A Framework for Certified Self-Stabilization

Karine Altisen™), Pierre Corbineau, and Stéphane Devismes

VERIMAG UMR 5104, Université Grenoble Alpes, Grenoble, France

Karine.Altisen@imag.fr

Abstract. We propose a framework to build certified proofs of self-
stabilizing algorithms using the proof assistant Coq. We first define in
Coq the locally shared memory model with composite atomicity, the most
commonly used model in the self-stabilizing area. We then validate our
framework by certifying a non-trivial part of an existing self-stabilizing
algorithm which builds a k-hop dominating set of the network. We also
certify a quantitative property related to its output: we show that the
size of the computed k-hop dominating set is at most LZT’H + 1, where
n is the number of nodes. To obtain these results, we developed a library
which contains general tools related to potential functions and cardinality
of sets.

1 Introduction

In 1974, Dijkstra introduced the notion of self-stabilizing algorithm [12] as any
distributed algorithm which resumes correct behavior within finite time, regard-
less of the initial configuration of the system. A self-stabilizing algorithm can
withstand any finite number of transient faults. Indeed, after transient faults hit
the system and place it in some arbitrary configuration — where, for example,
the values of some variables have been arbitrarily modified — a self-stabilizing
algorithm is guaranteed to resume correct behavior within finite time.

For more than 40year, a vast literature on self-stabilizing algorithms has
been developed. Self-stabilizing solutions have been proposed for many kinds
of distributed problems, e.g., token circulation [15], spanning tree construc-
tion [5], etc. Moreover, self-stabilizing algorithms have been designed to handle
various environments, e.g., wired networks [15], wireless sensor networks [1],
peer-to-peer systems [3], etc. Progresses in self-stabilization led to researchers
consider more and more adversarial environments. As an illustrative example,
the three first algorithms proposed by Dijkstra in 1974 [12] were designed for ori-
ented ring topologies and assuming sequential executions only, while nowadays
most self-stabilizing algorithms are designed for fully asynchronous arbitrary
connected networks, e.g., [15]. Consequently, the design of self-stabilizing algo-
rithms becomes more and more intricate, and accordingly, the proofs of their
respective correctness and complexity are now often tricky to establish. How-
ever, proofs in distributed algorithmics, in particular in self-stabilization, are

This work has been partially supported by project PADEC (AGIR 2015 Péle
MSTIC).
© IFIP International Federation for Information Processing 2016

E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 36-51, 2016.
DOI: 10.1007/978-3-319-39570-8_3

A Framework for Certified Self-Stabilization 37

commonly written by hand, based on informal reasoning. This potentially leads
to errors when arguments are not perfectly clear, as explained by Lamport in its
position paper [18]. So, in the current context, such methods are clearly pushed
to their limits, justifying then the use of a proof assistant, a tool which allows
to develop certified proofs interactively and check them mechanically.

Contribution. In this paper, we propose a general framework to build certified
proofs of self-stabilizing algorithms for wired networks using the proof assistant
Coq [19].

We first define in Coq the locally shared memory model with composite atom-
icity introduced by Dijkstra [12], the most common model in self-stabilization.
Our modeling is versatile, e.g., it supports any class of network topologies
(including arbitrary ones), the diversity of anonymity levels (from fully anony-
mous to fully identified), and various levels of asynchrony (e.g., sequential, syn-
chronous, fully asynchronous).

We validate our framework by certifying a non-trivial part of an existing silent
self-stabilizing algorithm which builds a k-hop dominating set of the network
[8]. Starting from an arbitrary configuration, a silent algorithm [13] converges in
finite time to a configuration from which all communication variables are fixed.
This class of self-stabilizing algorithms is important, as self-stabilizing algorithms
that build distributed data structures (e.g., spanning tree or clustering) often
achieve the silent property, and these silent self-stabilizing data structures are
widely used as basic building blocks in more complex self-stabilizing solutions.

Using a classical scheme, the certified proof consists of two main parts, one
relying on termination and the other on partial correctness. For the termination
part, we developed tools on potential functions and termination at a fine-grained
level. Precisely, we define a potential function as a multiset containing a local
potential per node. We then exploit two criteria that are sufficient to meet the
conditions for using the Dershowitz-Manna well-founded ordering on multisets.
Note that the termination proof we propose assumes a distributed unfair dae-
mon, the most general scheduling assumption of the model. By contrast, the
proof given in [8] assumes a stronger daemon: a distributed weakly fair daemon.
Finally, we certify a quantitative property, since we show that the size of the
computed k-hop dominating set is at most LZ—;H + 1, where n is the number of
nodes in the network. To obtain this result, we had to write a library dealing
with cardinality of sets in general and properties on cardinals of finite sets w.r.t.
basic set operations, e.g., Cartesian product, disjoint union, subset inclusion,
etc. This work represents about 12,250 lines of code (as computed by coquc: 4k
lines of specifications, 7k lines of proofs) written in Coq 8.4pl4, compiled with
OCaml 3.11.2.

Related Work. Several works have shown that proof assistants (in particular
Coq) are well-suited to certification of distributed algorithms in various contexts
[4,7,16]. Now, to the best of our knowledge, only three works deal with certifica-
tion of self-stabilizing algorithms [6,10,17]. A formal correctness proof of Dijk-
stra’s seminal self-stabilizing algorithm [12] is conducted with the proof assistant
PVS [17], however only sequential executions are considered. In [6], Courtieu

38 K. Altisen et al.

proposes a general setting for reasoning on self-stabilization in Coq. However, he
restricts his study to very simple self-stabilizing algorithms, such as the 4-states
algorithm of Ghosh [14], working on networks of very restrictive topologies i.e.,
lines and rings. So, these two works address too simple cases to draw a general
framework. Finally, Deng and Monin [10] propose to certify in Coq self-stabilizing
population protocols. Population protocols are used as a theoretical model for
a collection of tiny mobile agents that interact with one another to carry out a
computation. In such a model, communication is implicit, as there is no notion
of communication network: all pairs of agents interact infinitely often. Hence,
this latter work is not relevant for wired networks, as considered here.

Roadmap. The rest of the paper is organized as follows. In Sect. 2, we describe
how we define the locally shared memory model with composite atomicity in
Coq. In Sect. 3, we express the definitions of self-stabilization and silence in
Coq. In Sect. 4, we provide general results in Coq to certify termination of dis-
tributed algorithms. In Sect. 5, we present our case study. Section 6 is dedicated
to the proof in Coq of our case study. We certify a bound on the size of the k-
hop dominating set computed by our case-study algorithm in Sect.7. We make
concluding remarks in Sect. 8.

In this paper, we present our work together with a few pieces of Coq code
that we simplify in order to make them readable. In particular, we intend to
use notations, as defined in the model and algorithm, in those pieces of code.
The Coq definitions, lemmas, theorems, and documentation related to the paper
are available as an online browsing and a technical report available at http://
www-verimag.imag.fr/~altisen/PADEC/. All source codes are also available at this
address. We encourage the reader to visit this webpage for a deeper understand-
ing of our work.

2 Locally Shared Memory Model with Composite
Atomicity

Distributed Systems. A distributed system is a finite set of interconnected
nodes. Each node has its own private memory, runs its own code, and can interact
with other nodes via interconnections. Our model in Coq reflects this defining
two independent classes: Network and Algorithm. A Network is equipped with a
type Node, representing nodes, and defines functions and properties that depict
its topology, i.e., interconnections between nodes. Those interconnections are
specified using the type Channel. The Algorithm of a node p is equipped with a
type State, which describes memory state of p. Its main function, run, specifies
how p executes and interacts with each other nodes through channels (type
Channel).

Network and Topology. We view the communication network as a simple
directed graph G = (V, E), where V is a set of vertices representing nodes and
E C VxV isaset of edges representing interconnections between distinct nodes.
We note n = |V| the numbers of nodes. Two distinct nodes p and ¢ are said to

http://www-verimag.imag.fr/~altisen/PADEC/
http://www-verimag.imag.fr/~altisen/PADEC/

A Framework for Certified Self-Stabilization 39

be neighbors if (p,q) € E. From a computational point of view, p uses a distinct
channel ¢, 4 to communicate with each of its neighbors ¢: it does not have direct
access to ¢. In the type Network, the topology is defined using this narrow point
of view, i.e., interconnections are represented using channels only. In particular,
the neighborhood of p is encoded with the set A, which contains all channels ¢, ,
outgoing from p. The sets N, for all p, are modeled in Coq as lists. The function
(peer: Node — Channel — option Node) returns the destination neighbor for a
given channel name: (peer p ¢,) returns (Some ¢), or L' if the name is unused.

Communications can be made bidirectional, assuming a property called
sym_net, which states that for all nodes p; and ps, the network defines a channel
from p; to po if and only if it also defines a channel from ps to p;. In case of
bidirectional links (p, ¢) and (¢, p) in E, p can access its channel name at g using
the function (pp: Channel — Channel). Thus, we have: p,(cp) equals ¢q, € Ny
and pg(cqp) equals ¢y, € N,. Finally, we suppose that, since the number of
nodes in the network is finite, we have a list all nodes containing all the nodes.

Computational Model. In the locally shared memory model with composite
atomicity, nodes communicate with their neighbors using finite sets of locally
shared wvariables. A node can read its own variables and those of its neighbors,
but can only write to its own variables. Each node operates according to its
local program. A distributed algorithm A is defined as a collection of n programs,
each operating on a single node. The state of a node in A is defined by the
values of its local variables and is represented using an abstract Coq datatype
State. This datatype is implemented as a record containing the values of the
program variables. A node p can access the states of its neighbors using the
corresponding channels: we call this the local configuration of p, and model it
as a function typed (Local Env := Channel — option State) which returns the
current state of a neighbor, given the name of the corresponding channel (or L
for an invalid name). The program of each node p in A consists of a finite set of
guarded actions: (guard) — (statement). The guard is a Boolean expression
involving variables of p and its neighbors. The statement updates some variables
of p. An action can be executed only if its guard evaluates to true; in this case,
the action is said to be enabled. A node is said to be enabled if at least one of
its actions is enabled. The local program at node p is modeled by a function run
of type (list Channel — (Channel — Channel) — State — Local_Env — option
State). This function accesses the local topology and states around p: it takes
as first two arguments N, and pp; it then takes as inputs the current state of p
and its current local configuration. The returned value is the next state of node
p if p is enabled, | otherwise. run provides a functional view of the algorithm: it
includes the whole set of possible actions, but returns a single result; this model
is thus restricted to deterministic algorithms.

A configuration is defined as an instance of the states of all nodes in the
system, i.e., a function with type (Env := Node — State). For a given node p
and configuration g, the term (g p) represents the state of p in configuration g.

1 Option type is used for partial functions which, by convention, return (Some _)
when defined, and None otherwise (denoted by L in this paper).

40 K. Altisen et al.

Thanks to this encoding, we easily obtain the local configuration (type Local Env)
of node p by composing g and peer as a function (local_env g p) which returns
(g p’) when (peer p c) returns Some p’, and | otherwise. Hence, the execution
of the algorithm on node p in current configuration g is obtained by: (run N pp
(g p) (local_env g p)). In configuration g, if there exist some enabled nodes, a
daemon selects a non-empty set of them; every chosen node atomically executes
its algorithm, leading to a new configuration g’. The transition from g to g’ is
called a step. To model steps in Coq, we use functions with type (Diff := Node
— option State). We simply call difference a variable d of type Diff. A difference
contains the updated states of the nodes that actually execute some action during
the step, and maps any other node to L. We define the predicate valid diff
that qualifies the current configuration and a difference expressing the result
of a step by some enabled processes. It holds when at least one enabled node
actually moves and all updates in the difference correspond to the execution of
the algorithm by enabled processes, namely, run. The next configuration, g’, is
then obtained applying function (diff_eval d g) such that: Vp, (g’ p) = (d p)
if (4 p) # 1, and (g’ p) = (g p) otherwise.

Steps induce a binary relation — over configurations defined in Coq by the
relation Step: (Step g2 gi) expresses that gl — g2 (meaning that gl — g2 is
actually a valid step), i.e., there exists some valid difference d for g1 (valid diff
gl d) and g2 is equal to (diff_eval d gl). An execution of A is a sequence of
configurations gy g1 ... g; ... such that g;_1 — g; for all ¢ > 0. Executions may
be finite or infinite and are modeled in Coq with a type and a predicate:

Colnductive Exec: Type :=

| e_one: Env — Exec | e_cons: Env — Exec — Exec.

Colnductive valid_exec: Exec — Prop :=

| v_one: Vg, valid_exec (e_one g)

| v_cons: Ve g, valid_exec e — Step (Fst e) g —
valid_exec (e_cons g e).

where (Fst e) returns the first configuration of e. The keyword CoInductive
generates a greatest fixed point capturing potentially infinite constructions.?
Thus, variable e of type Exec actually represents an (valid) execution of A if
(valid_exec e) holds, i.e., if each pair of consecutive configurations g1, g2 in e
satisfies (Step g2 g1).

Maximal executions are either infinite, or end at a terminal configuration
in which no action of A is enabled at any node. Terminal configurations are
detected in Coq using the proposition (terminal g), for a configuration g, which
holds when every node computes run from g and returns L. This predicate is
decidable since we assume that the set of nodes is finite. A maximal execution
is described by the coinductive proposition:

Colnductive max_exec: Exec — Prop :=
| max_one: Vg, terminal g — max_exec (e_one g)
| max_cons: Vg e, max_exec e — max_exec (e_cons g e).

2 As opposed to this, the keyword Inductive only captures finite constructions.

A Framework for Certified Self-Stabilization 41

As explained before, each step from a configuration to another is driven by
a daemon. In our case study, we assume that the daemon is distributed and
unfair. Distributed means that while the configuration is not terminal, the dae-
mon should select at least one enabled node, maybe more. Unfair means that
there is no fairness constraint, i.e., the daemon might never select an enabled
node unless it is the only one enabled. The propositions valid diff, Step and
henceforth valid_exec are sufficient to handle the distributed unfair daemon.

We allow a part of a node state to be read-only: this is modeled with type
ROState and by the projection function (RO_part: State — ROState) which typ-
ically represents a subset of the variables handled in the State of the node. We
add the property RO_stable to express the fact that those variables are actually
read-only, namely no execution of run can change their values. From the assump-
tion RO_stable, we show that any property defined on the read-only variables of
a configuration is indeed preserved during steps. The introduction of Read-Only
variables has been motivated by the fact that we want to encompass the diver-
sity of anonymity levels from the distributed computing literature, e.g., fully
anonymous, semi-anonymous, rooted, fully identified networks, etc. By default
(with empty RO_part), our Coq model defines fully anonymous network thanks
to the distinction between nodes (type Node) and channels (type Channel). We
enriched our model to reflect other assumptions, e.g., fully identified networks.
We define predicate Assume which constrains read-only variables of a configura-
tion (in the case of the fully identified nodes assumption, it expresses uniqueness
of identifiers). It will be assumed at each initial configuration and, by RO_stable
it will remain true all along any execution.

Setoids. When using Coq function types to represent configurations and dif-
ferences, we need to state pointwise function equality, which equates functions
having equal values (extensional equality). The Coq default equality is inad-
equate for functions since it asserts equality of implementations (intensional
equality). So, instead we chose to use the setoid paradigm: we endow every base
type with an equivalence relation. Consequently, every function type is endowed
with a partial equivalence relation (i.e., symmetric and transitive) which states
that, given equivalent inputs, the outputs of two equivalent functions are equiv-
alent. However, we also need reflexivity to reason, i.e., functions equivalent to
themselves. Such functions are called compatible: they return equivalent results
when executed with equivalent parameters. In all the framework, we assume
compatible configurations only. We also prove compatibility for every function
and predicate defined in the sequel. Additionally, we assume that equivalence
relations on base types are decidable.

3 Self-Stabilization and Silence

We now express self-stabilization [12] in the locally shared memory model with
composite atomicity using Coq properties. Let A be a distributed algorithm.
Let $ be a predicate on executions (type (Exec — Prop)). A is self-stabilizing

42 K. Altisen et al.

w.r.t. specification $ (predicate (self_stab $)) if there exists a predicate P on
configurations (type (Env — Prop)) such that:

— A converges to P, i.e., every maximal execution contains a configuration
which satisfies IP:

Ve, Assume (Fst e) — valid_exec e — max_exec e —
safe_suffix (fun suf => P (Fst suf)) e

(safe_suffix S e) inductively checks that e contains a suffix that satisfies S;
— P is closed under A, i.e., for each possible step g — g’, (IP g) implies (IP g’):
Vgl g2, Assume g1 — P g1 — Step g2 gl — P g2; and
— A meets $ from P, i.e., every maximal execution, starting from configurations
which satisfy IP, satisfies $:

Ve, Assume (Fst e) — valid_exec e — max_exec e —
P (Fst e) — § e.

The configurations which satisfy the predicate P are said to be legitimate.

An algorithm is silent if the communication between the nodes is fixed from
some point of the execution [13]. This latter definition can be transposed in the
locally shared memory model by A is silent if all its executions are finite:

Inductive finite_exec: Exec — Prop :=

| f_one: Vg, finite_exec (e_one g)

| f_cons: Ve g, finite_exec e — finite_exec (e_cons g e).
silence :=Ve, Assume (Fst e) —valid_exece — finite_exece.

By definition, maximal executions of a silent and self-stabilizing algorithm
w.r.t some specification $ end in configurations which are usually used as legit-
imate configurations, i.e., satisfying IP. In this case, $ only allows executions
made of a single configuration which must be legitimate; $ is then noted Sp.
To prove that A is both silent and self-stabilizing w.r.t. $p, we use a common
sufficient condition which requires to prove that:

— all executions of A are finite:
termination := Vg, Assume g — Acc Step g
— and all terminal configurations of A satisfy IP:

P_correctness P := Vg, Assume g — terminal g — SPEC g.

The inductive proposition Acc is taken from Library Coq.Init.Wf which pro-
vides tools on well-founded inductions. Predicate (Acc Step g) means that any
descending chain from g is finite. The sufficient condition, used to prove that an
algorithm is both silent and self-stabilizing, is then:

Lemma silent_self_stab P:
termination A P_correctness P — silence A self_stab Sp.

A Framework for Certified Self-Stabilization 43

4 General Tools for Proving Termination

Usual termination proofs are based on some global potential built from local
ones. For example, local potentials can be integers and the global potential can be
the sum of them. In this case, the argument for termination may be, for example,
the fact that the global potential is lower bounded and strictly decreases at each
step of the algorithm. Global potential decrease is due to the modification of
local states at some nodes, however studying aggregators such as sums may
hide scenarios, making the proof more complex. Instead, we build here a global
potential as the multiset containing the local potential of each node and provide
a sufficient condition for termination on this multiset. Our method is based on
two criteria that are sufficient to meet the conditions for using the Dershowitz-
Manna well-founded ordering on multisets [11]. Given those criteria, we can
show that the multiset of (local) potentials globally decreases at each step. For
multisets and Dershowitz-Manna order, we used results from Library CoLoR [2].

Steps. One difficulty we faced, when trying to apply this technique straightly,
is that we cannot always define the local potential function at a node without
assuming some properties on its local state, and so on the associated configura-
tion. Thus, we had to assume the existence of some stable set of configurations
in which the local potential function can be defined. When necessary, we use our
technique to prove termination of a subrelation of the relation Step, provided
that the algorithm has been initialized in the required stable set of configura-
tions. This point is modeled by a predicate on configurations, (safe: Env —
Prop), and a type safeEnv := { g | safe g } which represents the set of safe
configurations into which we restrict the termination proof. Precisely, safeEnv
is a type whose values are ordered pairs containing a term g and a proof of
(safe g). Safe configurations should be stable, i.e., it is assumed that no step
can exit from the set. The relation for which termination will be proven is then
defined by safeStep sg2 sgl := Step (getEnv sg2) (getEnv sgl) where getEnv
accesses the actual configuration (of type Env).

Potential. We assume that within safe configurations, each node can be
endowed with a potential value obtained using function pot: safeEnv — Node
— Mnat. Notice that Mnat simply represents natural numbers® encoded using the
type from Library CoLoR.MultisetNat [2]; it is equipped with the usual equiva-
lence relation, noted =p, and the usual well-founded order on natural numbers,
noted <p.

Multiset Ordering. We recall that a multiset of elements in the setoid P
endowed with its equivalence relation =p, is defined as a set containing finite
numbers of occurrences (w.r.t. =p) of elements of P. Such a multiset is usu-
ally formally defined as a multiplicity function m : P — N>; which maps
any element to its number of occurrences in the multiset. We focus here on
finite multisets, namely, multisets whose multiplicity function has finite support.

3 Natural numbers cover many cases and we expect the same results when further
extending to other types of potential.

44 K. Altisen et al.

Now, we assume that P is also ordered using relation <p, compatible with =p.
We use the Dershowitz-Manna order on finite multisets [11] defined as follows:
the multiset N is smaller than the multiset M, noted N < M, if and only if
there are three multisets X, Y and Z such that X #0AM =Z+ X AN =
Z+Y AVy € Y, dx € X,y <p x, where ‘+’ between multisets means adding mul-
tiplicities. Informally, to obtain a multiset N smaller than M, we may remove
from M all elements of X and then add all elements of Y. Elements in Z are the
ones that are present in both M and N. It is required that at least one element
is removed (X #) and each element that is added must be smaller (w.r.t. <p)
than some removed element. It has been shown that if <p is a well-founded
order, then so is the corresponding order <.

In our context, we consider finite multisets over Pot, (i.c., =p is =p and <p
stands for <p). We have chosen to model them as lists of elements of Pot and
we build the potential of a configuration as the multiset of the potentials of all
nodes, namely a multiset of (local) potentials of a configuration sg is defined by

Pot sg := List.map (pot sg) all_nodes

where all nodes is the list of all nodes in the network (see Sect. 2) and (List.map
f 1) is the standard operation that returns the list made of each elements of
1 on which f has been applied. The corresponding Dershowitz-Manna order
is defined using the library CoLoR [2]. The library also contains the proof
that (well_founded <p) — (well_founded <) ((well,founded R :=Va, Acc R a)
is taken from standard Coq Library Coq.Init.Wf, as Acc). Using this latter
result and the standard result which proves (well_founded <p), we easily deduce
(well_founded <).

Termination Theorem. Proving the termination of an algorithm then consists
in showing that for any safe step of the algorithm, the corresponding global
potential decreases w.r.t. the Dershowitz-Manna order <, namely:

safe_incl := Vsgl sg2, safeStep sg2sgl — (Pot sg2) < (Pot sgl)

We establish a sufficient condition made of two criteria on node potentials which
validates safe_incl. The Local criterion finds for any node p whose potential has
increased, a witness node p’ whose potential has decreased from a value that is
even higher than the new potential of p:

Hypothesis local_crit: Vsgl sg2, safeStep sg2 sgl —
Vp, (pot sgl p)<p(pot sg2 p) —
dp’,(pot sgl p’)#p(pot sg2 p’) A (pot sg2 p)<p(pot sgil p’).

Global criterion exhibits, at any step, a node whose potential has changed:

Hypothesis global_crit: Vsgl sg2, safeStep sg2 sgl —
Jp, (pot sg2 p)#p(pot sgl p).

Assuming both hypothesis, we are able to prove safe_incl as follows: we define
Z as the multiset of local potentials which did not change, and X (resp. Y) as
the complement of Z in the multiset of local potentials (Pot sgl) (resp. (Pot
sg2)). Global criterion is used to show that X #), and local criterion is used to

A Framework for Certified Self-Stabilization 45

Algorithm 1. D(k), code for each process p
Constant Input: Par(p) € N, U{L}

Variable: p.a € {0, ..., 2k}

Predicates: IsRoot(p) = Par(p) =L; IsShort(p) = p.a < k; IsTall(p) = p.a > k;
kDominator(p) = (p.o = k) V (IsShort(p) A IsRoot(p))

Macros:
Chaldren(p) ={q €N, | Par(q) = pp(q)}
ShortChildren(p) = {q € Children(p) | IsShort(q)}
TallChildren(p) = {q € Children(p) | IsTall(q)}
MazAShort(p) = if ShortChildren(p) = () then —1 else max {q.ac | ¢ € ShortChildren(p)}
MinATall(p) = if TallChildren(p) = 0 then 2k + 1 else min {q.cx | ¢ € TallChildren(p)}
Alpha(p) = if MazAShort(p) + MinATall(p) < 2k — 2
then MinATall(p) + 1 else MazAShort(p) + 1
Action: p.« # Alpha(p) — p.a — Alpha(p)

show that Vy € Y, 3z € X,y <p x. Since any relation included in a well-founded
order is also well-founded, we get that relation safeStep is well-founded. Finally,
since we know that property safe is stable (from stable safe), we get (Vg,
safe g — Acc Step g) which proves that the algorithm terminates from any safe
configuration.

5 Case Study

We have certified a non trivial part of the silent self-stabilizing algorithm pro-
posed in [8]. Given a non-negative integer k, this algorithm builds a k-clustering
of a bidirectional connected network G' = (V, E) containing at most LZT_“ +1
k-clusters, where n is the number of nodes. A k-cluster of G is a set C C V,
together with a designated node Clusterhead(C) € C, such that each member of
C is within distance k of Clusterhead(C).* A k-clustering is then a partition of
V into distinct k-clusters. The k-clustering problem is related to the notion of
k-hop dominating set since the set of clusterheads of any k-clustering is a k-hop
dominating set, i.e., a subset D of V' such that every node is within distance k
from at least one node of D.

The algorithm proposed in [8] is actually a hierarchical collateral composi-
tion [9] of two silent self-stabilizing sub-algorithms: the former builds a rooted
spanning tree, the latter is a k-clustering construction which stabilizes once a
rooted spanning tree is available in the network. The crucial part of the second
sub-algorithm consists in computing, in a self-stabilizing and silent way, a k-hop
dominating set D of size at most LZ;lj +1 in an arbitrary rooted spanning tree.
D will designate the set of clusterheads in the computed k-clustering. This task is
performed using the 1-rule Algorithm D(k), whose code is given in Algorithm 1.

% the distance ||p, q|| between two nodes p and g is the length of a shortest path from
pto qin G.

46 K. Altisen et al.

We have used our framework to encode D(k), its assumptions, its specifi-
cation, and to build a certified proof which shows that D(k) is silent and self-
n—1

stabilizing for building a k-hop dominating set of at most Lmj + 1 nodes in

any bidirectional network equipped with a rooted spanning tree.

Local States. We denote the spanning tree and its root by 7" and r, respectively.
In D(k), the knowledge of T is locally distributed at each node p using the
constant input Par(p) € M, U{L}. When p # r, Par(p) € N, and designates
its parent in the tree. Otherwise, p is the root and Par(p) =.1. Then, each
node p maintains a single variable: p.«, an integer in range {0, ..., 2k}. We have
instantiated the Coq State of a node as a record containing fields (Par: option
Channel) and (a: Z). (Par p) stands for Par(p) and is the unique read-only
variable for p. Moreover, (a p) stands for p.a and is taken in Z (integers). We
chose to encode every number in the algorithm as integer in Z, since some of them
may be negative (see MaxAShort) and computations use minus (see Alpha).
Furthermore, we have proven p.« is in range {0, ...,2k} after p participates in
any step and also when the system is in a terminal configuration.

Spanning Tree. We express the assumption about the spanning tree using
predicate (span_tree r Par). This predicate checks that the graph T induced by
Par is a subgraph of G which actually encodes a spanning tree rooted at r by
the conjunction of

— ris the unique node such that Par(r) =1,
— Par(p), for every non-root node p, is an existing channel outgoing from p,
— T contains no loop.

From the last point, we show that, since the number of nodes is finite, the
relation extracted from Par between nodes and their parents (resp. children) in
T is well-founded. We call this result WF_par (resp. WF_child) and express it using
well_founded.

We expressed the assumptions on the network G, i.e., in any configuration g,
G is bidirectional and a rooted spanning tree is available in G (n.b., this latter
also implies that G is connected), in the predicate Assume:

Assumexgon g := sym_net A dr, span_tree r Par

Specification. The goal of D(k) is to compute an output predicate
kDominator(p) for every node p (see Algorithm 1 for its definition) in such
way that the system converges to a terminal configuration in which the set
Dom = {p € V | kDominator(p)} defines a k-hop dominating set of 7' (and so
of G). We consider any positive parameter k, i.e., k is taken in z (as for other
numbers) and is assumed to be positive. We define the expected specification
using the predicate Pypon on configurations, where Pypo, holds in configuration
g if and only if the set Dom = {p € V' | kDominator(p)} is a k-hop dominating
set of T

Pwon g := Vp, Jkdom, (kDominator g kdom) A
Jpath, (is_path g path kdom p) A (length path) < k.

A Framework for Certified Self-Stabilization 47

where predicate is_path detects if the list of nodes path actually represents a
path in the tree T between the nodes kdom and p, and length computes the
length of the path.

D(k) in Coq. We translate the unique rule of D(k) into the type Algorithm.
Every predicate and macro of Algorithm 1 is directly encoded in Coq: the trans-
lation is quasi-syntactic (see Library KDomSet_algo in the online browsing) and
provides a definition of run. The definition of D(k), of type Algorithm, comes with
a proof that run is compatible, as a composition of compatible functions, and
also with a straightforward proof of RO_stable which asserts that the read-only
part of the state, Par, is constant during steps, when applying run.

Overview of D(k). Algorithm D(k), whose code is given in Algorithm 1, com-
putes a k-hop dominating set of T' (and so of G), noted Dom, using the vari-
able « at each node. Precisely, Dom is defined as the set of nodes p such that
kDominator(p) holds, i.e., where p.a = k, or p.a < k and p = r. Dom is
constructed in a bottom-up fashion starting from the leaves of T'. The goal of
variable p.a. at each node p is twofold. First, it allows to determine a path of
length at most k£ from p to a particular node g of Dom which acts as a witness
for guaranteeing the k-hop domination of Dom. Consequently, ¢ will be denoted
as Witness(p) in the following. Second, once correctly evaluated, the value p.«
is equal to ||p, z||, where z is the furthest node in T'(p), the subtree of T rooted
at p, that has the same witness as p.

We divide processes into short and tall according to the value of their a-
variable: If p satisfies IsShort(p), i.e., p.a < k, then p is said to be short; other-
wise, p satisfies IsTall(p) and is said to be tall. In a terminal configuration, the
meaning of p.a depends on whether p is short or tall.

If p is short, we have two cases: p # r or p = 7. In the former case,
Witness(p) € Dom is outside of T'(p), that is, the path from p to Witness(p) goes
through the parent link of p in the tree, and the distance from p to Witness(p)
is at most k — p.a.. See, for example, in Configuration (I) of Fig.1, k = 2 and
j.o = 0 mean that Witness(j) is at most at distance k¥ —0 = 2, now its witness e
is at distance 2. In the latter case, p (= r) may not be k-hop dominated by any
process of Dom inside its subtree and, by definition, there is no process outside
its subtree, indeed T'(p) = T, see the root a in Configuration (I) of Fig. 1. Thus,
p must be placed in Dom.

If p is tall, there is a process q at p.a — k hops below p such that q.a = k.
So, ¢ € Dom and p is k-hop dominated by ¢. Hence, Witness(p) = q. The path
from p to Witness(p) goes through a tall child with minimum a-value. See, for
example, in Configuration (I) of Fig. 1, k = 2 and c.c« = 4 mean that Witness(c),
here e, is 4 — k = 2 hops below c. Note that, if p.a = k, then p.a — k = 0, that
is, p = ¢ = Witness(p) and p belongs to Dom.

Two examples of 2-clustering computed by D(2) are given in Fig.1. In
Fig.1.(I), the root is a short process, consequently it belongs to Dom. In
Fig. 1.(IT), the root is a tall process, consequently it does not belong to Dom.

48 K. Altisen et al.

@j—’ S @)b\ h e
O (0O, O 05600}
OO . Gl OO0 0O

an

Fig. 1. Two examples of 2-hop dominating sets computed by D(2). We only draw the
spanning tree, other edges are omitted. The root of each tree is the rightmost node.
a-values are given inside the nodes. Bold circles represent members of Dom. Arrows
represent the path from nodes to their associated witnesses.

6 Self-Stabilization of D(k)

According to the sufficient condition (Lemma silent_self_stab) given in Sect. 3,
we prove the self-stabilization of D(k) in two steps: termination in Subsect. 6.1
and partial correctness in Subsect. 6.2.

6.1 Termination of D(k).

We use the general result from Sect. 4 to prove termination of D(k), expressed
as follows:

Theorem k_dom_set_terminates: Vg, Assumexson g — Acc Step g.

First, we assume sym net and that the root node r exists. We instantiate safe as
every configuration in which read-only variables Par satisfy (span_tree r Par).
Notice that the assumption on the existence of the spanning tree T rooted at r
is mandatory, since, as we will see below, the local potentials we use in our proof
are based on the depth of nodes in T'. Finally, note that it is easy to prove that
safe is stable since it only depends on read-only variables.

Potential. We define the depth of a node as the distance between the node and
the root rin the spanning tree T'. Let sg be a safe configuration and p be a node.
(depth sg p) is 1 (natural number, type nat) if p is the root r, and (1 + (depth
sg q)) where q the parent of p in T" otherwise. This definition relies on structural
induction on (WF_par n). We define the potential (pot sg p) of node p in safe
configuration sg as 0 if p is not enabled in sg, and (depth sg p) otherwise.

Local Criterion. Let sg1 and sg2 be two safe configurations such that (safeStep
sg2 sgl). Consider a node p whose potential increases during the step, i.e., such
that (pot sgl p) <p (pot sg2 p). This means, from definition of pot, that p is
disabled at sgi (potential is 0) and becomes enabled at sg2 (potential equals
(depth sg2 p)>0). To show the local criterion, we exhibit a down-path in the
tree T from p to some leaf that contains a node q enabled in sg1 which becomes
disabled in the next configuration, sg2. We prove the result in two steps. First, we
necessarily exhibit a child of node p, child, which executes its algorithm during
the step. As second step, we prove Lemma moving node_has_disabled_desc, which
states that when the node child moves, it is down-linked in T" to a node (maybe

A Framework for Certified Self-Stabilization 49

the node itself) which was enabled and becomes disabled during the step. This
result is proven by induction on (WF_child child), i.e., on the down-paths from
child in T

Global Criterion. Global criterion requires to find a node whose potential
differs between sg1 and sg2. We show that there is a node p with potential (depth
sgl p) in sgl (>0, by definition), and potential 0 in sg2. Namely, p is enabled
in sg1, but disabled in sg2. The proof uses the fact that at least one node has
moved during the step. Then, we reuse Lemma moving node_has_disabled desc
to show that any node that participates to the step has a descendant (on a given
down-path of T) which is enabled in sg1, but disabled in sg2.

Termination. Theorem k_dom_set_terminates follows directly from local and
global criteria.

6.2 Partial Correctness of D(k)

The proof of partial correctness consists in showing that predicate Pypo, holds
in any terminal configuration satisfying Assumejgon:

Theorem kdom_set_at_terminal:
Vg, Assumeygon § — terminal g — Pyroon g.

From definition of Pypon, we need to check the existence of a path in G
between any node p and any node kdom € Dom, such that this path is of length
at most k. To achieve this property, the algorithm builds tree paths of particular
shape: those paths use edges of T in both direct sense (from a node to its parent)
and reverse sense (from a node to one of its children). Precisely, these edges are
defined using relation is_kDom_edge, which depends on a-values: for any short
node s, we select the edge linking s to its parent in T' (using Par); while for any
tall node ¢ which is not in Dom, we select an edge linking ¢ to a child ¢ such
that c.ae = t.a — 1. The relation is kDom_edge defines a subgraph of G called
kdom-graph. So, to show Theorem kdom_at_terminal, it is sufficient prove that for
any configuration g such that (Assumeyqon g) and (terminal g), we have:

Vp, dkdom, (kDominator g kdom) A
Jpath, (is_kDom_path g path kdom p) A (length path) < k.

where is kDom path checks that its parameter path is a path on the kdom-graph
between kdom and p.

The rest of the analysis is conducted assuming a terminal configuration g such
that (Assumeyqon g) holds. We first prove that any node p satisfying p.ac > 0
has a child q such that p.a = ¢.a + 1 (the proof is simply a case analysis on
MaxAShort(q) + MinATall(q) < 2k — 2). Then, the proof is split into two cases,
depending on whether the node is tall or short. We prove, for every tall (resp.
short) node p and every i € N, that when p.a = k 4 i (resp. k — 1), there exists a
witness node ¢ for which kDominator holds and a path, of length at most 7, from
P to ¢ in kdom-graph. In both cases, the proof is conducted by induction on .

Conclusion. Using Lemma silent_self_stab, we obtain that D(k) is a silent
self-stabilizing algorithm for Pypey:

50 K. Altisen et al.

Theorem kdom_set_silent_self_stab:
silence Assumegiom A self_stab AssulMexdom SPyupy -

7 Quantitative Properties

In addition to partial correctness, we have shown that the k-hop dominating Dom
set built by D(k) satisfies |Dom| < LZT’H + 1, where n is the number of nodes.
Precisely, we have formally proven the equivalent property which states that (n —
1) > (k + 1)(J]Dom| — 1). Intuitively, this means that at least all but one element

of Dom have been chosen as witness by at least k£ + 1 distinct nodes each.

Counting Elements in Sets. We have set up a library dealing with cardinality
of sets in general, and then finite sets. The library contains basic properties about
set operations such as cardinality of Cartesian product, disjoint union, subset
inclusion, etc. We also proved in Coq the existence of finite cardinality for finite
sets using lists. Those proofs have been conducted using standard techniques.

Proving Counting for D(k). First, we assume a terminal configuration g.
Using above results about the number of elements in the list all_nodes, we show
the existence of the natural number n, i.e., the number of nodes. Similarly,
the existence of the natural number |Dom| is obtained using the list all nodes
restricted to nodes p such that (kDominator (g p) = true).

Then, we define as reqular head each node of Dom such that o = k. By defi-
nition the set of regular heads is included in Dom. Again, we prove the existence
of the natural number rh which represents the number of regular heads in g.

Next, we define a regular node as a node which designates a regular head as
witness. We prove the existence of the natural number rn which is the number
of regular nodes in g. We prove that for each regular head h, for any 0 <i < k,
there is a regular node p; such that o = ¢ which designates h as witness in g.
This implies that there is a path of length k + 1 in the kdom-graph linking pg
to h. We then group each regular head together with the regular nodes that
designate it as witness: each group contains at least k + 1 regular nodes. Thus,
rn > (k+ Drh.

Now, we have two cases. If the root is tall in g (i.e., r.av > k), then rh = |Dom|
and rn = n. Otherwise, the root is short in g, and Dom contains both the regular
heads and the root (which is not regular in this case). Thus, |[Dom| = rh + 1
and, similarly, the set of nodes contains at least regular nodes plus the root, so
rn < n — 1. Hence, in either case, (n — 1) > (k+ 1)(]Dom| — 1) holds in g.

8 Conclusion

We proposed a general framework to build certified proofs of self-stabilizing algo-
rithms. To achieve our goals, we developed, in particular, general tools about
potential functions, which are commonly used in termination proofs of self-
stabilizing algorithms. We also proposed a library dealing with cardinality of
sets. We use this latter to show a quantitative property on the output of our
case-study algorithm.

A Framework for Certified Self-Stabilization 51

In future works, we expect to certify more complex self-stabilizing algorithms.

Such algorithms are usually designed by composing more basic blocks. In this line
of thought, we envision to certify general theorems related to classic composition
techniques such as collateral or fair compositions.

Finally, we expect to use our experience on quantitative properties to tackle

the certification of time complexity of stabilizing algorithms, a.k.a. the stabiliza-
tion time.

References

1.

=

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Ben-Othman, J., Bessaoud, K., Bui, A., Pilard, L.: Self-stabilizing algorithm for
efficient topology control in wireless sensor networks. J. Comput. Sci. 4(4), 199-208
(2013)

Blanqui, F., Koprowski, A.: CoLoR: a coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Math.
Struct. Comput. Sci. 21(4), 827-859 (2011)

Caron, E., Chuffart, F., Tedeschi, C.: When self-stabilization meets real platforms:
an experimental study of a peer-to-peer service discovery system. future gener.
comput. syst. 29(6), 1533-1543 (2013)

Chen, M., Monin, J.F.: Formal verification of netlog protocols. In: TASE (2012)
Chen, N., Yu, H., Huang, S.: A self-stabilizing algorithm for constructing spanning
trees. Inf. Process. Lett. 39, 147-151 (1991)

Courtieu, P.: Proving self-stabilization with a proof assistant. In: IPDPS (2002)
Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-
cation. Inf. Process. Lett. 115(3), 447-452 (2015)

Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Competi-
tive self-stabilizing k-clustering. In: ICDCS (2012)

Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Self-
stabilizing small k-dominating sets. IJNC 3(1), 116-136 (2013)

Deng, Y., Monin, J.F.: Verifying self-stabilizing population protocols with Coq. In:
TASE (2009)

Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465-476 (1979)

Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17, 643-644 (1974)

Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-
tion. In: PODC, pp. 27-34 (1996)

Ghosh, S.: An alternative solution to a problem on self-stabilization. ACM Trans.
Program. Lang. Syst. 15(4), 735-742 (1993)

Huang, S., Chen, N.: Self-stabilizing depth-first token circulation on networks.
Distrib. Comput. 7(1), 61-66 (1993)

Kiifner, P., Nestmann, U., Rickmann, C.: Formal verification of distributed algo-
rithms. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol.
7604, pp. 209-224. Springer, Heidelberg (2012)

Kulkarni, S.S., Rushby, J.M., Shankar, N.: A case-study in component-based
mechanical verification of fault-tolerant programs. In: WSS, pp. 33-40 (1999)
Lamport, L.: How to write a 21st century proof. J. fixed point theory appl. 11(1),
43-63 (2012)

The Coq Development Team: The Coq Proof Assistant, Reference Manual. http://
coq.inria.fr/refman/

http://coq.inria.fr/refman/
http://coq.inria.fr/refman/

	A Framework for Certified Self-Stabilization
	1 Introduction
	2 Locally Shared Memory Model with Composite Atomicity
	3 Self-Stabilization and Silence
	4 General Tools for Proving Termination
	5 Case Study
	6 Self-Stabilization of D(k)
	6.1 Termination of D(k).
	6.2 Partial Correctness of D(k)

	7 Quantitative Properties
	8 Conclusion
	References

