar to the observed
counterpart.

Discussion. The approach described in this section allows to accurately esti-
mate the server usage resorting to an offline trained model based on the uniform
distribution. Using the cache hit ratio and the incoming throughput as the only
parameters that affect resource utilization may appear oversimplifying. Specially,
when taking account related approaches to usage prediction in RDBMS. How-
ever, key-value datastores are fundamentally different from relational databases.
In order to attain high scalability, high throughput and high availability, these
datastores offer a simple key-value interface based on put and get operations
without providing multi record atomic operations nor complex operations like
joins and aggregations. On the other hand, RDBMS must cope with a large

Resource Usage Prediction in Distributed Key-Value Datastores 153

Fig. 3. Experiments for read-only operations.

number of concurrent and lock-prone ACID transactions and need different more
complex models for resources, such as CPU, RAM, disk I/O and database locks.
These differences allow our simple but effective technique to work. The empir-
ical intuition of why other parameters, such as the I/O costs, do not need to
be considered separately is because they are already concealed in the training
model. Taking a closer look into the behavior of each distribution in the first
experiment, and decomposing the overall throughput into operations hitting and
missing the cache, we have:

– Uniform - 49 % of cache hit ratio; thus 980 ops/s are cache hits, the remaining
1020 ops/s miss the block cache;

– Hotspot - 56 % of cache hit ratio; thus 1120 ops/s are cache hits, the remaining
880 ops/s miss the block cache;

– Zipf Scrambled - 68 % of cache hit ratio; thus 1360 ops/s are cache hits, the
remaining 640 ops/s miss the block cache;

– Zipf Clustered - 93 % of cache hit ratio; thus 1860 ops/s are cache hits, the
remaining 140 ops/s miss the block cache.

By looking at the average resource usage for each distribution, it is obvious that
the cost of a cache miss is greater than the cost of accessing the block cache.
This implies that the server usage for read operations can be decomposed as the
sum of two costs: Usageread = Usagehit + Usagemiss. The Usagehit is the cost
of only accessing the cache, while the Usagemiss represents the cost of a miss in
the cache. It covers not only the cost of bringing a block into the cache (either
from main memory or disk), but also the cost of discarding the least recently
used data to make room for the new data block. Thus, when two workloads have
identical cache hit ratios and identical incoming throughputs, it means that both
workloads have the same number of operations hitting the cache and the same
number of operations missing the cache. As a result, once two workloads exhibit
the same Usagehit and Usagemiss, ultimately exhibit the same server usage.

5 Estimating the Resource Usage of Update Operations

Although workloads are generally dominated by reads, most applications also
have updates. We apply a similar approach to update operations. Updates and

154 F. Cruz et al.

writes can be used interchangeable, because in key-value datastores, such as
HBase and Cassandra, updates and new writes are append-only, so they fol-
low the same write path. Updates in these datastores are first written to main
memory before being flushed to disk. Therefore, the resource cost of an update
is essentially related with the operation of writing the update to main mem-
ory and, from time to time flushing it to secondary memory. As a consequence,
contrary to read requests, updates are mostly independent of the request dis-
tribution and current data size. In addition, because the write path and the
read path in a NoSQL datastore are substantially separated, the overall server
usage can be defined as the sum of the usage related with read operations and the
usage related with update operations: ServerUsageoverall = ServerUsageread +
ServerUsageupdate. As updates are independent of the request distribution and
the data size, creating a model to predict the server usage of update operations is
simpler than the read model counterpart. The only variable affecting the server
utilization is, thus the write throughput.

Analogous to the model generator for read operations, we used a Python
developed script to generate the server usage model for update operations. It also
uses YCSB as the workload generator, but this time configured for updates. As
the update model only depends on the throughput, the script has only one main
parameter: a list of targeted update throughput points to test. For every element
of targeted update throughput there are 3 independent runs, and the server
utilization is logged every second in the remote machine where the datastore
node is running. When all the defined points are finished, we also resort to
interpolation between those points. Like the server model of read operations,
the automatic server model generator was used on our own cluster, using the
exact same setting. The generated server model for updates is depicted in Fig. 4.
There were defined 28 different targeted update throughputs from 5 updates
per second to 10,000 updates per second. For increased accuracy, the first 10
targeted throughputs fall within the interval of 5 to 1000 updates per second.
From that point on, there were 500 increments until 10,000 updates per second,
which is the point where the server usage reaches 80 %. As can be seen the server
utilization for update operations grows linearly with the increased throughput.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

0 1 2 3 4 5 6 7 8 9 10
Throughput (ops/s x 103)

Se
rv

er
 u

sa
ge

 (%
)

Fig. 4. Instantiation of the model for update operations.

Resource Usage Prediction in Distributed Key-Value Datastores 155

6 Resource Estimation for Read-Write Workloads

Along this section we validate our approach using HBase showing that we can
accurately predict resource consumption for any given workload even if there is a
mix between read and update operations. In the experiments we used the exact
same setting as in the experiments of Sect. 3. For every data point there were 3
independent runs, and the results presented are the computed average. By using
both the read and the update model, we are able to estimate the server usage for
read operations and update operations independently. However, as described in
Sect. 5 the write path and the read path are mostly separated, thus we are able
to estimate the overall server usage just by adding both estimations. In order
to validate this assumption, we set up an experiment configured with different
read and update mixes, namely: 90 % read and 10 % update; 80 % read and 20 %
update; 50 % read and 50 % update; 20 % read and 80 % update; 10 % read and
90 % update. The region was populated with 4,000,000 records (4.3 GB) and the
requests followed the uniform distribution with a fixed throughput of 118 ops/s,
562 ops/s, 1250 ops/s, 1958 ops/s and 2921 ops/s. These tested throughputs cor-
respond to 5 %, 20 %, 40 %, 60 % and 80 % server usage levels, as generated by
the server model for the uniform distribution. In Fig. 5 is depicted the results for
this experiment. It shows that our approach is valid and it accurately predicts
the server usage even when there are read and update operations simultane-
ously. However, as seen in Fig. 5(c) and (d) for the higher values of throughput
the observed server usage is higher than the estimated one. These differences can
be explained by compactions occurring during the test period that disrupt the
readers of records stored on disk. Figure 6 shows the server usage along the entire
30 min run for the 20 % read and 80 % update mix (Fig. 5(d)) for the 2912 ops/s
throughput. Until the compaction process starts (at 1277 s) the observed server

Fig. 5. Read and update operations mix experiments in HBase.

156 F. Cruz et al.

0
10
20
30
40
50
60
70
80
90

100

0 150
 ramp up

1277
compaction

started

1596
compaction

finished

1800

time (s)

Se
rv

er
 u

sa
ge

 (%
)

Fig. 6. Observed server usage along a 30min run for the 20 % read and 80 % update
mix for 2912 ops/s throughput.

usage average is the same as the estimated one (44 %). Then, the compaction
process greatly increases server usage to levels near 100 %. When compaction
ends regular behavior is resumed. This process greatly impacts the overall server
usage average, but even at this point our estimated server usage is only off by
12 %, which is the greatest difference observed. It is worth noting, however, that
while more powerful hardware and particularly SSDs would attenuate the prob-
lem and help improve the estimation, in [2] it is proposed to offload compactions
to a dedicated compaction server to prevent the significantly degraded read per-
formance during compactions.

7 Related Work

A significative group of approaches aims at predicting the resource usage of
generic systems such as, virtual machines, thus requiring complex models that
must take into account many parameters [26,27]. As mentioned in the literature,
in order to obtain accurate models with fewer variables, it is key to focus on spe-
cific applications [15]. This is the case of performance prediction for RDBMS
focused on online transaction processing (OLTP) [21,22]. Although our work
has similarities with the previous approaches, such as resorting to off-line model
training, it has different assumptions from RDBMS. These differences signifi-
cantly change the required approach to accurately predict the performance of
key-value datastores. A single resource model is also not achievable for related
work that predicts the performance of SQL queries by using models for each
database operator (e.g., Sort, Merge Join), which are not present in NoSQL
datastores [19]. It is worth mentioning the work on performance prediction for
database consolidation, where several database instances are running in the same
server and processing different types of workloads and, in many cases, even dis-
tinct schemas [1,8]. Once again, this work needs to deal with the added com-
plexity of RDBMS.

Regarding the techniques used to predict systems’ performance, machine
learning and analytical modeling are the most commonly used [20]. These can
be used exclusively or in combination, by resorting to time-series analysis [13,16],
regression models [9,28], and clustering [24]. These approaches require lengthy
training phases to estimate accurately different workload distributions. It is

Resource Usage Prediction in Distributed Key-Value Datastores 157

however possible to reduce the duration of this initial phase by using a less
accurate model and then refine it, in runtime, with other machine learning algo-
rithms [10]. Because we target a specific type of system, we are able to reduce
our model to only two parameters, the cache hit ratio and incoming throughput.
Our approach achieves high accuracy without needing runtime improvements for
the model. To the best of our knowledge our approach is the only work that can
accurately predict the performance of a NoSQL datastore with a single model.
Even if our solution needs offline training, it does not require system traces or
runtime mechanisms to improve the precision of the estimation.

8 Conclusion

Along this paper we focused on a mechanism for distributed key-value datas-
tores resource usage prediction. Our mechanism is able to accurately predict the
resource utilization for every data size, request distribution and throughput com-
bination. In contrast with previous approaches on prediction systems for cloud
environments, we take advantage of focusing on a specific cloud component to
improve prediction accuracy and its applicability. In particular, we observed that
the majority of the NoSQL systems make use of buffer caching mechanisms to
improve performance. Moreover, the effectiveness of such mechanisms is directly
related with the performance and, as a consequence, to the resource utilization
of the database. This effectiveness can be measured in terms of the hit ratio
that the caching mechanism exhibits. The higher the cache hit ratio the more
effective the cache mechanism is, and thus more efficient is the database. In this
work, we show that a NoSQL workload can be characterized by the incoming
throughput and by its cache hit ratio, as the latter is a reflection of the data size
and of the distribution of requests. From such observation, we can use the cache
hit ratio and the throughput to build a server usage model, that can then be
used to predict the resource utilization of any workload only by knowing those
two parameters. In our experiments the average prediction accuracy achieved is
94 % with a standard deviation of 5.6. Notably, our approach can be effectively
used for several practical applications. Examples are automated online load bal-
ancing systems, automated resource allocation and even cost-benefit assessment
of hardware upgrades to mention a few. In effect, we are currently implementing
this mechanism in an automated elasticity tool (MeT [7]) aiming at improving
its load balancing capabilities.

Acknowledgment. This work is part-funded by: ERDF - European Regional
Development Fund through the Operational Programme for Competitiveness and Inter-
nationalization - COMPETE 2020 Programme, and by National Funds through the
FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) within project POCI-01-0145-FEDER-006961; and project LeanBigData
(FP7-619606).

158 F. Cruz et al.

References

1. Ahmad, M., Bowman, I.T.: Predicting system performance for multi-tenant data-
base workloads. In: Proceedings of the Fourth International Workshop on Testing
Database Systems, DBTest 2011, pp. 6:1–6:6 (2011)

2. Ahmad, M.Y., Kemme, B.: Compaction management in distributed key-value data-
stores. Proc. VLDB Endow. 8(8), 850–861 (2015)

3. Apache. Hadoop (2015). http://hadoop.apache.org/
4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: OSDI (2006)

5. Che, H., Tung, Y., Wang, Z.: Hierarchical web caching systems: modeling, design
and experimental results. IEEE J. Sel. Areas Commun. 20, 1305–1314 (2002)

6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: SoCC (2010)

7. Cruz, F., Maia, F., Matos, M., Oliveira, R., Paulo, J.A., Pereira, J., Vilaça, R.: Met:
workload aware elasticity for NOSQL. In: Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys, pp. 183–196 (2013)

8. Curino, C., Jones, E.P., Madden, S., Balakrishnan, H.: Workload-aware database
monitoring and consolidation. In: Proceedings of ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011, pp. 313–324 (2011)

9. Desnoyers, P., Wood, T., Shenoy, P., Singh, R., Patil, S., Vin, H.: Modellus: auto-
mated modeling of complex internet data center applications. ACM Trans. Web 6,
1–29 (2012)

10. Didona, D., Quaglia, F., Romano, P., Torre, E.: Enhancing performance prediction
robustness by combining analytical modeling and machine learning. In: Proceed-
ings of the 6th ACM/SPEC International Conference on Performance Engineering,
pp. 145–156 (2015)

11. Fisher, R.A.: On the probable error of a coefficient of correlation deduced from a
small sample. Metron 1, 3–32 (1921)

12. George, L.: HBase: The Definitive Guide. O’Reilly, Sebastopol (2011)
13. Gong, Z., Gu, X., Wilkes, J.: Press: predictive elastic resource scaling for cloud

systems. In: International Conference on Network and Service Management, pp.
9–16 (2010)

14. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination
for internet-scale systems. In: Proceedings of USENIX Conference on USENIX
Annual Technical Conference, USENIXATC 2010, p. 11 (2010)

15. Jennings, B., Stadler, R.: Resource management in clouds: survey and research
challenges. J. Netw. Syst. Manage. 23(3), 567–619 (2014)

16. Khan, A., Yan, X., Tao, S., Anerousis, N.: Workload characterization and predic-
tion in the cloud: a multiple time series approach. In: Network Operations and
Management Symposium (NOMS), pp. 1287–1294 (2012)

17. Konstantinou, I., Angelou, E., Tsoumakos, D., Boumpouka, C., Koziris, N.,
Sioutas, S.: Tiramola: elastic nosql provisioning through a cloud management
platform. In: International Conference on Management of Data (SIGMOD Demo
Track) (2012)

18. Lakshman, A., Malik, P.: Cassandra - a decentralized structured storage system.
In: LADIS (2009)

19. Li, J., König, A.C., Narasayya, V., Chaudhuri, S.: Robust estimation of resource
consumption for SQL queries using statistical techniques. Proc. VLDB 5, 1555–
1566 (2012)

http://hadoop.apache.org/

Resource Usage Prediction in Distributed Key-Value Datastores 159

20. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the time
and resources consumed by applications. In: Proceedings of IEEE/ACM Interna-
tional Conference on Cluster, Cloud and Grid Computing, CCGRID, pp. 495–504
(2010)

21. Mozafari, B., Curino, C., Jindal, A., Madden, S.: Performance and resource model-
ing in highly-concurrent OLTP workloads. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 301–312 (2013)

22. Mozafari, B., Curino, C., Madden, S.: Dbseer: resource and performance prediction
for building a next generation database cloud. In: Conference on Innovative Data
Systems Research (CIDR) (2013)

23. Puzak, T.R.: Analysis of Cache Replacement-algorithms. Ph.D. thesis (1985).
AAI8509594

24. Singh, R., Sharma, U., Cecchet, E., Shenoy, P.: Autonomic mix-aware provisioning
for non-stationary data center workloads. In: Proceedings of the 7th International
Conference on Autonomic Computing, pp. 21–30 (2010)

25. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28, 202–208 (1985)

26. Sudevalayam, S., Kulkarni, P.: Affinity-aware modeling of cpu usage for provi-
sioning virtualized applications. In: 2011 IEEE International Conference on Cloud
Computing (CLOUD), pp. 139–146 (2011)

27. Wood, T., Cherkasova, L., Ozonat, K., Shenoy, P.D.: Profiling and modeling
resource usage of virtualized applications. In: Issarny, V., Schantz, R. (eds.) Mid-
dleware 2008. LNCS, vol. 5346, pp. 366–387. Springer, Heidelberg (2008)

28. Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic model for
dynamic resource provisioning of multi-tier applications. In: Proceedings of the
4th International Conference on Autonomic Computing, p. 27 (2007)

A Performance Evaluation of Erasure Coding
Libraries for Cloud-Based Data Stores

(Practical Experience Report)

Dorian Burihabwa, Pascal Felber, Hugues Mercier, and Valerio Schiavoni(B)

Université de Neuchâtel, Neuchâtel, Switzerland
{dorian.burihabwa,pascal.felber,hugues.mercier,

valerio.schiavoni}@unine.ch

Abstract. Erasure codes have been widely used over the last decade to
implement reliable data stores. They offer interesting trade-offs between
efficiency, reliability, and storage overhead. Indeed, a distributed data
store holding encoded data blocks can tolerate the failure of multiple
nodes while requiring only a fraction of the space necessary for plain repli-
cation, albeit at an increased encoding and decoding cost. There exists
nowadays a number of libraries implementing several variations of erasure
codes, which notably differ in terms of complexity and implementation-
specific optimizations.

Seven years ago, Plank et al. [14] have conducted a comprehensive
performance evaluation of open-source erasure coding libraries available
at the time to compare their raw performance and measure the impact
of different parameter configurations. In the present experimental study,
we take a fresh perspective at the state of the art of erasure coding
libraries. Not only do we cover a wider set of libraries running on mod-
ern hardware, but we also consider their efficiency when used in realistic
settings for cloud-based storage, namely when deployed across several
nodes in a data centre. Our measurements therefore account for the end-
to-end costs of data accesses over several distributed nodes, including
the encoding and decoding costs, and shed light on the performance one
can expect from the various libraries when deployed in a real system.
Our results reveal important differences in the efficiency of the different
libraries, notably due to the type of coding algorithm and the use of
hardware-specific optimizations.

1 Introduction

Cloud-based storage has seen an impressive growth over the last few years,
notably thanks to the availability of affordable solutions from large companies
like Dropbox, Google, Amazon, Microsoft, or Apple. While these services mainly
target the general public, several companies have also specialized in the devel-
opment of dedicated solutions offering specific properties in terms of security or
dependability, support for deployment on premises, or customized application
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 160–173, 2016.
DOI: 10.1007/978-3-319-39577-7 13

Evaluation of Erasure Coding Libraries 161

support. There is also a great interest from the scientific community to develop
their own solution to finely control and tune a complete Cloud-based stack, be
it in terms of communication, processing, or storage.

In the era of “Big Data”, the amount of information to manage can quickly
become a bottleneck. Storage space is plenty but not infinite, and data must be
stored redundantly for reliability purposes. It must therefore be replicated but
at the same time remain relatively compact in size. There is therefore a tension
between space efficiency and performance, as any form of compression comes
with associated processing overhead.

A common approach to address this challenge is to use erasure coding. This
technique, already used since the eighties for redundant array of independent
disks, allows infrastructure providers to add some redundancy to stored data
without the space overhead of full replication, and with relatively low compu-
tation costs and sufficient flexibility in how failed disks or missing data can be
recovered.

The theory of erasure codes has been developed over decades, and techniques
are mature. Yet, practical libraries for performing the associated computations
efficiently in software have truly emerged over the last few years, largely driven
by the needs from backup services, data centers, and Cloud-based infrastructures
in general (“Anything” as a Service).

Seven years ago, Plank et al. [14] have conducted a comprehensive perfor-
mance evaluation of open-source erasure coding libraries available at the time.
The focus of the study was on the raw performance of the libraries and the
impact of different parameter configurations. Since then, the landscape has sig-
nificantly evolved, with improved encoders and new libraries, as well as a shift
toward integration within software stacks for data centers.

In this experimental study, we want to take a fresh perspective at the state
of practice in erasure coding for data storage. Rather than focusing just on the
libraries, we are interesting in evaluating them in realistic settings, i.e., within
a complete software stack involving multiple clients and server nodes deployed
across a data center. This study does also account for the costs related to data
serialization and transmission, the overhead associated with the different APIs,
the reads and writes to the back-end databases, etc. Therefore, it allows us to
quantify the costs of using the libraries to build a complete storage solution, and
to observe how the various configuration parameters affect end-to-end perfor-
mance.

Our findings notably reveal several interesting lessons. First, modern encod-
ing libraries efficiently exploit specific hardware instructions for better perfor-
mances, and in a cloud-environment it is important to obtain direct access to
the CPU’s full instruction set. Second, the usage of high-level languages such as
Python, which allow for portable and dependable client-side front-ends, to inter-
act with efficient C-based libraries does not cause noticeable overhead. Third,
the deployment of encoded data blocks over storage back-ends require practi-
tioners to accommodate much less data than a solution based on replication.
Fourth, the reconstruction of missing blocks is a sensibly more costly operation

162 D. Burihabwa et al.

than the pure decoding when all blocks are available: this is an important factor
to take into account in case of disaster-recovery actions to estimate the time to
recover missing data.

The remainder of this paper is organized as follows. We first give an overview
of erasure coding and related with in Sect. 2. We then describe the different
libraries and the storage architecture used as part of this study in Sects. 3 and 4,
respectively. We present and discuss experimental results in Sect. 5, and we
finally conclude in Sect. 6.

2 Background and Related Work

The objective of error-correcting codes for data storage is to carefully add redun-
dancy to data in order to protect it against corruption when stored on media
like DVDs, magnetic tapes or solid-state drives. In these systems, the errors are
usually modeled as erasures, meaning that their locations are known. Consider
the example shown in Fig. 1, where a coding disk is used to store the XOR
(“exclusive or”) of k data blocks. If the system realizes that one of the disks has
failed, as shown in Fig. 2, it can XOR the healthy disks and recover the failure.
This is the maximum decoding capability of this code, and there will be data
loss if more than one disk fails.

XOR

coding disk

k data disks

Fig. 1. Redundancy using XOR.

XOR

k+1 healthy disks

failed disk

Fig. 2. Failed disk recovered using XOR.

In general, k data blocks are coded to generate n − k coding blocks, as
illustrated in Fig. 3. After disk failures, the system will try to decode the original
codewords from the healthy disks, like in Fig. 4. The number of recoverable disk
failures depends on the code itself.

The most famous class of erasure codes are Reed-Solomon codes (RS), first
introduced in 1960 [17]. An (n, k) Reed-Solomon code is a linear block code
with dimension k and length n defined over the finite field of n elements. Reed-
Solomon codes have many interesting properties. First, they achieve the singleton
bound with equality, and thus are maximum distance separable (MDS) [8]. In
other words, they can correct up to n − k symbol erasures, i.e., any k of the

Evaluation of Erasure Coding Libraries 163

n code symbols are necessary and sufficient for decoding. Second, using a large
field, they can correct bursts of errors, thus their widespread adoption in storage
media where such bursts are common.

Encoding and decoding Reed-Solomon codes is challenging, and optimizing
both operations has kept many coding theorists and engineers busy for more than
50 years. There is a large amount of literature on these topics, covering theory
(e.g., [5]) and implementation (e.g., [18]), but in a nutshell the best encoding
and decoding implementations are quadratic in the size of the data.

Encoder

k data disks

n - k coding disks

Fig. 3. Generic erasure code
encoder.

Decoder

n healthy disks

n disks with some failures

Fig. 4. Generic erasure code decoder.

Reed-Solomon, while storage-efficient, were not originally designed for dis-
tributed storage and are somewhat ill-suited for this purpose. Besides their com-
plexity, their main drawback is that they require at least k geographically dis-
tributed healthy disks to recover a single failure, followed by decoding of all the
codewords with a block on the failed disk. This incurs significant bandwidth
and latency costs. This handicap has led to the development of codes that can
recreate destroyed redundancy without decoding the original codewords. The
tradeoffs between storage overhead and failure repairability is an active area of
research [3,11], and there are many interesting theoretical and practical ques-
tions to solve. Among other work of interest, NCCloud [2] reduces the cost of
repair in multi-cloud storage if one cloud storage provider fails permanently. We
also mention the coding work done for Microsoft Azure [1,6], and XOR-based
erasure codes [7] in the context of efficient cloud-based file-systems exploiting
rotated Reed-Solomon codes. RAID-like erasure-coding techniques have been
studied in the context of cloud-based storage solutions [7]. Plank et al. [14]
studied chosen erasure-coding libraries, which has in great part motivated and
inspired the present study.

3 Coding Libraries

We tested four different coding libraries in our experimental evaluation. These
libraries are considered state-of-the-art and are widely adopted in storage and

164 D. Burihabwa et al.

networking applications. We describe below the main features of each of them.
Table 1 summarizes their principal characteristics.

Liberasurecode. Liberasurecode1 is an erasure code API library in C that sup-
ports pluggable erasure code backends. It supports backends such as jerasure and
Intel ISA-L but also provides three erasure codes of its own: a Reed Solomon
implementation and two flat XOR implementations. Flat XOR erasure codes [4]
are small low-density parity-check (LDPC) codes [10]. With flat XOR codes,
each parity element is the XOR of a distinct subset of data elements. Such codes
are not maximum distance separable (MDS) and, hence, incur in some additional
storage overhead over MDS codes. However, they offer the advantage of addi-
tional recovery possibilities, i.e., an element can be recovered using many distinct
sets of elements. We evaluate two flat XOR codes constructions, flat xor 3 and
flat xor 4, that respectively have a Hamming distance of d = 3 and d = 4.

Jerasure. The Jerasure library,2 first released in 2007, is one of the oldest and
most popular erasure coding library. Jerasure is written in C/C++ and imple-
ments several variants of Reed-Solomon and MDS erasure codes (Vandermonde,
Cauchy [9], Blaum-Roth, RAID-6 Liberation [12],...). As it has been used in
many different projects, Jerasure is also a stable and mature library. It notably
provides a rich and well documented API, and has been optimized for speed
on modern processors (e.g., by leveraging SIMD instructions since version 2.0).
More details about the internals of this library can be found at [15].

Intel ISA-L. Intel Intelligent Storage Acceleration Library (ISA-L)3 is an imple-
mentation of erasure codes optimized for speed on Intel processors [13]. It is
written primarily in hand-coded assembler and aggressively optimizes the matrix
multiplication operation, the most expensive step of encoding. During the decod-
ing operations, Intel ISA uses a cubic cost Gaussian elimination solver. For our
evaluation we the latest version (v2.14).

LongHair. The LongHair library4 is an implementation of fast Cauchy Reed-
Solomon erasure codes in C [16]. It was designed to be portable and extremely
fast, and it provides an API flexible enough for file transfer where the blocks
arrive out of order.

4 Experimental Cloud-Based Data Store

In order to easily and efficiently evaluate the wide spectrum of coding libraries
described previously, and to accelerate the comparison between current and
future solutions, we designed and implement a lightweight, yet modular exper-
imental testbed. We describe its components, the internal mechanisms, the
deployment infrastructure, and other contextual assumptions in the remainder
of this section.
1 https://bitbucket.org/tsg-/liberasurecode.
2 http://jerasure.org/jerasure/jerasure.
3 https://software.intel.com/en-us/storage/ISA-L.
4 https://github.com/catid/longhair.

https://bitbucket.org/tsg-/liberasurecode
http://jerasure.org/jerasure/jerasure
https://software.intel.com/en-us/storage/ISA-L
https://github.com/catid/longhair

Evaluation of Erasure Coding Libraries 165

Table 1. Summary of encoder names and libraries, support for hardware acceleration
(HW), and the description of the algorithms (RS stands for Reed-Solomon).

Encoder Library HW Description

liberasure rs vand LibErasure × Vandermonde RS

liberasure flat xor 3 LibErasure × Flat-XOR (d = 3)

liberasure flat xor 4 LibErasure × Flat-XOR (d = 4)

jerasure rs vand Jerasure SIMD (SSSE3), CLMUL Vandermonde RS

jerasure rs cauchy Jerasure SIMD (SSSE3), CLMUL Cauchy RS

isa l rs vand Intel ISA-L SIMD (SSE4), AVX(1/2) Vandermonde RS

longhair cauchy 256 LongHair SIMD (SSSE3) Cauchy RS

4.1 Architecture

In its simplest instantiation, a cloud-based data store that leverages erasure
coding comprises the following core components, as depicted in Fig. 5: a storage
server (“proxy”) that mediates interactions between clients and the data store,
an encoder, and a set of storage nodes.

The proxy component is the main front-end to the system. While there can
be an arbitrary number of proxies for a given data store, we only consider one in
our evaluation. The proxy exposes a simple stateless REST interface to put and
get data blocks. The interface mimics the operating principles of well-established
services like Amazon S3. More sophisticated operations, such as operating on
subsets of the data blocks for a given file, can be easily integrated. The interac-
tions between the proxy and the clients happen via synchronous HTTP messages
over pre-established TCP channels. The proxy dispatches/collects data blocks
to/from the encoder service.

The encoder component performs the actual processing and transformation
of data blocks before they are stored, as well as the reverse decoding opera-
tion. The encoder is co-localized within the same host as the proxy to maximize

Encoder
Python, C, C++

Clients
(benchmark)

Storage
nodes

KV store
Redis

KV store
Redis

KV store
Redis

Storage
service

Client
Apache AB

Client
Apache AB

Proxy
Java, Spring, Jetty

POST/GET

PO
ST
/G
ET

GRPC protobuf

TCP

TCP

TCP

docker

docker

docker

docker

docker

docker

docker

Fig. 5. Architecture of the experimental testbed.

166 D. Burihabwa et al.

throughput and avoid bottlenecks induced by high pressure on the network stack.
To increase the flexibility of our testbed, our encoder provides a plugin mecha-
nism to dynamically load and swap different coding libraries. This mechanism
relies on a platform-independent transport mechanism (using protobuf) and
a stable interface between the proxy and the encoder. The encoder interface
currently exposes three main operations: encode, decode, and reconstruct.

Once the blocks have been encoded, they are sent by the proxy to the storage
nodes. Each storage node is independent from the others and all the interac-
tions are mediated by the proxy. Blocks are dispatched to storage nodes using
an explicit placement strategy: the proxy ensures that encoded block parts are
spread to distinct nodes so that the failure of one node results in the loss of
one part. Upon read, the proxy contacts a random subset of storage nodes of
minimal size to reconstruct the requested block.

The clients are separate processes running on different nodes in the same
data center. They read and write data by contacting the proxy following access
patterns defined as part of the workloads.

4.2 Implementation

We used different languages and technologies to implement our testbed and inte-
grate with the open-source erasure coding libraries. Our implementation choices
have been largely driven by performance and simplicity considerations, as well
as by constraints from the evaluated libraries.

The proxy component is implemented in Java and exploits the exporting
facilities of the Spring Boot framework5 (v1.3.1) to leverage industrial-grade
application servers. The proxy handles POST and GET requests via the embedded
Jetty web-server.

The encoder component is implemented in Python to facilitate the inte-
gration with the PyEClib6 library (v1.2), the reference Python binding for
liberasure. This library implements wrappers to uniformly access several
encoding libraries.

The open-source libraries under evaluation are implemented in C/C++ (e.g.,
liberasure, JErasure, LongHair) or a mix of C and hand-written Assembly
(e.g., Intel ISA-L). These implementation choices lead to the best performances
and can take advantage of hardware acceleration, as in the case of Intel ISA-L
that exploits built-in SIMD CPU instructions. We call the libraries via a common
access layer and software wrappers implemented in Python. Python provides an
easy mean to bind to such libraries via its built-in support for native code. For
completeness, we also evaluate the overhead of using an interpreted language
such as Python in our experimental validation. The suite of macro-benchmarks
leverages Apache Bench7 (v2.3) to measure the maximum throughput and per-
request latencies. The storage nodes run on top of Redis8 (v3.0.7), a lightweight
5 https://projects.spring.io/spring-boot/.
6 https://pypi.python.org/pypi/PyECLib.
7 https://httpd.apache.org/docs/2.4/programs/ab.html.
8 http://redis.io.

https://projects.spring.io/spring-boot/
https://pypi.python.org/pypi/PyECLib
https://httpd.apache.org/docs/2.4/programs/ab.html
http://redis.io

Evaluation of Erasure Coding Libraries 167

yet efficient in-memory key-value store. Redis tools provide easy-to-use prob-
ing mechanisms (e.g., the redis-cli command-line tool) to retrieve the current
memory occupied by the stored key-value pairs. We exploit these tools to cal-
culate the storage overhead of the encoded blocks. Our deployment machinery
allows us to scale at will all the mentioned components. To do so, we rely on the
tools offered by the Docker9 ecosystem (v1.6) and its Compose10 orchestration
tool (v1.5.3).

5 Experimental Results

This section presents our extensive evaluation of the previously described coding
libraries. We first describe the settings of our evaluation, then we test in isolation
the coding libraries via a set of micro-benchmarks, and we finally evaluate the
libraries in realistic settings.

5.1 Evaluation Settings

We deploy and conduct our experiments over a cluster of machines intercon-
nected by a 1 Gb/s switched network. Each physical host features 8-Core Xeon
CPUs and 8 GB of RAM. We deploy virtual machines (VM) on top of the hosts.

The KVM hypervisor, which controls the execution of the VM, is configured
to expose the physical CPU to the guest VM and Docker container by mean
of the host-passthrough11 option. This VM configuration allows certain cod-
ing libraries (e.g., Intel ISA-L) to exploit ad-hoc CPU instruction sets. In this
evaluation, we do not account for any GPU acceleration. The VMs leverage the
virtio module for better I/O performances.

We deploy one Docker container on each VM without any memory restriction
to minimize interferences due to co-locations and maximize performances.

5.2 Micro-benchmark

Our first set of experiments evaluate the throughput of the coding libraries for
increasing block sizes of 4 MB, 16 MB and 64 MB. In this scenario, the libraries
are tested in isolation via specialized clients that send a continuous stream of
data blocks to encode or decode.

For each library we execute 10,000 times the encode function and show the
average and standard deviation results. All the Reed-Solomon libraries are con-
figured with k = 10 and m = 4, a typical configuration used in modern data
centers (e.g., at Facebook [19]). To approach a similar configuration, the Flat
XOR libraries are set to k = 10 and m = 5. For reference purposes, we compare
against a baseline striping encoder/decoder that simply splits the data in the

9 https://www.docker.com.
10 https://docs.docker.com/compose/.
11 http://www.linux-kvm.org/page/Tuning KVM.

https://www.docker.com
https://docs.docker.com/compose/
http://www.linux-kvm.org/page/Tuning_KVM

168 D. Burihabwa et al.

Fig. 6. Micro-benchmark: encode (top) and decode (bottom) throughput for several
coding libraries and block sizes.

requested number of blocks (typically one block per stripe) and immediately
returns them to the client without any further processing.

Figure 6 presents our results for encoding (top) and decoding (bottom). We
notice that liberasure rs vand is the slowest in the encoding phase, achieving
at most 52.35 MB/s for a 4 Mb block size. The Jerasure implementation of the
same coding technique (jerasure rs vand) and Intel’s isa l rs vand perform
twice as fast for the same block size, respectively up to 87 MB/s and 107 MB/s.

We can explain the performance gap between different implementations of
the same coding techniques by two main reasons: (1) the longer foray of such
libraries in the open-source community (the original design of Jerasure dates
back to 2007) thus benefiting from several contributions and code scrutiny, and
(2) native support for hardware acceleration for the Intel ISA and Jerasure
libraries.

Finally, longhair cauchy 256 outperforms the other implementations for
any block size. Indeed, not only is its implementation based on the Jerasure
source code, but it embeds carefully hand-crafted low-level optimizations (e.g.,
selection of the minimal Cauchy matrix, faster matrix bootstrap, etc.).

Evaluation of Erasure Coding Libraries 169

 0
 5

 10
 15
 20

T
hr

ou
gh

pu
t

(M
B

/s
)

reconstruct 1 block
4 MB 16 MB 64 MB

 0
 5

 10
 15
 20

reconstruct 2 blocks
4 MB 16 MB 64 MB

 0
 5

 10
 15
 20

isa_lrs_vand

jerasure
rs_cauchy

jerasure
rs_vand

liberasure
flat_xor_3

liberasure
flat_xor_4

liberasure
rs_vand

T
hr

ou
gh

pu
t

(M
B

/s
)

reconstruct 3 blocks
4 MB 16 MB 64 MB

 0
 5

 10
 15
 20

isa_lrs_vand

jerasure
rs_cauchy

jerasure
rs_vand

liberasure
flat_xor_3

liberasure
flat_xor_4

liberasure
rs_vand

reconstruct 4 blocks
4 MB 16 MB 64 MB

Fig. 7. Micro-benchmarks: throughput of reconstruct for increasing number of miss-
ing blocks and block sizes.

In the decoding scenario, the decode function is fed with all the avail-
able blocks. As expected, when all the blocks are available, the libraries can
decode very efficiently, achieving throughputs that are never below 157 MB/s
for any block size. For example, liberasure flat xor 4 achieves a 158.13 MB/s
throughput with 4 MB blocks, and jerasure rs cauchy reaches 164.87 MB/s.
The highly optimized longhair cauchy 256 achieves results that are orders-of-
magnitude better also in decoding (up to 1.79 GB/s for 4 MB blocks).

Finally, Fig. 7 shows the cost of reconstructing missing blocks. We present the
achieved throughput of the coding libraries in reconstructing from 1 to 4 missing
blocks (from top-left to bottom-right). Figure 7 presents the average throughput
for 100 executions. Notice how liberasure rs vand achieves the best result
(20.77 MB/s) in reconstructing 1 missing block with 4 MB block sizes but steadily
decreases with bigger block sizes and more to reconstruct. This result confirms
the measures of the same library in pure decoding shown previously in Fig. 6.
The other libraries perform consistently across the spectrum of parameters, and
all operate between 17.15 MB/s and 19.19 MB/s. These results need to be taken
carefully into account to decide which is the best fitting library to adopt in a
cloud setting.

We performed a breakdown analysis of the computing times for each of the
microbenchmarks. The goal of this analysis is to verify that the cost of using a
high-level language such as Python did not hinder our results and thus negatively
impacted on the observed performances. We exploit the cProfile module12 to
12 https://docs.python.org/2/library/profile.html.

https://docs.python.org/2/library/profile.html

170 D. Burihabwa et al.

profile the execution of the encode, decode, and reconstruct microbenchmarks,
and to gather profiling statistics. Indeed, the CPU spends almost the totality
of the execution time (always more than 99 %) in the native code of the encod-
ing libraries. These results confirm the choice of Python as having near-zero
impact on the overall performances, while providing major benefits in ease of
programming, deployment, and availability of open-source libraries.

5.3 Macrobenchmark

In this section we evaluate the coding libraries in a more complex scenario
that involves a large-scale storage infrastructure service. First we focus on the
observed per-request latency as measured by an external client that stores files
into the system. The client is implemented on top of the Apache ab benchmark
tool. It issues POST requests using a randomly generated key and payload, which
are sent to the proxy and eventually stored into the Redis storage nodes.

Fig. 8. Latency distribution of 500 requests measured by Apache ab client.

Figure 8 shows the cumulative distribution function (CDF) of the latencies
as observed by the client. These results include two additional variants that
concretely avoid any encoding actions: striping and bypass. The striping
variant simply splits the file into the desired number of blocks and immediately
returns them to the client. We implemented this solution as an additional back-
end to the PyECLib library. The bypass technique allows to circumvent any
communication overhead between the proxy and the encoder components (see

Evaluation of Erasure Coding Libraries 171

0%
+10%
+20%
+30%
+40%
+50%
+60%

baseline
(no-coding)

isa_lrs_vand

jerasure
rs_cauchy

jerasure
rs_vand

liberasure
flat_xor_3

liberasure
flat_xor_4

liberasure
rs_vand

longhair
cauchy_256

N
or

m
al

iz
ed

S
to

ra
ge

 O
ve

rh
ea

d
500 <key,value> pairs, key=128bit, value=4MB

2GB

2.93GB 2.95GB 2.93GB

3.14GB 3.14GB

2.93GB 2.93GB

Fig. 9. Storage overhead.

Fig. 5). The difference between the bypass and striping indicate the price one
pays to send the files back and forth between the proxy and the encoder. We
observe that isa l rs vand and longhair cauchy 256 achieve the best overall
performances, with the 99th percentile of the latencies below 2.645 s and 2.482 s
respectively, and the median latencies as low as 1.192 s and 1.133 s.

We conclude our experimental evaluation by comparing the storage overhead
induced by the choice of a given coding library. Figure 9 presents our results. The
client sequentially stores 500 files of 4 MB each, for a total of 2 GB of data. The
baseline results indicate the cost of storing the files without any form of coding.
On the y-axis we show the storage overhead normalized against the baseline cost,
while for each library we indicate the total space requirements. In our experi-
ments, the Flat XOR erasure codes are on average 8 % more demanding than
the other codes: they require a total of 3.14 GB of storage space (corresponding
to a +63 % of the original data).

6 Conclusion

We have studied and compared, in this practical experience report, the perfor-
mance of several open-source erasure coding libraries that are widely used to
implement error correction in distributed systems. These libraries notably dif-
fer in terms of coding algorithms, implementation quality, and hardware-specific
optimizations. Unlike the seminal study of Plank et al. [14] published seven years
ago, we focus here on the latest generation of coding libraries when used in real-
istic settings for cloud-based storage, and deployed on modern hardware inside
a data centre.

We conducted a wide range of experiments with these libraries to not only
measure their raw speed at encoding and decoding data, but also evaluate their
performance when used to store and retrieve actual content. Our observations
notably highlight the importance of specific hardware instructions such as SIMD

172 D. Burihabwa et al.

to improve performance, the negligible overhead of using coding libraries in high-
level languages like Python, the good space efficiency of erasure codes for fault-
tolerant storage, and the relatively high cost of the reconstruction of missing
blocks as compared to regular decoding operations.

The objective of this experimental study was to evaluate and compare exist-
ing solutions, rather than develop original coding methods. We hope that it
will bring valuable insights and guidance to other researchers interested in using
erasure coding for data storage.

References

1. Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu, Y.,
Srivastav, S., Wu, J., Simitci, H., Haridas, J., Uddaraju, C., Khatri, H., Edwards,
A., Bedekar, V., Mainali, S., Abbasi, R., Agarwal, A., Fahim ul Haq, M., Ikram
ul Haq, M., Bhardwaj, D., Dayanand, S., Adusumilli, A., McNett, M., Sankaran,
S., Manivannan, K., Rigas, L.: Windows Azure Storage: a highly available cloud
storage service with strong consistency. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP 2011, pp. 143–157. ACM, New
York (2011)

2. Chen, H.C., Hu, Y., Lee, P.P., Tang, Y.: NCCloud: a network-coding-based storage
system in a cloud-of-clouds. Trans. Comput. 63(1), 31–44 (2014)

3. Dimakis, A., Godfrey, P., Wu, Y., Wainwright, M., Ramchandran, K.: Network
coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–4551
(2010)

4. Greenan, K.M., Li, X., Wylie, J.J.: Flat XOR-based erasure codes in storage sys-
tems: constructions, efficient recovery, and tradeoffs. In: 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST), pp. 1–14. IEEE (2010)

5. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

6. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., Yekhanin,
S.: Erasure coding in Windows Azure Storage. In: Proceedings of the USENIX
Annual Technical Conference, USENIX ATC, pp. 15–26 (2012)

7. Khan, O., Burns, R.C., Plank, J.S., Pierce, W., Huang, C.: Rethinking erasure
codes for cloud file systems: minimizing I/O for recovery and degraded reads. In:
Proceedings of the 7th Conference on File and Storage Technologies, FAST 2012,
p. 20. USENIX Association (2012)

8. Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Pearson Prentice Hall,
Englewood Cliffs (2004)

9. Luby, M., Zuckermank, D.: An XOR-based erasure-resilient coding scheme. Tech-
nical report (1995)

10. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A., Stemann, V.:
Practical loss-resilient codes. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pp. 150–159. ACM (1997)

11. Oggier, F.E., Datta, A.: Self-repairing codes - local repairability for cheap and fast
maintenance of erasure coded data. Computing 97(2), 171–201 (2015)

12. Plank, J.S.: The raid-6 Liber8Tion code. Int. J. High Perform. Comput. Appl. 23,
242–251 (2009)

13. Plank, J.S., Greenan, K.M., Miller, E.L.: Screaming fast Galois field arithmetic
using Intel SIMD instructions. In: FAST, pp. 299–306 (2013)

Evaluation of Erasure Coding Libraries 173

14. Plank, J.S., Luo, J., Schuman, C.D., Xu, L., Wilcox-O’Hearn, Z.: A performance
evaluation and examination of open-source erasure coding libraries for storage. In:
Proceedings of the 7th Conference on File and Storage Technologies, FAST 2009,
pp. 253–265. USENIX Association, Berkeley (2009)

15. Plank, J.S., Simmerman, S., Schuman, C.D.: Jerasure: A library in C/C++ facili-
tating erasure coding for storage applications-version 1.2. Technical report, Tech-
nical Report CS-08-627, University of Tennessee (2008)

16. Plank, J.S., Xu, L.: Optimizing Cauchy Reed-Solomon codes for fault-tolerant
network storage applications. In: 2006 Fifth IEEE International Symposium on
Network Computing and Applications, NAC 2006, pp. 173–180. IEEE (2006)

17. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

18. Sankaran, J.: Reed Solomon decoder: TMS320C64x implementation. Application
Report SPRA686, Texas Instruments (2000)

19. Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A.G., Vadali, R.,
Chen, S., Borthakur, D.: XORing elephants: novel erasure codes for big data. Proc.
VLDB Endow. 6(5), 325–336 (2013)

Dynamic Load Balancing Techniques
for Distributed Complex Event

Processing Systems

Nikos Zacheilas1(B), Nikolas Zygouras2, Nikolaos Panagiotou2,
Vana Kalogeraki1, and Dimitrios Gunopulos2

1 Athens University of Economics and Business, Athens, Greece
{zacheilas,vana}@aueb.gr

2 University of Athens, Athens, Greece
{nzygouras,n.panagiotou,dg}@di.uoa.gr

Abstract. Applying real-time, cost-effective Complex Event processing
(CEP) in the cloud has been an important goal in recent years. Distrib-
uted Stream Processing Systems (DSPS) have been widely adopted by
major computing companies such as Facebook and Twitter for perform-
ing scalable event processing in streaming data. However, dynamically
balancing the load of the DSPS’ components can be particularly challeng-
ing due to the high volume of data, the components’ state management
needs, and the low latency processing requirements. Systems should be
able to cope with these challenges and adapt to dynamic and unpre-
dictable load changes in real-time. Our approach makes the following
contributions: (i) we formulate the load balancing problem in distrib-
uted CEP systems as an instance of the job-shop scheduling problem, and
(ii) we present a novel framework that dynamically balances the load of
CEP engines in real-time and adapts to sudden changes in the volume of
streaming data by exploiting two balancing policies. Our detailed exper-
imental evaluation using data from the Twitter social network indicates
the benefits of our approach in the system’s throughput.

1 Introduction

In recent years we observe a significant increase in the need for processing and
analyzing voluminous data streams in a variety of application domains, ranging
from traffic monitoring [19] to financial processing [4]. In order to analyze this
huge amount of data and detect events of interest, Complex Event Processing
(CEP) systems have emerged as an appropriate solution. In CEP systems, like
Esper1, users define queries (i.e. rules) that process incoming primitive events
and detect complex events when some conditions are satisfied. CEP systems are
easy to use as most of them offer a query language for expressing the rules.

One significant shortcoming of CEP systems is that they lack in scalability
due to their centralized architecture, making them inadequate for applications
1 www.esper.codehaus.org.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 174–188, 2016.
DOI: 10.1007/978-3-319-39577-7 14

www.esper.codehaus.org

Dynamic Load Balancing Techniques 175

that require processing large volumes of data streams. On the other hand, Dis-
tributed Stream Processing Systems (DSPS) like Infosphere Streams2, Spark
Streaming3 and Storm4 are commonly used for performing scalable and low
latency complex event detection. However, current DSPSs lack the expressive-
ness and ease of use of CEP systems. So combining the two approaches provides
a scalable and easy to use framework.

A common approach to increase the system’s throughput is to distribute
different CEP engines across the cluster nodes, using DSPS [19]. In this work
we follow this approach and focus on applications that apply the key-grouping
partitioning schema for distributing the input data to the CEP engines. Key-
grouping partitioning assigns the tuples to the appropriate CEP engines based
on a specific key attribute of the tuples, which ensures that tuples sharing the
same key will end up in the same engine. However, when applying a static
partitioning schema, which remains the same during the topology’s lifetime, it
is highly possible to create imbalanced cluster nodes. This usually happens in
scenarios where the data load that share the same key varies significantly over
time. For example, in applications that monitor stock prices (i.e. where the
grouping key is the stock’s name), the number of particular stock transactions
may vary significantly during the day. Thus, sudden changes in the system’s
load and performance are quite common [8]. So it is important to implement
techniques that are able to dynamically adapt to such changes in the data load
and ensure that the system remains balanced [12,14]. These techniques should
consider the size of the data that will be transferred across the engines. Many
data re-transmissions result to increased recovery time (i.e. rebalancing cost).

Another technique that is widely used in order to cope with the data del-
uge is elasticity [5]. Elastic systems are able to decide the appropriate number
of engines (i.e. scale-out, scale-in) and adapt to changes in the observed load
(e.g. unexpected load bursts). In our previous work [18], we have described a
novel technique that enables the automatic adjustment of the number of run-
ning engines. In order to keep the system’s performance stable the load bal-
ancing problem and the elasticity problem are orthogonal. When the system is
unable to process the incoming data, actions that balance the load should be
taken firstly and if this fails then scale-out actions should be applied. Further-
more, load balancing techniques can be beneficial when applications run in cloud
infrastructures like Amazon’s EC25. In such environments users are charged on
an hourly-basis, so having overloaded engines can lead to increased monetary
cost as they would require more time to process their assigned data.

In this paper we focus on the problem of automatically balancing the load
between concurrently running CEP engines. Our work aims at dynamically
adapting to unexpected changes in the input load and minimizing the amount of

2 www.ibm.com/software/products/us/en/infosphere-streams.
3 https://spark.apache.org.
4 http://storm.apache.org/.
5 http://aws.amazon.com/ec2/.

www.ibm.com/software/products/us/en/infosphere-streams
https://spark.apache.org
http://storm.apache.org/
http://aws.amazon.com/ec2/

176 N. Zacheilas et al.

data that needs to be exchanged between the engines so that the state migration
overhead is reduced. Our contributions are the following:

– We formulate our problem as an instance of the job shop scheduling problem.
– We propose a novel Dynamic Load Balancing (DLB) algorithm that balances

the engines’ load and at the same time minimizes the required state migra-
tions. We examine two different policies for deciding which keys should be
moved.

– We add an extra component in Storm, named Splitter, in order to support
these load balancing algorithms and handle the necessary state migrations
that guarantee the system’s consistency.

– Finally, we evaluate our proposals in our local Storm cluster with a Twitter
application that performs First Story Detection [11] on incoming tweets. Our
experimental results demonstrate that our framework effectively balances the
load between the CEP engines and improves the system’s throughput com-
pared to other state-of-the-art techniques [12,14].

2 System Architecture and Model

2.1 System Architecture

We have built our system using Apache’s Storm as the DSPS and Esper as the
CEP system.

Esper. Esper is one of the most commonly used Complex Event Processing
(CEP) systems, applied to streaming data for detecting events of interest. Users
can define queries (i.e. Esper rules) via the Event Processing Language (EPL),
which bears a lot of similarities with SQL thus it is easy to use and learn.
Incoming data are examined and when they satisfy the rules’ conditions an event
is triggered. The windows of the data streams, based on their expiration policy,
could be either length-based (for a fixed number of data points) or time-based
(contain the tuples received during a sliding time window). Esper keeps incoming
data in in-memory buffers for the time period needed and then discards them.

Storm. We chose to use Apache’s Storm mainly due to its scalability features
that allow us to process voluminous data streams [11]. Applications in Storm are
expressed as a graph, called topology. The graph consists of nodes that encap-
sulate the processing logic (implemented by the users) and edges that represent
the data flows among components. There can be two types of components: spouts
and bolts. Spouts are the input sources in the system which feed the framework
with raw data (e.g. simple events). Bolts process these incoming tuples with
user-defined Java functions. From an architectural perspective Storm consists of
a Master node, called Nimbus, and multiple worker nodes. The user can easily
tune the parallelism of the components (spouts/bolts) by adjusting the number
of threads (i.e. executors in Storm’s terminology) that will be used for the com-
ponents’ execution. These threads run on the workers’ processors, enabling the
topology’s distributed execution in the cluster’s nodes.

Dynamic Load Balancing Techniques 177

Fig. 1. System architecture

Combining DSPS and CEP. In Fig. 1 we present our system architecture.
Users decide the components to be used (e.g. spouts and bolts) and the Esper
rules to run. We added a special type of bolt called EsperBolt that contains an
Esper engine that processes incoming tuples and invokes the user-defined rules.
This way we exploit the ease of use of Esper as users need to define only the rules
that would execute and the actual evaluation of the rules is applied by the Esper
engines. Furthermore, users can set the parallelism (i.e. number of threads) of
the EsperBolt. In the topology presented in Fig. 1, the component that contains
the EsperBolt has its parallelism set to N so we have N CEP engines running
in our topology, and each one of them executes in a separate processor. Also we
added an extra monitor thread per worker’s processor to report periodically the
performance (e.g. latency, input rate) of its assigned components.

Our system is able to receive and distributively process voluminous sequential
data from a wide range of input sources (e.g. Twitter data, bus mobility data
and stock prices). In this work we focus on rules that group together tuples based
on some common characteristic, named as key ; tuples that refer to a specific key
should be transmitted always to the same Esper engine. So we need a partitioning
schema that maps the possible keys to the available engines. Another challenge
arises from the fact that the amount of tuples that correspond to each key may
vary significantly overtime and this can affect the system’s performance.

In many real-world applications, content-aware partitioning is required in
order to preserve system’s functionality. It is extremely possible to miss events
or to identify wrong ones, if tuples with the same key are assigned to different
CEP engines. For example, in an application that monitors the evolution of
different stock prices, the tuples that refer to the same stock should be sent to
the same CEP engine. Following this approach, each CEP engine is responsible
to process a subset of the input keys.

2.2 System Metrics

Each Storm topology is associated with a set of Esper Engines that will be
responsible for the distributed event processing and a set of Keys that distinctly

178 N. Zacheilas et al.

characterize a group of tuples (i.e. tweet’s topics, stock’s name). Each Esper rule
monitors and identifies events on the set of tuples that share the same key.

We define the following set of metrics to measure the system’s performance:

– keys map[k]: a data structure that maps each possible key k ∈ {1, ..., |Keys|}
to an Esper engine e ∈ {1, ..., |Engines|}. As a result, different keys will be
grouped together in the same Esper engine. Streaming data will be transmit-
ted to the appropriate engine according to this data structure.

– keys load[k]: represents the amount of incoming tuples that share the same
key k in a pre-defined time or length based window.

– eng load[e]: represents the amount of incoming tuples emitted to the engine
e in the examined window defined as:

eng load[e] =
∑

(k∈Keys|e=keys map[k])

keys load[k],∀e ∈ Engines (1)

– imbScore(eng load): is a function, defined in Sect. 3.1, that depicts the sys-
tem’s imbalance score given as input the engines’ load. The goal of this work
is to minimize this metric.

3 Methodology

In this work we focus on the problem of balancing the load among concur-
rently running CEP engines by determining the appropriate assignment of keys
to engines that will keep the system’s performance steady even in the case of
varying keys load. Initially, we formulate our problem and describe a metric
that measures the system’s imbalance. Then, we propose an algorithm, Dynamic
Load Balancing (DLB), which solves efficiently the problem. Furthermore, we
consider two policies, DLB-L and DLB-H, for determining the keys that should
be moved in order to balance the load. Finally, we present how we extended our
system to support these techniques and appropriately migrate the engines’ state
to guarantee that our CEP engines report correct events. For the latter, we use
a distributed database for storing and retrieving the in-memory tuples of the
Esper engines when the algorithm changes the partitioning schema.

3.1 Problem Definition

Our problem can be represented as a variation of a well-known NP-hard opti-
mization problem, the job shop scheduling problem [3]. More formally our opti-
mization problem can be formulated as follows:

Given a set of Keys where each key k ∈ Keys receives keys load[k]
tuples/sec, a set of Engines where each engine e ∈ Engines receives
eng load[e] tuples/sec and a current allocation of keys to engines
keys map[], our goal is to find a new assignment of keys to engines
keys map′[] that minimizes imbScore metric and also minimizes the data
that will be transferred across the different engines.

Dynamic Load Balancing Techniques 179

Algorithm 1. Dynamic Load Balancing
1: Input: keys map, keys load, eng load, θ, policy
2: Output: keys map
3: imbScore ← measure imbalance(eng load)
4: while imbScore > θ do
5: sortDESC(eng load)
6: emin ← arg mine(eng load)
7: eng loadtemp ← eng load
8: while eng load.hasNext() do
9: eloaded ← eng load.getNext()

10: if eloaded == emin then
11: return keys map
12: k∗ ← selectKey(policy, keys load[])
13: eng loadtemp(eloaded) ← eng loadtemp(eloaded) − keys load(k∗)
14: eng loadtemp(emin) ← eng loadtemp(emin) + keys load(k∗)
15: imbScore new ← measure imbalance(eng loadtemp)
16: if imbScore new < imbScore then
17: keys map[k∗] ← emin

18: eng load ← eng loadtemp

19: imbScore ← imbScore new
20: break
21: return keys map

In the job shop scheduling problem we have a set of identical machines and we
want to schedule a set of jobs in these machines in order to minimize some
performance metric (e.g. the total makespan which is the total length of the
schedule). In our setting, Engines can be seen as the identical machines of the
job shop scheduling problem, while Keys correspond to the jobs that must be
assigned into these machines and imbScore is the performance metric we want to
minimize. Note that in our problem we also consider state migrations when a key
must move to a different engine, ensuring that the CEP will remain consistent.

As imbalance function we decided to use the relative standard deviation
(RSTD) among the engines’ load which is a commonly used metric for expressing
imbalances in a system [6]. We compute the imbScore as follows:

imbScore(eng load[])) = 100 ∗ std(eng load[])
mean(eng load[])

(2)

where mean() and std() are functions that compute the mean and the stan-
dard deviation respectively. The higher the relative standard deviation is, the
more imbalanced are the CEP engines. When this quantity exceeds a pre-defined
threshold we assume that the load is unequally distributed across the engines so
a balancing algorithm must be applied in order to rebalance the load across the
engines and minimize this metric.

180 N. Zacheilas et al.

3.2 Dynamic Load Balancing

Our proposed algorithm can be thought as an extension of the LPT algorithm
(Longest Processing Time) [3], which is a greedy approximation for the job shop
scheduling problem. The main difference with the LPT algorithm is that in
our case Keys are already assigned into a finite number of Engines, but their
load changes over time, resulting to significant load imbalances. This will be
the result of an increase or decrease of the aggregated volume in some specific
engines. When a balancing algorithm applies a new partitioning schema to react
to this, then a set of tuples is transferred to the new engine. This ensures the
consistency of the system’s state after the rebalancing. A key feature of our
approach is its low complexity as it does not need to monitor system resources
(e.g., CPU) but focuses on the data instead. We describe below the two policies
of our approach.

Dynamic Load Balancing (DLB), presented on Algorithm 1, addresses the
previously described issues by dynamically changing the partitioning of different
keys to the available Esper engines. Initially it checks whether the imbalance
score (imbScore) exceeds a predefined threshold θ. If the set up criterion is not
satisfied then iteratively starts the rebalancing procedure. The rebalancing pro-
cedure, presented in Algorithm’s 1 lines 5–20, initially sorts in descending order
the loads of the different engines, so the engines that receive more data will be
examined firstly in order to reduce their incoming load. Also the least loaded
engine, emin, is identified in order to transfer load to this engine. Then our
algorithm examines the most loaded engine eloaded and checks whether transfer-
ring one key k∗ from eloaded to emin improves the imbScore. If the imbScore
is improved then k∗ is transferred from eloaded to emin and this procedure is
repeated till the imbalance criterion is satisfied. In case that imbScore is not
improved eloaded examines the next most loaded engine. Finally if all engines are
examined and the balancing criterion is still not met the rebalancing procedure
terminates and the best possible found allocation is returned.

Our algorithm supports different policies in order to select the appropriate
key, k∗ that will be transferred from a loaded engine to the least loaded engine, in
Algorithm’s 1 line 12. Below we describe the two main policies that we considered
in this work:

– Pick heavy loaded (DLB-H): This policy selects the most loaded key from the
engine eloaded that reduces the imbalancing score when it is transferred to the
least loaded engine emin.

– Pick lightly loaded (DLB-L): This policy selects the least loaded key from the
engine eloaded and transfers it to emin.

The first policy, DLB-H, minimizes the number of keys that are transferred
along the engines. This is achieved as it tries to balance the system, moving few
heavy loaded keys. On the other hand DLB-L policy may favour the movement
of many poorly loaded keys to ensure balance. The first policy outperforms the
second in the length-based streams, where each key contains the same amount
of data. Thus, the system will recur in a shorter time period, as the number of

Dynamic Load Balancing Techniques 181

transferred keys is minimized and consequently the size of transferred data to
the new engine is minimized. The second policy is able to fine tune the system
better as moving small keys across the different engines achieves a more balanced
system. Since the rebalancing procedure is terminated when the imbScore does
not exceed a threshold θ, we expect from the two methods to have a similar
performance in the time-based streams, where the volume of data in the system
for each key is proportional to the key ’s load.

Fig. 2. Splitter component, when a new tuple with key = 2 is inserted it routes it to
the appropriate CEP engine, also coordinates the rebalancing procedure

3.3 Managing the Engines’ States Ensuring CEP’s Consistency

Our goal is to be able to support load balance and at the same time guarantee
that the detected events will be the same as those detected using the default
key-grouping(KG) approach. In order to achieve our goals, we added Splitter,
a new component in our Storm topologies. Splitter adjusts the engines’ load
using the Dynamic Load Balancing algorithm described in the previous and also
manages the engines’ state in order to ensure that event evidence is preserved by
performing content-aware load retransmission. This way we avoid both missing
events and false positives that could be caused from the balancing mechanism.
Splitter, illustrated in Fig. 2, is responsible to forward tuples to the appropriate
CEP engine based on their key. The Splitter keeps the keys map[], keys load[]
and eng load[] data structures (defined in Sect. 2.2) and is responsible to update
them when new data are inserted into the system. Initially, it determines the
engine that will process the incoming tuple using a simple modulo hash function
on the tuple’s key. However, when the imbalance threshold is not satisfied (see
Sect. 3.2) it invokes Algorithm 1 to balance the load between the engines and
update the keys map[] data structure.

We store all incoming tuples into a distributed database (e.g. MongoDB6)
so that the engines can retrieve them when the rebalancing procedure is applied
and avoid information loss. Furthermore, Splitter is responsible to coordinate the
rebalancing procedure, when a key k∗ is selected to move from an old engine eold

6 http://www.mongodb.org/.

http://www.mongodb.org/

182 N. Zacheilas et al.

to a new one enew. The following steps are followed: (i) eold is informed to remove
all the tuples related with k∗ that are kept in-memory, (ii) enew is informed that
from now on it will be responsible for the processing of k∗’s tuples, (iii) enew
retrieves the required data regarding k∗ from the distributed database, (iv) enew
stores incoming tuples regarding k∗ in a local buffer until the necessary data are
retrieved and then forwards them to the engine, (v) Splitter forwards tuples
regarding k∗ to enew. In our current implementation, the Splitter component
can be the bottleneck as it is possible to be overloaded by the amount of data
it receives. As future work, we plan to examine techniques for parallelizing this
component and consider the support of multiple input streams.

SELECT ∗
FROM Tweet . s td : l a s t e v en t () LE,

Tweet . s td : groupwin (f i n g e r p r i n t) . win : l ength (H) as TW
WHERE LE. f i n g e r p r i n t = TW. f i n g e r p r i n t
HAVINGMAX(TWEET SIMILARITY(LE.TEXT,TW.TEXT))<= τ

Listing 1.1. First story detection rule written as an Esper EPL rule: LE data stream
contains the last received tweet while TW contains the last H (set to 500) tweets for
each different key. An alarm is fired when the similarity between last received tweet
and its closest neighbor sharing the same key is less than a threshold τ (set to 0.2).

4 Evaluation

We have performed an extensive experimental evaluation of our framework in
our local cluster consisting of 8 VMs running in two physical nodes. Each VM
had attached two CPU processors and 3, 072 MB RAM. All VMs were connected
to the same LAN and their clocks were synchronized with the NTP protocol. We
used Storm 0.8.2, Esper 5.1 and MongoDB 2.6.5. We used a separate physical
node where Nimbus runs to avoid overloading the VMs. We evaluated our pro-
posals with a First Story Detection (FSD) [11] application applied on the Twitter
data stream. We tested the methods using the default Twitter data order as well
as with a modified version that varies the keys’ load distribution over time using
Zipf distribution. In all the experiments described below, 5 Esper engines were
used unless stated otherwise. We compared our proposed DLB algorithm against
two commonly applied techniques, PKG [12] and LPTF [14]. Furthermore, we
also demonstrate how our approach outperforms the key-grouping approach (KG
in Figs. 3 and 4) which is the default grouping applied in Storm that assigns keys
to engines using a simple hash function (i.e. key % |Engines|). The threshold
of imbScore was set to 15%. MongoDB required 1 ms on average for retrieving
a single tweet.

We report results for the following metrics: (1) the system’s throughput that
depicts the amount of tuples per second that have been processed overtime,
(2) the relative standard deviation of the engines’ load which provides insights
on how the algorithms balance the engines’ load, (3) the number of complex
events detected by the different techniques, ideally this metric should be equal

Dynamic Load Balancing Techniques 183

to the one reported by the KG approach as this technique guarantees that tuples
with the same key will be processed by the same engine and (4) the amount of
tuples that are retransmitted by the different techniques in order to balance the
system’s load. This metric captures the overhead of the rebalancing procedure. It
should be noted that, in order to test the performance of the proposed methods
on extreme conditions, we transmitted the Twitter data to the system with the
maximum possible speed, without simulating the original Twitter rate. Also it
should be mentioned that in order to measure metrics (1), (2) and (4) we run
each experiment for 40 min, while in order to measure metric (3) the whole
dataset was examined.

Application Description. The FSD algorithm detects the most similar tweet
with the current, from a set of the last H received tweets. If the similarity with
the most similar tweet is lower than a threshold then this tweet is assumed a
novel First Story tweet describing a new event. In order to make the problem
tractable and scalable, for each newly received tweet Locality Sensitive Hashing
(LSH) is used for identifying the key of the tweet [13]. This approach ensures
that similar tweets will share the same key. The algorithm was translated to an
Esper query presented on Listing 1.1. We fed our system with approximately
2.95 million tweets (8 GB) and set the number of keys to 4, 096.

Table 1. Performance of the Different Techniques with FSD

DLB-L DLB-H LPTF PKG KG

Total Processed Tweets 2,941,246 2,899,076 2,042,201 2,926,853 2,726,628

First Story Events 6,546 6,546 6,546 7,563 6,546

Avg Relative Std (%) 18.34 23.43 14.53 8.6 44.53

As it was mentioned above we selected to transmit the Twitter data to our
system with two approaches. The first reads the tweets and transmits them with
the default order. The second approach samples the key from a Zipf distribution
and a tweet with that key is transmitted to the system. We selected to vary
the Zipf-exponent, ε, periodically in order to simulate a use case where the keys
distribution changes over time. More specifically, initially we started with a low
Zipf-exponent, ε = 0.2, depicting a rather balanced system, and after five minutes
we set ε equal to 1.5 creating a highly skewed key distribution (approximately
80% RSTD if KG is applied). We kept this highly skewed exponent for 10 min
and then we repeated the procedure by resetting ε to 0.2.

Comparison with Other Load Balancing Techniques. Initially we com-
pared our approaches against LPTF and PKG in terms of throughput and num-
ber of detected events. Figure 3(a) illustrates the system’s throughput when the
tuples are read in the default order, while Fig. 3(b) depicts the same metric when
the periodic Zipf-distribution is applied. It is observed that the two proposed
policies (DLB-L and DLB-H) are able to keep high throughput (approximately

184 N. Zacheilas et al.

1200 (tuples/sec)) throughout the experiment’s execution. On the other hand
the LPTF approach suffers from an unstable behavior explained by the large
amount of data that are retransmitted along the engines.

More specifically, our policies performed seven retransmissions during the
application’s execution while LPTF performed nine. However, LPTF in each
retransmission moved on average 76% of the keys which corresponded approxi-
mately to 677, 886 tweets. So a lot of its execution time was spent to move data
between the engines. In contrast, DLB-L moved at maximum 30% of the keys
which resulted to 380, 000 tweets. Similar results were exhibited by the DLB-H
approach that moved at maximum 10% of stored keys (70, 400 tweets). When
the keys are picked using the periodic Zipf-distribution, Fig. 3(b), our approach
keeps the throughput steady despite the changes in keys’ load. When KG was
applied with ε = 0.2 we observed that RSTD was around 3%, while when
ε = 1.5 the RSTD was approximately equal to 77%. LPTF is still penalized
by the fact that it moves larger amount of data when a rebalancing occurs and
thus has worst performance overtime. More specifically, 12 rebalances occur in
the LPTF algorithm moving in each rebalance more than 600, 000 tweets. In
this case, DLB-L performs ten retransmissions moving 47.5% of the keys with
294, 881 moved tweets on average. In contrast, DLB-L performs the same num-
ber of retransmission as DLB-H but moving significantly less data (5% of the
keys which corresponded to 57, 750 tweets).

 500

 1000

 1500

 2000

 2500

 3000

 500 1000 1500 2000

Th
ro

ug
hp

ut
 (T

up
le

s/
se

c)

Time (sec)

LPTF
DLB-L
DLB-H

PKG

(a) FSD

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 1000 1500 2000

Th
ro

ug
hp

ut
 (T

up
le

s/
se

c)

Time (sec)

LPTF
DLB-L
DLB-H

PKG

(b) Zipf Distribution

Fig. 3. Throughput comparison with LPTF and PKG

In Fig. 3(a),(b) we also report the performance of the PKG partitioning in
terms of throughput. As you can see, its throughput is very stable and similar
to the performance of our proposed policies. However, when the system experi-
ences high load (e.g. between 1200–1800 s in Fig. 3(b)) our proposals are able to
maintain higher throughput than PKG as they migrate the loaded engines’ keys.
The PKG approach processed approximately 2, 831, 477 tweets in 40 min while
DLB-H processed 2, 795, 336 tweets in the same time period. The main limita-
tion of the PKG approach is the fact that it can lead to false positive events.
PKG may assign tuples that correspond to the same key to different engines

Dynamic Load Balancing Techniques 185

and thus incorrect events may be detected as the engines’ state will not be con-
sistent. More specifically, PKG detects in total 7, 563 first story events while
our content-aware approach detects 6, 546 events which is the same number of
events detected by KG as you can see in Table 1. So PKG leads to approximately
13.4% false positive events.

Comparison with Scale-Out. Finally, in the last set of experiments we exam-
ined the performance of our proposals against the KG applied by Storm. We
report results when KG uses 5 and 6 engines as we wanted to point out that
scaling-out the system is not always beneficial unless load balancing is also
applied. In Fig. 4(a),(b) we illustrate the system’s throughput overtime. As you
can observe, our approach in the unmodified app outperforms KG when it uses 5
engines and has comparable throughput with KG using 6 engines. Between 800–
1700 s there is a large increase in the relative standard deviation of the engines’
load reaching up to 70% when KG is used. DLB-L balances the load between the
engines keeping it around 20% in this time period and achieves higher through-
put. Also as we report in Table 1, in the end of the experiment, DLB-L has
processed 2, 941, 246 tweets while KG with 6 engines processed 2, 790, 362 tweets
and KG with 5 engines 2, 726, 628.

Similar results were observed in the Zipf-distribution scenario. As you see in
Fig. 4(b), when the system is not loaded (ε = 0.2) using KG with six engines
outperforms our approach; however, when the exponent is increased (i.e. 300–
900, 1200–1800), the relative standard of the engines’ load reaches up to 80%
and thus the throughput deteriorates. In contrast, DLB-H keeps the load small,
at around 40%, and thus outperforms the other approaches in these time peri-
ods. Finally, when the experiment has finished, DLB-H has processed 2, 795, 336
tweets, KG with 6 engines processed 2, 653, 789 tweets while KG with 5 engines
processed 2, 586, 169 tweets.

 600

 900

 1200

 1500

 1800

 500 1000 1500 2000

Th
ro

ug
hp

ut
 (T

up
le

s/
se

c)

Time (sec)

KG 6-Engines
DLB-L

KG 5-Engines

(a) FSD

 0

 500

 1000

 1500

 2000

 2500

 3000

 500 1000 1500 2000

Th
ro

ug
hp

ut
 (T

up
le

s/
se

c)

Time (sec)

KG 6-Engines
DLB-H

KG 5-Engines

(b) Zipf Distribution

Fig. 4. Throughput comparison against KG using more engines

186 N. Zacheilas et al.

5 Related Work

Recent works that examine the load balancing problem in stream processing
systems have been described in [12,14]. The dynamic load balancing technique
proposed in [12], named Partial Key Grouping (PKG), considers the usage of
two hash functions for determining two streaming operators and assigns the
tuple to the least loaded operator. PKG could not be applicable for CEP as it is
possible to identify false positive events, as it can send tuples with the same key
to different engines. More specifically, in CEP systems that use key-grouping,
each key should be emitted to the same engine which contains in memory the
previously received tuples with this key. In [14] the authors propose the usage
of the Longest Processing Time First (LPTF) algorithm in offline data and
then apply the detected partitioning when the system runs in real-time. LPTF
is a commonly used greedy approximation of job shop scheduling problem that
assigns the most loaded key to the least loaded engine and repeats this procedure
for all the keys. The main limitations of this approach are the fact that it requires
an offline training phase.

A recent work presented on [10] focused on balancing the load in distributed
cache systems. The authors follow an iterative greedy approach which ensures
that no node is overloaded by redistributing the node’s keys to the least loaded
one aiming to balance RAM and CPU usage. Another commonly applied tech-
nique for balancing the load in DSPS is load shedding [17] which discards some
of the incoming data in order to keep the load steady. However, it can lead to
significant information loss. In our previous work [19] we examined the feasibil-
ity of developing a large-scale event processing system for a traffic monitoring
application. Our approach used historical data and applied a static partitioning
schema such that all engines receive approximately the same amount of input.
The StreamCloud system described in [7] also supports content-aware load par-
titioning and load balancing. If the latter fails it moves to a new configuration
using its elasticity features. In [16], the authors propose a distributed CEP sys-
tem that applies query rewriting techniques for optimizing the usage of the
system resources. In contrast, our system aims at balancing the load without
examining the rules specific characteristics. Furthermore, in [8], authors focus
on minimizing the cost of moving the system to a new configuration that utilizes
more operators’ instances. They focus especially on the latency caused from
a system rebalancing suggesting that the shift should be made under latency
constraints.

Finally, there has been significant prior work in order to achieve fault-
tolerance in distributed stream processing systems [1,2,9]. The goal of these
works is to minimize the tuples’ latency when a crash occurs in the system
by exploiting either active replication or upstream backups. The authors in [2]
proposed a checkpointing approach to expose the internal operator state. A
recent work [9] proposes a hybrid approach by adaptively switching between
the two fault-tolerance mechanisms based on the current workload characteris-
tics. Finally, much work has been done in regards to automatically determine
the appropriate number of stream processing components like [5,15] and our

Dynamic Load Balancing Techniques 187

previous work [18]. These proposals are orthogonal to ours, as our aim is to
balance the load among the engines and only if this is not possible, increase the
system’s resources.

6 Conclusions

In this paper we presented a novel framework that automatically balances the
system’s load, preserving the system’s throughput at high rates. We proposed a
balancing algorithm for automatically partitioning incoming tuples to the avail-
able CEP engines. Our goal was to keep the CEP engines balanced overtime in
regards to the tuples they process and at the same time keep the rebalancing
cost, due to data movements, low. Our detailed experimental evaluation in our
local cluster indicated a clear improvement in the system’s throughput when
the proposed techniques were applied. For future work, we plan to extend our
framework by enhancing its fault-tolerance and remove possible limitations of
the MongoDB in the rebalancing procedure.

Acknowledgments. This research has been financed by the European Union through
the FP7 ERC IDEAS 308019 NGHCS project and the Horizon2020 688380 VaVeL
project.

References

1. Brito, A., Fetzer, C., Felber, P.: Multithreading-enabled active replication for event
stream processing operators. In: SRDS, Niagara Falls, New York, USA (2009)

2. Fernandez, R.C., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.: Integrating scale
out and fault tolerance in stream processing using operator state management. In:
SIGMOD, New York, NY, USA (2013)

3. Coffman, E.G., Bruno, J.L.: Computer and Job-Shop Scheduling Theory. Wiley,
New York (1976)

4. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expressive
publish/subscribe systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes,
F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT
2006. LNCS, vol. 3896, pp. 627–644. Springer, Heidelberg (2006)

5. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014)

6. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Handling data skew in MapReduce.
In: CLOSER, Noordwijkerhout, The Netherlands (2011)

7. Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., Valduriez, P.:
Streamcloud: an elastic and scalable data streaming system. IEEE Trans. Parallel
Distrib. Syst. 23(12), 2351–2365 (2012)

8. Heinze, T., Jerzak, Z., Hackenbroich, G., Fetzer, C.: Latency-aware elastic scaling
for distributed data stream processing systems. In: DEBS, Mumbai, India (2014)

9. Heinze, T., Zia, M., Krahn, R., Jerzak, Z., Fetzer, C.: An adaptive replication
scheme for elastic data stream processing systems. In: DEBS, Oslo, Norway (2015)

188 N. Zacheilas et al.

10. Jia, Y., Brondino, I., Peris, R.J., Mart́ınez, M.P., Ma, D.: A multi-resource load
balancing algorithm for cloud cache systems. In: Proceedings of the 28th Annual
ACM Symposium on Applied Computing (2013)

11. McCreadie, R., Macdonald, C., Ounis, I., Osborne, M., Petrovic, S.: Scalable dis-
tributed event detection for twitter. In: BigData, Santa Clara, CA, USA (2013)

12. Nasir, M.A.U., Morales, G.D.F., Garćıa-Soriano, D., Kourtellis, N., Serafini, M.:
The power of both choices: practical load balancing for distributed stream process-
ing engines. In: ICDE, Seoul, Korea (2015)

13. Petrović, S., Osborne, M., Lavrenko, V.: Streaming first story detection with appli-
cation to twitter. In: Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pp. 181–189 (2010)

14. Rivetti, N., Querzoni, L., Anceaume, E., Busnel, Y., Sericola, B.: Efficient key
grouping for near-optimal load balancing in stream processing systems. In: DEBS,
Oslo, Norway (2015)

15. Schneider, S., Hirzel, M., Gedik, B., Wu, K.L.: Auto-parallelizing stateful distrib-
uted streaming applications. In: PACT, Minneapolis, MN, USA (2012)

16. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event
processing with query rewriting. In: DEBS, Nashville, Tennessee, USA (2009)

17. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: efficient load shedding tech-
niques for distributed stream processing. In: VLDB, Vienna, Austria (2007)

18. Zacheilas, N., Kalogeraki, V., Zygouras, N., Panagiotou, N., Gunopulos, D.: Elastic
complex event processing exploiting prediction. In: BigData, Santa Clara, CA, USA
(2015)

19. Zygouras, N., Zacheilas, N., Kalogeraki, V., Kinane, D., Gunopulos, D.: Insights on
a scalable and dynamic traffic management system. In: EDBT, Brussels, Belgium
(2015)

PAN – Distributed Real-Time Complex Event
Detection in Multiple Data Streams

Lukas Probst(B), Ivan Giangreco, and Heiko Schuldt

Databases and Information Systems Group, University of Basel, Basel, Switzerland
{lukas.probst,ivan.giangreco,heiko.schuldt}@unibas.ch

Abstract. In this paper, we present PAN, a generic middleware for dis-
tributed real-time complex event detection (CED) which is able to ana-
lyze multiple distributed data streams. In PAN, CED applications are
defined as workflows and are executed by dedicated workers in a distrib-
uted way in a P2P network. In consequence, PAN is scalable in terms of
the number of data streams and the complexity of the analyses. Eval-
uations based on an extended version of the ACM DEBS 2013 Grand
Challenge scenario show the effectiveness and efficiency of PAN.

1 Introduction

The last decade has seen a vast proliferation of devices that sense their environ-
ment. As according to the IoT vision most of them are connected to the Internet,
they are able to disseminate the data they measure in form of continuous data
streams. Hence, the number of data streams and the volume of streamed data
has increased enormously. Nevertheless, the analysis of a single or multiple of
these Big Data streams in real-time is essential. In particular, the detection of
complex events out of the raw streaming data in real-time is a major challenge
and at the same time an important aspect in a variety of applications. As an
example, consider a soccer team in which each player is equipped with several
sensors which produce continuous data streams. These streams need to be ana-
lyzed to produce added value on a match for different stakeholders (clients).
Hence, different events need to be detected out of all the incoming streams. This
requires an infrastructure that (i) allows to implement, in a modular way, basic
components for detecting simple events, that (ii) supports the combination of
these components for complex event detection into workflows and that (iii) scales
with the number of streams and with the complexity of the analyses.

The first generation of complex event detection (CED) systems, also called
complex event processing (CEP) systems, has been built with a centralized archi-
tecture (e.g., [1,8,10]). This significantly limits their scalability, especially if
complex events have to be detected in real-time. More recent approaches (e.g.,
[2,4,6]) use a distributed architecture and forward streams in a publish/subscribe
style between workers that perform parts of the complex event detection.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 189–195, 2016.
DOI: 10.1007/978-3-319-39577-7 15

190 L. Probst et al.

In this paper, we introduce PAN (P2P Analysis N etwork), a generic distrib-
uted real-time CED middleware which jointly addresses the challenges we have
listed above. PAN is able to analyze multiple distributed input data streams
and to concurrently handle several analysis requests of different clients. In PAN,
CED applications are defined as workflows on top of components implement-
ing basic event detectors or other analysis operators such as aggregators. These
workflows are executed in a distributed way in a P2P network based on pub-
lish/subscribe communication between workers. As a result, PAN has a high
degree of scalability.

The contribution of this paper is twofold. First, we present PAN, a novel
middleware architecture for distributed and scalable CED that seamlessly com-
bines ideas from workflow management (definition of CED workflows) and P2P
systems (distributed, scalable CED). Second, we provide the results of an eval-
uation of PAN’s performance and scalability characteristics on the basis of a
sports use case using an extended version of the ACM DEBS 2013 Grand Chal-
lenge scenario [7,11]. The results show the effectiveness and efficiency of the PAN
approach.

The remainder of this paper is organized as follows: We introduce PAN in
Sect. 2 and report on the evaluation of PAN in Sect. 3. Section 4 presents related
work and Sect. 5 concludes.

2 PAN

In this section, we present and discuss the concepts of PAN. The main idea behind
PAN is to obtain a high degree of scalability for real-time CED applications by
distributing the workload across several peers in an unstructured P2P network
and communicating via publish/subscribe.

2.1 CED Workflows in PAN

In PAN, CED applications are defined by means of workflows. They consist
of so-called workers which provide basic functionality for CED and which are
combined using a partial order that allows both sequential and parallel execution
of workers, depending on the semantics of a concrete CED application. Figure 1
illustrates a sample workflow which generates the player as well as the team
ball possession statistic streams for the soccer use case. This workflow includes
several intermediate streams (e.g., BALLHITS), i.e., streams that are generated
as output streams by some workers and consumed as input streams at other,
subsequent workers. The sensor devices producing the initial input streams are
sources of a workflow. Moreover, there are devices outside PAN called clients
that consume the output streams of the workers. The clients are the sinks of a
workflow and might join it only for a short time.

Each worker is hosted on a peer. Each peer, in turn, can host a single or
multiple workers. With this design, PAN obtains a high degree of flexibility in
terms of workflow distribution since the workflow can be either executed on a

PAN – Distributed Real-Time Complex Event Detection 191

Fig. 1. Sample CED workflow in PAN for soccer game analysis. The initial input
streams are taken from the ACM DEBS 2013 Grand Challenge [7,11]. (Soccer
field graphic: https://de.wikipedia.org/wiki/Datei:Offsidelarge.svg, Client icon: http://
www.flaticon.com/packs/humans-3)

single machine or fully distributed onto a large number of peers hosting workers
which compute only small subtasks.

To standardize the interaction between workers in PAN, they only share data
via network communication, independent from their deployment.

2.2 Publish/Subscribe

Hard-wiring the communication between the workers would lead to a highly
inflexible system, earmarked for a specific workflow. In contrast, the publish/
subscribe style of interaction allows to decouple the sender of a data stream
and its receiver. PAN uses a central publish/subscribe repository which stores a
mapping from the stream identifier to a list of publishers. When a new worker
is deployed, it has to publish all its output streams. Subsequently, all potential
subscribers (clients or other workers) can use this information to identify the
publisher and fetch data stream elements from there. Note that the repository
has to be contacted only once, when the link between subscriber and publisher
is established. Hence, the central repository does not become a bottleneck.

2.3 PAN Workers

A PAN worker is a building block for the CED workflows. At the interface, each
worker generates one or several output stream(s) on the basis of one or several
input stream(s) it consumes – either directly from a sensor or from other workers.
The input streams are processed by one or several components inside the worker.
The output streams contain the analysis results of these components.

https://de.wikipedia.org/wiki/Datei:Offsidelarge.svg
http://www.flaticon.com/packs/humans-3
http://www.flaticon.com/packs/humans-3

192 L. Probst et al.

PAN uses separate ring buffers to handle a worker’s input and output streams
and thus to connect two workers. A worker’s input ring buffers contain the latest
data stream elements of the input streams while the output ring buffers are filled
with the data stream elements created by the worker’s components. Each worker
runs a server to enable downstream workers and clients to fetch the data stream
elements stored in its output ring buffers. To fill its input ring buffers, a worker
can fetch new data stream elements from a publisher periodically or on demand.
In contrast, sensors always push their data to the first workers of a CED workflow
which then forward by publishing the streams to all other workers and clients.

All generic and application-specific components of a worker run in parallel.
A component can use all input data streams for its analysis task. However, a
worker’s components are strictly separated from each other. They neither share
state, nor can they directly communicate with each other.

2.4 Scalability

Increasing the number of sensor data streams to be analyzed, the number of
different analyses that have to be performed, or the complexity of these analyses
results in an increased computational effort. PAN can handle this by distribut-
ing the overall workload across more workers which can then be deployed on
peers with free capacities. In consequence, PAN scales w.r.t. the number of data
streams and w.r.t. the complexity and the number of analyses.

3 Evaluation and Implementation

In our evaluation each peer is deployed in the Azure Cloud platform1. The ping
between two peers is around 0.9 ms. Both clients and (simulated) sensors are
deployed on a separate physical server2 with a ping around 21 ms to the Cloud.

In order to create a CED application that runs on top of PAN one only has to
implement the workers in Java and to specify the workflow in a JSON config file,
similar to TechniBall’s XML approach [9]. The config file is used to automatically
deploy the CED system. The actual connection between the workers is done at
start-up time using the publish/subscribe repository. Due to space limitations,
we refer to [12] for further information on the implementation of PAN.

For evaluation purposes, we have implemented a soccer analysis applica-
tion that generates ball possession streams using the dataset from the ACM
DEBS 2013 Grand Challenge [7,11] in multiple steps (see Fig. 1). The input
data streams are created by sensors attached to the shin guards of the players
and inside the ball and include position, timestamp, velocity and acceleration
info. We have used the first 25 min of the soccer match for our evaluation.

PAN’s performance is measured using the query delay that indicates how long
the system needs to calculate and generate a certain output data stream. It is

1 Small VM instances (standard A1), 1 core 1.6 GHz CPU, 1.75 GB RAM.
2 Lenovo ThinkPad W530, Intel Core i7-3820QM CPU @ 2.70 GHz, 12 GB RAM.

PAN – Distributed Real-Time Complex Event Detection 193

Table 1. Average query delay with increasing number of peers

Stream 3 peers 6 peers 8 peers 14 peers

SENSOR105 69.76 ms 66.61 ms 73.79ms 88.96 ms

B2 2923.73 ms 123.99 ms 165.68ms 114.72 ms

BP wholeGame A 1141.07 ms 1078.43 ms 948.44ms 961.06 ms

defined as the difference between the machine time when receiving an output
data stream element at the client MT (c) and the machine time MT (s) at which
the corresponding sensor data stream element has been emitted. Note that the
query delay comprises also the time for sending the input stream to the first
worker and for fetching the stream from the last worker of the CED workflow.

We analyze PAN’s performance by varying the number of peers hosting the
workers of the ball possession workflow. More precisely, we use four different
deployments with 3, 6, 8, and 14 peers. The client periodically (every 20 ms)
fetches the latest data element of three streams, produced at different positions
in the workflow: a forwarded sensor data stream (SENSOR105), an intermediate
output data stream (B2) and a final output data stream (BP wholeGame A).

Table 1 lists the results of this evaluation. While the average query delays
of the SENSOR105 and the BP wholeGame A streams are rather constant, the
query delay of the B2 stream is approximately 20 times higher in the three peers
setting than in the other settings. With only three peers, the two peers that are
supposed to be responsible for generating the average player position streams
are not capable of doing so. However, the evaluation shows that PAN can solve
such computational bottlenecks by distributing the workflow onto more peers.

4 Related Work

Similar to PAN, also RACED [4] distributes the detection components in a P2P
network and links these components using publish/subscribe. However, since
in RACED the data stream requested by a client has to be generated along its
shortest path tree (SPT), clients cannot share a workflow if they do not have the
same SPT while in PAN no duplication is needed. In [6] the authors of RACED
propose a single-tree deployment strategy for their T-REX middleware [5] that
allows workflows to be shared by clients such that the same output stream does
not have to be generated multiple times. However, while PAN is a worker-based
CED middleware, RACED and T-REX are language-based CED middleware
approaches that suffer from some limitations as the client can neither define
complex calculations nor small programs that have to be performed in order to
detect a complex event or to generate the corresponding output data stream
element. The same is true for all other language-based CED middleware systems
such as, for instance, Amit [1] or Cayuga [8]. Worker-based CED middleware
systems like PAN or OSIRIS-SE [2], in contrast, facilitate the implementation of
arbitrary workers in a modular way and thus do not suffer from such limitations.

194 L. Probst et al.

In reply to the ACM DEBS 2013 Grand Challenge [7,11], six systems have
been proposed [3]. While the workers and CED workflows of PAN are based
on the requirements of the challenge and thus have some similarity with all
these systems, PAN’s architecture is mainly influenced by the approach of
Jergler et al. [10] that proposes a workflow-based architecture for CED in which
different workers are connected with non-blocking ring buffers. While [10] states
that the concept can in general be implemented in a distributed way using pub-
lish/subscribe, only a centralized implementation is presented. Hence, PAN fills
a void as it promotes these concepts to a distributed and thus scalable system.

5 Conclusion

In this paper, we have introduced the distributed real-time CED middleware
PAN. It uses workflows to define CED applications and distributes the workload
onto multiple workers hosted by peers in a P2P network. The worker-based
approach allows to implement parts of CED workflows in a modular way, ranging
from simple stream forwarding to highly sophisticated analyses. Evaluations have
shown that PAN is able to eliminate computational bottlenecks by distributing
the workflow on more peers. In our future work, we plan to organize the workers
in a structured P2P network to store the mapping of streams to publishers in
a distributed and reliable way. Moreover, we plan to further analyze, evaluate
and compare different approaches to publish/subscribe-based communication, in
particular a pull-based vs. a push-based communication approach.

References

1. Adi, A., Etzion, O.: Amit - the situation manager. VLDB J. 13(2), 177–203 (2004)
2. Brettlecker, G., Schuldt, H.: Reliable distributed data stream management in

mobile environments. Inf. Syst. 36(3), 618–643 (2011)
3. Chakravarthy, S., et al. (eds.): The 7th ACM International Conference on Distrib-

uted Event-Based Systems, DEBS 2013. ACM, Arlington (2013)
4. Cugola, G., Margara, A.: RACED: an adaptive middleware for complex event

detection. In: Proceedings of ARM 2009, Urbana Champaign, IL, USA (2009)
5. Cugola, G., Margara, A.: Complex event processing with T-REX. J. Syst. Softw.

85(8), 1709–1728 (2012)
6. Cugola, G., Margara, A.: Deployment strategies for distributed complex event

processing. Computing 95(2), 129–156 (2013)
7. ACM DEBS 2013 Grand Challenge Description. http://www.orgs.ttu.edu/

debs2013/index.php?goto=cfchallengedetails
8. Demers, A.J., et al.: Cayuga: a general purpose event monitoring system. In: Pro-

ceedings of CIDR 2007, Asilomar, CA, USA (2007)
9. Gal, A., et al.: Grand challenge: the TechniBall system. In: Proceedings of DEBS

2013, Arlington, TX, USA. ACM (2013)
10. Jergler, M., et al.: Grand challenge: real-time soccer analytics leveraging low-

latency complex event processing. In: Proceedings of DEBS 2013, Arlington, TX,
USA (2013)

http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

PAN – Distributed Real-Time Complex Event Detection 195

11. Mutschler, C., Ziekow, H., Jerzak, Z.: The DEBS 2013 grand challenge. In: Pro-
ceedings of DEBS 2013, Arlington, USA (2013)

12. Probst, L.: PAN - a P2P approach for scalable complex event detection in dis-
tributed data streams. Master’s thesis, University of Basel (2014). http://dbis.cs.
unibas.ch/downloads/theses/MSc Thesis Lukas Probst.pdf/at download/file

http://dbis.cs.unibas.ch/downloads/theses/MSc_Thesis_Lukas_Probst.pdf/at_download/file
http://dbis.cs.unibas.ch/downloads/theses/MSc_Thesis_Lukas_Probst.pdf/at_download/file

Bringing Complex Event Processing
into Multitree Modelling of Sensors

Alexandre Garnier1(B), Jean-Marc Menaud1, and Nicolas Montavont2

1 ASCOLA Research Group, Mines Nantes / Inria / LINA UMR 6241,
Nantes, France

{alexandre.garnier,jean-marc.menaud}@mines-nantes.fr
2 Institut Mines-Télécom / Télécom Bretagne, Irisa, Rennes, France

nicolas.montavont@telecom-bretagne.eu

Abstract. The recent advances in the Internet of Things allow deploy-
ing a large variety of applications for smart cities, home automation or
the industry of the future. These applications generate a large amount of
data that can be challenging to manage; identifying and parsing this data
become a prominent problem. In order to address this issue, we propose
a multitree model for the sensor representation which matches the need
for heterogeneous applications and user support. From there, we define
a complex event processor based on a new language and grammar, in
order to filter and identify user specific events. We show that we consid-
erably reduce the size of queries by focusing on end-users knowledges as
semantics for data streams.

Keywords: Sensor networks · Domain-specific languages · Complex
event processing

1 Introduction

From home automation to smart cities, from amateur weather stations to large
deployments of smart power meters in datacenters, Internet of Things (IoT)
applications target more and more end-users every day. The link between these
users and the IoT is usually provided by applications deployed over a sensor
network. A recurring problem concerning sensor networks is the heterogeneity,
not only of sensors, but also of the protocols used to access them, often char-
acterized by their low bandwidth and poor reliability. To address this issue, the
notion of data streams has emerged, leading to a change of paradigm around data
parsing, from traditional DataBase Management Systems (DBMS) to Complex
Event Processing (CEP). Instead of processing stored persistent data through
volatile queries, CEP parses volatile data stream as it comes through persistent
queries. However, parsing the raw data issued from sensors remains a complex

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 196–210, 2016.
DOI: 10.1007/978-3-319-39577-7 16

Bringing Complex Event Processing into Multitree Modelling of Sensors 197

task. This is due to the endless nature of the data stream and its growing het-
erogeneity, which reflects the variety of networked things. In order to address
this issue, ideally the data has to be adapted to the user’s knowledge.

Given that the number of users to consider grows with the IoT coverage, the
ability to provide a meaningful access to the data to each user is a prominent
problem. If CEP alone is able to notify specific users with data they are interested
in, it does not allow to pre-identify these data. To leverage this gap, some kind
of semantics, or context, can be attached to the data, in order to assist users
when identifying the information they need. To this end, various tracks have
been followed, from ontology-based enrichment to context-aware solutions. While
ontology-based solutions tend to be harsh to manage for non-expert end-users
and do not directly address their needs, context-aware solutions usually lack
interoperability between different user contexts. A good compromise could be
to provide a cross-context modelling of the data. Such a model would provide a
defining frame to the semantical enrichment, while avoiding context partitioning.
In order to fully provide to users a simple yet effective access to the data, CEP
should be merged with such a modelling of the data.

Our previous work, SensorScript [7], aimed at providing a cross-context mod-
elling of the data. In this paper, we propose to enhance it with a complex event
processor, addressable through a new Domain-Specific Language (DSL). The
DSL focuses on pre-identified uses and their combinations, relying on end-users
oriented knowledge. This allows to reduce lengths of queries an end-user can
express as they are able to manipulate nothing more than what he considers to
be relevant information. Moreover, decision making can be automated in order
to address actuators specific features in addition to sensors data gathering.

The remainder of the paper is organized as follows. Section 2 studies existing
work about data semantics and CEP. In Sect. 3 we draw up the motivation for
integrating CEP with SensorScript. Sections 4 and 5 introduce the model and
the language which ensure complex event processing. Section 6 evaluates the lan-
guage concision and the underlying query management through a demonstration
scenario. Finally, Sect. 7 concludes by presenting future work.

2 Related Work

Data identification has been a prominent track of research over the years. We can
divide the existing work into two categories: data semantical enrichment on one
hand; context aware data stream mining on the other hand. Several publications
about context awareness for the IoT are discussed in [13]. In this paper we will
focus on solutions which provide real-time processing of the data stream, as it
is a strong requirement for complex event processors.

In [18] data semantics are provided by a separated knowledge base, which
is a Resource Description Framework [9] (RDF) store. Thus event queries mix
raw events extracted from the data stream and background knowledge retrieved
from the knowledge base. That allows to establish relationships between the
raw events. RDF knowledge base access is done through SPARQL [20] queries.

198 A. Garnier et al.

This inevitably leads to hybrid queries, which mix SPARQL syntax with complex
event paradigm. Use of such semantically enriched complex events is addressed
in [17]. It relies on the notion of event stream from which raw data is pulled then
pushed back after semantical enrichment and event composition. Furthermore, a
partitioning of enriched data stream mining operators is proposed for both CEP
(e.g. filters or aggregators) and knowledge operators.

SCONSTREAM [10] aims at providing spatial enrichment over the data for
the specific case of users tracking in home automation. Queries continually parse
the raw data to generate spatialized events when triggered. UbiQuSE [16] pro-
poses a more generic contextual framework for data mining queries. It relies on
XML formalism for context-enriched data. Thus it uses XQuery [2] to express
queries that address both real-time and historical data querying. This broadens
the use of the DBMS, as it stores both contextual and historical data. These
two solutions however rely on pre-existing solutions to bundle both data min-
ing (being real-time or periodic) and context-awareness, which leads to hybrid
querying over the data. COPAL [11] aims at providing a DSL to broaden the
notion of context from sole location to handle processing environments in the
case of distributed processing. This DSL provides a complex event processor in
order to compose events through a declarative, and quite verbose, developer-
centric syntax, in the sense that a user has to learn the underlying model before
composing events. A common issue of these solutions remains in the context
storage, generally based on a decoupled DBMS, which impacts the simplicity
of queries. The runtime additional cost of addressing the DBMS and couple its
information with the raw data is addressed by none of these publications.

Concerning CEP languages, other contributions mainly aimed at adapting
Structured Query Languages (SQL) to manage data streams and event composi-
tion. CQL [1] is one of the first to do so. The change of paradigm from relational
databases to complex event processing focuses on the notion of a relation. A
relation is addressed in the from clause, like tables in SQL, and mapped over
time windows to a finite set of data from. Other than time windows, partitioned
windows can also be expressed, providing a partition over the data stream similar
to the SQL group by clause. TinyDB [12] provides time windows with a dedi-
cated additional clause rather than a mapping over data stream. It also allows
to specify a recovery rate for queries execution, jeopardizing efficiency as there is
no guarantee that the data will be updated at least the same rate of the accesses
defined in queries. Aiming at providing more flexibility over windows specifi-
cation, Esper [6] provides the notion of pattern which orchestrates both time
windows and data filtering with boolean operators. WildCAT [5] aims at cou-
pling Esper Processing Language (EPL) with data context awareness through
hierarchical contexts definition. However, this semantical enrichment of data
operates as on overlay to Esper rather than being fully integrated within EPL.

Another track focused on declarative event specification. AmbientTalk [19]
uses this concept for the actors within mobile ad-hoc networks, as a mean to
leverage the problematics specific to these infrastructures. TESLA [4] formal-
izes an event specification language. Following AmbientTalk, REScala [15] and

Bringing Complex Event Processing into Multitree Modelling of Sensors 199

EventCJ [8] integrate such a formalism within object-oriented and functional
programming. If these languages depart from traditional SQL, they however
concentrate on addressing a larger scope rather than simplifying their syntax.

3 Motivation

SensorScript was based on a previous work: btrScript [14]. btrScript is a datacen-
ter monitoring DSL inspired by XPath [3], in particular its queries which allow
implicit pathfinding within a tree. Indeed the DSL is backed to two static trees to
address both virtualized and physical aspects of a modern datacenter. In [7], we
altered the underlying model to manage any number of configurable intricated
trees, which allows SensorScript to address the diversity of sensor networks. The
trees intrication of the model will be detailed in Sect. 4.

The benefits of such a modelling are two-fold. On one hand it offers a good
semanticization over the data by integrating it within tree contexts. On the other
hand, queries remain concise as the model still relies on trees. Hence, we consider
these features make SensorScript a strong candidate to be integrated within a
complex event processor, as existing CEP languages suffer from verbose queries.
This led us to deeply alter SensorScript data and query management, and to
rethink key components of the DSL grammar.

4 Model

The model consists of two parts, which are the data modelling and the complex
event processor. The data modelling consists on a multitree modelling of the
data in which each tree corresponds to an end-user field of expertise, or a context.
Figure 1 illustrates a multitree model with five different contexts. These contexts
revolve around a conference site, with lighting monitoring and automation on
one hand, and presentations’ affluence tracking system on the other hand. These
use cases are described in more detail through some examples in Sect. 6.

Fig. 1. Example of a multitree model

200 A. Garnier et al.

To set up complex event processing, we propose to change the paradigm on
which is based traditional data management. Instead of considering the data as
persistent, we assume data streams on which queries are considered persistent.
These queries must be constantly aware of any data update. To achieve that,
a naive solution would be to rely on a periodic queries-executing process. This
is however unsatisfactory because of higher costs in terms of both efficiency
and responsiveness, according to the data stream rate. More realistically, both
problems will happen at different times, due to the various underlying networks
which are not all reliable, and the various number of queries impacting their
execution time. Hence, the query model must react dynamically to data changes.

Fig. 2. Query object model

We lean on the multitree model to lever-
age data accessibility. The hierarchy of nodes
within the multitree can and will be accessed
through the queries, as it provides mean-
ingful information about contexts, therefore
users specific knowledges. As a matter of fact,
queries results are updated on real time with
the data stream, but also with changes of the
multitree structure. Thus the multitree sets
a semantical structure down. Queries rely
on these semantics in order to access nodes
based on the constitutive contexts informa-
tion of the multitree model. To achieve that,
we propose the query object model as illus-
trated in the UML class diagram of Fig. 2.

In our query object model, a query con-
sists of three main concepts, which are the node selection, on which can be
expressed a condition, and the optional access to selected node attributes or
methods.

4.1 Selections

An arbitrary amount of sub-selections can be specified, as well as conditions
optionally filter the nodes in each selection or sub-selection. Considering that
nodes can be added, moved, removed, and conditions on them can change, selec-
tions will evolve with each change impacting its nodes.

4.2 Conditions

Conditions allow to filter the selected nodes. Two kinds of conditions can be
expressed:

– conditions on attributes (specified by name): for each node of the selection, a
comparison is done either between an access and a constant, or between two
accesses over the node;

Bringing Complex Event Processing into Multitree Modelling of Sensors 201

– conditions on connected nodes (specified by type): for each node of the selec-
tion, a boolean set operation is done on all the nodes of the given type that
are accessible, upwards or downwards, from this node; for instance, we can
restrict the selection of all sockets to the set of sockets with no powermeter.

4.3 Accesses

Accesses are made on each node of the selection, and can be delivered as is or
aggregated (thus the Aggregation access inheritance).

5 Language

The main objective of the SensorScript language is to allow users to express
CEP queries about their own field of expertise, regardless of the complexity of
the whole underlying multitree model. As we saw in Sect. 2, existing CEP DSL
derive from SQL, thus require users to know more of the underlying model than
what should be needed. In contrast, SensorScript comes with a language which
leans on the multitree model and takes advantage of the relations between its
nodes to provide implicit connections among them, regardless of the distance
separating them in the model. As we want to keep the language as concise as
possible, we choose to use character operators rather than english words based
syntax, which we hope significantly reduces the verbosity of queries. Naturally,
the language reflects the selection, access and condition concepts constituting a
query as presented in Sect. 4. It is essential however to keep the expression of
these three concepts as simple as possible.

Listing 1. SensorScript simplified grammar

1: Query → Selection (.Access)? |

Selection :Selection .AggregationMethod

2: Selection → AtomicSelection ({Condition })?(/Selection)?
3: Access → SimpleAccess | AggregationMethod

4: Condition → SimpleAccess Comparator SimpleAccess |

Condition BooleanOperator Condition |

(Condition , Duration)

5: SimpleAccess → Attribute | SimpleMethod | Constant

6: Comparator → = | != | < | > | <= | >=

7: BooleanOperator → & | | | ;

8: AtomicSelection → NodeName | NodeType

Non-terminal symbols

Grammar description operators

Terminal symbols

Considering these points, we propose a simplified grammar of the language
in Listing 1. We will go through the grammar rule by rule, following the non-
terminals as they occur within rules. Rule 1 reflects that a query is either a
selection or an access (simple or aggregated) over a selection.

202 A. Garnier et al.

5.1 Selection

The second rule shows that sub-selections over a selection are expressed by the
slash operator between super and sub-selections. Selections are expressed either
on node types or node names. For this reason, not only both names and types
are unique, but also a name cannot be equal to a type. Considering a sensor
network modelled with Fig. 1, the query listing the breakers of room 42, for
instance, would be: room42/breaker.

5.2 Condition

Rule 2 in Listing 1 also introduces the expression of conditions, within braces
operators, over selections. As shown in rule 4, conditions are either simple, con-
sisting of comparisons on accesses, or composed of sub-conditions by boolean
operators.

Besides traditional and and or operators, we introduce here the sequence
operator “;”, so that the condition <selection>{A;B} ensures that conditions A
then B are met on nodes of the selection. That does not mean that B has to
match after A is satisfied, but that, whether or not B was already satisfied when
A matches, B must be checked chronogically after A matches for the condition
to be met.

Another aspect of time management appears with time conditions, which
are simply conditions checked over a duration of time, both of them expressed
between parentheses and separated by a comma.

As an example, we consider that one wants to detect the room 42 powermeters
that go through an electrical overload. This can be described as the powermeters
that have a power consumption that outnumbers their capacity just before it
drops to zero, which can be expressed with this query:

room42/powermeter{power > capacity; power = 0}

As preventing an electrical overload seems to be a better solution, one could
create an alert of when a powermeter is soon to be overloaded, for instance when
its power consumption remains close to its capacity (with a minimum charge of
90 %) for at least one hour:

room42/powermeter {(power > capacity * 0.9, ’1 h’)}

5.3 Access

Accesses are done on each node of a selection, through the dot operator. The
access of a query occurs on two occasions on runtime:

– when a node is added to the selection, access on it occurs systematically;
– for a node already in the selection, each node update that affects the access

will trigger it.

Bringing Complex Event Processing into Multitree Modelling of Sensors 203

Rules 3 and 5 in Listing 1 show that they exist several possible accesses on nodes:

Attribute access for each node of a selection, the query will wait for the given
attribute to be updated. For instance, to be notified of each power update from
powermeters of room 42: room42/powermeter.power.
Constant access this access allows to express constants, which is mostly use-
ful for conditional expressions. As shown in rule 4, accesses within conditions
are expressed without the dot operator. Considering our previous example, this
corresponds to the zero in this query:
room42/powermeter{power > capacity; power = 0}
Method access for each node of a selection, the query will recall the method
for each node update that might affect the method result. This will exclusively
happen for method with parameters that correspond to attribute accesses. For
methods with no parameter or only constant parameters, accesses are only pro-
vided when nodes are added to the selection and for these nodes only. Two types
of methods exist:

– simple methods: similar to attributes accesses, they are called separately for
each node of the selection. For instance, this is the get method, which is
equivalent to an attribute access: /room42/powermeter.get(power)

– aggregation methods: on the contrary, aggregation methods provide a com-
putation which occur on all nodes from the selection to produce one result
only; an update on one node of the selection, as well as changes of the selec-
tion itself, will trigger the method to be called. As an example, let’s consider
that one wants to access the total consumption from room 42 powermeters:
room42/powermeter.sum(power).

5.4 Foreach

A particular aggregation use case allows to partition the selection to provide
a behavior similar to the group by clause in MySQL. This is what we call the
foreach aggregation method access, expressed by the colon operator in rule 1.
To explain how it is expressed, we will consider this example and its equivalent
in SQL:

We see here two selections around the colon operator, which are breakers
from room 42 for the first one, powermeters for the second one. Besides, the
sum method is called on the power attribute from powermeters. De facto, this
query will follow power updates for each room 42 powermeter. But rather than
summing the whole power consumption of the room, it will sum the power

204 A. Garnier et al.

consumption for each breaker accessible from the room 42, considering sock-
ets within a same room are attached to different breakers.

So, if we consider a query of the form A:B.method(access), considering that A
and B are selections, this means that for each node N from the selection A, the
specified aggregation method will be called on nodes from selection B accessible
from N (or the nodes corresponding to the N/B).

The difference in the concept’s name with SQL is to reflect the way it is
expressed and avoid confusion: the group by clause precedes an attribute, the
foreach operator follows a node selection.

6 Evaluation

This section proposes to evaluate the language concision through some examples
over the model from Fig. 1 and compare them with similar examples from the
literature. Then we propose a scenario which reflects a more complex yet realistic
use of the language. Both approaches focus only on syntactic concision of the
language, performance evaluation will be subject to future work. Futhermore, we
will specifically look at timed conditions management as they bring an additional
constraint over the model dynamicity. Finally, we will highlight the limitations
of SensorScript in terms of features, compared to other CEP languages.

6.1 Comparison with CQL

In the model from Fig. 1, more specifically around the track, speaker and par-
ticipant contexts, we consider a conference for which name tags distributed to
every attendee embed an RFID chip. For each presentation, they are invited to
check in by swiping their name tag in an RFID reader. Speakers (which is a role
that an attendee assumes for a presentation) also check in when beginning their
presentation. Each room of the conference has its own RFID reader. Technically,
the data stream is flowing with the presence of attendees in any of the conference
rooms.

To keep things as simple as possible, we concentrate here on the three afore-
mentioned contexts:

– the participant context, for attendees who attend a presentation;
– the speaker contexts, for the attendee who holds a presentation;
– the track contexts, that reflects the fact that presentations are part of a track

of the conference.

These three contexts are directly inspired from the example of CQL [1]. This
example considered an auction system, for which we propose the mapping Table 1
in order to stick to our conference tracking system.

Table 2 gives a comparison between SensorScript and CQL queries based on
the aforementioned mapping.

Bringing Complex Event Processing into Multitree Modelling of Sensors 205

Table 1. Mapping to CQL example

Conference attendance monitoring model Auction system model

Attendee User

Presentation Auction

Attendance Bid

Country U.S. state

Participant context Bidding context

Speaker context Seller context

Track context Auction context

1. The first query allows to select presentations that occur after noon. It is
conceptually very similar to the CQL query, as the condition between braces
corresponds to the one declared in the where clause.

2. This second query aims at maintaining a running count of attendees to tracks
1 and 2 over the last hour. There is an important difference here as time
windows can only be specified within conditions in SensorScript. This results
in two conditions specified over the two sub-selections of the whole selection.

3. With this query we want to maintain a list of the current presentations.
The main difference here is that SensorScript relies on attributes updated
with the data stream over the nodes of the multitree, where CQL backs to
table-like streams to manage the presentation state (ongoing or over).

4. Given that we want here to list the present attendees, we only need to add
a sub-selection to the previous query with SensorScript, considering that a
present attendee is an attendee that checked in a current presentation. On the
other hand, CQL proposes a whole new, though significantly longer, query,
based once again on streams that reflect presence or absence of attendees.

5. As presentations can be rescheduled during the conference, we consider now
that speakers check-ins affect directly the state of presentations. This allows
us to get a list of non-keynote presentations, as we can follow the presenta-
tions that started then stopped in a window range of less than 35 min. We
see here that the pathfinding mechanism of the language allows to get rid of
any explicit join condition.

6. This last query keeps the age of the youngest speaker for completed pre-
sentations. An interesting point here relies on the multitree structure. As
we saw in Fig. 1, the graph follows two routes from attendee to attendance,
depending on whether the attendee is the speaker or assists to the considered
presentation. In fact, the multitree allows partially ordered sets (or posets) in
the graph, as long as absolute order can be decided between every couple of
types from a poset. Actually, we rely on this property here to get the list of
speakers. When following the orientation of connections between types, the
nearest matching nodes are selected. Therefore, for presentations attendee

206 A. Garnier et al.

Table 2. Comparison with CQL

SensorScript CQL

1. presentation{starttime > ’12:00’ Select * From Ongoing Where

starttime > ’12:00’

2 track{name.in(’tr1’, ’tr2’)}/
attendance{checkintime > now()

- 3600}.sum(1)

Select Count(*) From

attendance[Range 1 Hour] Where

trackname In (’tr1’, ’tr2’)

3. presentation {starttime +

duration > now()}
Select * From Ongoing Where pres id

Not In (Select * From Over)

4. presentation{startime + duration

> now()}/attendee
Select name, state From Present

[Partition By attendee id Rows 1]

Where attendee id Not In (Select

* From Absent)

5. presentation{(status=’ongoing’ ;

status=’over’, ’35 min’)}
Select Istream(Over.pres id) From

Over[Now], Ongoing[Range 35 Min]

Where Over.pres id =

Ongoing.pres id

6. presentation{status=’over’}/
attendee.min(age)

Select Istream(Over.pres it, A.age)

From Over[Now], (Select

attendee id, age From attendee)

[Partition by pres id Rows 1] as

A Where Over.pres id = A.pres id

nodes, this is the speaker. That said, if one wants to look at the age of
the youngest audience member of completed presentations, this can be done
with the following query, as attendance nearest attendee nodes are accessed
through the participant context rather than the speaker context:

presentation{status=’over’}/attendance/attendee.min(age)
In comparison, CQL requires both a nested condition and an explicit join.

As we can see, SensorScript expressions minimize the concepts that are spe-
cific to the language. In fact, selections, accesses and conditions are specified
by operators rather than english words. Moreover, it simplifies multi-stream
selections based on the implicit link provided between nodes by the multitree,
compared to union specifications of SQL. Finally, conditions and timed condi-
tions are expressed the same way, as the language was designed to implement
them, whereas CQL introduces a new syntax dedicated to time windows.

6.2 Rooms Lighting Scenario

We propose here to consider the whole model from Fig. 1 in order to orchestrate
all the sensors, aiming at automating the conference rooms lighting management.
These different sensors allow to monitor light, participants presence and power

Bringing Complex Event Processing into Multitree Modelling of Sensors 207

consumption. The room lighting management addresses a typical problematic
of home automation, which brings our example closer to both [11,17] examples.
We also consider that blinds and powermeters are equipped with actuators. This
will allow us to illustrate SensorScript’s actions specification in order to address
functions of these actuators.

In this scenario we will consider that ambient light of the conference has to
be adapted according to several concerns:

– First of all, to save energy we would like the lighting of room to automatically
turn off when all attendees have left it:

/room{!has(attendee)}/ lighting/powermeter.turnoff ()

We see in the model that two paths exist between the room and attendee
types. However, only one condition is required here. In fact, on one hand,
if a speaker is found using the shortest path, the condition is false without
having to check the assistance using the longer path. On the other hand, if
the room has no speaker but still some people in the audience, listing these
attendees will be the only path existing within the model, therefore it will be
the shortest one. This saves us having to express and test the two different
accesses within the condition.

– Second, for rooms with open blinds, when the daylight (measured by an out-
side light sensor named daylight for each room) falls below a certain threshold,
we want the blinds to close and, if the room is not empty, the inside light to
turn on. This is provided by the following two queries:

daylight{light < out_threshold }/ blinds.close ()

daylight{light < out_threshold }/ attendee/room/lighting/

powermeter.turnon ()

As a non-empty room is a room bound to at least one attendee, it is more
efficient here to use implicit filtering on sub-selections (the /attendee/room/

part of the query) rather than an explicit condition on the rooms.
– As ambient light, i.e. the light measured within a room, can incommode the

readability of projected slides during a presentation, the following two queries
propose to close the blinds, if open, and turn off the lights, if required, when
a presentation starts:

presentation{status = ’scheduled ’ ; status = ’ongoing ’}/

blinds{status = ’closed ’}. close ()

presentation{status = ’scheduled ’ ; status = ’ongoing ’}/

lighting/powermeter{status = ’on ’}. turnoff ()

– Finally, we want the blinds to open or the light to turn on, according to
daylight, when a presentation is over:

presentation{status = ’ongoing ’ ; status = ’over ’}/

daylight{light > out_threshold }/ blinds.open()

presentation{status = ’ongoing ’ ; status = ’over ’}/

daylight{light <= out_threshold }/ lighting/

powermeter.turnon ()

208 A. Garnier et al.

As we saw, actuators functions are called as methods on nodes within the
language. The method specification is provided through inheritance over the
Node class in the system, which implements the multitree nodes. For instance,
Listing 2 illustrates the way to specify the open method for blinds. The system
is able to detect classes that extend the Node class, which allows it to use these
classes to instantiate according typed nodes, blinds in this example.

Listing 2. Action specification example

public class Blinds extends Node {

[...]

@SensorScriptMethod

public boolean open() {

// call to actuator switch to open the blinds

}

}

6.3 Limitations

CQL [1], TinyDB [12] and Esper [6] take advantage of SQL to address both
dynamic and persistent data. Considering SensorScript is designed over data
streams only and ensures real-time processing of data, we could not afford to
keep a history over the data. In fact, even timed conditions do not require a
history to be checked. As we only have to make sure that the condition holds for
the specified time, this is the unique information to keep during the lifetime of
the condition, which is also discarded as soon as the condition is unsatisfied or
the time is over. However, we do not aim at replacing traditional DBMS, that
can be used in parallel, whether storing the whole data stream or data prefiltered
by SensorScript.

Languages as AmbientTalk [19], REScala [15] or EventCJ [8] aim at integrat-
ing event specification into existing programming paradigms. In this sense, their
scope extends far beyond the one studied here, as we focus on the multitree only
as the underlying model of the language. Nevertheless this limitation is what
gives SensorScript its concise language based on implicit model parsing.

7 Conclusions and Future Work

We presented here the evolution of SensorScript towards a language for complex
event processing dedicated to sensor networks. While the model mainly relies on
previous works, we highlighted how the new language builds on the multitree in
order to provide complex event processing mechanisms. We are able to balance
the syntactic concision of the language with a real-time complex event processor
for sensor networks. By providing flexible selections over the nodes, with the
possibility to filter them on complex conditions, possibly over a time window,
we offer a strong alternative to traditional SQL used in the literature. Moreover,
SensorScript does not focus only on data access. In fact it provides the possibility

Bringing Complex Event Processing into Multitree Modelling of Sensors 209

to widen the scope of the methods accessible on nodes to other features than
sensors monitoring, including but not limited to addressing actuators functions.
Finally we showed that SensorScript is able to address examples proposed in
the literature, with simpler results than SQL, while highlighting its limitations,
especially on history management.

Future works will focus on deploying SensorScript over a sensor network
spread over two distant sites. This will allow us to test both scalability and
performance. Another lead would focus on interfacing with a traditional DBMS
in order to integrate history management.

References

1. Arasu, A., Babu, S., Widom, J.: CQL: a language for continuous queries over
streams and relations. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol.
2921, pp. 1–19. Springer, Heidelberg (2004)

2. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.,
Stefanescu, M.: XQuery 1.0: an XML query language (2002)

3. Clark, J., DeRose, S., et al.: Xml path language (xpath) version 1.0 (1999)
4. Cugola, G., Margara, A.: Tesla: a formally defined event specification language. In:

Proceedings of the Fourth ACM International Conference on Distributed Event-
Based Systems, pp. 50–61. ACM (2010)

5. David, P.C., Ledoux, T.: Wildcat: a generic framework for context-aware appli-
cations. In: Proceedings of the 3rd International Workshop on Middleware for
Pervasive and Ad-hoc Computing, pp. 1–7. ACM (2005)

6. EsperTech: Esper (2015). http://www.espertech.com/esper
7. Garnier, A., Pottier, R., Menaud, J.M.: Sensorscript: a domain-specific language

for sensor networks. In: International Conference on Future Internet of Things and
Cloud (FiCloud-2015) (2015)

8. Kamina, T., Aotani, T., Masuhara, H.: Eventcj: a context-oriented program-
ming language with declarative event-based context transition. In: Proceedings
of the Tenth International Conference on Aspect-Oriented Software Development,
pp. 253–264. ACM (2011)

9. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and
abstract syntax (2006)

10. Kwon, O., Song, Y.S., Kim, J.H., Li, K.J.: Sconstream: a spatial context stream
processing system. In: 2010 International Conference on Computational Science
and Its Applications (ICCSA), pp. 165–170. IEEE (2010)

11. Li, F., Sehic, S., Dustdar, S.: Copal: An adaptive approach to context provisioning.
In: 2010 IEEE 6th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), pp. 286–293. IEEE (2010)

12. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. (TODS)
30(1), 122–173 (2005)

13. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the internet of things: a survey. IEEE Commun. Surv. Tutorials 16(1),
414–454 (2014)

14. Pottier, R., Menaud, J.M.: Btrscript: a safe management system for virtual-
ized data center. In: The Eighth International Conference on Autonomic and
Autonomous Systems, ICAS 2012, pp. 49–56 (2012)

http://www.espertech.com/esper

210 A. Garnier et al.

15. Salvaneschi, G., Hintz, G., Mezini, M.: Rescala: Bridging between object-oriented
and functional style in reactive applications. In: Proceedings of the 13th Interna-
tional Conference on Modularity, pp. 25–36. ACM (2014)

16. Shaeib, A., Cappellari, P., Roantree, M.: A framework for real-time context provi-
sion in ubiquitous sensing environments. In: 2010 IEEE Symposium on Computers
and Communications (ISCC), pp. 1083–1085. IEEE (2010)

17. Textor, A., Meyer, F., Thoss, M., Schaefer, J., Kroeger, R., Frey, M.: An architec-
ture for semantically enriched data stream mining. In: Bhulai, S., Zernik, J., Dini,
P. (eds.) Proceedings of the First International Conference on Data Analytics,
Barcelona, Spain (2012)

18. Teymourian, K., Paschke, A.: Enabling knowledge-based complex event processing.
In: Proceedings of the 2010 EDBT/ICDT Workshops, p. 37. ACM (2010)

19. Van Cutsem, T., Mostinckx, S., Boix, E.G., Dedecker, J., De Meuter, W.: Ambi-
enttalk: object-oriented event-driven programming in mobile ad hoc networks. In:
XXVI International Conference of the Chilean Society of Computer Science, SCCC
2007, pp. 3–12. IEEE (2007)

20. W3C: SPARQL 1.1 Overview. (2013). http://www.w3.org/TR/sparql11-overview/

http://www.w3.org/TR/sparql11-overview/

Author Index

Al-Aaridhi, Raed 47

Bouchenak, Sara 115
Burihabwa, Dorian 160

Coelho, Fábio 75
Cruz, Francisco 144

De Salve, Andrea 47
Delbruel, Stéphane 32
Drolia, Utsav 96

Felber, Pascal 1, 160
Frey, Davide 32

Garnier, Alexandre 196
Giangreco, Ivan 189
Gómez, Raziel C. 16
Gonçalves, Rui C. 61
Graffi, Kalman 47
Gunopulos, Dimitrios 174
Gupta, Divya 115

Hayduk, Yaroslav 1

Jiménez-Peris, Ricardo 61

Kalogeraki, Vana 174
Kapitza, Rüdiger 109
Krasikova, Sveta 16
Křikava, Filip 129

Li, Bijun 109
Lopes, Luís 96

Maia, Francisco 144
Martins, Rolando 96
Matos, Miguel 144

Menaud, Jean-Marc 196
Mercier, Hugues 160
Montavont, Nicolas 196
Mori, Paolo 47

Narasimhan, Priya 96

Oliveira, Rui 75, 144

Panagiotou, Nikolaos 174
Paulo, João 144
Pereira, José 61, 75, 144
Pérez, Ferran 82
Perronne, Lucas 115
Probst, Lukas 189

Reaño, Carlos 82
Ribeiro, Heverson B. 16
Ricci, Laura 47
Rivière, Etienne 16
Rodrigues, João 96
Rouvoy, Romain 129

Schiavoni, Valerio 16, 160
Schuldt, Heiko 189
Seinturier, Lionel 129
Silla, Federico 82
Silva, Fernando 96
Silva, Joaquim 96
Sobe, Anita 1

Taïani, François 32

Vilaça, Ricardo 75, 144

Zacheilas, Nikos 174
Zhang, Bo 129
Zygouras, Nikolas 174

	Foreword
	Preface
	Organization
	Systems Challenges in Graph Analytics (DAIS 2016 Keynote)
	Contents
	Enhanced Energy Efficiency with the Actor Model on Heterogeneous Architectures
	1 Introduction
	2 Improving Energy Efficiency
	2.1 Reducing Power Consumption
	2.2 Reducing Execution Time

	3 Enabling Heterogeneous Actors
	4 Resource Load Balancing with Heterogeneous Actors
	5 Experimental Setup
	6 Results and Discussion
	6.1 Reducing Power Consumption
	6.2 Reducing Execution Time
	6.3 Resource Load Balancing with Heterogeneous Actors

	7 Related Work
	8 Conclusion
	References

	Evaluating the Cost and Robustness of Self-organizing Distributed Hash Tables
	1 Introduction
	2 Related Work
	3 Gossip-Based Overlay Construction
	4 Four Gossip-Based Self-Organizing DHTs
	4.1 T-Chord
	4.2 T-Pastry
	4.3 T-Kademlia
	4.4 T-Kelips
	4.5 Optimisations and Interactions with the PSS

	5 Evaluation
	5.1 Overlay Convergence in a Stable Network
	5.2 Routing Efficiency
	5.3 Bandwidth Consumption
	5.4 Behaviour Under Churn

	6 Conclusion
	References

	Mignon: A Fast Decentralized Content Consumption Estimation in Large-Scale Distributed Systems
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Placing New Videos: The Prediction Problem
	2.2 Related Work

	3 Fast Decentralized Sum Estimation
	3.1 Self-Organizing Overlays
	3.2 Mignon: Fast Decentralized Estimation

	4 Evaluation
	4.1 Accuracy Comparison
	4.2 Sensitivity Analysis
	4.3 Influence of Sample & Collide
	4.4 Convergence Speed

	5 Conclusion
	References

	Privacy-Preserving Data Allocation in Decentralized Online Social Networks
	1 Introduction
	2 Modelling Social Profiles
	3 Privacy Preserving Content Replication
	4 The System Model
	4.1 The Replication Framework

	5 The Algorithms
	6 Experimental Results
	7 Related Work
	8 Conclusion and Future Works
	References

	An RDMA Middleware for Asynchronous Multi-stage Shuffling in Analytical Processing
	1 Introduction
	2 Background
	2.1 Shuffling
	2.2 RDMA Verbs

	3 Middleware Design and Implementation
	3.1 Design Overview
	3.2 Implementation Decisions

	4 Evaluation
	4.1 Synthetic Benchmark
	4.2 Application Benchmark

	5 Related Work
	6 Conclusions
	References

	Holistic Shuffler for the Parallel Processing of SQL Window Functions
	1 Introduction
	2 Data Transfer Statistics
	2.1 Histogram Construction

	3 Holistic Shuffler
	4 Evaluation
	5 Related Work and Conclusion
	References

	Providing CUDA Acceleration to KVM Virtual Machines in InfiniBand Clusters with rCUDA
	1 Introduction
	2 Remote GPU Virtualization Solutions
	3 rCUDA: Remote CUDA
	4 Impact of KVM Virtual Machines on Real Applications
	5 Conclusions
	References

	Benchmarking Wireless Protocols for Feasibility in Supporting Crowdsourced Mobile Computing
	1 Introduction and Motivation
	2 Assumptions and Scenarios
	3 Test Application
	4 Experiments and Results
	4.1 Single Server
	4.2 Multiple Servers
	4.3 Discussion

	5 Related Work
	6 Conclusions
	References

	BFT-Dep: Automatic Deployment of Byzantine Fault-Tolerant Services in PaaS Cloud
	1 Introduction
	2 System Design
	3 Implementation
	3.1 BFT Replicas Generation
	3.2 BFT Application Deployment and Networking
	3.3 Interim Evaluation

	4 Conclusion and Future Works
	References

	BFT-Bench: Towards a Practical Evaluation of Robustness and Effectiveness of BFT Protocols
	1 Introduction
	2 Related Work
	3 BFT-Bench Framework
	3.1 BFT Protocols
	3.2 Fault Injection
	3.3 Load Injection
	3.4 Monitoring
	3.5 On Extensibility of BFT-Bench

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation in Presence of Replica Crash
	4.3 Evaluation in Presence of Message Delay
	4.4 Evaluation in Presence of Network Flooding
	4.5 More Complex Scenario

	5 Conclusion
	References

	Self-Balancing Job Parallelism and Throughput in Hadoop
	1 Introduction
	2 Overview of YARN
	3 Motivation
	4 Memory Consumption Analysis
	4.1 Loss of Jobs Parallelism
	4.2 Loss of Job Throughput
	4.3 Large Drops of Memory Utilization

	5 Memory Consumption Balancing
	5.1 Maximizing Jobs Parallelism
	5.2 Maximizing the Job Throughput
	5.3 Handling Drops of Memory Utilization

	6 Evaluation
	6.1 Implementation Details
	6.2 Job Completion Time

	7 Related Work
	8 Conclusion
	References

	Resource Usage Prediction in Distributed Key-Value Datastores
	1 Introduction
	2 Background
	3 Interdependence of Resource Usage and Cache Hit Ratio
	4 Estimating Resource Usage of Read Operations
	5 Estimating the Resource Usage of Update Operations
	6 Resource Estimation for Read-Write Workloads
	7 Related Work
	8 Conclusion
	References

	A Performance Evaluation of Erasure Coding Libraries for Cloud-Based Data Stores
	1 Introduction
	2 Background and Related Work
	3 Coding Libraries
	4 Experimental Cloud-Based Data Store
	4.1 Architecture
	4.2 Implementation

	5 Experimental Results
	5.1 Evaluation Settings
	5.2 Micro-benchmark
	5.3 Macrobenchmark

	6 Conclusion
	References

	Dynamic Load Balancing Techniques for Distributed Complex Event Processing Systems
	1 Introduction
	2 System Architecture and Model
	2.1 System Architecture
	2.2 System Metrics

	3 Methodology
	3.1 Problem Definition
	3.2 Dynamic Load Balancing
	3.3 Managing the Engines' States Ensuring CEP's Consistency

	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	PAN -- Distributed Real-Time Complex Event Detection in Multiple Data Streams
	1 Introduction
	2 PAN
	2.1 CED Workflows in PAN
	2.2 Publish/Subscribe
	2.3 PAN Workers
	2.4 Scalability

	3 Evaluation and Implementation
	4 Related Work
	5 Conclusion
	References

	Bringing Complex Event Processing into Multitree Modelling of Sensors
	1 Introduction
	2 Related Work
	3 Motivation
	4 Model
	4.1 Selections
	4.2 Conditions
	4.3 Accesses

	5 Language
	5.1 Selection
	5.2 Condition
	5.3 Access
	5.4 Foreach

	6 Evaluation
	6.1 Comparison with CQL
	6.2 Rooms Lighting Scenario
	6.3 Limitations

	7 Conclusions and Future Work
	References

	Author Index

