
Elvira Albert · Ivan Lanese (Eds.)

 123

LN
CS

 9
68

8

36th IFIP WG 6.1 International Conference, FORTE 2016
Held as Part of the 11th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2016
Heraklion, Crete, Greece, June 6–9, 2016, Proceedings

Formal Techniques
for Distributed Objects,
Components, and Systems

Lecture Notes in Computer Science 9688

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Elvira Albert • Ivan Lanese (Eds.)

Formal Techniques
for Distributed Objects,
Components, and Systems
36th IFIP WG 6.1 International Conference, FORTE 2016
Held as Part of the 11th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2016
Heraklion, Crete, Greece, June 6–9, 2016
Proceedings

123

Editors
Elvira Albert
Complutense University of Madrid
Madrid
Spain

Ivan Lanese
University of Bologna/INRIA
Bologna
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-39569-2 ISBN 978-3-319-39570-8 (eBook)
DOI 10.1007/978-3-319-39570-8

Library of Congress Control Number: 2016939908

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

The 11th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place at Aquila Atlantis Hotel in Heraklion, Greece, during June 6–9,
2016. It was organized by the Institute of Computer Science of the Foundation for
Research and Technology – Hellas and the University of Ioannina, Greece. The Dis-
CoTec series is one of the major events sponsored by the International Federation for
Information Processing (IFIP). It comprises three conferences:

– COORDINATION, the IFIP WG 6.1 International Conference on Coordination
Models and Languages

– DAIS, the IFIP WG 6.1 International Conference on Distributed Applications and
Interoperable Systems

– FORTE, the IFIP WG 6.1 International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues.

Each day of the federated event began with a plenary speaker nominated by one
of the conferences. The three invited speakers were Tim Harris (Oracle Labs, UK),
Catuscia Palamidessi (Inria, France), and Vijay Saraswat (IBM T.J. Watson Research
Center, USA).

Associated with the federated event were also two satellite workshops, that took
place during June 8–9, 2016:

– The 9th Workshop on Interaction and Concurrency Experience (ICE) with keynote
lectures by Uwe Nestmann (Technische Universität Berlin, Germany) and
Alexandra Silva (University College London, UK)

– The Final Public Workshop from the LeanBigData and CoherentPaaS projects

Sincere thanks go to the chairs and members of the Program and Steering Com-
mittees of the involved conferences and workshops for their highly appreciated efforts.
Organizing DisCoTec 2016 was only possible thanks to the dedicated work of the
Organizing Committee, including George Baryannis (Publicity Chair) and Vincenzo
Gulisano (Workshops Chair), with excellent support from Nikos Antonopoulos and
Alkis Polyrakis of PCO-Convin. Finally, many thanks go to IFIP WG 6.1 for spon-
soring this event, to Springer Lecture Notes in Computer Science for their support and
sponsorship, and to EasyChair for providing the refereeing infrastructure.

April 2016 Kostas Magoutis

Preface

This volume contains the papers presented at FORTE 2016, the 36th IFIP International
Conference on Formal Techniques for Distributed Objects, Components and Systems.
This conference was organized as part of the 11th International Federated Conference
on Distributed Computing Techniques (DisCoTec) and was held during June 5–7, 2016
in Heraklion (Greece).

The FORTE conference series represents a forum for fundamental research on
theory, models, tools, and applications for distributed systems. The conference
encourages contributions that combine theory and practice, and that exploit formal
methods and theoretical foundations to present novel solutions to problems arising
from the development of distributed systems. FORTE covers distributed computing
models and formal specification, testing, and verification methods. The application
domains include all kinds of application-level distributed systems, telecommunication
services, Internet, embedded, and real-time systems, as well as networking and com-
munication security and reliability.

The conference received 44 submissions of authors from 21 countries. All full
papers were reviewed by at least three members of the Program Committee. After
careful deliberations, the Program Committee selected 18 papers for presentation. In
addition to these papers, this volume contains an abstract of the invited talk by an
outstanding researcher, Catuscia Palamidessi, on “Verifying Generalized Differential
Privacy in Concurrent Systems.”

The conference would not have been possible without the enthusiasm and dedica-
tion of the general chair, Kostas Magoutis (University of Ioannina, Greece), and the
support of the Organizing Committee with George Baryannis (University of Hudder-
sfield, UK) and Vincenzo Gulisano (Chalmers University of Technology, Sweden). For
the work of the Program Committee and the compilation of the proceedings, the
EasyChair system was employed; it freed us from many technical matters and allowed
us to focus on the program, for which we are grateful. Conferences like FORTE rely on
the willingness of experts to serve in the Program Committee; their professionalism and
their helpfulness were exemplary. Finally, we would like to thank all the authors for
their submissions, their willingness to continue improving their papers, and their
presentations!

April 2016 Elvira Albert
Ivan Lanese

Organization

Program Committee

Erika Abraham RWTH Aachen University, Germany
Gul Agha University of Illinois at Urbana-Champaign, USA
Elvira Albert Complutense University of Madrid, Spain
Ahmed Bouajjani LIAFA, University Paris Diderot, France
Frank De Boer CWI, The Netherlands
Lars-Ake Fredlund Universidad Politécnica de Madrid, Spain
David Frutos Escrig Universidad Complutense de Madrid, Spain
Stefania Gnesi ISTI-CNR, Italy
Kim Guldstrand Larsen Aalborg University, Denmark
Bart Jacobs Katholieke Universiteit Leuven, Belgium
Einar Broch Johnsen University of Oslo, Norway
Ivan Lanese University of Bologna, Italy, and Inria, France
Antónia Lopes University of Lisbon, Portugal
Hernan Melgratti Universidad de Buenos Aires, Argentina
Massimo Merro University of Verona, Italy
Peter Olveczky University of Oslo, Norway
Luca Padovani Università di Torino, Italy
Anna Philippou University of Cyprus
Arnd Poetzsch-Heffter University of Kaiserslautern, Germany
Kostis Sagonas Uppsala University, Sweden
Alexandra Silva University College London, UK
Jean-Bernard Stefani Inria, France
Emilio Tuosto University of Leicester, UK
Mahesh Viswanathan University of Illinois, Urbana-Champaign, USA

Additional Reviewers

Abdoullah, Houssam
Akkoorath, Deepthi
Akshay, S.
Alborodo, Raul Nestor Neri
Aronis, Stavros
Azadbakht, Keyvan
Basile, Davide
Benac Earle, Clara
Bezirgiannis, Nikolaos
Bliudze, Simon

Brunnlieb, Malte
Charalambides, Minas
Chatain, Thomas
Cruz-Filipe, Luís
De Gouw, Stijn
Fábregas, Ignacio
Jensen, Peter Gjøl
Lang, Frederic
Lange, Julien
Lienhardt, Michael

Löscher, Andreas
Mariegaard, Anders
Mariño, Julio
Marti-Oliet, Narciso
Mathur, Umang
Mauro, Jacopo
Meyer, Roland
Mikučionis, Marius
Montenegro, Manuel
Nyman, Ulrik
Palmskog, Karl
Petri, Gustavo
Pichon, Jean
Rodriguez, Ismael

Roohi, Nima
Rubio, Albert
Sammartino, Matteo
Sandur, Atul
Semini, Laura
Stumpf, Johanna Beate
Suzuki, Tomoyuki
Taankvist, Jakob Haahr
Tamarit, Salvador
Tiezzi, Francesco
Toninho, Bernardo
Van Glabbeek, Rob
Weber, Mathias
Zeller, Peter

X Organization

Verifying Generalized Differential Privacy
in Concurrent Systems

(Abstract of Invited Talk)

Catuscia Palamidessi

INRIA Saclay and LIX, École Polytechnique

Privacy is a broad concept affecting a variety of modern-life activities. As a conse-
quence, during the last decade there has been a vast amount of research on techniques
to protect privacy, such as communication anonymisers [8], electronic voting systems
[7], Radio-Frequency Identification (RFID) protocols [12] and private information
retrieval schemes [6], to name a few.

In recent years, a new framework for privacy, called differential privacy (DP) has
become increasingly popular in the area of statistical databases [9–11]. The idea is that,
first, the access to the data should be allowed only through a query-based interface.
Second, it should not be possible for the adversary to distinguish, from the answer to
the query, whether a certain individual is present or not in the database. Formally, the
likelihood of obtaining a certain answer should not change too much (i.e., more than a
factor eϵ, where ϵ is a parameter) when the individual joins (or leaves) the database.
This is achieved by adding random noise to the answer, resulting in a trade-off between
the privacy of the mechanism and the utility of the answer: the stronger privacy we
wish to achieve, the more the answer needs to be perturbed, thus the less useful it is.
One of the important features of DP is that it does not depend on the side information
available to the adversary. Related to this, another important advantage is that DP is
robust with respect to composition attacks: by combining the results of several queries,
the level of privacy of every mechanism necessarily decreases, but with DP it declines
in a controlled way. This is a feature that can only be achieved with randomized
mechanisms: With deterministic methods, such as k-anonymity [13, 14], composition
attacks may be catastrophic.

DP has proved to be a solid foundation for privacy in statistical databases. Various
people have also tried to extend it to other domains. The problem is that DP assumes
that the disclosed information is produced by aggregating the data of multiple indi-
viduals. However, many privacy applications involve only a single individual, making
differential privacy inapplicable.

In our team, we have addressed this issue by defining an extended DP framework in
which the indistinguishability requirement is based on an arbitrary notion of distance
(dx-privacy, [3]). In this way we can naturally express (protection against) privacy
threats that cannot be represented with the standard notion, leading to new applications
of the differential privacy framework. In particular, we have explored applications in

This work is partially supported by the Large Scale Initiative CAPPRIS.

geolocation [1, 2] and smart metering [3]. In the context of geolocation, the problem
of the correlated data becomes particularly relevant when we consider traces, which
usually are composed of a large amount of highly related points. We addressed this
issue using prediction functions [5], obtaining encouraging results.

Another shortcoming of the current approaches to privacy is that they are only
applicable when the public information is well delimited and acquired in finite in time.
Unfortunately, in most situation the source of public information is not necessarily
bound, and some additional information can always be revealed in the future. At
present, there are no techniques to verify privacy guarantees in situations in which the
revelation of public information is not bound in time. This is a serious limitation,
especially given that most of the systems which we use nowadays have an interactive
nature, and usually are not under the control of the user.

In our team, we have started exploring a possible approach to this problem by
defining a generalized version of the bisimulation distance based on the Kantorovich
metric [4]. The standard Kantorovich lifting is based on an additive notion of distance,
hence it is not suitable to capture dx-privacy, that, like differential privacy, is inherently
multiplicative. In contrast, our framework generalizes the Kantorovich lifting to arbi-
trary distances, and can therefore be applied also to dx-privacy.

We show that the standard results extend smoothly to the generalized case, and that
a bound on the generalized bisimulation distance is also a bound for the distance on
traces, which guarantees the soundness of the method for proving DP. Furthermore, we
provide an efficient method to compute it based on a dual form of the Kantorovich
lifting. Finally, we explore an Hennessy-Milner-like logical characterization of our
bisimulation distance, and we show how it can be use for reasoning about DP.

References

1. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Proceedings of the
20th ACM Conference on Computer and Communications Security (CCS 2013), pp. 901–
914. ACM, New York (2013)

2. Bordenabe. N.E., Chatzikokolakis, N., Palamidessi, C.: Optimal geo-indistinguishable
mechanisms for location privacy. In: Proceedings of the 21th ACM Conference on Com-
puter and Communications Security (CCS 2014) (2014)

3. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the scope
of differential privacy using metrics. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013,
LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013)

4. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics.
In: Baldan, P., Gorla, D. (eds.) CONCUR 2014, LNCS, vol. 8704, pp. 32–46. Springer,
Heidelberg (2014)

5. Chatzikokolakis, K., Palamidessi, C., Stronati, M.: A predictive differentially-private
mechanism for mobility traces. In: De Cristofaro, E., Murdoch, S.J. (eds.) PETS 2014,
LNCS, vol. 8555, pp. 21–41. Springer, Heidelberg (2014)

XII C. Palamidessi

6. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Pro-
ceedings of 36th Annual Symposium on Foundations of Computer Science, pp. 41–50. IEEE
(1995)

7. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic voting
protocols. J. Comput. Secur. 17(4), 435–487 (2009)

8. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion router. In:
Proceedings of the 13th USENIX Security Symposium, pp. 303–320. USENIX, (2004)

9. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
CALP 2006, Part II, LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

10. Dwork, C.: A firm foundation for private data analysis. Commun. ACM, 54(1), 86–96
(2011)

11. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Mitzenmacher, M. (ed.)
Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC),
Bethesda, MD, USA, May 31 – June 2, pp. 371–380. ACM (2009)

12. Juels, A.: Rfid security and privacy: a research survey. IEEE J. Sel. Areas Commun. 24(2),
381–394 (2006)

13. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl.
Data Eng. 13(6), 1010–1027 (2001)

14. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing infor-
mation (abstract). In: Proceedings of the ACM SIGACT–SIGMOD–SIGART Symposium
on Principles of Database Systems, Seattle, Washington, June 1–3, 1998, p. 188. ACM Press
(1998)

Verifying Generalized Differential Privacy in Concurrent Systems XIII

Contents

On the Power of Attribute-Based Communication . 1
Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti

Fencing Programs with Self-Invalidation and Self-Downgrade 19
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Stefanos Kaxiras,
Carl Leonardsson, Alberto Ros, and Yunyun Zhu

A Framework for Certified Self-Stabilization . 36
Karine Altisen, Pierre Corbineau, and Stéphane Devismes

Developing Honest Java Programs with Diogenes . 52
Nicola Atzei and Massimo Bartoletti

Playing with Our CAT and Communication-Centric Applications 62
Davide Basile, Pierpaolo Degano, Gian-Luigi Ferrari,
and Emilio Tuosto

Multiparty Session Types Within a Canonical Binary Theory, and Beyond. . . 74
Luís Caires and Jorge A. Pérez

A Type Theory for Robust Failure Handling in Distributed Systems 96
Tzu-Chun Chen, Malte Viering, Andi Bejleri, Lukasz Ziarek,
and Patrick Eugster

Choreographies in Practice . 114
Luís Cruz-Filipe and Fabrizio Montesi

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 124
Fathiyeh Faghih, Borzoo Bonakdarpour, Sébastien Tixeuil,
and Sandeep Kulkarni

Branching Bisimulation Games . 142
David de Frutos Escrig, Jeroen J.A. Keiren, and Tim A.C. Willemse

A Configurable CEGAR Framework with Interpolation-Based Refinements . . . 158
Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik

A Theory for the Composition of Concurrent Processes 175
Ludovic Henrio, Eric Madelaine, and Min Zhang

Enforcing Availability in Failure-Aware Communicating Systems 195
Hugo A. López, Flemming Nielson, and Hanne Riis Nielson

http://dx.doi.org/10.1007/978-3-319-39570-8_1
http://dx.doi.org/10.1007/978-3-319-39570-8_2
http://dx.doi.org/10.1007/978-3-319-39570-8_3
http://dx.doi.org/10.1007/978-3-319-39570-8_4
http://dx.doi.org/10.1007/978-3-319-39570-8_5
http://dx.doi.org/10.1007/978-3-319-39570-8_6
http://dx.doi.org/10.1007/978-3-319-39570-8_7
http://dx.doi.org/10.1007/978-3-319-39570-8_8
http://dx.doi.org/10.1007/978-3-319-39570-8_9
http://dx.doi.org/10.1007/978-3-319-39570-8_10
http://dx.doi.org/10.1007/978-3-319-39570-8_11
http://dx.doi.org/10.1007/978-3-319-39570-8_12
http://dx.doi.org/10.1007/978-3-319-39570-8_13

Ransomware Steals Your Phone. Formal Methods Rescue It. 212
Francesco Mercaldo, Vittoria Nardone, Antonella Santone,
and Corrado Aaron Visaggio

Multiple Mutation Testing from FSM . 222
Alexandre Petrenko, Omer Nguena Timo, and S. Ramesh

The Challenge of Typed Expressiveness in Concurrency 239
Jorge A. Pérez

Type-Based Analysis for Session Inference (Extended Abstract) 248
Carlo Spaccasassi and Vasileios Koutavas

SimAutoGen Tool: Test Vector Generation from Large Scale
MATLAB/Simulink Models . 267

Manel Tekaya, Mohamed Taha Bennani, Nedra Ebdelli,
and Samir Ben Ahmed

Author Index . 275

XVI Contents

http://dx.doi.org/10.1007/978-3-319-39570-8_14
http://dx.doi.org/10.1007/978-3-319-39570-8_15
http://dx.doi.org/10.1007/978-3-319-39570-8_16
http://dx.doi.org/10.1007/978-3-319-39570-8_17
http://dx.doi.org/10.1007/978-3-319-39570-8_18
http://dx.doi.org/10.1007/978-3-319-39570-8_18

On the Power of Attribute-Based
Communication

Yehia Abd Alrahman1(B), Rocco De Nicola1, and Michele Loreti2

1 IMT School for Advanced Studies Lucca, Lucca, Italy
yehia.abdalrahman@imtlucca.it

2 Università degli Studi di Firenze, Florence, Italy

Abstract. In open systems exhibiting adaptation, behaviors can arise as
side effects of intensive components interaction. Finding ways to under-
stand and design these systems, is a difficult but important endeavor. To
tackle these issues, we present AbC , a calculus for attribute-based com-
munication. An AbC system consists of a set of parallel agents each of
which is equipped with a set of attributes. Communication takes place in
an implicit multicast fashion, and interactions among agents are dynam-
ically established by taking into account “connections” as determined by
predicates over the attributes of agents. First, the syntax and the seman-
tics of the calculus are presented, then expressiveness and effectiveness
of AbC are demonstrated both in terms of modeling scenarios featur-
ing collaboration, reconfiguration, and adaptation and of the possibility
of encoding channel-based interactions and other interaction patterns.
Behavioral equivalences for AbC are introduced for establishing formal
relationships between different descriptions of the same system.

1 Introduction

In a world of Internet of Things (IoT), of Systems of Systems (SoS), and of
Collective Adaptive Systems (CAS), most of the concurrent programming models
still rely on communication primitives based on point-to-point, multicast with
explicit addressing (i.e. IP multicast [13]), or on broadcast communication. In our
view, it is important to consider alternative basic interaction primitives and in
this paper we study the impact of a new paradigm that permits selecting groups
of partners by considering the (predicates over the) attributes they expose.

The findings we report in this paper have been triggered by our interest in
CAS, see e.g. [10], and the recent attempts to define appropriate linguistic prim-
itives to deal with such systems, see e.g. TOTA [17], SCEL [7] and the calculi
presented in [3,28]. CAS consists of large numbers of interacting components
which exhibit complex behaviors depending on their attributes and objectives.
Decision-making is complex and interaction between components may lead to

This research has been partially supported by the European projects IP 257414
ASCENS and STReP 600708 QUANTICOL, and by the Italian project PRIN
2010LHT4KM CINA.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 1–18, 2016.
DOI: 10.1007/978-3-319-39570-8 1

2 Y. Abd Alrahman et al.

unexpected behaviors. Components work in an open environment and may have
different (potentially conflicting) objectives; so they need to dynamically adapt
to their contextual conditions. New engineering techniques to address the chal-
lenges of developing, integrating, and deploying such systems are needed [26].

To move towards this goal, in our view, it is important to develop a the-
oretical foundation for this class of systems that would help in understanding
their distinctive features. In this paper, we present AbC , a calculus comprising a
minimal set of primitives that permit attribute-based communication. AbC sys-
tems are represented as sets of parallel components, each is equipped with a set
of attributes whose values can be modified by internal actions. Communication
actions (both send and receive) are decorated with predicates over attributes
that partners have to satisfy to make the interaction possible. Thus, communi-
cation takes place in an implicit multicast fashion, and communication partners
are selected by relying on predicates over the attributes in their interfaces. The
semantics of output actions is non-blocking while input actions are blocking.

Many communication models addressing distributed systems have been intro-
duced so far. Some of the well-known approaches include: channel-based models
(e.g., CCS [18], CSP [12], π-calculus [20], etc.), group-based models [1,5,13],
and publish/subscribe models [4,9]. The advantage of AbC over channel-based
models is that interacting partners are anonymous to each other. Rather than
agreeing on channels or names, they interact by relying on the satisfaction of
predicates over their attributes. This makes AbC more suitable for modeling scal-
able distributed systems as anonymity is a key factor for scalability. Furthermore,
the spaces (i.e., groups) in group-based models like Actorspace [1] are regarded
as containers of actors and should be created and deleted with explicit con-
structs, while in AbC , there is no need for such constructs. The notion of group
in AbC is quite abstract and can be specified by means of satisfying the sender’s
predicate at the time of interaction. On the other hand, the publish/subscribe
model is a special case of AbC where publishers attach attributes to messages
and send them with empty predicates (i.e., satisfied by all). Subscribers check
the compatibility of the attached attributes with their subscriptions.

The concept of attribute-based communication can be exploited to provide
a general unifying framework to encompass different communication models.
Extended discussion for this paper can be found in the technical report in [2].

Contributions. (i) In Sects. 2 and 3, we present the AbC calculus, a refined and
extended version of the one in [3]. The latter is a very basic calculus with a
number of limitations, see Sect. 6 in [2]; (ii) we study the expressive power of
AbC both in terms of the ability of modeling scenarios featuring collaboration,
reconfiguration, and adaptation and of the possibility of modeling different inter-
action patterns, see Sect. 4; (iii) we define behavioral equivalences for AbC by
first introducing a context based barbed congruence relation and then the cor-
responding extensional labelled bisimilarity, see Sect. 5; (iv) we show how to
encode channel-based communication and prove the correctness of the encoding
up to the introduced equivalence, see Sect. 6.

On the Power of Attribute-Based Communication 3

Table 1. The syntax of the AbC calculus

C ::= Γ :P | C1‖C2 | !C | νxC

P ::= 0 | Π(x̃).P | (Ẽ)@Π.P | [ã := Ẽ]P | 〈Π〉P | P1 + P2 | P1|P2 | K

Π ::= tt | ff | E1 �� E2 | Π1 ∧ Π2 | Π1 ∨ Π2 | ¬Π

E ::= v | x | a | this.a

2 The AbC Calculus

Table 2. The predicate satisfaction
The syntax of the AbC calculus is
reported in Table 1. The top-level enti-
ties of the calculus are components (C), a
component consists of either a process P
associated with an attribute environment
Γ , denoted Γ : P , a parallel composition
C1‖C2 of two components, a replication
!C which can always create a new copy of
C. The attribute environment Γ : A �→ V
is a partial map from attribute identifiers a ∈ A to values v ∈ V where A∩V = ∅.
A value could be a number, a name (string), a tuple, etc. The scope of a name
say n, can be restricted by using the restriction operator νn. For instance, the
name n in C1 ‖ νnC2 is only visible within component C2. Attribute values can
be restricted while attribute identifiers1 cannot, because they represent domain
concepts. Each component in a system is aware of the set of attribute identifiers
that represents the domain concepts.

A process is either the inactive process 0, an action-prefixed process •.P
(where “•” is replaced with an action), an attribute update process [ã := Ẽ]P ,
an awareness process 〈Π〉P , a choice between two processes P1 + P2, a parallel
composition between two processes P1|P2, or a recursive call K. We assume
that each process has a unique process definition K � P . The attribute update
construct in [ã := Ẽ]P sets the value of each attribute in the sequence ã to the
evaluation of the corresponding expression in the sequence Ẽ.

The awareness construct in 〈Π〉P is used to test awareness data about a com-
ponent status or its environment by inspecting the local attribute environment
where the process resides. This construct blocks the execution of process P until
the predicate Π becomes true. The parallel operator “|” models the interleav-
ing between processes. In what follows, we shall use the notation �Π�Γ (resp.
�E�Γ) to indicate the evaluation of a predicate Π (resp. an expression E) under
the attribute environment Γ . The evaluation of a predicate consists of replacing
variable references with their values and returns the result.

There are two kinds of actions: the attribute-based input Π(x̃) which binds
to sequence x̃ the corresponding received values from components whose commu-
nicated attributes or values satisfy the predicate Π. The attribute-based output

1 Occasionally, we will use “attribute” to denote “attribute identifier” in this paper.

4 Y. Abd Alrahman et al.

(Ẽ)@Π which evaluates the sequence of expressions Ẽ under the attribute envi-
ronment Γ and then sends the result to the components whose attributes satisfy
the predicate Π.

A predicate Π is either a binary operator �� between two values or a proposi-
tional combination of predicates. Predicate tt is satisfied by all components and
is used when modeling broadcast while ff is not satisfied by any component and
is used when modeling silent moves. The satisfaction relation |= of predicates
is presented in Table 2. In the rest of this paper, we shall use the relation � to
denote a semantic equivalence for predicates as defined below.

Definition 1 (Predicate Equivalence). Two predicates are semantically
equivalent, written Π1 � Π2, iff for every environment Γ , it holds that:
Γ |= Π1 iff Γ |= Π2.

Clearly, the predicate equivalence, defined above, is decidable because we
limit the expressive power of predicates by considering only standard boolean
expressions and simple constraints on attribute values as shown in Table 2.

An expression E is either a constant value v ∈ V, a variable x, an attribute
identifier a, or a reference to a local attribute value this.a. The properties
of self-awareness and context-awareness that are typical for CAS are guaran-
teed in AbC by referring to the values of local attributes via a special name
this. (i.e., this.a). These values represent either the current status of a compo-
nent (i.e., self-awareness) or the external environment (i.e.,context-awareness).
Expressions within predicates contain also variable names, so predicates can
check whether the sent values satisfy specific conditions. This permits a sort of
pattern-matching. For instance, component Γ :(x > 2)(x, y) receives a sequence
of values “x, y” from another component only if the value x is greater than 2.

We assume that processes are closed, and the constructs νx and Π(x̃) act
as binders for names. We write bn(P) to denote the set of bound names of P .
The free names of P are those that do not occur in the scope of any binder and
are denoted by fn(P). The set of names of P is denoted by n(P). The notions
of bound and free names are applied in the same way to components, but free
names also include attribute values that do not occur in the scope of any binder.

3 AbC Operational Semantics

The operational semantics of AbC is defined in two steps: first we define a com-
ponent level semantics and then we define a system level semantics.

3.1 Operational Semantics of Component

We use the transition relation �−−−→⊆Comp × CLAB × Comp to define the
local behavior of a component where Comp denotes a component and CLAB is
the set of transition labels α generated by the following grammar:

α ::= λ | ˜Π(ṽ) λ ::= νx̃Πṽ | Π(ṽ)

On the Power of Attribute-Based Communication 5

Table 3. Component semantics

The λ-labels are used to denote AbC output and input actions respectively. The
output and input labels contain the sender’s predicate Π, and the transmitted
values ṽ. An output is called “bound” if its label contains a bound name (i.e., if
x̃ �= ∅). The α-labels include an additional label ˜Π(ṽ) to denote the case where
a process is not able to receive a message. This label is crucial to keep dynamic
constructs (i.e., +) from dissolving after performing input refusal as it will be
shown later in this section. Free names in α are specified as follows:

– fn(νx̃Π(ṽ)) = fn(Π(ṽ))\x̃ and fn(Π(ṽ)) = fn(Π) ∪ ṽ

– fn(˜Π(ṽ)) = fn(Π) ∪ ṽ.

The fn(Π) denotes the set of names occurring in the predicate Π except
for attribute identifiers. Notice that this.a is only a reference to the value
of the attribute identifier a. Only the output label has bound names (i.e.,
bn(νx̃Πṽ) = x̃).

Component Semantics. The set of rules in Table 3 describes the behavior of
a single AbC component. We omitted the symmetric rules for (Sum) and (Int).

Rule (Brd) evaluates the sequence of expressions Ẽ to ṽ and the predicate
Π1 to Π by replacing any occurring reference (i.e., this.a) to its value under Γ ,
sends this information in the message, and the process evolves to P .

Rule (Rcv) replaces the free occurrences of the input sequence variables x̃ in
the receiving predicate Π with the corresponding message values ṽ and evaluates
Π under Γ . If the evaluation semantically equals to tt and Γ satisfies the sender
predicate Π ′, the input action is performed and the substitution [ṽ/x̃] is applied
to the continuation process P . Rule (Upd) evaluates the sequence Ẽ under Γ ,
apply attribute updates i.e., Γ [ã �→ ṽ] where ∀a ∈ ã and ∀v ∈ ṽ, Γ [a �→ v](a′) =
Γ (a′) if a �= a′ and v otherwise, and then performs an action with a λ label if
process P under the updated environment can do so.

Rule (Aware) evaluates the predicate Π under Γ . If the evaluation semanti-
cally equals to tt, process 〈Π〉P proceeds by performing an action with a λ-label
and continues as P ′ if process P can perform the same action.

6 Y. Abd Alrahman et al.

Table 4. Discarding input

Rule (Sum) and its symmetric version represent the non-deterministic choice
between the subprocesses P1 and P2. Rule (Rec) is standard for process defini-
tion. Rule (Int) models the standard interleaving between two processes.

Discarding Input. The set of rules in Table 4 describes the meaning of the
discarding label ˜Π(ṽ). Rule (FBrd) states that any sending process discards
messages from other processes and stays unchanged. Rule (FRcv) states that if
one of the receiving requirements is not satisfied then the process will discard
the message and stay unchanged.

Rule (FUpd) state that process [ã := Ẽ]P discards a message if process
P is able to discard the same message after applying attribute updates. Rule
(FAware1) states that process 〈Π〉P discards a message even if Π evaluates to
(tt) if process P is able to discard the same message. Rule (FAware2) states
that if Π in process 〈Π〉P evaluates to ff, process 〈Π〉P discards any message
from other processes.

Rule (FZero) states that process 0 always discards messages. Rule (FSum)

states that process P1 + P2 discards a message if both its subprocesses P1 and
P2 can do so. Notice that the choice and awareness constructs do not dissolve
after input refusal. Rule (FInt) has a similar meaning of Rule (FSum).

3.2 Operational Semantics of System

AbC system describes the global behavior of a component and the underlying
communication between different components. We use the transition relation
−−−→ ⊆ Comp × SLAB × Comp to define the behavior of a system where
Comp denotes a component and SLAB is the set of transition labels γ which
are generated by the following grammar:

γ ::= νx̃Πṽ | Π(ṽ) | τ

The γ-labels extend λ with τ to denote silent moves. The τ -label has no free
or bound names. The definition of the transition relation −−−→ depends on

On the Power of Attribute-Based Communication 7

Table 5. System semantics

the definition of the relation �−−−→ in the previous section in the sense that
the effect of local behavior is lifted to the global one. The transition relation
−−−→ is formally defined in Table 5. We omitted the symmetric rules for τ-Int

and Com.
Rule (Comp) states that the relations �−−−→ and −−−→ coincide when

performing either an input or output action. Rule (C-Fail) states that any com-
ponent Γ : P can discard an input if its local process can do so. Rule (Rep) is
standard for replication. Rule (τ-Int) models the interleaving between compo-
nents C1 and C2 when performing a silent move (i.e., a send action (ṽ)@Π with
Π � ff). In this paper, we will use ()@ff to denote a silent action/move.

Rule (Res) states that component νxC with a restricted name x can still
perform an action with a γ-label as long as x does not occur in the names of
the label and component C can perform the same action. If necessary, we allow
renaming with conditions to avoid name clashing.

Rule (Sync) states that two parallel components C1 and C2 can synchronize
while performing an input action. This means that the same message is received
by both C1 and C2. Rule (Com) states that two parallel components C1 and
C2 can communicate if C1 can send a message with a predicate that is different
from ff and C2 can possibly receive that message.

Rules (Hide1) and (Hide2) are peculiar to AbC and introduce a new concept
that we call predicate restriction “• � x” as reported in Table 6. In process
calculi with multiparty interaction like CSP [12] and bπ-calculus [20], sending
on a private channel is not observed. For example in bπ-calculus, assume that
P = νa(P1‖ P2)‖ P3 where P1 = āv.Q, P2 = a(x).R, and P3 = b(x). Now
if P1 sends on a then only P2 can observe it since P2 is included in the scope

8 Y. Abd Alrahman et al.

of the restriction. P3 and other processes only observe an internal action, so
P

τ−→ νa(Q‖R[v/x])‖ b(x).
This idea is generalized in AbC to what we call predicate restriction “•�x”

in the sense that we either hide a part or the whole predicate using the predicate
restriction operator “•�x” where x is a restricted name and the “•” is replaced
with a predicate. If the predicate restriction operator returns ff then we get the
usual hiding operator like in CSP and bπ-calculus because the resulting label is
not exposed according to (τ-Int) rule (i.e., sending with a false predicate).

Table 6. Predicate restriction •�x
If the predicate restriction operator

returns something different from ff then the
message is exposed with a smaller predi-
cate and the restricted name remains pri-
vate. Note that any private name in the
message values (i.e., x̃) remains private if
(Π � y) � ff as in rule (Hide1) otherwise
it is not private anymore as in rule (Hide2).
In other words, messages are sent on a chan-
nel that is partially exposed.

For example, if a network sends a mes-
sage with the predicate (keyword = this.topic ∨ capability = fwd) where the
name “fwd” is restricted then the message is exposed to users at every node
within the network with forwarding capability with this predicate (keyword =
this.topic). Network nodes observe the whole predicate but they receive the mes-
sage only because they satisfy the other part of the predicate (i.e., (capability =
fwd)). In the following Lemma, we prove that the satisfaction of a restricted
predicate Π�x by an attribute environment Γ does not depend on the name x
that is occurring in Γ .

Lemma 1. Γ |= Π � x iff ∀v. Γ [v/x] |= Π � x for any environment Γ ,
predicate Π, and name x.

Rule (Open) states that a component has the ability to communicate a pri-
vate name to other components. The scope of the private name x only dissolves
in the context where the rule is applied. Notice that, a component that is sending
on a false predicate (i.e., Π � ff) cannot open the scope.

4 Expressiveness of AbC Calculus

In this section, we provide evidence of the expressive power of AbC by modeling
systems featuring collaboration, adaptation, and reconfiguration and stress the
possibility of using attribute-based communication as a unifying framework to
encompass different communication models.

4.1 A Swarm Robotics Model in AbC

We consider a swarm of robots spreads in a given disaster area with the goal of
locating and rescuing possible victims. All robots playing the same role execute

On the Power of Attribute-Based Communication 9

the same code, defining their behavior, and a set of adaptation mechanisms, reg-
ulating the interactions among robots and their environments. Initially all robots
are explorers and once a robot finds a victim, it changes its role to “rescuer”
and sends victim’s information to nearby explorers. if another robot receives
this information, it changes its role to “helper” and moves to join the rescuers-
swarm. Notice that some of the robot attributes are considered as the projection
of the robot internal state that is monitored by sensors and actuators (i.e.,
victimPerceived, position, and collision).

We assume that each robot has a unique identity (id) and since the robot
acquires information about its environment or its own status by means of read-
ing the values provided by sensors, no additional assumptions about the initial
state are needed. It is worth mentioning that sensors and actuators are not mod-
eled here as they represent the robot internal infrastructure while AbC model
represents the programmable behavior of the robot (i.e., its running code).

The robotics scenario is modeled as a set of parallel AbC components, each
component represents a robot (Robot1‖ . . . ‖Robotn) and each robot has the fol-
lowing form (Γi :PR). The behavior of a single robot is modeled in the following
AbC process PR:

PR � (Rescuer + Explorer)| RandWalk

The robot follows a random walk in exploring the disaster arena. The robot
can become a “Rescuer” when recognizing a victim by mean of locally reading
the value of an attribute controlled by its sensors or stay as “explorer” and keep
sending queries for information about the victim from nearby robots whose role
is either “rescuer” or “helper”.

If a victim is perceived (i.e., the value of “victimPerceived = tt”, the robot
updates its “state” to “stop” which triggers halting the movement, computes
the victim position and the number of the required robots to rescue the victim
and stores them in the attributes “vPosition” and “count” respectively, changes
its role to “rescuer”, and waits for queries from nearby explorers. Once a query
is received, the robot sends back the victim information to the requesting robot
addressing it by its identity “id” and the swarm starts forming.

Rescuer � 〈this.victimPerceived = tt〉[this.state := stop, this.count := 3,
this.vPosition := < 3, 4 >, this.role := rescuer]()@ff.

(y = qry ∧ z = explorer)(x, y, z).
(this.vPosition, this.count, ack, this.role)@(id = x)

If no victim is perceived, the robot keeps sending queries about victims to nearby
robots whose role is either “rescuer” or “helper”. This query contains the robot
identity “this.id”, a special name “qry” to indicate the request type, and the
robot role “this.role”. If an acknowledgement arrives containing victim’s infor-
mation, the robot changes its role to “helper” and start the helping procedure.

Explorer � (this.id, qry, this.role)@(role = rescuer ∨ role = helper).
(((z = rescuer ∨ z = helper) ∧ x = ack)(vpos, c, x, z).
[this.role := helper]()@ff.Helper + Rescuer + Explorer)

10 Y. Abd Alrahman et al.

The helping robot stores the victim position in the attribute “vPosition” and
updates its target to be the victim position. This triggers the actuators to move
to the specified location. The robot waits until it reaches the victim and at the
same time is willing to respond to other robots queries, if more than one robot is
needed for the rescuing procedure. Once the robot reaches the victim, the robot
changes its role to “rescuer” and joins the rescuer-swarm.

Helper � [this.vPosition := vpos, this.target := vpos]()@ff.

(〈this.position = this.target〉[this.role := rescuer]()@ff

| 〈c > 1〉(y = qry ∧ z = explorer)(x, y, z).
(this.vPosition, c − 1, ack, this.role)@(id = x))

The “RandWalk” process is defined below. This process computes a ran-
dom direction to be followed by the robot. Once a collision is detected by the
proximity sensor, a new random direction is calculated.

RandWalk � [this.direction := 2πrand()]()@ff.

〈this.collision = tt〉RandWalk

For more details, a runtime environment for the linguistic primitives of AbC
can be found in the following website http://lazkany.github.io/AbC.

4.2 Encoding Interaction Patterns

In this section, we show how group-based [1,5,13] and publish/subscribe-based
[4,9] interaction patterns can be naturally rendered in AbC . Since these interac-
tion patterns do not have formal descriptions, we proceed by relying on examples.

We start with group-based interaction patterns and show that when modeling
a group name as an attribute in AbC , the constructs for joining or leaving a given
group can be modeled as attribute updates, see the following example:

Γ1 : (msg, this.group)@(group = a) ‖ Γ2 : ((y = b)(x, y)) ‖ . . .

‖ Γ7 : ((y = b)(x, y) | [this.group := a]()@ff)

initially Γ1(group) = b, Γ2(group) = a, and Γ7(group) = c. Component 1 wants
to send the message “msg” to group “a”. Only Component 2 is allowed to
receive it as it is the only member of group “a”. If Component 7 leaves group
“c” and joins group “a” before “msg” is emitted then both of Component 2 and
Component 7 will receive the message.

A possible encoding of group interaction into bπ-calculus has been introduced
in [8]. The encoding is relatively complicated and does not guarantee the causal
order of message reception. “Locality” is neither a first class construct in bπ-
calculus nor in AbC . However, “locality” (in this case, the group name) can be
modeled as an attribute in AbC while in bπ-calculus, it needs much more effort.

Publish/subscribe interaction patterns can be considered as special cases of
the attribute-based ones. For instance, a natural modeling of the topic-based

http://lazkany.github.io/AbC

On the Power of Attribute-Based Communication 11

publish/subscribe model [9] into AbC can be accomplished by allowing publish-
ers to broadcast messages with “tt” predicates (i.e., satisfied by all) and only
subscribers can check the compatibility of the exposed publishers attributes with
their subscriptions, see the following example:

Γ1 : (msg, this.topic)@(tt) ‖ Γ2 : (y = this.subscription)(x, y) ‖
. . . ‖ Γn : (y = this.subscription)(x, y)

The publisher broadcasts the message “msg” tagged with a specific topic for
all possible subscribers (the predicate “tt” is satisfied by all), subscribers receive
the message if the topic matches their subscription.

5 Behavioral Theory for AbC

In this section, we define a behavioral theory for AbC . We start by introducing
a barbed congruence, then we present an equivalent definition of bisimulation.
In what follows, we shall use the following notations:

– ⇒ denotes τ−→∗ where τ = νx̃Πṽ with Π � ff.
–

γ
=⇒ denotes =⇒ γ−→=⇒ if (γ �= τ).

–
γ̂
=⇒ denotes =⇒ if (γ = τ) and

γ
=⇒ otherwise.

– � denotes { γ−→ | γ is an output or γ = τ} and �∗ denotes (�)∗.

A context C[•] is a component term with a hole, denoted by [•] and AbC contexts
are generated by the following grammar:

C[•] ::= [•] | [•]‖C | C‖[•] | νx[•] | ![•]

Barbed Congruence. We define notions of strong and weak barbed congruence
to reason about AbC components following the definition of maximum sound
theory by Honda and Yoshida [14]. This definition is a slight variant of Milner
and Sangiorgi’s barbed congruence [21] and it is also known as open barbed
bisimilarity [25].

Definition 2 (Barb). A predicate Π2 is observable (is a barb) in component

C, denoted as C↓Π , if C can send a message with a predicate Π ′ (i.e., C
νx̃Π′ṽ−−−−→

where Π ′ � Π and Π ′ �� ff). We write C ⇓Π if C �∗ C ′ ↓Π .

Definition 3 (Barbed Congruence). A symmetric relation R over the set of
AbC components is a weak barbed congruence if whenever (C1, C2) ∈ R,

– C1↓Π implies C2 ⇓Π ;
– C1 � C ′

1 implies C2 �∗ C ′
2 and (C ′

1, C
′
2) ∈ R;

– for all contexts C[•], (C[c1], C[c2]) ∈ R.

2 From now on, we use the predicate Π to denote only its meaning, not its syntax.

12 Y. Abd Alrahman et al.

Two components are weak barbed congruent, written C1
∼= C2, if (C1, C2) ∈ R

for some barbed congruent relation R. The strong barbed congruence “�” is
obtained in a similar way by replacing ⇓ with ↓ and �∗ with � .

Bisimulation. We define an appropriate notion of bisimulation for AbC com-
ponents and prove that bisimilarity coincides with barbed congruence, and thus
represents a valid tool for proving that two components are barbed congruent.

Definition 4 (Weak Bisimulation). A symmetric binary relation R over the
set of AbC components is a weak bisimulation if for every action γ, whenever
(C1, C2) ∈ R and γ is of the form τ,Π(ṽ), or (νx̃Πṽ with Π �� ff), it holds that:

C1
γ−→ C ′

1 implies C2
γ̂
=⇒ C ′

2 and (C ′
1, C

′
2) ∈ R

where every predicate Π occurring in γ is matched by its semantics meaning
in γ̂. Two components C1 and C2 are weak bisimilar, written C1 ≈ C2 if there
exists a weak bisimulation R relating them. Strong bisimilarity, “∼”, is defined
in a similar way by replacing =⇒ with −→.

Bisimilarity can be used as a reasoning tool and as a proof technique to
compare systems at different levels of abstractions. For instance, the behavior
of the robotic scenario in Sect. 4.1 can be compared with a centralized version
where robots exchange information through a central node using an internet
connection. Bisimilarity can also be used as a tool for state space reduction and
minimization.

It is easy to prove that ∼ and ≈ are equivalence relations by relying on the
classical arguments of [19]. However, our bisimilarity enjoys a much more inter-
esting property: the closure under any context. So, in the next three lemmas, we
prove that our bisimilarity is preserved by parallel composition, name restriction,
and replication.

Lemma 2 (∼ and ≈ are preserved by parallel composition). Let C1 and
C2 be two components, then

– C1 ∼ C2 implies C1‖C ∼ C2‖C for all components C
– C1 ≈ C2 implies C1‖C ≈ C2‖C for all components C.

Lemma 3 (∼ and ≈ are preserved by name restriction). Let C1 and C2

be two components, then

– C1 ∼ C2 implies νxC1 ∼ νxC2 for all names x.
– C1 ≈ C2 implies νxC1 ≈ νxC2 for all names x.

Lemma 4 (∼ and ≈ are preserved by replication). Let C1 and C2 be two
components, then

– C1 ∼ C2 implies !C1 ∼ !C2

– C1 ≈ C2 implies !C1 ≈ !C2.

On the Power of Attribute-Based Communication 13

As an immediate consequence of Lemmas 2, 3, and 4, we have that ∼ and ≈
are congruence relations (i.e., closed under any context). We are now ready to
show that our bisimilarity represents a proof technique for establishing barbed
congruence. The proofs follow in a standard way.

Theorem 1 (Soundness). Let C1 and C2 be two components, then

– C1 ∼ C2 implies C1 � C2

– C1 ≈ C2 implies C1
∼= C2.

Lemma 5 (Completeness). Let C1 and C2 be two components, then

– C1 � C2 implies C1 ∼ C2

– C1
∼= C2 implies C1 ≈ C2.

Theorem 2 (Characterization). Bisimilarity and barbed congruence
coincide.

6 Encoding Channel-Based Interaction

The interaction primitives in AbC are purely based on attributes rather than
explicit names or channels. Attribute values can be locally modified. Modifying
attribute values introduces opportunistic interactions between components by
means of changing the set of possible interaction partners. The reason is because
selecting interaction partners depends on the predicates over attributes and this
is why modeling adaptivity in AbC is quite natural. This possibility is missing
in channel-based communication since internal actions and the opportunity of
interaction are orthogonal in those models.

We argue that finding a compositional encoding for the following simple
behavior is very difficult if not impossible in channel-based process calculi.

Γ1 : (msg, this.b)@(tt) ‖ Γ2 : ([this.a := 5]()@ff.P | (y ≤ this.a)(x, y).Q)

Table 7. Encoding bπ-calculus into AbC
Initially Γ1(b) = 3 and Γ2(a) = 2.
Changing the value of the local
attribute a to “5” by the left-hand side
process in the second component pro-
vides an opportunity of receiving the
message “msg” from the first compo-
nent.

On the other hand, in channel-
based communication, a channel
instantly appears at the time of
interaction and disappears afterwards.
This feature is not present in AbC
since attributes are persistent in the
attribute environment and cannot dis-
appear at any time. However, this is not

14 Y. Abd Alrahman et al.

a problem in that we can exploit the fact that AbC predicates can check the
received values. We simply add the channel name as a value in the message and
the receiver checks its compatibility with its receiving channel.

To show the correctness of this encoding, we choose bπ-calculus [8] as a
representative for channel-based process calculi. The bπ-calculus is a good choice
because it is based on broadcast rather than binary communication which makes
it a sort of variant of value-passing CBS [23]. Also, channels in bπ-calculus can
be communicated like in π-calculus [20]. We consider two level syntax for bπ-
calculus (i.e., only static contexts [19] are considered) as shown below.

P ::= G | P1‖P2 | νxP

G ::= nil | a(x̃).G | āx̃.G | G1 + G2 | (rec A〈x̃〉.G)〈ỹ〉
Dealing with one level bπ-syntax would not add difficulties related to channel

encoding, but only related to the encoding of parallel composition and name
restriction when occurring under a prefix or a choice. As reported in Table 7, the
encoding of a bπ-calculus process P is rendered as an AbC component �P �c with
Γ = ∅. The channel is rendered as the first element in the sequence of values.
For instance, in the output action (a, x̃)@(a = a), a represents the interaction
channel, so the input action (y = a)(y, x̃) will always check the first element of
the received sequence to decide whether to accept or discard the message. Notice
that the predicate (a = a) is satisfied by any Γ , however including the channel
name in the predicate is crucial to encode name restriction correctly.

Now, we prove that the encoding is faithful, i.e., preserves the semantics of
the original process. More precisely, we will prove the following Theorem:

Theorem 3 (Operational Correspondence). For any bπ process P ,

– (Operational completeness): if P �bπ P ′ then �P �c�
∗ � �P ′�c.

– (Operational soundness): if �P �c � Q then ∃P ′ such that P�∗
bπP ′

and Q �∗ � �P ′�c.
– (Barb preservation): both P and �P �c exhibit similar barbs i.e.,

P ↓bπ and �P �c ↓AbC.

The proof proceeds by induction on the shortest transition of →bπ. It shows
that we can mimic each transition of bπ-calculus by exactly one transition in
AbC. This implies that the completeness and the soundness of the operational
correspondence can be even proved in a stronger way as in corollaries 1 and 2.

Corollary 1 (Strong Completeness). if P �bπ P ′ then ∃Q such that
Q≡�P ′�c and �P �c � Q.

Corollary 2 (Strong Soundness). if �P �c � Q then Q ≡ �P ′�c and
P �bπ P ′

As a result of Theorems 2 and 3 and of the strong formulations of Corollaries 1
and 2, this encoding is sound and complete with respect to bisimilarity as stated
in the following corollaries.

On the Power of Attribute-Based Communication 15

Corollary 3 (Soundness w.r.t Bisimilarity).

– �P �c ∼ �Q�c implies P ∼ Q
– �P �c ≈ �Q�c implies P ≈ Q.

Corollary 4 (Completeness w.r.t Bisimilarity).

– P ∼ Q implies �P �c ∼ �Q�c

– P ≈ Q implies �P �c ≈ �Q�c.

7 Related Work

In this section, we report related works concerning languages and calculi with
primitives that either model multiparty interaction or enjoy specific properties.

AbC is inspired by the SCEL language [6,7] that was designed to support
programming of autonomic computing systems [24]. Compared with SCEL, the
knowledge representation in AbC is abstract and is not designed for detailed
reasoning during the model evolution. This reflects the different objectives of
SCEL and AbC . While SCEL focuses on programming issues, AbC concentrates
on a minimal set of primitives to study attribute-based communication.

Many calculi that aim at providing tools for specifying and reasoning about
communicating systems have been proposed: CBS [22] captures the essential
features of broadcast communication in a simple and natural way. Whenever a
process transmits a value, all processes running in parallel and ready to input
catch the broadcast. The CPC calculus [11] relies on pattern-matching. Input
and output prefixes are generalized to patterns whose unification enables a two-
way, or symmetric, flow of information and partners are selected by matching
inputs with outputs and testing for equality. The attribute π-calculus [16] aims
at constraining interaction by considering values of communication attributes.
A λ-function is associated to each receiving action and communication takes
place only if the result of the evaluation of the function with the provided input
falls within a predefined set of values. The imperative π-calculus [15] is a recent
extension of the attribute π-calculus with a global store and with imperative
programs used to specify constraints. The broadcast Quality Calculus of [27]
deals with the problem of denial-of-service by means of selective input actions.
It inspects the structure of messages by associating specific contracts to inputs,
but does not provide any mean to change the input contracts during execution.

AbC combines the learnt lessons from the above mentioned languages and
calculi in the sense that AbC strives for expressivity while preserving minimality
and simplicity. The dynamic settings of attributes and the possibility of inspect-
ing/modifying the environment gives AbC greater flexibility and expressivity
while keeping models as much natural as possible.

8 Concluding Remarks

We have introduced a foundational process calculus, named AbC , for attribute-
based communication. We investigated the expressive power of AbC both in

16 Y. Abd Alrahman et al.

terms of its ability to model scenarios featuring collaboration, reconfiguration,
and adaptation and of its ability to encode channel-based communication and
other interaction paradigms. We defined behavioral equivalences for AbC and
finally we proved the correctness of the proposed encoding up to some reason-
able equivalence. We demonstrated that the general concept of attribute-based
communication can be exploited to provide a unifying framework to encompass
different communication models. We developed a centralized prototype imple-
mentation for AbC linguistic primitives to demonstrate their simplicity and flex-
ibility to accommodate different interaction patterns.

We plan to investigate the impact of bisimulation in terms of axioms, proof
techniques, etc. for working with the calculus and to consider alternative behav-
ioral relations like testing preorders.

Another line of research is to investigate anonymity at the level of attribute
identifiers. Clearly, AbC achieves dynamicity and openness in the distributed
settings, which is an advantage compared to channel-based models. In our model,
components are anonymous, however the “name-dependency” challenge arises at
another level, that is, the attribute environments. In other words, the sender’s
predicate should be aware of the identifiers of receiver’s attributes in order to
explicitly use them. For instance, the sending predicate (loc =< 1, 4 >) targets
the components at location < 1, 4 >, however, different components might use
different identifiers to denote their locations; this requires that there should be
an agreement about the attribute identifiers used by the components. For this
reason, appropriate mechanisms for handling attribute directories together with
identifiers matching/correspondence will be considered. These mechanisms will
be particularly useful when integrating heterogeneous applications.

Further attention will be also dedicated to provide an efficient distributed
implementation for AbC linguistic primitives. We also plan to investigate the
effectiveness of AbC not only as a tool for encoding calculi but also for dealing
with case studies from different application domains.

References

1. Agha, G., Callsen, C.J.: ActorSpace: an open distributed programming paradigm,
vol. 28. ACM (1993)

2. Alrahman, Y.A., De Nicola, R., Loreti, M.: On the power of attribute-based com-
munication, extended report (2016)

3. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, SAC 2015, pp. 1840–1845. ACM (2015)

4. Bass, M.A., Nguyen, F.T.: Unified publish and subscribe paradigm for local and
remote publishing destinations, US Patent 6,405,266, 11 June 2002

5. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: a
comprehensive study. ACM Comput. Surv. 33, 427–469. ACM (2001). doi:10.1145/
503112.503113

6. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach to
autonomic computing. In: Boer, F.S., Bonsangue, M.M., Beckert, B., Damiani, F.
(eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)

http://dx.doi.org/10.1145/503112.503113
http://dx.doi.org/10.1145/503112.503113

On the Power of Attribute-Based Communication 17

7. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the scel language. ACM Trans. Auton. Adapt. Syst. 9, 1–29
(2014)

8. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In:
Parallel and Distributed Processing Symposium, International, vol. 3, p. 30149b.
IEEE Computer Society (2001)

9. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. (CSUR) 35(2), 114–131 (2003)

10. Ferscha, A.: Collective adaptive systems. In: Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2015 ACM International Symposium on Wearable Computers, pp. 893–895
(2015)

11. Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus. In: Calude,
C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 244–258. Springer,
Heidelberg (2010)

12. Antony Richard Hoare, C.: Communicating sequential processes. Commun. ACM
21(8), 666–677 (1978)

13. Holbrook, H.W., Cheriton, D.R.: Ip multicast channels: express support for large-
scale single-source applications. In: ACM SIGCOMM Computer Communication
Review, vol. 29, pp. 65–78. ACM (1999)

14. Honda, K., Yoshida, N.: On reduction-based process semantics. Theor. Comput.
Sci. 151(2), 437–486 (1995)

15. John, M., Lhoussaine, C., Niehren, J.: Dynamic compartments in the imperative
π-calculus. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp.
235–250. Springer, Heidelberg (2009)

16. John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M.: The attributed Pi-
calculus with priorities. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M.,
Uhrmacher, A.M. (eds.) Transactions on Computational Systems Biology XII.
LNCS, vol. 5945, pp. 13–76. Springer, Heidelberg (2010)

17. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations with the tota middleware. In: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications, 2004. PerCom 2004,
pp. 263–273. IEEE (2004)

18. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). doi:10.1007/3-540-10235-3

19. Milner, R.: Communication and Concurrency. Prentice-Hall Inc, Upper Saddle
River (1989)

20. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, ii. Inf. Comput.
100(1), 41–77 (1992)

21. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

22. Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2),
285–327 (1995)

23. Prasad, K.V.S.: A calculus of broadcasting systems. In: Abramsky, S. (ed.) CAAP
1991 and TAPSOFT 1991. LNCS, vol. 493, pp. 338–358. Springer, Heidelberg
(1991)

24. Sanders, J.W., Smith, G.: Formal ensemble engineering. In: Wirsing, M., Banâtre,
J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems. LNCS, vol.
5380, pp. 132–138. Springer, Heidelberg (2008)

25. Sangiorgi, D., Walker, D.: The pi-calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge (2003)

http://dx.doi.org/10.1007/3-540-10235-3

18 Y. Abd Alrahman et al.

26. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.,
Mcdermid, J., Paige, R.: Large-scale complex it systems. Commun. ACM 55(7),
71–77 (2012)

27. Vigo, R., Nielson, F., Nielson, H.R.: Broadcast, denial-of-service, and secure com-
munication. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
412–427. Springer, Heidelberg (2013)

28. Viroli, M., Damiani, F., Beal, J.: A calculus of computational fields. In: Canal,
C., Villari, M. (eds.) Advances in Service-Oriented and Cloud Computing, pp.
114–128. Springer, Heidelberg (2013)

Fencing Programs with Self-Invalidation
and Self-Downgrade

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Stefanos Kaxiras1,
Carl Leonardsson1, Alberto Ros2, and Yunyun Zhu1(B)

1 Uppsala University, Uppsala, Sweden
{mohamed faouzi.atig,Yunyun.Zhu}@it.uu.se

2 Universidad de Murcia, Murcia, Spain

Abstract. Cache coherence protocols using self-invalidation and self-
downgrade have recently seen increased popularity due to their sim-
plicity, potential performance efficiency, and low energy consumption.
However, such protocols result in memory instruction reordering, thus
causing extra program behaviors that are often not intended by the pro-
grammer. We propose a novel formal model that captures the semantics
of programs running under such protocols, and employs a set of fences
that interact with the coherence layer. Using the model, we perfform a
reachability analysis that can check whether a program satisfies a given
safety property with the current set of fences. Based on an algorithm in
[19], we describe a method for insertion of optimal sets of fences that
ensure correctness of the program under such protocols. The method
relies on a counter-example guided fence insertion procedure. One fea-
ture of our method is that it can handle a variety of fences (with different
costs). This diversity makes optimization more difficult since one has to
optimize the total cost of the inserted fences, rather than just their num-
ber. To demonstrate the strength of our approach, we have implemented
a prototype and run it on a wide range of examples and benchmarks. We
have also, using simulation, evaluated the performance of the resulting
fenced programs.

1 Introduction

Background. Many traditional cache coherence protocols such as Mesi or Moesi
are transparent to the programmer in the sense that there is no effect on memory
ordering due to the coherence protocol. On the other hand, there is an ever larger
demand on hardware designers to increase efficiency both in performance and
power consumption. The quest to increase performance while maintaining trans-
parency has led to complex coherence protocols with many states and relying
on directories, invalidations, broadcasts, etc., often at the price of high verifi-
cation cost, area (hardware cost) and increased energy consumption. Therefore,
many researchers have recently proposed ways to simplify coherence without
compromising performance but at the price of relaxing the memory consistency
model [7,8,12–15,18,23–25,31,32]. Principal techniques among these proposals
are Self-Invalidation (Si) and Self-Downgrade (Sd).
c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 19–35, 2016.
DOI: 10.1007/978-3-319-39570-8 2

20 P.A. Abdulla et al.

In traditional cache coherence protocols, when a write is performed on a cache
line, the copies in other cores are invalidated (discarded). Thus, the protocol
needs to track sharers of a cache line in a directory structure. A protocol with
Self-Invalidation allows old copies to be kept, without invalidation at each store
by another core. This eliminates the need for tracking readers [18]. In an Si
protocol, invalidation is caused by synchronization instructions which occur in
the code of the same thread. For instance, when a core executes a fence, it
informs its own L1 cache that it has to self-invalidate.

Correspondingly, in traditional protocols, when a read operation is performed
on a cache line, the last writer of the line is downgraded (or copied to the shared
cache). In a protocol with Self-Downgrade (Sd), downgrades are not caused by
read operations in other cores. Sd eliminates the need to track the last writer
of a cache line [24]. Like invalidations, in an Sd protocol, downgrades can be
caused by fence instructions.

A protocol with both self-invalidation and self-downgrade (SiSd) does not
need a directory, thus removing a main source of complexity and scalability con-
straints in traditional cache coherence protocols [24]. But this comes at a price:
SiSd protocols induce weak memory semantics that reorder memory instruc-
tions. The behavior of a program may now deviate from its behavior under the
standard Sequentially Consistent (SC) semantics, leading to subtle errors that
are hard to detect and correct.

In the context of weak memory, hardware designers provide memory fence
instructions to help the programmer eliminate the undesired behaviors. A
fence instruction, executed by a process, limits the allowed reorderings between
instructions issued before and after the fence instruction. To enforce consistency
under SiSd, fences should also be made visible to caches, such that necessary
invalidations or downgrades may be performed. In this paper, we consider dif-
ferent types of fences. The different types eliminate different kinds of non-SC
behaviors, and may have different impact on the program performance. In fact,
unnecessary fences may significantly downgrade program performance. This is
particularly true for the fences considered here, since they both incur latency,
and affect the performance of the cache coherence subsystem as a whole. These
fences cause the invalidation of the contents of the cache. Hence the more fences
the less caching and the higher traffic we have. Thus, it is desirable to find the
optimal set of fences, which guarantee correctness at minimal performance cost.

Challenge. One possibility to make SiSd transparent to the program is to require
the programmer to ensure that the program does not contain any data races. In
fact, data race freedom is often required by designers of SiSd protocols in order
to guarantee correct program behavior [7,13]. However, this approach would
unnecessarily disqualify large sets of programs, since many data races are in real-
ity not harmful. Examples of correct programs with races include lock-free data
structures (e.g., the Chase-Lev Work-stealing queue algorithm [6]), transactional
memories (e.g., the TL2 algorithm [9]), and synchronization library primitives
(e.g. pthread spin lock in glibc). In this paper, we consider a different app-
roach where fences are inserted to retrieve correctness. This means that we may

Fencing Programs with Self-Invalidation and Self-Downgrade 21

insert sufficiently many fences to achieve program correctness without needing
to eliminate all its races or non-SC behaviors. The challenge then is to find sets
of fences that guarantee program correctness without compromising efficiency.
Manual fence placement is time-consuming and error-prone due to the com-
plex behaviors of multithreaded programs [11]. Thus, we would like to provide
the programmer with a tool for automatic fence placement. There are several
requirements to be met in the design of fence insertion algorithms. First, a set of
fences should be sound, i.e., it should have enough fences to enforce a sufficiently
ordered behavior for the program to be correct. Second, the set should be opti-
mal, in the sense that it has a lowest total cost among all sound sets of fences.
In general, there may exist several different optimal sets of fences for the same
program. Our experiments (Sect. 4) show that different choices of sound fence
sets may impact performance and network traffic. To carry out fence insertion
we need to be able to perform program verification, i.e., to check correctness of
the program with a given set of fences. This is necessary in order to be able
to decide whether the set of fences is sound, or whether additional fences are
needed to ensure correctness. A critical task in the design of formal verification
algorithms, is to define the program semantics under the given memory model.

Our Approach. We present a method for automatic fence insertion in programs
running in the presence of SiSd. The method is applicable to a large class of
self-invalidation and self-downgrade protocols such as the ones in [7,8,12–15,
18,23–25,31,32]. Our goal is to eliminate incorrect behaviors that occur due to
the memory model induced by SiSd. We will not concern ourselves with other
sources of consistency relaxation, such as compiler optimizations. We formulate
the correctness of programs as safety properties. A safety property is an assertion
that some specified “erroneous”, or “bad”, program states can never occur during
execution. Such bad states may include e.g., states where a programmer specified
assert statement fails, or where uninitialized data is read. To check a safety
property, we check the reachability of the set of “bad” states.

We provide an algorithm for checking the reachability of a set of bad states
for a given program running under SiSd. In the case that such states are reach-
able, our algorithm provides a counter-example (i.e., an execution of the program
that leads to one of the bad states). This counter-example is used by our fence
insertion procedure to add fences in order to remove the counter-examples intro-
duced by SiSd semantics. Thus, we get a counter-example guided procedure for
inferring the optimal sets of fences. The termination of the obtained procedure
is guaranteed under the assumption that each call to the reachability algorithm
terminates. As a special case, our tool detects when a program behaves incor-
rectly already under SC. Notice that in such a case, the program cannot be
corrected by inserting any set of fences.

Contributions. We make the following main contributions: (i) A novel formal
model that captures the semantics of programs running under SiSd, and employs
a set of fences that interact with the coherence layer. The semantics support the
essential features of typical assembly code. (ii) A tool, Memorax, available at
https://github.com/memorax/memorax, that we have run successfully on a wide

https://github.com/memorax/memorax

22 P.A. Abdulla et al.

range of examples under SiSd and under Si. Notably, our tool detects for the
first time four bugs in programs in the Splash-2 benchmark suite [33], which have
been fixed in a recent Splash-3 release [27]. Two of these are present even under
SC, while the other two arise under SiSd. We employ the tool to infer fences
of different kinds and evaluate the relative performance of the fence-augmented
programs by simulation in GEMS.

We augment the semantics with a reachability analysis algorithm that can
check whether a program satisfies a given safety property with the current set
of fences. Inspired by an algorithm in [19] (which uses dynamic analysis instead
of verification as backend), we describe a counter-example guided fence inser-
tion procedure that automatically infers the optimal sets of fences necessary for
the correctness of the program. The procedure relies on the counter-examples
provided by the reachability algorithm in order to refine the set of fences. One
feature of our method is that it can handle different types of fences with dif-
ferent costs. This diversity makes optimization more difficult since one has to
optimize the total cost of the inserted fences, rather than just their number.
Upon termination, the procedure will return all optimal sets of fences.

Related Work. Adve and Hill proposed SC-for-DRF as a contract between
software and hardware: If the software is data race free, the hardware
behaves as sequentially consistent [2]. Dynamic self-invalidation (for DRF pro-
grams) was first proposed by Lebeck and Wood [18]. Several recent works
employ self-invalidation to simplify coherence, including SARC coherence [13],
DeNovo [7,31,32], and VIPS-M [14,15,23–25].

A number of techniques for automatic fence insertion have been proposed, for
different memory models and with different approaches. However, to our knowl-
edge, we propose the first counter-example guided fence insertion procedure in
the presence of a variety of fences (with different costs). In our previous work [1],
we propose counter-example guided fence insertion for programs under TSO with
respect to safety properties (also implemented in Memorax). Considering the
SiSd model makes the problem significantly more difficult. TSO offers only one
fence, whereas the SiSd model offers a variety of fences with different costs.
This diversity makes the optimization more difficult since one has to minimize
the total cost of the fences rather than just their number.

The work presented in [16] proposes an insertion procedure for different mem-
ory models w.r.t. safety properties. This procedure computes the set of needed
fences in order to not reach each state in the transition graph. Furthermore,
this procedure assigns a unique cost for all fences. The procedure is not counter-
example based, and requires some modification to the reachability procedure.

In [4], the tool Trencher is introduced, which inserts fences under TSO
to enforce robustness (formalised by Shasha and Snir in [30]), also using an
exact, model-checking based technique. Musketeer [3] uses static analysis to
efficiently overapproximate the fences necessary to enforce robustness under sev-
eral different memory models. In contrast to our work, the fence insertion pro-
cedures in [3,4] first enumerate all solutions and then use linear programming
to find the optimal set of fences.

Fencing Programs with Self-Invalidation and Self-Downgrade 23

The program semantics under SiSd is different from those under other weak
memory models (e.g. TSO and POWER). Hence existing techniques cannot be
directly applied. To our knowledge, it is the first work that defines the SiSd
model, proposes a reachability analysis and describes a fence insertion procedure
under SiSd.

There exist works on the verification of cache coherence protocols. This paper
is orthogonal to these works since we are concerned with verification of programs
running on such architectures and not the protocols themselves.

2 Programs – Syntax and Semantics

In this section, we formalize SiSd and Si protocols, by introducing a simple
assembly-like programming language, and defining its syntax and semantics.

2.1 Syntax

〈pgm〉 ::= data 〈vdecl〉+〈proc〉+
〈vdecl〉 ::= 〈var〉 = (∗ | 〈val〉)
〈proc〉 ::= process 〈pid〉 registers 〈reg〉∗ 〈stmts〉

〈stmts〉 ::= begin (〈label〉 : 〈stmt〉 ;)+ end

〈stmt〉 ::= 〈var〉 := 〈expr〉 | 〈reg〉 := 〈var〉 |
〈reg〉 := 〈expr〉 | llfence | fence |
cas (〈var〉 , 〈expr〉 , 〈expr〉) |
syncwr : 〈var〉 := 〈expr〉 | ssfence |
cbranch (〈bexpr〉) 〈label〉

Fig. 1. The grammar of concurrent programs.

The syntax of programs
is given by the gram-
mar in Fig. 1. A pro-
gram has a finite set of
processes which share a
number of variables (mem-
ory locations) M. A vari-
able x ∈ M should be
interpreted as one machine
word at a particular mem-
ory address. For simplic-
ity, we assume that all
the variables and process
registers assume their val-
ues from a common finite
domain V of values. Each process contains a sequence of instructions, each con-
sisting of a program label and a statement. To simplify the presentation, we
assume that all instructions (in all processes) have unique labels. For a label λ,
we apply three functions: Proc (λ) returns the process p in which the label occurs.
Stmt (λ) returns the statement whose label id is λ. Next (λ) returns the label of
the next statement in the process code, or end if there is no next statement.

2.2 Configurations

A local configuration of a process p is a triple (λ,RVal, L1), where λ is the label
of the next statement to execute in p, RVal defines the values of the local reg-
isters, and L1 defines the state of the L1 cache of p. In turn, L1 is a triple
(Valid, LStatus, LVal). Here Valid ⊆ M defines the set of shared variables that
are currently in the valid state, and LStatus is a function from Valid to the set

24 P.A. Abdulla et al.

{dirty, clean} that defines, for each x ∈ Valid, whether x is dirty or clean, and
LVal is a function from Valid to V that defines for each x ∈ Valid its current value
in the L1 cache of p. The shared part of a configuration is given by a function
LLC that defines for each variable x ∈ M its value LLC(x) in the LLC. A con-
figuration c then is a pair (LConf, LLC) where LConf is a function that returns,
for each process p, the local configuration of p.

2.3 Semantics

Instruction Semantics

σ=($r:=x) , x∈Valid

c
λ−→(LConf[p←(Next(λ),RVal[$r←LVal(x)],L1)],LLC)

σ=(x:=e) , x∈Valid , S′=LStatus[x←dirty]

c
λ−→(LConf[p←(Next(λ),RVal,(Valid,S′,LVal[x←RVal(e)]))],LLC)

σ=fence , Valid=

c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC)

σ=ssfence , ∀x∈M. (x∈Valid⇒LStatus(x)=clean)

c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC)

σ=llfence , ∀x∈M. (x∈Valid⇒LStatus(x)=dirty)

c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC)

σ=(syncwr:x := e) , x �∈Valid

c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC[x←RVal(e)])

σ=cas(x,e0,e1) , x �∈Valid , LLC(x)=RVal(e0)

c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC[x←RVal(e1)])

System Event Semantics

ω=(fetch(p,x)) , x �∈Valid , S′=LStatus[x←clean]

c
ω−→(LConf[p←(λ,RVal,(Valid∪{x},S′,LVal[x←LLC(x)]))],LLC)

ω=(wrllc(p,x)) , x∈Valid , LStatus(x)=dirty , S′=LStatus[x←clean]

c
ω−→(LConf[p←(λ,RVal,(Valid,S′,LVal))],LLC[x←LVal(x)])

ω=(evict(p,x)) , x∈Valid , LStatus(x)=clean

c
ω−→(LConf[p←(λ,RVal,(Valid\{x},LStatus[x←⊥],LVal[x←⊥]))],LLC)

Fig. 2. Semantics of programs running under SiSd.

In the formal definition
below, our seman-
tics allows system
events to occur non-
deterministically. This
means that we model
not only instructions
from the program code
itself, but also events
that are caused by
unpredictable things as
hardware prefetching,
software prefetching,
program preemption,
false sharing, mul-
tiple threads of the
same program being
scheduled on the same
core, etc. A transition
t is either performed
by a given process
when it executes an
instruction, or is a
system event. In the
former case, t will be
of the form λ, i.e., t
models the effect of a
process p performing
the statement labeled
with λ. In the latter
case, t will be equal
to ω for some system
event ω. For a function f , we use f [a ← b], to denote the function f ′ such that
f ′(a) = b and f ′(a′) = f(a′) if a′ �= a. We write f(a) = ⊥ to denote that f is
undefined for a.

Below, we give an intuitive explanation of each transition. The formal
definition can be found in Fig. 2 where we assume c = (LConf, LLC), and

Fencing Programs with Self-Invalidation and Self-Downgrade 25

LConf(p) = (λ,RVal, L1), and L1 = (Valid, LStatus, LVal), Proc (λ) = p, and
Stmt (λ) = σ. We leave out the definitions for local instructions, since they
have standard semantics.

Instruction Semantics. Let p be one of the processes in the program, and
let λ be the label of an instruction in p whose statement is σ. We will define a
transition relation λ−→, induced by λ, on the set of configurations. The relation
is defined in terms of the type of operation performed by the given statement
σ. In all the cases only the local state of p and LLC will be changed. The local
states of the rest of the processes will not be affected. This mirrors the principle
in SiSd that L1 cache controllers will communicate with the LLC, but never
directly with other L1 caches.

Read ($r := x): Process p reads the value of x from L1 into the register $r. The
L1 and the LLC will not change. The transition is only enabled if x is valid in
the L1 cache of p. This means that if x is not in L1, then a system event fetch
must occur before p is able to execute the read operation.

Write (x := e): An expression e contains only registers and constants. The
value of x in L1 is updated with the evaluation of e where registers have values
as indicated by RVal, and x becomes dirty. The write is only enabled if x is valid
for p.

Fence (fence): A full fence transition is only enabled when the L1 of p is empty.
This means that before the fence can be executed, all entries in its L1 must be
evicted (and written to the LLC if dirty). So p must stall until the necessary
system events (wrllc and evict) have occurred. Executing the fence has no
further effect on the caches.

SS-Fence (ssfence): Similarly, an ssfence transition is only enabled when
there are no dirty entries in the L1 cache of p. So p must stall until all dirty
entries have been written to the LLC by wrllc system events. In contrast to a
full fence, an ssfence permits clean entries to remain in the L1.

LL-Fence (llfence): This is the dual of an SS-Fence. An llfence transition
is only enabled when there are no clean entries in the L1 cache of p. In other
words, the read instructions before and after an llfence cannot be reordered.

Synchronized Write (syncwr : x := e): A synchronized write is like an ordi-
nary write, but acts directly on the LLC instead of the L1 cache. For a syncwr
transition to be enabled, x may not be in the L1. (I.e., the cache must invalidate
x before executing the syncwr.) When it is executed, the value of x in the LLC
is updated with the evaluation of the expression e under the register valuation
RVal of p. The L1 cache is not changed.

CAS (cas(x, e0, e1)): A compare and swap transition acts directly on the LLC.
The cas is only enabled when x is not in the L1 cache of p, and the value of x in
the LLC equals e0 (under RVal). When the instruction is executed, it atomically
writes the value of e1 directly to the LLC in the same way as a synchronized
write would.

26 P.A. Abdulla et al.

System Event Semantics. The system may non-deterministically (i.e., at any
time) perform a system event. A system event is not a program instruction, and
so will not change the program counter (label) of a process. We will define a
transition relation ω−→, induced by the system event ω. There are three types of
system events as follows.

Eviction (evict(p, x)): An evict(p, x) system event may occur when x is valid
and clean in the L1 of process p. When the event occurs, x is removed from the
L1 of p.

Write-LLC (wrllc(p, x)): If the entry of x is dirty in the L1 of p, then a
wrllc(p, x) event may occur. The value of x in the LLC is then updated with
the value of x in the L1 of p. The entry of x in the L1 of p becomes clean.

Fetch (fetch(p, x)): If x does not have an entry in the L1 of p, then p may fetch
the value of x from the LLC, and create a new, clean entry with that value for
x in its L1.

2.4 Program Semantics Under an Si Protocol

In a self-invalidation protocol without self-downgrade, a writing process will
be downgraded and forced to communicate its dirty data when another process
accesses that location in the LLC. This behavior can be modelled by a semantics
where writes take effect atomically with respect to the LLC. Hence, to modify
the semantics given in Sect. 2.3 such that it models a program under an Si
protocol, it suffices to interpret all write instructions as the corresponding syncwr
instructions.

2.5 Transition Graph and the Reachability Algorithm

Our semantics allows to construct, for a given program P, a finite transition
graph, where each node in the graph is a configuration in P, and each edge is a
transition. A run is a sequence c0

t1−→ c1
t2−→ c2 · · · tn−→ cn, which is a path in

the transition graph, where ti(0 ≤ i ≤ n) is either a label λ or a system event ω.
Together with the program, the user provides a safety property φ that

describes a set Bad of configurations that are considered to be errors. Checking
φ for a program P amounts to checking whether there is a run leading from the
initial configuration to a configuration in Bad . To do that, the input program
under SiSd is translated to the code recognized by the reachability analysis tool
chosen by the user. The translated code simulates all the behaviors which are
allowed in the SiSd semantics. Also, there is instrumentation added to simulate
the caches. Verifying the input program amounts to verifying the translated code
which is analyzed under SC. If a bad configuration is encountered, a witness run
is returned by the tool. Otherwise, the program is declared to be correct.

Fencing Programs with Self-Invalidation and Self-Downgrade 27

3 Fence Insertion

In this section we describe our fence insertion procedure, which is closely related
to the algorithm described in [19]. Given a program P, a cost function κ and a
safety property φ, the procedure finds all the sets of fences that are optimal for
P w.r.t. φ and κ.

In this section we take fence constraint (or fence for short) to mean a pair
(λ, f) where λ is a statement label and f is a fence instruction. A fence constraint
(λ, f) should be interpreted as the notion of inserting the fence instruction f into
a program, between the statement labeled λ and the next statement (labeled by
Next (λ))1. For a program P and a set F of fence constraints, we define P ⊕ F
to mean the program P where all fence constraints in F have been inserted. To
avoid ambiguities in the case when F contains multiple fence constraints with
the same statement label (e.g. (λ, llfence) and (λ, ssfence)), we assume that
fences are always inserted in some fixed order.

Definition 1 (Soundness of Fence Sets). For a program P, safety property
φ, and set F of fence constraints, the set F is sound for P w.r.t. φ if P ⊕ F
satisfies φ under SiSd.

A cost function κ is a function from fence constraints to positive integer
costs. We extend the notion of a cost function to sets of fence constraints in the
natural way: For a cost function κ and a set F of fence constraints, we define
κ(F) =

∑
c∈F κ(c).

Definition 2 (Optimality of Fence Sets). For a program P, safety property
φ, cost function κ, and set F of fence constraints, F is optimal for P w.r.t. φ
and κ if F is sound for P w.r.t. φ, and there is no sound fence set G for P w.r.t.
φ where κ(G) < κ(F).

In order to introduce our algorithm, we define the notion of a hitting set.

Definition 3 (Hitting Set). For a set S = {S0, · · · , Sn} of sets S0, · · · , Sn,
and a set T , we say that T is a hitting set of S if T ∩ Si �= ∅ for all 0 ≤ i ≤ n.

For example {a, d} is a hitting set of {{a, b, c}, {d}, {a, e}}. For a set S of
sets, hitting sets of S can be computed using various search techniques, such
as e.g. constraint programming. We will assume that we are given a function
hits(S, κ) which computes all hitting sets for S which are cheapest w.r.t. κ. I.e.,
for a set S of finite sets, and a cost function κ, the call hits(S, κ) returns the
set of all sets T with T ⊆ ⋃

Si∈S Si such that (i) T is a hitting set of S, and
(ii) there is no hitting set T ′ of S such that κ(T ′) < κ(T).

We present our fence insertion algorithm in Fig. 3. The algorithm keeps two
variables opt and req. Both are sets of fence constraint sets, but are intuitively
interpreted in different ways. The set opt contains all the optimal fence con-
straint sets for P w.r.t. φ and κ that have been found thus far. The set req

1 This definition can be generalized. Our prototype tool does indeed support a more
general definition of fence positions, which is left out of the article for simplicity.

28 P.A. Abdulla et al.

is used to keep track of the requirements that have been discovered for which
fences are necessary for soundness of P. We maintain the following invariant for
req: Any fence constraint set F which is sound for P w.r.t. φ is a hitting set of
req. As the algorithm learns more about P, the requirements in req will grow,
and hence give more information about what a sound fence set may look like.
Notice that the invariant holds trivially in the beginning, when req = ∅.

Fencins(P,φ,κ)
1: opt := ∅; // Optimal fence sets
2: req := ∅; // Known requirements
3: while(∃F ∈ hits(req, κ) \ opt){
4: π := reachable(P ⊕ F, φ);
5: if(π =⊥){

// The fence set F is sound
// (and optimal)!

6: opt := opt ∪ {F};
7: }else{ // π is a witness run.
8: C := analyze witness(P ⊕ F, π);

// C is the set of fences
// that can prevent π.

9: if(C = ∅){ // error under SC!
10: return ∅;
11: }
12: req := req ∪ {C};
13: }
14: }
15: return opt;

Fig. 3. The fence insertion algorithm.

In the loop on lines 3–14 we
repeatedly compute a candidate
fence set F (line 3), insert it
into P, and call the reachability
analysis to check if F is sound
(line 4). We assume that the call
reachable(P⊕F, φ) returns ⊥ if
φ is unreachable in P ⊕F, and a
witness run otherwise. If P ⊕ F
satisfies the safety property φ,
then F is sound. Furthermore,
since F is chosen as one of the
cheapest (w.r.t. κ) hitting sets
of req, and all sound fence sets
are hitting sets of req, it must
also be the case that F is opti-
mal. Therefore, we add F to opt
on line 6.

If P ⊕ F does not satisfy
the safety property φ, then we
proceed to analyze the witness
run π. The witness analysis pro-
cedure is outlined in Sect. 3.1.
The analysis will return a set
C of fence constraints such that
any fence set which is restrictive
enough to prevent the erroneous run π must contain at least one fence constraint
from C. Since every sound fence set must prevent π, this means that every sound
fence set must have a non-empty intersection with C. Therefore we add C to req
on line 12, so that req will better guide our choice of fence set candidates in the
future.

Note that in the beginning, hits(req, κ) will return a singleton set of the
empty set, namely {∅}. Then F is chosen as the empty set ∅ and the algorithm
continues. A special case occurs when the run π contains no memory access
reorderings. This means that P can reach the bad states even under the SC
memory model. Hence it is impossible to correct P by only inserting fences. The
call analyze witness(P ⊕F, π) will in this case return the empty set. The main
algorithm then terminates, also returning the empty set, indicating that there
are no optimal fence sets for the given problem.

Fencing Programs with Self-Invalidation and Self-Downgrade 29

3.1 Witness Analysis

The analyze witness function takes as input a program P (which may already
contain some fences inserted by the fence insertion algorithm), and a counter-
example run π generated by the reachability analysis. The goal is to find a set
G of fences such that (i) all sound fence sets have at least one fence in common
with G and (ii) G contains no fence which is already in P. It is desirable to keep
G as small as possible, in order to quickly converge on sound fence sets.

Program fragment Witness run

process P0
...
L0: x := 1;
L1: $r0 := y;
L2: $r1 := z;
...

...
1.fetch(P0,x)
2.L0: x := 1
3.fetch(P0,y)
4.L1: $r0 := y
5.fetch(P0,z)
6.L2: $r1 := z

...
7.wrllc(P0,x)

...

Fig. 4. Left: Part of a program P, containing
three instructions of the thread P0. Right: A part
of a counter-example run π of P.

There are several ways to
implement analyze witness to
satisfy the above requirements.
One simple way builds on the fol-
lowing insight: Any sound fence
set must prevent the current
witness run. The only way to
do that, is to have fences pre-
venting some access reordering
that occurs in the witness. So a
set G which contains all fences
preventing some reordering in
the current witness satisfies both
requirements listed above.

As an example, consider
Fig. 4. On the left, we show
part of a program P where
the thread P0 performs three
memory accesses L0, L1 and L2. On the right, we show the corresponding part
of a counter-example run π. We see that the store L0 becomes globally visible
at line 7, while the loads L1 and L2 access the LLC at respectively lines 3 and 5.
Hence the order between the instructions L0 and L1 and the order between L0
and L2 in the program code, is opposite to the order in which they take effect
w.r.t. the LLC in π. We say that L0 is reordered with L1 and L2. The loads
are not reordered with each other. Let us assume that π does not contain any
other memory access reordering. The reordering is caused by the late wrllc on
line 7. Hence, this particular error run can be prevented by the following four
fence constraints: c0 = (L0, ssfence), c1 = (L1, ssfence), c2 = (L0, fence),
and c3 = (L1, fence). The fence set returned by analyze witness(P, π)
is G = {c0, c1, c2, c3}. Notice that G satisfies both of the requirements for
analyze witness.

4 Experimental Results

We have implemented our fence insertion algorithm together with a reachability
analysis for SiSd in the tool Memorax. It is publicly available at https://
github.com/memorax/memorax. We apply the tool to a number of benchmarks
(Sect. 4.1). Using simulation, we show the positive impact of using different types

https://github.com/memorax/memorax
https://github.com/memorax/memorax

30 P.A. Abdulla et al.

of fences, compared to using only the full fence, on performance and network
traffic (Sect. 4.2).

4.1 Fence Insertion Results

We evaluate the automatic fence insertion procedure by running our tool on a
number of different benchmarks containing racy code. For each example, the tool
gives us all optimal sets of fences. We run our tool on the same benchmarks both
for SiSd and for the Si protocol.2 The results for SiSd are given in Table 1. We
give the benchmark sizes in lines of code. All benchmarks have 2 or 3 processes.
The fence insertion procedure was run single-threadedly on a 3.07 GHz Intel i7
CPU with 6 GB RAM.

The first set of benchmarks are classical examples from the context of lock-
free synchronization. They contain mutual exclusion algorithms: a simple CAS
lock –cas–, a test & TAS lock –tatas– [29], Lamport’s bakery algorithm –bakery–
[17], the MCS queue lock –mcsqueue– [22], the CLH queue lock –clh– [20], and
Dekker’s algorithm –dekker– [10]. They also contain a work scheduling algorithm
–postgresql–3, and an idiom for double-checked locking –dclocking– [28], as well
as two process barriers –srbarrier– [29] and –treebarrier– [22]. The second set of
benchmarks are based on the Splash-2 benchmark suite [33]. We use the race
detection tool Fast & Furious [26] to detect racy parts in the Splash-2 code. We
then manually extract models capturing the core of those parts.

In four cases the tool detects bugs in the original Splash-2 code. The barnes
benchmark is an n-body simulation, where the bodies are kept in a shared tree
structure. We detect two bugs under SiSd: When bodies are inserted (barnes 2),
some bodies may be lost. When the center of mass is computed for each node
(barnes 1), some nodes may neglect entirely the weight of some of their children.
Our tool inserts fences that prevent these bugs. The radiosity model describes
a work-stealing queue that appears in the Splash-2 radiosity benchmark. Our
tool detects that it is possible for all workers but one to terminate prematurely,
leaving one worker to do all remaining work. The volrend model is also a work-
stealing queue. Our tool detects that it is possible for some tasks to be performed
twice. The bugs in radiosity and volrend can occur even under SC. Hence the
code cannot be fixed only by adding fences. Instead we manually correct it.

For each benchmark, we apply the fence insertion procedure in two different
modes. In the first one (“Only full fence”), we use only full fences. In the table,
we give the total time for computing all optimal sets, the number of such sets,
and the number of fences to insert into each process. For treebarrier, one process
(the root process) requires only one fence, while the others require two. Notice
also that if a benchmark has one solution with zero fence, that means that the
benchmark is correct without the need to insert any fences.

In the second set of experiments (“Mixed fences”), we allow all four types
of fences, using a cost function assigning a cost of ten units for a full fence,
2 Our methods could also run under a plain Sd protocol. However, to our knowledge,

no cache coherence protocol employs only Sd without Si.
3 http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php

http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php

Fencing Programs with Self-Invalidation and Self-Downgrade 31

five units for an ssfence or an llfence, and one unit for a synchronized write.
These cost assignments are reasonable in light of our empirical evaluation of
synchronization cost in Sect. 4.2. We list the number of inserted fences of each
kind. In barnes 1, the processes in the model run different codes. One process
requires an llfence, the other an ssfence.

In addition to running our tool for SiSd, we have also run the same bench-
marks for Si. As expected, ssfence and syncwr are no longer necessary, and
fence may be downgraded to llfence. Otherwise, the inferred fence sets are
the same as for SiSd. Since Si allows fewer behaviors than SiSd, the inference
for Si is mostly faster. Each benchmark is fenced under Si within 71 s.

Table 1. Automatic fence insertion for SiSd.

Only full fence Mixed fences

Benchmark Size Time #solutions #fences Time #solutions Fences/proc

bakery 45 LOC 17.3 s 4 5 108.1 s 16 2×sw,4×ll,1×ss

cas 32 LOC <0.1 s 1 2 <0.1 s 1 1×ll,1×ss

clh 37 LOC 4.4 s 4 4 3.7 s 1 3×sw,2×ll,1×ss

dekker 48 LOC 2.0 s 16 3 2.9 s 16 1×sw,2×ll,1×ss

mcslock 67 LOC 15.6 s 4 2 33.0 s 4 1×ll,1×ss

testtas 38 LOC <0.1 s 1 2 <0.1 s 1 1×ll,1×ss

srbarrier 60 LOC 0.3 s 9 3 0.4 s 4 2×ll,1×ss

treebarrier 56 LOC 33.2 s 12 1/2 769.9 s 132 1×ll,1×ss

dclocking 44 LOC 0.8 s 16 4 0.9 s 16 1×sw,2×ll,1×ss

postgresql 32 LOC <0.1 s 4 2 0.1 s 4 1×ll,1×ss

barnes 1 30 LOC 0.2 s 1 1 0.5 s 1 1×ll/1×ss

barnes 2 96 LOC 16.3 s 16 1 16.1 s 16 1×ss

cholesky 98 LOC 1.6 s 1 0 1.6 s 1 0

radiosity 196 LOC 25.1 s 1 0 24.6 s 1 0

raytrace 101 LOC 69.3 s 1 0 70.1 s 1 0

volrend 87 LOC 376.2 s 1 0 376.9 s 1 0

4.2 Simulation Results

Here we show the impact of different choices of fences when executing pro-
grams. In particular we show that an optimal fence set w.r.t. the “Mixed fences”
cost function yields a better performance and network traffic compared to an
optimal fence set using the “Only full fence” cost function. We evaluate the
micro-benchmarks analyzed in the previous section and the Splash-2 benchmarks
suite [33]. All programs are fenced according to the optimal fence sets produced
by our tool as described above.

Simulation Environment: We use the Wisconsin GEMS simulator [21]. We model
an in-order processor that with the Ruby cycle-accurate memory simulator (pro-
vided by GEMS) offers a detailed timing model. The simulated system is a 64-
core chip multiprocessor with a SiSd architecture and 32 KB, 4-way private L1

32 P.A. Abdulla et al.

caches and a logically shared but physically distributed L2, with 64 banks of
256 KB, 16-way each.

The DoI State: When an llfence is executed, eviction of all clean data in the
L1 cache is forced. This should take a single cycle. However, when a cache line
contains multiple words, with a per-word dirty bit, it may contain both dirty and
clean words. To evict the clean words, we would have to write the dirty data to
the LLC and evict the whole line. That would harm performance and enforce a
stronger access ordering than is intended by an llfence. For this reason, when
we implemented the SiSd protocol in GEMS, we introduced a new L1 cache
state: DoI (Dirty or Invalid). A cache line in this state contains words that are
either dirty or invalid, as indicated by the dirty bit. This allows an efficient, one-
cycle implementation of llfence, where cache lines in a mixed state transition
to DoI, thus invalidating precisely the clean words. It also allows the llfence
not to cause any downgrade of dirty blocks, thus improving its performance.

Cost of Fences: Our tool employs different weights in order to insert fences. Here,
we calculate the weights based on an approximate cost of fences obtained by our
simulations. The effect of fences on performance is twofold. First, there is a cost
to execute the fence instructions (fence latency); the more fences and the more
dirty blocks to self-downgrade the higher the penalty. Second, fences affect cache
miss ratio (due to self-invalidation) and network traffic (due to extra fetches
caused by self-invalidations and write-throughs caused by self-downgrades). The
combined effect on cache misses and network traffic also affects performance. We
calculate the cost of fences in time as follows: timefence = lat fence + missessi ∗
latmiss where lat fence is the latency of the fence, missessi is the number of misses
caused by self-invalidation, and latmiss is the average latency of such misses.
According to this equation, the average cost in time of each type of fence when
running the Splash2 benchmarks, normalized with respect to a full fence is the
following: the cost of an llfence is 0.68, the cost of an ssfence is 0.23, and
the cost of a syncwr is 0.14. The cost of the fences in traffic is calculated as
trafficfence = sd ∗ trafficwt +missessi ∗ trafficmiss where sd is the number of self-
downgrades, trafficwt is the traffic caused by a write-through, and trafficmiss is
the traffic caused by a cache miss. Normalized to a full fence, the cost in traffic
is 0.43 for an llfence, 0.51 for an ssfence, and 0.10 for a syncwr. Thus, the
weights assigned to fences in our tool seem reasonable.

Execution Time: Figure 5 (top) shows simulated execution time for both the
micro-benchmarks (top) and the Splash2 benchmarks (bottom). The use of
mixed fences improves the execution time compared to using full fences by 10.4 %
for the micro-benchmarks and by 1.0 % for the Splash2 benchmarks. The DoI-
mixed column shows the execution time results for the same mixed fence sets
as the mixed column. But in DoI case, llfences are implemented in GEMS
using an extra L1 cache line state (the Dirty-or-Invalid state). This feature is
an architectural optimization of the SiSd protocol. Implementing the DoI state
further improves the performance of the mixed fences, by 20.0 % for the micro-
benchmarks and 2.1 % for the Splash2, on average, compared to using of full
fences. Mixed fences are useful for applications with more synchronization.

Fencing Programs with Self-Invalidation and Self-Downgrade 33

Fig. 5. Execution time and network traffic under different fence sets.

Traffic: Figure 5 (bottom) shows the traffic in the on-chip network generated
by these applications. The use of llfence, ssfence, syncwr is able to reduce
the traffic requirements by 11.1 % for the micro-benchmarks and 1.6 % for the
Splash2 applications, on average, compared to using full fences. Additionally,
when employing the DoI state, this reduction reaches 21.3 % and 1.9 %, on aver-
age, for the micro-benchmarks and the Splash2, respectively. Again, the more
synchronization is required by the applications, the more traffic can be saved by
employing mixed fences.

5 Conclusions and Future Work

We have presented a uniform framework for automatic fence insertion in
programs that run on architectures that provide self-invalidation and self-
downgrade. We have implemented a tool and applied it on a wide range of

34 P.A. Abdulla et al.

benchmarks. There are several interesting directions for future work. One is to
instantiate our framework in the context of abstract interpretation and stateless
model checking. While this will compromise the optimality criterion, it will allow
more scalability and application to real program code. Another direction is to
consider robustness properties [5]. In our framework this would mean that we
consider program traces (in the sense of Shasha and Snir [30]), and show that
the program will not exhibit more behaviors under SiSd than under SC. While
this may cause over-fencing, it frees the user from providing correctness specifi-
cations such as safety properties. Also, the optimality of fence insertion can be
evaluated with the number of the times that each fence is executed. This mea-
surement will provide more accuracy when, for instance, fences with different
weighs are inserted in a loop computation in a branching program.

Acknowledgment. This work was supported by the Uppsala Programming for Multi-
core Architectures Research Center (UPMARC), the Swedish Board of Science project,
“Rethinking the Memory System”, the “Fundación Seneca-Agencia de Ciencia y Tec-
noloǵıa de la Región de Murcia” under the project “Jóvenes Ĺıderes en Investigación”
and European Commission FEDER funds.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012)

2. Adve, S.V., Hill, M.D.: Weak ordering - a new definition. In: ISCA, pp. 2–14 (1990)
3. Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence. In: Biere,

A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 508–524. Springer, Heidelberg
(2014)

4. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 533–553. Springer, Heidelberg (2013)

5. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 428–440. Springer, Heidelberg (2011)

6. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: SPAA, pp. 21–28
(2005)

7. Choi, B., Komuravelli, R., Sung, H., Smolinski, R., Honarmand, N., Adve, S.V.,
Adve, V.S., Carter, N.P., Chou, C.T.: DeNovo: rethinking the memory hierarchy
for disciplined parallelism. In: PACT, pp. 155–166 (2011)

8. Davari, M., Ros, A., Hagersten, E., Kaxiras, S.: An efficient, self-contained, on-chip,
directory: DIR1-SISD. In: PACT, pp. 317–330 (2015)

9. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

10. Dijkstra, E.W.: Cooperating sequential processes (2002)
11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann

Publishers Inc., San Francisco (2008)

Fencing Programs with Self-Invalidation and Self-Downgrade 35

12. Hower, D.R., Hechtman, B.A., Beckmann, B.M., Gaster, B.R., Hill, M.D.,
Reinhardt, S.K., Wood, D.A.: Heterogeneous-race-free memory models. In: ASP-
LOS, pp. 427–440 (2014)

13. Kaxiras, S., Keramidas, G.: SARC coherence: scaling directory cache coherence in
performance and power. IEEE Micro 30(5), 54–65 (2011)

14. Kaxiras, S., Ros, A.: A new perspective for efficient virtual-cache coherence. In:
ISCA, pp. 535–547 (2013)

15. Koukos, K., Ros, A., Hagersten, E., Kaxiras, S.: Building heterogeneous unified vir-
tual memories (UVMS) without the overhead. ACM TACO 13(1), 1:1–1:22 (2016)

16. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In:
FMCAD, pp. 111–119. IEEE (2010)

17. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

18. Lebeck, A.R., Wood, D.A.: Dynamic self-invalidation: reducing coherence overhead
in shared-memory multiprocessors. In: ISCA, pp. 48–59 (1995)

19. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis
for relaxed memory models. In: PLDI, pp. 429–440 (2012)

20. Magnusson, P., Landin, A., Hagersten, E.: Queue locks on cache coherent multi-
processors. In: Proceedings of Eighth International Parallel Processing Symposium,
pp. 165–171. IEEE (1994)

21. Martin, M.M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen,
A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. Comput. Archit. News 33(4), 92–99
(2005)

22. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. (TOCS) 9(1), 21–65
(1991)

23. Ros, A., Davari, M., Kaxiras, S.: Hierarchical private/shared classification: the key
to simple and efficient coherence for clustered cache hierarchies. In: HPCA, pp.
186–197 (2015)

24. Ros, A., Kaxiras, S.: Complexity-effective multicore coherence. In: PACT, pp. 241–
252 (2012)

25. Ros, A., Kaxiras, S.: Callback: efficient synchronization without invalidation with
a directory just for spin-waiting. In: ISCA, pp. 427–438 (2015)

26. Ros, A., Kaxiras, S.: Fast & furious: a tool for detecting covert racing. In: PARMA
and DITAM, pp. 1–6 (2015)

27. Sakalis, C., Leonardsson, C., Kaxiras, S., Ros, A.: Splash-3: a properly synchronized
benchmark suite for contemporary research. In: ISPASS (2016)

28. Schmidt, D.C., Harrison, T.: Double-checked locking - an optimization pattern for
efficiently initializing and accessing thread-safe objects. In: PLoP (1996)

29. Scott, M.L.: Shared-Memory Synchronization. Morgan & Claypool, San Rafael
(2013)

30. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. (TOPLAS) 10(2), 282–312 (1988)

31. Sung, H., Adve, S.V.: DeNovoSync: efficient support for arbitrary synchronization
without writer-initiated invalidations. In: ASPLOS, pp. 545–559 (2015)

32. Sung, H., Komuravelli, R., Adve, S.V.: DeNovoND: efficient hardware support for
disciplined non-determinism. In: ASPLOS, pp. 13–26 (2013)

33. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs:
characterization and methodological considerations. In: ISCA, pp. 24–36 (1995)

A Framework for Certified Self-Stabilization

Karine Altisen(B), Pierre Corbineau, and Stéphane Devismes

VERIMAG UMR 5104, Université Grenoble Alpes, Grenoble, France
Karine.Altisen@imag.fr

Abstract. We propose a framework to build certified proofs of self-
stabilizing algorithms using the proof assistant Coq. We first define in
Coq the locally shared memory model with composite atomicity, the most
commonly used model in the self-stabilizing area. We then validate our
framework by certifying a non-trivial part of an existing self-stabilizing
algorithm which builds a k-hop dominating set of the network. We also
certify a quantitative property related to its output: we show that the
size of the computed k-hop dominating set is at most �n−1

k+1
� + 1, where

n is the number of nodes. To obtain these results, we developed a library
which contains general tools related to potential functions and cardinality
of sets.

1 Introduction

In 1974, Dijkstra introduced the notion of self-stabilizing algorithm [12] as any
distributed algorithm which resumes correct behavior within finite time, regard-
less of the initial configuration of the system. A self-stabilizing algorithm can
withstand any finite number of transient faults. Indeed, after transient faults hit
the system and place it in some arbitrary configuration — where, for example,
the values of some variables have been arbitrarily modified — a self-stabilizing
algorithm is guaranteed to resume correct behavior within finite time.

For more than 40 year, a vast literature on self-stabilizing algorithms has
been developed. Self-stabilizing solutions have been proposed for many kinds
of distributed problems, e.g., token circulation [15], spanning tree construc-
tion [5], etc. Moreover, self-stabilizing algorithms have been designed to handle
various environments, e.g., wired networks [15], wireless sensor networks [1],
peer-to-peer systems [3], etc. Progresses in self-stabilization led to researchers
consider more and more adversarial environments. As an illustrative example,
the three first algorithms proposed by Dijkstra in 1974 [12] were designed for ori-
ented ring topologies and assuming sequential executions only, while nowadays
most self-stabilizing algorithms are designed for fully asynchronous arbitrary
connected networks, e.g., [15]. Consequently, the design of self-stabilizing algo-
rithms becomes more and more intricate, and accordingly, the proofs of their
respective correctness and complexity are now often tricky to establish. How-
ever, proofs in distributed algorithmics, in particular in self-stabilization, are

This work has been partially supported by project PADEC (AGIR 2015 Pôle
MSTIC).

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 36–51, 2016.
DOI: 10.1007/978-3-319-39570-8 3

A Framework for Certified Self-Stabilization 37

commonly written by hand, based on informal reasoning. This potentially leads
to errors when arguments are not perfectly clear, as explained by Lamport in its
position paper [18]. So, in the current context, such methods are clearly pushed
to their limits, justifying then the use of a proof assistant, a tool which allows
to develop certified proofs interactively and check them mechanically.

Contribution. In this paper, we propose a general framework to build certified
proofs of self-stabilizing algorithms for wired networks using the proof assistant
Coq [19].

We first define in Coq the locally shared memory model with composite atom-
icity introduced by Dijkstra [12], the most common model in self-stabilization.
Our modeling is versatile, e.g., it supports any class of network topologies
(including arbitrary ones), the diversity of anonymity levels (from fully anony-
mous to fully identified), and various levels of asynchrony (e.g., sequential, syn-
chronous, fully asynchronous).

We validate our framework by certifying a non-trivial part of an existing silent
self-stabilizing algorithm which builds a k-hop dominating set of the network
[8]. Starting from an arbitrary configuration, a silent algorithm [13] converges in
finite time to a configuration from which all communication variables are fixed.
This class of self-stabilizing algorithms is important, as self-stabilizing algorithms
that build distributed data structures (e.g., spanning tree or clustering) often
achieve the silent property, and these silent self-stabilizing data structures are
widely used as basic building blocks in more complex self-stabilizing solutions.

Using a classical scheme, the certified proof consists of two main parts, one
relying on termination and the other on partial correctness. For the termination
part, we developed tools on potential functions and termination at a fine-grained
level. Precisely, we define a potential function as a multiset containing a local
potential per node. We then exploit two criteria that are sufficient to meet the
conditions for using the Dershowitz-Manna well-founded ordering on multisets.
Note that the termination proof we propose assumes a distributed unfair dae-
mon, the most general scheduling assumption of the model. By contrast, the
proof given in [8] assumes a stronger daemon: a distributed weakly fair daemon.
Finally, we certify a quantitative property, since we show that the size of the
computed k-hop dominating set is at most �n−1

k+1 � + 1, where n is the number of
nodes in the network. To obtain this result, we had to write a library dealing
with cardinality of sets in general and properties on cardinals of finite sets w.r.t.
basic set operations, e.g., Cartesian product, disjoint union, subset inclusion,
etc. This work represents about 12,250 lines of code (as computed by coqwc: 4k
lines of specifications, 7k lines of proofs) written in Coq 8.4pl4, compiled with
OCaml 3.11.2.

Related Work. Several works have shown that proof assistants (in particular
Coq) are well-suited to certification of distributed algorithms in various contexts
[4,7,16]. Now, to the best of our knowledge, only three works deal with certifica-
tion of self-stabilizing algorithms [6,10,17]. A formal correctness proof of Dijk-
stra’s seminal self-stabilizing algorithm [12] is conducted with the proof assistant
PVS [17], however only sequential executions are considered. In [6], Courtieu

38 K. Altisen et al.

proposes a general setting for reasoning on self-stabilization in Coq. However, he
restricts his study to very simple self-stabilizing algorithms, such as the 4-states
algorithm of Ghosh [14], working on networks of very restrictive topologies i.e.,
lines and rings. So, these two works address too simple cases to draw a general
framework. Finally, Deng and Monin [10] propose to certify in Coq self-stabilizing
population protocols. Population protocols are used as a theoretical model for
a collection of tiny mobile agents that interact with one another to carry out a
computation. In such a model, communication is implicit, as there is no notion
of communication network: all pairs of agents interact infinitely often. Hence,
this latter work is not relevant for wired networks, as considered here.

Roadmap. The rest of the paper is organized as follows. In Sect. 2, we describe
how we define the locally shared memory model with composite atomicity in
Coq. In Sect. 3, we express the definitions of self-stabilization and silence in
Coq. In Sect. 4, we provide general results in Coq to certify termination of dis-
tributed algorithms. In Sect. 5, we present our case study. Section 6 is dedicated
to the proof in Coq of our case study. We certify a bound on the size of the k-
hop dominating set computed by our case-study algorithm in Sect. 7. We make
concluding remarks in Sect. 8.

In this paper, we present our work together with a few pieces of Coq code
that we simplify in order to make them readable. In particular, we intend to
use notations, as defined in the model and algorithm, in those pieces of code.
The Coq definitions, lemmas, theorems, and documentation related to the paper
are available as an online browsing and a technical report available at http://

www-verimag.imag.fr/∼altisen/PADEC/. All source codes are also available at this
address. We encourage the reader to visit this webpage for a deeper understand-
ing of our work.

2 Locally Shared Memory Model with Composite
Atomicity

Distributed Systems. A distributed system is a finite set of interconnected
nodes. Each node has its own private memory, runs its own code, and can interact
with other nodes via interconnections. Our model in Coq reflects this defining
two independent classes: Network and Algorithm. A Network is equipped with a
type Node, representing nodes, and defines functions and properties that depict
its topology, i.e., interconnections between nodes. Those interconnections are
specified using the type Channel. The Algorithm of a node p is equipped with a
type State, which describes memory state of p. Its main function, run, specifies
how p executes and interacts with each other nodes through channels (type
Channel).

Network and Topology. We view the communication network as a simple
directed graph G = (V,E), where V is a set of vertices representing nodes and
E ⊆ V ×V is a set of edges representing interconnections between distinct nodes.
We note n = |V | the numbers of nodes. Two distinct nodes p and q are said to

http://www-verimag.imag.fr/~altisen/PADEC/
http://www-verimag.imag.fr/~altisen/PADEC/

A Framework for Certified Self-Stabilization 39

be neighbors if (p, q) ∈ E. From a computational point of view, p uses a distinct
channel cp,q to communicate with each of its neighbors q: it does not have direct
access to q. In the type Network, the topology is defined using this narrow point
of view, i.e., interconnections are represented using channels only. In particular,
the neighborhood of p is encoded with the set Np which contains all channels cp,q
outgoing from p. The sets Np, for all p, are modeled in Coq as lists. The function
(peer: Node → Channel → option Node) returns the destination neighbor for a
given channel name: (peer p cp,q) returns (Some q), or ⊥1 if the name is unused.

Communications can be made bidirectional, assuming a property called
sym net, which states that for all nodes p1 and p2, the network defines a channel
from p1 to p2 if and only if it also defines a channel from p2 to p1. In case of
bidirectional links (p, q) and (q, p) in E, p can access its channel name at q using
the function (ρp: Channel → Channel). Thus, we have: ρp(cp,q) equals cq,p ∈ Nq

and ρq(cq,p) equals cp,q ∈ Np. Finally, we suppose that, since the number of
nodes in the network is finite, we have a list all nodes containing all the nodes.

Computational Model. In the locally shared memory model with composite
atomicity, nodes communicate with their neighbors using finite sets of locally
shared variables. A node can read its own variables and those of its neighbors,
but can only write to its own variables. Each node operates according to its
local program. A distributed algorithm A is defined as a collection of n programs,
each operating on a single node. The state of a node in A is defined by the
values of its local variables and is represented using an abstract Coq datatype
State. This datatype is implemented as a record containing the values of the
program variables. A node p can access the states of its neighbors using the
corresponding channels: we call this the local configuration of p, and model it
as a function typed (Local Env := Channel → option State) which returns the
current state of a neighbor, given the name of the corresponding channel (or ⊥
for an invalid name). The program of each node p in A consists of a finite set of
guarded actions: 〈guard〉 ↪→ 〈statement〉. The guard is a Boolean expression
involving variables of p and its neighbors. The statement updates some variables
of p. An action can be executed only if its guard evaluates to true; in this case,
the action is said to be enabled. A node is said to be enabled if at least one of
its actions is enabled. The local program at node p is modeled by a function run

of type (list Channel → (Channel → Channel) → State → Local Env → option

State). This function accesses the local topology and states around p: it takes
as first two arguments Np and ρp; it then takes as inputs the current state of p
and its current local configuration. The returned value is the next state of node
p if p is enabled, ⊥ otherwise. run provides a functional view of the algorithm: it
includes the whole set of possible actions, but returns a single result; this model
is thus restricted to deterministic algorithms.

A configuration is defined as an instance of the states of all nodes in the
system, i.e., a function with type (Env := Node → State). For a given node p

and configuration g, the term (g p) represents the state of p in configuration g.
1 Option type is used for partial functions which, by convention, return (Some)

when defined, and None otherwise (denoted by ⊥ in this paper).

40 K. Altisen et al.

Thanks to this encoding, we easily obtain the local configuration (type Local Env)
of node p by composing g and peer as a function (local env g p) which returns
(g p’) when (peer p c) returns Some p’, and ⊥ otherwise. Hence, the execution
of the algorithm on node p in current configuration g is obtained by: (run Np ρp
(g p) (local env g p)). In configuration g, if there exist some enabled nodes, a
daemon selects a non-empty set of them; every chosen node atomically executes
its algorithm, leading to a new configuration g’. The transition from g to g’ is
called a step. To model steps in Coq, we use functions with type (Diff := Node

→ option State). We simply call difference a variable d of type Diff. A difference
contains the updated states of the nodes that actually execute some action during
the step, and maps any other node to ⊥. We define the predicate valid diff

that qualifies the current configuration and a difference expressing the result
of a step by some enabled processes. It holds when at least one enabled node
actually moves and all updates in the difference correspond to the execution of
the algorithm by enabled processes, namely, run. The next configuration, g’, is
then obtained applying function (diff eval d g) such that: ∀p, (g’ p) = (d p)
if (d p) �= ⊥, and (g’ p) = (g p) otherwise.

Steps induce a binary relation �→ over configurations defined in Coq by the
relation Step: (Step g2 g1) expresses that g1 �→ g2 (meaning that g1 �→ g2 is
actually a valid step), i.e., there exists some valid difference d for g1 (valid diff

g1 d) and g2 is equal to (diff eval d g1). An execution of A is a sequence of
configurations g0 g1 . . . gi . . . such that gi−1 �→ gi for all i > 0. Executions may
be finite or infinite and are modeled in Coq with a type and a predicate:

CoInductive Exec: Type :=

| e_one: Env → Exec | e_cons: Env → Exec → Exec.

CoInductive valid_exec: Exec → Prop :=

| v_one: ∀g, valid_exec (e_one g)

| v_cons: ∀e g, valid_exec e → Step (Fst e) g →
valid_exec (e_cons g e).

where (Fst e) returns the first configuration of e. The keyword CoInductive
generates a greatest fixed point capturing potentially infinite constructions.2

Thus, variable e of type Exec actually represents an (valid) execution of A if
(valid exec e) holds, i.e., if each pair of consecutive configurations g1, g2 in e

satisfies (Step g2 g1).
Maximal executions are either infinite, or end at a terminal configuration

in which no action of A is enabled at any node. Terminal configurations are
detected in Coq using the proposition (terminal g), for a configuration g, which
holds when every node computes run from g and returns ⊥. This predicate is
decidable since we assume that the set of nodes is finite. A maximal execution
is described by the coinductive proposition:

CoInductive max_exec: Exec → Prop :=

| max_one: ∀g, terminal g → max_exec (e_one g)

| max_cons: ∀g e, max_exec e → max_exec (e_cons g e).

2 As opposed to this, the keyword Inductive only captures finite constructions.

A Framework for Certified Self-Stabilization 41

As explained before, each step from a configuration to another is driven by
a daemon. In our case study, we assume that the daemon is distributed and
unfair. Distributed means that while the configuration is not terminal, the dae-
mon should select at least one enabled node, maybe more. Unfair means that
there is no fairness constraint, i.e., the daemon might never select an enabled
node unless it is the only one enabled. The propositions valid diff, Step and
henceforth valid exec are sufficient to handle the distributed unfair daemon.

We allow a part of a node state to be read-only: this is modeled with type
ROState and by the projection function (RO part: State → ROState) which typ-
ically represents a subset of the variables handled in the State of the node. We
add the property RO stable to express the fact that those variables are actually
read-only, namely no execution of run can change their values. From the assump-
tion RO stable, we show that any property defined on the read-only variables of
a configuration is indeed preserved during steps. The introduction of Read-Only
variables has been motivated by the fact that we want to encompass the diver-
sity of anonymity levels from the distributed computing literature, e.g., fully
anonymous, semi-anonymous, rooted, fully identified networks, etc. By default
(with empty RO part), our Coq model defines fully anonymous network thanks
to the distinction between nodes (type Node) and channels (type Channel). We
enriched our model to reflect other assumptions, e.g., fully identified networks.
We define predicate Assume which constrains read-only variables of a configura-
tion (in the case of the fully identified nodes assumption, it expresses uniqueness
of identifiers). It will be assumed at each initial configuration and, by RO stable

it will remain true all along any execution.

Setoids. When using Coq function types to represent configurations and dif-
ferences, we need to state pointwise function equality, which equates functions
having equal values (extensional equality). The Coq default equality is inad-
equate for functions since it asserts equality of implementations (intensional
equality). So, instead we chose to use the setoid paradigm: we endow every base
type with an equivalence relation. Consequently, every function type is endowed
with a partial equivalence relation (i.e., symmetric and transitive) which states
that, given equivalent inputs, the outputs of two equivalent functions are equiv-
alent. However, we also need reflexivity to reason, i.e., functions equivalent to
themselves. Such functions are called compatible: they return equivalent results
when executed with equivalent parameters. In all the framework, we assume
compatible configurations only. We also prove compatibility for every function
and predicate defined in the sequel. Additionally, we assume that equivalence
relations on base types are decidable.

3 Self-Stabilization and Silence

We now express self-stabilization [12] in the locally shared memory model with
composite atomicity using Coq properties. Let A be a distributed algorithm.
Let S be a predicate on executions (type (Exec → Prop)). A is self-stabilizing

42 K. Altisen et al.

w.r.t. specification S (predicate (self stab S)) if there exists a predicate P on
configurations (type (Env → Prop)) such that:

– A converges to P, i.e., every maximal execution contains a configuration
which satisfies P:

∀e, Assume (Fst e) → valid_exec e → max_exec e →
safe_suffix (fun suf => P (Fst suf)) e

(safe suffix S e) inductively checks that e contains a suffix that satisfies S;
– P is closed under A, i.e., for each possible step g �→ g’, (P g) implies (P g’):

∀g1 g2, Assume g1 → P g1 → Step g2 g1 → P g2; and
– A meets S from P, i.e., every maximal execution, starting from configurations

which satisfy P, satisfies S:

∀e, Assume (Fst e) → valid_exec e → max_exec e →
P (Fst e) → S e.

The configurations which satisfy the predicate P are said to be legitimate.
An algorithm is silent if the communication between the nodes is fixed from

some point of the execution [13]. This latter definition can be transposed in the
locally shared memory model by A is silent if all its executions are finite:

Inductive finite_exec: Exec → Prop :=

| f_one: ∀g, finite_exec (e_one g)

| f_cons: ∀e g, finite_exec e → finite_exec (e_cons g e).

silence := ∀e, Assume (Fst e) → valid_exec e → finite_exec e.

By definition, maximal executions of a silent and self-stabilizing algorithm
w.r.t some specification S end in configurations which are usually used as legit-
imate configurations, i.e., satisfying P. In this case, S only allows executions
made of a single configuration which must be legitimate; S is then noted SP.
To prove that A is both silent and self-stabilizing w.r.t. SP, we use a common
sufficient condition which requires to prove that:

– all executions of A are finite:

termination := ∀g, Assume g → Acc Step g

– and all terminal configurations of A satisfy P:

P_correctness P := ∀g, Assume g → terminal g → SPEC g.

The inductive proposition Acc is taken from Library Coq.Init.Wf which pro-
vides tools on well-founded inductions. Predicate (Acc Step g) means that any
descending chain from g is finite. The sufficient condition, used to prove that an
algorithm is both silent and self-stabilizing, is then:

Lemma silent_self_stab P:

termination ∧ P_correctness P → silence ∧ self_stab SP.

A Framework for Certified Self-Stabilization 43

4 General Tools for Proving Termination

Usual termination proofs are based on some global potential built from local
ones. For example, local potentials can be integers and the global potential can be
the sum of them. In this case, the argument for termination may be, for example,
the fact that the global potential is lower bounded and strictly decreases at each
step of the algorithm. Global potential decrease is due to the modification of
local states at some nodes, however studying aggregators such as sums may
hide scenarios, making the proof more complex. Instead, we build here a global
potential as the multiset containing the local potential of each node and provide
a sufficient condition for termination on this multiset. Our method is based on
two criteria that are sufficient to meet the conditions for using the Dershowitz-
Manna well-founded ordering on multisets [11]. Given those criteria, we can
show that the multiset of (local) potentials globally decreases at each step. For
multisets and Dershowitz-Manna order, we used results from Library CoLoR [2].

Steps. One difficulty we faced, when trying to apply this technique straightly,
is that we cannot always define the local potential function at a node without
assuming some properties on its local state, and so on the associated configura-
tion. Thus, we had to assume the existence of some stable set of configurations
in which the local potential function can be defined. When necessary, we use our
technique to prove termination of a subrelation of the relation Step, provided
that the algorithm has been initialized in the required stable set of configura-
tions. This point is modeled by a predicate on configurations, (safe: Env →
Prop), and a type safeEnv := { g | safe g } which represents the set of safe
configurations into which we restrict the termination proof. Precisely, safeEnv

is a type whose values are ordered pairs containing a term g and a proof of
(safe g). Safe configurations should be stable, i.e., it is assumed that no step
can exit from the set. The relation for which termination will be proven is then
defined by safeStep sg2 sg1 := Step (getEnv sg2) (getEnv sg1) where getEnv

accesses the actual configuration (of type Env).

Potential. We assume that within safe configurations, each node can be
endowed with a potential value obtained using function pot: safeEnv → Node

→ Mnat. Notice that Mnat simply represents natural numbers3 encoded using the
type from Library CoLoR.MultisetNat [2]; it is equipped with the usual equiva-
lence relation, noted =P, and the usual well-founded order on natural numbers,
noted <P.

Multiset Ordering. We recall that a multiset of elements in the setoid P
endowed with its equivalence relation =P , is defined as a set containing finite
numbers of occurrences (w.r.t. =P) of elements of P . Such a multiset is usu-
ally formally defined as a multiplicity function m : P → N≥1 which maps
any element to its number of occurrences in the multiset. We focus here on
finite multisets, namely, multisets whose multiplicity function has finite support.
3 Natural numbers cover many cases and we expect the same results when further

extending to other types of potential.

44 K. Altisen et al.

Now, we assume that P is also ordered using relation <P , compatible with =P .
We use the Dershowitz-Manna order on finite multisets [11] defined as follows:
the multiset N is smaller than the multiset M , noted N ≺ M , if and only if
there are three multisets X, Y and Z such that X �= ∅ ∧ M = Z + X ∧ N =
Z +Y ∧∀y ∈ Y,∃x ∈ X, y <P x, where ‘+’ between multisets means adding mul-
tiplicities. Informally, to obtain a multiset N smaller than M , we may remove
from M all elements of X and then add all elements of Y . Elements in Z are the
ones that are present in both M and N . It is required that at least one element
is removed (X �= ∅) and each element that is added must be smaller (w.r.t. <P)
than some removed element. It has been shown that if <P is a well-founded
order, then so is the corresponding order ≺.

In our context, we consider finite multisets over Pot, (i.e., =P is =P and <P

stands for <P). We have chosen to model them as lists of elements of Pot and
we build the potential of a configuration as the multiset of the potentials of all
nodes, namely a multiset of (local) potentials of a configuration sg is defined by

Pot sg := List.map (pot sg) all_nodes

where all nodes is the list of all nodes in the network (see Sect. 2) and (List.map

f l) is the standard operation that returns the list made of each elements of
l on which f has been applied. The corresponding Dershowitz-Manna order
is defined using the library CoLoR [2]. The library also contains the proof
that (well founded <P) → (well founded ≺) ((well founded R := ∀a, Acc R a)

is taken from standard Coq Library Coq.Init.Wf, as Acc). Using this latter
result and the standard result which proves (well founded <P), we easily deduce
(well founded ≺).

Termination Theorem. Proving the termination of an algorithm then consists
in showing that for any safe step of the algorithm, the corresponding global
potential decreases w.r.t. the Dershowitz-Manna order ≺, namely:

safe_incl := ∀sg1 sg2 , safeStep sg2 sg1 → (Pot sg2) ≺ (Pot sg1)

We establish a sufficient condition made of two criteria on node potentials which
validates safe incl. The Local criterion finds for any node p whose potential has
increased, a witness node p’ whose potential has decreased from a value that is
even higher than the new potential of p:

Hypothesis local_crit: ∀sg1 sg2 , safeStep sg2 sg1 →
∀p, (pot sg1 p)<P(pot sg2 p) →
∃p’,(pot sg1 p’)
=P(pot sg2 p’) ∧ (pot sg2 p)<P(pot sg1 p’).

Global criterion exhibits, at any step, a node whose potential has changed:

Hypothesis global_crit: ∀sg1 sg2 , safeStep sg2 sg1 →
∃p, (pot sg2 p)
=P(pot sg1 p).

Assuming both hypothesis, we are able to prove safe incl as follows: we define
Z as the multiset of local potentials which did not change, and X (resp. Y) as
the complement of Z in the multiset of local potentials (Pot sg1) (resp. (Pot

sg2)). Global criterion is used to show that X �= ∅, and local criterion is used to

A Framework for Certified Self-Stabilization 45

Algorithm 1. D(k), code for each process p

Constant Input: Par(p) ∈ Np ∪ {⊥}
Variable: p.α ∈ {0, ..., 2k}
Predicates: IsRoot(p) ≡ Par(p) =⊥; IsShort(p) ≡ p.α < k; IsTall(p) ≡ p.α ≥ k;
kDominator(p) ≡ (p.α = k) ∨ (IsShort(p) ∧ IsRoot(p))

Macros:
Children(p) = {q ∈ Np | Par(q) = ρp(q)}
ShortChildren(p) = {q ∈ Children(p) | IsShort(q)}
TallChildren(p) = {q ∈ Children(p) | IsTall(q)}
MaxAShort(p) = if ShortChildren(p) = ∅ then −1 else max {q.α | q ∈ ShortChildren(p)}
MinATall(p) = if TallChildren(p) = ∅ then 2k + 1 else min {q.α | q ∈ TallChildren(p)}
Alpha(p) = if MaxAShort(p) +MinATall(p) ≤ 2k − 2

then MinATall(p) + 1 else MaxAShort(p) + 1

Action: p.α
= Alpha(p) ↪→ p.α ← Alpha(p)

show that ∀y ∈ Y,∃x ∈ X, y <P x. Since any relation included in a well-founded
order is also well-founded, we get that relation safeStep is well-founded. Finally,
since we know that property safe is stable (from stable safe), we get (∀g,
safe g → Acc Step g) which proves that the algorithm terminates from any safe
configuration.

5 Case Study

We have certified a non trivial part of the silent self-stabilizing algorithm pro-
posed in [8]. Given a non-negative integer k, this algorithm builds a k-clustering
of a bidirectional connected network G = (V,E) containing at most �n−1

k+1 � + 1
k-clusters, where n is the number of nodes. A k-cluster of G is a set C ⊆ V ,
together with a designated node Clusterhead(C) ∈ C, such that each member of
C is within distance k of Clusterhead(C).4 A k-clustering is then a partition of
V into distinct k-clusters. The k-clustering problem is related to the notion of
k-hop dominating set since the set of clusterheads of any k-clustering is a k-hop
dominating set, i.e., a subset D of V such that every node is within distance k
from at least one node of D.

The algorithm proposed in [8] is actually a hierarchical collateral composi-
tion [9] of two silent self-stabilizing sub-algorithms: the former builds a rooted
spanning tree, the latter is a k-clustering construction which stabilizes once a
rooted spanning tree is available in the network. The crucial part of the second
sub-algorithm consists in computing, in a self-stabilizing and silent way, a k-hop
dominating set D of size at most �n−1

k+1 �+1 in an arbitrary rooted spanning tree.
D will designate the set of clusterheads in the computed k-clustering. This task is
performed using the 1-rule Algorithm D(k), whose code is given in Algorithm 1.

4 the distance ‖p, q‖ between two nodes p and q is the length of a shortest path from
p to q in G.

46 K. Altisen et al.

We have used our framework to encode D(k), its assumptions, its specifi-
cation, and to build a certified proof which shows that D(k) is silent and self-
stabilizing for building a k-hop dominating set of at most �n−1

k+1 � + 1 nodes in
any bidirectional network equipped with a rooted spanning tree.

Local States. We denote the spanning tree and its root by T and r, respectively.
In D(k), the knowledge of T is locally distributed at each node p using the
constant input Par(p) ∈ Np ∪ {⊥}. When p �= r, Par(p) ∈ Np and designates
its parent in the tree. Otherwise, p is the root and Par(p) =⊥. Then, each
node p maintains a single variable: p.α, an integer in range {0, ..., 2k}. We have
instantiated the Coq State of a node as a record containing fields (Par: option

Channel) and (α: Z). (Par p) stands for Par(p) and is the unique read-only
variable for p. Moreover, (α p) stands for p.α and is taken in Z (integers). We
chose to encode every number in the algorithm as integer in Z, since some of them
may be negative (see MaxAShort) and computations use minus (see Alpha).
Furthermore, we have proven p.α is in range {0, ..., 2k} after p participates in
any step and also when the system is in a terminal configuration.

Spanning Tree. We express the assumption about the spanning tree using
predicate (span tree r Par). This predicate checks that the graph T induced by
Par is a subgraph of G which actually encodes a spanning tree rooted at r by
the conjunction of

– r is the unique node such that Par(r) =⊥,
– Par(p), for every non-root node p, is an existing channel outgoing from p,
– T contains no loop.

From the last point, we show that, since the number of nodes is finite, the
relation extracted from Par between nodes and their parents (resp. children) in
T is well-founded. We call this result WF par (resp. WF child) and express it using
well founded.

We expressed the assumptions on the network G, i.e., in any configuration g,
G is bidirectional and a rooted spanning tree is available in G (n.b., this latter
also implies that G is connected), in the predicate Assume:

Assumekdom g := sym_net ∧ ∃r, span_tree r Par

Specification. The goal of D(k) is to compute an output predicate
kDominator(p) for every node p (see Algorithm 1 for its definition) in such
way that the system converges to a terminal configuration in which the set
Dom = {p ∈ V | kDominator(p)} defines a k-hop dominating set of T (and so
of G). We consider any positive parameter k, i.e., k is taken in Z (as for other
numbers) and is assumed to be positive. We define the expected specification
using the predicate PkDom on configurations, where PkDom holds in configuration
g if and only if the set Dom = {p ∈ V | kDominator(p)} is a k-hop dominating
set of T :

PkDom g := ∀p, ∃kdom , (kDominator g kdom) ∧
∃path , (is_path g path kdom p) ∧ (length path) ≤ k.

A Framework for Certified Self-Stabilization 47

where predicate is path detects if the list of nodes path actually represents a
path in the tree T between the nodes kdom and p, and length computes the
length of the path.

D(k) in Coq. We translate the unique rule of D(k) into the type Algorithm.
Every predicate and macro of Algorithm 1 is directly encoded in Coq: the trans-
lation is quasi-syntactic (see Library KDomSet algo in the online browsing) and
provides a definition of run. The definition of D(k), of type Algorithm, comes with
a proof that run is compatible, as a composition of compatible functions, and
also with a straightforward proof of RO stable which asserts that the read-only
part of the state, Par, is constant during steps, when applying run.

Overview of D(k). Algorithm D(k), whose code is given in Algorithm 1, com-
putes a k-hop dominating set of T (and so of G), noted Dom, using the vari-
able α at each node. Precisely, Dom is defined as the set of nodes p such that
kDominator(p) holds, i.e., where p.α = k, or p.α < k and p = r. Dom is
constructed in a bottom-up fashion starting from the leaves of T . The goal of
variable p.α at each node p is twofold. First, it allows to determine a path of
length at most k from p to a particular node q of Dom which acts as a witness
for guaranteeing the k-hop domination of Dom. Consequently, q will be denoted
as Witness(p) in the following. Second, once correctly evaluated, the value p.α
is equal to ‖p, x‖, where x is the furthest node in T (p), the subtree of T rooted
at p, that has the same witness as p.

We divide processes into short and tall according to the value of their α-
variable: If p satisfies IsShort(p), i.e., p.α < k, then p is said to be short; other-
wise, p satisfies IsTall(p) and is said to be tall. In a terminal configuration, the
meaning of p.α depends on whether p is short or tall.

If p is short, we have two cases: p �= r or p = r. In the former case,
Witness(p) ∈ Dom is outside of T (p), that is, the path from p to Witness(p) goes
through the parent link of p in the tree, and the distance from p to Witness(p)
is at most k − p.α. See, for example, in Configuration (I) of Fig. 1, k = 2 and
j.α = 0 mean that Witness(j) is at most at distance k−0 = 2, now its witness e
is at distance 2. In the latter case, p (= r) may not be k-hop dominated by any
process of Dom inside its subtree and, by definition, there is no process outside
its subtree, indeed T (p) = T , see the root a in Configuration (I) of Fig. 1. Thus,
p must be placed in Dom.

If p is tall, there is a process q at p.α − k hops below p such that q.α = k.
So, q ∈ Dom and p is k-hop dominated by q. Hence, Witness(p) = q. The path
from p to Witness(p) goes through a tall child with minimum α-value. See, for
example, in Configuration (I) of Fig. 1, k = 2 and c.α = 4 mean that Witness(c),
here e, is 4 − k = 2 hops below c. Note that, if p.α = k, then p.α − k = 0, that
is, p = q = Witness(p) and p belongs to Dom.

Two examples of 2-clustering computed by D(2) are given in Fig. 1. In
Fig. 1.(I), the root is a short process, consequently it belongs to Dom. In
Fig. 1.(II), the root is a tall process, consequently it does not belong to Dom.

48 K. Altisen et al.

0 1 2 3

0 1

0 2 3 4

h

f

j

e

i g

c

d

b a

(II)

0 1 2 3

0 1

0 2 3

0

1

j

h

l

bg

k i

e

f

d a

(I)

4 c

Fig. 1. Two examples of 2-hop dominating sets computed by D(2). We only draw the
spanning tree, other edges are omitted. The root of each tree is the rightmost node.
α-values are given inside the nodes. Bold circles represent members of Dom. Arrows
represent the path from nodes to their associated witnesses.

6 Self-Stabilization of D(k)

According to the sufficient condition (Lemma silent self stab) given in Sect. 3,
we prove the self-stabilization of D(k) in two steps: termination in Subsect. 6.1
and partial correctness in Subsect. 6.2.

6.1 Termination of D(k).

We use the general result from Sect. 4 to prove termination of D(k), expressed
as follows:

Theorem k_dom_set_terminates: ∀g, Assumekdom g → Acc Step g.

First, we assume sym net and that the root node r exists. We instantiate safe as
every configuration in which read-only variables Par satisfy (span tree r Par).
Notice that the assumption on the existence of the spanning tree T rooted at r
is mandatory, since, as we will see below, the local potentials we use in our proof
are based on the depth of nodes in T . Finally, note that it is easy to prove that
safe is stable since it only depends on read-only variables.

Potential. We define the depth of a node as the distance between the node and
the root r in the spanning tree T . Let sg be a safe configuration and p be a node.
(depth sg p) is 1 (natural number, type nat) if p is the root r, and (1 + (depth

sg q)) where q the parent of p in T otherwise. This definition relies on structural
induction on (WF par n). We define the potential (pot sg p) of node p in safe
configuration sg as 0 if p is not enabled in sg, and (depth sg p) otherwise.

Local Criterion. Let sg1 and sg2 be two safe configurations such that (safeStep
sg2 sg1). Consider a node p whose potential increases during the step, i.e., such
that (pot sg1 p) <P (pot sg2 p). This means, from definition of pot, that p is
disabled at sg1 (potential is 0) and becomes enabled at sg2 (potential equals
(depth sg2 p)>0). To show the local criterion, we exhibit a down-path in the
tree T from p to some leaf that contains a node q enabled in sg1 which becomes
disabled in the next configuration, sg2. We prove the result in two steps. First, we
necessarily exhibit a child of node p, child, which executes its algorithm during
the step. As second step, we prove Lemma moving node has disabled desc, which
states that when the node child moves, it is down-linked in T to a node (maybe

A Framework for Certified Self-Stabilization 49

the node itself) which was enabled and becomes disabled during the step. This
result is proven by induction on (WF child child), i.e., on the down-paths from
child in T .

Global Criterion. Global criterion requires to find a node whose potential
differs between sg1 and sg2. We show that there is a node p with potential (depth
sg1 p) in sg1 (>0, by definition), and potential 0 in sg2. Namely, p is enabled
in sg1, but disabled in sg2. The proof uses the fact that at least one node has
moved during the step. Then, we reuse Lemma moving node has disabled desc

to show that any node that participates to the step has a descendant (on a given
down-path of T) which is enabled in sg1, but disabled in sg2.

Termination. Theorem k dom set terminates follows directly from local and
global criteria.

6.2 Partial Correctness of D(k)

The proof of partial correctness consists in showing that predicate PkDom holds
in any terminal configuration satisfying Assumekdom:

Theorem kdom_set_at_terminal:

∀g, Assumekdom g → terminal g → PkDom g.

From definition of PkDom, we need to check the existence of a path in G
between any node p and any node kdom ∈ Dom, such that this path is of length
at most k. To achieve this property, the algorithm builds tree paths of particular
shape: those paths use edges of T in both direct sense (from a node to its parent)
and reverse sense (from a node to one of its children). Precisely, these edges are
defined using relation is kDom edge, which depends on α-values: for any short
node s, we select the edge linking s to its parent in T (using Par); while for any
tall node t which is not in Dom, we select an edge linking t to a child c such
that c.α = t.α − 1. The relation is kDom edge defines a subgraph of G called
kdom-graph. So, to show Theorem kdom at terminal, it is sufficient prove that for
any configuration g such that (Assumekdom g) and (terminal g), we have:

∀p, ∃kdom , (kDominator g kdom) ∧
∃path , (is_kDom_path g path kdom p) ∧ (length path) ≤ k.

where is kDom path checks that its parameter path is a path on the kdom-graph
between kdom and p.

The rest of the analysis is conducted assuming a terminal configuration g such
that (Assumekdom g) holds. We first prove that any node p satisfying p.α > 0
has a child q such that p.α = q.α + 1 (the proof is simply a case analysis on
MaxAShort(q) + MinATall(q) ≤ 2k − 2). Then, the proof is split into two cases,
depending on whether the node is tall or short. We prove, for every tall (resp.
short) node p and every i ∈ N, that when p.α = k + i (resp. k − i), there exists a
witness node q for which kDominator holds and a path, of length at most i, from
p to q in kdom-graph. In both cases, the proof is conducted by induction on i.

Conclusion. Using Lemma silent self stab, we obtain that D(k) is a silent
self-stabilizing algorithm for PkDom:

50 K. Altisen et al.

Theorem kdom_set_silent_self_stab:

silence Assumekdom ∧ self_stab Assumekdom SPkDom .

7 Quantitative Properties

In addition to partial correctness, we have shown that the k-hop dominating Dom
set built by D(k) satisfies |Dom| ≤ �n−1

k+1 � + 1, where n is the number of nodes.
Precisely, we have formally proven the equivalent property which states that (n−
1) ≥ (k + 1)(|Dom| − 1). Intuitively, this means that at least all but one element
of Dom have been chosen as witness by at least k + 1 distinct nodes each.

Counting Elements in Sets. We have set up a library dealing with cardinality
of sets in general, and then finite sets. The library contains basic properties about
set operations such as cardinality of Cartesian product, disjoint union, subset
inclusion, etc. We also proved in Coq the existence of finite cardinality for finite
sets using lists. Those proofs have been conducted using standard techniques.

Proving Counting for D(k). First, we assume a terminal configuration g.
Using above results about the number of elements in the list all nodes, we show
the existence of the natural number n, i.e., the number of nodes. Similarly,
the existence of the natural number |Dom| is obtained using the list all nodes

restricted to nodes p such that (kDominator (g p) = true).
Then, we define as regular head each node of Dom such that α = k. By defi-

nition the set of regular heads is included in Dom. Again, we prove the existence
of the natural number rh which represents the number of regular heads in g.

Next, we define a regular node as a node which designates a regular head as
witness. We prove the existence of the natural number rn which is the number
of regular nodes in g. We prove that for each regular head h, for any 0 ≤ i ≤ k,
there is a regular node pi such that α = i which designates h as witness in g.
This implies that there is a path of length k + 1 in the kdom-graph linking p0
to h. We then group each regular head together with the regular nodes that
designate it as witness: each group contains at least k + 1 regular nodes. Thus,
rn ≥ (k + 1)rh.

Now, we have two cases. If the root is tall in g (i.e., r.α ≥ k), then rh = |Dom|
and rn = n. Otherwise, the root is short in g, and Dom contains both the regular
heads and the root (which is not regular in this case). Thus, |Dom| = rh + 1
and, similarly, the set of nodes contains at least regular nodes plus the root, so
rn ≤ n − 1. Hence, in either case, (n − 1) ≥ (k + 1)(|Dom| − 1) holds in g.

8 Conclusion

We proposed a general framework to build certified proofs of self-stabilizing algo-
rithms. To achieve our goals, we developed, in particular, general tools about
potential functions, which are commonly used in termination proofs of self-
stabilizing algorithms. We also proposed a library dealing with cardinality of
sets. We use this latter to show a quantitative property on the output of our
case-study algorithm.

A Framework for Certified Self-Stabilization 51

In future works, we expect to certify more complex self-stabilizing algorithms.
Such algorithms are usually designed by composing more basic blocks. In this line
of thought, we envision to certify general theorems related to classic composition
techniques such as collateral or fair compositions.

Finally, we expect to use our experience on quantitative properties to tackle
the certification of time complexity of stabilizing algorithms, a.k.a. the stabiliza-
tion time.

References

1. Ben-Othman, J., Bessaoud, K., Bui, A., Pilard, L.: Self-stabilizing algorithm for
efficient topology control in wireless sensor networks. J. Comput. Sci. 4(4), 199–208
(2013)

2. Blanqui, F., Koprowski, A.: CoLoR: a coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Math.
Struct. Comput. Sci. 21(4), 827–859 (2011)

3. Caron, E., Chuffart, F., Tedeschi, C.: When self-stabilization meets real platforms:
an experimental study of a peer-to-peer service discovery system. future gener.
comput. syst. 29(6), 1533–1543 (2013)

4. Chen, M., Monin, J.F.: Formal verification of netlog protocols. In: TASE (2012)
5. Chen, N., Yu, H., Huang, S.: A self-stabilizing algorithm for constructing spanning

trees. Inf. Process. Lett. 39, 147–151 (1991)
6. Courtieu, P.: Proving self-stabilization with a proof assistant. In: IPDPS (2002)
7. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-

cation. Inf. Process. Lett. 115(3), 447–452 (2015)
8. Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Competi-

tive self-stabilizing k-clustering. In: ICDCS (2012)
9. Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Self-

stabilizing small k-dominating sets. IJNC 3(1), 116–136 (2013)
10. Deng, Y., Monin, J.F.: Verifying self-stabilizing population protocols with Coq. In:

TASE (2009)
11. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.

ACM 22(8), 465–476 (1979)
12. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.

ACM 17, 643–644 (1974)
13. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-

tion. In: PODC, pp. 27–34 (1996)
14. Ghosh, S.: An alternative solution to a problem on self-stabilization. ACM Trans.

Program. Lang. Syst. 15(4), 735–742 (1993)
15. Huang, S., Chen, N.: Self-stabilizing depth-first token circulation on networks.

Distrib. Comput. 7(1), 61–66 (1993)
16. Küfner, P., Nestmann, U., Rickmann, C.: Formal verification of distributed algo-

rithms. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol.
7604, pp. 209–224. Springer, Heidelberg (2012)

17. Kulkarni, S.S., Rushby, J.M., Shankar, N.: A case-study in component-based
mechanical verification of fault-tolerant programs. In: WSS, pp. 33–40 (1999)

18. Lamport, L.: How to write a 21st century proof. J. fixed point theory appl. 11(1),
43–63 (2012)

19. The Coq Development Team: The Coq Proof Assistant, Reference Manual. http://
coq.inria.fr/refman/

http://coq.inria.fr/refman/
http://coq.inria.fr/refman/

Developing Honest Java Programs with Diogenes

Nicola Atzei and Massimo Bartoletti(B)

Università Degli Studi di Cagliari, Cagliari, Italy
{atzeinicola,bart}@unica.it

Abstract. Modern distributed applications are typically obtained by
integrating new code with legacy (and possibly untrusted) third-party
services. Some recent works have proposed to discipline the interac-
tion among these services through behavioural contracts. The idea is a
dynamic discovery and composition of services, where only those with
compliant contracts can interact, and their execution is monitored to
detect and sanction contract breaches. In this setting, a service is said
honest if it always respects the contracts it advertises. Being honest is
crucial, because it guarantees a service not to be sanctioned; further,
compositions of honest services are deadlock-free. However, developing
honest programs is not an easy task, because contracts must be respected
even in the presence of failures (whether accidental or malicious) of the
context. In this paper we present Diogenes, a suite of tools which sup-
ports programmers in writing honest Java programs. Through an Eclipse
plugin, programmers can write a specification of the service, verify its
honesty, and translate it into a skeletal Java program. Then, they can
refine this skeleton into proper Java code, and use the tool to verify that
its honesty has not been compromised by the refinement.

1 Introduction

Developing modern distributed applications is a challenging task: programmers
have to reliably compose loosely-coupled services which can dynamically discover
and invoke other services through open networks, and may be subject to failures
and attacks. Unless these services are implemented in a decentralized manner
(e.g., as smart contracts in Ethereum or Contractvm [11,13]), they will be under
the governance of mutually distrusting providers, possibly competing among each
other. Typically, these providers offer little or no guarantees about the services
they control, and in particular they reserve the right to change the service code
(if not the Service Level Agreement tout court) at their discretion.

Therefore, to guarantee the reliability and security of distributed applica-
tions, one cannot directly apply standard analysis techniques for programming
languages (like e.g., type systems or model checking). Indeed, these analysis tech-
niques usually need to inspect the code of the whole application, while under the
given assumptions one can only reason about the services under their control. In
particular, compositional verification based on choreographies [1,16] is not suit-
able in this setting, because to ensure the correctness of the whole application,
all its components have to be verified.
c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 52–61, 2016.
DOI: 10.1007/978-3-319-39570-8 4

Developing Honest Java Programs with Diogenes 53

From Service-Oriented to Contract-Oriented Computing. A possible counter-
measure to these issues is to use contracts to regulate the interaction between
services. By advertising a contract, a service commits itself to respect a given
behaviour when, after stipulation, it will interact with others. In this setting, a
service infrastructure acts as a trusted third party, which collects all the adver-
tised contracts, and establishes sessions between participants with compliant
ones. Participants can then interact through sessions, by sending and receiving
messages as required by their contracts (or even choosing to violate them, if they
find this choice more convenient). An actual implementation of this paradigm
is the middleware in [5], which offers a set of APIs through which services can
advertise, stipulate, and execute contracts (based on binary session types [14]).

To incentivize honest behaviour, contract-oriented infrastructures monitor all
the messages exchanged among services, to sanction those which do not respect
their contracts. Sanctions can be of different nature: e.g., pecuniary compensa-
tions, adaptations of the service binding [19], or they can decrease the reputation
of a service whenever it violates a contract, in order to marginalize dishonest ser-
vices in the selection phase [5].

Experimental evidence about the programming paradigm and incentive
mechanisms of [5] shows that contract-orientation can mitigate the effort of
handling potential misbehaviour of external services, at the cost of a tolerable
loss in efficiency due to the contract-based service selection and monitoring.

Honesty Attacks. The sanction mechanism of contract-oriented services allows a
new kind of attacks: adversaries can try to exploit possible discrepancies between
the promised and the actual behaviour of a service, in order to make it sanc-
tioned. For instance, consider a näıve online store with the following behaviour:

1. advertise a contract to “receive an order from a client, and then either ship
the ordered item or abort the transaction”;

2. wait to receive an order;
3. advertise a contract to “receive a quote from a package delivery service, and

then either confirm or abort”;
4. wait to receive a quote from the delivery service;
5. if the quote is below a certain threshold, then confirm the delivery and ship

to the client; otherwise, abort both transactions.

Now, assume an adversary which plays the role of a delivery service, and never
sends the quote. This makes the store violate its contract with the client: indeed,
the store should either ship or abort, but these actions can only be performed
after the delivery service has sent a quote. Therefore, the store can be sanctioned.

Since these honesty attacks may compromise the service and cause economic
damage to its provider, it is important to detect the underlying vulnerabilities
before deployment. Intuitively, a service is vulnerable if, in some execution con-
text, it does not respect some of the contracts it advertises. This may happen
either unintentionally (because of errors in the service specification, or in its
implementation), or even because of malicious behaviour. Therefore, to avoid
sanctions a service must be able to respect all the contracts it advertises, in all

54 N. Atzei and M. Bartoletti

possible contexts — even those populated by adversaries. We call this property
honesty. Whenever compliance between contracts ensures their deadlock-freedom
(as for the relations in [2,3,17,20]), the honesty property can be lifted from con-
tracts to services: systems of honest services are deadlock-free (Theorem 6 in [9]).

Some recent works have studied honesty at the specification level, using the
process calculus CO2 for modelling contract-oriented services [6,8,9]. Practical
experience with CO2 has shown that writing honest specifications is not an easy
task, especially when a service has to juggle with multiple sessions. The reason
of this difficulty lies in the fact that, to devise an honest specification, a designer
has to anticipate all the possible moves of the context, but at design time he does
not yet know in which context his service will be run. Hence, tools to automate
the verification of honesty in CO2 may be of great help.

A further obstacle to the development of honest services is that, even if
we start from an honest CO2 specification, it is still possible that honesty is not
preserved when refining the specification into an actual implementation. Analysis
techniques for checking honesty at the level of the implementation are therefore
needed in order to develop reliable contract-oriented applications.

Contributions. To support programmers in the development of contract-oriented
applications, we provide a suite of tools (named Diogenes) with the following
features: (i) writing CO2 specifications of services within an Eclipse plugin; (ii)
verifying honesty of these specifications; (iii) generating from them skeletal Java
programs which use the contract-oriented APIs of the middleware in [5]; (iv)
verifying the honesty of Java programs upon refinement. We validate our tools
by applying them to all the case studies in [6]: in particular, we specify each of
these case studies in CO2, and we successfully verify the honesty of both the
specifications and their Java refinements. Overall, we can execute these verified
services using the middleware in [5], being guaranteed that they will not incur in
sanctions, and that interactions with other honest services will be deadlock-free.
Our tools, the case studies, and a tutorial are available at co2.unica.it/diogenes.

2 Diogenes in a Nutshell

In this section we show the main features of our tools with the help of a small
example. Suppose we want to implement an online store which receives orders
from customers, and relies upon external distributors to retrieve items.

Contracts. The store has two contracts: C specifies the interaction with cus-
tomers, and D with distributors. In C, the store declares that it will wait for
an order, and then send either the corresponding amount or an abort message
(e.g., in case the ordered item is not available). The answer may depend on an
external distributor service, which waits for a request, and then answers ok or
no. We specify these two contracts as the following binary session types [15]:

contract C { order? string . (amount! int (+) abort!) }
contract D { req! string . (ok? + no?) }

http://co2.unica.it/diogenes

Developing Honest Java Programs with Diogenes 55

Receive actions are marked with the symbol ? and grouped by +; instead, send
actions are marked with ! and grouped by (+). The symbol . denotes sequential
composition. We specify the sort of a message (int, string, or unit) after the
action label; sort unit is used for pure synchronization, and it can be omitted.

Specification. A näıve CO2 specification of our store is the following:

1 specification StoreDishonest {
2 tellAndWait x C .
3 receive x order? v:string . (
4 tellAndWait y D . (
5 send y req! *: string .
6 receive [
7 y <- ok? . send x amount! *:int
8 y <- no? . send x abort!
9] + t . send x abort!))

10 }

At line 2, the store advertises the contract C, and then waits until a session
is established with some customer; when this happens, the variable x is bound
to the session name. At line 3 the store waits to receive an order, binding it to
the variable v. At line 4 the store advertises the contract D to establish a session
y with a distributor; at line 5, it sends a request with the value v. Finally, the
store waits to receive a response ok or no from the distributor, and accordingly
responds amount or abort to the customer (lines 6−8). The sent amount *:int
is placeholder, to be replaced upon refinement. The internal action t at line 9
models a timeout, fired in case no response is received from the distributor.

Our tool correctly detects that this specification is dishonest, outputting:

result: ("y",$ 0)(
StoreDishonest[tell "y" D . ask "y" True . (...)]
| $ 0[" abort" ! unit . 0 (+) "amount" ! int . 0])

result: ($ 0,$ 1)(
StoreDishonest[do $ 0 "abort" ! unit . (0).Sum]
| $ 0[" abort" ! unit . 0 (+) "amount" ! int . 0]
| $ 1[ready "no" ? unit . 0])

honesty: false

There are two causes for dishonesty. First, if the session y is never established
(e.g., because no distributor is available), the store is stuck at line 4 and cannot
fulfil C at session x ($0 in the output message). Second, if the distributor response
arrives after the timeout (line 9), the store does not consume its input, and so
it does not respect the contract D at session y ($1 in the output message).

A possible way to fix the previous specification is the following:

1 specification StoreHonest {
2 tellAndWait x C .
3 receive x order? v:string . (
4 tellRetract y D . (
5 send y req! *: string .
6 receive [
7 y <- ok? . send x amount! *:int
8 y <- no? . send x abort!
9] + t . (send x abort! | receive y ok? no?))

10 : send x abort!)
11 }

56 N. Atzei and M. Bartoletti

The primitive tellRetract at line 4 ensures that if the session x is not
established within a given deadline (immaterial in the specification) the contract
D is retracted, and the control passes to line 10. Further, in the timeout branch
we have added a parallel execution of a receive to consume orphan inputs
(line 9). Now the tool correctly detects that the revised specification is honest.

An Execution Context. We now show a possible context wherein to execute our
online store. Although the context is not needed for checking the honesty of the
store, we use it to complete the presentation of the primitives of CO2.

1 specification Buyer {
2 tellAndReturn x { order! string . (amount? int + abort?) } .
3 send x order! *: string .
4 receive [
5 x <- amount? n:int
6 x <- abort?
7]
8 }
9

10 specification Distributor {
11 tellRetract x { req? string . (ok! (+) no!) } .
12 receive x req? msg:string .
13 if *: boolean then send x ok! else send x no!
14 }

The contracts of the Buyer (lines 2) and that of the Distributor (line 11)
are compliant with the contracts C and D advertised by the store. The Buyer
uses the statement tellAndReturn to advertise its contract: it does not wait
the session is established, but postpone the waiting phase until it is strictly
required (line 3 in this case), although the session could be already started in
the meantime. The Distributor uses a conditional statement (with a dummy
guard *:boolean) to choose whether accepting or not the store request.

Code Generation and Refinement. Diogenes translates CO2 specifications into
Java skeletons, using the APIs of the middleware in [5]. For instance, from the
StoreHonest specification given above, it generates the following skeleton1:

1 public class StoreHonest extends Participant {
2 public void run() {
3 Session <TST > x = tellAndWait(C); // (line 2)
4

5 Message msg = x.waitForReceive("order"); // (line 3)
6 String v = msg.getStringValue ();
7

8 try {
9 Session <TST > y = tellAndWait(D, 10000); // (line 4)

10 y.sendIfAllowed("req", stringP); // (line 5)
11

12 try {
13 Message msg_1 = y.waitForReceive (10000 ,"ok","no"); // (line 6)
14 switch (msg_1.getLabel ()) {
15 case "ok": x.sendIfAllowed("amount", intP); break; // (line 7)
16 case "no": x.sendIfAllowed("abort"); break; // (line 8)
17 }
18 }
19 catch (TimeExpiredException e) { // (line 9)

1 Minor cosmetic changes are applied to improve readability.

Developing Honest Java Programs with Diogenes 57

20 parallel (() ->{x.sendIfAllowed("abort");});
21 parallel (() ->{y.waitForReceive("ok","no");});
22 }
23 }
24 catch(ContractExpiredException e) {
25 // contract D retracted
26 x.sendIfAllowed("abort"); // (line 10)
27 }
28 }
29 }

We use Java exceptions to deal with both the tellRetract and receive
primitives: the ContractExpiredException is thrown by line 9 if the session y is
not established within a given timeout (10 s), while the TimeExpiredException
is thrown by line 13 if a message is not received within the timeout. The
parallel method at lines 20-21 starts a new thread which executes the given
Runnable instance. The timeout values, as well as the order amount at line 15 ,
are just placeholders; in an actual implementation of the store service, we may
want to delegate the computation of amount to a separated method, e.g.:

30 public int getOrderAmount(String order) throws MyException {...}

and change the placeholder intP at line 15 with getOrderAmount(v). The
method could read the order amount from a file or a database, and sup-
pose that each possible exception is caught and hidden behind MyException.
The failure of this method can be considered non-deterministic, so we need
to “instruct” our verification tool in order to consider all the possible
ways the method can terminate. To this purpose, we provide the annota-
tion @SkipMethod(value="<value>"), interpreted by the checker as follows:
(i) assumes that the method does not perform any action directed to the mid-
dleware; (ii) considers <value> as the returning value on success; (iii) considers
the declared exceptions as possible exit points on failure. Diogenes can symboli-
cally consider both the case of a normal method termination and all the possible
exceptional terminations.

Verification. We can check the honesty of a Java program through the static
method HonestyChecker.isHonest(StoreHonest.class), which returns one
of the following values:

– HONEST: the tool has inferred a CO2 specification and verified its honesty;
– DISHONEST: as above, but the inferred CO2 specification is inferred, but it is

dishonest;
– UNKNOWN: the tool has been unable to infer a CO2 specification, e.g. because

of unhandled exceptions within the class under test.

For our refined store, the Java honesty checker returns UNKNOWN and outputs:

1 error details: MyException:
2 This exception is thrown by the honesty checker. Please catch it!
3 at i.u.c.store.StoreHonest.getOrderAmount(Store.java :30)
4 at i.u.c.store.StoreHonest.run(Store.java :15)
5 at i.u.c.honesty.HonestyChecker.runProcess(HonestyChecker.java :182)

58 N. Atzei and M. Bartoletti

Fig. 1. Data flow schema

This means that if the method getOrderAmount fails, then the program will
terminate abruptly, and so the store may violate the contract. We can recover
honesty by catching MyException with x.sendIfAllowed("abort"). With this
modification, the Java honesty checker correctly outputs HONEST.

3 Architecture

Diogenes has three main components: an honesty checker for CO2, an honesty
checker for Java, and an Eclipse plugin which integrates the two checkers with
an editor of CO2 specifications. We sketch the architecture of our tools in Fig. 1.

The CO2 honesty checker implements the verification technique introduced
in [6]. This technique is built upon an abstract semantics of CO2 which approx-
imates both values (sent, received, and in conditional expressions) and the
actual context wherein a process is executed. This abstraction is a sound over-
approximation of honesty: namely, if the abstraction of a process is honest, then
also the concrete one is honest. Further, in the fragment of CO2 without condi-
tional statements the analysis is also complete, i.e. if a concrete process is honest,
then also its abstraction is honest. For processes without delimitation/parallel
under process definitions, the associated abstractions are finite-state, hence we
can verify their honesty by model checking a (finite) state space. For processes
outside this class the analysis is still correct, but it may not terminate; indeed,
a negative result in [9] excludes the existence of algorithms for honesty that are
at the same time sound, complete, and terminating in full CO2. Our implemen-
tation first translates a CO2 process into a Maude term [10], and then uses the
Maude LTL model checker [12] to decide honesty of its abstract semantics.

The Java honesty checker is built on top of Java PathFinder (JPF, [18,21]).
The JPF core is a virtual machine for Java bytecode that can be configured
to act as a model checker. We define suitable listeners to catch the requests to
the contract-oriented middleware [5], and to simulate all the possible responses
that the application can receive from it. Through JPF we symbolically execute
and backtrack the program, and eventually we infer a CO2 specification that

Developing Honest Java Programs with Diogenes 59

over-approximates its behaviour. Then, we apply the CO2 honesty checker to
establish the honesty of the Java program. The accuracy of the inferred CO2

specification partially relies on the programmer: the methods involved in the
application logic have to be correctly annotated, and in particular they have to
declare all possible exceptions that can be thrown at runtime.

The Eclipse plugin supports writing CO2 specifications, providing syn-
tax highlighting, code auto-completion, syntactic/semantic checks, and sta-
tic type checking on sort usage. It relies on Xtext (www.eclipse.org/
Xtext), a framework for developing programming languages, and on Xseman-
tics (xsemantics.sourceforge.net), a domain-specific language for writing type
systems.

4 Conclusions

Diogenes fills a gap between foundational research on honesty [6,8,9] and more
practical research on contract-oriented programming [5]. Its effectiveness can
be improved in several ways, ranging from the precision of the analysis, to the
informative quality of output messages provided by the honesty checkers.

The accuracy of the honesty analysis could be improved e.g., by implementing
the type checking technique of [7], which can correctly classify the honesty of
some forms of infinite-state of processes (while the current honesty checker is
only guaranteed to terminate for processes without delimitation/parallel within
recursion). Another form of improvement would be to extend the analysis to
deal with timing constraints. This could be done e.g. by exploiting the timed
version of CO2 proposed in [5] and the timed session types of [4]. Although the
current analysis for honesty does not consider timing constraints, it may give
useful feedback also when applied to timed specifications. For instance, it could
detect that some prescribed actions cannot be performed because the actions
they depend on may be blocked by an unresponsive context.

The error reporting facilities could be improved in several directions: e.g., it
would be helpful for programmers to know which parts of the program make it
dishonest, what are the contract obligations that are not fulfilled, and in what
session. Further, it would be useful to suggest possible corrections to the designer.

Another direction for future work concerns relating the original CO2 specifi-
cation with the refined Java code. In fact, our tools only guarantee that the Java
skeleton generated from an (honest) CO2 specification is (honest and) coherent
with the specification. If the programmer further refines the Java code, e.g. by
removing some contract advertisements, then the Java honesty checker can still
check that the resulting code is honest, but the coherence with the original spec-
ification may be lost. An additional static analysis could establish that the CO2

process inferred from the refined Java code by JPF is a (sort of) subtype of the
original specification, and so that it can be safely used in the same contexts.

Acknowledgments. This work has been partially supported by Aut. Reg. of Sardinia
P.I.A. 2013 “NOMAD”, and by EU COST Action IC1201 “Behavioural Types for
Reliable Large-Scale Software Systems” (BETTY).

www.eclipse.org/Xtext
www.eclipse.org/Xtext
http://xsemantics.sourceforge.net

60 N. Atzei and M. Bartoletti

References

1. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
contracts: agreeing and implementing interorganizational processes. Comput. J.
53(1), 90–106 (2010)

2. Acciai, L., Boreale, M., Zavattaro, G.: Behavioural contracts with request-response
operations. In: Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol.
6116, pp. 16–30. Springer, Heidelberg (2010)

3. Barbanera, F., de’Liguoro, U.: Two notions of sub-behaviour for session-based
client/server systems. In: PPDP, pp. 155–164. ACM (2010)

4. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: Compliance
and subtyping in timed session types. In: Graf, S., Viswanathan, M. (eds.) Formal
Techniques for Distributed Objects, Components, and Systems. LNCS, vol. 9039,
pp. 161–177. Springer, Heidelberg (2015)

5. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware. In: Braga, C., et al. (eds.) FACS 2015. LNCS, vol.
9539, pp. 86–104. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28934-2 5.
http://co2.unica.it

6. Bartoletti, M., Murgia, M., Scalas, A., Zunino, R.: Verifiable abstractions for
contract-oriented systems. JLAMP (2015, to appear)

7. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. In: Beyer,
D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892, pp.
305–320. Springer, Heidelberg (2013). http://tcs.unica.it/papers/HbT.pdf

8. Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in CO2. Sci.
Ann. Comp. Sci. 22(1), 5–60 (2012)

9. Bartoletti, M., Zunino, R.: On the decidability of honesty and of its variants.
In: Hildebrandt, T., Ravara, A., van der Werf, J.M., Weidlich, M. (eds.) WS-FM
2014 + WS-FM 2015. LNCS, vol. 9421, pp. 143–166. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-33612-1 9

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: specification and programming in rewriting logic. In: TCS (2001)

11. Contractvm. https://github.com/contractvm
12. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude LTL model checker.

Electr. Notes Theor. Comput. Sci. 71, 162–187 (2002)
13. Ethereum. https://github.com/ethereum/
14. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993)
15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline

for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

17. Laneve, C., Padovani, L.: The must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007)

18. Lerda, F., Visser, W.: Addressing dynamic issues of program model checking. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 80–102. Springer, Heidelberg
(2001)

http://dx.doi.org/10.1007/978-3-319-28934-2_5
http://co2.unica.it
http://tcs.unica.it/papers/HbT.pdf
http://dx.doi.org/10.1007/978-3-319-33612-1_9
https://github.com/contractvm
https://github.com/ethereum/

Developing Honest Java Programs with Diogenes 61

19. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.: QoS-aware service composition
in Dino. In: ECOWS, LNCS, vol. 5900, pp. 3–12. Springer (2007)

20. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)
21. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.

Autom. Softw. Eng. 10(2), 203–232 (2003)

Playing with Our CAT
and Communication-Centric Applications

Davide Basile1,2(B), Pierpaolo Degano2, Gian-Luigi Ferrari2,
and Emilio Tuosto3

1 I.S.T.I “A.Faedo” CNR Pisa, Pisa, Italy
dbasile@isti.cnr.it

2 Department of Computer Science, University of Pisa, Pisa, Italy
{degano,giangi}@di.unipi.it

3 Department of Computer Science, University of Leicester, Leicester, UK
emilio@le.ac.uk

Abstract. We describe CAT, a toolkit supporting the analysis of
communication-centric applications, i.e., applications consisting of
ensembles of interacting services. Services are modelled in CAT as con-
tract automata and communication safety is defined in terms of agree-
ment properties. With the help of a simple (albeit non trivial) exam-
ple, we demonstrate how CAT can (i) verify agreement properties,
(ii) synthesise an orchestrator enforcing communication safety, (iii)
detect misbehaving services, and (iv) check when the services form a
choreography. The use of mixed-integer linear programming is a distin-
guished characteristic of CAT that allows us to verify context-sensitive
properties of agreement.

1 Introduction

Communication is increasingly important in modern applications, especially for
the distributed ones. Remote procedure/method invocations are loosing their
prominence at the application level due to their poor scalability, crucial in mod-
ern distributed applications. Communication-based modelling is also appealing
for non-distributed software. For instance, application-level protocols can be
devised to specify the behavioural constraints ensuring the correct use of a library
or of an off-the-shelf component. This trend is also witnessed by the growth that
service-oriented or cloud computing had in the software industry. In this con-
text, composition of software becomes paramount and requires proper theoretical
foundations as well as tool support. In fact, although scalable, communication-
centric applications may pose non trivial obstacles to validation.

We showcase CAT, a prototype toolkit supporting the validation of
communication-centric applications. This toolkit (available at [3]) is based on
contract automata [4–6], a recently proposed formal model of service compo-
sition. Contract automata abstractly describe (the communication pattern of)

The first three authors have been partially supported by project PRA 2016 64
“Through the fog” funded by the University of Pisa.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 62–73, 2016.
DOI: 10.1007/978-3-319-39570-8 5

Playing with Our CAT and Communication-Centric Applications 63

Fig. 1. The contract automata for 2BP

services as automata whose transitions represent requests and offers. An interac-
tion between two services occurs when a match action is possible, that is when
one service’s offer matches a partner’s request. Intuitively, contract automata
capture the behaviour of services by tracking the interactions they are keen to
execute with each other. Service composition is naturally described in terms of
product automata. The matching between offers and requests has to guaran-
tee agreement properties that amount to safe communications. Intuitively, an
automaton admits strong agreement if it has at least one trace made only by
match transitions; and it is strongly safe if all the traces are in strong agree-
ment. Basically, strong agreement guarantees that the composition of services
has a sound execution, while strong safety guarantees that all executions of the
composition are sound. Likewise for agreement but for the fact that traces also
admit (unmatched) offers to model interactions with an external environment.

By means of an example we describe how the analysis of communication-
centric applications can be supported by CAT. To this purpose we borrow here
the two-buyers protocol (2BP) from [10] which we now briefly recall. Two buyers,
say B1 and B2, collaborate in purchasing an item from a seller S. Buyer B1 starts
the protocol by asking S the price of the desired item (price); the seller S makes
an offer by sending the message quote1 to B1 and the message quote2 to B2. Once
received its quote, buyer B1 sends to B2 its contribution for purchasing the item
(message contrib). Buyer B2 waits for the quote from S and the contribution from
B1. Then, it decides whether to terminate by issuing the nop message to S, or
to proceed by sending an acknowledgement to S. In the latter case, S sends the
item to B2 (delivery), while if it receives nop it terminates with no further action.
Figure 1 shows the contract automata of B1, B2, and S where each interaction is
split in offers (over-lined labels) and requests (non over-lined labels).

We will apply CAT to the above protocol and show how, when the agreement
property of interest is violated, we identify and fix defects.

64 D. Basile et al.

2 Background: Contract Automata

Contract automata have been introduced in [4] from which we borrow the fol-
lowing definitions. Intuitively, a contract automaton represents the behaviour of
a set of principals capable of performing some actions; more precisely, as for-
malised in Definition 1, the actions of contract automata allow them to “adver-
tise” offers, “make” requests, or “handshake” on matching offer/request actions.
The number of principals in a contract automaton is its rank, and a vectorial
representation is used for tracking the moves of each principal in it. The tran-
sitions are labelled with tuples in the set L

def= R ∪ O ∪ {�} where: requests of
principals will be built out of R while their offers will be built out of O, R∩O = ∅,
and � �∈ R ∪ O is a distinguished label to represent components that stay idle.
We let a, b, c, . . . range over L and fix an involution · : L → L such that

R ⊆ O, O ⊆ R, ∀a ∈ R ∪ O : a = a, and � = �

Offer actions are overlined, e.g. a. Let �v = (a1, ..., an) be a vector of rank rv,
then �v(i) denotes the i-th element. We write �v1�v2 . . . �vm for the concatenation
of m vectors �vi; |�v| = n is the rank of �v; and �vn for the vector obtained by n
concatenations of �v.

Definition 1. A tuple �
∗b�

∗ on L is a request (resp. offer) action on b iff b ∈ R
(resp. b ∈ O). A match (action) on b is a tuple �

∗b�
∗b�

∗ on L (b ∈ R ∪ O). Let
��⊆ L∗ ×L∗ be the symmetric closure of

·
��⊆ L∗ ×L∗ where �a1

·
�� �a2 iff |�a1| = |�a2|

and both the following conditions hold

– ∃b ∈ R ∪ O : �a is either a request or an offer on b;
– ∃b ∈ R ∪ O : �a1 is an offer on b =⇒ �a2 is a request on b
– ∃b ∈ R ∪ O : �a1 is a request on b =⇒ �a2 is a offer on b.

Definition 2. Assume as given a finite set of states Q = {q1, q2, . . .}. Then a
contract automaton A of rank n is a tuple 〈Q, �q0, A

r, Ao, T, F 〉, where

– Q = Q1 × . . . × Qn ⊆ Qn

– �q0 ∈ Q is the initial state
– Ar ⊆ R, Ao ⊆ O are finite sets (of requests and offers, respectively)
– F ⊆ Q is the set of final states
– T ⊆ Q × A × Q is the set of transitions, where A ⊆ (Ar ∪ Ao ∪ {�})n and if

(�q,�a, �q′) ∈ T then both the following conditions hold:
• �a is either a request or an offer or a match
• if �a(i) = � then it must be �q(i) = �q′

(i).

A principal is a contract automaton of rank 1 such that Ar ∩ co(Ao) = ∅.
A principal is not allowed to make a request on actions that it offers. We have two
different operators for composing contract automata, that interleave or match
the transitions of their operands. We only force a synchronisation to happen
when two contract automata are ready on their respective request/offer action.

Playing with Our CAT and Communication-Centric Applications 65

These operators represent two different policies of orchestration. The first oper-
ator, called product, considers the case when a service S joins a group of services
already clustered as a single orchestrated service S′. In the product of S and
S′, the first can only accept the still available offers (requests, respectively) of
S′ and vice versa. In other words, S cannot interact with the principals of the
orchestration S′, but only with it as a whole component.

The second operation of composition, called a-product, puts instead all the
principals of S at the same level of those of S′. Any matching request-offer of
either contracts are split, and the offers and requests become available again, and
are re-combined with complementary actions of S, and viceversa. The a-product
turns out to satisfactorily model coordination policies in dynamically changing
environments, because the a-product is a form of dynamic orchestration, that
adjusts the workflow of messages when new principals join the contract.

We now introduce our first operation of composition; recall that we implicitly
assume the alphabet of a contract automaton of rank m to be A ⊆ (Ar ∪ Ao ∪
{�})m.

Definition 3 (Product). Let Ai = 〈Qi, �q0i, A
r
i , A

o
i , Ti, Fi〉, i ∈ 1 . . . n be con-

tract automata of rank ri. The product
⊗

i∈1...n Ai is the contract automaton
〈Q, �q0, A

r, Ao, T, F 〉 of rank m =
∑

i∈1...n ri, where:

– Q = Q1 × ... × Qn, where �q0 = �q01 . . . �q0n

– Ar =
⋃

i∈1···n Ar
i , Ao =

⋃
i∈1···n Ao

i

– F = {�q1 . . . �qn | �q1 . . . �qn ∈ Q, �qi ∈ Fi, i ∈ 1 . . . n}
– T is the least subset of Q×A×Q s.t. (�q,�c, �q′) ∈ T iff, when �q = �q1 . . . �qn ∈ Q,

either there are 1 ≤ i < j ≤ n s.t. (�qi,�ai, �q
′
i) ∈ Ti, (�qj ,�aj , �q

′
j) ∈ Tj, �ai �� �aj

and
{

�c = �
u�ai�

v�aj�
z with u = r1 + . . . + ri−1, v = ri+1 + . . . + rj−1, |�c| = m

and
�q′ = �q1 . . . �qi−1 �q′

i �qi+1 . . . �qj−1 �q′
j �qj+1 . . . �qn

or there is 1 ≤ i ≤ n s.t. (�qi,�ai, �q
′
i) ∈ Ti and

�c = �
u�ai�

v with u = r1 + . . . + ri−1, v = ri+1 + . . . + rn, and
�q′ = �q1 . . . �qi−1 �q′

i �qi+1 . . . �qn and
∀j �= i, 1 ≤ j ≤ n, (�qj ,�aj , �q

′
j) ∈ Tj it does not hold that �ai �� �aj.

To retrieve the principals involved in a contract automaton obtained through
the product introduced above, we introduce the following:

Definition 4 (Projection). Let A = 〈Q, �q0, A
r, Ao, T, F 〉 be a contract

automaton of rank n, then the projection on the i-th principal is
∏i(A) =

〈∏i(Q), �q0(i),
∏i(Ar),

∏i(Ao),
∏i(T),

∏i(F)〉 where i ∈ 1 . . . n and:
i∏
(Q) = {�q(i) | �q ∈ Q}

i∏
(F) = {�q(i) | �q ∈ F}

i∏
(Ar) = {a | a ∈ Ar, (q, a, q′) ∈

i∏
(T)}

i∏
(A

o
) = {a | a ∈ A

o
, (q, a, q

′
) ∈

i∏
(T)}

i∏
(T) = {(�q(i),�a(i), �q′

(i)) | (�q,�a, �q′) ∈ T ∧ �a(i) �= �}

We now define the associative product.

66 D. Basile et al.

Definition 5 (a-Product). Let A1,A2 be two contract automata of rank n and
m, respectively, and let I = {∏i(A1) | 0 < i ≤ n} ∪ {∏j(A2) | 0 < j ≤ m}. Then
the a-product of A1 and A2 is A1 � A2 =

⊗
Ai∈I Ai.

3 CAT at Work

We have implemented CAT in Java according to the simple architecture of Fig. 2.
The main class of CAT extends JAMATA [3], a framework for manipulating
automata yielding methods for loading, storing, printing, and representing finite
state automata. In other words, CAT originally specializes JAMATA on contract
automata, offering to the developers an API for creating and verifying contract
automata. Also, CAT interfaces with a separate module for solving linear opti-
mization problems, called AMPL [8], described in Sect. 5. This is an original
facet of CAT; in fact, it maps the (check of) agreement properties of interest on
a linear optimization problem.

AMPL models CAT API JAMATA
uses extends

Fig. 2. The architecture of CAT

The user of CAT has access to its API, that can be conceptually classified as
follows:

Automata operations consist of the methods CA proj(int i), that returns
the automaton specifying the ith service of the composition, CA product
(CA[] aut) and CA aproduct(CA[] aut) that compute respectively the
product and the associative product of contract automata. Interestingly,
product has to filter out the offers and request transitions when the source
state has a corresponding outgoing match transition. Method aproduct is
built on top of product by invoking product on the services obtained as
projections of the automaton in input.

Safety check consists of the instance methods safe, agreement, strong
Agreement, and strongSafe returning true if the corresponding agreement
property holds on the contract automaton. Section 5 discusses the property
of weak agreement.

Controllers consist of the methods CA mpc() and CA smpc() that return the
most permissive controller (MPC), for respectively agreement and strong
agreement. A controller basically represents the largest (strongly) safe sub-
automaton and is obtained through a standard construction of Control
Theory [7].

Liable detection consists of the methods CATransition[] liable() - return-
ing transitions from a state s to a state t such that s is in the MPC but t

Playing with Our CAT and Communication-Centric Applications 67

is not - and CATransition[] strongLiable() that similarly returns such
transitions for the MPC of the strong agreement property. In particular,
liable services are those responsible for leading a contract composition into
a failure.

Decentralization includes int[][] branchingCondition(), that returns
two states and an action for which the branching condition is vio-
lated. Basically, the branching condition holds if the actions of a ser-
vice are not affected by the states of the other services in the composi-
tion. Another similar method that deals with open-ended interactions is
int[][] extendedBranchingCondition(). The last method in this cate-
gory is int[] mixedChoice() that returns a mixed-choice state (a state
where a principal has enabled both offers and requests inside matches). All
such methods return null when the conditions they check do not hold.

We describe how to interact with the API of CAT through a simple command
line interface (we plan to develop a GUI as well). The API is displayed and the
user can choose one of the options (this is not shown here). Each displayed option
corresponds to one of the methods described above. For instance, after choosing
to compute a product, the user is asked to set the contract automata on which
to take the product.

Output 1
Do you want to create/load other contract automata? yes 1

Insert the name of the automaton to load or leave empty for create a new one: B1 2

3

Contract automaton: 4

Rank: 1, Number of states: [4], Initial state: [0], Final states: [[3]] 5

Transitions: ([0],[1],[1]), ([1],[-2],[2]), ([2],[3],[3]) 6

7

Do you want to create/load other contract automata? yes 8

The user inputs the automata in CAT by providing their file names (line 2
of Output 1) and yes on line 8 until there are no more automata to load (in
which case the user enters no to obtain the result of the product). For each
entered automaton, CAT prints a textual description on the screen (lines 4–6 in
Output 1) reporting the rank, initial and final states, and the list of transitions.
The transitions are triples (s, l, t) where s is the source state, l is the label,
and t is the target state. These elements are lists of length r (the rank of the
automaton), for instance, in Output 1 r = 1 (cf. on line 5). The i-th element
of each list corresponds to the i-th service. In particular, the i-th action in the
list of labels identifies the action performed by the i-th service; such action is
strictly positive (if the action is an offer), strictly negative (if it is a request),
and 0 if the service is idle in the transition. For B1, actions price, quote1, and
contrib are represented with the integers 1, −2, and 3, respectively.

First CAT computes the product automaton, and then it displays the result
(B1xB2xS in our example and stores it in a file named B1xB2xS.data). From
the main menu, the user can now choose to compute the MPC of the product
automaton (shown in Fig. 1); the result is displayed in Output 2 below. Once the
product automaton is loaded, CAT will compute the MPC:

68 D. Basile et al.

Output 2
The most permissive controller for strong agreement is: 1

Rank: 3 2

Number of states: [4, 5, 6], Initial state: [0, 0, 0], Final states: [[3][4][5]] 3

Transitions: 4

([0, 0, 0],[1, 0, -1],[1, 0, 1]) ([1, 0, 1],[-2, 0, 2],[2, 0, 2]) 5

([2, 1, 3],[3, -3, 0],[3, 2, 3]) ([2, 0, 2],[0, -7, 7],[2, 1, 3]) 6

([3, 2, 3],[0, 4, -4],[3, 3, 4]) ([3, 2, 3],[0, 5, -5],[3, 4, 5]) 7

([3, 3, 4],[0, -6, 6],[3, 4, 5]) 8

Do you want to save this automaton? (write yes or no) yes KS_B1xB2xS 9

The resulting automaton is of rank 3 and corresponds to the MPC of Fig. 1.
The final states are represented as a list where the i-th element is the list of
the final states of the i-th service. This representation allows to check if a state
of the MPC is final or not without needing to explicitly enumerate all the final
states of the MPC.

The transitions on lines 5–8 in Output 2 represent the transitions of the MPC;
note that in each transition there is always an idle service. For instance, con-
sider the transition ([0, 0, 0], [1, 0, –1], [1, 0, 1]): it corresponds to the transition
(�q0, (price, �, price), �q1) of the MPC in Fig. 1 (the second component of the label
is 0 because B2 is idle). The MPC can now be saved in a file as per line 9 in
Output 2.

The underlying coordination mechanism of contract automata is orches-
tration. More precisely, services are oblivious of their partners and exchange
messages through a “hidden” orchestrator (formalised by the MPC, if any).
Whenever possible, one would like to have services interacting without the
“supervision” of an orchestrator, using FIFO buffers. Mild conditions [6] ensure
that choreographies are sound, in other words that all the interactions among
services are successful. We briefly discuss this issue below. For synchronous inter-
actions (where buffers have size 1 and a single buffer may be non empty), ser-
vices have to enjoy the branching condition that is necessary and sufficient for
services to form a sound choreography. As said, a branching condition guar-
antees “unsupervised” communications soundness when the communication are
synchronous [5,6]. However, such branching condition does not suffice for asyn-
chronous interactions (namely when buffers are unbounded and more than one
buffer is possibly non empty). In this case, an additional sufficient and commonly
required condition is the absence of mixed choice states, i.e., states where more
than one service can perform an offer (see [6]). Consider now Fig. 1, where in
Output 3 the state �q2 corresponds to [2,0,2], the state �q3 to [2,1,3], and the
transition (contrib, contrib, �) to the label [3,--3,0]. The MPC does not enjoy
the branching condition, as CAT reports:

Output 3
State [2,0,2] violates the branching condition because it has no transition labelled 1

[3,-3,0] which is instead enabled in state [2,1,3] 2

It is important to observe that the message in Output 3 also flags states and
transitions for which the condition is violated. We discuss the problem by con-
sidering the automata in Fig. 1. The local state of buyer B1 in �q2 and �q3 is qB12,
while the locale state of B2 in �q2 is qB20, and in �q3 is qB21. Therefore, in the

Playing with Our CAT and Communication-Centric Applications 69

case that B2 is in local state qB20 where it is waiting for quote2, without an
orchestrator the offer contrib from B1 could fill up the 1-buffer of B2, leading
to a deadlock. A simple fix consists in swapping the order in which the quotes
are sent by the seller; CAT reports that the amended protocol (not shown here)
enjoys the branching condition. The contract automaton has no mixed choice
states, as detected by CAT. A mixed choice state could be introduced in 2BP if,
e.g., B2 could send the acknowledgement to S or receive contrib from B1 in any
order. For this variant of 2BP, CAT finds the mixed choice state, so showing that
these services do not form a sound choreography.

4 Detailing the Implementation of CAT

CAT consists of a class CAUtil and of other classes CA and CATransition, extend-
ing two corresponding super-classes of JAMATA. The class CA provides the main
functionalities of CAT; its instance variables capture the basic structure of our
automata:

– int rank is the rank of the automaton;
– int[] initial is the initial state of the automaton (the array is of size rank);
– int[] states the vector of the number of local states of each principal in the

contract automaton (the array is of size rank);
– int[][] finalstates the final states of each principal in the contract

automaton;
– CATransition[] tra the transitions of the contract automaton.

The n local states of a principal are represented as integers in the range
0, . . . , n− 1; in this case, states.length = 1 and states[0] = n. The state of
an automaton of rank m > 1 is an m-vector states such that states[i] yields
the number of states of the ith principal. This low-level representation (together
with the encoding of actions and labels as integers) enabled us to optimize space.

The class CATransition, describes a transition of a contract automaton. The
instance variables of a CATransition object are:

– int[] source (the starting state of the transition);
– int[] label (the label of the transition);
– int[] target (the arriving state of the transition).

The class CATransition provides methods to extract its instance variables, to
check if the transition is an offer, a request or a match, and to extract the (index
of the) principal performing the offer, if any.

5 Linear Programming and Contract Automata

The properties of weak agreement were introduced for solving circularity issues,
in which all services are stuck waiting the fulfilment of their requests before pro-
viding the corresponding offers [4]. For example, consider the services (rendered

70 D. Basile et al.

as regular expressions) A = a.b and B = b.a; their product does not admit agree-
ment. Circularity is solved by allowing matches between requests and offers even
though they are not simultaneous; intuitively, offers may be fired “on credit”
provided that the corresponding requests are honoured later on. A trace of an
automaton is a weak agreement if for each request there is a corresponding offer,
no matter in which order they occur in the trace. The notions of admitting weak
agreement and of weakly safety are then similar to the ones of (strong) agreement
reviewed earlier. For example, A ⊗ B admits weak agreement. The underlying
theory and the decision procedures for the properties of weak agreement are
developed in [4], and are formalised as mixed linear integer programming. This
is because the properties of weak agreement are context-sensitive, and thus no
controller can exist, i.e., a contract automaton for enforcing them. Below, we
briefly review a component for solving the optimization problems related to con-
tract automata, that complements the functionalities offered by CAT.

The decision procedures are implemented in A Mathematical Programming
Language (AMPL) [8], a widely used language for describing and solving opti-
mization problems. In this way, the automatic verification of contract automata
under properties of weak agreement exploits efficient techniques and algorithms
developed in the area of operational research. We now briefly describe the imple-
mentation of the techniques for verifying weak agreement. The script flow.run,
to be launched with the command ampl, is described below:

flow.run
#reset; 1

option solver cplex; // use the simplex algorithm in C 2

model weakagreement.mod; // select model for weak agreement 3

data flow.dat; // load 4

solve; // apply the simplex algorithm 5

display gamma; // display the result: if gamma >= 0 then property holds 6

The script firstly loads the automaton from the file flow.dat (line 4). The
description of the automata consists of the number of nodes, the cardinality of
the alphabet of actions, and a matrix of transitions for each action a, where
there is value 0 at position (s, t) if there is no transition from state s to state t
labelled by a, and respectively 1 or −1 if there is an offer or request transition on
a. In this case, the contract automaton described in flow.dat is representative.

The AMPL linear program to load is given as input parameter to the script
(line 3). The two optimization problems available are: weakagreement.mod, the
file contains the formalization of the optimization problem for deciding whether a
contract automaton admits weak agreement, and weaksafety.mod that contains
the formalization of the optimization problem for deciding whether a contract
automaton is weakly safe.

Both formal descriptions are then solved using the solver cplex, that is the
simplex method implemented in C. However it is possible to select other available
solvers in the script flow.run (line 2). The execution of the script will prompt
to the user the value of variables. As proved in [4], if the variable gamma is
non negative then the contract automaton satisfies the given property. Bi-level
optimization problems can not be defined directly in AMPL. Therefore, we cannot

Playing with Our CAT and Communication-Centric Applications 71

1

n number of nodes # m number of actions 2

param n; param m; param K; param final; #final node 3

set N := {1..n}; set M := {1..m}; param t{N,N}; param a{N,N,M}; 4

var x_t{N,N} >=0 integer; var z_t{N,N,N} >=0; 5

var gamma; var p{N} binary; var wagreement; 6

7

#flow constraints 8

subject to Flow_Constraints {node in N}: 9

sum{i in N}(x_t[i,node]*t[i,node]) - sum{i in N}(x_t[node,i]*t[node,i]) = 10

if (node == 1) then -1 11

else if (node == final) then 1 12

else 0; 13

; 14

15

subject to p1{node in N}: p[node] <= sum{i in N}(x_t[node,i]*t[node,i]); 16

subject to p2{node in N}: sum{i in N}(x_t[node,i]*t[node,i]) <= p[node]*K; 17

18

subject to Auxiliary_Flow_Constraints {snode in N diff {1},node in N}: 19

sum{i in N}(z_t[snode,i,node]*t[i,node]) - sum{i in N}(z_t[snode,node,i]*t[node,i]) =20

if (node == 1) then - p[snode] 21

else if (node == snode) then p[snode] 22

else 0; 23

24

subject to Auxiliary_Flow_Constraints2{i in N, j in N,snode in N}: 25

z_t[snode,i,j]*t[i,j] <= x_t[i,j]*t[i,j]; 26

27

subject to threshold_constraint {act in M}: 28

sum{i in N,j in N} x_t[i,j]*t[i,j]*a[i,j,act] >= gamma; 29

30

#objective function 31

maximize cost: gamma; 32

1

n number of nodes # m number of actions 2

param n; param m; param K; param final; #final node 3

set N := {1..n}; set M := {1..m}; param t{N,N}; param a{N,N,M}; 4

var x_t{N,N} >=0 integer; var z_t{N,N,N} >=0; 5

var gamma; var p{N} binary; var v{M} binary; var wagreement; 6

7

#flow constraints 8

subject to Flow_Constraints {node in N}: 9

sum{i in N}(x_t[i,node]*t[i,node]) - sum{i in N}(x_t[node,i]*t[node,i]) = 10

if (node == 1) then -1 11

else if (node == final) then 1 12

else 0; 13

; 14

15

subject to p1{node in N}: p[node] <= sum{i in N}(x_t[node,i]*t[node,i]); 16

subject to p2{node in N}: sum{i in N}(x_t[node,i]*t[node,i]) <= p[node]*K; 17

18

subject to Auxiliary_Flow_Constraints {snode in N diff {1},node in N}: 19

sum{i in N}(z_t[snode,i,node]*t[i,node]) - sum{i in N}(z_t[snode,node,i]*t[node,i]) =20

if (node == 1) then - p[snode] 21

else if (node == snode) then p[snode] 22

else 0; 23

24

subject to Auxiliary_Flow_Constraints2{i in N, j in N,snode in N}: 25

z_t[snode,i,j]*t[i,j] <= x_t[i,j]*t[i,j]; 26

27

subject to vi: sum{i in M} v[i] = 1; 28

29

subject to threshold_constraint : 30

sum{act in M,i in N,j in N} (v[act]*x_t[i,j]*t[i,j]*a[i,j,act]) <= gamma; 31

32

#objective function 33

minimize cost: gamma; 34

Fig. 3. The implementation in AMPL of the optimization problem for deciding weaka-
greement and weak safety.

72 D. Basile et al.

plainly apply formalisation of [4] for representing weakly liable transitions as
an optimization problem. However, different techniques of relaxation of the bi-
level problem for over approximating the set of weakly liable transitions can be
used, as for example lagrangian relaxation. As future work, we are planning to
develop a toolchain for fully integrating the above techniques in CAT, in order
to reuse them for the functionalities described in Sect. 3. In particular, CAT will
automatically generate a contract automaton description flow.dat, execute the
script flow.run and collect the results. The code of weakagreement.mod and
weaksafety.mod is depicted in Fig. 3. For further details about CAT, we refer
the interested reader to the full documentation, available online at [3].

6 Concluding Remarks

We described CAT, a tool supporting the analysis of communication-centric
applications attained with novel techniques based on combinatorial optimiza-
tion. A non trivial example was used to show main features of CAT.

An interesting application domain for CAT are service-oriented applications.
In this context, model-driven approaches have been advocated for the analysis
of service composition. In particular, automata have been used as target models
to translate BPEL processes [11] in [9,13]; for instance, constraint automata
semantics of REO [1,2] is used in [12] to analyse web-services. Relations of
contract automata with service composition are studied in [4–6]. The properties
verified by CAT have not been considered by other approaches. For example,
the identification - even in presence of circular dependencies of services (see
Sect. 5) - of liable transitions that may spoil a composition complement the
verification done in [12]. We conjecture that it would be possible to define model
transformations from contract automata to BPEL which preserve the analysis
discussed here.

A model-driven approach would also ease the integration of CAT with e.g.,
the tools discussed above. This would provide developers with a wide variety
of tools for guaranteeing the quality of the composition of services according to
different criteria.

The tool is still a prototype; we plan to improve its efficiency, extend it with
new functionalities (e.g., relaxation), and improve its usability (e.g., adding a
user-friendly GUI and pretty-printing automata). We note that CAT provides a
valid support to the analysis of applications. In fact, CAT is able to detect pos-
sible violations of the properties of interest (for example branching condition,
mixed choice). A drawback of CAT is that it does not support modelling and
design of applications. An interesting evolution of CAT would be to add function-
alities for amending applications violating properties of interest. For instance,
once liable transitions are identified, CAT could suggest how to modify services
to guarantee the property. This may also be coupled with the model-driven app-
roach by featuring functionalities tracing transitions in the actual source-code
of services.

Playing with Our CAT and Communication-Centric Applications 73

References

1. Arbab, F.: Reo: a channel-based coordination model for component composi-
tion. Math. Struct. Comput. Sci. 14(3), 329–366 (2004). http://dblp.uni-trier.de/
db/journals/mscs/mscs14.html#Arbab04

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006). http://
dx.doi.org/10.1016/j.scico.2005.10.008

3. Basile, D.: JAMATA and CAT. https://github.com/davidebasile/workspace
4. Basile, D., Degano, P., Ferrari, G.-L.: Automata for analysing service contracts.

In: Maffei, M., Tuosto, E. (eds.) TGC 2014. LNCS, vol. 8902, pp. 34–50. Springer,
Heidelberg (2014)

5. Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: From orchestration to choreogra-
phy through contract automata. In: ICE 2014, pp. 67–85 (2014)

6. Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Relating two automata-based
models of orchestration and choreography. J. Logical Algebr. Methods Pro-
gramm. 85(3), 425–446 (2016). http://www.sciencedirect.com/science/article/
pii/S2352220815000930

7. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
Secaucus (2006)

8. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Mathematical Programming
Language. AT & T Bell Laboratories Murray Hill, NJ 07974 (1987)

9. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: WWW
2004, pp. 621–630. ACM (2004). http://doi.acm.org/10.1145/988672.988756

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL, pp. 273–284. ACM (2008)

11. Juric, M.B.: Business Process Execution Language for Web Services BPEL and
BPEL4WS, 2nd edn. Packt Publishing, Birmingham (2006)

12. Tasharofi, S., Vakilian, M., Moghaddam, R.Z., Sirjani, M.: Modeling web ser-
vice interactions using the coordination language reo. In: Dumas, M., Heckel, R.
(eds.) WS-FM 2007. LNCS, vol. 4937, pp. 108–123. Springer, Heidelberg (2008).
http://dblp.uni-trier.de/db/conf/wsfm/wsfm2007.html#TasharofiVMS07

13. Wombacher, A., Fankhauser, P., Neuhold, E.: Transforming BPEL into annotated
deterministic finite state automata for service discovery. In: Web Services (2004)

http://dblp.uni-trier.de/db/journals/mscs/mscs14.htmlArbab04
http://dblp.uni-trier.de/db/journals/mscs/mscs14.htmlArbab04
http://dx.doi.org/10.1016/j.scico.2005.10.008
http://dx.doi.org/10.1016/j.scico.2005.10.008
https://github.com/davidebasile/workspace
http://www.sciencedirect.com/science/article/pii/S2352220815000930
http://www.sciencedirect.com/science/article/pii/S2352220815000930
http://doi.acm.org/10.1145/988672.988756
http://dblp.uni-trier.de/db/conf/wsfm/wsfm2007.htmlTasharofiVMS07

Multiparty Session Types Within a Canonical
Binary Theory, and Beyond

Lúıs Caires1 and Jorge A. Pérez2(B)

1 NOVA LINCS, Universidade NOVA de Lisboa, Lisbon, Portugal
2 University of Groningen, Groningen, The Netherlands

j.a.perez@rug.nl

Abstract. A widespread approach to software service analysis uses ses-
sion types. Very different type theories for binary and multiparty proto-
cols have been developed; establishing precise connections between them
remains an open problem. We present the first formal relation between
two existing theories of binary and multiparty session types: a binary sys-
tem rooted in linear logic, and a multiparty system based on automata
theory. Our results enable the analysis of multiparty protocols using
a (much simpler) type theory for binary protocols, ensuring protocol
fidelity and deadlock-freedom. As an application, we offer the first the-
ory of multiparty session types with behavioral genericity. This theory
is natural and powerful; its analysis techniques reuse results for binary
session types.

1 Introduction

The purpose of this paper is to demonstrate, in a precise technical sense, how
an expressive and extensible theory of multiparty systems can be extracted from
a basic theory for binary sessions, thus developing the first formal connection
between multiparty and binary session types. Our approach relies on a theory of
binary session types rooted in linear logic and on medium processes that capture
the behavior of global types.

Relating the global behavior of a distributed system and the components
that implement it is a challenging problem in many scenarios. This problem
is also important in the analysis of software services, where the focus is on
message-passing programs with advanced forms of concurrency and distribu-
tion. Within language-based techniques, notable approaches include interface
contracts (cf. [8]) and behavioral types [15]. Our interest is in the latter: by
classifying behaviors (rather than values), behavioral types abstract structured
protocols and enforce disciplined communication exchanges.

Session types [13,14] are a much-studied class of behavioral types. They
organize multiparty protocols as sessions, basic units of structured conversations.
Several session typed frameworks have been developed (see [15] for an overview).
This diversity makes it hard to compare their associated techniques, and hinders
the much desirable transfer of techniques between different typed models.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 74–95, 2016.
DOI: 10.1007/978-3-319-39570-8 6

Multiparty Sessions in a Canonical Binary Theory, and Beyond 75

In this paper, we formally relate two distinct typed models for structured
communications. By relying on a type theory of binary sessions rooted in linear
logic [5], we establish natural bridges between typed models for binary and mul-
tiparty sessions [13,14]. Our results reveal logically motivated justifications for
key concepts in typed models of global/local behaviors, and enable the transfer
of reasoning techniques from binary to multiparty sessions. In fact, our approach
naturally enables us to define the first model of multiparty session types with
parametric polymorphism, which in our setting means behavioral genericity (i.e.,
passing first-class behavioral interfaces in messages), not just datatype generic-
ity. This new model is very powerful; we equip it with analysis techniques for
behavioral genericity by reusing results for binary session types [4].

Binary protocols [13] involve two partners, each abstracted by a behavioral
type; correct interactions rely on compatibility, i.e., when one partner performs
an action, the other performs a complementary one. Multiparty protocols may
involve more than two partners: there is a global specification to which all
of them, from their local perspectives, should adhere. In multiparty session
types [12,14], these visions are described by a global type and local types, respec-
tively; a projection function relates the two. Previous research shows that type
systems for multiparty protocols have a more involved theory than binary ones.
For instance, the analysis of deadlock-freedom in multiparty protocols is chal-
lenging [10], and certainly harder than for binary protocols.

The question is then: could multiparty session types be reduced into binary
ones? Defining such a reduction is far from trivial, as it should satisfy at least two
requirements. First, the resulting collection of binary interactions must preserve
crucial sequencing information among multiparty exchanges. Second, it should
avoid undesirable behaviors: synchronization errors, deadlocks, non-terminating
reductions.

This paper answers the above question in the affirmative. We tightly relate:
(i) a standard theory of multiparty session types [12,14], and (ii) the theory
of deadlock-free binary session types proposed in [5]. The key device in our
approach is the medium process of a multiparty protocol.

Given a global type G, its medium process M�G� is an entity that medi-
ates in all communications. Therefore, M�G� extracts the semantics of G, uni-
formly capturing its sequencing information. Process M�G� is meant to interact
with well-typed implementations for all participants declared in G. This way,
for instance, given the global type G = p � q:{li〈Ui〉.Gi}i∈I (i.e., a labeled,
directed exchange from p to q, indexed by I, which precedes execution of a pro-
tocol Gi), its medium M�G� first receives a label lj and message of type Uj sent
by p’s implementation (with j ∈ I); then, it forwards these two objects to q’s
implementation; lastly, it executes process M�Gj�.

Interestingly, our medium-based approach applies to global types with name
passing, delegation, and parallel composition. To fully characterize a global type
G, we determine the conditions under which M�G� may be well-typed using
binary session types, with respect to its local types. A key ingredient here is the
theory for binary session types introduced in [5]. Due to their logical foundations,

76 L. Caires and J.A. Pérez

typability in [5] entails: fidelity (protocols are respected), safety (absence of com-
munication errors), deadlock-freedom (processes do not get stuck), and termina-
tion (infinite internal behavior is ruled out). Most relevant for our approach is
deadlock-freedom, not directly ensured by alternative type systems.

Here we present an analysis of multiparty session types using a theory of
binary session types, ensuring fidelity and deadlock-freedom. Our technical con-
tributions are:

• Characterization results relating (a) a global type that is well-formed (correct
projectability) and (b) typability of its medium using binary session types
(Theorems 4 and 5).

• Operational correspondence results relating (a) the behavior of a global type
and (b) the behavior of its medium (instrumented in a natural way) com-
posed with well-typed implementations for each local type (Theorem 7). These
results confirm that our analysis does not introduce extra sequentiality in pro-
tocols.

• A proof that behavioral transformations of global types [6] can be justified
by typed equalities for binary sessions [19] expressed at the level of mediums
(Theorem 6). This result offers a deep semantic justification of structural
identities on global types, such as those capturing parallelism via interleaving
of causally independent exchanges.

• Transfer of techniques from binary to multiparty protocols. We define the
first theory of multiparty session types with behavioral genericity ; its analysis
techniques reuse the binary session type theory with parametric polymorphism
given in [4].

Our results define the first formal relation between multiparty and binary session
types. They highlight the fundamental character of the notions involved, since
they can be independently explained by communicating automata (cf. [12]) and
linear logic (cf. [5]).

Next, we collect definitions on multiparty sessions [12,14] and binary ses-
sions [5]. Our technical contributions are reported in Sect. 3. In Sect. 4 we illus-
trate these contributions by means of an example that features non-trivial forms
of replication and sharing. In Sect. 5 we introduce multiparty session types with
behavioral genericity, and in Sect. 6 we illustrate our approach in the analysis of
a multiparty protocol. Section 7 concludes and discusses related works.

2 Preliminaries: Binary and Multiparty Session Types

Binary Session Types. We build upon the theory of binary session types
of [5,21], based on an interpretation of session types as linear logic propositions.
We assume no background on linear logic from the reader; we refer to [5] for
further details.
The Process Model. We define a synchronous π-calculus [20] with forwarding and
n-ary labeled choice. We use l1, l2, . . . to range over labels. Given an infinite set

Multiparty Sessions in a Canonical Binary Theory, and Beyond 77

(id) (νx)([x ↔y] | P)
τ−→ P{y/x} (n.out) x y.P

x y−−→ P (n.in) x(y).P
x(z)−−−→ P{z/y}

(s.out) l ; P
l−−→ P (s.in) {li : Pi}i∈I

lj−−−→ Pj (j ∈ I)

Fig. 1. LTS for processes (Excerpt).

Λ of names (x, y, z, u, v), the set of processes (P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x y.P | x(y).P | !x(y).P |
x �li;P | x �{li : Pi}i∈I | [x↔y]

Operators 0 (inaction), P | Q (parallel composition), and (νy)P (restriction) are
standard. We have x y.P (send y on x, proceed as P), x(y).P (receive a z on x,
proceed as P with y replaced by z), and the replicated input !x(y).P . Operators
x � l ;P and x �{li:Pi}i∈I define labeled choice [13]. Forwarding [x↔ y] equates
x and y; it is a copycat process, similar to wires in [20]. Also, x(y) denotes the
bound output (νy)x y.

In restriction (νy)P and input x(y).P the occurrence of name y is binding,
with scope P . The set of free names of a process P is denoted fn(P). In a
statement, a name is fresh if it is not among the names of the objects (processes,
actions, etc.) of the statement. A process is closed if it does not contain free
occurrences of names. We identify processes up to consistent renaming of bound
names. The capture-avoiding substitution of x for y in P is denoted P{x/y}.
Notation k̃ denotes a finite sequence of pairwise distinct names k1, k2, · · · . We
sometimes treat sequences of names as sets.

Reduction expresses the internal behavior of processes. Closed under struc-
tural congruence (noted ≡, see [5]), it is the binary relation on processes defined
by the rules:

x y.Q | x(z).P → Q | P{y/z} x y.Q | !x(z).P → Q | P{y/z} | !x(z).P
(νx)([x↔y] | P) → P{y/x} Q → Q′ ⇒ P | Q → P | Q′

P → Q ⇒ (νy)P → (νy)Q x �lj ;P | x �{li : Qi}i∈I → P | Qj (j ∈ I)

The interaction of a process with its environment is defined by an early labeled
transition system (LTS) for the π-calculus [20], extended with labels and tran-
sition rules for choice and forwarding. Transition P

λ−→ Q says that P may
evolve to Q by performing the action represented by label λ, defined as:
λ ::= τ | x(y) | x � l | x y | x(y) | x � l. Actions are the input x(y), the offer
x � l, and their co-actions: the output x y and bound output x(y) actions, and
the selection x � l, resp. The bound output x(y) denotes extrusion of y along x.
Internal action is denoted τ . Figure 1 gives a selection of the rules that define
P

λ−→ Q. Weak transitions are as usual: =⇒ is the reflexive, transitive closure of
τ−→. Notation λ=⇒ stands for =⇒ λ−→=⇒ (given λ 	= τ) and τ=⇒ stands for =⇒.

Session Types as Linear Logic Propositions. The type theory of [5] connects
session types as linear logic propositions. Main properties derived from typing,

78 L. Caires and J.A. Pérez

(Tid)

Γ ;x:A [x↔z] :: z:A

(T1R)

Γ ; · 0 :: x:1

(Tcut)
Γ ;Δ P :: x:A Γ ;Δ , x:A Q :: z:C

Γ ;Δ, Δ (νx)(P | Q) :: z:C

(T L)
Γ ;Δ P :: y:A Γ ;Δ , x:B Q :: z:C

Γ ;Δ, Δ , x:A B x(y).(P | Q) :: z:C
(T⊗L)

Γ ;Δ, y:A, x:B P :: z:C

Γ ;Δ, x:A ⊗ B x(y).P :: z:C

(T⊕L)
Γ ;Δ, x:A1 P1 :: z:C · · · Γ ;Δ, x:Ak Pk :: z:C I = {1, . . . , k}

Γ ;Δ, x: ⊕{li : Ai}i∈I {li : Pi}i∈I :: z:C

(T R)
Γ ;Δ P1 :: x:A1 · · · Γ ;Δ Pk :: x:Ak I = {1, . . . , k}

Γ ;Δ x {li : Pi}i∈I :: x: {li : Ai}i∈I

(T L1)
Γ ;Δ, x:A P :: z:C

Γ ;Δ, x: {li : A}{i} li;P :: z:C

(T L2)
Γ ;Δ, x: {li:Ai}i∈I P :: z:C k I

Γ ;Δ, x: {lj :Aj}j∈I∪{k} P :: z:C

Fig. 2. The type system for binary sessions (Excerpt).

absent from other binary session type theories, are global progress (deadlock-
freedom) and termination [19]. The syntax of binary types is as follows:

Definition 1 (Binary Types). Types (A,B,C) are given by

A,B ::= 1 | !A | A ⊗ B | A� B | �{li : Ai}i∈I | ⊕{li : Ai}i∈I

We use A ⊗ B (resp. A� B) to type a name that performs an output (resp.
an input) to its partner, sending (resp. receiving) a name of type A, and then
behaves as type B. Thus, A ⊗ B and A� B represent the session types !A;B
and ?A;B introduced in [13]. We generalize [5] by considering n-ary offer � and
choice ⊕. Given a finite index set I, �{li:Ai}i∈I types a name that offers a choice
between an li. Dually, ⊕{li:Ai}i∈I types the selection of one of the li. Type !A
types a shared channel, used by a server to spawn an arbitrary number of new
sessions (possibly none), each one conforming to A. Type 1 is the terminated
session; names of type 1 may be passed around as opaque values.

A type environment collects type assignments of the form x:A, where x is a
name and A is a type, the names being pairwise disjoint. We consider two typing
environments, subject to different structural properties: a linear part Δ and an
unrestricted part Γ , where weakening and contraction principles hold for Γ but
not for Δ.

A type judgment Γ ;Δ � P :: z:C asserts that P provides behavior C at chan-
nel z, building on “services” declared in Γ ;Δ. This way, e.g., a client Q that relies
on external services and does not provide any is typed as Γ ;Δ � Q :: z:1. The
domains of Γ,Δ and z:C are required to be pairwise disjoint. We write dom(Γ)
(resp. dom(Δ)) to denote the domain of Γ (resp. Δ), a sequence of names.
Empty environments are denoted ‘ · ’. As π-calculus terms are considered up to
structural congruence, typability is closed under ≡ by definition. We sometimes
abbreviate Γ ;Δ � P :: z:1 as Γ ;Δ � P .

Multiparty Sessions in a Canonical Binary Theory, and Beyond 79

Figure 2 presents selected typing rules; see [5] for a full account. We have
right and left rules: they say how to implement and use a session of a given
type, respectively. We briefly comment on some of the rules. Rule (Tid) defines
identity in terms of forwarding. Rule (Tcut) define typed composition via parallel
composition and restriction. Implementing a session type �{li:Ai}i∈I amounts to
offering a choice between n sessions with type Ai (Rule (T�R)); its use on name
x entails selecting an alternative, using prefix x � lj (Rules T�L1 and (T�L2)).
Type ⊕{li : Ai}i∈I has a dual interpretation.

We now recall some main results for well-typed processes. For any P , define
live(P) iff P ≡ (νñ)(π.Q | R), for some names ñ, a process R, and a non-
replicated guarded process π.Q. Also, we write P ⇓, if there is no infinite reduc-
tion path from process P .

Theorem 1 (Properties of Well-Typed Processes).

1. Subject Reduction [5]: If Γ ;Δ � P :: x:A and P → Q then Γ ;Δ � Q::x:A.
2. Global Progress [5]: If ·; · � P ::z:1 and live(P) then exists a Q such that

P → Q.
3. Termination/Strong Normalization [19]: If Γ ;Δ � P :: x:A then P ⇓.

Theorem 1 (2), key in our work, implies that our type discipline ensures dead-
lock freedom. Further properties of well-typed processes concern proof conver-
sions and typed behavioral equivalences. The correspondence in [5] is realized by
relating proof conversions in linear logic with appropriate process equivalences.
There is a group of commuting conversions that induces a behavioral congru-
ence on typed processes, noted �c. Process equalities justified by �c include,
e.g., (see [19] for details):

Γ ;Δ, y:A ⊗ B � (νx)(P | y(z).Q) �c y(z).(νx)(P | Q)::z:C
Γ ;Δ, y:A� B � (νx)(P | y(z).(Q | R)) �c y(z).(Q | (νx)(P | R))::T

Γ ;Δ, y: �{li:Ai}i∈I � (νx)(P | y �li;Q) �c y � li; (νx)(P | Q)::T

These equalities reflect a behavioral equivalence over session-typed processes,
called context bisimilarity (noted ≈) [19]. Roughly, typed processes Γ ;Δ �
P :: x:A and Γ ;Δ � Q::x:A are context bisimilar if, once composed with
their requirements (described by Γ,Δ), they perform the same actions on x
(as described by A). Context bisimilarity is a congruence relation on well-typed
processes. We have:

Theorem 2 ([19]). If Γ ;Δ � P �c Q :: z:C then Γ ;Δ � P ≈ Q :: z:C.

Multiparty Session Types. Our syntax of global types includes constructs
from [12,14]. With respect to [12], we consider value passing in branching (cf. U
below), fully supporting delegation and add parallel composition. Below, par-
ticipants are ranged over by p, q, r, . . .; labels are ranged over by l1, l2, To
streamline the presentation, we consider standard global types without recur-
sion. Our approach extends to global types with recursion, exploiting the exten-
sion of [5] with co-recursion [21]. Results for global types with recursion can be
found in an online technical report [3].

80 L. Caires and J.A. Pérez

Definition 2 (Global/Local Types). Define global types (G) and local types
(T) as

G ::= end | p�q:{li〈Ui〉.Gi}i∈I | G1 | G2 U ::=bool | nat | str | . . . | T

T ::= end | p?{li〈Ui〉.Ti}i∈I | p!{li〈Ui〉.Ti}i∈I

G denotes the above set of global types. Given a finite I and pairwise different
labels, p�q:{li〈Ui〉.Gi}i∈I specifies that by choosing label li, participant p may
send a message of type Ui to participant q, and then continue as Gi. We decree
p 	= q, so reflexive interactions are disallowed. The global type G1 | G2 allows
the concurrent execution of G1 and G2. We write end to denote the completed
global type. The local type p?{li〈Ui〉.Ti}i∈I denotes an offer of a set of labeled
alternatives; the local type p!{li〈Ui〉.Ti}i∈I denotes a behavior that chooses one
of such alternatives. The terminated local type is end. Following [14], there is no
local type for parallel.

Example 1. Consider a global type GBS, a variant of the the two-buyer protocol
in [14], in which two buyers (B1 and B2) coordinate to buy an item from a
seller (S):

GBS = B1�S:
{
send〈str〉.S�B1:{rep〈int〉.S�B2:{rep〈int〉.

B1�B2:{shr〈int〉.B2�S:{ok〈1〉.end , quit〈1〉.end}}}}}

Intuitively, B1 requests the price of an item to S, who replies to B1 and B2. Then
B1 communicates to B2 her contribution in the transaction; finally, B2 either
confirms the purchase to S or closes the transaction.

We now define projection for global types. Following [12], projection relies on
a merge operator on local types, which in our case considers messages U .

Definition 3 (Merge). We define � as the commutative partial operator on
base and local types such that: 1. bool�bool = bool (and similarly for other base
types); 2. end�end = end; 3. p!{li〈Ui〉.Ti}i∈I�p!{li〈Ui〉.Ti}i∈I = p!{li〈Ui〉.Ti}i∈I ;
and

4. p?{lk〈Uk〉.Tk}k∈K � p?{l ′j〈U ′
j〉.T ′

j}j∈J =
p?

({lk〈Uk〉.Tk}k∈K\J ∪{l ′j〈U ′
j〉.T ′

j}j∈J\K ∪{ll〈Ul �U ′
l 〉.(Tl �T ′

l)}l∈K∩J

)

and is undefined otherwise.

Therefore, for U1�U2 to be defined there are two options: (a) U1 and U2 are iden-
tical base, terminated or selection types; (b) U1 and U2 are branching types, but
not necessarily identical: they may offer different options but with the condition
that the behavior in labels occurring in both U1 and U2 must be mergeable. The
set of participants of G (part(G)) is defined as: part(end) = ∅, part(G1 | G2) =
part(G1) ∪ part(G2), part(p�q:{li〈Ui〉.Gi}i∈I) = {p, q} ∪ ⋃

i∈I part(Gi).

Definition 4 (Projection [12]). Let G be a global type. The projection of G
under participant r, denoted G�r, is defined as: end�r = end and

Multiparty Sessions in a Canonical Binary Theory, and Beyond 81

(SW1)
{p1, q1}#{p2, q2}

p1 q1: li Ui .p2 q2:{lj Uj .Gij}j∈J i∈I

sw

p2 q2: lj Uj .p1 q1:{li Ui .Gij}i∈I j∈J

(SW2)
{p, q}#part(G1) ∀i, j ∈ I.G1

i = G1
j

p q:{li Ui .(G1
i | G2

i)}i∈I

sw

G1
1 | p q: li Ui .G2

i }i∈I

Fig. 3. Swapping relation on global types (Definition 6). A#B denotes that sets A, B
are disjoint.

• p�q:{li〈Ui〉.Gi}i∈I�r =

⎧
⎪⎪⎨

⎪⎪⎩

p!{li〈Ui〉.Gi�r}i∈I if r = p

p?{li〈Ui〉.Gi�r}i∈I if r = q

�i∈I Gi�r otherwise (� as in Definition 3)

• (G1 | G2)�r =

{
Gi�r if r ∈ part(Gi) and r 	∈ part(Gj), i 	= j ∈ {1, 2}
end if r 	∈ part(G1) and r 	∈ part(G2)

When a side condition does not hold, the map is undefined.

Definition 5 (Well-Formed Global Types [12]). Global type G ∈ G is well-
formed (WF) if for all r ∈ part(G), the projection G�r is defined.

The last notion required in our characterization of multiparty session types
as binary sessions is a swapping relation over global types [6], which enables
transformations among causally independent communications. Such transfor-
mations may represent optimizations that increase parallelism while preserving
the intended global behavior.

Definition 6 (Global Swapping). The swapping relation �sw is the smallest
congruence on G which satisfies the rules in Fig. 3. (The symmetric of (sw2) is
omitted.)

3 Relating Multiparty and Binary Session Type Theories

Our analysis of multiparty protocols as binary sessions relies on the medium
process of a global type. Mediums offer a simple device for analyzing global types
using the binary session types of [5]. Mediums uniformly capture the sequencing
behavior in a global type, for they take part in all message exchanges between
local participants.

After defining mediums (Definition 7), we establish their characterization
results (Theorems 4 and 5). We then present a process characterization of global
swapping (Definition 6) in terms of context bisimilarity (Theorem 6). Subse-
quently, we state operational correspondence results (Theorem 7), exploiting
the auxiliary notions of instrumented mediums (Definition 10) and multiparty
systems (Definition 11). We use the following conventions.

82 L. Caires and J.A. Pérez

Convention 3 (Indexed/Annotated Names). We consider names indexed
by participants p, q, . . ., noted cp, cq, . . . and names annotated by participants,
noted kp, kq, Given p 	= q, indexed names cp and cq denote two different
objects; in contrast, annotated names kp and kq denote the same name k with
different annotations. Given a G with part(G) = {p1, . . . , pn}, we will write
npart(G) to denote the set that contains a unique name cpj for every participant
pj of G. We will occasionally use npart(G) as an unordered sequence of names.

Definition 7 (Mediums). The medium of G ∈ G, denoted M�G�, is defined
as follows:

• M�end� = 0
• M�G1 | G2� = M�G1� | M�G2�
• M�p�q:{li〈Ui〉.Gi}i∈I� = cp �

{
li : cp(u).cq �li; cq(v).([u↔v] | M�Gi�)

}
i∈I

The key case is M�p�q:{li〈Ui〉.Gi}i∈I�: note how the medium uses two prefixes
(on name cp) to mediate with p, followed by two prefixes (on name cq) to mediate
with q. We illustrate mediums by means of an example:

Example 2. The medium process for global type GBS in Example 1 is:

M�GBS� = cB1 �
{
send : cB1(v).cS �send ; cS(w).([w↔v] |

cS �{rep : cS(v).cB1 �rep; cB1(w).([w↔v] |
cS �{rep : cS(v).cB2 �rep; cB2(w).([w↔v] |

cB1 �{shr : cB1(v).cB2 �shr ; cB2(w).([w↔v] |
cB2 �{ ok : cB2(v).cS �ok ; cS(w).([w↔v] | 0) ,

quit : cB2(v).cS �quit ; cS(w).([w↔v] | 0)})})})})
}

Intuitively, we expect that (well-typed) process implementations for B1, B2, and
S should interact with M�GBS� through channels cB1, cB2, and cS, respectively. ��
We now move on to state our characterization results. We require two auxiliary
notions, given next. Below, we sometimes write Γ ;Δ � M�G� instead of Γ ;Δ �
M�G� :: z:1, when z 	∈ fn(M�G�).

Definition 8 (Compositional Typing). We say Γ ;Δ � M�G�::z:C is a com-
positional typing if: (i) it is a valid typing derivation; (ii) npart(G) ⊆ dom(Δ);
and (iii) C = 1.

A compositional typing says that M�G� depends on behaviors associated to each
participant of G; it also specifies that M�G� does not offer any behaviors of
its own. We relate binary session types and local types: the main difference is
that the former do not mention participants. Below, B ranges over base types
(bool, nat, . . .) in Definition 2.

Definition 9 (Local Types → Binary Types). Mapping 〈〈·〉〉 from local
types T (Definition 2) into binary types A (Definition 1) is inductively defined
as 〈〈end〉〉 = 〈〈B〉〉 = 1 and

〈〈p!{li〈Ui〉.Ti}i∈I〉〉 = ⊕{li : 〈〈Ui〉〉 ⊗ 〈〈Ti〉〉}i∈I

〈〈p?{li〈Ui〉.Ti}i∈I〉〉 = �{li : 〈〈Ui〉〉� 〈〈Ti〉〉}i∈I .

Multiparty Sessions in a Canonical Binary Theory, and Beyond 83

3.1 Characterization Results

Our characterization results relate process M�G� (well-typed with a composi-
tional typing) and 〈〈G�p1〉〉, . . . , 〈〈G�pn〉〉 (i.e., the local types of G transformed
into binary session types via Definition 9). Our characterization results are in
two directions, given by Theorems 4 and 5. The first direction says that well-
formedness of global types (Definition 5) ensures compositional typings for medi-
ums with (logic based) binary session types:

Theorem 4 (Global Types → Typed Mediums). Let G ∈ G. If G is WF
with part(G) = {p1, . . . , pn} then Γ ; cp1 :〈〈G� p1〉〉, . . . , cpn :〈〈G� pn〉〉 � M�G� is a
compositional typing, for some Γ .

The second direction of the characterization is the converse of Theorem 4: com-
positional typings for mediums induce global types which are WF. Given local
types T1, T2, below we write T1 �� T2 if there exists a local type T ′ such that
T1 � T ′ = T2 (cf. Definition 3). This notation allows us to handle the labeled
alternatives silently introduced by rule (T�L2).

Theorem 5 (Well-Typed Mediums → Global Types). Let G ∈ G. If
Γ ; cp1 :A1, . . . , cpn :An � M�G� is a compositional typing then ∃T1, . . . , Tn such
that G�pj �� Tj and 〈〈Tj〉〉 = Aj, for all pj ∈ part(G).

Theorems 4 and 5 tightly connect (i) global types, local types and projection, and
(ii) medium processes, and logic-based binary session types. They also provide an
independent deep justification, through purely logical arguments, to the notion
of projection.

3.2 A Behavioral Characterization of Global Swapping

Global swapping (Definition 6, Fig. 3) can be directly justified from more prim-
itive notions, based on the characterizations given by Theorems 4 and 5. By
abstracting a global type’s behavior in terms of its medium we may reduce trans-
formations on global types to type-preserving transformations on processes. This
is the content of Theorem 6 below, which connects global swapping (�sw) and
context bisimilarity (≈). Hence, sequentiality of mediums can be relaxed in the
case of causally independent exchanges captured by �sw.

Theorem 6. Let G1 ∈ G such that M�G1� has a compositional typing Γ ;Δ �
M�G1�, for some Γ,Δ. If G1 �sw G2 then Γ ;Δ � M�G1� ≈ M�G2�.

Since M�G� is a low-level representation of G, the converse of Theorem 6 is less
interesting, for type-preserving transformations at the (low) level of mediums
do not always correspond to behavior-preserving transformations at the (high)
level of global types. That is, since M�G� implements each communication in G
using several prefixes, swapping in G occurs only when all relevant prefixes in
M�G� can be commuted via �c.

84 L. Caires and J.A. Pérez

3.3 Operational Correspondence Results

The results given so far focus on the static semantics of multiparty and binary
systems, and are already key to justify essential properties such as absence of
global deadlock. We now move on to dynamic semantics, and establish oper-
ational correspondence results between a global type and its medium process
(Theorem 7).

We define the instrumented medium of a global type G, denoted Mk̃�G�, as a
natural extension of Definition 7. Process Mk̃�G� exploits fresh sessions (denoted
k̃), to emit a visible signal for each action of G. We use k̃ as annotated names
(cf. Convention 3): each action on a ki contains the identity of the participant of
G which performs it. Then, using Mk̃�G� we define the set of systems associated
to G (Definition 11), which collects process implementations for G mediated
by Mk̃�G�. Since interactions between local implementations and Mk̃�G� are
unobservable actions, Theorem 7 connects (i) the visible behavior of a system
along annotated names k̃, and (ii) the visible behavior of G, defined by an LTS
on global types (a variant of that in [12]). Below, kp.P stands for kp(x).P when
x is not relevant in P . Also, k̂p.P stands for kp(v).(0 | P) for some v.

Definition 10 (Instrumented Mediums). Let k̃ be fresh, annotated names.
The instrumented medium of G ∈ G with respect to k̃, denoted Mk̃�G�, is defined
as follows:

• Mk�end� = 0
• Mk1,k2�G1 | G2� = Mk1�G1� | Mk2�G2�
• Mk�p�q:{li〈Ui〉.Gi}i∈I� =

cp �
{
li : kp �li; cp(u).k̂p.

(
cq � li; kq �{li : cq(v).([u↔v] | kq.Mk�Gi�)}{i}

)}
i∈I

The key case is Mk�p � q:{li〈Ui〉.Gi}i∈I�. Each action of the multiparty
exchange is “echoed” by an action on annotated name k: the selection of label
li by p is followed by prefix kp � li; the output from p (captured by the medium
by the input cp(u)) is echoed by prefix kp. This way, the instrumented process
Mk̃�G� induces a fine-grained correspondence with G, exploiting process actions
with explicit participant identities.

To state our operational correspondence result, we introduce extended global
types and a labeled transition system (LTS) for (extended) global types. The
syntax of extended global types is defined as G ::= G | G1 | G2 with

G ::= end | p�q:{li〈Ui〉.Gi}i∈I | p�q: l〈U〉.G | p�q: l((U)).G | p�q: ((U)).G

We consider parallel composition of sequential global types. We also have three
auxiliary forms for global types, denoted with �: they represent intermediate
steps. Types p� q: l〈U〉.G and p� q: l((U)).G denote the commitment of p to
output and input along label l , resp. Type p � q: ((U)).G represents the state
just before the actual input action by q. We need the expected extension of
Definition 10 for these types.

Multiparty Sessions in a Canonical Binary Theory, and Beyond 85

p q:{li Ui .Gi}i∈I

p lj−−−→ p q: lj Uj .Gj (j ∈ I) p q: l U .G
p−→ p q: l((U)).G

p q: l((U)).G
q l−−→ p q: ((U)).G p q: ((U)).G

q−→ G

Fig. 4. LTS over finite, extended global types (Excerpt).

We adapt the LTS in [12] to the case of (extended) global types. The set
of observables is σ ::= p | p � l | p | p �l . Below, psubj(σ) denotes the partic-
ipant in σ. This way, e.g., psubj(p � l) = p. The LTS over global types, noted
G

σ−→ G′, is defined by rules including those in Fig. 4. Since Definition 10 anno-
tates prefixes on k with participant identities, their associated actions will be
annotated too; given a participant p, we may define the set of annotated visible
actions as: λp ::= kp(y) | kp �l | kp y | kp(y) | kp �l . We write kp and k̂p to denote
actions kp(y) and kp(y), resp., whenever object y is unimportant. Also, psubj(λp)
denotes the participant p which annotates λ. This way, e.g., psubj(kp) = p and
psubj(kq �l) = q. To relate labels for global types and process labels, given an
annotated name k, we define mappings {{·}}k and || · || as follows:

{{p}}k = kp {{p �l}}k = kp �l {{p }}k = k̂p {{ p �l }}k = kp �l
||kp|| = p ||kp �l || = p �l ||k̂p|| = p || kp �l || = p �l

Operational correspondence is stated in terms of the multiparty systems of
a global type. Following Definition 8, we say that Γ ;Δ,Δ′ � Mk̃�G� :: z:C
is an instrumented compositional typing if (i) it is a valid typing derivation;
(ii) npart(G) ⊆ dom(Δ); (iii) C = 1; (iv) dom(Δ′) = k̃:

Definition 11 (Systems). Let G ∈ G be a WF global type, with part(G) =
{p1, . . . , pn}. Also, let Γ ;Δ,Δ′ � Mk̃�G� be an instrumented compositional typ-
ing, with Δ = cp1 :〈〈G�p1〉〉, . . . , cpn :〈〈G�pn〉〉, for some Γ . Let z̃ = npart(G). The
set of systems of G is defined as:

Sk̃(G) =
{
(νz̃)(Q1 | · · · | Qn | Mk̃�G�) | ·; · � Qj :: cpj :〈〈G�pj〉〉, j ∈ 1 . . . n

}

Thus, given G, a multiparty system is obtained by composing Mk̃�G� with well-
typed implementations for each of the local projections of G. An R ∈ Sk̃(G) is an
implementation of the multiparty protocol G. By construction, its only visible
actions are on annotated names: interactions between all the Qj and Mk̃�G� will
be unobservable.

Theorem 7 below connects global types and systems: it confirms that (instru-
mented) medium processes faithfully mirror the communicating behavior of

extended global types. Below, we write G
σ[p]−−−→ G′ if G

σ−→ G′ and psubj(σ) = p.

Also, we write P
λ[p]−−−→ P ′ (resp. P

λ[p]
=⇒ P ′) if P

λ−→ P ′ (resp. P
λ=⇒ P ′) holds

and psubj(λ) = p.

86 L. Caires and J.A. Pérez

Theorem 7 (Operational Correspondence). Let G be an extended WF

global type and R ∈ Sk̃(G). We have: If G
σ[p]−−−→ G′ then R

λ[p]
=⇒ R′, for some

λ,R′, k ∈ k̃ such that λ = {{σ}}k and R′ ∈ Sk̃(G′). Moreover, if there is some R0

s.t. R =⇒ R0
λ[p]−−−→ R′ then G

σ[p]−−−→ G′, for some σ,G′ such that σ = ||λ|| and
R′ ∈ Sk̃(G′).

4 Example: Sharing in Multiparty Conversations

Here we further illustrate reasoning about global types in G by exploiting the
properties given in Sect. 3. In particular, we illustrate non-trivial forms of repli-
cation and sharing.

Let us consider the global type GBS, given in Example 1. The medium
processes of GBS, denoted M�GBS�, has been detailed in Example 2; we proceed
to examine its properties. Relying on Theorems 4 and 5, we have the composi-
tional typing:

Γ ; c1:B1, c2:S, c3:B2 � M�GBS� :: − :1 (1)

for some Γ and with B1 = 〈〈GBS�B1〉〉, S = 〈〈GBS�S〉〉, and B2 = 〈〈GBS�B2〉〉. To
implement the protocol, one may simply compose M�GBS� with type compatible
processes ·; · � Buy1 :: c1:B1, ·; · � Sel :: c2:S, and ·; · � Buy2 :: c3:B2:

Γ ; · � (νc1)(Buy1 |(νc2)(Sel | (νc3)(Buy2 |M�GBS�))) (2)

The binary session types in Sect. 2 allows us to infer that the multiparty system
defined by (2) adheres to the declared projected types, is deadlock-free, and
terminating.

Just as we inherit strong properties for Buy1 , Sel , and Buy2 above, we
may inherit the same properties for more interesting system configurations. In
particular, local implementations which appeal to replication and sharing, admit
also precise analyses thanks to the characterizations in Sect. 3. Let us consider a
setting in which the processes to be composed with the medium must be invoked
from a replicated service (a source of generic process definitions). We may have
·; · � !u1(w).Buy1w :: u1: !B1 and

·; · � !u2(w).Selw :: u2: !S ·; · � !u3(w).Buy2w :: u3: !B2

and the following “initiator processes” would spawn a copy of the medium’s
requirements, instantiated at appropriate names:

·;u1: !B1 � u1(x).[x↔c1] :: c1:B1 ·;u2: !S � u2(x).[x↔c2] :: c2:S
·;u3: !B2 � u3(x).[x↔c3] :: c3:B2

Let us write RBuy1 , RBuy2 , and RSel to denote the composition of replicated
definitions and initiators above. Intuitively, they represent the “remote” vari-
ants of Buy1 , Buy2 , and RSel , respectively. We may then define the multiparty
system:

Γ ; · � (νc1)(RBuy1 |(νc2)(RSel |(νc3)(RBuy2 |M�GBS�)))

Multiparty Sessions in a Canonical Binary Theory, and Beyond 87

which, with a concise specification, improves (2) with concurrent invocation/in-
stantiation of replicated service definitions. As (2), the revised composition above
is correct, deadlock-free, and terminating.

Rather than appealing to initiators, a scheme in which the medium invokes
and instantiates services directly is also expressible in our framework, in a type
consistent way. Using (1), and assuming Γ = u1:B1, u2:S, u3:B2, we may derive:

Γ ; · � u1(c1).u2(c2).u3(c3).M�GBS� (3)

Hence, prior to engaging in the mediation behavior for GBS, the medium first
spawns a copy of the required services. We may relate the guarded process in (3)
with the multicast session request construct in multiparty session processes [14].
Observe that (3) cleanly distinguishes between session initiation and actual com-
munication behavior: the distinction is given at the level of processes (cf. output
prefixes on u1, u2, and u3) but also at the level of typed interfaces.

The service invocation (3) may be regarded as “eager”: all required services
must be sequentially invoked prior to executing the protocol. We may also obtain,
in a type-consistent manner, a medium process implementing a “lazy” invocation
strategy that spawns services only when necessary. For the sake of example,
consider process

EagerBS � u3(c3).M�GBS�

in which only the invocation on u3 is blocking the protocol, with “open” depen-
dencies on c1, c2. That is, we have Γ ; c1:B1, c2:S � EagerBS :: z:1. It could be
desirable to postpone the invocation on u3 as much as possible. By combining
the commutations on process prefixes realized by �c [19] and Theorem 2, we
may obtain:

Γ ; c1:B1, c2:S � EagerBS ≈ LazyBS :: − :1

where LazyBS is obtained from EagerBS by “pushing inside” prefix u3(c3).

5 Multiparty Session Types with Behavioral Genericity

To illustrate the modularity of our approach, we conservatively extend, for the
first time, multiparty session types with parametric polymorphism, developed
for binary sessions in [4,22]. Although expressed by second-order quantifiers on
(session) types—in the style of the polymorphic λ-calculus—parametric poly-
morphism in our setting means behavioural genericity in multiparty conversa-
tions (i.e., passing first-class behavioral interfaces in messages), not just datatype
genericity. In this section we describe how to extend the approach and results in
Sect. 3 to polymorphic, multiparty session types.

In [4] we have extended the framework of [5] with impredicative universal
and existential quantification over session types, denoted with ∀X.A and ∃X.A,
respectively. These two types are interpreted as the input and output of a session
type, respectively. More precisely, ∀X.A is the type of a process that inputs some
session type S (which we may as a kind of interface passing) and then behaves
as prescribed by A{S/X}. ∃X.A is the type of a process that sends some session

88 L. Caires and J.A. Pérez

type S and then behaves as prescribed by A{S/X}. From the point of view of the
receiver of such S, the protocol S is in a sense opaque; therefore, after inputting
S the receiver behaves parametrically (in the sense of behavioral polymorphism)
for any such S. In any case, any usage of S by the sender will necessarily be
matched by some appropriate parties in the system. A relevant example of the
phenomenon can be recovered from [4]. Consider the type

CloudServer : ∀X.(api�X)�X

A session with this type will first input some session type X, say GMail, and then
will input a session with type api�GMail (that may be realized by a piece of code
that will first receive a channel implementing the api behavior and will after—
building on it—behave as specified by GMail) and then offers the behavior GMail.
A system implementing the CloudServer type must somehow provide the api
service internally and pass it to the channel of type api�GMail (e.g., representing
a piece of mobile code). Notice that after that the GMail service may be produced
by copy-cating the resulting behavior to the cloud server client. The crucial point
here is that the cloud server behaves uniformly for whatever session type X is
requested for it to execute; its role in this case is to provide the suitable api.
Of course, at runtime, all interactions at X will take place as prescribed by
the concrete session type involved (in this example, GMail), which may be an
arbitrarily complex (behaviorally generic) session type.

5.1 Binary Session Types with Parametric Polymorphism

We now recall key definitions from [4]. The process model in Sect. 2 is extended
with processes xA.P (output type A, proceed as P) and x(X).P (receive a type
A, proceed as P{A/X}) and the reduction rule: xA.Q | x(X).P → Q | P{A/X},
where {A/X} is the substitution of type variable X with session type A. Thus,
our process syntax allows terms such as, e.g., xA.Q | x(X).y X.P , where A is a
session typed protocol.

We extend binary types (cf. Definition 1) with existential and universal quan-
tification:

A,B ::= 1 | !A | A ⊗ B |A�B | �{li:Ai}i∈I | ⊕{li:Ai}i∈I | X | ∃X.A | ∀X.A

Besides Δ and Γ , the polymorphic type system uses environment Ω to record
type variables. We have two judgments. Judgment Ω � A type denotes that A is
a well-formed type with free variables registered in Ω (see [4] for well-formedness
rules). Also, judgement Ω;Γ ;Δ � P :: x:A states that P implements a session
of type A along channel x, provided it is composed with processes providing
sessions linearly in Δ and persistently in Γ , such that the types occurring in Ω
are well-formed.

The required typing rules result by adding Ω in Fig. 2 and by considering rules
in Fig. 5, which explain how to provide and use sessions of a polymorphic type.
Rule (T∀R) types the offering of a session of universal type ∀X.A by inputing
an arbitrary type, bound to X, and proceeding as A, which may bind the type

Multiparty Sessions in a Canonical Binary Theory, and Beyond 89

(T∀L)
Ω B type Ω; Γ ; Δ, x : A{B/X P :: T

Ω; Γ ;Δ, x : ∀X.A x B.P :: T

(T∀R)
Ω, X; Γ ; Δ P :: z:A

Ω; Γ ; Δ z(X).P :: z:∀X.A

(T∃L)
Ω, X; Γ ; Δ, x:A P :: T

Ω; Γ ; Δ, x : ∃X.A x(X).P :: T

(T∃R)
Ω B type Ω; Γ ; Δ P :: x:A{B/X}

Ω; Γ ;Δ x B.P :: x:∃X.A

Fig. 5. Typing rules for polymorphic, binary session types.

variable X, regardless of what the received type is. Rule (T∀L) says that the use
of type ∀X.A consists of the output of a type B (well-formed under Ω) which
then warrants the use of the session as A{B/X}. The existential type is dual:
providing an existentially typed session ∃X.A is accomplished by outputting a
type B and then providing a session of type A{B/X} (Rule (T∃R)). Using an
existential session ∃X.A implies inputing a type and then using the session as
A, regardless of the received session type (Rule (T∃L)).

Well-typed polymorphic processes satisfy Theorem 1 and relational para-
metricity [4], a reasoning principle stated next. We require some notation, fully
detailed in [4]: ω:Ω denotes a type substitution that assigns a closed type to
variables in Ω. Notation ω̂(P) denotes the application of ω to type variables in
P . Also, η:ω1 ⇔ ω2 is an equivalence candidate assignment (a typed relation
on processes) between ω1 and ω2. Moreover, ≈L denotes a logical equivalence
relation that coincides with barbed congruence.

Theorem 8 (Relational Parametricity [4]). If Ω;Γ ;Δ � P :: z:A then, for
all ω1:Ω, ω2:Ω, and η:ω1 ⇔ ω2: Γ ;Δ � ω̂1(P) ≈L ω̂2(P) :: z:A[η:ω1 ⇔ ω2].

Theorem 8 entails behavioral genericity, a form of representation independence:
it says that process P behaves the same independently from instantiations of its
free type variables.

5.2 Multiparty Session Types with Polymorphism

We extend global types in G (Definition 2) with variables X,X ′, . . . and with
a construct p� q:{l [X].G′}, which introduces parametric polymorphism (X is
meant to occur in G′). To our knowledge, this is the first theory of its kind:

Definition 12 (Polymorphic Session Types). Define global types and local
types as

G ::= end | G1 | G2 | p�q:{li〈Ui〉.Gi}i∈I | p�q:{l [X].G} | X

U ::= bool | nat | str | . . . | T | (T)†

T ::= end | p?{li〈Ui〉.Ti}i∈I | p!{li〈Ui〉.Ti}i∈I | p!{l[X].T} | p?{l[X].T} | X

Above (·)† denotes a function on local types that discards participant identities.
E.g., (p?{l[X].T})† =?{l[X].(T)†} and (p?{li〈Ui〉.Ti}i∈I)† =?{li〈Ui〉.(Ti)†}i∈I .

90 L. Caires and J.A. Pérez

We write G∀∃ to denote the above global types. The global type p�q:{l [X].G}
signals that p sends to q an arbitrary local type (protocol), thus specifying q as
a generic partner. Also, G is a generic global specification: its behavior will be
depend on the type sent by p to q, which should be explicit in p’s implementation.
This new global type is related to local types p!{l[X].T} and p?{l[X].T}, which
are to be understood as existential and universal quantification on local types,
respectively—see below. The global type X should be intuitively understood as
a behavior that remains “globally abstract”, in the sense that it is determined by
a concrete local type exchanged between two participants, namely, as a result of
a (previous) communication of the form p�q:{l [X].G}. As a result, the (global)
communication behavior associated to local type exchanged between p and q
should remain abstract (opaque) to other participants of the protocol.

The projection of G ∈ G∀∃ onto participant r, denoted G � r, extends
Definition 4 by adding X�r = X and by letting:

(p�q:{l [X].G})�r =

⎧
⎪⎨

⎪⎩

p!{l[X].(G�r)} if r = p

p?{l[X].(G�r)} if r = q

G�r otherwise

Well-formedness of global types in G∀∃ is based on projectability but also on
consistent uses of type variables: a participant can only communicate the types
it knows. (This condition is similar to history-sensitivity, as in [1].) This way,
e.g., an ill-formed type is p � q:{l1[X].r � s:{l2〈?{l〈int〉.X}〉.end}}, since r, s
do not know the type sent by p.

5.3 Mediums for Multiparty Session Types with Polymorphism

Mediums for global types in G∀∃ are defined by extending Definition 7 as follows:

M�p�q:{l [X].G}� = cp �
{
l : cp(X).cq �l ; cq X.M�G�

}
M�X� = 0

Observe that type variable X should not generate a mediator behavior, as we
want to remain generic. The relation between local types and binary types
extends Definition 9 with:

〈〈p!{l[X].T}〉〉 = ⊕{l : ∃X.〈〈T 〉〉} 〈〈p?{l[X].T}〉〉 = �{l : ∀X.〈〈T 〉〉}
and by letting 〈〈X〉〉 = X and 〈〈(T)†〉〉 = 〈〈T 〉〉. The characterization results in
Sect. 3.1 hold also for global types in G∀∃.

6 Mediums at Work: A Behaviorally Generic Multiparty
Protocol

We illustrate our approach and results via a simple example. Consider the global
type Gp, inspired by the CloudServer from [4] already hinted to above. It fea-
tures behavioral genericity (as enabled by parametric polymorphism); below,

Multiparty Sessions in a Canonical Binary Theory, and Beyond 91

str, bool, denote basic data types, and api is a session type describing the cloud
infrastructure API.

Gp = p�q:
{
l1 〈bool〉.q�r:{l [X].q�r:{l2

〈
?{l3〈api〉.X}〉.X}}}

We have participants p, q, and r. The intent is that r is a behaviorally generic
participant, that provides a behavior of type api required by q. Crucially, r may
interact with q independently of the local type sent by q. Such a local type is
explicit in q’s implementation (see below), rather than in the global type Gp.

In Gp, participant p first sends a boolean value to q; then, q sends an unspec-
ified protocol to r, say M , which is to be used subsequently in an exchange from
q to r. Notice that M occurs in the value that r receives from q and influ-
ences the behavior after that exchange. Indeed, the value ?{l3〈api〉.X} denotes
an unspecified session type that relies on the reception of a session of type api.
The local projections for Gp are Gp�p = p!{l1〈bool〉.end} and

Gp�q = p?
{
l1〈bool〉.q!{l [X].q!{l2〈?{l3〈api〉.X}〉.X}}}

Gp�r = q?
{
l [X].q?{l2〈?{l3〈api〉.X}〉.X}}

Above, the occurrences of X at the end of both Gp� q and Gp� r may appear
surprising, as they should represent dual behaviors. Notice that in each case,
X should be interpreted according to the local type that “bounds” X (i.e., the
output q!{l [X] . . .} in Gp � q and the input q?{l [X] . . .} in Gp � r). This dual
perspective should become evident when looking at the binary session types
associated to these projections. First, notice that we have that 〈〈?{l3〈api〉.X}〉〉 =
�{l3:(api�X)}. Writing (api�X) to stand for �{l3:(api�X)}), we have the
binary session types 〈〈Gp�p〉〉 = ⊕{l1 : 1 ⊗ 1} and

〈〈Gp�q〉〉 = �{l1 : 1� ⊕{l : ∃X. ⊕{l2 : (api�X) ⊗ X}
〈〈Gp�r〉〉 = �{l : ∀X. �{l2 : (api�X)�X}}}}

The medium process for Gp is then:

M�Gp� = cp �
{
l1 : cp(u).cq �l1; cq(v).

(
[u↔v] |

cq �{l : cq(X).cr �l ; cr X.
cq �{l2 : cq(u).cr �l2; cr(v).([u↔v] | 0)}})}

Using our extended characterization results, we may show that M�Gp� can safely
interact with implementations for p, q, and r whose types correspond to the
projections of Gp onto p, q, and r. Indeed, M�Gp� can safely interact with any
P , Qi, and R such that Ω;Γ ;Δ1 �P :: cp:〈〈Gp�p〉〉 and

Ω;Γ ;Δ3 �R :: cr:〈〈Gp�r〉〉 Ω;Γ ;Δ2 �Qi :: cq:〈〈Gp�q〉〉
Process (νcp, cq, cr)(M�Gp� | P | R | Qi) is a system for Gp (cf. Definition 11). It
is well-typed; we have Ω;Γ ;Δ1,Δ2,Δ3 � (νcp, cq, cr)(M�Gp� | P | R | Qi) :: − :
1. Process cp � l1; cp(f).(Bf | 0) is a concrete implementation for P , where name
f stands for a boolean implemented by Bf . As for R and Qi, we may have:

92 L. Caires and J.A. Pérez

R = cr �{l : cr(Y).cr �{l2 : cr(y).y(a).(Aa | [cr↔a])}}
Q1 = cq �{l1 : cq(b).cq �l ; cq S.cq �l2; cq(w).(w(a).SMTPb

w,a | [m↔cq])}

Crucially, following the type 〈〈Gp�r〉〉, process R is behaviorally generic: indepen-
dently of the type received from Qi via the medium M�Gp� (cf. the type input
prefix cr(Y)), R enables process Aa to provide the API along name a. Process
Q1 is just one possible implementation for q: it provides an implementation of
a service SMTPb

w,a that relies on behavior api along name a and a boolean along
b to implement protocol S along w. A different implementation for q is process
Q2 below, which concerns session protocol I:

Q2 = cq �{l1 : cq(b).cq �l ; cq I.cq �l2; cq(w).(w(a).IMAPb
w,a | [m↔cq])}

where IMAPb
w,a uses api along a and boolean b to implement protocol I along w.

Note that R and any Qi have limited interactions with M�Gp�: to respect the
genericity stipulated by Gp, the polymorphic process M�Gp� only mediates the
exchange of the local type (S or I) and plugs the necessary connections; other
exchanges are direct between R and Q1 or Q2, and known to comply with the
(dynamically passed protocol) specified by the session type S or I.

Both (νcp, cq, cr)(M�Gp� | P | R | Q1) and (νcp, cq, cr)(M�Gp� | P | R | Q2)
are well-typed systems; hence, they satisfy fidelity and deadlock-freedom
(Theorem 1). Using properties of well-typed processes together with relational
parametricity (Theorem 8), we may further show that they are observationally
equivalent, provided a typed relation between session types S and I. That is,
Theorem 8 allows us to state the behavioral independence of the sub-system
formed by M�Gp�, P , and R with respect to any implementation Qi for partici-
pant q.

7 Concluding Remarks and Related Works

We developed the first analysis of multiparty protocols using binary session
types. Our medium processes capture the semantics of multiparty session types
and connect global types to well-typed implementations; this allows us to exploit
properties for typed processes to reason about multiparty systems. Since medi-
ums have a uniform definition, we may analyze global types with features such
as delegation, which go beyond the scope of recent automata-based analyses of
global types [12,16]. Our work thus complements such recent works. Our app-
roach naturally supports the analysis of multiparty session types with behavioral
genericity. This model, the first of its kind, is very powerful; it reuses techniques
from binary sessions [4], notably relational parametricity. These features suggest
that extensions of known multiparty sessions with behavioral genericity would
be hard to obtain without following linear logic foundations, as done here.

Given a global type, our characterization results relate its medium and its
local projections; these relations allow us to transfer properties of [5] (e.g.,
deadlock-freedom) to multiparty protocols. Our results stress the fundamental

Multiparty Sessions in a Canonical Binary Theory, and Beyond 93

character of key notions in multiparty sessions (e.g., projections), and build on
connections between two distinct session type theories based on linear logic [5]
and on automata [12]. Our developments do not depend on the interpretation
of session types in [5] being intuitionistic; clearly, its reasoning techniques (e.g.,
behavioral equivalences [19]) are important in our results. Our approach should
extend also to interpretations based on classical linear logic [22].

Related Work. One challenge in decomposing a multiparty session type is
preserving its sequencing information. The work [9] shows how to decompose
a global type into simpler, independent pieces: global types use an additional
calls construct to invoke these pieces in the appropriate order, but connections
with binary sessions are not established. Correspondence assertions [2] track
data dependencies and detect unintended operations; they may allow to relate
independent binary sessions. Using standard binary/multiparty session types, we
capture sequencing information using a process extracted from a global type. Our
approach relies on deadlock-freedom (not available in [2]) and offers a principled
way of transferring it to multiparty systems.

To our knowledge, ours is the first formal characterization of multiparty ses-
sion types using binary session types. Previous works have, e.g., compared dif-
ferent multiparty session types but without connecting to binary types [11].
The work [18] (extended version) identifies a class of multiparty systems for
which deadlock-freedom analysis can be reduced to the analysis of linear
π-calculus processes. This reduction, however, does not connect with binary ses-
sion types, nor exploits other properties of processes to analyze global types. The
work [7] relates global types and a variant of classical linear logic; as in our work,
a challenge in [7] is capturing sequencing information in global types. While [7]
captures sequencing information in global types via role annotations in proposi-
tions/types (using an extra proof system, called coherence), our medium-based
approach enables process reasoning on global types, uses standard linear logic
propositions, and allows for conservative extensions with powerful reasoning tech-
niques, notably behavioral genericity as enabled by parametric polymorphism.

Medium processes are loosely related to the concept of orchestrators in
service-oriented computing. The work [17] shows how to synthesize an orches-
trator from a service choreography, using finite state machines. In contrast, we
consider choreographies given as behavioral types; mediums are obtained directly
from those types.

Acknowledgments. Thanks to Bernardo Toninho for useful discussions. We are also
grateful to the anonymous reviewers for their improvement suggestions. This work was
partially supported by NOVA LINCS (Ref. UID/CEC/04516/2013) and COST Action
IC1201 (Behavioural Types for Reliable Large-Scale Software Systems).

References

1. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

94 L. Caires and J.A. Pérez

2. Bonelli, E., Compagnoni, A., Gunter, E.: Correspondence assertions for process
synchronization in concurrent communications. J. Funct. Program. 15, 219–247
(2005)

3. Caires, L., Pérez, J.A.: A typeful characterization of multiparty structured conver-
sations based on binary sessions. CoRR, abs/1407.4242 (2014)

4. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 330–349. Springer, Heidelberg (2013). See also
Technical Report CMU-CS-12-108, April 2012

5. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

6. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263–274. ACM (2013)

7. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. In: CONCUR 2015. LIPIcs, vol. 42, pp. 412–426. Dagstuhl
(2015)

8. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
In: POPL, ACM SIGPLAN Notices 43, pp. 261–272. ACM (2008)

9. Chen, T.: Lightening global types. J. Logic Algebraic Meth. Program. 84(5), 708–
729 (2015)

10. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

11. Demangeon, R., Yoshida, N.: On the expressiveness of multiparty session types.
In: FSTTCS 2015. LIPIcs. Dagstuhl (2015)

12. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol.
7966, pp. 174–186. Springer, Heidelberg (2013)

13. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

15. Huttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016). doi:10.1145/2873052

16. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Proceedings of POPL 2015, pp. 221–232. ACM (2015)

17. McIlvenna, S., Dumas, M., Wynn, M.T.: Synthesis of orchestrators from service
choreographies. In: APCCM. CRPIT, vol. 96. Australian Computer Society (2009)

18. Padovani, L.: Deadlock and lock freedom in the linear π-calculus. In: Proceedings
of CSL-LICS 2014, pp. 72:1–72:10. ACM (2014). http://hal.archives-ouvertes.fr/
hal-00932356v2/document

19. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations and
observational equivalences for session-based concurrency. Inf. Comput. 239, 254–
302 (2014)

20. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. CUP,
Cambridge (2001)

http://dx.doi.org/10.1145/2873052
http://hal.archives-ouvertes.fr/hal-00932356v2/document
http://hal.archives-ouvertes.fr/hal-00932356v2/document

Multiparty Sessions in a Canonical Binary Theory, and Beyond 95

21. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-
typed processes. In: Maffei, M., Tuosto, E. (eds.) TGC 2014. LNCS, vol. 8902, pp.
159–175. Springer, Heidelberg (2014)

22. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)

A Type Theory for Robust Failure Handling
in Distributed Systems

Tzu-Chun Chen1(B), Malte Viering1, Andi Bejleri1, Lukasz Ziarek2,
and Patrick Eugster1,3

1 Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{tc.chen,viering,bejleri,peugster}@dsp.tu-darmstadt.de

2 Department of Computer Science and Engineering, SUNY Buffalo, New York, USA
lziarek@buffalo.edu

3 Department of Computer Science, Purdue University, West Lafayette, USA

Abstract. This paper presents a formal framework for programming
distributed applications capable of handling partial failures, motivated
by the non-trivial interplay between failure handling and messaging in
asynchronous distributed environments. Multiple failures can affect pro-
tocols at the level of individual interactions (alignment). At the same
time, only participants affected by a failure or involved in its handling
should be informed of it, and its handling should not be mixed with
that of other failures (precision). This is particularly challenging, as
through the structure of protocols, failures may be linked to others in
subsequent or concomitant interactions (causality). Last but not least,
no central authority should be required for handling failures (decentral-
isation). Our goal is to give developers a description language, called
protocol types, to specify robust failure handling that accounts for align-
ment, precision, causality, and decentralisation. A type discipline is built
to statically ensure that asynchronous failure handling among multiple
endpoints is free from orphan messages, deadlocks, starvation, and inter-
actions are never stuck.

Keywords: Session types · Partial failure handling · Distributed
systems

1 Introduction

For distributed systems where application components interact asynchronously
and concurrently, the design and verification of communication protocols is criti-
cal. These systems are prone to partial failures, where some components or inter-
actions may fail, while others must continue while respecting certain invariants.
Since not all failures can be simply masked [10], programmers must explicitly
deal with failures.

Financially supported by ERC grant FP7-617805 “LiVeSoft – Lightweight Verifica-
tion of Software”.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 96–113, 2016.
DOI: 10.1007/978-3-319-39570-8 7

A Type Theory for Robust Failure Handling in Distributed Systems 97

To ease the burden on programmers for constructing resilient communication
protocols in the presence of partial failures, we propose a framework for robust
failure handling. Our framework ensures safety during normal execution and in
case of failures. In particular our framework provides the following properties:

1. P1 (alignment): The occurrences of failures are specified at the level of
individual interactions, which they be raised.

2. P2 (precision): If a failure occurs, an endpoint is informed iff it is affected
by the failure or involved in handling it, and its handling is not mixed with
that of other failures.

3. P3 (causality): Dependencies between failures are considered, i.e., a failure
can affect (enable, disable) others which may occur in subsequent or concomi-
tant interactions.

4. P4 (decentralisation): No central authority or component controls the deci-
sions or actions of the participants to handle a failure.

Inspired by session types [12,19], we introduce protocol types to achieve these
properties. The basic design is shown in Eq. (1):

T[p1 → p2 : S̃ ∨ f1, ..., fn;G]H[f1 : G1, ..., fn : Gn, ...] (1)

where the first term expresses that a participant p1 either sends a message of
type S̃ to another participant p2, or raises one of several failures (i.e., f1, ..., fn).
G specifies the subsequent interactions and Gi specifies the handling protocols
for fi, i = 1..n in H. In short, failures are thus associated with elementary inter-
actions (P1), only participants affected by such a failure in G (e.g., they are
expecting communication from p2) or those involved in the corresponding fail-
ure handling activity are informed (P2). There is at most one f appearing in
H that will be handled/raised (P3). Our semantics ensure that there is no cen-
tral authority (P4), meaning, notifications of failures (and absence thereof) are
delivered asynchronously from failure sources and processes are typed by local
(i.e., endpoint) types achieved by the projection of participants over protocol
types.

This design results in a distinguishable type system from the design of Eq. (2):

T[p1 → p2 : S̃ ;G]H[G′] (2)

In Eq. (2), only one failure may occur in a try-block and where/when it will occur
is not specified; once a failure — no matter which one — occurs somewhere in
p1 → p2 : S̃ or G, the handling activity G′ simply takes over. Previous works on
dealing with failures [2–4,6] are based on Eq. (2) and/or centralised authorities,
and hence do not satisfy all of P1 to P4 (see Sect. 7 for details).

Just as multiparty session types aim to specify the interactions among par-
ticipants and verify implementations of these participants, protocol types specify
the global interplay of failures in interactions among participants and verify the
failure-handling activities of these participants. To the best of our knowledge,
this is the first work that presents a type system for statically checking fine-
grained failure handling activities across asynchronous/concurrent processes for

98 T.-C. Chen et al.

partial failures in practical distributed systems. We define a calculus of processes
with the ability to not only raise (“throw”) and handle (“catch”) failures, but
to also automatically notify processes of failures or absence thereof at runtime.

Our framework also gives protocol designers and endpoint application devel-
opers simple and intuitive description/programming abstractions, and ensures
safe interactions among endpoint applications in concurrent environments.

Paper Structure. Section 2 gives motivating examples to introduce the design
of protocol types, which capture the properties P1 to P4; then we introduce an
operation called transformation to transform a protocol type to local (i.e., end-
point) types while preserving the desired properties. Section 3 gives a process
calculus with de-centralised multiple-failure-handling capability, including the
syntax for programs and networks, and the operational semantics for runtime.
Section 5 gives a type system for local processes and Sect. 4 gives a type system
for networks to maintain communication coherent. Section 6 states the property
of safety, including subject reduction and communication safety, and the prop-
erty of progress. Section 7 discusses related works. Finally Sect. 8 concludes our
work.

Detailed formal and auxiliary definitions, lemmas, and proofs are presented
in the extended version of this paper [9].

2 Protocol Types, Local Types, and Transformation

This section uses examples to show the design behind protocol types and uses
Fig. 1 to illustrate an operation called transformation, which generates local
types from protocol types. All formal definitions can be found in the extended
version of this paper [9].

The first example, visualised by Fig. 1, shows the properties P1 and P2.
Assume that in a network all outgoing traffic passes through a proxy (Proxy),
monitoring the traffic and logging general information, e.g., consumed band-
width. The proxy sends this information to a log server (Log). If the proxy
detects suspicious behaviour in the traffic, it raises a SuspiciousB failure and
notifies Log and a supervision server (SupServer) to handle the failure by having
Log send the traffic logs to SupServer; if the proxy detects that the quota of
Client is low, it raises a QuotaWarn failure and notifies Log and Client to handle
the failure by having Log send quota information to Client. Then Proxy forwards
the traffic from Client to an external server (EServer). We propose the following
type to formalise the above scenario:

Gproxy =T[Client → Proxy : str;
Proxy → Log : str ∨ SuspiciousB,QuotaWarn;Proxy → EServer : str]

H[SuspiciousB : Log → SupServer : str, QuotaWarn : Log → Client : str]; end

It specifies that either SuspiciousB or QuotaWarn may occur at interac-
tion Proxy → Log (P1). Proxy can raise the failure and correspondingly sends

A Type Theory for Robust Failure Handling in Distributed Systems 99

Fig. 1. Overview of transformation to obtain local types from a protocol type. The left-
hand-side figure visualises a protocol type, Gproxy, as a global structure by function
Struct . The right-hand-side figures are local types for participants in Gproxy. They
are gained by an operation called transformation, which firstly projects the global
structure onto participants to get simple local types, then adds the information of
need-be-informed participants to the positions with green rings, and finally adds syn-
chronisation points to the positions with blue rings. After transformation, local types
for robust failure handling are reached. (Color figure online)

failure/non-failure notifications to all relevant parties. SuspiciousB affects Log
and SupServer since they both handle that failure; it also affects Client because
the occurrence of SuspiciousB implies that QuotaWarn will never occur, and thus
Client will not yield to the handling activity for QuotaWarn. When QuotaWarn
occurs, the situation is similar to SuspiciousB’s. Once one of them occurs, Proxy
sends failure notifications carrying the occurred failure to Log, SupServer, and
Client; when no failures occur, Proxy sends non-failure notifications carrying both
failures to the same participants to inform them not to yield to handling activ-
ity. No failures will affect Proxy and EServer (P2) because Proxy and EServer
are not involved in any failure handling activities: Proxy continues sending to
EServer after it raises a failure and EServer still receives a message from Proxy
as expected.

The next example shows P2 and P3. Assume a resource provider (RP)
informs a coordinator (Coord) of which resources it can provide. The library
(Lib) can get the resource by requesting Coord only if RP sends a list of resources
to Coord. If failure NoRes occurs, meaning absence of resource, Coord informs

100 T.-C. Chen et al.

(Sorts) S ::= bool | unit | int | str (Failure) f ::= AuthFail | Abort | ExecFail | ...
(Handlers) h ::= /0 | h, f : g (Set of Failures) F ::= /0 | F, f

(Inter. Types) g ::= ε | p → p : S̃∨F | T[g]H[h] | g;g | t | μt.g (Protocol Types) G ::= g;end

Fig. 2. Syntax of protocol types.

Lib of this; otherwise, Lib places a request to Coord or raises a failure Abort (due
to one of many possible local problems) and Coord invokes Record to record this
failure:

Gcoord = T[RP → Coord : str ∨ NoRes; Lib → Coord : str ∨ Abort;Coord → Lib : int]
H[NoRes : Coord → Lib : bool, Abort : Coord → Record : str]; end

Although it may seem that interactions RP → Coord and Lib → Coord can
run concurrently, this is not the case because, Lib can only get the resource if RP
gives Coord a resource list, which implies failures NoRes and Abort are dependent
(P3). Additionally, we constrain that failure handling should be not be mixed
(P2). Synchronisation of Lib to yield to the completion of RP → Coord is thus
needed. This helps programmers tremendously in reasoning about the states that
participants are in after failures. Note that, if RP → Coord and Lib → Coord have
no failures specified, then RP → Coord and Lib → Coord can run concurrently
because there is no failure dependency.

2.1 Protocol Types

To handle partial failures in interactions which exhibit the properties P1 to
P4, Fig. 2 defines protocol types based on the definition of session types given
in the work by Bettini et al. [1]. Protocol types, denoted by G, are composed of
interaction types g and terminated by end. We use (p, ...) to range over identifiers,
(S , ...) to range over basic types like bool, unit, int, and str, and (F, ...) to range
over sets of failures. We highlight the key concepts:

(A) p1 → p2 : S̃ ∨ F is a failure-raising interaction tagged with F , or F -raising
interaction for short. When S̃ �= ∅ and F �= ∅, either p1 sends a content of
type S̃ or raises one failure in F to p2. When one of S̃ and F is empty, p1
only makes an output based on the non-empty one. We do not allow both
F and S̃ to be empty.

(B) T[g]H[h] defines default interaction in g , which is an interaction type, and
a handling environment, h = {fi : gi}i∈I , which maps failures to handling
activities defined in global types. Our design allows h to deal with different
failures, with exactly one handler taking over once failures occur.

(C) In (A), if F is empty, we do not require the interaction to be enclosed in a
try-handle term; otherwise, the interaction must appear within a try-handle
term.

A Type Theory for Robust Failure Handling in Distributed Systems 101

In the remaining syntax, we use ε for idle, and g1; g2 for sequential composition.
A type variable is denoted by t , and a recursive type under an equi-recursive
approach [18] is denoted by μt .g , assuming every t appearing in g is guarded by
prefixes.

For brevity, our protocol types presentation omits parallel composition, thus
we do not allow session interleaving or multi-threading at a local participant.
Note that we can still implement two individual interactions running in parallel
by implementing two disjoint groups of interacting participants who execute
two respective protocols. We omit branching with multiple options of ongoing
interactions, since the term T[p1 → p2 : l1, ..., ln; g]H[l1 : g1, ..., ln : gn] is able
to encode the branching in multiparty session types [1,12] by using failures
l1, ..., ln as labels for branches. We leave unaffected participants to continue
default actions regardless of the occurrence of failures; we do not inform them of
the failure. Moreover, we do not have well-formedness constraints on the shape of
interactions in branches (i.e. failure handlers in our syntax) as most multiparty
session types and choreographic programming related works require [1,3–5,8,12,
13,16,17,21].

2.2 Local Types and Transformation

In order to achieve our desired properties we use an operation, called trans-
formation, to synthesize a guidance to locally guide which participants need to
coordinate with others once a failure occurs, or inversely to assert that none has
occurred, before proceeding with the next action. The operation transformation
includes the following steps:

1. Generating a global structure from a given protocol type and alpha
renaming it.

2. Projecting the above structure to every participants to obtain simple local
types, which are not yet sufficient for robust failure handling. The projection
algorithm is similar to the mechanism in multiparty session types [1,12].

3. Adding the information of need-(to)-be-informed participants, who are those
affected by or involved in handling failures, and synchronisation points to local
types.

After these 3 steps, we obtain local types which are sufficient for our type system
to ensure robust failure handling.

Figure 1 uses the example of Gproxy to demonstrate the operation of trans-
forming a protocol type to each participants’ local types, which are defined
below:

Definition 1 (Local Types T).

(Local Types) T :: = n | try{T, H} | n ��� T | t | μt .T (Handlers) H :: = ∅ | H, f : T
(Action) n :: = ε | end | sn〈p! S̃ ∨ F, p̃, p̃〉 | rn〈p? S̃ ∨ F 〉 | yield〈F 〉

A local type is either an action (n), a try-handle type (try{T,H}), a sequenc-
ing type (n ��� T), a local type variable (t), or a recursive type (μt .T). We use

102 T.-C. Chen et al.

ε to type an idle action, while end types termination. A sending action, typed by
sn〈p! S̃ ∨F, p̃′, p̃′′〉, specifies a sending of normal content of type S̃ to p or raising
a failure in F . When a failure is raised, the sender also sends failure notifications
to participants p̃′. When normal content is sent, the sender also sends non-failure
notifications to participants p̃′′. A receiving action, typed by rn〈p? S̃ ∨F 〉, spec-
ifies the reception of content of type S̃ from p, who may raise a failure in F
instead. An action yielding to the arrival of a non-failure notification informing
that no failures in F occurred, is typed by yield〈F 〉. A handling environment in
local types, denoted by H = {fi : Ti}i∈I , maps failures to corresponding local
handling actions defined in local types.

In Fig. 1, we firstly create a global structure for Gproxy by Struct(Gproxy).
Global structures, denoted by T, consist of either a single interaction (N), a
try-handle structure (try{T, H}) where H has a similar shape to handling envi-
ronments in local types, a sequence (N ��� T), or a recursive structure (μt .T). We
define N as either p → p : S̃∨F or ε or end. By defining Struct(single interaction)
= N, a try-handle structure is obtained by Struct(T[g]H[f1 : g1, ..., fn : gn];G) =
try{Struct(g ;G), f1 : Struct(g1;G), ..., fn : Struct(gn;G)}, while a recursive
structure is obtained by Struct(μt .G) = μt .Struct(G).

The simple local types are gained by projecting T, created by Struct(G), on
each participants. The projection rules are defined below:

Definition 2 (Projecting T onto Endpoint p). Assume T = Struct(G) and T
is alpha-renamed so that all failures in T are unique. Define �(T, p) as generating
a local type on p:

(1) �(end, p) = end (2) �(p1 → p2 : S̃ ∨ F, p) =

⎧
⎪⎨

⎪⎩

sn〈p2! S̃ ∨ F, , 〉 if p = p1 �= p2

rn〈p1? S̃ ∨ F 〉 if p = p2 �= p1

εF otherwise

(3) �(try{T, f1 : T1, ..., fn : Tn}, p) = try{�(T, p), f1 :�(T1, p), ..., fn :�(Tn, p)}
(4) �(N ��� T, p) =�(N, p) ����(T, p) (5) �(t , p) = t (6) �(μt .T, p) = μt . �(T, p)

Others are undefined.

Rule (2) is for dually interacting participants. It introduces εF , which has
equivalent meaning to ε (i.e. idle action) but is only used in transformation for
adding synchronisation points. As we project an interaction p1 → p2 : S̃ ∨ F
with p1 �= p2 onto p1 (resp. p2), we get an action sn〈p2! S̃ ∨ F, , , 〉 (resp.
rn〈p1? S̃ ∨ F 〉). Note that the two slots in the sending action are preserved
for adding the need-be-informed participants as a failure occurs (the first slot),
and those as no failures occur (the second slot). As we project the interaction
to some participant who is not in the interaction, we get εF (idle action). The
subscript F indicates that if p is affected by some failures in F a synchronisation
point will be added at this position. Rule (3) simply projects every sub-structure
in the try block and handlers onto the participant. Rule (4) sequences two local
types projected from a global structure. Other rules are straightforward.

After projection, we add need-be-informed participants into the failure-
raiser’s sending actions (e.g., the one marked in green ring in Fig. 1). We use

A Type Theory for Robust Failure Handling in Distributed Systems 103

C(T, F) to get the set of need-be-informed participants regarding a unique F
in a global structure T. It is the least fixed point of c(T, T, F, r), which recur-
sively collects the need-be-informed participants regarding F based on T. Since
for every protocol the number of participants is finite, function c will converge
to a fixed set of participants. The key calculation is done by the rule below

c(T, N, F, r) =

⎧
⎪⎨

⎪⎩

r ∪ pid(N) ∪ C(T,FSet(N))
if (F appears before N in T)∧
((pid(N) ∩ r �= ∅) ∨ (FSet(N) �= ∅))

r otherwise

where we require the initial r to be the set containing the receiver of F -raising
interaction and the participants involved in handling F in T; later r acts as an
accumulator collecting the participants causally related to the initial r. N is an
interaction, pid(N) is the set of participants in N, and FSet(N) returns the failures
tagged on N. This rule says that if the interaction we are checking appears after
the F -raising interaction, and some of its interacting participants are related
to r or the interaction itself can raise another failure set (e.g. the interaction
Lib → Coord : str ∨ Abort in RP → Coord : str ∨ NoRes; Lib → Coord : str ∨ Abort
is related to F = {NoRes}), then we collect its participants (i.e. pid(N)) and
the need-be-informed participants with respect to the failures that can be raised
by N.

After adding those participants, we add synchronisation points yield〈F 〉 to
the positions where a participant yields to the arrival of non-failure notifications
(e.g. those marked in blue rings in Fig. 1). The key rule is:

Sync(T,n, p) =

⎧
⎪⎨

⎪⎩

yield〈FSet(N)〉 ��� n if (n =�(N, p)) ∧ (p ∈ C(T,FSet(N)) ∧ p �= snd(N)

n ��� yield〈FSet(N)〉 if (n =�(N, p)) ∧ (p ∈ C(T,FSet(N)) ∧ p = snd(N)

n otherwise

where snd(N) is the sender for interaction N. This rule says the followings: If p
needs to be informed of F = FSet(N) (i.e. p ∈ C(T,FSet(N)) then it must add
a synchronisation point. If p’s action (i.e., n) regarding F is εF (e.g. in Gcoord

the participant Lib has εNoRes by Definition 2), yield〈F 〉 is positioned ahead of
p’s action (e.g. a sending action of Lib to Coord specified in Gcoord), because p
needs to wait for the notification regarding F before taking any action. If p is the
receiver, we have yield〈F 〉 positioned before the receiving action because yield〈F 〉
is the point deciding whether the process will handle a failure regarding F or
proceed. If p is the sender, we should have yield〈F 〉 positioned after the sending
action, because as p is involved for some failure handling activity regarding F , it
needs to first send out failure notifications then go back to execute the handling
activity; otherwise the process will get stuck.

In Fig. 1, green ring appears at Proxy’s second action because, if a failure
occurs, Proxy has to inform Log, SupServer, and Client about that failure. Blue
rings appear at Client, Log, and SupServer’s try blocks because they are involved
in handling activity, and they can terminate only after getting the notifications
that no failures occurred.

104 T.-C. Chen et al.

Overall, we define the operation of transformation as Transform(G, p), which
transforms G to a local type for p.

3 Processes for Decentralised Multiple-Failure-Handling

We abstract distributed systems as a finite set of processes communicating by
outputting (resp. inputting) messages into (resp. from) the shared global queue
asynchronously and concurrently. The semantics of the calculus is in the same
style as that of the π-calculus and does not involve any centralised authority
for specifying how messages are exchanged (P4). The shared queue is only con-
ceptually global for convenience, and could be split into individual participant
queues.

Syntax. In Fig. 3, we define x as value variables, y as channel variables, a as shared
names (e.g., names for services or protocol managers), and s as session names
(i.e., session IDs), p as participant identifiers, and X as process variables. We
use u for names and c for channels, which are either variables or a combination
of s and p. The definition for expressions e is standard. We define the syntax
of processes (P, ...) and that of networks (N, ...), which represent interactions
of processes at runtime. Process 0 is inactive. Process c!(p, 〈ẽ〉F) denotes an
output, which may alternatively raise a failure f in F , sends a message with
content ẽ to p via channel c; while c?(p, (x̃)F).P denotes an input using c to
receive a content from p, which may alternatively raise a failure from F . Every x̃
appearing in P is bound by the input prefix. When F = ∅, we omit F since the
process will not raise/receive a failure. Process c raise(f) to p raises f to p via
channel c. Process c ⊗ F is guarded by ⊗F , a synchronisation point, yielding
to non-failure notification for F . A try-handle process try{P}h{H } executes
P until a handler f ∈ dom(H) is triggered, then the triggered handler takes
over. A handling environment, denoted by H , maps failure names to handling
processes. We write P1;P2 to represent a sequential composition where P2 follows
P1. Process def D in P defines a recursion, where declaration D = (X(x̃ c) = P)
is a recursive call. The term if e then P else P is standard. We define evaluation
context E over processes. It is either a hole, a context in a try-handle term, or
a context sequencing next processes.

Fig. 3. Syntax for processes and networks.

A Type Theory for Robust Failure Handling in Distributed Systems 105

A network N is composed by linking points, denoted by a[p](y).P , and run-
time processes, denoted by [P]T with global transports (i.e., s : q) for proceed-
ing communications in a private session (i.e., (new s)N). Our framework asks a
process to join one session at a time. A linking point a[p](y).P is guarded by
a[p](y) for session initiation, where shared name a associates a service to a pro-
tocol type. [P]T represents a runtime process which is guided by T for notifying
need-be-informed participants.

A session queue, denoted by s : q, is a queue for messages floating in session
s. Message 〈p1, p2, 〈ṽ〉〉F carries content ṽ, sent from p1 to p2 prone to failure
f ∈ F . Message 〈p, f 〉 (resp. 〈〈p, F 〉〉) carries a failure name f to indicate that
failure f occurred (resp. a set of failures F to indicate that no failures in F
occurred) to p. Conventionally we say 〈〈p, ∅〉〉 = ε. When session s is initiated for
a network, a private (i.e., hidden) session is created, in which activities cannot
be witnessed from the outside. We use structural congruence rules, defined by
≡, which are standard according to the works of multiparty session types [1,12].

Operational Semantics. Figure 4 gives the operational semantics for networks
(i.e., runtime processes) through the reduction relation N → N . We have added
boxes to those rules which differ from standard session type definitions. In rule
[link], a session is generated with a fresh name s through shared name a obeying
protocol type G. This indicates that all processes in the new session s will obey to
the behaviours defined in G. At the same time, a global queue s : ε is generated,
and the local process associated with p replaces yp with s[p]; a local type Tp

is generated by Transform(G, p) to guide the local process associated with p
for propagating notifications. Note that, as we enclose a local process with T,
together they become an element of a network. T is merely a local type and the
reduction of the network does not change T.

Rule [rcv] states that, in s, a process associated with p1 is able to receive
a value ṽ from participant associated with p2 and message 〈p2, p1, 〈ṽ〉〉F is on
the top of q. Then ṽ will replace the free occurrences of x̃ in P . The shape of
s[p1]?(p2, (x̃)F) indicates that its dual action may send it a failure from F ; in
other words, if F �= ∅, a process should be structured by a try-handle term
for possible failure handling. Rule [snd] is dual to [rcv]. We define node(T, F)
as a function returning an action tagged with F in a local type T. Rule [sndF]

states that, if there is an action in T matching s[p1]!(p2, 〈ẽ〉F) and ẽ ⇓ ṽ, then
the process associated with p1 in s is allowed to send a message with content
ṽ to p2 and non-failure notifications 〈〈p′

1, F 〉〉...〈〈p′
n, F 〉〉. Note that, non failure

notifications are automatically generated at runtime. If a process follows the
guidance of the attached T, since T is alpha-renamed, every failure raised by
the process is unique. Similarly, [thwf] states for a process associated with p1 in
s, to raise f to p2 and other affected ones, p′

1, .., p
′
n. Very importantly, in [sndF]

and [thwf], q has no failure notification to trigger H because, as a failure-raising
interaction is ready to fire (i.e. its sender is about to send), it implies that,
globally, either this interaction is the first failure-raising interaction in s (thus
no failure yet occurs in s), or its previous interactions did not raise a failure in
dom(H) (thus by P2, this interaction is able to raise a failure in dom(H), and

106 T.-C. Chen et al.

a : 〈G〉 ∀p ∈ {1..n}.Tp = Transform(G,p) s fresh
a[1](y1).P1 ‖ ... ‖ a[n](yn).Pn → (new s)([P1[s[1]/y1]]T1 ‖ ... ‖ [Pn[s[n]/yn]]Tn ‖ s : ε) [link]

[s[p1]?(p2,(x̃)F).P]T ‖ s : 〈p2,p1,〈ṽ〉〉F ·q → [P[ṽ/x̃]]T ‖ s : q [rcv]

[s[p1]!(p2,〈ẽ〉);P]T ‖ s : q → [P]T ‖ s : q · 〈p1,p2,〈ṽ〉〉 ẽ ⇓ ṽ [snd]

ẽ ⇓ ṽ node(T,F) = sn〈p2! S̃∨F, p̃,{p′
1, ...,p

′
n}〉 F �= /0

[try{s[p1]!(p2,〈ẽ〉F);P}h{H}]T ‖ s : q
→ [try{P}h{H}]T ‖ s : q · 〈p1,p2,〈ṽ〉〉F · 〈〈p′

1,F〉〉...〈〈p′
n,F〉〉

[sndF]

node(T,F) = sn〈p2! S̃∨F,{p2,p′
1, ...,p

′
n}, p̃〉 f ∈ F

[try{s[p1] raise(f) to p2;P}h{H}]T ‖ s : q
→ [try{P}h{H}]T ‖ s : q · 〈p2, f 〉 · 〈p′

1, f 〉...〈p′
n, f 〉

[thwf]

act(P) = s[p] [P]T ‖ s : q → [P′]T ‖ s : q′
q = 〈p′, f ′〉 ·q′ ⇒ (p′ �= p)∨ (f ′ �∈ dom(H))

[try{P}h{H};P′′]T ‖ s : q → [try{P′}h{H};P′′]T ‖ s : q′ [try]

f ∈ dom(H)∩F
[try{ [s[p]⊗F]}h{H};P′]T ‖ s : 〈p, f 〉 ·q → [H(f);P′]T ‖ s : q

[hdl]

F ′ ⊆ F
[s[p]⊗F ′;P]T ‖ s : 〈〈p,F〉〉 ·q → [P]T ‖ s : q

[sync-done]

F ′′ = F ′ \F �= /0
[s[p]⊗F ′;P]T ‖ s : 〈〈p,F〉〉 ·q → [s[p]⊗F ′′;P]T ‖ s : q

[sync]

[try{v}h{H}]T → [0]T [try-end]

[if true then P1 else P2]T → [P1]T [if false then P1 else P2]T → [P2]T [if]

[P1]T ‖ s : q → [P2]T ‖ s : q′
[P1;P]T ‖ s : q → [P2;P]T ‖ s : q′ [seq]

ẽ ⇓ ṽ X(x̃ c) = P ∈ D
[def D in X〈ẽ c〉]T → [def D in (P[ṽ/x̃])]T

[call]

N1 → N2
N1 ‖ N → N2 ‖ N

[net]
[P1]T ‖ s : q → [P2]T ‖ s : q′

[def D in P1]T ‖ s : q → [def D in P2]T ‖ s : q′ [defin]

N1 ≡ N2 → N3 ≡ N4
N1 → N4

[str]
N1 → N2

(new s)N1 → (new s)N2
[new]

Fig. 4. Reduction rules for networks (i.e., runtime processes).

no failures in dom(H) yet occurs in s). For convenience, we use act to extract
the channel that a process or the set of handlers is acting on, i.e. act(P) = s[p]
says P is acting on channel s[p], and act(H) = act(H (f)) for every f ∈ dom(H).

In [try], if the H in a try-handle process associated with p in s will not be
triggered by the top message in s : q, then the process in the try block will take
action according to the process’s interaction with the queue. In [hdl], as f arrives
to a try-handle process associated with p in s whose try block is yielding to
non-failure notification for F and H is able to handle f , the handling process
H (f) takes over. Due to asynchrony, other processes’ handlers for f may become
active before this process. Thus some messages in q may be sent from other

A Type Theory for Robust Failure Handling in Distributed Systems 107

processes’ handlers of f for P . Note that none of the messages in q are for
E because, all default sending actions in other processes are also guarded by
synchronisation points.

Synchronisation either proceeds with [sync-done], where F is sufficient to remove
F ′, or with [sync], where F is included in F ′ carried in the notification. For
the former, some processes in the failure-handling activity only take care of
partial failures in F , i.e. F ′, when they receive F , to ensure that no failures in F
occurred. For the latter, further synchronisation is required by F ′′ = (F ′ \ F) �=
∅. In [try-end], since we have added sufficient synchronisation points to guard
processes who must yield to non-failure notifications, when a network reaches
[try{v}h{H }]T, it is safe to be inactive because no more failure notifications will
occur. In other rules, the operations enclosed in T are standard according to the
works of multiparty session types [1,12].

4 Typing Local Processes

This section introduces rules to type user-defined processes. Based on the mul-
tiparty session types [1,12], type environments and typing rules for processes
are given in Fig. 5. A shared environment Γ is a finite mapping from variables
to sorts and from process variables to local types; a session environment Δ is a
finite mapping from session channels to local types. Γ, x : S means that x does
not occur in Γ , so does Γ,X : (x̃ T) and Δ, c : T. We assume that expressions
are typed by sorts. Γ � e : S is the typing judgment for expressions, whose
typing rules are standard. The typing judgment Γ � P � Δ for local processes
reads as “Γ proves that P complies with abstract specification Δ”.

Rule [T-0] states that an idle process is typed by end-only Δ, which means
∀c ∈ dom(Δ), Δ(c) = end. Rule [T-seq] types sequential composition by sequenc-
ing P2’s action in Δ2 after P1’s action in Δ1 as long as P1 and P2 are acting
on the same channel. We define Δ1 ◦ Δ2 as the one defined in the multiparty
session types extended with failure-handling ability [3]. Rule [T-rcv] specifies that
s[p1]?(p2, (x̃)F).P is valid as it corresponds to local type rn〈p2? S̃ ∨F 〉 ��� T as
long as P , associated with p1 in session s, is well-typed by T under an environ-
ment which knows x̃ : S̃ . In [T-snd] and [T-thwf], since the slots are not related to
typing, their contents are omitted. Rules [T-snd] and [T-thwf] share the same action
for typing because sn〈p2! S̃ ∨ F, , 〉 specifies two possible actions: a sending
action s[p1]!(p2, 〈ẽ〉F) in which ẽ must have type S̃ , and action s[p1] raise(f) to p2
in which f must be in F . Then the continuing process P is typed by the follow-
ing T.

For typing handling activities, rule [T-try] types a try-handle term if its default
action (i.e., P) with its following process is well-typed, and those in handlers with
their follow-up processes are all well-typed. We require the following process P ′

should not contain any failure appearing in H . Since P and any processes in H
are acting on the same channel and act(H) represents the channel that every
processes in H is acting on, we use act(H) to get the channel in order to type
try{0}h{H }. Recall Fig. 1 and projection rules defined in Definition 2, for local

108 T.-C. Chen et al.

Γ (Shared Environments) ::= /0 | Γ ,x : S | Γ ,X : (x̃ T) Δ (Session Environments) ::= /0 | Δ ,c : T

Δ end only
Γ � 0�Δ [T-0]

∀i ∈ {1,2}.Γ � Pi �Δi
Γ � P1;P2 �Δ1 ◦Δ2

[T-seq]

Γ , x̃ : S̃ � P� s[p1] : T

Γ � s[p1]?(p2,(x̃)F).P� s[p1] : rn〈p2? S̃∨F〉 ��� T
[T-rcv]

S̃ �= / 0 Γ � ẽ : S̃ Γ � P� s[p1] : T

Γ � s[p1]!(p2,〈ẽ〉F);P� s[p1] : sn〈p2! S̃∨F, , 〉 ��� T
[T-snd]

f ∈ F Γ � P� s[p1] : T

Γ � s[p1] raise(f) to p2;P� s[p1] : sn〈p2! S̃∨F, , 〉 ��� T
[T-thwf]

dom(H) = dom(H) ∀f ∈ dom(H).f �∈ P′
Γ � P;P′ �act(H) : T ∀f ∈ dom(H).Γ � H(f);P′ �act(H) : H(f)

Γ � try{P}h{H};P′ �act(H) : try{T,H} [T-try]

Γ � P� c : T
Γ � c⊗F ;P� c : yield〈F〉 ��� T [T-sync]

Γ � e : bool i = 1,2. Γ � Pi;P�Δ
Γ � if e then P1 else P2;P�Δ [T-if]

Γ ,X : (S̃ T) � X〈ẽ c〉� c : T [T-var]
Γ , x̃ : S̃,X : (S̃ T) � P� c : T Γ ,X : (S̃ T) � P′ �Δ

Γ � def X(x̃ c) = P in P′ �Δ [T-rec]

Fig. 5. Typing rules for processes.

types the sequencing action is linked at every leaf in a try-handle term; in other
words, the type of P ′ is attached to the type of P and also to every handler in H.
Therefore, as we type a try-handle term, we also consider its following process.

Rule [T-sync] specifies that process c ⊗ F ;P is well-typed if the local type
for c has synchronisation point yield〈F 〉 and P is well-typed w.r.t. T. The
algorithm for adding synchronisation points (introduced in Sect. 2) automatically
places the synchronisation points in local types and ensures that once a failure is
raised, other possible failure-raising actions must not fire. Since the operational
semantics defined in Fig. 4 only deliver notifications regarding F to need-be-
informed participants and only one failure in F can be raised, our type system
ensures only one failure in a try-handle term is handled and all participants
affected by F have consistent failure handling activities.

Rule [T-var] types a local process variable, and rule [T-rec] types a recursion
with Δ, where the recursive call X(x̃, c) = P is typed by c : T, indicating
that P follows behaviour T at c. Others are standard according to the works of
multiparty session types [1,12].

5 Typing the Network

Ultimately our framework needs to ensure that the network is coherent. Coher-
ence, according to the works of multiparty session types [1,12], describes an envi-
ronment where all interactions are complying with the guidance of some G, such
that the behaviour of every participant in Δ, say s[p], obeys to Transform(G, p),

A Type Theory for Robust Failure Handling in Distributed Systems 109

M (Message Types) ::= ε | 〈p1,p2,〈S̃〉〉F | 〈p, f 〉 | 〈〈p,F〉〉
q (Queue Type) ::= M | q ·M

Δ (Extended Session Environments) ::= ... | Δ ,s : q

Γ � s : ε �{s : ε} [T-mε]
Γ � ṽ : S̃ Γ � s : q�{s : q}

Γ � s : q · 〈p1,p2,〈ṽ〉〉F �{s : q · 〈p1,p2,〈S̃〉〉F} [T-m]

Γ � s : q�{s : q}
Γ � s : q · 〈p, f 〉�{s : q · 〈p, f 〉} [T-mf]

Γ � s : q�{s : q}
Γ � s : q · 〈〈p,F〉〉�{s : q · 〈〈p,F〉〉} [T-mF]

Γ � a : 〈G〉 Γ � P� y : Transform(G,p)
Γ � a[p](y).P� /0

[T-link]

Γ � P�Δ act(P) = s[p] ∃G. s.t. T = Transform(G,p) T contains Δ(s[p])
Γ � [P]T �Δ [T-guide]

∀i ∈ 1,2.Γ � Ni �Δi dom(Δ1)∩dom(Δ2) = /0
Γ � N1 ‖ N2 �Δ1,Δ2

[T-net]
Γ � N�Δ Δ〈s〉 coherent
Γ � (new s)N�Δ \Δ〈s〉 [T-new]

Fig. 6. Typing rules for networks.

which denotes a local type. To reason about coherence of default and handling
interactions in a session, we statically type check the interactions by modeling
the outputs and inputs among local processes and the shared global queue.

The typing rules for networks are defined in Fig. 6 by extending the session
environments such as to map queues to queue types. A queue type, denoted by q,
is composed by message types, which are typed by their contents or shapes: Rule
[T-mε] types an empty queue, while rule [T-m] types a message carrying a value
under the assumption that Γ � ṽ : S̃ and the following queue is well-typed; rule
[T-mf] types 〈p, f 〉 by message type 〈p, f 〉, while rule [T-mF] types 〈〈p, F 〉〉 by message
type 〈〈p, F 〉〉. Rule [T-link] types a linking point a[p](y).P by assuming that a
provides a behaviour pattern defined in G. For guiding P associated with p, [T-link]
uses local type T generated by Transform(G, p) to type P acting on channel y.
Rule [T-guide] states that [P]T is well-typed by Δ if P is well-typed by Δ, and T,
gained by some G, contains the type which types P acting on channel s[p]. Note
that, by rule [link] (see Fig. 4), [P]T is created after linking and T is not changed
after any reduction; thus G in rule [T-guide] comes from rule [T-link]. Rule [T-net]

ensures the parallel composition of two networks if each of them is well-typed
and they do not share a common channel (i.e., dom(Δ1) ∩ dom(Δ2) = ∅). The
composed network exhibits the union of the session environments. Rule [T-new]

types hiding (i.e., (new s)N) when the session environment of networks under s,
denoted by

Δ〈s〉 def= {s ′[p] : T | s ′[p] ∈ dom(Δ), s ′ = s} ∪ {s : q},

is coherent:

Definition 3 (Coherence). We say Δ〈s〉 is coherent if there exists G such that
pid(G) = {p | s′[p] ∈ dom(Δ), s′ = s} and either (1) ∀s[p] ∈ dom(Δ〈s〉) we have

110 T.-C. Chen et al.

Transform(G, p) is equal to the type of Δ(s[p]) after s[p] absorbs all messages
heading to it; or (2) there exists Δ′ ⊂ Δ such that ∀s[p] ∈ dom(Δ〈s〉 \ Δ′〈s〉)
we have that Transform(G, p) is equal to the type of Δ(s[p]) after s[p] absorbs
all messages heading to it, and Δ′〈s〉 is coherent.

Note that due to asynchrony, after a sender takes action, the type of the
sender and its receiver may be temporarily incoherent if the sender has moved
forward and the output is still in the global queue. Therefore, coherence holds
only after a receiver has absorbed all messages heading to it.

As we aim to handle partial failure(s), either (1) no failures occurred such that
there exists G defining interactions for every s[p] in Δ〈s〉, or (2) a failure occurs
such that the need-be-informed participants, who are in Δ′〈s〉, are handling that
failure in a coherent way, and other unaffected ones, who are in Δ〈s〉 \ Δ′〈s〉,
still follow the behaviour defined in G.

6 Properties

We prove that our typing discipline ensures the properties of safety and progress.
The property of safety is defined by subject reduction and communication safety.
Firstly we define Δ ⇀ Δ′ as reductions of session environments. Intuitively,
the reductions correspond closely to the operational semantics defined in Fig. 4.
Subject reduction states that a well-typed network (resp. coherent session envi-
ronment) is always well-typed (resp. coherent) after reduction:

Theorem 1 (Subject Congruence and Reduction).

1. (subject congruence) Γ � N � Δ and N ≡ N ′ imply that Γ � N ′ � Δ.
2. (subject reduction) Γ � N � Δ with Δ coherent and N → N ′ imply that

Γ � N ′ � Δ′ such that Δ ⇀ Δ′ or Δ ≡ Δ′ and Δ′ is coherent.

According to the definition of communication safety in the works of multi-
party session types [1,12], it is a corollary of Theorem1. Note that, since our
calculus is based on the work of Bettini et al. [1], global linearity-check is not
needed. For convenience, we define here contexts on networks:

C :: = [] | C ‖ N | N ‖ C | (new s)C

Corollary 1 (Communication Safety). Suppose Γ � N �Δ and Δ is coher-
ent. Let N1 = C1[s : q · 〈p2, p1, 〈ṽ〉〉F · q′] and N2 = C2[s : q · 〈p1, f 〉 · q′] and
N3 = C3[s : q · 〈〈p1, F 〉〉 · q′] and no messages in q is sending to p1.

1. If N = C [E [s[p1]?(p2, (x̃)F).P]T], then N ≡ N1 or N →∗ N1.
2. If N = C [E [try{s[p1] ⊗ F ′;P}h{H }]T] and F ′ ⊆ F �= ∅, then either (a)

N ≡ N2 or N →∗ N2 or (b) N ≡ N3 or N →∗ N3.
3. If N = C [E [try{v}h{H }]T] and f ∈ dom(H) and process H (f) is acting on

s[p1], then N �≡ N2 and N �→∗ N2.

A Type Theory for Robust Failure Handling in Distributed Systems 111

This corollary states that our system is free from deadlock and starvation:
if there is a receiving action in N , then N is either structurally congruent to
the network which contains the message for input, or N will reduce to such a
network. We state that [try{v}h{H }]T is safe to become idle by proving that no
f ∈ dom(H) is heading to it (Case 3).

Corollary 1 provides the means to prove that our system never gets stuck and
is free from orphan messages (property of progress):

Theorem 2 (Progress). Γ � N �Δ with Δ coherent and N → N ′ imply that
N ′ is communication safe or N ′ = 0 ‖ s : ε.

This theorem states that every interaction in a well-typed network is a safe
interaction and reducible until the whole network terminates without any mes-
sage left.

7 Related Works

Failure handling has been addressed in several process calculi and
communication-centered programming languages. For instance, the conversation
calculus [20] models exception handling in abstract service-based systems with
message-passing based communication. It studies expressiveness and behaviour
theory of bisimilarity rather than theory of types. Colombo and Pace [7] inves-
tigate several different process calculi for failure-recovery within long-running
transactions. They give insight regarding the application of these failure-recovery
formalisms in practice via comparing the design choices and formal notions of
correctness properties. Both works do not provide a type system to statically
type check local implementations.

Previous works for failure handling with type systems [3–5,13] extend the
theory of session types to specify error handling under asynchronous interac-
tions. These works do not capture handling of partial failures and the scenarios
which exhibit the properties P1 to P4. They may be able to encode multiple pos-
sible failures at the interaction level (P1), for example, by (i) explicitly using a
labeled branching inside the failure handler, or (ii) piggybacking a label with the
failure notification (“multiplexing”). However, (i) implies double communication
and synchronisation (once for the failure notification, then for the branch) and
(ii) implies that either the well-formedness constraints on the shape of interac-
tions in handlers are needed or any participants related to any failure handling
activity should be informed as a failure occurs in order to know how to pro-
ceed. Our approach is different since we do not have such constrains and we
do not inform the unaffected participants. Moreover, while the termination of
try-handle terms in those works demands an agreement of all participants, ours
allows local try-handle terms to terminate since we have locally added synchro-
nisation points by transformation (see Sect. 2.2). Our approach can encode the
global types for exception-handling proposed in the work by Capecchi et al. [3],
which is the closest related work (and other related ones have similar try-handle
syntax). The formal encoding can be found in the long version of this paper [9].

112 T.-C. Chen et al.

Collet and Van Roy [6] informally present a distributed programming model
of Oz for asynchronous failure handling and focus on programming applica-
tions in a distributed manner. Jakšić and Padovani [14] study a type theory for
error handling for copy-less messaging and memory sharing to prevent memory
leaks/faults through typing of exchange heaps. Lanese et al. [11,15] formalise a
feature which can dynamically install fault and compensation handlers at execu-
tion time in an orchestration programming style. They investigate the interplay
between fault handling and the request-response pattern. In contrast, our frame-
work statically defines the handlers for non-trivial failure handling, which can
only be done with a global perspective.

8 Concluding Remarks

Protocol types enable the design of protocols in an intuitive manner, and sta-
tically type check multiple failure-handling processes in a transparent way.
Our type discipline exhibits the desirable properties of P1(alignment),
P2(precision), P3(causality), and P4(decentralisation) for robust failure
handling, and ensures fundamental properties of safety and progress. We are
currently implementing the proposed framework and are extending it to support
system-induced failures as opposed to application-specific ones focused on in this
paper, in addition to parameterisation and dynamic multiroles.

References

1. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433.
Springer, Heidelberg (2008)

2. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009.
LNCS, vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

3. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions.
MSCS 29, 1–50 (2015)

4. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session
types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 402–417. Springer, Heidelberg (2008)

5. Carbone, M., Yoshida, N., Honda, K.: Asynchronous session types: exceptions and
multiparty interactions. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM
2009. LNCS, vol. 5569, pp. 187–212. Springer, Heidelberg (2009)

6. Collet, R., Van Roy, P.: Failure handling in a network-transparent distributed
programming language. In: Cheraghchi, H.S., Lindskov Knudsen, J., Romanovsky,
A., Babu, C.S. (eds.) Exception Handling. LNCS, vol. 4119, pp. 121–140. Springer,
Heidelberg (2006)

7. Colombo, C., Pace, G.J.: Recovery within long-running transactions. ACM Com-
put. Surv. 45(3), 28: 1–28: 35 (2013)

8. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL 2011,
pp. 435–446 (2011)

A Type Theory for Robust Failure Handling in Distributed Systems 113

9. Technical report. Long version of this paper. https://github.com/
Distributed-Systems-Programming-Group/paper/blob/master/2016/forte16
long dsp.pdf

10. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asynchro-
nous environments. ACM Comput. Surv. 31(1), 1–26 (1999)

11. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault
handling and request-response service invocations. In: 8th International Conference
on Application of Concurrency to System Design, 2008, ACSD 2008, pp. 190–198,
June 2008

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM (2008)

13. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-
ible conversations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174,
pp. 130–148. Springer, Heidelberg (2013)

14. Jakšić, S., Padovani, L.: Exception handling for copyless messaging. Sci. Comput.
Program. 84, 22–51 (2014)

15. Lanese, I., Montesi, F.: Error handling: from theory to practice. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 66–81. Springer,
Heidelberg (2010)

16. Lanese, I., Montesi, F., Zavattaro, G.: Amending choreographies. In: WWV 2013,
vol. 123 of EPTCS, pp. 34–48 (2013)

17. Mostrous, D.: Session Types, in Concurrent Calculi: Higher-Order Processes and
Objects. Ph.D. thesis, Imperial College London (2009)

18. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
19. Takeuchi, K., Honda, H., Kubo, M.: An interaction-based language and its typing

system. In: Halatsis, Constantinos, Philokyprou, G., Maritsas, D., Theodoridis,
Sergios (eds.) PARLE 1994. LNCS, vol. 817. Springer, Heidelberg (1994)

20. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: a model of service-
oriented computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960,
pp. 269–283. Springer, Heidelberg (2008)

21. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: two systems for higher-order
session communication. Electr. Notes Theor. Comput. Sci. 171(4), 73–93 (2007)

https://github.com/Distributed-Systems-Programming-Group/paper/blob/master/2016/forte16_long_dsp.pdf
https://github.com/Distributed-Systems-Programming-Group/paper/blob/master/2016/forte16_long_dsp.pdf
https://github.com/Distributed-Systems-Programming-Group/paper/blob/master/2016/forte16_long_dsp.pdf

Choreographies in Practice

Lúıs Cruz-Filipe(B) and Fabrizio Montesi

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

{lcf,fmontesi}@imada.sdu.dk

Abstract. Choreographic Programming is a development methodology
for concurrent software that guarantees correctness by construction. The
key to this paradigm is to disallow mismatched I/O operations in pro-
grams, and mechanically synthesise process implementations.

There is still a lack of practical illustrations of the applicability of
choreographies to computational problems with standard concurrent
solutions. In this work, we explore the potential of choreographic pro-
gramming by writing concurrent algorithms for sorting, solving linear
equations, and computing Fast Fourier Transforms. The lessons learned
from this experiment give directions for future improvements of the par-
adigm.

1 Introduction

Choreographic Programming is an emerging paradigm for developing concur-
rent software based on message passing [16]. Its key aspect is that programs
are choreographies – global descriptions of communications based on an “Alice
and Bob” security protocol notation. Since this notation disallows mismatched
I/O actions, choreographies always describe deadlock-free systems by construc-
tion. Given a choreography, a distributed implementation can be projected auto-
matically (synthesis) onto terms of a process model – a transformation called
EndPoint Projection (EPP) [2,3]. A correct definition of EPP yields a
correctness-by-construction result: since a choreography cannot describe dead-
locks, the generated process implementations are also deadlock-free. Previous
works presented formal models capturing different aspects of choreographic pro-
gramming, e.g., web services [2,12], asynchronous multiparty sessions [3], run-
time adaptation [9], modular development [18], protocol compliance [3,4], and
computational expressivity [7]. Choreography models have also been investigated
in the realms of type theory [14], automata theory [11], formal logics [5], and
service contracts [1].

Despite the rising interest in choreographic programming, there is still a
lack of evidence about what nontrivial programs can actually be written with
this paradigm. This is due to its young age [17]. Indeed, most works on lan-
guages for choreographic programming still focus on showcasing representative

Supported by CRC (Choreographies for Reliable and efficient Communication soft-
ware), grant DFF–4005-00304 from the Danish Council for Independent Research.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 114–123, 2016.
DOI: 10.1007/978-3-319-39570-8 8

Choreographies in Practice 115

toy examples (e.g., [2,3,6,12,16,18]), rather than giving a comprehensive prac-
tical evaluation based on standard computational problems.

In this work, we contribute to filling this gap. Our investigation uses the
language of Procedural Choreographies (PC) [8], summarised in Sect. 2, which
extends previous choreography models with primitives for parameterised pro-
cedures. Like other choreography languages (e.g., [3,18]), PC supports implicit
parallelism: non-interfering communications can take place in any order. We pro-
vide an empirical evaluation of the expressivity of PC, by using it to program
some representative and standard concurrent algorithms: Quicksort (Sect. 3),
Gaussian elimination (Sect. 4), and Fast Fourier Transform (Sect. 5). As a con-
sequence of using choreographies, all these implementations are guaranteed to
be deadlock-free. We also illustrate how implicit parallelism has the surpris-
ing effect of automatically giving concurrent behaviour to traditional sequential
implementations of these algorithms. Our exploration brings us to the limits
of the expressivity of PC, which arise when trying to tackle distributed graph
algorithms (Sect. 6), due to the lack of primitives for accessing the structure of
process networks, e.g., broadcasting a message to neighbouring processes.

2 Background

In this section, we recap the language and properties of Procedural Choreogra-
phies (PC). We refer the reader to [8] for a more comprehensive presentation.

Procedural Choreographies. The syntax of PC is given below:

C :: = η;C | I;C | 0 η :: = p.e -> q.f | p -> q[l] | p start q | p : q <-> r
D :: = X(q̃) = C,D | ∅ I :: = if p.e thenC1 elseC2 | X〈p̃〉 | 0
A procedural choreography is a pair 〈D, C〉, where C is a choreography and

D is a set of procedure definitions. Process names, ranged over by p, q, r, . . .,
identify processes that execute concurrently. Each process p is equipped with a
memory cell storing a single value of a fixed type. In the remainder, we omit
type information since they can always be inferred using the technique given
in [8]. Statements in a choreography can either be communication actions (η)
or compound instructions (I), and both can have continuations. Term 0 is the
terminated choreography, often omitted, and 0;A is used only at runtime.

Processes communicate (synchronously) via direct references (names) to each
other. In a value communication p.e -> q.f , process p evaluates expression e and
sends the result to q; e can contain the placeholder c, replaced at runtime with
the data stored at p. When q receives the value from p, it applies to it the
(total) function f and stores the result. The body of f can also contain c, which
is replaced by the contents of q’s memory. Expressions and functions are written
in a pure functional language, left unspecified.

In a selection p -> q[l], p communicates to q its choice of label l.
In term p start q, process p spawns the new process q, whose name is bound in

the continuation C of p start q;C. After executing p start q, p is the only process

116 L. Cruz-Filipe and F. Montesi

who knows the name of q. This knowledge is propagated to other processes by
the action p : q <-> r, read “p introduces q and r”, where p, q and r are distinct.

In a conditional term if p.e thenC1 elseC2, process p evaluates expression e
to choose between the possible continuations C1 and C2.

The set D defines global procedures that can be invoked in choreographies.
Term X(q̃) = C defines a procedure X with body C, which can be used anywhere
in 〈D, C〉 – in particular, inside the definitions of X and other procedures. The
names q̃ are bound to C, and are assumed to be exactly the free process names
in C. The set D contains at most one definition for each procedure name. Term
X〈p̃〉 invokes procedure X, instantiating its parameters with the processes p̃.

The semantics of PC, which we do not detail, is a reduction semantics that
relies on two extra elements: a total state function that assigns to each process the
value it stores, and a connection graph that keeps track of which processes know
(are connected to) each other [8]. In particular, processes can only communicate if
there is an edge between them in the connection graph. Therefore, choreographies
can deadlock because of errors in the programming of communications: if two
processes try to communicate but they are not connected, the choreography gets
stuck. This issue is addressed by a simple typing discipline, which guarantees that
well-typed PC choreographies are deadlock-free [8].

Procedural Processes. Choreographies in PC are compiled into terms of the
calculus of Procedural Processes (PP), which has the following syntax:

B :: = q!e;B | p?f ;B | q!!r;B | p?r;B | q ⊕ l;B | p&{li : Bi}i∈I ;B | 0
| start q � B2;B1 | if e thenB1 elseB2;B | X〈p̃〉;B | 0;B

N,M :: = p �v B | N |M | 0 B :: = X(q̃) = B,B | ∅

A term p �v B is a process, where p is its name, v is the value it stores, and
B is its behaviour. Networks, ranged over by N,M , are parallel compositions
of processes, where 0 is the inactive network. Finally, 〈B, N〉 is a procedural
network, where B defines the procedures that the processes in N may invoke.

We comment on behaviours. A send term q!e;B sends the evaluation of
expression e to process q, and then proceeds as B. Dually, term p?f ;B receives
a value from process p, combines it with the value in memory cell of the process
executing the behaviour as specified by f , and then proceeds as B. Term q!!r
sends process name r to q and process name q to r, making q and r “aware”
of each other. The dual action is p?r, which receives a process name from p
that replaces the bound variable r in the continuation. Term q ⊕ l;B sends the
selection of a label l to process q. Selections are received by the branching term
p&{li : Bi}i∈I (I nonempty), which receives a selection for a label li and proceeds
as Bi. Term start q � B2;B1 starts a new process (with a fresh name) executing
B2, proceeding in parallel as B1. Other terms (conditionals, procedure calls, and
termination) are standard; procedural definitions are stored globally as in PC.

Term start q � B2;B1 binds q in B1, and p?r;B binds r in B. We omit the
formal semantics of PP, which follows the intuitions given above.

Choreographies in Practice 117

EndPoint Projection (EPP). In [8] we show how every well-typed choreog-
raphy can be projected into a PP network by means of an EndPoint Projection
(EPP). EPP guarantees a strict operational correspondence: the projection of a
choreography implements exactly the behaviour of the originating choreography.
As a consequence, projections of typable PC terms never deadlock.

3 Quicksort

In this section, we illustrate PC’s capability of supporting divide-and-conquer
algorithms, by providing a detailed implementation of (concurrent) Quicksort.

We begin by defining procedure split, which splits the (non-empty) list
stored at p among three processes: q< , q= and q> . We assume that all processes
store objects of type List(T), where T is some type, endowed with the follow-
ing constant-time operations: get the first element (fst); get the second ele-
ment (snd); check that the length of a list is at most 1 (short); append an
element (add); and append another list (append). Also, fst<snd and fst>snd
test whether the first element of the list is, respectively, smaller or greater than
the second. Procedure pop2 (omitted) removes the second element from the list.

We write p -> q1,...,qn[l] as an abbreviation for the sequence of selec-
tions p -> q1[l]; ...; p -> qn[l]. We can now define split.
split(p, q< , q= , q>) =

if p.short then p -> q< , q= , q> [stop]; p.fst -> q= .add
else if p.fst <snd then p -> q< [get]; p.snd -> q< .add; p -> q= , q> [skip]

else if p.fst >snd then p -> q> [get]; p.snd -> q> .add; p -> q< , q= [skip]
else p -> q= [get]; p.snd -> q= .add; p -> q< , q> [skip]

; pop2 <p>; split <p, q< , q= , q> >

When split terminates, we know that all elements in q< and q> are respec-
tively smaller or greater than those in q= .1 Using split we can implement a
robust version of Quicksort (lists may contain duplicates), the procedure QS
below. We write p start q1,..., qn for p start q1;...; p start qn. Note
that split is only called when p stores a non-empty list.
QS(p) = if p.short then 0

else p.start q< , q= , q> ;
split <p, q< , q= , q> >; QS < q< >; QS < q> >;
q< .c -> p.id; q= .c -> p.append; q> .c -> p.append

Procedure QS implements Quicksort using its standard recursive structure.
Since the created processes q< , q= and q> do not have references to each other,
they cannot exchange messages, and thus the recursive calls run completely in
parallel. Applying EPP, we get the following process procedures (among others).
split_p(p, q< , q= , q>) =

if short then q<⊕stop; q=⊕stop; q>⊕stop; q= !fst
else if fst <snd then q<⊕get; q< !snd; q=⊕skip; q>⊕skip

else if fst >snd then q>⊕get; q> !snd; q<⊕skip; q=⊕skip
else q=⊕get; q= !snd; q<⊕skip; q>⊕skip

; pop2 <p>; split_p <p, q< , q= , q> >

split_ q< (p,q) = p&{stop: 0, get: p?add;split_ q< (p,q), skip: split_ q< (p,q)}

1 The selections of label skip are required for projectability, see [8].

118 L. Cruz-Filipe and F. Montesi

QS_p(p) = if small then 0
else (start q< � split_ q< <p, q< >; QS_p < q< >; p!c);

(start q= � split_ q= <p, q= >; p!c);
(start q> � split_ q> <p, q> >; QS_p < q> >; p!c);
q< ?id; q= ?append; q> ?append

4 Gauss Elimination

Let Ax = b be a system of linear equations in matrix form. We define a proce-
dure gauss that applies Gaussian elimination to transform it into an equivalent
system Ux = y, with U upper triangular (so this system can be solved by direct
substitution). We use parameter processes aij , with 1 ≤ i ≤ n and 1 ≤ j ≤ n+1.
For 1 ≤ i, j ≤ n, aij stores one value from the coefficient matrix; ai,n+1 stores
the independent term in one equation. (Including b in the coefficient matrix sim-
plifies the notation.) After execution, each aij stores the corresponding term in
the new system. We assume A to be non-singular and numerically stable.

This algorithm cannot be implemented in PC directly, as gauss takes a
variable number of parameters (the aij). However, it is easy to extend PC so
that procedures can also take process lists as parameters, as we describe.

Syntax of PC and PP. The arguments of parametric procedures are now lists
of process names, all with the same type. These lists can only be used in
procedure calls, where they can be manipulated by means of pure functions
that take a list as their only argument. Our examples use uppercase letters
to identify process lists and lowercase letters for normal process identifiers.

Semantics of PC. We assume that a procedure that is called with an empty
list as one of its arguments is equivalent to the terminated process 0.

Connections. Connections between processes are uniform wrt argument lists,
i.e., if p and A are arguments to some procedure X, then X requires/guarantees
that p be connected to none or all of the processes in A.

The definition of gauss uses: hd and tl (computing the head and tail of a list
of processes); fst and rest (taking a list of processes representing a matrix and
returning the first row of the matrix, or the matrix without its first row); and
minor (removing the first row and the first column from a matrix). Processes
use standard arithmetic operations to combine their value with values received.
gauss(A) = solve(fst(A)); eliminate(fst(A),rest(A)); gauss(minor(A))

solve(A) = divide_all(hd(A),tl(A)); set_to_1(hd(A))

divide_all(a,A) = divide(a,hd(A)); divide_all(a,tl(A))
divide(a,b) = a.c -> b.div

eliminate(A,B) = elim_row(A,fst(B)); eliminate(A,rest(B))
elim_row(A,B) = elim_all(tl(A),hd(B),tl(B)); set_to_0(hd(B))
elim_all(A,m,B) = elim1(hd(A),m,hd(B)); elim_all(tl(A),m,tl(B))
elim1(a,m,b) = b start x; b: x <-> a; b: x <-> m;

a.c -> x.id; m.c -> x.mult; x.c -> b.minus

set_to_0(a) = a start p; p.0 -> a.id
set_to_1(a) = a start p; p.1 -> a.id

Choreographies in Practice 119

Procedure solve divides the first equation by the pivot. Then, eliminate uses
this row to perform an elimination step, setting the first column of the coefficient
matrix to zeroes. The auxiliary procedure eli row performs this step at the row
level, using elim all to iterate through a single row and elim1 to perform the
actual computations. The first row and the first column of the matrix are then
removed in the recursive call, as they will not change further.

This implementation follows the standard sequential algorithm for Gaussian
elimination (Algorithm 8.4 in [13]). However, it runs concurrently due to the
implicit parallelism in the semantics of choreographies. We explain this behaviour
by focusing on a concrete example. Assume that A is a 3 × 3 matrix, so there
are 12 processes in total. For legibility, we will write b1 for the independent
term a14 etc.; A=〈a11,a12,a13,b1,a21,a22,a23,b2,a31,a32,a33,b3〉 for the
matrix; A1=〈a11,a12,a13,b1〉 for the first row (likewise for A2 and A3); and,
A’2=〈a22,a23,b2〉 and likewise for A’3. Calling gauss(A) unfolds to
solve(A1); elim_row(A1,A2); elim_row(A1,A3);
solve(A’2); elim_row(A’2,A’3);
solve(〈a33 ,b3 〉)

Fully expanding the sequence elim row(A1,A3); solve(A’2) yields
elim1(a12 ,a31 ,a32); elim1(a13 ,a31 ,a33); elim1(b1,a31 ,b3); set_to_0(a31);
a21.c->a22.div; a21.c->a23.div; a21.c->b2.div; a21 start x2; x2.1->a21.id

and the semantics of PC allows the communications in the second line to be
interleaved with those in the first line in any possible way; in the terminology
of [7], the calls to elim row(A1,A3) and solve(A’2) run in parallel.

This corresponds to implementing Gaussian elimination with pipelined com-
munication and computation as in Sect. 8.3 of [13]. Indeed, as soon as any row has
been reduced by all rows above it, it can apply solve to itself and try to begin
reducing the rows below. It is a bit surprising that we get such parallel behaviour
by straightforwardly implementing an imperative algorithm; the explanation is
that EPP encapsulates the part of determining which communications can take
place in parallel, removing this burden from the programmer.

5 Fast Fourier Transform

We now present a more complex example: computing the discrete Fourier trans-
form of a vector via the Fast Fourier Transform (FFT), as in Algorithm 13.1
of [13]. We assume that n is a power of 2. In the first call, ω = e2πi/n.

procedure R FFT(X,Y ,n,ω)
if n = 1 then y0 = x0

else R FFT(〈x0, x2, . . . , xn−2〉,〈q0, q1, . . . , qn/2〉,n/2,ω2)
R FFT(〈x1, x3, . . . , xn−1〉,〈t0, t1, . . . , tn/2〉,n/2,ω2)
for j = 0 to n − 1 do yj = q(j%n

2) + ωjt(j%n
2)

Implementing this procedure in PC requires two procedures gsel then(p,Q)
and gsel else(p,Q), where p broadcasts a selection of label then or

120 L. Cruz-Filipe and F. Montesi

else, respectively, to every process in Q.2 We also use auxiliary procedures
intro(n,m,P), where n introduces m to all processes in P, and power(n,m,nm),
where at the end nm stores the result of exponentiating the value in m to the power
of the value stored in n (see [7] for a possible implementation in a sublanguage
of PC).

The one major difference between our implementation of FFT and the algo-
rithm R FFT reported above is that we cannot create a variable number of fresh
processes and pass them as arguments to other procedures (the auxiliary vectors
q and t). Instead, we use y to store the result of the recursive calls, and create
two auxiliary processes inside each iteration of the final for loop.
fft(X,Y,n,w) = if n.is_one

then gsel_then(n,join(X,Y)); n -> w[then]; base(hd(X),hd(Y))
else gsel_else(n,join(X,Y)); n -> w[else];

n start n’; n.half -> n’; intro(n,n’,Y);
w start w’; w.square -> w’; intro(w,w’,Y);
n: n’ <-> w; w: n’ <-> w’;
fft(even(X),half1(Y),n’,w’);
fft(odd(X),half2(Y),n’,w’);
n’ start wn; n’: w <-> wn; power(n’,w,wn);
w start wj; w.1 -> wj; intro(w,wj,Y);
combine(half1(Y),half2(Y),wn,w,wi)

base(x,y) = x.c -> y

combine(Y1,Y2,wn,w,wj) = combine1(hd(Y1),hd(Y2),wn,wj); w.c -> wj.mult;
combine(tl(Y1),tl(Y2),wn,w,wj)

combine1(y1,y2,wn,wj) = y1 start q; y1.c -> q; y1: q <-> y2;
y2 start t; y2.c -> t; y2: t <-> y1; y2: t <-> wj;
q.c -> y1; wj.c -> t.mult; t.c -> y1.add;
q.c -> y2; wn.c -> t.mult; t.c -> y2.add

The level of parallelism in this implementation is suboptimal, as both recur-
sive calls to fft use n’ and w’. By duplicating these processes, these calls can
run in parallel as in the previous example. (We chose the current formulation for
simplicity.) Process n’ is actually the main orchestrator of the whole execution.

6 Graphs

Another prototypical application of distributed algorithms is graph problems. In
this section, we focus on a simple example (broadcasting a token to all nodes of
a graph) and discuss the limitations of implementing these algorithms in PC.

The idea of broadcasting a token in a graph is very simple: each node receiving
the token for the first time should communicate it to all its neighbours. The
catch is that, in PC, there are no primitives for accessing the connection graph
structure from within the language. Nevertheless, we can implement our simple
example of token broadcasting if we assume that the graph structure is statically
encoded in the set of available functions over parameters of procedures. To be
precise, assume that we have a function neighb(p,V), returning the neighbours
of p in the set of vertices V. (The actual graph is encapsulated in this function.)
We also use ++ and \ for appending two lists and computing the set difference of
2 For EPP to work, the merge operator in [8] has to be extended with these procedures.

Choreographies in Practice 121

two lists. We can then write a procedure broadcast(P,V), propagating a token
from every element of P to every element of V, as follows.
broadcast(P,V) = bcast(hd(P),neighb(hd(P),V));

broadcast(tl(P)++ neighb(hd(P),V),V\neighb(hd(P),V))

bcast(p,V) = bcast_one(p,hd(V)); bcast(p,tl(V))

bcast_one(p,v) = p.c -> v.id

Calling broadcast(〈p〉,G), where G is the full set of vertices of the graph and
p is one vertex, will broadcast p’s contents to all the vertices in the connected
component of G containing p. Implicit parallelism ensures that each node starts
broadcasting after it receives the token, independently of the remaining ones.

This approach is not very satisfactory as a graph algorithm, as it requires
encoding the whole graph in the definition of broadcast, and does not generalise
easily to more sophisticated graph algorithms. Adding primitives for accessing
the network structure at runtime would however heavily influence EPP and the
type system of PC [8]. We leave this as an interesting direction for future work,
which we plan to pursue in order to be able to implement more sophisticated
graph algorithms, e.g., for computing a minimum spanning tree.

7 Related Work and Conclusions

To the best of our knowledge, this is the first experience report on using choreo-
graphic programming for writing real-world, complex computational algorithms.

Related Work. The work nearest to ours is the evaluation of the Chor lan-
guage [16], which implements the choreographic programming model in [3]. Chor
supports multiparty sessions (as π-calculus channels [15]) and their mobility,
similar to introductions in PC. Chor is evaluated by encoding representative
examples from Service-Oriented Computing (e.g. distributed authentication and
streaming), but these do not cover interesting algorithms as in here.

Previous works based on Multiparty Session Types (MPST) [14] have
explored the use of choreographies as protocol specifications for the coordination
of message exchanges in some real-world scenarios [10,19,20]. Differently from
our approach, these works fall back to a standard process calculus model for
defining implementations. Instead, our programs are choreographies. As a con-
sequence, programming the composition of separate algorithms in PC is done
on the level of choreographies, whereas in MPST composition requires using the
low-level process calculus. Also, our choreography model is arguably much sim-
pler and more approachable by newcomers, since much of the expressive power of
PC comes from allowing parameterised procedures, a standard feature of most
programming languages. The key twist in PC is that parameters are process
names.

Conclusions. Our main conclusion is that choreographies make it easy to pro-
duce simple concurrent implementations of sequential algorithms, by carefully
choosing process identifiers and relying on EPP for maximising implicit paral-
lelism. This is distinct from how concurrent algorithms usually differ from their

122 L. Cruz-Filipe and F. Montesi

sequential counterparts. Although we do not necessarily get the most efficient
possible distributed algorithm, this automatic concurrency is pleasant to observe.

The second interesting realisation is that it is relatively easy to implement
nontrivial algorithms in choreographies. This is an important deviation from the
typical use of toy examples, of limited practical significance, that characterises
previous works in this programming paradigm.

References

1. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

2. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

3. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 263–274.
ACM, Italy (2013)

4. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 47–62. Springer, Heidelberg
(2014)

5. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. In: Aceto, L., de Frutos-Escrig, D. (eds.) CONCUR, vol. 42
of LIPIcs, pp. 412–426. Schloss Dagstuhl, Germany (2015)

6. Chor. Programming Language. http://www.chor-lang.org/
7. Cruz-Filipe, L., Montesi, F.: Choreographies, computationally, CoRR,

abs/1510.03271. (2015, submitted)
8. Cruz-Filipe, L., Montesi, F.: Choreographies, divided and conquered, CoRR,

abs/1602.03729. (2016, submitted)
9. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic

choreographies. In: Holvoet, T., Viroli, M. (eds.) Coordination Models and Lan-
guages. LNCS, vol. 9037, pp. 67–82. Springer, Heidelberg (2015)

10. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: Ball, T., Sagiv,
M. (eds.) POPL, pp. 435–446. ACM, USA (2011)

11. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol.
7211, pp. 194–213. Springer, Heidelberg (2012)

12. Gabbrielli, M., Giallorenzo, S., Montesi, F.: Applied choreographies. CoRR,
abs/1510.03637 (2015)

13. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing, 2nd edn. Pearson, Noida (2003)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL, pp. 273–284. ACM, New York (2008)

15. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I, II. Inf. Com-
put. 100(1), 41–77 (1992)

16. Montesi, F.: Choreographic Programming, Ph.D. thesis, IT University of Copen-
hagen (2013). http://fabriziomontesi.com/files/choreographic programming.pdf

17. Montesi, F.: Kickstarting choreographic programming, CoRR, abs/1502.02519
(2015)

http://www.chor-lang.org/
http://fabriziomontesi.com/files/choreographic_programming.pdf

Choreographies in Practice 123

18. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R.,
Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052,
pp. 425–439. Springer, Heidelberg (2013)

19. Ng, N., Yoshida, N.: Pabble: parameterised scribble. SOCA 9(3–4), 269–284 (2015)
20. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session

types. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010)

Specification-Based Synthesis of Distributed
Self-Stabilizing Protocols

Fathiyeh Faghih1, Borzoo Bonakdarpour1(B), Sébastien Tixeuil2,
and Sandeep Kulkarni3

1 McMaster University, Hamilton, Canada
{faghihef,borzoo}@mcmaster.ca

2 UPMC Sorbonne Universités, Paris, France
Sebastien.Tixeuil@lip6.fr

3 Michigan State University, East Lansing, USA
sandeep@cse.msu.edu

Abstract. In this paper, we introduce an SMT-based method that
automatically synthesizes a distributed self-stabilizing protocol from a
given high-level specification and the network topology. Unlike existing
approaches, where synthesis algorithms require the explicit description
of the set of legitimate states, our technique only needs the temporal
behavior of the protocol. We also extend our approach to synthesize
ideal-stabilizing protocols, where every state is legitimate. Our proposed
methods are implemented and we report successful synthesis of Dijkstra’s
token ring and a self-stabilizing version of Raymond’s mutual exclusion
algorithm, as well as ideal-stabilizing leader election and local mutual
exclusion.

1 Introduction

Self-stabilization [4] has emerged as one of the prime techniques for forward fault
recovery. A self-stabilizing protocol satisfies two requirements: (1) Convergence
ensures that starting from any arbitrary state, the system reaches a set of legit-
imate states (denoted in the sequel by LS) with no external intervention within
a finite number of execution steps, provided no new faults occur, and (2) closure
indicates that the system remains in LS thereafter.

As Dijkstra mentions in his belated proof of self-stabilization [5], designing
self-stabilizing systems is a complex task, but proving their correctness is even
more tedious. Thus, having access to automated methods (as opposed to manual
techniques such as [3]) for synthesizing correct self-stabilizing systems is highly
desirable. However, synthesizing self-stabilizing protocols incurs high time and
space complexity [12]. The techniques proposed in [1,2,6,13] attempt to cope
with this complexity using heuristic algorithms, but none of these algorithms
are complete; i.e., they may fail to find a solution although there exists one.

Recently, Faghih and Bonakdarpour [7] proposed a sound and complete
method to synthesize finite-state self-stabilizing systems based on SMT-solving.
However, the shortcoming of this work as well as the techniques in [2,6,13] is that
c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 124–141, 2016.
DOI: 10.1007/978-3-319-39570-8 9

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 125

an explicit description of LS is needed as an input to the synthesis algorithm.
The problem is that developing a formal predicate for legitimate states is not at
all a straightforward task. For instance, the predicate for the set of legitimate
states for Dijkstra’s token ring algorithm with three-state machines [4] for three
processes is the following:

LS = ((x0 + 1 ≡3 x1) ∧ (x1 + 1 �≡3 x2))
∨ ((x1 = x0) ∧ (x1 + 1 �≡3 x2))
∨ ((x1 + 1 ≡3 x0) ∧ (x1 + 1 �≡3 x2))
∨ ((x0 + 1 �≡3 x1) ∧ (x1 + 1 �≡3 x0) ∧ (x1 + 1 ≡3 x2))

where ≡3 denotes modulo 3 equality and variable xi belongs to process i. Obvi-
ously, developing such a predicate requires huge expertise and insight and is, in
fact, the key to the solution. Ideally, the designer should only express the basic
requirements of the protocols (i.e., the existence of a unique token and its fair
circulation), instead of an obscure predicate such as the one above.

In this paper, we propose an automated approach to synthesize self-stabilizing
systems given (1) the network topology, and (2) the high-level specification of
legitimate states in the linear temporal logic (LTL). We also investigate auto-
mated synthesis of ideal-stabilizing protocols [14]. These protocols address two
drawbacks of self-stabilizing protocols, namely exhibiting unpredictable behavior
during recovery and poor compositional properties. In order to keep the spec-
ification as implicit as possible, the input LTL formula may include a set of
uninterpreted predicates. In designing ideal-stabilizing systems, the transition
relation of the system and interpretation function of uninterpreted predicates
must be found such that the specification is satisfied in every state. Our synthe-
sis approach is SMT-based; i.e., we transform the input specification into a set
of SMT constraints. If the SMT instance is satisfiable, then a witness solution to
its satisfiability encodes a distributed protocol that meets the input specification
and topology. If the instance is not satisfiable, then we are guaranteed that no
protocol that satisfies the input specification exists.

We also conduct several case studies using the model finder Alloy [10]. In
the case of self-stabilizing systems, we successfully synthesize Dijkstra’s [4] token
ring and Raymond’s [16] mutual exclusion algorithms without explicit legitimate
states as input. We also synthesize ideal-stabilizing leader election and local
mutual exclusion (in a line topology) protocols.

Organization. In Sects. 2 and 3, we present the preliminary concepts on the
shared-memory model and self-stabilization. Section 4 formally states the syn-
thesis problems. In Sect. 5, we describe our SMT-based technique, while Sect. 6 is
dedicated to our case studies. We discuss the related work in Sect. 7, and finally,
we make concluding remarks and discuss future work in Sect. 8.

126 F. Faghih et al.

2 Model of Computation

2.1 Distributed Programs

Throughout the paper, let V be a finite set of discrete variables. Each variable
v ∈ V has a finite domain Dv. A state is a mapping from each variable v ∈ V to
a value in its domain Dv. We call the set of all possible states the state space.
A transition in the program state space is an ordered pair (s0, s1), where s0 and
s1 are two states. We denote the value of a variable v in state s by v(s).

Definition 1. A process π over a set V of variables is a tuple 〈Rπ,Wπ, Tπ〉,
where

– Rπ ⊆ V is the read-set of π; i.e., variables that π can read,
– Wπ ⊆ Rπ is the write-set of π; i.e., variables that π can write, and
– Tπ is the set of transitions of π, such that (s0, s1) ∈ Tπ implies that for each

variable v ∈ V , if v(s0) �= v(s1), then v ∈ Wπ.
�
Notice that Definition 1 requires that a process can only change the value of

a variable in its write-set (third condition), but not blindly (second condition).
We say that a process π = 〈Rπ,Wπ, Tπ〉 is enabled in state s0 if there exists a
state s1, such that (s0, s1) ∈ Tπ.

Definition 2. A distributed program is a tuple D = 〈ΠD, TD〉, where

– ΠD is a set of processes over a common set V of variables, such that:
• for any two distinct processes π1, π2 ∈ ΠD, we have Wπ1 ∩ Wπ2 = ∅
• for each process π ∈ ΠD and each transition (s0, s1) ∈ Tπ, the following

read restriction holds:

∀s′
0, s

′
1 : ((∀v ∈ Rπ : (v(s0) = v(s′

0) ∧ v(s1) = v(s′
1)))

∧ (∀v �∈ Rπ : v(s′
0) = v(s′

1))) =⇒ (s′
0, s

′
1) ∈ Tπ (1)

– TD is the set of transitions and is the union of transitions of all processes:
TD =

⋃
π∈ΠD Tπ.
�

Intuitively, the read restriction in Definition 2 imposes the constraint that for
each process π, each transition in Tπ depends only on reading the variables
that π can read. Thus, each transition is an equivalence class in TD, which
we call a group of transitions. The key consequence of read restrictions is that
during synthesis, if a transition is included (respectively, excluded) in TD, then its
corresponding group must also be included (respectively, excluded) in TD as well.
Also, notice that TD is defined in such a way that D resembles an asynchronous
distributed program, where process transitions execute in an interleaving fashion.

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 127

Example. We use the problem of distributed self-stabilizing mutual exclusion
as a running example to describe the concepts throughout the paper. Let V =
{c0, c1, c2} be the set of variables, where Dc0 = Dc1 = Dc2 = {0, 1, 2}. Let
D = 〈ΠD, TD〉 be a distributed program, where ΠD = {π0, π1, π2}. Each process
πi (0 ≤ i ≤ 2) can write variable ci. Also, Rπ0 = {c0, c1}, Rπ1 = {c0, c1, c2}, and
Rπ2 = {c1, c2}. Notice that following Definition 2 and read/write restrictions of
π0, (arbitrary) transitions

t1 = ([c0 = 1, c1 = 1, c2 = 0], [c0 = 2, c1 = 1, c2 = 0])
t2 = ([c0 = 1, c1 = 1, c2 = 2], [c0 = 2, c1 = 1, c2 = 2])

are in the same group, since π0 cannot read c2. This implies that if t1 is included
in the set of transitions of a distributed program, then so should be t2. Otherwise,
execution of t1 by π0 depends on the value of c2, which, of course, π0 cannot
read.

Definition 3. A computation of D = 〈ΠD, TD〉 is an infinite sequence of states
s = s0s1 · · · , such that: (1) for all i ≥ 0, we have (si, si+1) ∈ TD, and (2) if a
computation reaches a state si, from where there is no state s �= si, such that
(si, s) ∈ TD, then the computation stutters at si indefinitely. Such a computation
is called a terminating computation.
�

2.2 Predicates

Let D = 〈ΠD, TD〉 be a distributed program over a set V of variables. The global
state space of D is the set of all possible global states of D: ΣD =

∏
v∈V Dv.

The local state space of π ∈ ΠD is the set of all possible local states of π:
Σπ =

∏
v∈Rπ

Dv.

Definition 4. An interpreted global predicate of a distributed program D is a
subset of ΣD and an interpreted local predicate is a subset of Σπ, for some
π ∈ ΠD.
�
Definition 5. Let D = 〈ΠD, TD〉 be a distributed program. An uninterpreted
global predicate up is an uninterpreted Boolean function from ΣD. An uninter-
preted local predicate lp is an uninterpreted Boolean function from Σπ, for some
π ∈ ΠD.
�
The interpretation of an uninterpreted global predicate is a Boolean function
from the set of all states:

upI : ΣD �→ {true, false}
Similarly, the interpretation of an uninterpreted local predicate for the process
π is a Boolean function:

lpI : Σπ �→ {true, false}
Throughout the paper, we use ‘uninterpreted predicate’ to refer to either unin-
terpreted global or local predicate, and use global (local) predicate to refer to
interpreted global (local) predicate.

128 F. Faghih et al.

2.3 Topology

A topology specifies the communication model of a distributed program.

Definition 6. A topology is a tuple T = 〈V, |ΠT |, RT ,WT 〉, where

– V is a finite set of finite-domain discrete variables,
– |ΠT | ∈ N≥1 is the number of processes,
– RT is a mapping {0 . . . |ΠT | − 1} �→ 2V from a process index to its read-set,
– WT is a mapping {0 . . . |ΠT | − 1} �→ 2V from a process index to its write-set,

such that WT (i) ⊆ RT (i), for all i (0 ≤ i ≤ |ΠT | − 1).
�
Definition 7. A distributed program D = 〈ΠD, TD〉 has topology T =
〈V, |ΠT |, RT ,WT 〉 iff

– each process π ∈ ΠD is defined over V
– |ΠD| = |ΠT |
– there is a mapping g : {0 . . . |ΠT | − 1} �→ ΠD such that

∀i ∈ {0 . . . |ΠT | − 1} : (RT (i) = Rg(i)) ∧ (WT (i) = Wg(i)).
�

3 Formal Characterization of Self- and Ideal-Stabilization

We specify the behavior of a distributed self-stabilizing program based on
(1) the functional specification, and (2) the recovery specification. The func-
tional specification is intended to describe what the program is required to do
in a fault-free scenario (e.g., mutual exclusion or leader election). The recov-
ery behavior stipulates Dijkstra’s idea of self-stabilization in spite of distributed
control [4].

3.1 The Functional Behavior

We use LTL [15] to specify the functional behavior of a stabilizing program.
Since LTL is a commonly-known language, we refrain from presenting its syntax
and semantics and continue with our running example (where F , G , X , and
U denote the ‘finally’, ‘globally’, ‘next’, and ‘until’ operators, respectively). In
our framework, an LTL formula may include uninterpreted predicates. Thus, we
say that a program D satisfies an LTL formula ϕ from an initial state in the
set I, and write D, I |= ϕ iff there exists an interpretation function for each
uninterpreted predicate in ϕ, such that all computations of D, starting from a
state in I satisfy ϕ. Also, the semantics of the satisfaction relation is the standard
semantics of LTL over Kripke structures (i.e., computations of D that start from
a state in I).

Example 3.1. Consider the problem of token passing in a ring topology (i.e.,
token ring), where each process πi has a variable ci with the domain Dci

=
{0, 1, 2}. This problem has two functional requirements:

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 129

Safety. The safety requirement for this problem is that in each state, only one
process can execute. To formulate this requirement, we assume each process πi

is associated with a local uninterpreted predicate tk i, which shows whether
πi is enabled. Let LP = {tk i | 0 ≤ i < n}. A process πi can execute a
transition, if and only if tk i is true. The LTL formula, ϕTR, expresses the
above requirement for a ring of size n:

ϕTR = ∀i ∈ {0 · · · n − 1} : tk i ⇐⇒ (∀val ∈ {0, 1, 2} : (ci = val) ⇒ X (ci �= val))

Using the set of uninterpreted predicates, the safety requirement can be
expressed by the following LTL formula:

ψsafety = ∃i ∈ {0 · · · n − 1} : (tk i ∧ ∀j �= i : ¬tk j)

Note that although safety requirements generally need the G operator, we do
not need it, as every state in a stabilizing system can be an initial state.

Fairness. This requirement implies that for every process πi and starting from
each state, the computation should reach a state, where πi is enabled:

ψfairness = ∀i ∈ {0 · · · n − 1} : (F tk i)

Another way to guarantee this requirement is that processes get enabled in a
clockwise order in the ring, which can be formulated as follows:

ψfairness = ∀i ∈ {0 · · · n − 1} : (tk i ⇒ X tk (i+1 mod n))

Note that the latter approach is a stronger constraint, and would prevent us
to synthesize bidirectional protocols, such as Dijkstra’s three-state solution.

Thus, the functional requirements of the token ring protocol is

ψTR = ψsafety ∧ ψfairness

Observe that following Definition 3, ψTR ensures deadlock-freedom as well.

Example 3.2. Consider the problem of local mutual exclusion on a line topology,
where each process πi has a Boolean variable ci. The requirements of this problem
are as follows:
Safety. In each state, (i) at least one process is enabled (i.e., deadlock-freedom),

and (ii) no two neighbors are enabled (i.e., mutual exclusion). To formulate
this requirement, we associate with each process πi a local uninterpreted
predicate tk i, which is true when πi is enabled:

ϕLME = ∀i ∈ {0 · · · n − 1} : tk i ⇐⇒ ((ci ⇒ X¬ci) ∧ (¬ci ⇒ X ci))

Thus, LP = {tk i | 0 ≤ i < n} and the safety requirement can be formulated
by the following LTL formula:

ψsafety = (∃i ∈ {0 · · · n − 1} : tk i) ∧ (∀i ∈ {0 · · · n − 2} : ¬(tk i ∧ tk (i+1))).

Fairness. Each process is eventually enabled:

ψfairness = ∀i ∈ {0 · · · n − 1} : (F tk i)

Thus, the functional requirement of the local mutual exclusion protocol is

ψLME = ψsafety ∧ ψfairness.

130 F. Faghih et al.

3.2 Self-Stabilization

A self-stabilizing system [4] is one that always recovers a good behavior (typically,
expressed in terms of a set of legitimate states), starting from any arbitrary initial
state.

Definition 8. A distributed program D = 〈ΠD, TD〉 with the state space ΣD is
self-stabilizing for an LTL specification ψ iff there exists a global predicate LS
(called the set of legitimate states), such that:

– Functional behavior: D,LS |= ψ
– Strong convergence: D,ΣD |= FLS
– Closure: D,ΣD |= (LS ⇒ XLS).
�
Notice that the strong convergence property ensures that starting from any state,
any computation converges to a legitimate state of D within a finite number of
steps. The closure property ensures that execution of the program is closed in
the set of legitimate states.

3.3 Ideal-Stabilization

Self-stabilization does not predict program behavior during recovery, which may
be undesirable for some applications. A trivial way to integrate program behavior
during recovery is to include it in the specification itself, then the protocol must
ensure that every configuration in the specification is legitimate (so, the only
recovery behaviors are those included in the specification). Such a protocol is
ideal stabilizing [14].

Definition 9. Let ψ be an LTL specification and D = 〈ΠD, TD〉 be a distributed
program. We say that D is ideal stabilizing for ψ iff D,ΣD |= ψ.
�

The existence of ideal stabilizing protocols for “classical” specifications (that
only mandate legitimate states) is an intriguing question, as one has to find a
“clever” transition predicate and an interpretation function for every uninter-
preted predicate (if included in the specification), such that the system satisfies
the specification. Note that there is a specification for every system to which
it ideally stabilizes [14], and that is the specification that includes all of the
system computations. In this paper, we do the reverse; meaning that getting a
specification ψ, we synthesize a distributed system that ideally stabilizes to ψ.

4 Problem Statement

Our goal is to develop synthesis algorithms that take as input the (1) system
topology, and (2) two LTL formulas ϕ and ψ that involve a set LP of uninter-
preted predicates, and generate as output a self- or ideal-stabilizing protocol.
For instance, in token passing on a ring, ψTR includes safety and fairness, which
should hold in the set of legitimate states, while ϕTR is a general requirement

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 131

that we specify on every uninterpreted predicate tk i. Since in the case of self-
stabilizing systems, we do not get LS as a set of states (global predicate), we
refer to our problem as “synthesis of self-stabilizing systems with implicit LS”.

Problem statement 1 (self-stabilization). Given is

1. a topology T = 〈V, |ΠT |, RT ,WT 〉;
2. two LTL formulas ϕ and ψ that involve a set LP of uninterpreted predi-

cates.

The synthesis algorithm is required to identify as output (1) a distributed
program D = 〈ΠD, TD〉, (2) an interpretation function for every local predi-
cate lp ∈ LP , and (3) the global state predicate LS , such that D has topology
T , D,ΣD |= ϕ, and D is self-stabilizing for ψ.

Problem statement 2 (ideal-stabilization). Given is

1. a topology T = 〈V, |ΠT |, RT ,WT 〉
2. two LTL formulas ϕ and ψ that involve a set LP of uninterpreted predi-

cates.

The synthesis algorithm is required to generate as output (1) a distributed
program D = 〈ΠD, TD〉, and (2) an interpretation function for every local
predicate lp ∈ LP , such that D has topology T and D,ΣD |= (ϕ ∧ ψ).

5 SMT-based Synthesis Solution

Our technique is inspired by our SMT-based work in [7]. In particular, we trans-
form the problem input into an SMT instance. An SMT instance consists of two
parts: (1) a set of entity declarations (in terms of sets, relations, and functions),
and (2) first-order modulo-theory constraints on the entities. An SMT-solver
takes as input an SMT instance and determines whether or not the instance is
satisfiable. If so, then the witness generated by the SMT solver is the answer to
our synthesis problem. We describe the SMT entities obtained in our transforma-
tion in Subsect. 5.1. SMT constraints appear in Subsects. 5.2 and 5.3. Note that
using our approach in [7], we can synthesize different systems considering types
of timing models (i.e., synchronous and asynchronous), symmetric and asym-
metric, as well as strong- and weak-stabilizing protocols. In a weak-stabilizing
protocol there is only the possibility of recovery [9].

5.1 SMT Entities

Recall that the inputs to our problems include a topology T =
〈V, |ΠT |, RT ,WT 〉, and two LTL formulas on a set LP of uninterpreted predi-
cates. Let D = 〈ΠD, TD〉 denote a distributed program that is a solution to our
problem. In our SMT instance, we include:

132 F. Faghih et al.

– A set Dv for each v ∈ V , which contains the elements in the domain of v.
– A set Bool that contains the elements true and false.

– A set called S, whose cardinality is
∣
∣
∣
∣

∏

v∈V

Dv

∣
∣
∣
∣. This set represents the state

space of the synthesized distributed program.
– An uninterpreted function v val for each variable v; i.e., v val : S �→ Dv.
– An uninterpreted function lp val for each uninterpreted predicate lp ∈ LP ;

i.e., lp val : S �→ Bool .
– A relation Ti that represents the transition relation for process πi in the syn-

thesized program.
– An uninterpreted function γ, from each state to a natural number (γ : S �→

N). This function is used to capture convergence to the set of legitimate states.
– An uninterpreted function LS : S �→ Bool .

The last two entities are only included in the case of Problem Statement 1.

Example. For Example 3.1, we include the following SMT entities:

– Dc0 = Dc1 = Dc2 = {0, 1, 2}, Bool = {true, false}, set S, where |S| = 27
– c0 val : S �→ Dc0 , c1 val : S �→ Dc1 , c2 val : S �→ Dc2

– T0 ⊆ S × S, T1 ⊆ S × S, T2 ⊆ S × S, γ : S �→ N, LS : S �→ Bool .

5.2 General SMT Constraints

5.2.1 State Distinction
Any two states differ in the value of some variable:

∀s0, s1 ∈ S : (s0 �= s1) ⇒ (∃v ∈ V : v val(s0) �= v val(s1)). (2)

5.2.2 Local Predicates Constraints
Let LP be the set of uninterpreted predicates used in formulas ϕ and ψ. For
each uninterpreted local predicate lpπ, we need to ensure that its interpretation
function is a function of the variables in the read-set of π. To guarantee this
requirement, for each lpπ ∈ LP , we add the following constraint to the SMT
instance:

∀s, s′ ∈ S : (∀v ∈ Rπ : (v(s) = v(s′))) ⇒ (lpπ(s) = lpπ(s′)).

Example. For Example 3.1, we add the following constraint for process π1:

∀s, s′ ∈ S : (x0(s) = x0(s′)) ∧ (x1(s) = x1(s′)) ∧ (x2(s) = x2(s′)) ⇒
(tk1(s) = tk1(s′)). (3)

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 133

5.2.3 Constraints for an Asynchronous System
To synthesize an asynchronous distributed program, we add the following con-
straint for each transition relation Ti:

∀(s0, s1) ∈ Ti : ∀v /∈ WT (i) : v val(s0) = v val(s1) (4)

Constraint 4 ensures that in each relation Ti, only process πi can execute. By
introducing |ΠT | transition relations, we consider all possible interleaving of
processes executions.

5.2.4 Read Restrictions
To ensure that D meets the read restrictions given by T and Definition 2, we
add the following constraint for each process index:

∀(s0, s1) ∈ Ti : ∀s′
0, s

′
1 : ((∀v ∈ Rπ : (v(s0) = v(s′

0) ∧ v(s1) = v(s′
1))) ∧

(∀v �∈ Rπ : v(s′
0) = v(s′

1))) ⇒ (s′
0, s

′
1) ∈ Ti. (5)

5.3 Specific SMT Constraints for Self- and Ideal-Stabilizing
Problems

Before presenting the constraints specific to each of our problem statements,
we present the formulation of an LTL formula as an SMT constraint. We use
this formulation to encode the ψ and ϕ formulas (given as input) as ψSMT and
ϕSMT , and add them to the SMT instance.

5.3.1 SMT Formulation of an LTL Formula
SMT formulation of an LTL formula is presented in [8]. Below, we briefly dis-
cuss the formulation of LTL formulas without nested temporal operators. For
formulas with nested operators, the formulation based on universal co-Büchi
automata [8] needs to be applied.

SMT Formulation of X: A formula of the form XP is translated to an SMT
constraint as below1:

∀s, s′ ∈ S : ∀i ∈ {0, . . . , |ΠT | − 1} : (s, s′) ∈ Ti ⇒ P (s′). (6)

SMT Formulation of U: Inspired by bounded synthesis [8], for each formula of
the form P U Q, we define an uninterpreted function γi : S �→ N and add the
following constraints to the SMT instance:

∀s, s′ ∈ S : ∀i ∈ {0, . . . , |ΠT | − 1} : ¬Q(s) ∧ (s, s′) ∈ Ti ⇒
(P (s) ∧ γi(s′) > γi(s)) (7)

∀s ∈ S : ¬Q(s) ⇒ ∃i ∈ {0, . . . , |ΠT | − 1} : ∃s′ ∈ S : (s, s′) ∈ Ti (8)

1 Note that for a formula P , P (s) is acquired the by replacing each variable v with
v(s).

134 F. Faghih et al.

The intuition behind Constraints 7 and 8 can be understood easily. If we can
assign a natural number to each state, such that along each outgoing transition
from a state in ¬Q, the number is strictly increasing, then the path from each
state in ¬Q should finally reach Q or get stuck in a state, since the size of state
space is finite. Also, there cannot be any loops whose states are all in ¬Q, as
imposed by the annotation function. Finally, Constraint 8 ensures that there is
no deadlock state in ¬Q states.

5.3.2 Synthesis of Self-Stabilizing Systems
In this section, we present the constraints specific to Problem Statement 1.
Closure (CL): The formulation of the closure constraint in our SMT instance is
as follows:

∀s, s′ ∈ S : ∀i ∈ {0 · · · |ΠT | − 1} : (LS (s) ∧ (s, s′) ∈ Ti) ⇒ LS (s′). (9)

Strong Convergence (SC): Similar to the constraints presented in Sect. 5.3.1, our
SMT formulation for SC is an adaptation of the concept of bounded synthesis [8].
The two following constraints ensure strong self-stabilization in the resulting
model:

∀s, s′ ∈ S : ∀i ∈ {0 · · · |ΠT | − 1} : ¬LS (s) ∧ (s, s′) ∈ Ti ⇒ γ(s′) > γ(s) (10)
∀s ∈ S : ¬LS (s) ⇒ ∃i ∈ {0 · · · |ΠT | − 1} : ∃s′ ∈ S : (s, s′) ∈ Ti. (11)

General Constraints on Uninterpreted Predicates: As mentioned in Sect. 4, one
of the inputs to our problem is an LTL formulas, ϕ describing the role of unin-
terpreted predicates. Considering ϕSMT to be the SMT formulation of ϕ, we add
the following SMT constraint to the SMT instance:

∀s ∈ S : ϕSMT . (12)

Constraints on LS: Another input to our problem is the LTL formula, ψ that
includes requirements, which should hold in the set of legitimate states. We for-
mulate this formula as SMT constraints using the method discussed in Sect. 5.3.1.
Considering ψSMT to be the SMT formulation of the ψ formula, we add the fol-
lowing SMT constraint to the SMT instance:

∀s ∈ S : LS (s) ⇒ ψSMT . (13)

Example. Continuing with Example 3.1, we add the following constraints to
encode ϕTR:

∀s ∈ S : ∀i ∈ {0 · · · n − 1} : tk i(s) ⇐⇒ (∀j ∈ {0 · · · n − 1} : j �= i ⇒
�s′ ∈ S : (s, s′) ∈ Tj)

Note that the asynchronous constraint does not allow change of xi for Tj , where
j �= i. The other requirements of the token ring problem are ψsafety and ψfairness,

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 135

which should hold in the set of legitimate states. To guarantee them, the following
SMT constraints are added to the SMT instance:

∀s ∈ S : LS(s) ⇒ (∃i ∈ {0 · · · n − 1} : (tk i(s) ∧ ∀j �= i : ¬tk j(s)))

∀s ∈ S : LS(s) ⇒ ∀i ∈ {0 · · · n − 1} : (tk i(s) ∧ (s, s′) ∈ Ti) ⇒ tk (i+1 mod n)(s
′).

5.3.3 Synthesis of Ideal-Stabilizing Systems
We now present the constraints specific to Problem Statement 2. The only such
constraints is related to the two LTL formulas ϕ and ψ. To this end, we add the
following to our SMT instance:

∀s ∈ S : ϕSMT ∧ ψSMT . (14)

Example. We just present ψLME for Example 3.2, as ϕLME is similar to Exam-
ple 3.1:

∀s ∈ S : (∃i ∈ {0 · · · n − 1} : (tk i(s) ∧ ∀j �= i : ¬tk j(s)))

∀s, s′ ∈ S : ∀i, j ∈ {0, . . . , |ΠT | − 1} : ¬tk i(s) ∧ (s, s′) ∈ Tj =⇒ γi(s
′) > γi(s)

∀s ∈ S : ∀i ∈ {0, . . . , |ΠT | − 1} : ¬tk i(s) =⇒ ∃j ∈ {0, . . . , |ΠT | − 1} :
∃s′ ∈ S : (s, s′) ∈ Tj

Note that adding a set of constraints to an SMT instance is equivalent to adding
their conjunction.

6 Case Studies and Experimental Results

We used the Alloy [10] model finder tool for our experiments. Alloy performs the
relational reasoning over quantifiers, which means that we did not have to unroll
quantifiers over their domains. The results presented in this section are based
on experiments on a machine with Intel Core i5 2.6 GHz processor with 8GB of
RAM. We report our results in both cases of success and failure for finding a
solution. Failure is normally due to the impossibility of self- or ideal-stabilization
for certain problems.

6.1 Case Studies for Synthesis of Self-Stabilizing Systems

6.1.1 Self-stabilizing Token Ring
Synthesizing a self-stabilizing system for Example 3.1 leads to automatically
obtaining Dijkstra [4] three-state algorithm in a bi-directional ring. Each process
πi maintains a variable xi with domain {0, 1, 2}. The read-set of a process is
its own and its neighbors’ variables, and its write-set contains its own vari-
able. For example, in case of three processes for π1, RT (1) = {x0, x1, x2} and

136 F. Faghih et al.

WT (1) = {x1}. Token possession and mutual exclusion constraints follow Exam-
ple 3.1. Table 1 presents our results for different input settings. In the symmetric
cases, we synthesized protocols with symmetric middle (not top nor bottom)
processes. We present one of the solutions we found for the token ring problem
in ring of three processes2. First, we present the interpretation functions for the
uninterpreted local predicates.

tk0 ⇔ x0 = x2, tk1 ⇔ x1 �= x0, tk2 ⇔ x2 �= x1

Next, we present the synthesized transition relations for each process:

π0 : (x0 = x2) → x0 := (x0 + 1) mod 3
π1 : (x1 �= x0) → x1 := x0

π1 : (x2 �= x1) → x2 := x1

Note that our synthesized solution is similar to Dijkstra’s k-state solution.

Table 1. Results for synthesizing Dijkstra’s three-state token ring.

of processes Self-stabilization Timing model Symmetry Time (s)

3 Strong Asynchronous Asymmetric 4.21

3 Weak Asynchronous Asymmetric 1.91

4 Strong Asynchronous Asymmetric 71.19

4 Weak Asynchronous Asymmetric 73.55

4 Strong Asynchronous Symmetric 178.6

6.1.2 Mutual Exclusion in a Tree
In the second case study, the processes form a directed rooted tree, and the goal
is to design a self-stabilizing protocol, where at each state of LS , one and only
one process is enabled. In this topology, each process πj has a variable hj with
domain {i | πi is a neighbor of πj} ∪ {j}. If hj = j, then πj has the token.
Otherwise, hj contains the process id of one of the process’s neighbors. The
holder variable forms a directed path from any process in the tree to the process
currently holding the token. The problem specification is the following:

Safety. We assume each process πi is associated with an uninterpreted local
predicate tk i, which shows whether πi is enabled. Thus, mutual exclusion is
the following formula:

ψsafety = ∃i ∈ {0 · · · n − 1} : (tk i ∧ ∀j �= i : ¬tk j).

Fairness. Each process πi is eventually enabled:

ψfairness = ∀i ∈ {0 · · · n − 1} : (F tk i).

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 137

Table 2. Results for synthesizing mutual exclusion on a tree (Raymond’s algorithm).

of processes Self-stabilization Timing model Time (s)

3 Strong Synchronous 0.84

4 Strong Synchronous 16.07

4 Weak Synchronous 26.8

The formula, ψR given as input is ψR = ψsafety ∧ ψfairness

Using the above specification, we synthesized a synchronous self-stabilizing
systems, which resembles Raymond’s mutual exclusion algorithm on a tree [16].
Table 2 shows the experimental results. We present one of our solutions for token
circulation on a tree, where there is a root with two leaves. The interpretation
functions for the uninterpreted local predicates are as follows:

∀i : tk i ⇔ hi = i

Another part of the solution is the transition relation. Assume π0 to be the
root process, and π1 and π2 to be the two leaves of the tree. Hence, the variable
domains are Dh0 = {0, 1, 2}, Dh1 = {0, 1}, and Dh2 = {0, 2}. Figure 1 shows
the transition relation over states of the form (h0, h1, h2) as well as pictorial
representation of the tree and token, where the states in LS are shaded.

(1, 1, 2) (0, 0, 0) (2, 0, 2) (0, 1, 0)

(0, 1, 2)(1, 1, 0)

(2, 0, 0)

(2, 1, 0) (1, 0, 2) (0, 0, 2)

(2, 1, 2)

(1, 0, 0)

Fig. 1. Self-stabilizing mutual exclusion in a tree of size 3 (Raymond’s algorithm).

6.2 Case Studies for Synthesis of Ideal-Stabilizing Systems

6.2.1 Leader Election
In leader election, a set of processes choose a leader among themselves. Normally,
each process has a subset of states in which it is distinguished as the leader. In
2 We manually simplified the output of Alloy for presentation, although this task can
be also automated.

138 F. Faghih et al.

a legitimate state, exactly one process is in its leader state subset, whereas the
states of all other processes are outside the corresponding subset.

We consider line and tree topologies. Each process has a variable ci and
we consider domains of size two and three to study the existence of an ideal-
stabilizing leader election protocol. To synthesize such a protocol, we associate an
uninterpreted local predicate li for each process πi, whose value shows whether
or not the process is in its leader state. Based on the required specification, in
each state of the system, there is one and only one process πi, for which li = true:

ψsafety = ∃i ∈ {0 · · · n − 1} : (li ∧ ∀j �= i : ¬lj)

The results for this case study are presented in Table 3. In the topology column,
the structure of the processes along with the domain of variables is reported.
In the case of 4 processes on a line topology and tree/2-state, no solution is
found. The time we report in the table for these cases are the time needed to
report unsatisfiability by Alloy.

Table 3. Results for ideal stabilizing leader election.

of processes Timing model Topology Time (s)

3 Asynchronous line/2-state 0.034

4 Asynchronous line/2-state 0.73

4 Asynchronous line/3-state 115.21

4 Asynchronous tree/2-state 0.63

4 Asynchronous tree/3-state 12.39

We present the solution for the case of three processes on a line, where each
process πi has a Boolean variable ci. Since the only specification for this problem
is state-based (safety), there is no constraint on the transition relations, and
hence, we only present the interpretation function for each uninterpreted local
predicate li.

l0 = (c0 ∧ ¬c1) l1 = (¬c0 ∧ ¬c1) ∨ (c1 ∧ ¬c2) l2 = (c1 ∧ c2).

6.2.2 Local Mutual Exclusion
Our next case study is local mutual exclusion, as discussed in Example 3.2. We
consider a line topology in which each process πi has a Boolean variable ci. The
results for this case study are presented in Table 4.

The solution we present for the local mutual exclusion problem corresponds
to the case of four processes on a ring. Note that for each process πi, when tk i is
true, the transition Ti changes the value of ci. Hence, having the interpretation
functions of tk i, the definition of transitions Ti are determined as well. Below,

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 139

Table 4. Results for synthesizing ideal stabilizing local mutual exclusion.

of Processes Timing model Symmetry Time (s)

3 Asynchronous Asymmetric 0.75

4 Asynchronous Asymmetric 24.44

we present the interpretation functions of the uninterpreted local predicates tk i.

tk0 = (c0 ∧ c1) ∨ (¬c0 ∧ ¬c1)
tk1 = (¬c0 ∧ c1 ∧ c2) ∨ (c0 ∧ ¬c1 ∧ ¬c2)
tk2 = (¬c1 ∧ c2 ∧ ¬c3) ∨ (c1 ∧ ¬c2 ∧ c3)
tk3 = (c2 ∧ c3) ∨ (¬c2 ∧ ¬c3).

7 Related Work

Bounded Synthesis. In bounded synthesis [8], given is a set of LTL properties,
a system architecture, and a set of bounds on the size of process implementa-
tions and their composition. The goal is to synthesize an implementation for
each process, such that their composition satisfies the given specification. The
properties are translated to a universal co-Büchi automaton, and then a set of
SMT constraints are derived from the automaton. Our work is inspired by this
idea for finding the SMT constraints for strong convergence and also the speci-
fication of legitimate states. For other constraints, such as the ones for synthesis
of weak convergence, asynchronous and symmetric systems, we used a different
approach from bounded synthesis. The other difference is that the main idea
in bounded synthesis is to put a bound on the number of states in the result-
ing state-transition systems, and then increase the bound if a solution is not
found. In our work, since the purpose is to synthesize a self-stabilizing system,
the bound is the number of all possible states, derived from the given topology.

Synthesis of Self-Stabilizing Systems. In [12], the authors show that adding
strong convergence is NP-complete in the size of the state space, which itself
is exponential in the size of variables of the protocol. Ebnenasir and Farahat [6]
also proposed an automated method to synthesize self-stabilizing algorithms.
Our work is different in that the method in [6] is not complete for strong self-
stabilization. This means that if it cannot find a solution, it does not necessarily
imply that there does not exist one. However, in our method, if the SMT-solver
declares “unsatisfiability”, it means that no self-stabilizing algorithm that sat-
isfies the given input constraints exists. A complete synthesis technique for self-
stabilizing systems is introduced in [13]. The limitations of this work compared
to ours is: (1) Unlike the approach in [13], we do not need the explicit descrip-
tion of the set of legitimate states, and (2) The method in [13] needs the set of
actions on the underlying variables in the legitimate states. We also emphasize

140 F. Faghih et al.

that although our experimental results deal with small numbers of processes,
our approach can give key insights to designers of self-stabilizing protocols to
generalize the protocol for any number of processes [11].

Automated Addition of Fault-Tolerance. The proposed algorithm in [2] synthe-
sizes a fault-tolerant distributed algorithm from its fault-intolerant version. The
distinction of our work with this study is (1) we emphasize on self-stabilizing
systems, where any system state could be reachable due to the occurrence of any
possible fault, (2) the input to our problem is just a system topology, and not a
fault-intolerant system, and (3), the proposed algorithm in [2] is not complete.

8 Conclusion

In this paper, we proposed an automated SMT-based technique for synthesiz-
ing self- and ideal-stabilizing algorithms. In both cases, we assume that only
a high-level specification of the algorithm is given in the linear temporal logic
(LTL). In the particular case of self-stabilization, this means that the detailed
description of the set of legitimate states is not required. This relaxation is sig-
nificantly beneficial, as developing a detailed predicate for legitimate states can
be a tedious task. Our approach is sound and complete for finite-state systems;
i.e., it ensures correctness by construction and if it cannot find a solution, we
are guaranteed that there does not exist one. We demonstrated the effectiveness
of our approach by automatically synthesizing Dijkstra’s token ring, Raymond’s
mutual exclusion, and ideal-stabilizing leader election and local mutual exclusion
algorithms.

For future, we plan to work on synthesis of probabilistic self-stabilizing sys-
tems. Another challenging research direction is to devise synthesis methods
where the number of distributed processes is parameterized as well as cases
where the size of state space of processes is infinite. We note that parameterized
synthesis of distributed systems, when there is a cut-off point is studied in [11].
Our goal is to study parameterized synthesis for self-stabilizing systems, and
we plan to propose a general method that works not just for cases with cut-
off points. We would also like to investigate the application of techniques such
as counter-example guided inductive synthesis to improve the scalability of the
synthesis process.

Acknowledgments. This research was supported in part by Canada NSERC Discov-
ery Grant 418396-2012 and NSERC Strategic Grant 430575-2012.

References

1. Abujarad, F., Kulkarni, S.S.: Multicore constraint-based automated stabilization.
In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 47–61. Springer,
Heidelberg (2009)

Specification-Based Synthesis of Distributed Self-Stabilizing Protocols 141

2. Bonakdarpour, B., Kulkarni, S.S., Abujarad, F.: Symbolic synthesis of masking
fault-tolerant programs. Springer J. Distrib. Comput. 25(1), 83–108 (2012)

3. Demirbas, M., Arora, A.: Specification-based design of self-stabilization. IEEE
Trans. Parallel Distrib. Syst. 27(1), 263–270 (2016)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

5. Dijkstra, E.W.: A belated proof of self-stabilization. Distrib. Comput. 1(1), 5–6
(1986)

6. Ebnenasir, A., Farahat, A.: A lightweight method for automated design of conver-
gence. In: International Parallel and Distributed Processing Symposium (IPDPS),
pp. 219–230 (2011)

7. Faghih, F., Bonakdarpour, B.: SMT-based synthesis of distributed self-stabilizing
systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 10(3), 21 (2015)

8. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Trans-
fer (STTT) 15(5–6), 519–539 (2013)

9. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.)
WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

11. Jacobs, S., Bloem, R.: Parameterized synthesis. Logical Meth. Comput. Sci. 10(1),
1–29 (2014)

12. Klinkhamer, A., Ebnenasir, A.: On the complexity of adding convergence. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 17–33. Springer,
Heidelberg (2013)

13. Klinkhamer, A., Ebnenasir, A.: Synthesizing self-stabilization through superposi-
tion and backtracking. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756,
pp. 252–267. Springer, Heidelberg (2014)

14. Nesterenko, M., Tixeuil, S.: Ideal stabilisation. IJGUC 4(4), 219–230 (2013)
15. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of

Computer Science (FOCS), pp. 46–57 (1977)
16. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM

Trans. Comput. Syst. 7(1), 61–77 (1989)

Branching Bisimulation Games

David de Frutos Escrig1, Jeroen J.A. Keiren2,3, and Tim A.C. Willemse4(B)

1 Dpto. Sistemas Informáticos y Computación - Facultad CC. Matemáticas,
Universidad Complutense de Madrid, Madrid, Spain

defrutos@sip.ucm.es
2 Open University in the Netherlands, Heerlen, The Netherlands

Jeroen.Keiren@ou.nl
3 Radboud University, Nijmegen, The Netherlands

4 Eindhoven University of Technology, Eindhoven, The Netherlands
t.a.c.willemse@tue.nl

Abstract. Branching bisimilarity and branching bisimilarity with
explicit divergences are typically used in process algebras with silent
steps when relating implementations to specifications. When an imple-
mentation fails to conform to its specification, i.e., when both are not
related by branching bisimilarity [with explicit divergence], pinpointing
the root causes can be challenging. In this paper, we provide charac-
terisations of branching bisimilarity [with explicit divergence] as games
between Spoiler and Duplicator, offering an operational understand-
ing of both relations. Moreover, we show how such games can be used
to assist in diagnosing non-conformance between implementation and
specification.

1 Introduction

Abstraction is a powerful, fundamental concept in process theories. It facilitates
reasoning about the conformance between implementations and specifications of
a (software) system, described by a transition system. Essentially, it allows one to
ignore (i.e., abstract from) implementation details that are unimportant from the
viewpoint of the specification. While there is a wealth of behavioural equivalences
(and preorders), each treating abstraction in slightly different manners, there are
a few prototypical equivalences that have been incorporated in contemporary
tool sets that implement verification technology for (dis)proving the correctness
of software systems. These equivalences include branching bisimulation [19] and
branching bisimulation with explicit divergence [18], which are both used in tool
sets such as CADP [5], μCRL [2], and mCRL2 [4].

From a practical perspective, branching bisimulation and branching bisim-
ulation with explicit divergence have pleasant properties. For instance, both
relations are essentially compositional, permitting one to stepwise replace sub-
components in a specification with their implementations. Moreover, both types
of branching bisimulation can be computed efficiently in O(n · m), where n is
the number of states in a transition system and m is the number of transitions
[8]. A recently published algorithm improves this to O(m log n) [9].
c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 142–157, 2016.
DOI: 10.1007/978-3-319-39570-8 10

Branching Bisimulation Games 143

The key idea behind both kinds of branching bisimulation is that they
abstract from ‘internal’ events (events that are invisible to the outside observer of
a system) while, at the same time, they remain sensitive to the branching struc-
ture of the transition system. This means that these relations preserve both the
essential, externally visible, computations and the potential future computations
of all states. At the same time, this can make it difficult to explain why a partic-
ular pair of states is not branching bisimilar, as one must somehow capture the
loss of potential future computations in the presence of internal actions. While
(theoretical) tools such as distinguishing formulae can help to understand why
two states are distinguishable, these are not very accessible and, to date, the
idea of integrating such formulae in tool sets seems not to have caught on.

We address the above concern by providing game-based views on branching
bisimulation and branching bisimulation with explicit divergence. More specifi-
cally, we show that both branching bisimulation and branching bisimulation with
explicit divergence can be characterised by Ehrenfeucht-Fräıssé games [17]. This
provides an alternative point of view on the traditional coinductive definitions
of branching bisimulation and branching bisimulation with explicit divergence.
Moreover, we argue, using some examples, how such games can be used to give an
operational explanation of the inequivalence of states following the ideas in [15],
thereby remaining closer to the realm of transition systems.

Related Work. Providing explanations of the inequivalence of states for a given
equivalence relation has a long tradition, going back to at least Hennessy and Mil-
ner’s seminal 1980 work [10] on the use of modal logics for characterising behav-
ioural equivalences. Modal characterisations (and by extension, distinguishing
formulae) for branching bisimulation appeared first in [11] and for branching
bisimulation with explicit divergence in [18]. An alternative line of research has
led to game-based characterisations of behavioural equivalences. For instance,
in [16], Stirling provides a game-based definition of Milner and Park’s strong
bisimulation [13]. More recently, Yin et al. describe a branching bisimulation
game in the context of normed process algebra [20], but their game uses moves
that consist of sequences of silent steps, rather than single steps. As argued
convincingly by Namjoshi [12], local reasoning using single steps often leads to
simpler arguments. A game-based characterisation of divergence-blind stutter-
ing bisimulation (a relation for Kripke structures that in essence is the same as
branching bisimulation), provided by Bulychev et al. in [3] comes closer to our
work for branching bisimulation. However, their game-based definition is sound
only for transition systems that are essentially free of divergences, so that in order
to deal with transition systems containing divergences they need an additional
step that precomputes and eliminates these divergences. Such a preprocessing
step is a bit artificial, and makes it hard to present the user with proper diagnos-
tics. As far as we are aware, ours is the first work that tightly integrates dealing
with divergences in a game-based characterisation of a behavioural equivalence.

Structure of the Paper. Section 2 introduces the necessary preliminaries. In
Sect. 3, we present our game-based definitions of branching bisimulation and

144 D. de Frutos Escrig et al.

branching bisimulation with explicit divergence and prove these coincide with
their traditional, coinductive definitions. We illustrate their application in
Sect. 4, while Sect. 5 shows how our results can be easily extended to the case of
branching simulation. We conclude in Sect. 6.

2 Preliminaries

In this paper we are concerned with relations on labelled transition systems
that include both observable transitions, and internal transitions labelled by the
special action τ .

Definition 1. A Labelled Transition System (LTS) is a structure L = 〈S,A,→〉
where:

– S is a set of states,
– A is a set of actions containing a special action τ ,
– → ⊆ S × A × S is the transition relation.

As usual, we write s
a−→ t to stand for (s, a, t) ∈→. The reflexive-transitive closure

of the τ−→ relation is denoted by �. Given a relation R ⊆ S × S on states, we
simply write s R t to represent (s, t) ∈ R. We say that s is a divergent state if
there is an infinite sequence s

τ−→ s1
τ−→ s2 · · · .

Branching bisimulation was introduced by van Glabbeek and Weijland in [19].

Definition 2 ([19]). A symmetric relation R ⊆ S ×S is said to be a branching
bisimulation whenever for all s R t, if s

a−→ s′, then there exist states t′, t′′ such
that t � t′′, with s R t′′ and s′ R t′; and either t′′ a−→ t′, or both a = τ and
t′ = t′′. We write s �b t and say that s and t are branching bisimilar, iff there
is a branching bisimulation R such that s R t. Typically we simply write �b to
denote branching bisimilarity.

Van Glabbeek et al. investigated branching bisimulations with explicit diver-
gence in [18]. We here use one of their (many) equivalent characterisations:

Definition 3 ([18, Condition D2]). A symmetric relation R ⊆ S × S is called
a branching bisimulation with explicit divergence if and only if R is a branching
bisimulation and for all s R t, if there is an infinite sequence s

τ−→ s1
τ−→ s2 · · · ,

then there is a state t′ such that t
τ−→ t′ and for some k, sk R t′. We write s �ed

b t
iff there is a branching bisimulation with explicit divergence R such that s R t.

Both kinds of branching bisimulations are equivalence relations.

Theorem 1 ([1,18]). Both �b and �ed
b are equivalence relations. Moreover they

are the largest branching bisimulation and branching bisimulation with explicit
divergence, respectively.

Both branching bisimulation relations and branching bisimulation with
explicit divergence relations have the stuttering property [18, Corollary 4.4]. This
will be useful in several of the proofs in this paper.

Definition 4 ([18]). A relation R has the stuttering property if, whenever
t0

τ−→ t1 · · · τ−→ tk with s R t0 and s R tk, then s R ti, for all i ≤ k.

Branching Bisimulation Games 145

3 Branching Bisimulation Games

The games we consider in this section are instances of two-player infinite-
duration games with ω-regular winning conditions, played on game arenas that
can be represented by graphs. In these games each vertex is assigned to one of
two players, here called Spoiler and Duplicator. The players move a token
over the vertices as follows. The player that ‘owns’ the vertex where the token
is pushes it to an adjacent vertex, and this continues as long as possible, pos-
sibly forever. The winner of the play is decided from the resulting sequence of
vertices visited by the token, depending on the predetermined winning criterion.
We say that a player can win from a given vertex if she has a strategy such that
any play with the token initially at that vertex will be won by her. The games
that we consider here are memoryless and determined : every vertex is won by
(exactly) one player, and the winning player has a positional winning strategy,
so that she can decide her winning moves based only on the vertex where the
token currently resides, without inspecting the previous moves of the play. These
winning strategies can be efficiently computed while solving the game. We refer
to [7] for a more in-depth treatment of the underlying theory.

3.1 The Branching Bisimulation Games

We start by presenting our game-based characterisation of branching bisimilarity.
This will be extended to capture branching bisimulation with explicit divergence
in Sect. 3.2.

Definition 5. A branching bisimulation (bb) game on an LTS L is played
by players Spoiler and Duplicator on an arena of Spoiler-owned config-
urations [(s, t), c, r] and Duplicator-owned configurations 〈 (s, t), c, r 〉, where
((s, t), c, r) ∈ Position × Challenge × Reward. Here Position = S × S is the set
of positions, Challenge = (A × S) ∪ {†} is the set of pending challenges, and
Reward = {∗,�} the set of rewards. By convention, we write ((s, t), c, r) if we
do not care about the owner of the configuration.

– Spoiler moves from a configuration [(s0, s1), c, r] by:
1. selecting s0

a−→ s′
0 and moving to 〈 (s0, s1), (a, s′

0), ∗ 〉 if c = (a, s′
0) or

c = †, and to 〈 (s0, s1), (a, s′
0),� 〉, otherwise; or

2. picking some s1
a−→ s′

1 and moving to 〈 (s1, s0), (a, s′
1),� 〉.

– Duplicator responds from a configuration 〈 (s0, s1), c, r 〉 by:
1. not moving if c = (τ, s′

0) and propose configuration [(s′
0, s1), †,�], or,

2. if c = (a, s′
0), moving s1

a−→ s′
1 if available and continue in configuration

[(s′
0, s

′
1), †,�], or

3. if c
= †, moving s1
τ−→ s′

1 if possible and continue in configuration
[(s0, s′

1), c, ∗].

146 D. de Frutos Escrig et al.

Duplicator wins a finite play starting in a configuration ((s, t), c, r) if Spoiler
gets stuck, and she wins an infinite play if the play yields infinitely many �
rewards. All other plays are won by Spoiler. We say that a configuration is
won by a player when she has a strategy that wins all plays starting in it. Full
plays of the game start in a configuration [(s, t), †, ∗]; we say that Duplicator
wins the bb game for a position (s, t), if the configuration [(s, t), †, ∗] is won by
it; in this case, we write s ≡b t. Otherwise, we say that Spoiler wins that game.

Note that by definition both players strictly alternate their moves along plays.

Remark 1. Our branching bisimulation game definition resembles the
divergence-blind stuttering bisimulation (dbsb) game definition [3] of Bulychev
et al. Apart from the different computational models, there are two fundamen-
tal differences: we maintain Spoiler’s pending challenges and Duplicator’s
earned rewards, whereas the dbsb game does not, and our winning condition for
Duplicator requires an infinite number of � rewards on infinite plays, whereas
the dbsb game only requires Duplicator not to get stuck. However, both games
are equivalent when played on LTSs in which there are no divergences. Instead,
there are transition systems with divergent states that show that, unlike our bb
game, the rules of [3] fail to capture branching bisimulation, see Example 1.

Let us explain how our game works intuitively: by keeping track of pending
challenges and earned rewards, we can distinguish between Duplicator ‘facil-
itating’ progress (when choosing her first or second option) and Duplicator
procrastinating (when choosing her third option) when facing challenges pre-
sented by Spoiler. Procrastination is penalised by a ∗ reward, but progress
is rewarded by a � reward. On her account, Spoiler can either maintain a
previously presented challenge, or change it if the challenge is still not totally
solved by Duplicator. In the latter case, Spoiler is penalised by rewarding
Duplicator with a �. This notion of pending challenge will be essential when
extending the game so that it coincides with branching bisimulation with explicit
divergence, as we will do in the next section. Omitting the concepts of pending
challenges and earned rewards is what prevented extending the dbsb game to
properly deal with divergent transition systems, and to (divergence sensitive)
stuttering equivalence, in [3].

Before we prove that our bb game coincides with the classical co-inductive
definition of branching bisimulation, we illustrate our game definition and a few
of the subtleties we discussed above.

Example 1. Consider the LTS depicted in Fig. 1. Observe that s0 and t0 are
branching bisimilar. Suppose Spoiler tries (in vain) to disprove that s0 and
t0 are branching bisimilar and challenges Duplicator by playing s0

a−→ c1.
Duplicator may respond with an infinite sequence of τ -steps, moving between
t0 and t1, so long as Spoiler sticks to her challenge. In this way she would
win the play following the rules in [3], but such procrastinating behaviour of
Duplicator is not rewarded in our game. Instead, Duplicator has to even-
tually move to c1, matching the challenge, if she wants to win the play.

Branching Bisimulation Games 147

s0 c1c2

t0t1

ab

τ

aτb

Fig. 1. LTS illustrating some consequences and subtleties of using challenges.

Now suppose Spoiler tries to disprove (again in vain) that s0 and t0 are
branching bisimilar, and challenges Duplicator by playing t0

τ−→ t1. The only
response for Duplicator is not to move at all, which completes the pending
challenge, turning it into †, thus generating the new configuration [(s0, t1), †,�].
Spoiler may then challenge Duplicator by playing t1

τ−→ t0, and Duplicator
can again respond by not moving. The infinite play that is produced is winning
for Duplicator, even if an infinite sequence of τ -steps proving the divergence of
t0 has been matched by Duplicator by staying totally idle, since Duplicator
got infinitely many �s. Of course, things will be different when divergences will
be taken into account in Sect. 3.2, since t0 is divergent, whereas s0 is not.

Before proving our first main theorem stating that two states are branching
bisimilar just whenever Duplicator wins the associated game, we present two
auxiliary results relating the winning configurations for this player.

Proposition 1. Configurations [(s, t), c, ∗] and [(s, t), c,�] are both won by the
same player. Likewise, configurations 〈 (s, t), c, ∗ 〉 and 〈 (s, t), c,� 〉 are both won
by the same player.

Proof. This follows immediately from the Büchi winning condition: any player
that wins some suffix of an infinite play also wins the infinite play itself. Fur-
thermore, note that neither Spoiler nor Duplicator can get stuck playing a
game by changing a reward from ∗ to � or vice versa. �
Definition 6. We say that a configuration ((s, t), c, r) is consistent when either
c = †, or c = (a, s′) for some a, s′ such that s

a−→ s′ in the given LTS.

Proposition 2. If Duplicator wins a consistent configuration [(s, t), c, r],
then Duplicator wins all consistent configurations [(s, t), c′, r′].

Proof. Let [(s, t), c, r] be a Spoiler-owned consistent configuration that is won
by Duplicator. Towards a contradiction, assume Spoiler wins some consistent
configuration [(s, t), c′, r′]. Suppose Spoiler’s winning strategy involves playing
to configuration 〈 (s, t), c′′, r′′ 〉. Then from [(s, t), c, r], Spoiler can force play
to configuration 〈 (s, t), c′′, ∗ 〉 or 〈 (s, t), c′′,� 〉: if c = †, then she can simply
choose challenge c′′ while, if c = (a, s′), she can change her challenge to c′′.
But this leads to a contradiction: by Proposition 1, both configurations are won
by Spoiler, once 〈 (s, t), c′′, r′′ 〉 is won by Spoiler. So Duplicator wins any
Spoiler-owned consistent configuration [(s, t), c′, r′]. �

148 D. de Frutos Escrig et al.

We next prove that the bb game captures branching bisimilarity. We split
the proof obligations and prove both implications separately. First, we show that
branching bisimilar states induce positions that are won by Duplicator in the
bb game.

Lemma 1. If s �b t then s ≡b t.

Proof. We have to design a winning strategy for Duplicator for the game
that starts in [(s, t), †, ∗]. We will call the consistent configurations ((s′, t′), c, r)
corresponding to a position (s′, t′), with s′ �b t′, good configurations (for player
Duplicator). Let us first see that whenever Spoiler makes a move from a
good configuration [(s′, t′), c′, r′], then Duplicator can reply with a move to
another good configuration. We distinguish cases according to the move selected
by Spoiler.

Assume Spoiler plays according to her first option and chooses a transition
s′ a−→ s′′. We distinguish cases depending on the nature of the executed action:

1. if a = τ and s′′ �b t′, then Duplicator can play choosing her first option
getting the configuration [(s′′, t′), †,�], which clearly is good for her.

2. if a
= τ or s′′
�b t′, then there exist states t′k, t′′ such that t′ � t′k, s′ �b t′k,
s′′ �b t′′ and t′k

a−→ t′′. Next we consider the length of the sequence of tran-
sitions that generates t′ � t′k. If this length is zero, then Duplicator can
directly use her second option selecting the transition t′ a−→ t′′ that gener-
ates [(s′′, t′′), †,�], which is clearly good for her. If instead the sequence is
not empty, then she can select the first transition t′ τ−→ t′1 of this sequence,
and applying the stuttering property we have s′ �b t′1. Therefore, when
Duplicator moves according to her third option, this produces configu-
ration [(s′, t′1), (a, s′′), ∗], which is also good.

If Spoiler plays her second option, then the strategy Duplicator uses is the
same that she would have used if Spoiler had played her first option from
configuration [(t′, s′), c′, r′].

When playing in this way, Duplicator will never get stuck, so that next it
suffices to argue that she can select her moves as above in such a way that the
generated play will contain an infinite number of � rewards. It is clear that the
contrary could only happen if (1) Spoiler sticks to some fixed challenge (a, s′′)
forever, as changing challenges is penalised with a �; and (2) Duplicator
replies generating a divergent sequence, i.e. choosing her third option, never
earning a �. But Duplicator can simply avoid generating such a sequence if the
first time that the challenge is presented to her she selects any sequence t′ � t′k
as stated above, and then she plays by executing one by one the transitions in
it, finally concluding by executing t′k

a−→ t′′, that will produce a new �, thus
generating the desired play with infinitely many � challenges. �
Lemma 2. The relation ≡b is a branching bisimulation.

Proof. First, observe that ≡b is obviously symmetric, since starting from config-
uration [(s, t), †, ∗], Spoiler can propose exactly the same challenges as when

Branching Bisimulation Games 149

starting from [(t, s), †, ∗], and the infinite suffixes of the resulting plays will
therefore be identical, leading to the same winners.

Pick arbitrary s, t such that s ≡b t and assume s
a−→ s′. Let us see that ≡b

meets the transfer condition. Since Duplicator has a winning strategy from
[(s, t), †, ∗], she has a winning move when Spoiler proposes the move s

a−→ s′

and configuration 〈 (s, t), (a, s′), ∗ 〉. We distinguish cases based on Duplicator’s
response in this winning strategy:

– Duplicator replies according to her first option, by not making a move,
producing the configuration [(s′, t), †,�]. Then we have s′ ≡b t, and the
transfer condition can be satisfied by choosing t′′ = t′ = t.

– Duplicator replies following her second option, thus selecting t
a−→ t′ to

continue from the configuration [(s′, t′), †,�]. This means that s′ ≡b t′, so
that the transfer condition is satisfied by taking t′′ = t, since obviously s ≡b t′′

and s′ ≡b t′.
– Duplicator replies following her third option, thus selecting t

τ−→ t′1 to
continue from configuration [(s, t′1), (a, s′), ∗]. This configuration is again won
by Duplicator, and then applying Proposition 2 we also have s ≡b t′1. Now,
Spoiler could maintain the challenge (a, s′), and then the procedure can
be repeated with Duplicator responding with her third move, until she
can eventually play the second move, in order to get the reward that she
eventually must be able to get, since she is playing a winning strategy. This
final move by Duplicator will correspond to a transition t′k

a−→ t′, and will
produce the configuration [(s′, t′), †,�]. Moreover, we had s ≡b t′k, so that
taking t′′ = t′k the transfer condition is again satisfied.

So R is a branching bisimulation relation. �
From the above lemmata, the following theorem follows immediately.

Theorem 2. We have �b =≡b.

3.2 The Branching Bisimulation with Explicit Divergence Games

The results in the previous section demonstrate that maintaining pending chal-
lenges and earned rewards in the game play, and properly dealing with these in
the winning condition, leads to an equivalence relation on states that coincides
with branching bisimulation. It does not yet give rise to an equivalence that is
sensitive to divergences. In fact, in Example 1 we already saw a pair of states
s0 and t0 for which we have s0 �b t0, and therefore s0 ≡b t0, while instead
s0
�ed

b t0.
As we argued in the previous section, by including challenges and rewards,

our winning condition is able to reject plays in which Duplicator procrastinates
forever. This addresses a part of the divergence problem: Duplicator cannot
try to ‘prove’ two states equivalent modulo branching bisimulation simply by
diverging when Spoiler does not ask for a divergence. However, Duplicator
is still capable of matching a challenge of Spoiler that consists of a divergence

150 D. de Frutos Escrig et al.

by not diverging. Capturing explicit divergences can therefore only be achieved
by clearly indicating when Duplicator replied to an internal move with another
one, instead of just remaining idle. In the game definition we present below, we
essentially do so by rewarding Duplicator in a new way only whenever she just
properly responded with a matching move. Note that the changes required are
subtle: assigning rewards differently would probably lead to different relations.

Definition 7. A branching bisimulation with explicit divergence (bbed) game
on an LTS L is played by players Spoiler and Duplicator on an arena of
Spoiler-owned configurations [(s, t), c, r] and Duplicator-owned configura-
tions 〈 (s, t), c, r 〉, where ((s, t), c, r) ∈ Position × Challenge × Reward. Here
Position = S × S is the set of positions, Challenge = (A × S) ∪ {†} is the
set of pending challenges, and Reward = {∗,�} the set of rewards. We again
use the convention to write ((s, t), c, r) if we do not care about the owner of the
configuration.

– Spoiler moves from a configuration [(s0, s1), c, r] by:
1. selecting s0

a−→ s′
0 and moving to 〈 (s0, s1), (a, s′

0), ∗ 〉 if c = (a, s′
0) or

c = †, and 〈 (s0, s1), (a, s′
0),� 〉 otherwise; or

2. picking some s1
a−→ s′

1 and moving to 〈 (s1, s0), (a, s′
1),� 〉.

– Duplicator responds from a configuration 〈 (s0, s1), c, r 〉 by:
1. not moving if c = (τ, s′

0) and propose configuration [(s′
0, s1), †, ∗], or,

2. if c = (a, s′
0), moving s1

a−→ s′
1 if available and continue in configuration

[(s′
0, s

′
1), †,�], or

3. if c
= †, moving s1
τ−→ s′

1 if possible and continue in configuration
[(s0, s′

1), c, ∗].

Duplicator wins a finite play starting in a configuration ((s, t), c, r) if Spoiler
gets stuck, and she wins an infinite play if the play yields infinitely many �
rewards. All other plays are won by Spoiler. We say that a configuration is
won by a player when she has a strategy that wins all plays starting in it. Full
plays of the game start in a configuration [(s, t), †, ∗]; we say that Duplicator
wins the bbed game for a position (s, t), if the configuration [(s, t), †, ∗] is won
by it; in this case, we write s ≡ed

b t. Otherwise, we say that Spoiler wins that
game.

In order to understand how the new game works, note first that it is a (quite
subtle!) refinement of the bb game. To be exact, only the first option in the
description of Duplicator’s moves is changed, simply turning the previously
obtain reward � into ∗, thus reducing the set of plays that are won by this
player. As a consequence, any play Duplicator wins in the bbed game is also
won by her in the bb game. Moreover, the original bb game can be recovered
from the bbed game by weakening the winning condition of the latter as follows:
an infinite play is won by Duplicator if the play yields infinitely many �
rewards or † challenges.

In contrast to the bb game, Duplicator now only earns a � reward when
she fully satisfies a pending challenge (choosing her second option): she is now

Branching Bisimulation Games 151

punished for choosing to not move (i.e. whenever she chooses her first option).
As a result, whenever Duplicator is confronted with an infinite sequence of
τ -challenges produced by Spoiler, effectively creating a divergent computation,
Duplicator can no longer win such a play by choosing to stay put. Instead,
Duplicator will need to collect a � mark from time to time, so that in the
end she will be able to exhibit an infinite number of such marks.

Example 2. Reconsider the LTS in Fig. 1. In Example 1, we argued that Spoiler
was not able to win the bb game starting in position (s0, t0). Now reconsider
Spoiler’s strategy to challenge Duplicator, by playing t0

τ−→ t1 in the bbed
game. As before, Duplicator’s only option is not to move. However, by not
moving, Duplicator discharges Spoiler’s (local) challenge, but she does not
earn any � reward. Clearly, Spoiler can then challenge Duplicator by playing
t1

τ−→ t0 in the bbed game, thereby forcing Duplicator to engage in an infinite
play in which she earns no � reward, thus losing the game.

The above example suggests that, indeed, the reconsideration of challenges and
rewards leads to a game in which Spoiler can explicitly check divergences.
We next prove that the relation induced by the bbed game exactly captures
branching bisimilarity with explicit divergence. We split the proof obligations
into three separate lemmata.

Lemma 3. If s �ed
b t then s ≡ed

b t.

Proof. We again need to design the winning strategy for Duplicator for the
bbed game that starts in [(s, t), †, ∗]. Since s �ed

b t implies s �b t, she could
use the strategy defined in the proof of Lemma 1 to win the corresponding bb
game. However, if we do not change anything in this strategy, it could be the
case that Spoiler now wins the bbed game, since the strategy does not take
divergences into account. Let us see which changes are needed to guarantee that
Duplicator will also win the bbed game.

First, note that all the positions along any play consistent with that win-
ning strategy for Duplicator contain two �b equivalent states, as we proved
in Lemma 2. Second, observe that we start from a configuration [(s, t), †, ∗]
containing two �ed

b equivalent states, and in order to be able to repeat our argu-
ments after any move of Duplicator, we need to preserve that relation, and
not just �b, as in the proof of Lemma 1.

Concerning this new requirement, note that Duplicator’s winning strategy
designed to prove that lemma was based on �b, but it is easy to see that now
we can base it on �ed

b , so that the new winning strategy will preserve �b along
the plays of that game that are consistent with that strategy.

If we apply this strategy to the bbed game, the only case in which player
Duplicator loses the game is that in which she is generating infinitely many †
challenges, but only finitely many � rewards. In particular, there would be some
suffix of a play in which Duplicator generates infinitely many † challenges, and
earns no � reward. Next we consider that suffix as a full play and make a few
observations about the moves played by both players along it:

152 D. de Frutos Escrig et al.

– Spoiler never plays her second move;
– Duplicator never plays her second move;
– Duplicator never plays her third move,

since in the first two cases, Duplicator would immediately earn a � reward,
while in the third case, Duplicator will, by definition of the strategy used in
the proof of Lemma 1, eventually earn a � reward after a finite sequence of
τ -moves.

Since Duplicator is always playing her first move, all challenges involved
in the infinite suffix concern τ actions; moreover, all rewards on this suffix are ∗
rewards. Now observe that this infinite sequence of τ successors of s0 consists of
states that are all �ed

b -related to the state t0 Duplicator chooses to stay put
in. But then, by definition of �ed

b , there must be some transition t0
τ−→ t′ such

that for some k, sk �ed
b t′, and then Duplicator can reply playing t0

τ−→ t1,
instead of choosing her first option, thus collecting the needed � reward, and
the play will continue from [(sk, t′), †,�].

Then, we will change the choice selected by Duplicator whenever the sit-
uation above appears, and in this way we get a revised strategy that will allow
her to win the bbed game that starts in [(s, t), †, ∗], thus proving s ≡ed

b t. �
Lemma 4. The relation ≡ed

b is a branching bisimulation.

Proof. As stated above, the bbed game is a refinement of the bb game: any
configuration that is won in the bbed game is also won in the bb game. Hence,
we can repeat the reasoning in the proof of Lemma 2 substituting the � reward
by a ∗ reward whenever Duplicator resorts to choosing her first option, to
obtain the proof that ≡ed

b is a branching bisimulation. �
The lemma below confirms that the relation induced by a bbed game is

indeed sensitive to divergences.

Lemma 5. Let s ≡ed
b t, and assume that we have a divergent sequence s = s0

τ−→
s1

τ−→ s2
τ−→ · · · . Then t

τ−→ t′ for some t′ such that for some k, sk ≡ed
b t′.

Proof. Let us suppose that for all t
τ−→ t′, and for all k, we have sk
≡ed

b t′.
Consider Spoiler’s strategy that starts the game from [(s0, t), †, ∗] by making
the move s0

τ−→ s1. Then Duplicator cannot reply moving to a τ -successor of t,
so that she has to play choosing her first option, which produces the configuration
[(si, t), †, ∗]. Next Spoiler will play each of the moves si

τ−→ si+1 in a row, and
in all the cases Duplicator needs to stay idle, producing the configurations
[(si, t), †, ∗], that generate an infinite play without � rewards. Hence, Spoiler’s
strategy is winning for this bbed game, which contradicts the assumption that
s ≡ed

b t. �
Theorem 3. We have �ed

b =≡ed
b .

Proof. The inclusion �ed
b ⊆≡ed

b follows from Lemma 3. For the reverse, observe
that ≡ed

b is a branching bisimulation with explicit divergence relation, since by
Lemma 4 it is a branching bisimulation, that also fulfils the added obligation
concerning divergences, as proved by Lemma 5. �

Branching Bisimulation Games 153

4 Some Small Applications

4.1 A Simple Application

The game-based definitions of branching bisimulation and branching bisimula-
tion with explicit divergence provide an alternative, more dynamic view, on the
standard coinductive definitions of these relations. A major benefit of any game-
based characterisation of an equivalence relation is that it lends itself to explain,
in a natural way, why two states in an LTS are not equivalent, when that is the
case. Such an explanation is drawn directly from Spoiler’s winning strategy
in the branching bisimulation game. We illustrate this by showing how one can
prove that an abstraction of a communication protocol over unreliable channels
differs from a simple one-place buffer.

Example 3. Consider two LTSs below. The leftmost LTS models the abstraction
of an implementation of a simple communication protocol for exchanging two
types of messages (d1 and d2), using a system of acknowledgements to cater for
the unreliability introduced by a lossy/corrupting channel between sending and
receiving parties. The LTS depicted below on the right models a simple specifi-
cation of a one-place buffer for exchanging these two types of messages.

01

2 3

4

5

r(d1)
τ

τ

s(d1)

τ

τ

r(d2)
τ

τ

s(d2)

AB C

r(d1)

s(d1)

r(d2)

s(d2)

These LTSs are not branching bisimilar with explicit divergence. Since both
are branching bisimilar, the difference between them must be in the lack of
divergence in the specification. This is captured by Spoiler’s winning strategy
when playing the bbed game starting on [(A, 0), †, ∗], Spoiler can play against
the designer of the implementation in a way similar to that in [15], allowing
the designer to better understand the mistake. Such a play could proceed as is
shown below:

Spoiler moves A --r(d1)--> B

You respond with 0 --r(d1)--> 1

Spoiler switches positions and moves 1 --tau--> 1

You respond by not moving

...

Spoiler moves 1 --tau--> t

You respond by not moving

You explored all options. You lose.

Likewise, one can check that states B and 2 are not branching bisimilar with
explicit divergence.

An alternative to illustrating the inequivalence between two states is through
the use of a distinguishing formula. However, in many cases the nature of these

154 D. de Frutos Escrig et al.

formulae is rather ‘descriptive’ and requires a thorough understanding of modal
logics, in order to understand its meaning. Instead, the game-based approach
stays closer to the operational nature of LTSs. Moreover, the distinguishing
formulae can become rather unwieldy, easily spanning several lines for states
that are inequivalent for non-trivial reasons. The complexity of this approach is
already illustrated by the following example, taken from [11].

01

2 3

4
a b

τ
a

AB

C

D
τ

a

b

Our game-based approach to distinguishing states 0 and A (in this case
also under plain branching bisimulation equivalence) would start by Spoiler

challenging by moving 0 a−→ 1, to which Duplicator can only respond by moving
A

τ−→ B. Now, continuing from [(0, B), (a, 1), ∗] Spoiler plays her second option
and challenges Duplicator to mimic move 0 b−→ 4, something that Duplicator
cannot match.

The distinguishing formula given in [11] is ¬((tt〈b〉tt)〈a〉tt), which holds at
state A, but not at state 0. It explains that states 0 and A are inequivalent
because state 0 may “engage in an a-step, while in all intermediate states (state
0 in this case) a b-step is available” [11], whereas this is not true of state A.

4.2 A More Elaborate Application

We illustrate how one can prove/argue interactively that the Alternating Bit
Protocol with two messages differs (modulo branching bisimulation with explicit
divergence) from a simple one-place buffer.

Example 4. Reconsider the one-place buffer for exchanging two different types of
messages (d1 and d2), as specified in Example 3. Suppose one tries to implement
this one-place buffer using the Alternating Bit Protocol (see Fig. 2), only to find
out that states A and 0 are not branching bisimilar with explicit divergences. In
this case, Spoiler’s winning strategy can be used to ‘play’ against the designer
of the implementation in a way similar to that of [15], allowing the designer
to better understand the reason why this implementation is not satisfactory.
By solving the automatically generated game we obtain the following winning
strategy for player Spoiler, that proceeds as follows:

Spoiler moves A --r(d1)--> B

You respond with 0 --r(d1)--> 1

Spoiler switches positions and moves 1 --tau--> 3

You respond by not moving

...

Spoiler moves 19 --tau--> 1

You respond by not moving

You explored all options. You lose.

Branching Bisimulation Games 155

0

1 3 5 9 13 17

24

283236

3744

23

61014

1819

2 4 7 11 15 20

26

293338

3945

25

81216

2122

60

54 50 46 40 34

41

47 51

55 56

30

27

61

6466

6869

72

62

57 52

63

6567

70 71

73 48 42 35

43

49 53

58 59

31

r(d1)

r(d2)

s(d1)

s(d2)

r(d1)

r(d2)

s(d1)

s(d2)

Fig. 2. The ABP with two messages; unlabelled transitions are τ transitions.

In a similar vein, one can check also that states B and 9 are not branching
bisimilar with explicit divergence.

5 Branching Simulation Games

In this paper we have considered branching bisimulation [with explicit diver-
gence]. Both relations are equivalence relations. When checking an implementa-
tion relation, sometimes it is desirable to drop this symmetry requirement, and
use simulation relations, rather than bisimulation relations.

Whereas branching similarity has been studied before, see, e.g. [6], we are
not aware of an exact simulation variant of branching bisimulation with explicit
divergence, although the notion of divergence preserving branching simulation
defined in [14] comes quite close.

A branching simulation game can be obtained from Definition 5 by disal-
lowing Spoiler to choose her second option. The proof of the fact that the
resulting preorder coincides with branching similarity proceeds along the same
lines of that of Theorem 2. If we reconsider the example we took from [11] in
Sect. 4.1, we note that state 0 is not branching simulated by state A, which can
be proved following the same arguments as used in that section. Instead, state
A is branching simulated by state 0, as the last can copy any move from the
former, eventually arriving at states that are trivially equivalent.

156 D. de Frutos Escrig et al.

A game characterisation of branching simulation equivalence can equally
straightforwardly be obtained from our definitions, by only allowing Spoiler
to choose her second option for her moves during the first round of the game,
and disallowing this option in any subsequent rounds. Of course, the correspond-
ing simulation equivalence relation that one obtains in this way is coarser than
the corresponding bisimulation: Spoiler has a much bigger power if she can
switch the board at any round. Similarly, from Definition 7 we could obtain
games for branching simulation with explicit divergence and the corresponding
simulation equivalence by restricting Spoiler’s options.

6 Discussion & Future Work

In this paper we introduced game-theoretic definitions of branching bisimulation
[with explicit divergence]. Compared to previous work, no transitive closure of
τ -transitions is needed in the game definition, so that we obtain a much more
“local” assessment when two states are declared to be not equivalent. Addi-
tionally, divergence is dealt with as a first-class citizen: no precomputation of
divergences, and subsequent modification of the game, is needed. The combina-
tion of these aspects leads to a game characterisation that enables diagnostics
that apply directly to the original labelled transition systems.

Future Work. We have experimented with a prototype of the game-theoretic def-
initions of branching bisimulation (also with explicit divergence); we intend to
make a proper implementation available in the mCRL2 tool set [4]. We leave fur-
ther evaluating the effectiveness of the counterexamples described in this paper
to future work. Furthermore, it can be investigated whether our approach of
dealing with internal transitions extends to other behavioural equivalences, such
as weak (bi)simulation.

References

1. Basten, T.: Branching bisimilarity is an equivalence indeed!. Inform. Process. Lett.
58(3), 141–147 (1996)

2. Blom, S., Fokkink, W.J., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.:
mgrCRL: a toolset for analysing algebraic specifications. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg
(2001)

3. Bulychev, P.E., Konnov, I.V., Zakharov, V.A.: Computing (bi)simulation relations
preserving CTL*-X for ordinary and fair Kripke structures. Inst. Syst. Program.
Russ. Acad. Sci. Math. Meth. Algorithm 12, 59–76 (2007)

4. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P.,
Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its
recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013).
LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013)

5. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013)

Branching Bisimulation Games 157

6. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. Inform. Comput. 150(2), 132–152 (1999)

7. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

8. Groote, J.F., Vaandrager, F.W.: An efficient algorithm for branching and stuttering
equivalence. In: Paterson, M.S. (ed.) Automata, Languages and Programming.
LNCS, vol. 443, pp. 626–638. Springer, Heidelberg (1990)

9. Groote, J.F., Wijs, A.: An O(m log n) algorithm for stuttering equivalence
and branching bisimulation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 607–624. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 40

10. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In:
de Bakker, J., van Leeuwen, J. (eds.) Automata, Languages and Programming.
LNCS, vol. 85, pp. 299–309. Springer, Heidelberg (1980)

11. Korver, H.: Computing distinguishing formulas for branching bisimulation. In:
Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 13–23. Springer,
Heidelberg (1992)

12. Namjoshi, K.S.: A simple characterization of stuttering bisimulation. In: Ramesh,
S., Sivakumar, G. (eds.) FST TCS 1997. LNCS, vol. 1346, pp. 284–296. Springer,
Heidelberg (1997)

13. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
Theoretical Computer Science. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg
(1981)

14. Reniers, M.A., Schoren, R., Willemse, T.A.C.: Results on embeddings between
state-based and event-based systems. Comput. J. 57(1), 73–92 (2014)

15. Stevens, P., Stirling, C.: Practical model-checking using games. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 85–101. Springer, Heidelberg (1998)

16. Stirling, C.: Modal and temporal logics for processes. In: Moller, F., Birtwistle,
G. (eds.) Structure versus Automata. LNCS, vol. 1043, pp. 149–237. Springer,
Heidelberg (1996)

17. Thomas, W.: On the Ehrenfeucht-Fräıssé game in theoretical computer science.
In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) TAPSOFT’93: Theory and Practice of
Software Development. LNCS, vol. 668, pp. 559–568. Springer, Heidelberg (1993)

18. van Glabbeek, R.J., Luttik, S.P., Trçka, N.: Branching bisimilarity with explicit
divergence. Fundam. Inform. 93(4), 371–392 (2009)

19. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

20. Yin, Q., Fu, Y., He, C., Huang, M., Tao, X.: Branching bisimilarity checking for
PRS. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014, Part II. LNCS, vol. 8573, pp. 363–374. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-662-49674-9_40
http://dx.doi.org/10.1007/978-3-662-49674-9_40

A Configurable CEGAR Framework
with Interpolation-Based Refinements

Ákos Hajdu1,2(B), Tamás Tóth2, András Vörös1,2, and István Majzik2

1 MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary
2 Department of Measurement and Information Systems,

Budapest University of Technology and Economics, Budapest, Hungary
{hajdua,totht,vori,majzik}@mit.bme.hu

Abstract. Correctness of software components in a distributed system
is a key issue to ensure overall reliability. Formal verification techniques
such as model checking can show design flaws at early stages of devel-
opment. Abstraction is a key technique for reducing complexity by hid-
ing information, which is not relevant for verification. Counterexample-
Guided Abstraction Refinement (CEGAR) is a verification algorithm
that starts from a coarse abstraction and refines it iteratively until the
proper precision is obtained. Many abstraction types and refinement
strategies exist for systems with different characteristics. In this paper we
show how these algorithms can be combined into a configurable CEGAR
framework. In our framework we also present a new CEGAR configu-
ration based on a combination of abstractions, being able to perform
better for certain models. We demonstrate the use of the framework by
comparing several configurations of the algorithms on various problems,
identifying their advantages and shortcomings.

1 Introduction

As critical distributed systems, including safety-critical embedded systems and
cloud applications are becoming more and more prevalent, assuring their correct
operation is gaining increasing importance. Correctness of software components
in a distributed system is a key issue to ensure overall reliability. Formal veri-
fication methods such as model checking can show design flaws at early stages
of development. However, a typical drawback of using formal verification meth-
ods is their high computational complexity. Abstraction is a generic technique
for reducing complexity by hiding information which is not relevant for verifi-
cation. However, finding the proper precision of abstraction is a difficult task.
Counterexample-Guided Abstraction Refinement (CEGAR) is an automatic ver-
ification algorithm that starts with a coarse abstraction and refines it itera-
tively until the proper precision is obtained [6]. CEGAR-based algorithms have
been successfully applied for both hardware [6,8] and software [1,11] verification.

T. Tóth—Partially supported by Gedeon Richter’s Talentum Foundation (Gyömrői
út 19–21, 1103 Budapest, Hungary).

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 158–174, 2016.
DOI: 10.1007/978-3-319-39570-8 11

A Configurable CEGAR Framework with Interpolation-Based Refinements 159

CEGAR can be defined for various abstraction types including predicate [6,13]
and explicit value abstraction [1,8]. There are several refinement strategies as
well, many of them being based on Craig [17] or sequence [19] interpolation.

In our paper we describe a configurable CEGAR framework that is able
to incorporate both predicate abstraction and explicit value abstraction, along
with Craig and sequence interpolation-based refinements. We use this framework
to extend predicate abstraction with explicit values at the initial abstraction,
producing better results for certain models. We also implemented a prototype
of the algorithms and techniques in order to evaluate their performance. In our
framework we compare different CEGAR configurations on various (software and
hardware) models and identify their advantages and shortcomings.

The rest of the paper is organized as follows. Section 2 introduces the pre-
liminaries of our work. Section 3 presents related work in the field of CEGAR-
based model checking. Section 4 describes our framework with our new extension.
Section 5 evaluates the algorithms and finally, Sect. 6 concludes our work.

2 Background

This section introduces the preliminaries of our work. First, we present sym-
bolic transition systems as the formalism used in our work (Sect. 2.1). Then we
describe the model checking problem (Sect. 2.2) and we also introduce interpo-
lation (Sect. 2.3), a mathematical tool widely used in verification.

2.1 Symbolic Transition Systems

In our work we describe models using symbolic transition systems, which offer
a compact way of representing the set of states, transitions and initial states
using first order logic (FOL) variables and formulas. Given a set of variables
V = {v1, v2, . . . , vn}, let V ′ and Vi represent the primed and indexed version
of the variables, i.e., V ′ = {v′

1, v
′
2, . . . , v

′
n} and Vi = {v1,i, v2,i, . . . , vn,i}. Given

a formula ϕ over V , let ϕ′ and ϕi denote the formulas obtained by replacing
V with V ′ and Vi in ϕ respectively, e.g., if ϕ = x < y then ϕ′ = x′ < y′ and
ϕ2 = x2 < y2. Given a formula ϕ over V ∪ V ′, let ϕi,j denote the formula
obtained by replacing V with Vi and V ′ with Vj in ϕ, e.g., if ϕ = x′ .= x + 1
then ϕ3,5 = x5

.= x3 +1. Given a formula ϕ let var(ϕ) denote the set of variables
appearing in ϕ, e.g., var(x < y + 1) = {x, y}.

Definition 1 (Symbolic Transition System). A symbolic transition system
is a tuple T = (V, Inv ,Tran, Init), where

– V = {v1, v2, . . . , vn} is the set of variables with domains Dv1 ,Dv2 , . . . , Dvn
,

– Inv is the invariant formula over V , which must hold for every state,1

1 The invariant formula should not be confused with an invariant property, which
is checked whether it holds for every reachable state. The invariant formula only
restricts the possible set of states regardless of reachability. For example, an integer
variable x with range [2; 5] can be defined with domain Z and invariant 2 ≤ x∧x ≤ 5.

160 Á. Hajdu et al.

– Tran is the transition formula over V ∪ V ′, which describes the transition
relation between the actual state (V) and the successor state (V ′),

– Init is the initial formula over V , which defines the set of initial states.

A concrete state s is a (many sorted) interpretation that assigns a value s(vi) =
di ∈ Dvi

to each variable vi ∈ V of its domain Dvi
. A state can also be regarded

as a tuple of values (d1, d2, . . . , dn). A state with a prime (s′) or an index (si)
assigns values to V ′ or Vi respectively. The set of concrete states S, concrete
transitions R and concrete initial states S0 (i.e., the state space) of a symbolic
transition system are defined in the following way.

– S = {s | s |= Inv}, i.e., S contains all possible interpretations that satisfy the
invariant.

– R = {(s, s′) | (s, s′) |= Inv ∧Tran ∧ Inv ′}, i.e., s′ is a successor of s if assigning
s to the non-primed variables and s′ to the primed variables of the transition
formula evaluates to true.

– S0 = {s |s |= Inv ∧Init}, i.e., S0 is the subset of S for which the initial formula
holds.

A concrete path is a (finite, loop-free) sequence of concrete states π = (s1,
s2, . . . , sn) for which (s1, s2, . . . , sn) |= Init1 ∧ ∧

1≤i≤n Inv i ∧ ∧
1≤i<n Trani,i+1

holds. In other words, the first state is initial, all states satisfy the invariant and
successor states satisfy the transition formula. A concrete state s is reachable if
a path π = (s1, s2, . . . , sn) exists with s = sn for some n.

2.2 Model Checking

Model checking [7] is a formal verification technique to automatically determine
whether a system meets a given requirement by explicitly or implicitly analyzing
its behaviors (i.e., paths starting from initial states). Requirements are usually
given using temporal logics [7]. In our work we focus on safety properties, where
a FOL formula ϕ is given over V that must hold for every reachable state. When
the system does not meet the safety property, a path π = (s1, s2, . . . , sn) can be
found where sn �|= ϕn. Such paths are called counterexamples.

2.3 Interpolation

Craig interpolation is a technique from logic that can produce for two incon-
sistent formulas an interpolant, which generalizes the first formula, while still
contradicting the second one. The interpolant can be interpreted as an explana-
tion of the contradiction.

Definition 2 (Craig Interpolant). Let A and B be FOL formulas such that
A∧B is unsatisfiable. The formula I is a Craig interpolant (or simply an inter-
polant) for A,B if the following properties hold [17]:

A Configurable CEGAR Framework with Interpolation-Based Refinements 161

– A implies I,
– I ∧ B is unsatisfiable,
– I only contains symbols common in A and B (excluding symbols of the logic).

William Craig showed that an interpolant always exists for FOL formulas A and
B with at least one symbol in common and A ∧ B being unsatisfiable [9].

Interpolation can be generalized from two formulas to a sequence of formulas,
for which an interpolation sequence is calculated instead of a single interpolant.

Definition 3 (Interpolation Sequence). Let A1, A2, . . . , An be a sequence
of FOL formulas such that A1 ∧ A2 ∧ . . . ∧ An is unsatisfiable. The sequence
of formulas I0, I1, . . . , In is an interpolation sequence for A1, A2, . . . , An if the
following properties hold [19]:

– I0 = �, In = ⊥,
– Ij ∧ Aj+1 implies Ij+1 for 0 ≤ j < n,
– Ij only contains symbols common in A1, . . . , Aj and Aj+1, . . . , An for 0 < j <

n (excluding symbols of the logic).

3 Related Work and Contributions

Counterexample-Guided Abstraction Refinement (CEGAR) is a widely used
abstraction-based approach to tackle the complexity of real-life software and
hardware systems [6]. CEGAR-based algorithms usually have the following four
main steps.

1. The first step is to create an abstract model that over-approximates the con-
crete model and is easier to handle computationally.

2. The abstract model is then checked by a model checking algorithm. Due
to the behavior of over-approximation, if the abstract model satisfies the
requirement, then it also holds in the concrete model.2

3. On the other hand, if the abstract model violates the requirement, an abstract
counterexample is produced by the model checker. The third step is to check
the feasibility of the abstract counterexample in the concrete model. If a
concrete counterexample exists, it is a witness that the original model also
violates the requirement.

4. If the abstract counterexample is not feasible, the abstraction has to be refined
and the process has to be repeated from Step 2, until either the requirement
holds for the abstract model or a concrete counterexample is found.

Types of Abstraction. CEGAR can work with different types of abstractions,
including predicate abstraction [13] and explicit value abstraction [8]. There has
also been work on a combination of the former two approaches for configurable
program analysis [2]. We also propose a combination of predicate abstraction
and explicit values at the initial abstraction, but instead of program analysis,
we focus on symbolic transition systems (Sect. 4.1).
2 This relation holds for ACTL* properties [6], including safety properties.

162 Á. Hajdu et al.

Refinement Strategies. Interpolation is often used to infer new predicates that
refine the abstraction. Craig interpolation yields a single predicate [4,14], while
its extension, sequence interpolation produces a sequence of predicates [1,11,16].
Our approach is similar to the one presented in [11], however in our framework
the initial abstraction can be defined by arbitrary predicates and explicit vari-
ables (Sect. 4.4). As a special case, choosing the program counter as the only
explicit variable yields a similar approach to the one presented in [11].

Contributions. In our work we make the following novel contributions. (1) We
describe a CEGAR framework for symbolic transition systems, where refinement
is based on splitting abstract states. We show that both predicate abstraction
and explicit value abstraction can be incorporated into this framework along with
Craig and sequence interpolation-based refinement strategies. This allows us to
experiment with several algorithm configurations and their extensions. (2) As a
first result, we used this framework to develop a new configuration of CEGAR
that extends predicate abstraction with explicit values at the initial abstraction
based on domain knowledge or heuristics. (3) We also use this framework to eval-
uate different CEGAR configurations (including our extended one) on various
models, including industrial PLC codes and hardware.

In the following section, we present the CEGAR framework with our new
configuration, this way also discussing the integration of the different algorithmic
components.

4 A Configurable CEGAR Framework

This section presents the steps of our configurable CEGAR framework: initial
abstraction (Sect. 4.1), model checking (Sect. 4.2) with an incremental optimiza-
tion (Sect. 4.5), counterexample concretization (Sect. 4.3) and abstraction refine-
ment (Sect. 4.4).

4.1 Initial Abstraction

The algorithms are based on the existential abstraction framework of Clarke
et al. [6], predicate abstraction [13] and explicit-value abstraction [8].

Predicate Abstraction. Predicate abstraction maps concrete states to
abstract states based on their evaluation on a set of FOL predicates. Given
a symbolic transition system T = (V, Inv , Tran, Init) and a set of FOL predi-
cates P over V , there are 2|P| possible abstract states, denoted by Ŝ. An abstract
state ŝ ∈ Ŝ is a set of predicates, where for each pi ∈ P, ŝ contains either pi or
¬pi. Given an abstract state ŝ ∈ Ŝ, let its label be Label(ŝ) =

∧
p∈ŝ p, i.e., the

conjunction of predicates (or their negations) in ŝ. A concrete state s is mapped
to ŝ if s |= Label(ŝ).

In existential abstraction the abstract transition relation R̂ and the set of
abstract initial states Ŝ0 are defined in the following way [6].

A Configurable CEGAR Framework with Interpolation-Based Refinements 163

– R̂ = {(ŝ, ŝ′) ∈ Ŝ × Ŝ | ∃s, s′. (s, s′) |= Inv ∧ Inv ′ ∧Label(ŝ)∧Label(ŝ′)′ ∧Tran},
i.e., concrete successor states (s, s′) exist, with s mapped to ŝ and s′ to ŝ′.

– Ŝ0 = {ŝ ∈ Ŝ | ∃s. s |= Inv ∧ Init ∧ Label(ŝ)}, i.e., a concrete initial state s
exists, which is mapped to ŝ.

Example 1. Consider a symbolic transition system T with V = {x, y}, Dx =
Dy = Z, Inv = (0 ≤ x ∧ x ≤ 3 ∧ 0 ≤ y ∧ y ≤ 1), Init = (x .= 0 ∧ y

.= 0) and
Tran = (x + y

.= 0 ∧ x′ − y′ .= 2) ∨ (x + y
.= 1 ∧ x′ .= 1 ∧ y′ .= 1) ∨ (x + y

.=
3∧x′ .= 3∧y′ .= 0). The concrete state space of T can be seen in Fig. 1(a), where
circles denote concrete states (x, y), the double circle denotes the initial state
and edges denote transitions. Suppose, that P = {x < 2, y

.= 1}, which means
that there are 2|P| = 4 abstract states. Partitioning by P is indicated by dashed
lines in Fig. 1(a), while the corresponding abstract transition system (Ŝ, R̂, Ŝ0)
can be seen in Fig. 1(b).

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(2, 0)

(3, 0)

(2, 1)

(3, 1)

(x < 2) ¬(x < 2)

¬(y
.
= 1)

(y
.
= 1)

(a) Concrete state space.

ŝ0

ŝ1

ŝ2

ŝ3

(b) Abstract state space.

Fig. 1. Predicate abstraction example.

An abstract path is a (finite, loop-free) sequence of abstract states π̂ =
(ŝ1, ŝ2, . . . , ŝn) with ŝ1 ∈ Ŝ0 and (ŝi, ŝi+1) ∈ R̂ (1 ≤ i < n). An abstract path
π̂ = (ŝ1, ŝ2, . . . , ŝn) is concretizable if a sequence of states π = (s1, s2, . . . , sn)
exists for which (s1, s2, . . . , sn) |= Init1 ∧ ∧

1≤i≤n Label(ŝi)i ∧ ∧
1≤i≤n Inv i ∧∧

1≤i<n Trani,i+1. In other words, π is a concrete path where the ith concrete
state is mapped to the ith abstract state.

Explicit Value Abstraction. In explicit value abstraction, the variables V
of the system are divided into two disjoint sets: visible (VV) and invisible (VI)
sets of variables. Concrete states are mapped to abstract states based on their
evaluation on visible variables. Given a symbolic transition system T = (V, Inv ,
Tran, Init) and the set of visible variables VV ⊆ V , there are

∏
vi∈VV

|Dvi
|

possible abstract states, denoted by Ŝ. An abstract state ŝ ∈ Ŝ is a (many sorted)
interpretation that assigns a value ŝ(vi) = di ∈ Dvi

to each visible variable
vi ∈ VV of its domain Dvi

. A concrete state s is mapped to ŝ if s(vi) = ŝ(vi) for
each visible variable vi ∈ VV . The label of an abstract state ŝ in explicit value

164 Á. Hajdu et al.

abstraction can be defined by Label(ŝ) = ∧vi∈VV
(vi

.= ŝ(vi)), i.e., a conjunction
of the assignments. Transitions and initial states are mapped as in predicate
abstraction.

Example 2. Recall the symbolic transition system of Example 1 and suppose,
that VV = {y}, VI = {x}. The concrete state space and the partitioning by
VV is indicated in Fig. 2(a), while the corresponding abstract transition system
(Ŝ, R̂, Ŝ0) can be seen in Fig. 2(b).

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(2, 0)

(3, 0)

(2, 1)

(3, 1)

(y
.
= 0)

(y
.
= 1)

(a) Concrete state space.

ŝ0

ŝ1

(b) Abstract state space.

Fig. 2. Explicit value abstraction example.

Extending Predicate Abstraction with Explicit Values (Combined
Abstraction). We observed that both abstraction types have advantages and
shortcomings. For example, a variable with an infinite domain cannot be tracked
explicitly. On the other hand, a variable appearing in different equalities (e.g.,
x

.= 1, x
.= 2, . . .) may yield a handful of predicates and refinement itera-

tions. In such cases it is more efficient to keep track of the variable explic-
itly. Therefore, we also developed a combined method that extends predicate
abstraction with explicit values when creating the initial abstract model. For-
mally, let T = (V, Inv ,Tran, Init) be a symbolic transition system with variables
V = {v1, v2, . . . , vn}, P be a set of FOL predicates over V and VE ⊆ V be the set
of explicit variables. Without the loss of generality, in the following it is assumed
that explicit variables are represented by the first k indices (0 ≤ k ≤ n), i.e.,
VE = {v1, v2, . . . , vk}. We combine predicate abstraction with explicit values in
the following way. An abstract state ŝ ∈ Ŝ is a set of predicates, where

– for each pi ∈ P, ŝ contains either pi or ¬pi,
– for each vi ∈ VE , ŝ contains a predicate of the form vi

.= di, where di ∈ Dvi
.

Consequently, there are |Ŝ| = 2|P| ·|Dv1 |·|Dv2 |·. . .·|Dvk
| possible abstract states.

The abstract transition relation R̂ and the initial states Ŝ0 can be calculated
similarly to predicate abstraction. The initial set of predicates and explicit values
can be determined by domain knowledge or by simple heuristics (see Sect. 5).

A Configurable CEGAR Framework with Interpolation-Based Refinements 165

Example 3. Suppose, that V = {x, y} with Dx = Dy = {0, 1}, the only predicate
is P = {x < y} and the only explicit variable is VE = {x}. There are thus four
abstract states ŝ1 = {x < y, x

.= 0}, ŝ2 = {x < y, x
.= 1}, ŝ3 = {¬(x < y), x .= 0}

and ŝ4 = {¬(x < y), x .= 1}.

4.2 Model Checking

An abstract state ŝ ∈ Ŝ violates the safety property ϕ if Label(ŝ) ∧ Inv ∧ ¬ϕ
is satisfiable, i.e., a concrete state exists, which is mapped to ŝ but violates
ϕ. The model checking problem on the abstract transition system is to check
if an abstract state ŝ violating ϕ is reachable, i.e., whether an abstract path
ϕ̂ = (ŝ1, ŝ2, . . . , ŝn) exists with ŝn = ŝ.

Example 4. Recall Example 1 and suppose that the safety property is ϕ = (x � .=
3 ∨ y � .= 0), i.e., only the concrete state (3, 0) violates ϕ. Consequently, ŝ2 also
violates ϕ and the paths π̂1 = (ŝ0, ŝ3, ŝ2) and π̂2 = (ŝ0, ŝ2) are abstract coun-
terexamples.

CEGAR can work with different kinds of model checkers as long as they are
capable of providing a counterexample. Our framework is currently equipped
with an incremental explicit model checker. Incrementality relies on the refine-
ment strategy (Sect. 4.4), therefore it is presented afterwards (Sect. 4.5).

4.3 Counterexample Concretization

An abstract counterexample π̂ = (ŝ1, ŝ2, . . . , ŝn) for the safety property ϕ is con-
cretizable if a sequence of states π = (s1, s2, . . . , sn) exists for which (s1, s2, . . . ,
sn) |= Init1∧∧

1≤i≤n Label(ŝi)i∧
∧

1≤i≤n Inv i∧
∧

1≤i<n Trani,i+1∧¬ϕn holds. In
other words, π̂ is concretizable as a path and in addition the last state violates the
safety property. A concretizable counterexample is a witness that the concrete
model also violates the requirement, while a non-concretizable counterexample
is called spurious.

In order to avoid finding the spurious counterexample again, the abstraction
has to be refined. The longest concretizable prefix of the counterexample provides
useful information for the refinement. Therefore, an abstract counterexample
π̂ = (ŝ1, ŝ2, . . . , ŝn) is concretized iteratively with the following n + 1 formulas.

Fi =

⎧
⎨

⎩

Init1 ∧ Inv1 ∧ Label(ŝ1)1 if i = 1
Inv i ∧ Label(ŝi)i ∧ Trani−1,i if 1 < i ≤ n
¬ϕn if i = n + 1

The formula F1∧F2∧ . . .∧Fn describes concrete paths mapped to π̂ (similarly to
bounded model checking [3]), while Fn+1 ensures that the last state violates the
property. If F1∧F2∧. . .∧Fn+1 is satisfiable, the counterexample is concretizable.
Otherwise, let 1 ≤ f ≤ n be the largest index for which F1 ∧ F2 ∧ . . . ∧ Ff is
satisfiable. The state ŝf is then called the failure state since a concrete path
leads there but it cannot be extended.

166 Á. Hajdu et al.

Example 5. Recall Example 4 with the abstract counterexamples π̂1 = (ŝ0, ŝ3, ŝ2)
and π̂2 = (ŝ0, ŝ2). It can be seen that π̂1 is spurious since ŝ2 cannot be reached
by a concrete path. The longest concretizable prefix is (ŝ0, ŝ3), hence the failure
state is ŝ3. The abstract counterexample π̂2 is concretizable as a path with
((0, 0), (2, 0)), but (2, 0) fulfills the property, thus the failure state is ŝ2.

4.4 Abstraction Refinement

The set of concrete states mapped to the failure state ŝf are partitioned into
the following three groups: states that can be reached from an initial state are
dead-end, states having a transition to ŝf+1 or violating ϕ are bad, while other
states are irrelevant. It is clear that a state cannot be dead-end and bad at the
same time since then ŝf would not be a failure state [6].

Example 6. Recall Example 5 and Fig. 1 with π̂1 = (ŝ0, ŝ3, ŝ2) and π̂2 = (ŝ0, ŝ2).
The failure state of π̂1 is ŝ3, where (3, 1) is a dead-end state and (2, 1) is bad.
The failure state of π̂2 is ŝ2, where (2, 0) is dead-end and (3, 0) is bad.

The purpose of abstraction refinement is to map dead-end and bad states to
different abstract states so that the spurious counterexample cannot occur in the
next iteration. Predicate abstraction and our combined method uses predicate
refinement to obtain new predicates, while explicit value abstraction employs
explicit value refinement to make some previously invisible variables visible.

Predicate Refinement. Our framework supports both Craig and sequence
interpolation to infer new predicates and it also utilizes lazy abstraction, i.e.,
only a subset of the abstract states is refined.

Craig Interpolation. Dead-end and bad states can be characterized with formulas
D and B respectively in the following way.

D = Init1 ∧
∧

1≤i≤f

Inv i ∧
∧

1≤i≤f

Label(ŝi)i ∧
∧

1≤i<f

Trani,i+1

B =
{

Invf+1 ∧ Label(ŝf+1)f+1 ∧ Tranf,f+1 if f < n
¬ϕn if f = n

In other words, D describes paths mapped to the prefix (ŝ1, ŝ2, . . . , ŝf), while
B describes either transitions from ŝf to ŝf+1 or states violating ϕ. It is clear
that D ∧ B is unsatisfiable, otherwise a longer prefix could be found or π̂ would
be concretizable. Consequently, Craig interpolation can be applied, yielding an
interpolant I with the following properties.

– D ⇒ I, i.e., I is a generalization of dead-end states,
– I ∧ B is unsatisfiable, i.e., bad states cannot satisfy I,
– I refers to common symbols of D and B, which are variables with index f .

A Configurable CEGAR Framework with Interpolation-Based Refinements 167

Therefore, removing the indices from the variables in I yields a new predicate
that separates dead-end and bad states mapped to ŝf . We refine the abstraction
by replacing ŝf with ŝf1 and ŝf2 obtained by adding I and ¬I to the predicates
of ŝf , i.e., ŝf1 = ŝf ∪ {I} and ŝf2 = ŝf ∪ {¬I}. This approach, namely splitting
only a subset of states is similar to lazy abstraction [15].

Example 7. Recall Example 6 and the spurious counterexample π̂1 = (ŝ0, ŝ3, ŝ2),
where ŝ3 is the failure state. Thus, D and B are defined in the following way for
Craig interpolation.

– D = Init0 ∧ Inv0 ∧ Inv3 ∧ Label(ŝ0)0 ∧ Label(ŝ3)3 ∧ Tran0,3,
– B = Inv2 ∧ Label(ŝ2)2 ∧ Tran3,2.

The formula I = (x3
.= 3) is an interpolant for D and B, which can be used

to split ŝ3 (Fig. 3(a)). The refined abstract state space can be seen in Fig. 3(b),
where the spurious behavior of π̂1 is eliminated. However, π̂2 = (ŝ0, ŝ2) is still a
spurious counterexample that needs another refinement iteration.

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(2, 0)

(3, 0)

(2, 1)

(3, 1)

(x < 2) ¬(x < 2)

¬(y
.
= 1)

(y
.
= 1)

¬(x
.
= 3)

(x
.
= 3)

(a) Concrete state space.

ŝ0

ŝ1

ŝ2

ŝ3a ŝ3b

(b) Abstract state space.

Fig. 3. Predicate refinement example with Craig interpolation.

Sequence Interpolation. Craig interpolation can be generalized to sequence inter-
polation [11] in order to split multiple states along the spurious counterexample
π̂ = (ŝ1, ŝ2, . . . , ŝn). Formally, A1, A2, . . . , An+1 is defied in the following way.

Ai =

⎧
⎨

⎩

Init1 ∧ Inv1 ∧ Label(ŝ1)1 if i = 1
Inv i ∧ Label(ŝi)i ∧ Trani−1,i if 1 < i ≤ n
¬ϕn if i = n + 1

In other words, the formula A1 describes initial states mapped to ŝ1, while
A2, A3, . . . , An describe reachable states mapped to ŝ2, ŝ3, . . . , ŝn respectively.
Finally, An+1 describes states violating the safety property. It is clear that A1 ∧
A2 ∧ . . . ∧ An+1 is unsatisfiable, since π̂ is spurious. Hence, an interpolation
sequence I0, I1, . . . In+1 exists with the following properties:

168 Á. Hajdu et al.

– I0 = �, In+1 = ⊥, i.e., interpolants that do not correspond to any state in
the counterexample carry no information,

– Ij ∧ Aj+1 ⇒ Ij+1 for 0 ≤ j ≤ n, i.e., the interpolants together generalize
dead-end states and contradict bad states,

– Ij refers only to the common symbols of A1, . . . , Aj and Aj+1, . . . , An+1, i.e.,
variables with index j.

Abstraction is refined by replacing each ŝi (1 ≤ i ≤ n) with ŝi1 and ŝi2
obtained by adding Ii and ¬Ii to the predicates of ŝi respectively. Formally,
ŝi1 = ŝi ∪{Ii} and ŝi2 = ŝi ∪{¬Ii}. It may occur that Ii = � or Ii = ⊥ for some
1 ≤ i ≤ n. In this case the corresponding abstract state ŝi is not split.

The motivation behind sequence interpolation is twofold. On the one hand,
splitting multiple states in a single step can eliminate more spurious behavior,
yielding fewer refinement iterations. On the other hand, we observed that sep-
arating dead-end and bad states with a single formula (Craig interpolant) may
render the formula long and complex. Sequence interpolation in contrast, can
produce more, but less complex formulas. Furthermore, it also makes concretiza-
tion easier, since the failure state ŝf does not have to be determined.

Example 8. As an example, consider a symbolic transition system with variables
V = {x, y, z}. Suppose, that the safety property is ϕ = x � .= 5, for which the
abstract counterexample π̂ = (ŝ1, ŝ2, ŝ3, ŝ4) shown in Fig. 4(a) is produced by
the model checker. It can be seen that π̂ is spurious, since (5, 0, 0) cannot be
reached from (0, 0, 0). Therefore, A1, A2, . . . , A5 is defined in the following way:

– A1 = Init1 ∧ Inv1 ∧ Label(ŝ1)1,
– A2 = Inv2 ∧ Label(ŝ2)2 ∧ Tran1,2,
– A3 = Inv3 ∧ Label(ŝ3)3 ∧ Tran2,3,
– A4 = Inv4 ∧ Label(ŝ4)4 ∧ Tran3,4,
– A5 = ¬ϕ4.

It can be checked that I0 = �, I1 = �, I2 = (x2 < 2), I3 = (x3 < 4), I4 = ⊥,
I5 = ⊥ is an interpolation sequence for A1, A2, . . . , A5. Hence, ŝ1 and ŝ4 are not
split, ŝ2 is split with the predicate (x < 2) and ŝ3 with (x < 4) as the dashed
lines indicate. The abstract states after the refinement can be seen in Fig. 4(b).
It is clear that the spurious counterexample is eliminated. It can also be seen
that both splits are required.

Suppose now, that Craig interpolation is applied for the same problem. The
failure state is ŝ2, where (1, 1, 1) is a dead-end state and all the others are bad.
Therefore, (1, 1, 1) has to be separated from the others with a single formula.
This requires all three variables (e.g., I = (x2

.= 1 ∧ y2
.= 1 ∧ z2

.= 1)), since
(1, 1, 1) is not distinguishable with two or less variables. In contrast, sequence
interpolation could be solved with two predicates containing only x.

Explicit Value Refinement. As in predicate abstraction, the purpose of
refinement is to map dead-end and bad states to different abstract states.

A Configurable CEGAR Framework with Interpolation-Based Refinements 169

ŝ1 ŝ2 ŝ3 ŝ4

(0, 0, 0)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(2, 0, 0)

(2, 0, 1)

(2, 1, 0)

(2, 1, 1)

(3, 0, 0)

(3, 0, 1)

(3, 1, 0)

(3, 1, 1)

(4, 0, 0)

(4, 0, 1)

(4, 1, 0)

(4, 1, 1)

(5, 0, 0)

(a) Abstract counterexample.

ŝ1

ŝ2a

ŝ2b

ŝ3a

ŝ3b

ŝ4

(b) Abstraction refinement.

Fig. 4. Predicate refinement example with sequence interpolation.

In pure explicit value analysis this can be done by making a subset V ′
I ⊆ VI

of the previously invisible variables visible, i.e., VV ← VV ∪V ′
I and VI ← VI \V ′

I

[8]. In contrast to predicate abstraction, visible variables are common for each
state, which means that each abstract state is split in the new iteration [8].3 In
our framework we generate V ′

I with interpolation in the following way. Recall
that we defined the label of an abstract state in explicit value abstraction as a
conjunction of assignments (Label(ŝ) = ∧vi∈VV

(vi
.= ŝ(vi))). Thus, for a spuri-

ous counterexample π̂ = (ŝ1, ŝ2, . . . , ŝn) a Craig interpolant I or an interpolation
sequence I0, I1, . . . , In+1 can be calculated in the same way as in predicate refine-
ment. Then V ′

I = var(I)∩VI with Craig interpolation, or V ′
I = ∪1≤i≤nvar(Ii)∩VI

with sequence interpolation. In other words, new visible variables are the invisible
variables appearing in the interpolants. Again, sequence interpolation can gen-
erate simpler formulas, keeping V ′

I (and thus, the abstract state space) smaller.
The reason for a spurious abstract counterexample is that dead-end and bad

states are mapped to the same abstract state ŝf , where ŝf assigns the same
values to visible variables VV . Interpolants distinguish dead-end states and bad
states, which means that they must contain at least one invisible variable. This
ensures that V ′

I �= ∅ and that the spurious counterexample is eliminated.

4.5 Incremental Model Checking

A non-incremental explicit model checker loops through each initial abstract
state and traverses the set of reachable abstract states using for example depth-
first search. If an abstract state violating the safety property is found, the actual
abstract path is returned. Our incremental model checker exploits the fact that
only a subset of the abstract states are split when using predicate refinement
3 This splitting is of course, not performed explicitly. The model checker constructs

the state space on-the-fly.

170 Á. Hajdu et al.

(see Sect. 4.4). Let ŝs denote the first state of the abstract counterexample π̂ =
(ŝ1, ŝ2, . . . , ŝn) that was split in the previous iteration, which is the failure state
ŝf using Craig interpolation or the state with the lowest index s such that Is �= �
and Is �= ⊥ using sequence interpolation.

The main idea of our incremental approach is presented in Fig. 5. The path
(ŝ1, ŝ2, ŝ3, ŝ4) represents the actual abstract counterexample, where ŝ3 was the
first abstract state to be split. Each state has some successors that were already
fully explored (drawn on the left side of the state) and also some successors yet
to be explored (drawn on the right side). There can also be abstract initial states
that were already fully explored (ŝ5 in the figure) and abstract initial states that
will be explored after ŝ1 (ŝ6 in the figure). Abstract states in the gray area were
fully explored before ŝ3. Let this set be denoted by Ĝ. It is clear that ŝ3 can
only be reached from Ĝ through ŝ2. Otherwise, ŝ3 would first be reached that
way and not through ŝ2. Therefore, splitting ŝ3 does not affect states in Ĝ. If
exploration is continued with (ŝ1, ŝ2) on the stack, ŝ2 will “represent” states in
Ĝ, i.e., if some of the new abstract states could be reached from Ĝ, they will be
reached from ŝ2. Therefore, if ŝs is the first abstract state that was split (ŝ3 in
the example), abstract states explored before ŝs do not need to be re-explored
and the actual abstract path can be kept until ŝs−1.

ŝ1

ŝ2

ŝ3

ŝ4

ŝ5 ŝ6

Fig. 5. Illustration of incremental model checking.

It may seem that incremental model checking requires extra memory to store
the explored states. However, a non-incremental version also has to discover
and keep track of the same states. The only difference is that the incremental
version keeps the explored states in memory between the refinement iterations
and continues the search, while the non-incremental version always re-explores.

5 Evaluation

We developed a prototype Java implementation for the framework presented in
Sect. 4. We used Z3 [18] as the underlying logic solver. We compared various
configurations on industrial PLC codes (Sect. 5.1), on a protocol with infinite
state space (Sect. 5.2) and on hardware models (Sect. 5.3).

A Configurable CEGAR Framework with Interpolation-Based Refinements 171

5.1 Industrial PLC Codes

Programmable Logic Controller (PLC) codes can be represented by an automa-
ton-based model [12], which can then be translated into a symbolic transition
system. Table 1 contains results for the following six configurations, correspond-
ing to the main columns: (1) predicate abstraction with Craig interpolation, (2)
predicate abstraction with sequence interpolation, (3) combined abstraction with
Craig interpolation, (4) combined abstraction with sequence interpolation, (5)
explicit value abstraction with Craig interpolation, (6) explicit value abstraction
with sequence interpolation.

In predicate abstraction the initial set of predicates is empty, while in explicit
value abstraction the initial visible variables are those appearing in the safety
property. We observed that the program location variable appears in many equal-
ity formulas, e.g., loc

.= 0, loc
.= 1, . . . , loc

.= n. With this extra knowledge, we
configured the combined approach to track the location variable explicitly and
to start with an empty set of initial predicates. Note, that this idea can be gen-
eralized to any automaton-based model or such variables can also be detected
by a heuristic that analyzes the formulas.

The sub-columns T, #R and #S represent the run time in seconds, the
number of refinements and the sum of explored abstract states in each iteration
respectively. The � or × sign before the name of the model indicates whether it
meets the property or not. The columns V and L denote the number of variables
and locations in the automaton-based model respectively. The shortest run time
is indicated by bold font for each model.

It can be seen that explicit value abstraction has the best performance for
many models. However, predicate abstraction has shorter run time for models
PLC01 and PLC02 (where no reductions were applied to the automata) and the
combined approach performs best for models with the largest state space (PLC06
and PLC08). It can also be observed that the combined approach gives a better
performance for most of the models compared to pure predicate abstraction.
Furthermore, it can be seen that Craig interpolation yields many small steps
(many iterations), in contrast to sequence interpolation, which performs fewer,
but bigger steps.

5.2 Fischer’s Protocol

Fischer’s protocol [10] is a mutual exclusion algorithm for arbitrarily many com-
ponents (column #C). The model contains clock variables (with domain Q),
rendering the state space infinite. Explicit value abstraction fails to verify these
models because the clock variables become visible after a few iterations. Table 2
contains results for predicate and combined abstraction. The algorithms start
with an empty set of initial states and the combined approach tracks the vari-
ables corresponding to the locks explicitly. It can be seen that Craig interpolation
outperforms sequence interpolation for these models. It can also be observed that
the combined method is more efficient when the model meets the property.

172 Á. Hajdu et al.

Table 1. Measurement results for PLC codes.

Pred. (Cr.) Pred. (seq.) Comb. (Cr.) Comb. (seq.)

Model V L T (s) #R #S T (s) #R #S T (s) #R #S T (s) #R #S

× PLC01 66 36 22.5 33 100 50.2 34 191 42.0 20 452 48.5 1 81
× PLC02 66 36 22.7 33 100 49.4 34 191 41.0 20 452 47.3 1 81
� PLC03 29 17 479.2 195 6694 99.2 23 292 28.2 34 629 51.8 6 212
� PLC04 29 17 40.2 64 1076 14.4 16 82 17.6 21 353 6.1 2 47
× PLC04 29 17 44.0 65 1069 406.7 31 1198 34.3 35 650 36.1 5 192
� PLC05 29 17 42.2 63 1130 21.4 17 98 17.4 21 352 6.3 2 47
� PLC06 82 43 1512.8 159 4812 − − − 333.1 52 1369 227.5 2 120
� PLC07 82 43 190.8 58 552 462.2 66 1057 164.8 26 657 164.8 1 70
× PLC08 82 43 86.1 37 111 − − − 46.7 0 43 46.2 0 43
� PLC09 23 14 87.4 90 1716 94.6 32 633 61.3 94 1845 35.7 11 193

Expl. (Cr.) Expl. (Seq.)

Model V L T (s) #R #S T (s) #R #S

× PLC01 66 36 36.4 7 1640 211.8 3 758
× PLC02 66 36 32.2 7 1697 428.5 5 1439
� PLC03 29 17 5.2 1 339 9.9 1 369
� PLC04 29 17 3.3 1 165 3.8 1 165
× PLC04 29 17 7.6 2 274 38.0 1 209
� PLC05 29 17 3.5 1 167 4.7 1 167
� PLC06 82 43 1254.5 3 20956 − − −
� PLC07 82 43 78.1 2 1163 50.9 1 518
× PLC08 82 43 65.1 2 628 123.0 3 541
� PLC09 23 14 11.8 5 1261 14.5 4 833

Table 2. Measurement results for Fischer’s protocol.

Pred. (Cr.) Pred. (seq.) Comb. (Cr.) Comb. (seq.)

Model #C T (s) #R #S T (s) #R #S T (s) #R #S T (s) #R #S

� fischer 2 1.2 17 69 3.0 15 107 0.8 18 66 1.2 14 78

× fischer 2 0.6 11 41 1.1 9 45 0.8 18 62 1.2 12 58

� fischer 3 12.1 97 998 68.1 101 1584 10.3 93 1329 45.8 99 1334

× fischer 3 1.4 19 70 1.5 9 44 1.7 28 121 2.9 21 105

5.3 Hardware Models

We also evaluated the algorithms for some of the smaller models of the Hardware
Model Checking Competition [5]. Table 3 contains results for predicate abstrac-
tion and explicit value abstraction. We did not evaluate the combined approach,
since all variables are boolean type, hence it is identical to add a predicate for a
variable or to track it explicitly. Predicate abstraction starts with an empty set
of initial predicates and only the single output variable is visible using explicit
value abstraction. The columns I, L and A correspond to the number of inputs,
latches and and-gates respectively. It can be seen that predicate abstraction
performs better with Craig interpolation, but explicit value abstraction is more
efficient using sequence interpolation.

A Configurable CEGAR Framework with Interpolation-Based Refinements 173

Table 3. Measurement results for hardware models.

Pred. (Cr.) Pred. (Seq.) Expl. (Cr.) Expl. (Seq.)

Model I L A T (s) #R #S T (s) #R #S T (s) #R #S T (s) #R #S

� mutexp0 11 20 159 10.3 63 494 24.5 43 420 14.3 8 742 22.7 7 806

� mutexp0neg 11 20 159 6.1 44 284 3.7 12 82 8.8 9 441 6.7 6 330

× nusmv.syncarb5p2.B 5 10 52 1.3 30 139 3.1 14 132 0.7 6 113 0.2 2 18

× nusmv.syncarb10p2.B 10 20 157 31.6 110 779 117.9 56 1491 239.8 11 5179 1.6 2 32

× pdtpmsarbiter 3 46 209 0.5 6 22 4.6 6 22 5.3 15 130 7.8 13 108

� ringp0 15 25 145 16.4 55 300 25.6 19 127 16.1 10 763 14.5 7 657

� ringp0neg 15 25 145 7.8 21 83 35.7 31 237 187.5 11 4870 108.2 7 2629

� srg5ptimonegnv 30 47 304 0.3 3 9 0.5 4 15 1.7 4 40 1.3 3 36

5.4 Summary

Measurements show that all configurations have advantages and shortcomings
depending on the types of the models. Predicate abstraction with Craig interpo-
lation performs well for software and hardware models, explicit value abstraction
is efficient for PLC models, while the combined method with sequence inter-
polation was able to handle the largest state spaces. It can also be observed
that extending predicate abstraction with explicit values (the combined method)
boosts its performance. As our implementation is only a prototype without opti-
mizations, the developed model checker can not compete with state-of-the-art
tools now. Furthermore our current goal was to compare the configurations in the
same framework, so also the formerly existing algorithms were reimplemented.

6 Conclusions

In our paper we examined various CEGAR-based algorithms for the verification
of symbolic transition systems. From the theoretical point of view, we described
a configurable framework, which can incorporate the different types of abstrac-
tions and refinement strategies. We also proposed a combination of predicate
abstraction and explicit values at the initial abstraction, being able to provide
better performance based on domain knowledge or heuristics. On the practical
side, we examined the efficiency of different configurations of the algorithms on
various models, including software and hardware and identified their advantages
and shortcomings. Our future plan is to improve our prototype implementa-
tion, experiment with further algorithms and develop heuristics for automati-
cally selecting the most efficient configuration based on the model.

Acknowledgement. This work was partially supported by the ARTEMIS JU and the
Hungarian National Research, Development and Innovation Fund in the frame of the
R5-COP(ReconfigurableROS-basedResilientReasoningRoboticCooperating Systems)
project.

References

1. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013).
LNCS, vol. 7793, pp. 146–162. Springer, Heidelberg (2013)

174 Á. Hajdu et al.

2. Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: Fischer, B., Geldenhuys,
J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 20–38. Springer, Heidelberg (2015)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer,
Heidelberg (2007)

5. Cabodi, G., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer, S.,
Vendraminetto, D., Biere, A., Heljanko, K., Baumgartner, J.: Hardware model
checking competition 2014: an analysis and comparison of solvers and benchmarks.
J. Satisfiability Boolean Model. Comput. 9, 135–172 (2016)

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

7. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

8. Clarke, E.M., Gupta, A., Strichman, O.: SAT-based counterexample-guided
abstraction refinement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
23(7), 1113–1123 (2004)

9. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(03), 269–285 (1957)

10. Dutertre, B., Sorea, M., et al.: Timed systems in SAL. Technical report, SRI Inter-
national, Computer Science Laboratory (2004)

11. Ermis, E., Hoenicke, J., Podelski, A.: Splitting via interpolants. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 186–201. Springer,
Heidelberg (2012)

12. Fernández Adiego, B., Darvas, D., Blanco Viñuela, E., Tournier, J.C., Bliudze, S.,
Blech, J.O., González Suárez, V.M.: Applying model checking to industrial-sized
PLC programs. IEEE Trans. Industr. Inf. 11(6), 1400–1410 (2015)

13. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

14. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 232–244. ACM (2004)

15. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In:
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 58–70. ACM (2002)

16. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

17. McMillan, K.L.: Applications of Craig interpolants in model checking. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12.
Springer, Heidelberg (2005)

18. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

19. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: Formal
Methods in Computer-Aided Design, pp. 1–8. IEEE (2009)

A Theory for the Composition
of Concurrent Processes

Ludovic Henrio1, Eric Madelaine1,2(B), and Min Zhang3

1 University of Nice Sophia Antipolis, CNRS, UMR 7271,
06900 Sophia Antipolis, France
ludovic.henrio@cnrs.fr

2 INRIA Sophia Antipolis Méditérannée, BP 93, 06902 Sophia Antipolis, France
eric.madelaine@inria.fr

3 Shanghai Key Laboratory of Trustworthy Computing, ECNU, Shanghai, China
mzhang@sei.ecnu.edu.cn

Abstract. In this paper, we provide a theory for the operators
composing concurrent processes. Open pNets (parameterised networks
of synchronised automata) are new semantic objects that we propose
for defining the semantics of composition operators. This paper defines
the operational semantics of open pNets, using “open transitions” that
include symbolic hypotheses on the behaviour of the pNets “holes”. We
discuss when this semantics can be finite and how to compute it sym-
bolically, and we illustrate this construction on a simple operator. This
paper also defines a bisimulation equivalence between open pNets, and
shows its decidability together with a congruence theorem.

1 Introduction

In the nineties, several works extended the basic behavioural models based on
labelled transition systems to address value-passing or parameterised systems,
using various symbolic encodings of the transitions [1–4]. In [4], Lin addressed
value-passing calculi, for which he developed a symbolic behavioural semantics,
and proved algebraic properties. Separately Rathke [5] defined another symbolic
semantics for a parameterised broadcast calculus, together with strong and weak
bisimulation equivalences, and developed a symbolic model-checker based on a
tableau method for these processes. 30 years later, no practical verification app-
roach and no verification platform are using this kind of approaches to provide
proof methods for value-passing processes or open process expressions. This
article proposes a new approach to study concurrent and distributed systems
based on a semantic formalism featuring: (1) low-level description of behaviours
(transition systems) with explicit data parameters, and hierarchical structure,
(2) flexible composition and synchronisation mechanism, (3) finite representation
of the behavioural semantics using symbolic representations of sets of behaviours.

This work was partially funded by the Associated Team FM4CPS between INRIA
and ECNU, Shanghai.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 175–194, 2016.
DOI: 10.1007/978-3-319-39570-8 12

176 L. Henrio et al.

Parameterised Networks of synchronised automata (pNets) was proposed to
give a behavioural specification formalism for distributed systems. It inherited
from the work of Arnold on synchronisation vectors [6]. In previous work [7],
we showed that pNets can be used to represent the behavioural semantics of a
system including value-passing and many kinds of synchronisation methods. We
used these results to give the semantics of various constructs and languages for
distributed objects, and to build a platform for design and verification of dis-
tributed software components [8,9]. The parameterised and hierarchical nature
of pNets allows for compact models easy to generate from applications in high-
level languages. Their structure is static, but unbounded, and this allows for
model-checking approaches even for reconfigurable applications. Closed pNets
were used to encode fully defined programs or systems, while open pNets have
“holes”, playing the role of process parameters. Such open systems can be used
to define composition operators. The challenge raised by the research on open
pNets is due to its “open” nature and to the existence of holes and parameters.

Contribution. The aim of this paper is to provide a theory for the operators
composing concurrent processes. This theory is based on the definition of oper-
ators as open pNets. By defining the operational semantics of open pNets, using
open transitions that include symbolic hypotheses on the behaviour of the pNets
holes, we can define a strong bisimulation equivalence between open pNets, and
show its decidability. This work highlights the possibility to automatically infer
proof obligations, in the form of predicate inclusion, that have to be verified
to prove the equivalence of operators. These results allow us to envision the
semi-automatic proof of equivalence between operators for composing processes.

Related Works. A number of fundamental works have been published on sym-
bolic or open bisimulations, with varying vocabulary. In this section, we only list
works that are directly related to our approach.

The closest research (and oldest) is from De Simone [1], who defines Specifi-
cation Rules and a FH-bisimulation equivalence, that were one of our main inspi-
ration for the open-transition concept. Some years later, Rensink [10] defines a
generic notion of conditional transition systems and studies relations between
FH-bisimulation and others. We believe that in the work of De Simone con-
text and in ours, the relations coincide, and that Rensink work differs mainly in
presence of recursive binding constructs that we do not consider.

In [3,4] Hennessy and Lin developed the theory of symbolic transition
graphs (STG), and the associated symbolic (early and late) bisimulations, they
also study STGs with assignments which can be a model for message-passing
processes. These are clearly related to our parameterised LTSs, though they
are more specifically addressing the action algebra of value-passing CCS expres-
sions. [3] also gives an algorithm for computing symbolic bisimulation, but only
for symbolic finite trees. An interesting variant was developped by Hennessy and
Rathke [5], concerning a calculus of broadcasting systems (CBS) and a symbolic
bisimulation. The main characteristic of this calculus is that communication is

A Theory for the Composition of Concurrent Processes 177

“one-to-many”, and non blocking, so the definitions of semantics and equiv-
alences differ significantly from previous works. Later, J. Rathke proposed a
model-checker for CBS based on a sound tableau method over symbolic graphs.
Another important similarity between the works on STGs, CBS, and ours is the
use of an auxiliary proof system on value expressions. Remark that pNets can
encode both value-passing CCS and CBS, but also other communication and
synchronisation schemas.

More recently, Deng [11] gave an open bisimulation for π-calculus based on
STG, which used a predicate equation system whose greatest solution charac-
terizes the condition under which the two STGs are bisimilar. There is here a
potential relation with our work: if the number of states and branching of the
symbolic model is finite, then their algorithm can terminate; a similar approach
may help us to compute our FH-bisimulation.

Finally, there are numerous works on subclasses of infinite-state programs or
parameterised systems, seeking decidability properties, and sometimes model-
checking or equivalence checking algorithms. For example [12] proposed a model
checker to verify the safety and liveness properties on infinite-state programs.
They symbolically encode transitions and states using predicates, including affine
constraints on integer variables. Another very different approach is used by [13],
relying on a dedicated model based on network grammars and regular languages.

Structure. Section 2 extends the previous definition of pNets [7] to fit the needs
of the open pNets. Section 3 gives their operational semantics based on open
transitions, and proves that this semantics is finite under reasonable conditions.
In Sect. 4 we introduce an equivalence called FH-bisimulation, and prove its
decidability. All sections are illustrated by a running example encoding a Lotos
operator. Section 5 proves a crucial composition theorem. Finally Sect. 6 con-
cludes and discusses future work.

2 Parameterised Networks (pNets): Definition

This section introduces pNets and the notations we will use in this paper. Then
it gives the formal definition of pNet structures, together with an operational
semantics for open pNets.

pNets are tree-like structures, where the leaves are either parameterised
labelled transition systems (pLTSs), expressing the behaviour of basic processes,
or holes, used as placeholders for unknown processes, of which we only specify the
set of possible actions, this set is named the sort. Nodes of the tree (pNet nodes)
are synchronising artifacts, using a set of synchronisation vectors that express
the possible synchronisation between the parameterised actions of a subset of
the sub-trees.

Notations. We extensively use indexed structures over some countable indexed
sets, which are equivalent to mappings over the countable set. ai∈I

i denotes a
family of elements ai indexed over the set I. ai∈I

i defines both I the set over

178 L. Henrio et al.

which the family is indexed (called range), and ai the elements of the family.
E.g., ai∈{3} is the mapping with a single entry a at index 3 ; abbreviated (3�→a)
in the following. When this is not ambiguous, we shall use notations for sets, and
typically write “indexed set over I” when formally we should speak of multisets,
and write x ∈ ai∈I

i to mean ∃i ∈ I. x = ai. An empty family is denoted ∅. We
denote classically a a family when the indexing set is not meaningful. � is the
disjoint union on indexed sets.

Term Algebra. Our models rely on a notion of parameterised actions, that are
symbolic expressions using data types and variables. As our model aims at encod-
ing the low-level behaviour of possibly very different programming languages, we
do not want to impose one specific algebra for denoting actions, nor any specific
communication mechanism. So we leave unspecified the constructors of the alge-
bra that will allow building expressions and actions. Moreover, we use a generic
action interaction mechanism, based on (some sort of) unification between two
or more action expressions, to express various kinds of communication or syn-
chronisation mechanisms.

Formally, we assume the existence of a term algebra TΣ,P , where Σ is the
signature of the data and action constructors, and P a set of variables. Within
TΣ,P , we distinguish a set of data expressions EP , including a set of boolean
expressions BP (BP ⊆ EP). On top of EP we build the action algebra AP , with
AP ⊆ TP , EP ∩ AP = ∅; naturally action terms will use data expressions as sub-
terms. To be able to reason about the data flow between pLTSs, we distinguish
input variables of the form ?x within terms; the function vars(t) identifies the
set of variables in a term t ∈ T , and iv(t) returns its input variables.

pNets can encode naturally the notion of input actions in value-passing CCS
[14] or of usual point-to-point message passing calculi, but it also allows for
more general mechanisms, like gate negociation in Lotos, or broadcast commu-
nications. Using our notations, value-passing actions à la CCS would be encoded
as a(?x1, ..., ?xn) for inputs, a(v1, .., vn) for outputs (in which vi are action terms
containing no input variables). We can also use more complex action structure
such as Meije-SCCS action monoids, like in a.b, af(n) (see [1]). The expressive-
ness of the synchronisation constructs will depend on the action algebra.

2.1 The (open) pNets Core Model

A pLTS is a labelled transition system with variables; variables can be manipu-
lated, defined, or accessed inside states, actions, guards, and assignments. With-
out loss of generality and to simplify the formalisation, we suppose here that
variables are local to each state: each state has its set of variables disjoint from
the others. Transmitting variable values from one state to the other can be done
by explicit assignment. Note that we make no assumption on finiteness of the
set of states nor on finite branching of the transition relation.

We first define the set of actions a pLTS can use, let a range over action
labels, op are operators, and xi range over variable names. Action terms are:

A Theory for the Composition of Concurrent Processes 179

α ∈ A ::= a(p1, . . . , pn) action terms
pi ::= ?x | Expr parameters (input variable or expression)

Expr ::= Value | x | op(Expr1, ..,Exprn) Expressions

The input variables in an action term are those marked with a ?. We additionally
suppose that each input variable does not appear somewhere else in the same
action term: pi =?x ⇒ ∀j
= i. x /∈ vars(pj)

Definition 1 (pLTS). A pLTS is a tuple pLTS � 〈〈S, s0,→〉〉 where:

• S is a set of states.
• s0 ∈ S is the initial state.
• →⊆ S × L × S is the transition relation and L is the set of labels of the form

〈α, eb, (xj := ej)j∈J〉, where α ∈ A is a parameterised action, eb ∈ B is
a guard, and the variables xj ∈ P are assigned the expressions ej ∈ E. If

s
〈α, eb, (xj:=ej)

j∈J〉−−−−−−−−−−−−−→ s′ ∈→ then iv(α) ⊆ vars(s′), vars(α)\iv(α) ⊆ vars(s),
vars(eb)⊆vars(s′), and ∀j ∈J. vars(ej)⊆vars(s) ∧ xj ∈vars(s′).

Now we define pNet nodes, as constructors for hierarchical behavioural struc-
tures. A pNet has a set of sub-pNets that can be either pNets or pLTSs, and a
set of Holes, playing the role of process parameters.

A composite pNet consists of a set of sub-pNets exposing a set of actions,
each of them triggering internal actions in each of the sub-pNets. The synchro-
nisation between global actions and internal actions is given by synchronisation
vectors: a synchronisation vector synchronises one or several internal actions,
and exposes a single resulting global action. Actions involved at the pNet level
(in the synchronisation vectors) do not need to distinguish between input and
output variables. Action terms for pNets are defined as follows:

α ∈ AS ::= a(Expr1, . . . , Exprn)

Definition 2 (pNets). A pNet is a hierarchical structure where leaves are
pLTSs and holes:
pNet � pLTS | 〈〈pNet i∈I

i , Sj∈J
j ,SV k∈K

k 〉〉 where

• I ∈ I is the set over which sub-pNets are indexed.
• pNet i∈I

i is the family of sub-pNets.
• J ∈ IP is the set over which holes are indexed. I and J are disjoint: I∩J = ∅,

I ∪ J
= ∅
• Sj ⊆ AS is a set of action terms, denoting the Sort of hole j.
• SV k∈K

k is a set of synchronisation vectors (K ∈ IP). ∀k ∈ K,SV k =
αl∈Ik	Jk

l → α′
k where α′

k ∈ AP , Ik ⊆ I, Jk ⊆ J , ∀i ∈ Ik. αi ∈ Sort(pNet i),
∀j ∈ Jk. αj ∈ Sj, and vars(α′

k) ⊆ ⋃
l∈Ik	Jk

vars(αl). The global action of a
vector SV k is Label(SV k) = α′

k.

The preceding definition relies on the auxiliary functions below:

180 L. Henrio et al.

0

1l r

P Q

δ

<δ(x2), acc(x2), δ> -> δ(x2)

{<-, a2, r> -> a2}a2∈Sort(Q)

C1

{<a1, -, l> -> a1}a1∈Sort(P),a1
=δ(x1)Enable1

0

P Q
<δ(y2), acc(y2), δ> -> δ(y2)

{<-, b2, r> -> b2}b2∈Sort(Q)

C2

{<b1, -, l> -> b1}b1∈Sort(P),b1
=δ(y1)

l [s0=0]

δ [s0=0] s0:=1

r [s0=1]

Enable2

s0:=0

Fig. 1. Two pNet encodings for Enable

Definition 3 (Sorts, Holes, Leaves of pNets).

– The sort of a pNet is its signature, i.e. the set of actions it can perform. In the
definition of sorts, we do not need to distinguish input variables (that specify
the dataflow within LTSs), so for computing LTS sorts, we use a substitution
operator1 to remove the input marker of variables. Formally:

Sort(〈〈S, s0,→〉〉) = {α{{x ←?x|x ∈ iv(α)}}|s 〈α, eb, (xj:=ej)
j∈J〉−−−−−−−−−−−−−→ s′ ∈→}

Sort(〈〈pNet ,S ,SV 〉〉) = {α′
k|αj∈Jk

j → α′
k ∈ SV }

– The set of holes of a pNet is defined inductively; the sets of holes in a pNet
node and its subnets are all disjoint:

Holes(〈〈S, s0,→〉〉)=∅
Holes(〈〈pNet i∈I

i , Sj∈J
j , SV 〉〉) = J ∪

⋃

i∈I

Holes(pNet i)

∀i ∈ I. Holes(pNet i) ∩ J = ∅
∀i1, i2 ∈ I. i1
= i2 ⇒ Holes(pNet i1) ∩ Holes(pNet i2) = ∅

– The set of leaves of a pNet is the set of all pLTSs occurring in the structure,
defined inductively as:

Leaves(〈〈S, s0,→〉〉)={〈〈S, s0,→〉〉}
Leaves(〈〈pNet i∈I

i , Sj∈J
j ,SV 〉〉) =

⋃

i∈I

Leaves(pNet i)

A pNet Q is closed if it has no hole: Holes(Q) = ∅; else it is said to be open.

1 {{yk ← xk}}k∈K is the parallel substitution operation.

A Theory for the Composition of Concurrent Processes 181

Alternative Syntax. When describing examples, we usually deal with pNets with
finitely many sub-pNets and holes, and it is convenient to have a more concrete
syntax for synchronisation vectors. When I∪J =[0..n] we denote synchronisation
vectors as < α1, .., αn >→α, and elements not taking part in the synchronisation
are denoted − as in: < −,−, α,−,− >→α.

0

1l r

Q R

P

δ

<δ(x4), acc(x4), δ> -> δ(x4)

{<-, a4, r> -> a4}a4∈Sort(R)

C4

{<a3, -, l> -> a3}a3∈Sort(Q),a3
=δ(x3)C3

EnableCompL

Fig. 2. Composed pNet for “P�(Q�R)”

Example 1. To give simple intuitions of the open pNet model and its semantics,
we use here a small example coming from the Lotos specification language. It
will be used as an illustrative example in the whole paper. We already have
shown in [7] how to encode non trivial operators using synchronisation vectors
and one or several pLTSs used as controllers, managing the state changes of the
operators. In Fig. 1, we show 2 possible encodings of the Lotos “Enable” operator.
In the Enable expression “P�Q”, an exit(x) statement within P terminates the
current process, carrying a value x that is captured by the accept(x) statement
of Q.

We use a simple action algebra, containing two constructors δ(x) and acc(x),
for any possible data type of the variable x, corresponding to the statements
exit(x) and accept(x). Both δ(x) and acc(x) actions are implicitly included
in the sorts of all processes. We need no specific predicate over the action expres-
sions, apart from equality of actions. In the first encoding Enable1, in the upper
part of Fig. 1, we use a controller C1 with two states, and simple control actions
l, r, δ. The second encoding Enable2 uses a data-oriented style, with a single
state controller, and a state-variable s0, with values in {0, 1}.

In this example we use a specific notation for local actions, that cannot be
further synchronised, like the τ silent action of CCS. We name them synchronised
actions, and denote them as any action expression with the text underlined, as
e.g. δ(x2). Such synchronised actions do not play any special role for defining
strong bisimulation, but as one can expect, will be crucial for weak equivalences.

Note that synchronisation vectors are defined in a parameterised manner:
the first and third lines represent one vector for each parameterised action in
the Sort of hole P (resp. Q). This notation can also use predicates, as in the first
case, in which we want the vector to apply to any action of P except δ(x).

182 L. Henrio et al.

In Fig. 2, we enrich our example by composing 2 occurences of the Enable1
pNet. To simplify, we only have represented one instance of the synchronisation
vector set, and of the controller.

The reader can easily infer from these two figures the following sets:

Holes(EnableCompL) = {P, Q, R}
Leaves(EnableCompL)) = {C3, C4}
Sort(C1) = Sort(C2) = Sort(C4) = {l, δ, r})
Sort(EnableCompL) = Sort(P)\{δ(x)} ∪ Sort(Q)\{δ(x)} ∪ Sort(R) ∪ {δ(x)}.

3 Operational Semantics for Open pNets

In [7] we defined an operational semantics for closed pNets, expressed in a late
style, where states and transition were defined for a specific valuation of all
the pNet variables. Here we have a very different approach: we build a direct
symbolic operational semantics for open pNets, encoding formally hypotheses
about the behaviour of the holes, and dealing symbolically with the variables.
This will naturally lead us in the following sections to the definition of an open
bisimulation equivalence, playing explicitly with predicates on the action of holes,
and values of variables.

The idea is to consider an open pNet as an expression similar to an open
process expression in a process algebra. pNet expressions can be combined to
form bigger expressions, at the leaves pLTSs are constant expressions, and holes
play the role of process parameters. In an open pNet, pLTSs naturally have
states, and holes have no state; furthermore, the shape of the pNet expression is
not modified during operational steps, only the state of its pLTSs can change.

The semantics of open pNets will be defined as an open automaton. An open
automaton is an automaton where each transition composes transitions of several
LTSs with action of some holes, the transition occurs if some predicates hold,
and can involve a set of state modifications.

Definition 4 (Open Transitions). An open transition over a set (Si, s0i,→i

)i∈I of LTSs, a set J of holes with sorts Sortj∈J
j , and a set of states S is a

structure of the form:

··{si
ai−→i s′

i}i∈I , { bj−→j}j∈J ,Pred ,Post

s
v−→ s′

Where s, s′ ∈ S and for all i ∈ I, si
ai−→is

′
i is a transition of the LTS (Si, s0i,→i),

and
bj−→j is a transition of the hole j, for any action bj in the sort Sortj. Pred is

a predicate over the different variables of the terms, labels, and states si, bj, s, v.
Post is a set of equations that hold after the open transition, they are represented
as a substitution of the form {xk ← ek}k∈K where xk are variables of s′, s′

i, and
ek are expressions over the other variables of the open transition.

A Theory for the Composition of Concurrent Processes 183

Example 2 An open-transition. The EnableCompL pNet of Fig. 2 has 2 con-
trollers and 2 holes. One of its possible open-transition is:

OT2 = ···
0 δ−→C3 1 0 l−→C4 0

δ(x4)−−−→P
accept(x4)−−−−−−−→Q

A10
δ(x4)−−−→ A11

Definition 5 (Open Automaton). An open automaton is a structure
A =< LTSi∈I

i , J,S, s0, T > where:

• I and J are sets of indices,
• LTSi∈I

i is a family of LTSs,
• S is a set of states and s0 an initial state among S,
• T is a set of open transitions and for each t ∈ T there exist I ′, J ′ with I ′ ⊆ I,

J ′ ⊆ J , such that t is an open transition over LTSi∈I′
i , J ′, and S.

Definition 6 (States of Open pNets). A state of an open pNet is a tuple
(not necessarily finite) of the states of its leaves (in which we denote tuples in
structured states as � . . . � for better readability).

For any pNet p, let Leaves = 〈〈Si, si0,→i〉〉i∈L be the set of pLTS at its leaves,
then States(p) = {�si∈L

i � |∀i ∈ L.si ∈ Si}. A pLTS being its own single leave:
States(〈〈S, s0,→〉〉) = {�s � |s ∈ S}.

The initial state is defined as: InitState(p) = �si0
i∈L�.

Predicates: Let 〈〈pNet , S,SV k∈K
k 〉〉 be a pNet. Consider a synchronisation vector

SVk, for k ∈ K. We define a predicate Pred relating the actions of the involved
sub-pNets and the resulting actions. This predicate verifies:

Pred(SVk, ai∈I
i , bj∈J

j , v) ⇔ ∃(a′
i)

i∈I
, (b′

j)
j∈J

, v′. SVk = (a′
i)

i∈I
, (b′

j)
j∈J → v′

∧ ∀i ∈ I. ai = a′
i ∧ ∀j ∈ J. bj = b′

j ∧ v = v′

In any other case (if the action families do not match or if there is no valuation of
variables such that the above formula can be ensured) the predicate is undefined.

This definition is not constructive but it is easy to build the predicate con-
structively by brute-force unification of the sub-pNets actions with the corre-
sponding vector actions, possibly followed by a simplification step.

We build the semantics of open pNets as an open automaton where LTSs
are the pLTSs at the leaves of the pNet structure, and the states are given by
Definition 6. The open transitions first project the global state into states of the
leaves, then apply pLTS transitions on these states, and compose them with the
sort of the holes. The semantics regularly instantiates fresh variables, and uses
a clone operator that clones a term replacing each variable with a fresh one.

Definition 7 (Operational Semantics of Open pNets). The semantics of
a pNet p is an open automaton A =< Leaves(p), J,S, s0, T > where:

– J is the indices of the holes: Holes(p) = Hj∈J
j .

184 L. Henrio et al.

– S = States(p) and s0 = InitState(p)
– T is the smallest set of open transitions satisfying the rules below:

The rule for a pLTS p checks that the guard is verified and transforms assign-
ments into post-conditions:

Tr1:
s

〈α, eb, (xj:=ej)
j∈J〉−−−−−−−−−−−−−→ s′ ∈→

p = 〈〈S, s0,→〉〉 |= ··{s
α−→p s′}, ∅, eb, {xj ← ej}j∈J

�s�
α−→ �s′�

The second rule deals with pNet nodes: for each possible synchronisation vec-
tor applicable to the rule subject, the premisses include one open transition for
each sub-pNet involved, one possible action for each Hole involved, and the pred-
icate relating these with the resulting action of the vector. A key to understand
this rule is that the open transitions are expressed in terms of the leaves and
holes of the pNet structure, i.e. a flatten view of the pNet: e.g. L is the index
set of the Leaves, Lk the index set of the leaves of one subnet, so all Lk are
disjoint subsets of L. Thus the states in the open transitions, at each level, are
tuples including states of all the leaves of the pNet, not only those involved in
the chosen synchronisation vector.

Tr2:

k∈K SV =clone(SVk)=αm∈Ik	Jk
m →α′

k Leaves(p)=pLTS l∈L
l

∀m ∈ Ik.pNetm |= ···{si
ai−→i s′

i}i∈I′
m , { bj−→j}j∈J ′

m ,Predm,Postm

�si∈Lm
i �

vm−−→ �s′ i∈Lm
i �

I ′ =
⊎

m∈Ik

I ′
m

J ′ =
⊎

m∈Ik

J ′
m � Jk Pred =

∧

m∈Ik

Predm ∧ Pred(SV, ai∈Ik
i , bj∈Jk

j , v)

∀j∈Jk.fresh(bj) fresh(v) ∀i ∈ L\I ′. s′
i = si

p = 〈〈pNet i∈I
i , Sj∈J

j ,SV k∈K
k 〉〉 |= ···{si

ai−→i s′
i}i∈I′

, { bj−→j}j∈J ′
,Pred ,�m∈IkPostm

�si∈L
i �

v−→ �s′i∈L
i �

Example 3. Using the operational rules to compute open-transitions In Fig. 3 we
show the deduction tree used to construct and prove the open transition OT2 of
EnableCompL (see Example p. x). The rule uses TR1 for the δ transition of C3,
for the l transition of C4, then combines the result using the a4 vector of the
bottom pNet node, and the δ(x) vector of the top node.

Note that while the scenario above is expressed as a single instantiation of
the possible behaviours, the constructions below are kept symbolic, and each
open-transition deduced expresses a whole family of behaviours, for any possible
values of the variables.

A Theory for the Composition of Concurrent Processes 185

0
δ−→C3 1

C3 |= ···0
δ−→C3 1, { δ(x1)−−−→P }, v1 = δ(x1)

�0�
v1−→ �1�

0
l−→C4 0

C4 |= ··································
0

l−→C4 0, C4

�0�
l−→ �0�

|= ··0
l−→C4 0, { acc(x2)−−−−−→Q}, v2 = acc(x2)

�0�
v2−→ �0�

|= ··0
δ−→C3 1 , 0

l−→C4 0 , { δ(x)−−−→P ,
acc(x)−−−−→Q} , a3 = v1 ∧ v = a3 ∧ x1 = x2

�00�
v−→ �10�

Fig. 3. Proof of transition OT2 (with interaction of processes P and Q) for
“P�(Q�R)”

Variable Management. The variables in each synchronisation vector are consid-
ered local: for a given pNet expression, we must have fresh local variables for
each occurrence of a vector (= each time we instantiate rule Tr2). Similarly the
state variables of each copy of a given pLTS in the system, must be distinct,
and those created for each application of Tr2 have to be fresh and all distinct.
This will be implemented within the open-automaton generation algorithm, e.g.
using name generation using a global counter as a suffix.

3.1 Computing and Using Open Automata

In this section we present a simple algorithm to construct the open automaton
representing the behaviour of an open pNet, and we prove that under reasonable
conditions this automaton is finite.

Algorithm 1 (Behavioural Semantics of Open pNets: Sketch). This is
a standard residual algorithm over a set of open-automaton states, but where
transitions are open transitions constructively “proven” by deduction trees.

(1) Start with a set of unexplored states containing the initial state of the
automaton, and an empty set of explored states.

(2) While there are unexplored states:
(2a) pick one state from the unexplored set and add it to the explored set. From

this state build all possible deduction trees by application of the structural
rules Tr1 and Tr2, using all applicable combinations of synchronisation
vectors.

(2b) For each of the obtained deduction trees, extract the resulting open-
transition, with its predicate and Post assignments by exploring the struc-
ture of the pNet.

186 L. Henrio et al.

(2c) Optionally, simplifying the predicate at this point may minimize the result-
ing transitions, or even prune the search-space.

(2d) For each open-transition from step 2b, add the resulting state in the unex-
plored set if it is not already in the explored set, and add the transition in
the outgoing transitions of the current state.

To have some practical interest, it is important to know when this algorithm
terminates. The following theorem shows that an open-pNet with finite synchro-
nisation sets, finitely many leaves and holes, and each pLTS at leaves having a
finite number of states and (symbolic) transitions, has a finite automaton:

Theorem 2 (Finiteness of Open-Automata). Given an open pNet
〈〈pNet , S,SV k∈K

k 〉〉 with leaves pLTSi∈L
i and holes Holej∈J

j , if the sets L
and J are finite, if the synchronisation vectors of all pNets included in
〈〈pNet , S,SV k∈K

k 〉〉 are finite, and if ∀i ∈ L. finite(states(pLTSi)) and pLTSi

has a finite number of state variables, then Algorithm1 terminates and produces
an open automaton T with finitely many states and transitions.

Proof. The possible set of states of the open-automaton is the cartesian product
of the states of its leaves pLTSi∈L

i , that is finite by hypothesis. So the top-level
residual loop of Algorithm1 terminates provided each iteration terminates. The
enumeration of open-transitions in step 2b is bounded by the number of appli-
cations of rules Tr2 on the structure of the pNet tree, with a finite number of
synchronisation vectors applying at each node the number of global open transi-
tion is finite. Similarily rule Tr1 is applied finitely if the number of transitions of
each pLTS is finite. So we get finitely many deduction trees, and open-transitions
which ensures that each internal loop of Algorithm 1 terminates. ��

4 Bisimulation

Now we use our symbolic operational semantics to define a notion of strong
(symbolic) bisimulation.Moreover this equivalence is decidable whenever we have
some decision procedure on the predicates of the action algebra.

The equivalence we need is a strong bisimulation between pNets having
exactly the same Holes with the same sorts, but using a flexible matching between
open transition, to accommodate comparisons between pNet expressions with
different architectures. We name it FH-bisimulation, as a short cut for the “For-
mal Hypotheses” manipulated in the transitions, but also as a reference to the
work of De Simone [1], that pioneered this idea. Formally:

....

Pred
J

s1

s1′

R̃

R̃

J J
PredxPred1

s2

s2′
1 s2′

x

Definition 8 (FH-bisimulation).
Suppose that A1 =< L1, J,S1, s

1
0, T1 > and A2 =<

L2, J,S2, s
2
0, T2 > are open automata where the

set of holes are equal and of the same sort. Let
(s1, s2|Pred) ∈ R be a relation over the sets S1 and
S2 constrained by a predicate. More precisely, for

A Theory for the Composition of Concurrent Processes 187

any pair (s1, s2), there is a single (s1, s2|Pred) ∈ R
stating that s1 and s2 are related if Pred is true.
Then R is an FH-bisimulation iff for any states s1 ∈ S1 and s2 ∈ S2,
(s1, s2|Pred) ∈ R, we have the following:

– For any open transition OT in T1:

···{s1i
ai−→i s1

′
i }i∈I1 , { bj−→j}j∈J1 ,PredOT ,PostOT

s1
v−→ s1

′

there exist open transitions OT x∈X
x ⊆ T2:

··{s2i
aix−−→i s2ix}i∈I2x , { bjx−−→j}j∈J2x ,PredOTx

,PostOTx

s2
vx−→ s2x

such that ∀x, J1 = J2x, (s1
′
, s2

′
x |Pred targetx) ∈ R; and

Pred ∧ PredOT

=⇒∨
x∈X (∀j.bj = bjx ⇒ PredOTx

∧ v=vx ∧ Pred targetx{{PostOT}}{{PostOTx
}})

– and symmetrically any open transition from s2 in T2 can be covered by a set
of transitions from t1 in T1.

Two pNets are FH-bisimilar if there exist a relation between their associated
automata that is an FH-bisimulation.

Classically, Pred targetx{{PostOT}}{{PostOTx
}} applies in parallel the substitu-

tions PostOT and PostOTx
(parallelism is crucial inside each Post set but PostOT

is independent from PostOTx
), applying the assignments of the involved rules.

Weak symbolic bisimulation can be defined in a similar way, using as invisible
actions a subset of the synchronised actions defined in Sect. 2. To illustrate our
approach on a simple example, let us encode the Lotos Enable operator using
2 different encodings, and prove their equivalence.

Example 4. In Fig. 1, we proposed two different open pNets encoding the expres-
sion P�Q. While it is easy to be convinced that they are equivalent, their
structures are sufficiently different to show how the FH-bisimultion works and
addresses the crucial points on the proof of equivalence between operators. The
open automata of these two pNets are given, together with their open transitions
in Fig. 4. To illustrate the proof of bisimulation, let us build a relation:

R = {(A0, B0|s0 = 0), (A1, B0|s0 = 1)}

and prove that R is a strong FH-bisimulation. For each transition in each
automaton, we must find a covering set of transitions, with same holes involved,
and equivalent target states. Finding the matching here is trivial, and all cover-
ing sets are reduced to singleton. All proofs are pretty similar, so we only show

188 L. Henrio et al.

A0 A1
ot2

ot1 ot3

B0
ot′3

ot′2

ot′1

ot1 =···0
l−→C1 0,

a1−→P , a1 �= δ(x1)

A0
a1−→ A0

ot2 =···
0

δ−→C1 1, { δ(x2)−−−→P ,
acc(x2)−−−−−→Q}

A0

δ(x2)−−−→ A1

ot3 =····································0
r−→C1 1,

a2−→q

A1
a2−→ A1

ot′
1 =···

0
l−→C2 0,

b1−→P , b1 �= δ(y1)∧s0 = 0

B0
b1−→ B0

ot′
2 =··

0
δ−→C2 1, { δ(y2)−−−→P ,

acc(y2)−−−−−→Q},
s0 = 0, {s0 ← 1}

B0

δ(y2)−−−→ B1

ot′
3 =···

1
r−→C2 1,

b2−→q, s0 = 1

B1
b2−→ B1

Fig. 4. The two open automata

here the details for matching (both ways) the open transitions ot2 and ot′2; these
are the most interesting, because of the presence of the assignment.

Consider transition ot2 of state A0, and prove that it is covered by ot′2. Let
us detail the construction of the proof obligation:

Pred ∧ PredOT =⇒ ∨
x∈X (∀j.bj = bjx =⇒ PredOTx

∧ v=vx ∧ Predtargetx{{PostOT}}{{PostOTx
}})

s0 = 0 =⇒ (δ(x2) = δ(y2) ∧ acc(x2) = acc(y2) =⇒ s0 = 0 ∧ δ(y2) = δ(x2) ∧ 1 = 1)

The source Pred for A0 in ot2 is s0 = 0, and ot2 itself has no predicate. Then
we find the condition for holes to have the same behaviours, and from that we
must prove the predicate in ot′2 holds, and finally the predicate of the target
state (A1, B0|s0 = 1), after substitution using the assignment {{s0 ← 1}}, that is
1 = 1. This formula (in which all variables are universally quantified) is easy to
discharge.

Conversely, transition ot′2 of state B0 matches with ot2 of A0, but now the
assignment is on the left hand side, and the proof goal mostly concern the trig-
gered action as ot2 has no predicate:
s0 = 0 ∧ s0 = 0 =⇒ (δ(y2) = δ(x2) ∧ acc(y2) = acc(x2) =⇒ δ(x2) = δ(y2) ∧ 1 = 1)

��
Despite the simplicity of the proven equivalence, the proof of bisimulation

highlights precisely the use of the different predicates. It is also important to see
that all the arguments necessary for proving the equivalence are well identified
and properly used, and that we really made a proof about the operator without
having to refer to the behaviour of the processes that will be put in the holes.
This simple example shows the expressiveness of our approach by illustrating the
use of variables, assignments, controllers and sort of holes. It is straightforward
to prove e.g. that the enable operator is associative, after computing the open

A Theory for the Composition of Concurrent Processes 189

automaton of the pNet EnableComp from Fig. 2, and a similar one representing
(P>>Q)>>R). Each of the automata has 3 states and 5 open-transitions. For
reasons of space we cannot show them here [15]. We can finally prove that it
is decidable whether a relation is a FH-bisimulation provided the logic of the
predicates is decidable.

Theorem 3 (Decidability of FH-bisimulation). Let A1 and A2 be finite
open automata and R a relation over their states S1 and S2 constrained by a set
of predicates. Assume that the predicates inclusion is decidable over the action
algebra AP . Then it is decidable whether the relation R is a FH-bisimulation.

Proof. The principle is to consider each pair of states (s1, s2), consider the ele-
ment (s1, s2|Pred) in R; if Pred is not false we consider the (finite) set of open
transition having s1

v−→ s′
1 as a conclusion. For each of them, to prove the sim-

ulation, we can consider all the transitions leaving s2. Let OTx be the set of all
transitions with a conclusion of the form s2

v−→ s′
2x such that the same holes

are involved in the open transition and such that there exist Pred targetx such
that (s′

1, s
′
2x|Pred targetx) ∈ R. This gives us the predicates and Post assignments

corresponding to those open transitions. We then only have to prove:

Pred ∧ PredOT ⇒
∨

x∈X

(∀j.bj = bjx ⇒ PredOTx ∧ v=vx ∧ Predtargetx{{PostOT}}{{PostOTx}})

Which is decidable since predicates inclusion is decidable. As the set of elements
in R is finite and the set of open transitions is finite, it is possible to check them
exhaustively. ��

5 Composability

The main interest of our symbolic approach is to define a method to prove
properties directly on open structures, that will be preserved by any correct
instantiation of the holes. In this section we define a composition operator for
open pNets, and we prove that it preserves FH-bisimulation. More precisely, one
can define two preservation properties, namely (1) when one hole of a pNet is
filled by two bisimilar other (open) pNets; and (2) when the same hole in two
bisimilar pNets are filled by the same pNet, in other words, composing a pNet
with two bisimilar contexts. The general case will be obtained by transitivity of
the bisimulation relation. We concentrate here on the second property, that is
the most interesting.

Definition 9 (pNet Composition). An open pNet: pNet = 〈〈pNet i∈I
i ,

Sj∈J
j ,SV 〉〉 can be (partially) filled by providing a pNets pNet ′ of the right sort

to fill one of its holes. Suppose j0 ∈ J :

pNet
[
pNet ′]

j0
= 〈〈pNet i∈I

i � {j0 �→pNet ′}, S
j∈J\{j0}
j ,SV 〉〉

190 L. Henrio et al.

Theorem 4 (Context Equivalence). Consider two FH-bisimilar open pNets:
pNet = 〈〈pNet i∈I

i , Sj∈J
j ,SV 〉〉 and pNet ′ = 〈〈pNet ′i∈I

i , Sj∈J
j ,SV ′〉〉 (recall they

must have the same holes to be bisimilar). Let j0 ∈ J be a hole, and Q be a pNet
such that Sort(Q) = Sj0 . Then pNet [Q]j0 and pNet ′[Q]j0 are FH-bisimilar.

The proof of Theorem 4 relies on two main lemmas, dealing respectively
with the decomposition of a composed behaviour between the context and the
internal pNet, and with their recomposition. We start with decomposition: from
one open transition of P [Q]j0 , we exhibit corresponding behaviours of P and Q,
and determine the relation between their predicates:

Lemma 1 (OT Decomposition). Let Leaves(Q) = p
l∈LQ

l ; suppose:

P [Q]j0 |= ···{si
ai−→i s′

i}i∈I , { bj−→j}j∈J ,Pred ,Post

�si∈L
i �

v−→ �s′i∈L
i �

with Q “moving” (i.e. J ∩ Holes(Q)
= ∅ or I ∩ LQ
= ∅). Then there exist vQ,
Pred ′, Pred ′′, Post ′, Post ′′ s.t.:

P |= ···{si
ai−→i s′

i}i∈I\LQ , { bj−→j}j∈J\Holes(Q)∪{j0},Pred ′,Post ′

�s
i∈L\LQ

i �
v−→ �s

′ i∈L\LQ

i �

and Q |= ···{si
ai−→i s′

i}i∈I∩LQ , { bj−→j}j∈J∩Holes(Q),Pred ′′,Post ′′

�s
i∈LQ

i �
vQ−−→ �s

′ i∈LQ

i �

and Pred{{vQ ← bj0}} = (Pred ′ ∧ Pred ′′), Post = Post ′ � Post ′′ where Post ′′ is
the restriction of Post over variables of Leaves(Q).

Proof. Consider each premise of the open transition (as constructed by rule
TR2 in Definition 7). We know each premise is true for P [Q] and try to prove
the equivalent premise for P . First, K and the synchronisation vector SVk are
unchanged2 (however j0 passes from the set of subnets to the set of holes). Then
SV = clone(αj∈Ik	{j0}	Jk

j). Leaves(P [Q]j0) = Leaves(P)�Leaves(Q). Now focus
on OTs of the subnets (see footnote 2):

∀m ∈ Ik ∪ {j0}.pNetm |= ···{si
ai−→i s′

i}i∈Im , { bj−→j}j∈Jm ,Predm,Postm

�si∈Lm
i �

vm−−→ �s′ i∈Lm
i �

Only elements of Ik are useful to assert the premise for reduction of P ; the last
one ensures (note that Q is at place j0, and Ij0 = I ∩ LQ, Lj0 = LQ):

Q |= ···
{si

ai−→i s′
i}i∈I∩LQ , { bj−→j}j∈J∩Holes(Q),Pred j0 ,Post ′′

�s
i∈LQ

i �
vj0−−→ �s

′ i∈LQ

i �

2 Cloning and freshness introduce alpha-conversion at many points of the proof; we
only give major arguments concerning alpha-conversion to make the proof readable;
in general, fresh variables appear in each transition inside terms bj , v, and Pred .

A Theory for the Composition of Concurrent Processes 191

This already ensures the second part of the conclusion if we choose (see foot-
note 2) vQ = vj0 (Pred ′′ = Pred j0). Now let I ′ =

⊎
I ′
m = I \ LQ, J ′ =⊎

J ′
m �Jk �{j0} = J \Holes(Q)�{j0}; the predicate is Pred ′ =

∧
m∈Ik

Predm ∧
Pred(SV, ai∈Ik

i , b
j∈Jk∪{j0}
j , v) where (see footnote 2) Pred(SV, ai∈Ik

i , bj∈Jk

j , v) ⇔
∀i ∈ Ik. αi = ai ∧ ∀j ∈ Jk ∪ {j0}. αj = bj ∧ v = α′

k. Modulo renaming
of fresh variables, this is identical to the predicate that occurs in the source
open transition except αj0 = vj0 has been replaced by αj0 = bj0 . Thus,
Pred{{vQ ← bj0}} = (Pred ′ ∧ Pred ′′). Finally, Post into conditions of the con-
text P and the pNet Q (they are builts similarly as they only deal with leaves):
Post = Post ′ � Post ′′. We checked all the premises of the open transition for
both P and Q. ��

In general, the actions that can be emitted by Q is a subset of the possible
actions of the holes, and the predicate involving vQ and the synchronisation
vector is more restrictive than the one involving only the variable bj0 . Lemma 2
is combining an open transition of P with an open transition of Q, and building
a corresponding transition of P [Q]j0 , assembling their predicates.

Lemma 2. (Open Transition Composition). Suppose j0 ∈ J and:

P |= ··
{si

ai−→i s′
i}i∈I , { bj−→j}j∈J ,

Pred ,Post

�si∈L
i �

v−→ �s′ i∈L
i �

and Q |= ···
{si

ai−→i s′
i}i∈IQ , { bj−→j}j∈JQ ,

Pred ′,Post ′

�s
i∈LQ

i �
vQ−−→ �s

′ i∈LQ

i �

Then, we have: P [Q]j0 |= ···
{si

ai−→i s′
i}i∈I	IQ , { bj−→j}j∈J\{j0}	JQ ,

Pred{{bj0 ← vQ}} ∧ Pred ′,Post � Post ′

�s
i∈L	LQ

i �
v−→ �s

′i∈L	LQ

i �

The proof is omitted, it is mostly similar to Lemma 1, see [15] for details. The
proof of Theorem 4 exhibits a bisimulation relation for a composed system. It
then uses Lemma 1 to decompose the open transition of P [Q] and obtain an open
transition of P on which the FH-bisimulation property can be applied to obtain
an equivalent family of open transitions of P ′; this family is then recomposed by
Lemma 2 to build open transitions of P ′[Q] that simulate the original one.

Proof of (Theorem 4). Let Leaves(Q) = p
l∈LQ

l , Leaves(P) = pl∈L
l , Leaves(P ′) =

p′l∈L′
l . P is FH-bisimilar to P ′: there is an FH-bisimulation R between the

open automata of P and of P ′. Consider the relation R′ = {(s1, s2|Pred)|s1 =
s′
1 � s ∧ s2 = s′

2 � s ∧ s ∈ SQ ∧ (s′
1, s

′
2|Pred) ∈ R} where SQ is the set of states

of the open automaton of Q. We prove that R′ is an open FH-bisimulation.
Consider a pair of FH-bisimilar states: (�s

i∈L	LQ

1i �, �si∈L′
2i � s

i∈LQ

1i � |Pred) ∈ R′.
Consider an open transition OT of P [Q]j0 .

··{si
ai−→i s′

i}i∈I , { bj−→j}j∈J ,PredOT ,PostOT

�s
i∈L	LQ

1i �
v−→ �s′i∈L	LQ

1i �

192 L. Henrio et al.

Let J ′ = J \ Holes(Q) ∪ {j0}. By Lemma 1 we have :

P |= ···{si
ai−→i s′

i}i∈I\LQ , { bj−→j}j∈J ′
,Pred ′,Post ′

�si∈L
1i �

v−→ �s′ i∈L
1i �

Q |= ··{si
ai−→i s′

i}i∈I∩LQ , { bj−→j}j∈J∩Holes(Q),Pred ′′,Post ′′

�s
i∈LQ

1i �
vQ−−→ �s

′ i∈LQ

1i �

and PredOT {{vQ ← bj0}} = (Pred ′ ∧ Pred ′′), PostOT = Post ′ � Post ′′ (Post ′′ is
the restriction of Post over variables of Leaves(Q)). As P is FH-bisimilar to P ′

and (�si∈L
1i �, �si∈L′

2i � |Pred) ∈ R there is a family OT ′
x of open transitions of the

automaton of P ′

···{s2i
aix−−→i s2ix}i∈Ix , { bjx−−→j}j∈J ′

,PredOTx
,PostOTx

�si∈L′
2i �

vx−→ �si∈L′
2ix �

and ∀x, (�si∈L
1i �, �si∈L′

2ix � |Pred tgtx) ∈ R; and
Pred ∧ Pred ′ ⇒ ∨

x∈X (∀j ∈ J ′.bj = bjx ⇒ PredOTx
∧ v = vx ∧ Pred tgtx

{{Post ′}}{{PostOTx
}})

By Lemma 2 (for i ∈ LQ, s2i = s1i and s2ix = s′
1i, and for j ∈ Holes(Q),

bjx = bj):

P ′[Q]j0 |= ···
{s2i

aix−−→i s2ix}i∈Ix	(I∩LQ), { bjx−−→j}j∈J ,
PredOTx

{{bj0x ← vQ}} ∧ Pred ′′,PostOTx
� Post ′′

�s
i∈L′	LQ

2ix �
vx−→ �s

i∈L′	LQ

2i �

Observe J = (J \ Holes(Q) ∪ {j0}) \ {j0} ∪ (J ∩ Holes(Q)). We verify the condi-
tions for the FH-bisimulation between OT and OTx. ∀x, (�s′i∈L	LQ

1i �, �s
i∈L′	LQ

2ix �
|Pred tgtx) ∈ R′.
Pred ∧ PredOT =⇒ (Pred ∧ Pred ′){{bj0 ← vQ}} ∧ Pred ′′ =⇒ ...

=⇒
∨

x∈X

(∀j ∈J ′.bj =bjx ⇒ PredOTx{{bj0←vQ}}∧Pred ′′∧v=vx∧Predtgtx{{Post ′}}{{PostOTx}})

The obtained formula reaches the goal except for two points:

– We need ∀j ∈J instead of ∀j ∈J ′ with J ′ =J\Holes(Q)∪{j0} but the formula
under the quantifier does not depend on bj0 now (thanks to the substitution).
Concerning Holes(Q), adding quantification on new variables does not change
the formula.

– We need Pred tgtx{{PostOT}}{{PostOTx
�Post ′′}} but by Lemma 2, this is equiva-

lent to: Pred tgtx{{Post′�Post′′}}{{PostOTx
�Post ′′}}. We can conclude by observ-

ing that Pred tgtx does not use any variable of Q and thus {{Post′′}} has no
effect. ��

A Theory for the Composition of Concurrent Processes 193

This section proved the most interesting part of the congruence property for
FH-bisimulation. The details of the additional lemmas are not only crucial for
the proof but also shows that open transitions reveal to be a very powerful tool
for proving properties on equivalences and systems. Indeed they show how open
transitions can be composed and decomposed in the general case.

6 Conclusion and Discussion

In this paper, we built up theoretical foundation for the analysis of open para-
meterised automatas. pNets can be seen as a generalisation of labelled transition
systems, and of generic composition systems. By studying open pNets, i.e. pNets
with holes, we target not only a generalised point of view on process calculi, but
also on concurrent process operators. The semantics and the bisimulation theory
presented in this paper bring a strong formal background for the study of open
systems and of system composition. In the past, we used pNets for building for-
mal models of distributed component systems, and applied them in a wide range
of case-studies on closed finitely instantiated distributed application. This work
opens new directions that will allow us to study open parameterised systems in
a systematic, and hopefully fully automatised way.

We are currently extending this work, looking at both further properties of
FH-bisimulation, but also the relations with existing equivalences on closed sys-
tems. We also plan to apply open pNets to the study of complex composition
operators in a symbolic way, for example in the area of parallel skeletons, or
distributed algorithms. We have started developping some tool support for com-
puting the symbolic semantics in term of open-automata. The following steps will
be the development of algorithms and tools for checking FH-bisimulations, and
interfacing with decision engines for predicates, typically SMT solvers. Those
tools will include an algorithm that partitions the states and generates the right
conditions (automatically or with user input) for checking whether two open
pNets are bisimilar. Independently, it is clear that most interesting properties of
such complex systems will not be provable by strong bisimulation. Next steps
will include the investigation of weak versions of the FH-bisimulation, using the
notion of synchronised actions mentionned in the paper.

References

1. De Simone, R.: Higher-level synchronising devices in MEIJE-SCCS. Theor. Com-
put. Sci. 37, 245–267 (1985)

2. Larsen, K.G.: A context dependent equivalence between processes. Theor. Comput.
Sci. 49, 184–215 (1987)

3. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–
389 (1995)

4. Lin, H.: Symbolic transition graph with assignment. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 50–65. Springer, Heidelberg (1996)

5. Hennessy, M., Rathke, J.: Bisimulations for a calculus of broadcasting systems.
Theor. Comput. Sci. 200(1–2), 225–260 (1998)

194 L. Henrio et al.

6. Arnold, A.: Synchronised behaviours of processes and rational relations. Acta Infor-
matica 17, 21–29 (1982)

7. Henrio, L., Madelaine, E., Zhang, M.: pNets: an expressive model for parame-
terisednetworks of processes. In: 23rd Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing (PDP 2015) (2015)

8. Cansado, A., Madelaine, E.: Specification and verification for grid component-
based applications: from models to tools. In: de Boer, F.S., Bonsangue, M.M.,
Madelaine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp. 180–203. Springer,
Heidelberg (2009)

9. Henrio, L., Kulankhina, O., Li, S., Madelaine, E.: Integrated environment for veri-
fying and running distributed components. In: Stevens, P. (ed.) FASE 2016. LNCS,
vol. 9633, pp. 66–83. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 5

10. Rensink, A.: Bisimilarity of open terms. In: Expressiveness in Languages for Con-
currency (1997)

11. Deng, Y.: Algorithm for verifying strong open bisimulation in π calculus. J.
Shanghai Jiaotong Univ. 2, 147–152 (2001)

12. Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite state systems
using presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254,
pp. 400–411. Springer, Heidelberg (1997)

13. Clarke, E.M., Grumberg, O., Jha, S.: Verifying parameterized networks. ACM
Trans. Program. Lang. Syst. 19(5), 726–750 (1997)

14. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice-Hall, Englewood Cliffs (1989). SU Fisher Research 511/24

15. Henrio, L., Madelaine, E., Zhang, M.: A theory for the composition of concurrent
processes - extended version. Rapport de recherche RR-8898, INRIA, April 2016

http://dx.doi.org/10.1007/978-3-662-49665-7_5

Enforcing Availability in Failure-Aware
Communicating Systems

Hugo A. López(B), Flemming Nielson(B), and Hanne Riis Nielson(B)

Technical University of Denmark, Kongens Lyngby, Denmark
{hulo,fnie,hrni}@dtu.dk

Abstract. Choreographic programming is a programming-language
design approach that drives error-safe protocol development in distrib-
uted systems. Motivated by challenging scenarios in Cyber-Physical Sys-
tems (CPS), we study how choreographic programming can cater for
dynamic infrastructures where the availability of components may change
at runtime. We introduce the Global Quality Calculus (GCq), a process
calculus featuring novel operators for multiparty, partial and collective
communications; we provide a type discipline that controls how partial
communications refer only to available components; and we show that
well-typed choreographies enjoy progress.

1 Introduction

Choreographies are a well-established formalism in concurrent programming,
with the purpose of providing a correct-by-construction framework for distrib-
uted systems [9,12]. Using Alice-Bob’s, protocol narrations, they provide the
structure of interactions among components in a distributed system. Combined
with a behavioral type system, choreographies are capable of deriving distributed
(endpoint) implementations. Endpoints generated from a choreography ascribe
all and only the behaviors defined by it. Additionally, interactions among end-
points exhibit correctness properties, such as liveness and deadlock-freedom.
In practice, choreographies guide the implementation of a system, either by
automating the generation of correct deadlock-free code for each component
involved, or by monitoring that the execution of a distributed system behaves
according to a protocol [3,9,32].

In this paper we study the role of availability when building communication
protocols. In short, availability describes the ability of a component to engage
in a communication. Insofar, the study of communications using choreographies
assumed that components were always available. We challenge this assumption
on the light of new scenarios. The case of Cyber-Physical Systems (CPS) is one
of them. In CPS, components become unavailable due to faults or because of
changes in the environment. Even simple choreographies may fail when including
availability considerations. Thus, a rigorous analysis of availability conditions
in communication protocols becomes necessary, before studying more advanced
properties, such as deadlock-freedom or protocol fidelity.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 195–211, 2016.
DOI: 10.1007/978-3-319-39570-8 13

196 H.A. López et al.

Practitioners in CPS take availability into consideration, programming appli-
cations in a failure-aware fashion. First, application-based QoS policies replace
old node-based ones. Second, one-to-many and many-to-one communication pat-
terns replace peer-to-peer communications. Still, programming a CPS from a
component viewpoint such that it respects an application-based QoS is difficult,
because there is no centralized way to ensure its enforcement.

This paper advocates a choreography-based approach for the development of
failure-aware communication protocols, as exemplified by CPS. On the one hand,
interactions described in choreographies take a global viewpoint, in the same way
application-based QoS describe availability policies in a node-conscious fashion.
On the other hand, complex communication including one-to-many and many-
to-one communications can be explicitly defined in the model, which is a clear
advantage over component-based development currently used in CPS. Finally,
choreographies give a formal foundation to practical development of distributed
systems, with Chor [11], ParTypes [27] and Scribble [36].

Contributions. First, we present the Global Quality Calculus (GCq), a process
calculus aimed at capturing the most important aspects of CPS, such as variable
availability conditions and multicast communications. It is a generalization of
the Global Calculus [9,12], a basic model for choreographies and the formal
foundation of the Chor programming language [11]. With respect to the Global
Calculus, GCq introduces two novel aspects: First, it extends the communication
model to include collective communication primitives (broadcast and reduce).
Second, it includes explicit availability considerations. Central to the calculus
is the inclusion of quality predicates [33] and optional datatypes, whose role is
to allow for communications where only a subset of the original participants is
available.

Our second contribution relates to the verification of failure-aware proto-
cols. We focus on progress. As an application-based QoS, a progress property
requires that at least a minimum set of components is available before firing
a communication action. Changing availability conditions may leave collective
communications without enough required components, forbidding the comple-
tion of a protocol. We introduce a type system, orthogonal to session types, that
ensures that well-typed protocols with variable availability conditions do not get
stuck, preserving progress.

Document Structure. In Sect. 2 we introduce the design considerations for a
calculus with variable availability conditions and we present a minimal work-
ing example to illustrate the calculus in action. Section 3 introduces syntax
and semantics of GCq. The progress-enforcing type system is presented in
Sect. 4. Section 5 discusses related work. Finally, Sect. 6 concludes. The Appendix
includes additional definitions.

2 Towards a Language for CPS Communications

The design of a language for CPS requires a technology-driven approach, that
answers to requirements regarding the nature of communications and devices

Enforcing Availability in Failure-Aware Communicating Systems 197

involved in CPS. Similar approaches have been successfully used for Web-
Services [10,31,36], and Multicore Programming [14,27]. The considerations on
CPS used in this work come from well-established sources [2,35]. We will proceed
by describing their main differences with respect to traditional networks.

2.1 Unique Features in CPS Communications

Before defining a language for communication protocols in CPS, it is important
to understand the taxonomy of networks where they operate. CPS are composed
by sensor networks (SN) that perceive important measures of a system, and actu-
ator networks that change it. Some of the most important characteristics in these
networks include asynchronous operation, sensor mobility, energy-awareness,
application-based protocol fidelity, data-centric protocol development, and mul-
ticast communication patterns. We will discuss each of them.

Asynchrony. Depending on the application, deployed sensors in a network have
less accessible mobile access points, for instance, sensors deployed in harsh envi-
ronmental conditions, such as arctic or marine networks. Environment may also
affect the lifespan of a sensor, or increase its probability of failure. To maximize
the lifespan of some sensors, one might expect an asynchronous operation, letting
sensors remain in a standby state, collecting data periodically.

Sensor Mobility. The implementation of sensors in autonomic devices brings
about important considerations on mobility. A sensor can move away from the
base station, making their interactions energy-intensive. In contrast, it might be
energy-savvy to start a new session with a different base station closer to the
new location.

Energy-Awareness. Limited by finite energetic resources, SN must optimize their
energy consumption, both from node and application perspectives. From a node-
specific perspective, a node in a sensor network can optimize its life by turning
parts of the node off, such as the RF receiver. From a application-specific per-
spective, a protocol can optimize it energy usage by reducing its traffic. SN cover
areas with dense node deployment, thus it is unnecessary that all nodes are oper-
ational to guarantee coverage. Additionally, SN must provide self-configuration
capabilities, adapting its behavior to changing availability conditions. Finally, it
is expected that some of the nodes deployed become permanently unavailable,
as energetic resources ran out. It might be more expensive to recharge the nodes
than to deploy new ones. The SN must be ready to cope with a decrease in some
of the available nodes.

Data-Centric Protocols. One of the most striking differences to traditional net-
works is the collaborative behavior expected in SN. Nodes aim at accomplishing a
similar, universal goal, typically related to maintaining an application-level qual-
ity of service (QoS). Protocols are thus data-centric rather than node-centric.
Moreover, decisions in SN are made from the aggregate data from sensing nodes,

198 H.A. López et al.

Fig. 1. Example: Sensor network choreography (Color figure online)

rather than the specific data of any of them [34]. Collective decision-making
based in aggregates is common in SN, for instance, in protocols suites such as
SPIN [20] and Directed Diffusion [24]. Shifting from node-level to application-
level QoS implies that node fairness is considerably less important than in tra-
ditional networks. In consequence, the analysis of protocol fidelity [22] requires
a shift from node-based guarantees towards application-based ones.

Multicast Communication. Rather than peer-to-peer message passing, one-to-
many and many-to-one communications are better solutions for energy-efficient
SN, as reported in [15,19]. However, as the number of sensor nodes in a SN
scales to large numbers, communications between a base and sensing nodes can
become a limiting factor. Many-to-one traffic patterns can be combined with data
aggregation services (e.g.: TAG [29] or TinyDB [30]), minimizing the amount and
the size of messages between nodes.

2.2 Model Preview

We will illustrate how the requirements for CPS communications have been
assembled in our calculus through a minimal example in Sensor Networks (SN).
The syntax of our language is inspired on the Global Calculus [9,12] extended
with collective communication operations [27].

Example 1. Figure 1 portrays a simple SN choreography for temperature mea-
surement. Line 1 models a session establishment phase between sensors t1, t2, t3
(each of them implementing role S) and a monitor tm with role M . In Line 2,
tm invoques the execution of method measure at each of the sensors. In Line
3, an asynchronous many-to-one communication (e.g. reduce) of values of the
same base type (int in this case) is performed between sensors and the monitor.
Quality predicates q1,q2 model application-based QoS, established in terms of
availability requirements for each of the nodes. For instance, q1 = q2 = ∀ only
allows communications with all sensors in place, and q1 = ∀,q2 = 2/3 toler-
ates the absence of one of the sensors in data harvesting. Once nodes satisfy
applications’ QoS requirements, an aggregation operation will be applied to the
messages received, in this case computing the average value.

One important characteristic of fault-tolerant systems, of which CPS are
part, is known as graceful degradation. Graceful degradation allows a system to
maintain functionality when portions of a system break down, for instance, when
some of the nodes are unavailable for a communication. The use of different
quality predicates q1 = ∀,q2 = 2/3 allow us to describe choreographies that
gracefully degrade, since the system preserves functionality despite one of the
nodes is unavailable.

Enforcing Availability in Failure-Aware Communicating Systems 199

Considerations regarding the impact of available components in a commu-
nication must be tracked explicitly. Annotations {X;Y } (in blue font) define
capabilities, that is, control points achieved in the system. The X in t{X;Y }
denotes the required capability for t to act, and Y describes the capability offered
after t has engaged in an interaction. No preconditions are necessary for estab-
lishing a new session, so no required capabilities are necessary in Line 1. After
a session has been established, capabilities (Aci)i∈{0...3} are available in the
system. Lines 2 and 3 modify which capabilities are present depending on the
number of available threads. For example, a run of the choreography in Fig. 1
with q1 = 2/3 will update capabilities from {Ac0, Ac1, Ac2, Ac3} to any of the
sets {Ms0, Ac1,Ms2,Ms3}, {Ms0,Ms1, Ac2,Ms3}, {Ms0,Ms1,Ms2, Ac3}, or
{Ms0,Ms1,Ms2,Ms3}. The interplay between capabilities and quality predi-
cates may lead to choreographies that cannot progress. For example, the chore-
ography above with q2 = ∀ will be stuck, since three of the possible evolutions
fail to provide capabilities {Ms0,Ms1,Ms2,Ms3}. We will defer the discussion
about the interplay of capabilities and quality predicates to Sect. 4.

3 The Global Quality Calculus (GCq)

In the following, C denotes a choreography; p denotes an annotated thread
t[A]{X;Y }, where t is a thread, X,Y are atomic formulae and A is a role anno-
tation. We will use t̃ to denote {t1, . . . , tj} for a finite j. Variable a ranges over
service channels, intuitively denoting the public identifier of a service, and k ∈ N
ranges over a finite, countable set of session (names), created at runtime. Vari-
able x ranges over variables local to a thread. We use terms t to denote data and
expressions e to denote optional data, much like the use of option data types in
programming languages like Standard ML [18]. Expressions include arithmetic
and other first-order expressions excluding service and session channels. In par-
ticular, the expression some(t) signals the presence of some data t and none the
absence of data. In our model, terms denote closed values v. Names m,n range
over threads and session channels. For simplicity of presentation, all models in
the paper are finite.

Definition 1. (GCq syntax).

(Choreographies) C :: = η; C | C + C | if e@p thenC elseC | 0

(Annotated threads) p, r :: = t[A]{X;Y }
(Interactions) η :: = p̃r start p̃s : ak (init)

| pr.e ->&q(p̃s : xs) : k (broadcast)

| &q(p̃r.er) ->ps : x : 〈k, op〉 (reduce)

| pr ->&q(p̃s) : k[l] (select)

A novelty in this variant of the Global calculus is the addition of quality
predicates q, binding thread vectors in a multiparty communication. Essentially,
q determines when sufficient inputs/outputs are available. As an example, q can

200 H.A. López et al.

Fig. 2. Quality predicates: syntax q and semantics [[q]]. (Color figure online)

be ∃, meaning that one sender/receiver is required in the interaction, or it can
be ∀ meaning that all of them are needed. The syntax of q and other examples
can be summarised in Fig. 2. We require q to be monotonic (in the sense that
q(t̃r) implies q(t̃s) for all t̃s ⊆ t̃r) and satisfiable.

We will focus our discussion on the novel interactions. First, start defines a
(multiparty) session initiation between active annotated threads p̃r and anno-
tated service threads p̃s. Each active thread (resp. service thread) implements
the behaviour of one of the roles in Ãr (resp. Ãs), sharing a new session name k.
We assume that a session is established with at least two participating processes,
therefore 2 ≤ |p̃r| + |p̃s|, and that threads in p̃r ∪ p̃s are pairwise different.

The language features broadcast, reduce and selection as collective interac-
tions. A broadcast describes one-to-many communication patterns, where a ses-
sion channel k is used to transfer the evaluation of expression e (located at pr)
to threads in p̃s, with the resulting binding of variable xi at pi, for each pi ∈ p̃s.
At this level of abstraction, we do not differentiate between ways to implement
one-to-many communications (so both broadcast and multicast implementations
are allowed). A reduce combines many-to-one communications and aggregation
[29]. In &q(p̃r.er) ->ps : x : 〈k, op〉, each annotated thread pi in p̃r evaluates an
expression ei, and the aggregate of all receptions is evaluated using op (an oper-
ator defined on multisets such as max,min, etc.). Interaction pr ->&q(p̃s) : k[l]
describes a collective label selection: pr communicates the selection of label l to
peers in p̃s through session k.

Central to our language are progress capabilities. Pairs of atomic formu-
lae {X;Y } at each annotated thread state the necessary preconditions for a
thread to engage (X), and the capabilities provided after its interaction (Y).
As we will see in the semantics, there are no associated preconditions for ses-
sion initiation (i.e. threads are created at runtime), so we normally omit them.
Explicit x@p/e@p indicate the variable/boolean expression x/e is located at p.
We often omit 0, empty vectors, roles, and atomic formulae {X;Y } from anno-
tated threads when unnecessary.

The free term variables fv(C) are defined as usual. An interaction η in
η; C can bind session channels, choreographies and variables. In start, vari-
ables {p̃r, a} are free while variables {p̃s, k} are bound (since they are freshly
created). In broadcast, variables x̃s are bound. A reduce binds {x}. Finally, we
assume that all bound variables in an expression have been renamed apart from
each other, and apart from any other free variables in the expression.

Enforcing Availability in Failure-Aware Communicating Systems 201

Fig. 3. Swap congruence relation, �C

Expressivity. The importance of roles is only crucial in a start interaction.
Technically, one can infer the role of a given thread t used in an interaction η by
looking at the start interactions preceding it in the abstract syntax tree. GCq

can still represent unicast message-passing patterns as in [9]. Unicast communi-
cation p1.e ->p2 : x : k can be encoded in multiple ways using broadcast/reduce
operators. For instance, p1.e -> &∀(p2 : x) : k and &∀(p1.e) ->p2 : x : 〈id, k〉 are
just a couple of possible implementations. The implementation of unicast label
selection p ->r : k[l] can be expressed analogously.

3.1 Semantics

Choreographies are considered modulo standard structural and swapping con-
gruence relations (resp. ≡, �C). Relation ≡ is defined as the least congruence
relation on C supporting α−renaming, such that (C,0,+) is an abelian monoid.
The swap congruence [12] provides a way to reorder non-conflicting interactions,
allowing for a restricted form of asynchronous behavior. Non-conflicting interac-
tions are those involving sender-receiver actions that do not conform a control-
flow dependency. For instance, tA.eA ->&q1(tB : xB) : k1; tC .eC ->&q2(tD :
xD) : k2 �C tC .eC ->&q2(tD : xD) : k2; tA.eA ->&q1(tB : xB) : k1. Formally, let
T(C) be the set of threads in C, defined inductively as T(η; C) def= T(η)∪T(C),
and T(η) def=

⋃
i={1..j} ti if η = t1[A1].e ->&q(t2[A2] : x2, . . . , tj [Aj] : xj) : k

(similarly for init, reduce and selection, and standardly for the other process
constructs in C). The swapping congruence rules are presented in Fig. 3.

A state σ keeps track of the capabilities achieved by a thread in a session,
and it is formally defined as set of maps (t, k) �→ X. The rules in Fig. 4 define
state manipulation operations, including update (σ[σ′]), and lookup (σ(t, k)).

Because of the introduction of quality predicates, a move from η; C into
C might leave some variables in η without proper values, as the participants
involved might not have been available. We draw inspiration from [33], intro-
ducing effect rules describing how the evaluation of an expression in a reduce
operation affects interactions. The relation −→→ (Fig. 5) describes how evalua-
tions are partially applied without affecting waiting threads. Label ξ records the
substitutions of atomic formulae in each thread.

Finally, given φ ∈ {tt, ff}, the relation β ::φ θ tracks whether all required
binders in β have been performed, as well as substitutions used θ. Binder β is

202 H.A. López et al.

Fig. 4. State lookup and update rules (Color figure online)

Fig. 5. Effects (Color figure online)

defined in terms of partially evaluated outputs c:

sc :: = p.e | p.some(v) c :: = &q(sc1, . . . , scn)

The rules specifying β ::φ θ appear in Fig. 6. A substitution θ =
[(p1, some(v1)), . . . , (pn, some(vn))/x1@p1, . . . , xn@pn] maps each variable xi at
pi to optional data some(vi) for 1 ≤ i ≤ n. A composition θ1 ◦ θ2(x) is
defined as θ1 ◦ θ2(x) :: = θ1(θ2(x)), and q(t1, . . . , tn) =

∧
i∈1≤i≤n ti if q = ∀,

q(t1, . . . , tn) =
∨

i∈1≤i≤n ti if q = ∃, and possible combinations therein. As for
process terms, θ(C) denotes the application of substitution θ to a term C (and
similarly for η).

We now have all the ingredients to understand the semantics of GCq. The

set of transition rules in λ−→ is defined as the minimum relation on names, states,
and choreographies satisfying the rules in Fig. 7. The operational semantics is
given in terms of labelled transition rules. Intuitively, a transition (νm̃) 〈σ,C〉 λ−→
(νñ) 〈σ′, C ′〉 expresses that a configuration 〈σ,C〉 with used names m̃ fires an
action λ and evolves into 〈σ′, C ′〉 with names ñ. We use the shorthand notation
A # B to denote set disjointness, A ∩ B = ∅. The exchange function [[X;Y]]Z
returns (Z\X)∪Y if X ⊆ Z and Z otherwise. Actions are defined as λ :: = {τ, η},
where η denotes interactions, and τ represents an internal computation. Relation
e@p ↓ v describes the evaluation of a expression e (in p) to a value v.

We now give intuitions on the most representative operational rules. Rule
�Init� models initial interactions: state σ is updated to account for the new threads
in the session, updating the set of used names in the reductum. Rule �Bcast�
models broadcast: given an expression evaluated at the sender, one needs to check
that there are enough receivers ready to get a message. Such a check is performed
by evaluating q(J). In case of a positive evaluation, the execution of the rule will:
(1) update the current state with the new states of each participant engaged
in the broadcast, and (2) apply the partial substitution θ to the continuation
C. The behaviour of a reduce operation is described using rules �RedD� and
�RedE�: the evaluation of expressions of each of the available senders generates
an application of the effect rule in Fig. 5. If all required substitutions have been
performed, one can proceed by evaluating the operator to the set of received

Enforcing Availability in Failure-Aware Communicating Systems 203

Fig. 6. Rules for β ::φθ

values, binding variable x to its results, otherwise the choreography will wait
until further inputs are received (i.e.: the continuation is delayed).

Remark 1 (Broadcast vs. Selection). The inclusion of separate language con-
structs for communication and selection takes origin in early works of struc-
tured communications [22]. Analogous to method invocation in object-oriented
programming, selections play an important role in making choreographies
projectable to distributed implementations. We illustrate their role with an
example. Assume a session key k shared among threads p, r, s, and an eval-
uation of e@p of boolean type. The choreography p.e ->r : x : k; if

(x@r) then (r.d ->s : y : k) else (s.f ->r : z : k) branches into two different com-
munication flows: one from r to s if the evaluation of x@r is true, and one from
s to r otherwise. Although the evaluation of the guard in the if refers only to r,
the projection of such choreography to a distributed system requires s to behave
differently based on the decisions made by r. The use of a selection operator per-
mits s to be notified by r about which behavior to implement: p.e ->r : x : k;
if (x@r) then (p ->r : k[l1]; r.d ->s : y : k) else (p ->r : k[l2]; s.f ->r : z : k)

Remark 2 (Broadcast vs. Reduce). We opted in favor of an application-based QoS
instead of a classical node-based QoS, as described in Sect. 2. This consideration
motivates the asymmetry of broadcast and reduce commands: both operations
are blocked unless enough receivers are available, however, we give precedence
to senders over receivers. In a broadcast, only one sender needs to be available,
and provided availability constraints for receivers are satisfied, its evolution will
be immediate. In a reduce, we will allow a delay of the transition, capturing in
this way the fact that senders can become active in different instants.

The reader familiar with the Global Calculus may have noticed the absence of
a general asynchronous behaviour in our setting. In particular, rule:

(νm̃) 〈σ,C〉 λ−→ (νñ) 〈σ′, C ′〉 η �= start snd(η) ⊆ fn(λ)
rcv(η) # fn(λ) ñ = m̃, r̃ ∀r∈r̃ (r ∈ bn(λ) r /∈ fn(η))

(νm̃) 〈σ, η; C〉 λ−→ (νñ) 〈σ′, η; C ′〉
�Asynch�

corresponding to the extension of rule �C|ASYNCH� in [12] with collective commu-
nications, is absent in our semantics. The reason behind it lies in the energy con-
siderations of our application: consecutive communications may have different
energetic costs, affecting the availability of sender nodes. Consider for example
the configuration

(νm̃)〈σ, (tA[A]{X;Y }.e ->&∃(˜tr[Br] : xr) : k); tA[A]{X;Y }.e ->&∀(˜ts[Bs] : xs) : k〉

204 H.A. López et al.

Fig. 7. GCq: Operational Semantics (Color figure online)

with t̃r#t̃s and X ⊆ σ(tA, k). If the order of the broadcasts is shuffled, the second
broadcast may consume all energy resources for tA, making it unavailable later.
Formally, the execution of a broadcast update the capabilities offered in σ for
tA, k to Y , inhibiting two communication actions with same capabilities to be
reordered. We will refrain the use Rule �Asynch� in our semantics.

Definition 2 (Progress). C progresses if there exists C ′, σ′, ñ, λ such that
(νm̃) 〈σ,C〉 λ−→ (νñ) 〈σ′, C ′〉, for all σ, m̃.

4 Type-Checking Progress

One of the challenges regarding the use of partial collective operations concerns
the possibility of getting into runs with locking states. Consider a variant of
Example 1 with q1 = ∃ and q2 = ∀. This choice leads to a blocked configuration.
The system blocks since the collective selection in Line (2) continues after a
subset of the receivers in t1, t2, t3, have executed the command. Line (3) requires
all senders to be ready, which will not be the most general case. The system

Enforcing Availability in Failure-Aware Communicating Systems 205

Fig. 8. Variant of Example 1 with locking states (Color figure online)

will additionally block if participant dependencies among communications is not
preserved. The choreography in Fig. 8 illustrates this. It blocks for q1 = ∃, since
the selection operator in Line 2 can proceed by updating the capability associated
to t2 to Ms2, leaving the capabilities for t1, t3 assigned to Ac1, Ac3. With such
state, Line 3 cannot proceed.

We introduce a type system to ensure progress on variable availability con-
ditions. A judgment is written as Ψ � C, where Ψ is a list of formulae in Intu-
itionistic Linear Logic (ILL) [17]. Intuitively, Ψ � C is read as the formulae in
Ψ describe the program point immediately before C. Formulae ψ ∈ Ψ take the
form of the constant tt, ownership types of the form p : k [A] � X, and the
linear logic version of conjunction, disjunction and implication (⊗,⊕,�). Here
p : k [A] � X is an ownership type, asserting that p behaves as the role A in
session k with atomic formula X. Moreover, we require Ψ to contain formulae
free of linear implications in Ψ � C.

Figure 9 presents selected rules for the type system for GCq. The full defini-
tion is included in Appendix A.1. Since the rules for inaction, conditionals and
non-determinism are standard, we focus our explanation on the typing rules for
communications. Rule �TInit� types new sessions: Ψ is extended with function
init(˜tp[A]{X}, k), that returns a list of ownership types ˜tp : k [A] � X. The con-
dition {t̃s, k} # (T(Ψ) ∪ K(Ψ)) ensures that new names do not exist neither in
the threads nor in the used keys in Ψ .

The typing rules for broadcast, reduce and selection are analogous, so we
focus our explanation in �TBcast�. Here we abuse of the notation, writing Ψ � C
to denote type checking, and Ψ � ψ to denote formula entailment. The semantics
of ∀≥1J s.t. C : D is given by ∀J s.t. C : D ∧ ∃J s.t. C. The judgment

Ψ � (tA[A]{XA;YA}.e ->&q(˜tr[Br]{Xr;Yr} : xr) : k); C

succeeds if environment Ψ can provide capabilities for sender tA[A] and for a valid

subset J of the receivers in ˜tr[Br]. J is a valid subset if it contains enough threads
to render the quality predicate true (q(J)), and the proof of ψA, (ψj)j∈J �
tA : k [A] � XA

⊗
j∈J(tj : k [Bj] � Xj) is provable. This proof succeeds if ψA

and (ψj)j∈J contain ownership types for the sender and available receivers with
corresponding capabilities. Finally, the type of the continuation C will consume
the resources used in the sender and all involved receivers, updating them with
new capabilities for the threads engaged.

Example 2 In Example 1, tt � C if (q1 = ∀) ∧ (q2 = {∀,∃}). In the case
q1 = ∃,q2 = ∀, the same typing fails. Similarly, tt �� C if q1 = ∃, for the
variant of Example 1 in Fig. 8.

206 H.A. López et al.

Fig. 9. GCq: Type checking rules (excerpt): Premises for �Tsel� are the same as for
�Tbcast�, without opt.data premises (Color figure online)

A type preservation theorem must consider the interplay between the state and
formulae in Ψ . We write σ |= Ψ to say that the tuples in σ entail the formulae
in Ψ . For instance, σ |= t : k [A] � X iff (t, k,X) ∈ σ. Its formal definition is
included in Appendix A.1.

Theorem 1 (Type Preservation). If (νm̃) 〈σ,C〉 λ−→ (νñ) 〈σ′, C ′〉, σ |= Ψ ,
and Ψ � C, then ∃Ψ ′. Ψ ′ � C ′ and σ′ |= Ψ ′.

Theorem 2 (Progress). If Ψ � C, σ |= Ψ and C �≡ 0, then C progresses.

The decidability of type checking depends on the provability of formulae in
our ILL fragment. Notice that the formulae used in type checking corresponds
to the Multiplicative-Additive fragment of ILL, whose provability is decidable
[26]. For typing collective operations, the number of checks grows according to
the amount of participants involved. Decidability exploits the fact that for each
interaction the number of participants is bounded.

Theorem 3 (Decidability of Typing). Ψ � C is decidable

5 Related Work

Availability considerations in distributed systems has recently spawned novel
research strands in regular languages [1], continuous systems [2], and endpoint
languages [33]. To the best of our knowledge, this is the first work considering
availability from a choreographical perspective.

Enforcing Availability in Failure-Aware Communicating Systems 207

A closely related work is the Design-By-Contract approach for multiparty
interactions [4]. In fact, in both works communication actions are enriched with
pre-/post- conditions, similar to works in sequential programming [21]. The
work on [4] enriches global types with assertions, that are then projected to
a session π−calculus. Assertions may generate ill-specifications, and a check for
consistency is necessary. Our capability-based type system guarantees temporal-
satisfiability as in [4], not requiring history-sensitivity due to the simplicity of
the preconditions used in our framework. The most obvious difference with [4] is
the underlying semantics used for communication, that allows progress despite
some participants are unavailable.

Other works have explored the behavior of communicating systems with col-
lective/broadcast primitives. In [23], the expressivity of a calculus with bounded
broadcast and collection is studied. In [27], the authors present a type theory
to check whether models for multicore programming behave according to a pro-
tocol and do not deadlock. Our work differs from these approaches in that our
model focuses considers explicit considerations on availability for the systems in
consideration. Also for multicore programming, the work in [14] presents a calcu-
lus with fork/join communication primitives, with a flexible phaser mechanism
that allows some threads to advance prior to synchronization. The type system
guarantees a node-centric progress guarantee, ideal for multicore computing, but
inadequate for CPS. Finally, the work [25], present endpoint (session) types for
the verification of communications using broadcast in the Ψ -calculus. We do not
observe similar considerations regarding availability of components in this work.

The work in [13] presented multiparty global types with join and fork oper-
ators, capturing in this way some notions of broadcast and reduce communica-
tions, which is similar to our capability type-system. The difference with our
approach is described in Sect. 3. On the same branch, [16] introduces multiparty
global types with recursion, fork, join and merge operations. The work does
not provide a natural way of encoding broadcast communication, but one could
expect to be able to encode it by composing fork and merge primitives.

6 Conclusions and Future Work

We have presented a process calculus aimed at studying protocols with vari-
able availability conditions, as well as a type system to ensure their progress.
It constitutes the first step towards a methodology for the safe development of
communication protocols in CPS. The analysis presented is orthogonal to exist-
ing type systems for choreographies (c.f. session types [12].) Our next efforts
include the modification of the type theory to cater for recursive behavior, the
generation of distributed implementations (e.g. EndPoint Projection [9]), and
considerations of compensating [7,8,28] and timed behavior [5,6]. Type check-
ing is computationally expensive, because for each collective interaction one must
perform the analysis on each subset of participants involved. The situation will
be critical once recursion is considered. We believe that the efficiency of type
checking can be improved by modifying the theory so it generates one formulae
for all subsets.

208 H.A. López et al.

Traditional design mechanisms (including sequence charts of UML and chore-
ographies) usually focus on the desired behavior of systems. In order to deal with
the challenges from security and safety in CPS it becomes paramount to cater for
failures and how to recover from them. This was the motivation behind the devel-
opment of the Quality Calculus that not only extended a π-calculus with quality
predicates and optional data types, but also with mechanisms for programming
the continuation such that both desired and undesired behavior was adequately
handled. In this work we have incorporated the quality predicates into chore-
ographies and thereby facilitate dealing with systems in a failure-aware fashion.
However, it remains a challenge to incorporate the consideration of both desired
and undesired behavior that is less programming oriented (or EndPoint Projec-
tion oriented) than the solution presented by the Quality Calculus. This may
require further extensions of the calculus with fault-tolerance considerations.

Acknowledgments. We would like to thank Marco Carbone and Jorge A. Pérez for
their insightful discussions, and to all anonymous reviewers for their helpful comments
improving the paper. This research was funded by the Danish Foundation for Basic
Research, project IDEA4CPS (DNRF86-10). López has benefitted from travel support
by the EU COST Action IC1201: Behavioural Types for Reliable Large-Scale Software
Systems (BETTY).

A Additional Definitions

A.1 Type System

Figure 10 presents the complete type system for GCq.

Definition 3 (State Satisfaction). The entailment relation between a state
σ and a formula Ψ , and between σ and a formula ψ are written σ |= Ψ and
σ |= ψ, respectively. They are defined as follows:

σ |= · ⇐⇒ σ is defined
σ |= ψ, Ψ ⇐⇒ σ |= ψ and σ |= Ψ

σ |= tt ⇐⇒ σ is defined
σ |= t : k [A] � X ⇐⇒ (t, k,X) ∈ σ

σ |= ψ1 ⊗ ψ2 ⇐⇒ σ = σ′, σ′′ | σ′ |= ψ1 ∧ σ′′ |= ψ2

σ |= ψ1 ⊕ ψ2 ⇐⇒ σ |= ψ1 or σ |= ψ2

σ |= ψ\δ ⇐⇒ ∃σ′ s.t. σ′ |= ψ ∧ σ = σ′\δ

Enforcing Availability in Failure-Aware Communicating Systems 209

Fig. 10. GCq: Type checking - Complete rules (Color figure online)

References

1. Abdulla, P.A., Atig, M.F., Meyer, R., Salehi, M.S.: What’s decidable about avail-
ability languages? In: Harsha, P., Ramalingam, G. (eds.) FSTTCS. LIPIcs, vol. 45,
pp. 192–205. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

2. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
3. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-

works through multiparty session types. In: Beyer, D., Boreale, M. (eds.) FORTE
2013 and FMOODS 2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013)

4. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

210 H.A. López et al.

5. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: Aceto, L., de
Frutos-Escrig, D. (eds.) CONCUR, LIPIcs, vol. 42, pp. 283–296. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2015)

6. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan,
P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer,
Heidelberg (2014)

7. Carbone, M.: Session-based choreography with exceptions. Electron. Notes Theor.
Comput. Sci. 241, 35–55 (2009)

8. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session
types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 402–417. Springer, Heidelberg (2008)

9. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

10. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.: A
theoretical basis of communication-centred concurrent programming. In: Web Ser-
vices Choreography Working Group mailing list, WS-CDL working report (2006,
to appear)

11. Carbone, M., Montesi, F.: Chor: a choreography programming language for con-
current systems. http://sourceforge.net/projects/chor/

12. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 263–274.
ACM (2013)

13. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods Comput. Sci. 8(1), 1–45 (2012)

14. Cogumbreiro, T., Martins, F., Thudichum Vasconcelos, V.: Coordinating phased
activities while maintaining progress. In: De Nicola, R., Julien, C. (eds.) COOR-
DINATION 2013. LNCS, vol. 7890, pp. 31–44. Springer, Heidelberg (2013)

15. Deng, J., Han, Y.S., Heinzelman, W.B., Varshney, P.K.: Balanced-energy sleep
scheduling scheme for high-density cluster-based sensor networks. Comput. Com-
mun. 28(14), 1631–1642 (2005)

16. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012)

17. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
18. Harper, R.: Programming in Standard ML. Working Draft (2013)
19. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific

protocol architecture for wireless microsensor networks. IEEE Trans. Wireless
Commun. 1(4), 660–670 (2002)

20. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for informa-
tion dissemination in wireless sensor networks. In MOBICOM, pp. 174–185. ACM
(1999)

21. Hoare, C.A.R.: An axiomatic basis for computer programming (reprint). Commun.
ACM 26(1), 53–56 (1983)

22. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

23. Hüttel, H., Pratas, N.: Broadcast and aggregation in BBC. In: Gay, S., Alglave, J.
(eds.) PLACES, EPTCS, pp. 51–62 (2015)

24. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In: Pickholtz, R.L., Das, S.K.,
Cáceres, R., Garcia-Luna-Aceves, J.J. (eds.) MOBICOM, pp. 56–67. ACM (2000)

http://sourceforge.net/projects/chor/

Enforcing Availability in Failure-Aware Communicating Systems 211

25. Kouzapas, D., Gutkovas, R., Gay, S.J.: Session types for broadcasting. In: Donald-
son, A.F., Vasconcelos, V.T. (eds.) PLACES, EPTCS, vol. 155, pp. 25–31 (2014)

26. Lincoln, P.: Deciding provability of linear logic formulas. In: Advances in Linear
Logic, pp. 109–122. Cambridge University Press (1994)

27. López, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconcelos, V.T.,
Yoshida, N.: Protocol-based verification of message-passing parallel programs. In:
Aldrich, J., Eugster, P. (eds.) OOPSLA, pp. 280–298. ACM (2015)

28. López, H.A., Pérez, J.A.: Time and exceptional behavior in multiparty structured
interactions. In: Carbone, M., Petit, J.-M. (eds.) WS-FM 2011. LNCS, vol. 7176,
pp. 48–63. Springer, Heidelberg (2012)

29. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A tiny aggregation
service for ad-hoc sensor networks. In: Culler, D.E., Druschel, P. (eds.) OSDI.
USENIX Association (2002)

30. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisi-
tional query processor for sensor networks. In: Halevy, A.Y., Ives, Z.G., Doan, A.
(eds.) SIGMOD Conference, pp. 491–502. ACM (2003)

31. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with
jolie. In: Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.) Web Services Founda-
tions, pp. 81–107. Springer, New York (2014)

32. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. In: Carbone, M. (ed.) BEAT, EPTCS, vol. 162, pp. 19–26 (2014)

33. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013)

34. Pattem, S., Krishnamachari, B., Govindan, R.: The impact of spatial correlation
on routing with compression in wireless sensor networks. TOSN 4(4), 1–23 (2008)

35. Perillo, M.A., Heinzelman, W.B.: Wireless sensor network protocols. In: Boukerche,
A. (ed.) Handbook of Algorithms for Wireless Networking and Mobile Computing,
pp. 1–35. Chapman and Hall/CRC, London (2005)

36. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The Scribble Protocol Language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Heidelberg (2014)

Ransomware Steals Your Phone. Formal
Methods Rescue It

Francesco Mercaldo(B), Vittoria Nardone, Antonella Santone,
and Corrado Aaron Visaggio

Department of Engineering, University of Sannio, Benevento, Italy
{fmercaldo,vnardone,santone,visaggio}@unisannio.it

Abstract. Ransomware is a recent type of malware which makes inac-
cessible the files or the device of the victim. The only way to unlock the
infected device or to have the keys for decrypting the files is to pay a
ransom to the attacker. Commercial solutions for removing ransomware
and restoring the infected devices and files are ineffective, since this mal-
ware uses a very robust form of asymmetric cryptography and erases
shadow copies and recovery points of the operating system. Literature
does not count many solutions for effectively detecting and blocking ran-
somware and, at the best knowledge of the authors, formal methods
were never applied to identify ransomware. In this paper we propose a
methodology based on formal methods that is able to detect the ran-
somware and to identify in the malware’s code the instructions that
implement the characteristic instructions of the ransomware. The results
of the experimentation are strongly encouraging and suggest that the
proposed methodology could be the right way to follow for developing
commercial solutions that could successful intercept the ransomware and
blocking the infections it provokes.

Keywords: Malware · Android · Security · Formal methods · Temporal
logic

1 Introduction and Motivation

Ransomware is a recent kind of malware that spread out mainly in last couple
of years, and it is particularly aggressive for two reasons: on one hand it uses
very effective mechanisms of infection based mainly on techniques of social engi-
neering like sophisticated phishing (by mail or chat), and on the other hand it
makes completely inaccessible the data on the infected machine, as it cyphers
all the files with a strong asymmetric key cryptographic algorithm.

The ransomware is still increasing its capability to harm the victim’s device,
prevent the restore of the data or device, and evade detection. As a matter of
fact, the more recent releases of this malware are able to recognize when they
are executed in a virtual environment, which is often used for creating a sandbox
where safely executing a program for studying its behavior and understanding
if it launches a malicious payload or not. Additionally, recent ransomware is
c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 212–221, 2016.
DOI: 10.1007/978-3-319-39570-8 14

Ransomware Steals Your Phone. Formal Methods Rescue It 213

equipped with anti-debugging techniques, which is another way to evade detec-
tion as hindering the scanning of anti-malware.

Statistics from US governative agencies show that Cryptolocker infected in
2014: 336,856 machines in USA, 4,593 in UK, 25,841 in Canada, 15,427 in Aus-
tralia, 1,832 in India, 100,448 in other countries. At its peak, CryptoLocker, a
kind of ransomware, was infecting around 50,000 computers per month. Accord-
ing to SCMagazine1 the CryptoWall, another ransomware, in a roughly five-
month period infected 625,000 victims worldwide, encrypting 5.25 billion files,
collecting more than $1.1 million in ransoms. The malware tries to delete shadow
copies of the system through vssadmin.exe, so that the victim cannot return to
previous system restore points too.

Moreover ransomware is invading the smartphone world: Kaspersky labs
found 1,113 new ransomware samples targeting Android devices in the first quar-
ter of 2015, which is a 65 % increase in the number of mobile ransomware samples
with respect to those collected in 20142. This is a dangerous trend since ran-
somware is designed to extort money, damage personal data, and block infected
devices. Once the device is infected, the attacker asks the victim to pay a ransom
in order to obtain the key for decrypting the files or restoring the control of the
smartphone.

As the evidence of the high infections rate demonstrates, commercial anti-
malware solutions are mainly ineffective to detect ransomware.

For this reason we propose a technique for specifically detecting ransomware
on smartphone devices that is completely based on formal methods. The tech-
nique has been proved to be very effective as the evaluation produced an F-
measure of detection equal to 0.99 on a dataset of 2, 477 samples. Additionally,
the technique is able to localize in the code the peculiar instructions that imple-
ment the stages of infection, and the activation of the payload, which provides
fundamental pieces of information to build both effective detectors and removal
systems for ransomware. Moreover, at the best knowledge of the authors, litera-
ture counts only two works that propose a method to detect mobile ransomware
[2,20] and that are compared with ours in the section of related work.

The paper proceeds as follows: Sect. 2 describes and motivates our detection
method; Sect. 3 illustrates the results of experiments; Sect. 4 discusses the related
work; finally, conclusions are drawn in Sect. 5.

2 The Methodology

In this section we present our methodology for the detection of Android ran-
somware malware using model checking. While model checking was originally
developed to verify the correctness of systems against specifications, recently it

1 http://www.scmagazine.com/cryptowall-surpasses-cryptolocker-in-infection-rates/
article/368920/.

2 https://securelist.com/analysis/quarterly-malware-reports/69872/
it-threat-evolution-in-q1-2015/.

http://www.scmagazine.com/cryptowall-surpasses-cryptolocker-in-infection-rates/article/368920/
http://www.scmagazine.com/cryptowall-surpasses-cryptolocker-in-infection-rates/article/368920/
https://securelist.com/analysis/quarterly-malware-reports/69872/it-threat-evolution-in-q1-2015/
https://securelist.com/analysis/quarterly-malware-reports/69872/it-threat-evolution-in-q1-2015/

214 F. Mercaldo et al.

has been highlighted in connection with a variety of disciplines see [1,7]. More-
over, great advancements have been made to tackle the limitation of this tech-
nique due to its high time and memory requirements, see [4,9–11]. In this paper
we present the use of model checking in the security field.

2.1 Formal Methods for Ransomware Detection

The approach is structured in three main sub-processes.
Formal Model Construction. This first sub-process aims at deriving formal mod-
els starting from the Java Bytecode. The Bytecode of the app under study
is parsed and suitable formal models of the system are produced. More pre-
cisely, the bytecode of the analysed app that resides in a class folder or in
JAR files is fed to a custom parser, based on the Apache Commons Bytecode
Engineering Library (BCEL)3. The parsed Java Bytecode of the .class files are
successively translated into formal models. In our approach Calculus of Com-
municating Systems (CCS) [15] has been exploited. CCS [15] is one of the most
well known process algebras. A Java Bytecode-to-CCS transforming function has
been defined for each instruction of the Java Bytecode. We associate a new CCS
process to each Java Bytecode instruction. This translation has to be performed
only one time for each app to be analysed and it has been completely automated.
Each Java Bytecode instruction that is not a (conditional or unconditional) jump
is represented by a process that, using the operator (“.”), invokes the process
corresponding to its successive instruction. Conditional jumps are instead spec-
ified as non-deterministic choices. An unconditional jump is represented by a
CCS process that invokes the corresponding process of the jump target.
Temporal Logic Properties Construction. This second sub-process aims to define
the characteristic behaviour of a ransomware by means of the construction of
the temporal logic properties. This step tries to recognize specific and distinctive
features of the ransomware behaviour with respect to all the other malware
families and to goodware too. Thus, this specific behaviour is written as a set
of properties. To specify the properties, we manually inspected a few samples
in order to find the ransomware malicious behavior implementation at Bytecode
level. In our approach, the mu-calculus logic [19] is used, which is a branching
temporal logic to express behavioural properties.
Ransomware Family Detection. Finally, a formal verification environment,
including a model checker, is invoked to recognise the ransomware family. This
sub-process checks the sets of logic properties obtained from the ransomware
malware family characterization against the CCS model of the app. In our app-
roach, we invoke the Concurrency Workbench of New Century (CWB-NC) [8] as
formal verification environment. When the result of the CWB-NC model checker
is true, it means that the app under analysis belongs to the ransomware fam-
ily, false otherwise. Thanks to very detailed CCS model and the logic formulae
we are able to reach a good accuracy of the overall results, as explained in the
following section.
3 http://commons.apache.org/bcel/.

http://commons.apache.org/bcel/

Ransomware Steals Your Phone. Formal Methods Rescue It 215

To the Authors’ knowledge, model checking has never used before for the
ransomware detection. The main distinctive features of the approach proposed
in this paper are the use of formal methods, the identification of the ransomware
through the Java Bytecode and the definition of a fully static approach. More
precisely, our methodology exploits the Bytecode representation of the analysed
apps. Detecting Android ransomware through the Bytecode and not directly on
the source code has several benefits: (i) independence of the source programming
language; (ii) recognition of malware families without decompilation even when
source code is lacking; (iii) easiness of parsing a lower-level code; (iv) indepen-
dence from obfuscation.

Another important feature of our approach is that we try to reuse existing
model checkers avoiding the design of custom-made model checker. In fact our
goal is to recognise ransomware with the criteria of reusing existing checking
technologies. Model checkers, especially the most widely used ones, are extremely
sophisticated programs that have been crafted over many years by experts in the
specific techniques employed by the tool. A re-implementation of the algorithms
in these tools could likely yield worst performance.

3 Results and Discussion

3.1 Empirical Evaluation Procedure

To estimate the detection performance of our methodology we compute the
metrics of precision and recall, F-measure (Fm) and Accuracy (Acc), defined
as follows:

PR =
TP

TP + FP
; RC =

TP

TP + FN
;

Fm =
2PR RC

PR + RC
; Acc =

TP + TN

TP + FN + FP + TN

where TP is the number of malware that was correctly identified in the right
family (True Positives), TN is the number of malware correctly identified as not
belonging to the family (True Negatives), FP is the number of malware that
was incorrectly identified in the target family (False Positives), and FN is the
number of malware that was not identified as belonging to the right family (False
Negatives).

3.2 Experimental Dataset

The real world samples examined in the experiment were gathered from three
different datasets. The first one is a collection of freely available 672 samples4

and 115 Android ransomware samples. The samples are labelled as ransomware,
koler, locker, fbilocker and scarepackage [2] and appeared from December 2014

4 http://ransom.mobi/.
5 http://contagiominidump.blogspot.it/.

http://ransom.mobi/
http://contagiominidump.blogspot.it/

216 F. Mercaldo et al.

Table 1. Dataset used in the experiment

Dataset Original samples Morphed samples #Samples for category

Ransomware 683 594 1,277

Other malware 600 0 600

Trusted 600 0 600

Total 1,883 594 2,477

to June 2015. The second one is the Drebin project’s dataset [3,18], a very well
known collection of malware used in many scientific works, which includes the
most diffused Android families.

Each malware sample in these datasets is labelled according to the malware
family it belongs to: each family comprehends samples which have in common
the same payload. This collection does not contain ransomware samples: we use
this dataset to check the true positives.

The last one is a dataset of trusted applications crawled from Google
Play6, by using a script which queries a python API7 to search and down-
load apps. The downloaded applications belong to all the 26 different avail-
able categories (i.e., Books & Reference, Lifestyle, Business, Live Wallpaper,
Comics, Media & Video, Communication, Medical, Education, Music & Audio,
Finance & News, Magazines, Games, Personalization, Health & Fitness, Photog-
raphy, Libraries & Demo, Productivity, Shopping, Social, Sport, Tools, Travel,
Local & Transportation, Weather, Widgets). The applications retrieved were
among the most downloaded in their category and were free.

The trusted applications were collected between April 2015 and January 2016
and were later analysed with the VirusTotal service8, a service able to run 57
different antimalware software (i.e., Symantec, Avast, Kasperky, McAfee, Panda,
and others) on the app: the analysis confirmed that the crawled applications did
not contain malicious payload. We use this dataset to check the true positives.

Furthermore, we developed a framework9 able to inject several obfuscation
levels in Android applications: (i) changing package name; (ii) identifier renam-
ing; (iii) data encoding; (iv) call indirections; (v) code reordering; (vi) junk code
insertion.

These injections were aimed at generating morphed versions of the appli-
cations belonging to the ransomware dataset. Previous works [6] demonstrated
that antimalware solutions fail to recognize the malware after these transfor-
mations. We applied our method to the morphed dataset in order to verify if
it loses its effectiveness, too, or it keeps on recognizing the malware also after
they have been altered. Table 1 provides the details of the full collection of 2,477
samples used to test the effectiveness of our method. Regarding the ransomware
6 https://play.google.com.
7 https://github.com/egirault/googleplay-api.
8 https://www.virustotal.com/.
9 https://github.com/faber03/AndroidMalwareEvaluatingTools.

https://play.google.com
https://github.com/egirault/googleplay-api
https://www.virustotal.com/
https://github.com/faber03/AndroidMalwareEvaluatingTools

Ransomware Steals Your Phone. Formal Methods Rescue It 217

Table 2. Families in Drebin dataset with details of the installation method (standalone,
repackaging, update), the kind of attack (trojan, botnet), the events that trigger the
malicious payload and a brief family description.

Family Installation Attack Activation Description

FakeInstaller s t,b server-side polymorphic
family

Plankton s,u t,b it uses class loading to
forward details

DroidKungFu r t boot,batt,sys it installs a backdoor

GinMaster r t boot malicious service to root
devices

BaseBridge r,u t boot,sms,net,batt it sends information to a
remote server

Adrd r t net,call it compromises personal
data

Kmin s t boot it sends info to
premium-rate numbers

Geinimi r t boot,sms first Android botnet

DroidDream r b main botnet, it gained root access

Opfake r t first Android polymorphic
malware

samples, Table 1 shows the number of original and morphed samples we tested;
in some cases our framework was not able to disassemble some of the selected
samples, this is the reason why we had to discard them and we consider a lower
number of morphed samples if compared with original ones. In order to test the
capacity of our rules to identify exclusively ransomware samples, we include in
the dataset both trusted and malware samples from other families (respectively
Trusted and Other Malware).

Table 2 provides a brief description of the payload brought by the malware
families labelled as Other Malware, i.e., malware that is not ransomware.

We test 60 samples for each family. The malware was retrieved from the
Drebin project [3,18] (we take into account the top 10 most populous families).

3.3 Evaluation

As a baseline for evaluating the performances of our solution, we compare the
results obtained with our method with those produced by the top 10 ranked
mobile antimalware solutions from AVTEST10, an independent Security Insti-
tute which each year provides an analysis of the performances of the antimal-
ware software. We built this baseline, by submitting our original and morphed
samples to the VirusTotal API11, which allows to run the above mentioned anti-
malware.
10 https://www.av-test.org/en/antivirus/mobile-devices/.
11 https://www.virustotal.com/.

https://www.av-test.org/en/antivirus/mobile-devices/
https://www.virustotal.com/

218 F. Mercaldo et al.

Table 3. Top 10 signature-based antimalware evaluation against our method.

Antimalware Original Morphed

%ident. #ident. #unident. %ident. #ident. #unident.

AhnLab 13.76% 94 589 5.22% 31 563

Alibaba 0.44% 3 680 0% 0 594

Antiy 13.18% 90 593 4.04% 24 570

Avast 27.52% 188 495 6.4% 38 556

AVG 3.22% 22 661 1.51% 9 585

Avira 19.76% 135 548 12.46% 74 520

Baidu 14.34% 98 585 6.7% 41 553

BitDefender 28.26% 193 490 14.47% 86 508

ESET-NOD32 20.35% 139 544 8.58% 51 543

GData 27.96% 191 492 7.91% 47 547

Our Method 99.56% 680 3 99.49% 591 3

Table 4. Performance evaluation

Formula #Samples TP FP FN TN PR RC Fm Acc

Ransomware 2,477 1,271 0 6 1,200 1 0.99 0.99 0.99

Table 3 shows the evaluation between the top 10 antimalware solutions and
our method with the original ransomware samples and with the morphed ones.

We consider only the samples and the percentage identified in the right family
(column “ident” and the percentage in column “%ident”) in Table 3. We also
report the samples detected as malicious but not identified in the right family
and the samples not recognized as malware (column “unident”).

With regards to Table 3 we notice that BitDefender shows better perfor-
mance in family identification for Ransomware original samples. Instead, with
regards to morphed samples, antimalware performance decreases dramatically,
indeed BitDefender is able to identify only 86 samples. The worst antimalware
in Ransomware identification is Alibaba, able to correctly classify just 3 original
samples and 0 morphed samples.

Due to the novelty of the problem, antimalware solutions are not still spe-
cialized in family identification; this is the reason why most of antimalware are
unskilled to detect families. Another problem is that current antimalware are not
able to detect malware when the signature mutates: their performance decreases
dramatically with morphed samples. On the contrary, the detection done by our
method is barely affected by the code transformations, so it is independent from
the signature.

Table 4 shows the results obtained using our method. We consider the sum
of original and morphed samples: the detail about the number of original and
morphed samples is shown in Table 1.

Ransomware Steals Your Phone. Formal Methods Rescue It 219

Results in Table 4 seems to be very promising: we obtain an Accuracy and a
F-measure equal to 0.99. Concerning the ransomware results, we are not able to
identify the malicious payloads of just 6 samples (i.e., 3 originals and 3 morphed)
on 1, 277.

4 Related Work

In this section we review the current literature related to ransomware detection
and formal methods applied to the detection of mobile malware.

As we stated previously, literature counts only two works about the detection
of Android ransomare.

The first one proposes HelDroid [2]: the approach includes a text classifier
based on NLP features, a lightweight Smali emulation technique to detect lock-
ing strategies, and the application of taint tracking for detecting file-encrypting
flows. The main weakness of HelDroid is represented by the text classifier: the
authors train it on generic threatening phrases, similar to those that typically
appear in ransomware or scareware samples. In addiction, like whatever machine
learning approach, HelDroid needs to train the classifier in order to label a sam-
ples as a ransomware: the detection capability of the model is related to the
training dataset.

The other work in literature exploring the ransomare detection in mobile
world is [20]. The authors illustrate a possible design of a static and dynamic
analysis based solution, without implementing it. Their goal is to build a better
performance tool in order to help to understand what should do to approach for
a successful detection of Android ransomware.

Formal methods have been applied for studying malware in some recent
papers, see [12,13,16,17]. Recently, the possibility to identify the malicious
payload in Android malware using a model checking based approach has been
explored in [5,14]. Starting from payload behavior definition they formulate logic
rules and then test them by using a real world dataset composed by Droid-
KungFu, Opfake families and update attack samples. However, as it emerges
from the literature in the last years, formal methods have been applied to detect
mobile malware, but at the best knowledge of the authors they have never been
applied for identifying specifically the ransomware attack on Android malware.

5 Conclusions

Ransomware is a new type of malware that restricts access to the infected smart-
phone and it demands the user to pay a ransom to the attacker in order to
remove the restriction. Ransomware samples are able to encrypt files on the
infected device, which become difficult or impossible to decrypt without paying
the ransom for the encryption key.

In this paper we propose a technique based on formal methods able to detect
ransomware behaviour in Android platform. We obtain encouraging results on

220 F. Mercaldo et al.

a dataset of 2,477 samples: 1 precision and 0.99 recall, overcoming in terms of
effectiveness the top 10 popolous commercial antimalware.

As future work we are going to extend our solution using a ransomware
dataset for different environment, like Windows Mobile and iOS in order to
experiment the portability of our method.

References

1. Anastasi, G., Bartoli, A., Francesco, N.D., Santone, A.: Efficient verification of a
multicast protocol for mobile computing. Comput. J. 44(1), 21–30 (2001)

2. Andronio, N., Zanero, S., Maggi, F.: HelDroid: dissecting and detecting mobile
ransomware. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol.
9404, pp. 382–404. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26362-5 18

3. Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., Rieck, K.: Drebin: efficient
and explainable detection of android malware in your pocket. In: Proceedings of
21st Annual Network and Distributed System Security Symposium (NDSS). IEEE
(2014)

4. Barbuti, R., Francesco, N.D., Santone, A., Vaglini, G.: LORETO: a tool for
reducing state explosion in verification of LOTOS programs. Softw. Pract. Exper.
29(12), 1123–1147 (1999)

5. Battista, P., Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A.: Identification
of android malware families with model checking. In: International Conference on
Information Systems Security and Privacy. SCITEPRESS (2016)

6. Canfora, G., Di Sorbo, A., Mercaldo, F., Visaggio, C.: Obfuscation techniques
against signature-based detection: a case study. In: Proceedings of Workshop on
Mobile System Technologies. IEEE (2015)

7. Ceccarelli, M., Cerulo, L., Ruvo, G.D., Nardone, V., Santone, A.: Infer gene reg-
ulatory networks from time series data with probabilistic model checking. In: 3rd
IEEE/ACM FME Workshop on Formal Methods in Software Engineering, For-
maliSE 2015, Florence, Italy, 18 May 2015, pp. 26–32. IEEE (2015)

8. Cleaveland, R., Sims, S.: The NCSU concurrency workbench. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 394–397. Springer,
Heidelberg (1996)

9. De Francesco, N., Lettieri, G., Santone, A., Vaglini, G.: Heuristic search for equiv-
alence checking. Softw. Syst. Model. 15(2), 513–530 (2016)

10. Francesca, G., Santone, A., Vaglini, G., Villani, M.L.: Ant colony optimization
for deadlock detection in concurrent systems. In: Proceedings of the 35th Annual
IEEE International Computer Software and Applications Conference, COMPSAC
2011, Munich, Germany, 18–22 July 2011, pp. 108–117. IEEE (2011)

11. Francesco, N.D., Santone, A., Vaglini, G.: State space reduction by non-standard
semantics for deadlock analysis. Sci. Comput. Program. 30(3), 309–338 (1998)

12. Jacob, G., Filiol, E., Debar, H.: Formalization of viruses and malware through
process algebras. In: International Conference on Availability, Reliability and Secu-
rity (ARES 2010). IEEE (2010)

13. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code
by model checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol.
3548, pp. 174–187. Springer, Heidelberg (2005)

http://dx.doi.org/10.1007/978-3-319-26362-5_18

Ransomware Steals Your Phone. Formal Methods Rescue It 221

14. Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A.: Download malware? No,
thanks. How formal methods can block update attacks. In: 2016 IEEE/ACM 4th
FME Workshop on Formal Methods in Software Engineering (FormaliSE). IEEE
(2016)

15. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

16. Song, F., Touili, T.: Pommade: pushdown model-checking for malware detection.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engi-
neering. ACM (2013)

17. Song, F., Touili, T.: Model-checking for android malware detection. In: Garrigue,
J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 216–235. Springer, Heidelberg (2014)

18. Spreitzenbarth, M., Echtler, F., Schreck, T., Freling, F.C., Hoffmann, J.: Mobile-
sandbox: looking deeper into android applications. In: 28th International ACM
Symposium on Applied Computing (SAC). ACM (2013)

19. Stirling, C.: An introduction to modal and temporal logics for CCS. In: Ito, T.
(ed.) UK/Japan WS 1989. LNCS, vol. 491, pp. 1–20. Springer, Heidelberg (1991)

20. Yang, T., Yang, Y., Qian, K., Lo, D.C.T., Qian, Y., Tao, L.: Automated detection
and analysis for android ransomware. In: HPCC/CSS/ICESS, pp. 1338–1343. IEEE
(2015)

Multiple Mutation Testing from FSM

Alexandre Petrenko1, Omer Nguena Timo1(&), and S. Ramesh2

1 Computer Research Institute of Montreal, CRIM, Montreal, Canada
{petrenko,omer.nguena}@crim.ca

2 GM Global R&D, Warren, MI, USA
ramesh.s@gm.com

Abstract. Fault model based testing receives constantly growing interest of
both, researchers and test practitioners. A fault model is typically a tuple of a
specification, fault domain, and conformance relation. In the context of testing
from finite state machines, the specification is an FSM of a certain type. Con-
formance relation is specific to the type of FSM and for complete deterministic
machines it is equivalence relation. Fault domain is a set of implementation
machines each of which models some faults, such as output, transfer or tran-
sition faults. In the traditional checking experiment theory the fault domain is
the universe of all machines with a given number of states and input and output
sets of the specification. Another way of defining fault domains similar to the
one used in classical program mutation is to list a number of FSM mutants
obtained by changing transitions of the specification. We follow in this paper the
approach of defining fault domain as a set of all possible deterministic sub-
machines of a given nondeterministic FSM, called a mutation machine, pro-
posed in our previous work. The mutation machine contains a specification
machine and extends it with a number of mutated transitions modelling potential
faults. Thus, a single mutant represents multiple mutations and mutation
machine represents numerous mutants. We propose a method for analyzing
mutation coverage of tests which we cast as a constraint satisfaction problem.
The approach is based on logical encoding and SMT-solving, it avoids enu-
meration of mutants while still offering a possibility to estimate the test ade-
quacy (mutation score). The preliminary experiments performed on an industrial
controller indicate that the approach scales sufficiently well.

Keywords: FSM � Conformance testing � Mutation testing � Fault modelling �
Fault model-based test generation � Test coverage � Fault coverage analysis

1 Introduction

In the area of model based testing, one of the key questions concerns a termination rule
for test generation procedures. It seems to us that there are two main schools of thought
considering this rule. One of them follows a traditional approach of covering a spec-
ification model [19]. In terms of the Finite State Machine (FSM) model, one could
consider for coverage various features of an FSM, such as transitions or sequences of
them which model test purposes often used to guide and terminate test generation.
Another school focuses on fault coverage and thus follows fault model based testing,
see, e.g., [15, 16, 20–22, 26].

© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 222–238, 2016.
DOI: 10.1007/978-3-319-39570-8_15

Fault model based testing receives constantly growing interests of both, researchers
and test practitioners. Fault models are defined in the literature in a variety of ways [26].
In [11], we propose to define a fault model as a tuple of a specification, a fault domain,
and a conformance relation. In the context of testing from finite state machines, the
specification is a certain type of an FSM. A conformance relation is specific to the FSM
type and for complete deterministic machines it is equivalence relation. A fault domain
is a set of implementation machines, aka mutants, each of which models some faults,
such as output, transfer and transition faults.

In the traditional checking experiment theory the fault domain is the universe of all
machines with a given number of states and input and output alphabets of the speci-
fication, see, e.g., [6, 8, 9, 12–14, 23]. While this theory offers clear understanding what
does it mean to have sound and exhaustive, i.e., complete tests, it leads to tests whose
number grows in the worst case exponentially with the FSM parameters. To us, this is a
price to pay for considering the universe of all FSMs. Intuitively, choosing a reasonable
subset of this fault domain might be the way to mitigate the test explosion effect. As an
example, if one considers the fault domain of mutants that model output faults, a test
complete for this fault model is simply a transition tour. The space between these two
extreme fault models has received in our opinion insufficient attention. In what follows,
we present a brief account of what has been done in this respect.

In the area of program mutation testing, mutants are generated by modifying
programs. The number of tests is limited by the number of mutants, which usually need
to be compared one by one with the original program to determine tests that kill them
[3, 4]. Test minimization could then be achieved via explicit enumeration of all the
mutants in the fault domain followed then by solving a set cover problem.

Mutation testing in hardware area seems to predate program mutation. An early
work of Poage and McCluskey in 1964 [2] focuses on hardware faults in FSM
implementations and builds a fault domain by extracting FSM mutants from modified
circuits. The idea of this approach is to consolidate the comparisons of individual
mutants aiming at reduction of the number of tests, however, mutants still need to be
analyzed one by one. The approach in [1] focuses on detection of single FSM muta-
tions with the same test, but provides no guarantees that mutants with multiple
mutations (higher order mutants) can always be killed.

Explicit mutant enumeration can be avoided by defining a fault domain as a set of
all possible submachines of a given nondeterministic FSM, called a mutation machine,
proposed in our previous work [5, 7, 10]. The mutation machine contains a specifi-
cation machine and extends it with a number of mutated transitions modelling potential
faults. Mutated transitions might be viewed as faults injected in the specification
machine, see, e.g., [25]. Thus, a single mutant represents multiple mutations and
mutation machine represents numerous mutants. In our previous work, methods were
developed for test generation using this fault model [5, 7, 10]. The main idea was to
adjust classical checking experiments for a fault domain smaller than the universe of all
FSMs. A checking experiment once obtained is in fact a complete test suite, however,
this approach does not offer a means of analyzing mutation coverage of an arbitrary test
suite or individual tests.

Traditional program mutation testing uses explicit mutant enumeration to determine
test adequacy or mutation score. It is a ratio of the number of dead mutants to the number

Multiple Mutation Testing from FSM 223

of non-equivalent mutants. We are not aware of any attempt to characterize a fault
detection power of tests considering multiple mutants that avoids their enumeration.

The paper aims at solving this problem. We propose a method for analyzing
mutation coverage of tests which we cast as a constraint satisfaction problem. The
approach is based on logical encoding and SMT-solving, it avoids enumeration of
mutants while still offering a possibility to estimate the test adequacy (mutation score).
The analysis procedure can be used for test prioritization and test minimization, and
could eventually lead to an incremental test generation.

The remaining of this paper is organized as follows. Section 2 defines a specifi-
cation model as well as a fault model. In Sect. 3, we develop a method for mutation
coverage analysis. Section 4 reports on our preliminary experiments performed on an
industrial controller. Section 5 summarizes our contributions and indicates future work.

2 Background

2.1 Finite State Machines

A Finite State Machine (FSM) M is a 5-tuple (S, s0, I, O, T), where S is a finite set of
states with initial state s0; I and O are finite non-empty disjoint sets of inputs and
outputs, respectively; T is a transition relation T � S � I � O � S, (s, i, o, s′) is a
transition.

M is completely specified (complete FSM) if for each tuple (s, x) 2 S � I there
exists transition (s, x, o, s′) 2 T. It is deterministic (DFSM) if for each (s, x) 2
S � I there exists at most one transition (s, x, o, s′) 2 T; if there are several transitions
for some (s, x) 2 S � I then it is nondeterministic (NFSM); M is observable if for each
tuple (s, x, o) 2 S � I � O there exists at most one transition; if there are several
transitions for some (s, x, o) 2 S � I � O then it is non-observable.

An execution of M from state s is a sequence of transitions forming a path from s in
the state transition diagram of M. The machine M is initially connected, if for any state
s 2 S there exists an execution from s0 to s. An execution is deterministic if each
transition (s, x, o, s′) in it is the only transition for (s, x) 2 S � I; otherwise, i.e., if for
some transition (s, x, o, s′) in the execution there exists in it a transition (s, x, o′, s′′)
such that o 6¼ o′ or s′ 6¼ s′′, the execution is nondeterministic. Clearly, a DFSM has
only deterministic executions, while an NFSM can have both.

A trace of M in state s is a string of input-output pairs which label an execution
from s. Let TrM(s) denote the set of all traces of M in state s and TrM denote the set of
traces of M in the initial state. Given sequence b 2 (IO)*, the input (output) projection
of b, denoted b#I (b#O), is a sequence obtained from b by erasing symbols in O (I).

We say that an input sequence triggers an execution of M (in state s) if it is the
input projection of a trace of an execution of M (in state s).

Given input sequence a, let outM(s, a) denote the set of all output sequences which
can be produced by M in response to a at state s, that is outM(s, a) = {b#O| b 2
TrM(s) and b#I = a}.

We define several relations between states in terms of traces of a complete FSM.

224 A. Petrenko et al.

Given states s1, s2 of a complete FSM M = (S, s0, I, O, T), s1 and s2 are (trace-)
equivalent, s1 ’ s2, if TrM(s1) = TrM(s2); s1 and s2 are distinguishable, s1 ≄ s2, if
TrM(s1) 6¼ TrM(s2); s2 is trace-included into (is a reduction of) s1, s2 � s1, if
TrM(s2) � TrM(s1). M is reduced if any pair of its states is distinguishable, i.e., for
every s1, s2 2 S there exists a 2 I* such that outM(s1, a) 6¼ outM(s2, a), a is called a
distinguishing sequence for states s1 and s2, this is denoted s1 ≄a s2.

We also use relations between machines. Given FSMs M = (S, s0, I, O, T) and
N = (P, p0, I, O, N), N � M if s0 � p0; N ’ M if s0 ’ p0; N ≄ M if s0 ≄ p0. In this
paper, we use equivalence relation between machines as a conformance relation
between implementation and specification machines.

Given a complete initially connected NFSM M = (S, s0, I, O, T), a complete ini-
tially connected machine N = (S′, s0, I, O, N) is a submachine of M if S′ � S and
N � T. The set of all complete deterministic submachines of M is denoted Sub(M).
Obviously, each machine in Sub(M) is a reduction ofM; moreover, ifM is deterministic
then Sub(M) contains just M.

2.2 Fault Model

Let A = (S, s0, I, O, N) be a complete initially connected DFSM, called the specifi-
cation machine.

Definition 1. A complete initially connected NFSM M = (S, s0, I, O, T) is a mutation
machine of A = (S, s0, I, O, N), if N � T, i.e., if A is a submachine of M.

We assume that all possible implementation machines for the specification machine
A constitute the fault domain Sub(M), the set of all deterministic submachines of the
mutation machine M of A. A submachine B 2 Sub(M), B 6¼ A is called a mutant.
Transitions of M that are also transitions of A are called unaltered, while others, in the
set T\N, are mutated transitions. Given (s, x) 2 S � I, we let T(s, x) denote a set of
transitions from state s and input x in M. If T(s, x) is a singleton then its transition is
called a trusted transition. The set T(s, x) is called a suspicious set of transitions if it is
not a singleton, transitions in a suspicious set are called suspicious. Trusted transitions
are present in all mutants, but suspicious transitions in each set T(s, x) are alternative
and only one can be present in a deterministic mutant.

A mutant B is nonconforming if it is not equivalent to A, otherwise, it is called a
conforming mutant. We say that input sequence a 2 I* such that B ≄a A detects or kills
the mutant B.

The tuple < A, ’, Sub(M) > is a fault model following [11]. For a given specifi-
cation machine A the equivalence partitions the set Sub(M) into conforming imple-
mentations and faulty ones. In this paper, we do not require the FSM A to be reduced,
this implies that a conforming mutant may have fewer states than the specification A; on
the other hand, we assume that no fault creates new states in implementations, hence
mutants with more states than the specification FSM are not in the fault domain Sub(M).

Multiple Mutation Testing from FSM 225

Consider the following example.

The mutation machine M contains six suspicious transitions, one mutated transition
represents output fault and the other two transfer faults. M contains eight deterministic
submachines, the specification machine and seven mutants which share the same five
trusted transitions.

As discussed in previous work [5, 7, 10], the mutation machine formally models
test hypotheses about potential implementation faults. The mutation machine M allows
compact representation of numerous mutants in the fault domain Sub(M). More pre-
cisely, their number is given by the following formula:

In the extreme case, considered in classical checking experiments a fault domain is
the universe of all machines with a given number of states and fixed alphabets. The
corresponding mutation machine becomes in this case a chaos machine with all pos-
sible transitions between each pair of states. The number of FSMs it represents is the
product of the numbers of states and outputs to the power of the product of the numbers
of states and inputs.

3 Mutation Testing

A finite set E � I* of finite input sequences is a test suite for A. A test suite is said to be
complete w.r.t. the fault model <A, ’, Sub(M)> if for each nonconforming mutant
B 2 Sub(M) it contains a test detecting B.

In the domain of program mutation testing, such a test suite is often called adequate
for a program (in our case, a specification machine) relative to a finite collection of
programs (in our case the set of mutants), see, e.g., [4].

Differently from the classical program mutation testing, where the mutant killing
tests are constructed mostly manually, in case of deterministic FSMs, tests that kill a

Fig. 1. A mutation machine with the specification machine as its submachine, where mutated
transitions are depicted with dash lines, state 1 is the initial state.

226 A. Petrenko et al.

given mutant FSM can be obtained from the product of the two machines, see, e.g.,
[1, 2, 27]. The problem can also be cast as model checking for a reachability property,
considered in several work, see, e.g., [18]. This approach can also be used to check
whether a given test kills mutants, but it requires mutant enumeration.

In this work, we develop an analysis approach that avoids mutant enumeration
while still offering a possibility to estimate the test adequacy (mutation score).

3.1 Distinguishing Automaton

Tests detecting mutants of the specification are presented in a product of the specifi-
cation and mutation machines obtained by composing their transitions as follows.

Definition 2. Given a complete deterministic specification machine A = (S, s0, I, O,
N) and a mutation machineM = (S, s0, I, O, T), a finite automaton D = (C [{∇}, c0, I,
D, ∇), where C � S � S, and ∇ is an accepting (sink) state is the distinguishing
automaton for A and M, if it holds that

• c0 = (s0, s0)
• For any (s, t) 2 C and x 2 I, ((s, t), x, (s′, t′)) 2 D, if there exist (s, x, o, s′) 2 N, (t, x,

o′, t′) 2 T, such that o = o′ and ((s, t), x, ∇) 2 D, if there exist (s, x, o, s′) 2 N, (t, x,
o′, t′) 2 T, such that o 6¼ o′

• (∇, x, ∇) 2 D for all x 2 I.

We illustrate the definition using the specification and mutation machines in Fig. 1.
Figure 2 presents the distinguishing automaton for A and M.

The accepting state defines the language LD of the distinguishing automaton D for
A and M and possesses the following properties. First, all input sequences detecting
each and every mutant belong to this language.

Theorem 1. Given the distinguishing automaton D for A and M, if B ≄a A, B 2 Sub
(M), then a 2 LD.

Notice that for any nonconforming mutant there exists an input sequence of length
at most n2, where n is the number of states of the specification machine, since dis-
tinguishing automaton has no more than n2 states.

At the same time, not each and every word of the language detects a mutant. An
input sequence a 2 LD triggers several executions in the distinguishing automaton
D which are defined by a single execution in the specification machine A and some
execution in the mutation machine M both triggered by a. The latter to represent a
mutant must be deterministic. Such a deterministic execution of the mutation machine
M defining (together with the execution of A) an execution of the distinguishing
automaton D to the sink state is called a-revealing. Input sequences triggering
revealing executions enjoy a nice property of being able to detect mutants.

Theorem 2. Given an input sequence a 2 I* such that a 2 LD, an a-revealing exe-
cution includes at least one mutated transition, moreover, each mutant which has this
execution is detected by the input sequence a.

Multiple Mutation Testing from FSM 227

Given an input sequence a 2 LD, the question arises how all the mutants (un)
detected by this input sequence can be characterized. We address this question in the
next section.

3.2 Mutation Coverage Analysis

Consider an input sequence a 2 I* which detects a nonconforming mutant by triggering
a-revealing executions. Analyzing these executions we can determine all mutated
transitions involved in each of them. This analysis can performed by using a distin-
guishing automaton constrained to a given input sequence.

Let a 2 I* and Pref(a) be the set of all prefixes of a. We define a linear automaton
(Pref(a), e, I,Da), such that each prefix of a is a state, and (b, x, bx) 2Da if bx 2 Pref(a).

11 22 33

12 44 43

2413 23

b
a

a
b a

b
b

a
b

a

a

b

a

a b

a

b

bb

a
a

b

b

a a

∇a,b

b

a

Fig. 2. The distinguishing automaton D for the specification A and mutation M machines in
Fig. 1, state 11 is the initial state.

228 A. Petrenko et al.

Definition 3. Given input sequence a 2 I*, a specification machine A = (S, s0, I,
O, N) and a mutation machine M = (S, s0, I, O, T), a finite automaton Da = (Ca [{∇},
c0, I, Da, ∇), where Ca � Pref(a) � S � S, and ∇ is a designated sink state is the
a-distinguishing automaton for A and M, if it holds that

• c0 = (e, s0, p0)
• For any (b, s, t) 2 Ca and x 2 I, such that bx 2 Pref(a), ((b, s, t), x, (bx, s′, t′)) 2 Da,

if there exist (s, x, o, s′) 2 N, (t, x, o′, t′) 2 T, such that o = o′ and ((b, s, t), x, ∇) 2
D, if there exist (s, x, o, s′) 2 N, (t, x, o′, t′) 2 T, such that o 6¼ o′.

We illustrate the definition using the input sequence a = baaba for the specification
and mutation machines in Fig. 1. Notice that the sequence hits all the mutated tran-
sitions in the mutation machine. The resulting a-distinguishing automaton for A and
M is shown in Fig. 3.

Notice that the input sequence baaba and its prefix baa trigger two executions
which end up in the sink state ∇. These are

1. (1, b, 0, 2)(2, a, 0, 3)(3, a, 1, 3)
2. (1, b, 0, 2)(2, a, 0, 3)(3, a, 0, 3)(3, b, 0, 3)(3, a, 0, 3).

The suspicious transitions are in bold. The executions are deterministic and include
two mutated transitions (3, a, 1, 3) and (3, b, 0, 3). The third mutated transition (4, a, 1, 2)
is in the execution that does not lead to the sink state ∇. Hence, the input sequence baaba
detects any mutant with two out of three mutated transitions.

The example indicates that a-distinguishing automata for the specification and
mutation machines provide a suitable means for mutation analysis of a given test suite.
Before we formulate a method for such an analysis, we consider yet another example of
a-distinguishing automata with a = babaaba.

Fig. 3. The a-distinguishing automaton Da for the specification A machine and mutation
machine M in Fig. 1, where a = baaba.

Multiple Mutation Testing from FSM 229

The executions of the automaton in Fig. 4 leading to the sink state define the
following executions of the mutation machine:

1. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 0, 3)
2. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 1, 3)(3, a, 1, 3)
3. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 1, 3)(3, a, 0, 3)(3, b, 0, 4)(4, a, 1, 1)
4. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)
5. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 1)
6. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 1, 3)(3, a, 0, 3)(3, a, 1, 3)
7. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)(2, a, 0, 3)(3, a, 1, 3)
8. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 1, 3)(3, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)

The executions 3, 5, 6 and 8 are nondeterministic in the mutation machine, since
each of them has both unaltered and mutated transitions for the same pair of state and
input.

Consider the first execution, it involves two suspicious transitions, mutated tran-
sition (3, b, 0, 3) and unaltered transition (3, a, 0, 3). The prefix baba of the input
sequence babaaba detects any mutant in which unaltered transition (3, b, 0, 4) is
replaced by the mutated one (3, b, 0, 3) and the suspicious transition (3, a, 0, 3) is left
unaltered. Let B be a set of transitions of a mutant B 2 Sub(M).

A mutant B is then detected by the input sequence babaaba or its prefix if its set of
transitions B satisfies at least one of the following constraints on suspicious transitions:

1. (3, b, 0, 3), (3, a, 0, 3) 2 B
2. (3, b, 0, 3), (3, a, 1, 3) 2 B
3. (3, b, 0, 3), (3, a, 1, 3), (3, a, 0, 3), (3, b, 0, 4), (4, a, 1, 1) 2 B
4. (3, b, 0, 4), (4, a, 1, 2) 2 B
5. (3, b, 0, 4), (4, a, 1, 2), (4, a, 1, 1) 2 B

Fig. 4. A fragment of a-distinguishing automaton Da for the specification A machine and
mutation machine M in Fig. 1, where a = babaaba; executions missing the sink state are not
shown.

230 A. Petrenko et al.

6. (3, b, 0, 3), (3, a, 1, 3), (3, a, 0, 3) 2 B
7. (3, b, 0, 4), (4, a, 1, 2), (3, a, 1, 3) 2 B
8. (3, b, 0, 3), (3, a, 1, 3), (3, a, 0, 3), (3, b, 0, 4), (4, a, 1, 2) 2 B

Clearly nondeterministic executions 3, 5, 6 and 8 have unsatisfiable constraints
since they require, e.g., that suspicious transition (3, b, 0, 4) is unaltered and replaced
by the mutated transition (3, b, 0, 3) in the same mutant.

As stated above any mutant with the transition relation satisfying one of these
constraints is detected by the input sequence babaaba or its prefix, since a wrong
output sequence should be produced by such a mutant. On the other hand, a mutant that
does not satisfy any of them escapes detection by this input sequence. To characterize
these mutants, we formulate constraints which exclude all the executions of detected
mutants by considering the negation of the disjunction of the constraints for all the
triggered revealing executions. The resulting constraint becomes a conjunction of
negated constraints of the executions.

For instance, the negated first constraint is (3, b, 0, 3) 62 B or (3, a, 0, 3) 62 B. This
reads that the unaltered transition (3, b, 0, 4) or mutated transition (3, a, 1, 3) must be
present. The constraint (3, b, 0, 3) 62 B is equivalent to (3, b, 0, 4) 2 B; similarly,
(3, a, 0, 3) 62 B is equivalent to (3, a, 1, 3) 2 B. We have that the negated constraint is
(3, b, 0, 4) 2 B or (3, a, 1, 3) 2 B.

To formalize the above discussions we cast the execution analysis as a constraint
satisfaction problem by using auxiliary variables to specify the choices between sus-
picious transitions. Let T1, T2, …, Tm be the sets of suspicious transitions, where
unaltered transitions are the first elements and the remaining elements of each set are
lexicographically ordered. We introduce auxiliary variables z1, z2, …, zm, such that
variable zi represents the suspicious set Ti. For the variable zi the domain is Di = {1, 2,
…, |Ti|}, such that zi = 1 represents the unaltered transition in the set Ti and the other
values correspond to mutated transitions. We use conditional operators {= , 6¼} and
logical operators AND (^) and OR (_) for constraint formulas.

Each execution of a mutation machine that involves suspicious transitions yields
assignments on variables representing these transitions, which expresses a constraint
formula as the conjunction of individual assignments (zi = c), where c 2 Di. Then the
negated constraint formula becomes the disjunction of individual constraints (zi 6¼ c).

A set of revealing executions triggered by one or more input sequences is then the
conjunction of disjunctions of individual constraints.

In our example, the sets of suspicious transitions are

T1(3, a) = {(3, a, 0, 3), (3, a, 1, 3)},
T2(3, b) = {(3, b, 0, 4), (3, b, 0, 3)} and
T3(4, a) = {(4, a, 1, 1), (4, a, 1, 2)}.

Each of these sets define two values of variables z1, z2 and z3, where the value 1 of
each variable represents a corresponding unaltered transition.

Multiple Mutation Testing from FSM 231

The constraint formula becomes:

((z2 6¼ 2) _ (z1 6¼ 1)) ^ ((z2 6¼ 2) _ (z1 6¼ 2)) ^ ((z2 6¼ 2) _ (z1 6¼ 2) _ (z1 6¼ 1) _
(z2 6¼ 1) _ (z3 6¼ 1)) ^ ((z2 6¼ 1) _ (z3 6¼ 2)) ^ ((z2 6¼ 1) _ (z3 6¼ 2) _ (z3 6¼ 1)) ^
((z2 6¼ 2) _ (z1 6¼ 2) _ (z1 6¼ 1)) ^ ((z2 6¼ 1) _ (z3 6¼ 2) _ (z1 6¼ 2)) ^ ((z2 6¼ 2) _
(z1 6¼ 2) _ (z1 6¼ 1) _ (z2 6¼ 1) _ (z3 6¼ 2)).

Clearly, the formula always has a solution where values of variables determine
unaltered transitions representing a specification machine, but we need a solution if it
exists which has at least one mutated transition. To this end, we add the constraint
(z1 6¼ 1)_ (z2 6¼ 1)_ (z3 6¼ 1) excluding the solution defining the specificationmachine.

The final constraint formula is

((z2 6¼ 2) _ (z1 6¼ 1)) ^ ((z2 6¼ 2) _ (z1 6¼ 2)) ^ ((z2 6¼ 2) _ (z1 6¼ 2) _ (z1 6¼ 1) _
(z2 6¼ 1) _ (z3 6¼ 1)) ^ ((z2 6¼ 1) _ (z3 6¼ 2)) ^ ((z2 6¼ 1) _ (z3 6¼ 2) _ (z3 6¼ 1)) ^
((z2 6¼ 2) _ (z1 6¼ 2) _ (z1 6¼ 1)) ^ ((z2 6¼ 1) _ (z3 6¼ 2) _ (z1 6¼ 2)) ^ ((z2 6¼ 2) _
(z1 6¼ 2) _ (z1 6¼ 1) _ (z2 6¼ 1) _ (z3 6¼ 2)) ^ ((z1 6¼ 1) _ (z2 6¼ 1) _ (z3 6¼ 1)).

To solve it, we use the SMT solver Yices [23] which finds the solution (z1 = 2),
(z2 = 1), (z3 = 1). The solution defines a mutant with the single mutated transition (3, a,
1, 3). The mutant is nonconforming, which can be verified with the help of a distin-
guishing automaton obtained for the specification machine and the mutant. This means
that the input sequence babaaba does not detect the mutant defined by the solution. To
ensure its detection we have two options, to add a new input sequence or to try to
extend the input sequence babaaba until it detects the remaining mutant. The latter
option avoids using the reset operation in testing, required in the former option.

Following the first option we notice that the input sequence which detects the
escaped mutant is baa already obtained in the example of the a-distinguishing
automaton in Fig. 3, where a = baaba. Considering the revealing execution (1, b, 0, 2)
(2, a, 0, 3)(3, a, 1, 3) triggered by its prefix baa, we generate an additional constraint
(z1 6¼ 2) which prevents the suspicious transition (3, a, 1, 3) to be chosen and add it to
the final constraint formula which has no solution. The set {babaaba, baa} is therefore
a complete test suite for the specification machine A and mutation machine M in Fig. 1.

Following the second option, we find that it is possible to extend the input sequence
babaaba which leaves the specification machine in state 3 with the input a to detect the
mutated transition (3, a, 1, 3). As before, we add constraint (z1 6¼ 2) and the final
constraint has no solution. The set {babaabaa} is also a complete test suite.

This example indicates that various test generation strategies could be investigated,
complementing checking experiments and checking sequences approaches. The latter
allows one to avoid using multiple resets in testing. Notice that a classical checking
experiment for this example derived by using, e.g., the W-method [12, 13], contains
many more input sequences, moreover, the specification machine in Fig. 1 has no
distinguishing sequence, which is usually required to generate a checking sequence. By
this reason the existing methods cannot construct a single test, however, the example
indicates that the mutation analysis allows us to do so. We leave the detailed elabo-
ration of a test generation method for future work and formulate in this paper a
procedure for mutant coverage analysis.

232 A. Petrenko et al.

The procedure uses as inputs a test suite TS for a specification machine A and
mutation machine M and consists of the following steps:

1. For each input sequence a 2 TS
(a) Determine the a-distinguishing automaton
(b) Find all executions leading to the sink state
(c) Determine a-revealing executions of the mutation machine
(d) Build the disjunction of constraints excluding the a-revealing executions

2. Build the conjunction of the obtained disjunctions and add the constraint that
excludes the solution defining the specification machine

3. Solve the constraint formula by calling a solver
4. If it finds no solution terminate with the message “TS is complete”, otherwise check

whether the mutant defined by a solution is conforming
5. If it is nonconforming terminate with the message “TS is incomplete”, otherwise

add the constraint that excludes the solution defining the conforming mutant and go
to Step 3.

The main steps of the procedure have already been discussed and illustrated on the
examples, except of the last two steps which deserve more explanation. Constraint
solvers normally provide a single solution if it exists. An extra constraint prevents the
solution to point to just the specification machine, but the found solution may corre-
spond to a conforming mutant. In the domain of general mutation testing the problem
of dealing with mutants equivalent, i.e., conforming, to the specification is well
understood. In testing from an FSM, most approaches assume that the specification
machine is reduced, so conforming mutants are isomorphic machines. Checking FSM
equivalence is based on an FSM product. Notice that the proposed approach does not
require the specification machine be reduced.

The complexity of the proposed method is defined by the number of constraints.
We expect that the method scales well, since the recent advances in solving techniques
drastically improve their scalability [23, 24]. The number of constraints for a single
execution is limited by the number of states of a mutation machine, but the number of
executions increases with the number of mutated transitions. On the other hand, the
number of executions of the distinguishing automaton which do not end up in the sink
state grows with the number of mutated transitions, as faults may compensate each
other. These executions are not revealing and do not contribute to the number of
constraints. In Sect. 4 we present the results of our preliminary experiments performed
on an industrial controller to assess the scalability of the approach.

3.3 Applications

The proposed mutation coverage analysis approach allows one to check if a given test
suite is a complete test suite. A logical formula constructed by the proposed method
represents the coverage of the test suite for a given fault model. If the test suite is found
to be incomplete the question arises on how its quality in terms of fault coverage can be
characterized. In the traditional software mutation testing, the fault detection power of
tests is characterized by mutation score. It is a ratio of the number of killed mutants to
the number of non-equivalent mutants. Note that the number of all possible mutants

Multiple Mutation Testing from FSM 233

remains unknown and the mutation score is determined based on a limited set of
generated mutants. As opposed to this approach, in our approach the total number of
mutants can always be determined using the formula given in Sect. 2.2. Moreover,
while the mutation analysis method avoids complete mutant enumeration, it does
generate conforming mutants while searching for nonconforming ones. The enumer-
ation of conforming mutants is achieved by adding constraints to a logical formula
excluding repeated generation of already found mutants.

In the same vain, our method can be enhanced to generate and enumerate (at least
partially) undetected nonconforming mutants. Once a nonconforming mutant is given
by a solution found by a SMT solver and the method terminates declaring the test suite
to be incomplete, we may continue this process by adding a constraint excluding its
repeated generation. As a result a list of nonconforming mutants can be obtained. Two
extreme cases of incomplete tests are worth to be discussed here.

First, a given test suite may have no detection capability at all. This property is in
fact detected very early by the method; in this case all the a-distinguishing automata
have no sink state reachable from the initial states, tests generate no constraints, the
method can terminate at this step since there is no need to call a solver. No mutant in
Sub(M) is killed, the score is zero.

Second, a given test suite is “almost” complete and kills most of the mutants in Sub
(M). In this case, the process of nonconforming mutant generation does not takemuch time
and once terminated yields the number of conforming mutants c as well as the number of
survived nonconforming ones n. Then the mutation score is computed as follows:

It is worth to note that the way the mutation score is determined is completely
different from that in software mutation testing, as our method generates mutants based
on a given test suite and not the other way around.

When a given test suite is “far” from being complete the number of survived
nonconforming mutants can explode especially when a mutation machine is close to a
complete chaos machine which represents the complete universe of FSMs. In this
situation one possible solution to cope with the mutant explosion problem is to ter-
minate generating nonconforming mutants once their number reaches a predefined
maximum, e.g., a percentage of |Sub(M)| or the time period allocated for mutation
analysis ends. The obtained score is an (optimistic) estimation of an upper bound of the
actual mutation score.

The proposed procedure could also be used for test minimization by defining a
subsume relation between tests based on comparison of the logical formulas generated
from them. Tests subsumed by other tests can always be removed from the original test
suite. Similarly the generated formulas can be used to prioritize tests when needed, see,
e.g., [28].

4 Experimental Results

In this section we report on a prototype tool implementing the proposed approach and
its use on a case study of an FSM model of an automotive controller of industrial size.

234 A. Petrenko et al.

4.1 Prototype Tool

The prototype tool takes as inputs a mutation machine and a test suite, both described
in text format. The inputs are parsed with an ANTLR-based module [30] to build an
internal representation of the two objects. The mutation analysis algorithm manipulates
these representations to build a-distinguishing automata, determine revealing execu-
tions of the mutation machine and generate constraints for the Yices SMT solver [23].
The solver is used as a backend to decide the satisfiability of the constraints. The tool
parses the outputs from Yices to extract a solution if it is found to build a mutant. The
prototype can also be used with other SMT solvers compatible with the SMT-LIB 2.0.

4.2 Case Study

In our experiments, we use as a case study an automotive controller of the air quality
system, which we also used in our previous work [29]. The functionality of the con-
troller is to set an air source position depending on its current state and a current input
from the environment.

The controller is initially specified as a hierarchical Simulink Stateflow model.
Figure 5 gives an overview of the model which is composed of three super-states s1, s2
and s23 and 13 simple states. Each super-state is composed of states and transitions.
The initial state is the simple state s3. To obtain an FSM we introduced an input
alphabet replacing transitions guards and flattened the hierarchical machine. We have
identified 24 abstract inputs and two outputs. The resulting FSM has 14 states, since we
added (for modeling of a branching behavior implemented with C code in the original
state) one extra state to the given 13 simple states. It has 24 � 14 = 336 transitions.

The mutation machine was constructed from the following assumption about
potential implementation faults. These faults may occur in outgoing transitions from any
of the simple states in two super-states, namely s2 and s23 and four inputs, as Table 1
shows. The obtained mutation machine has 46 mutated transitions. The formula in
Sect. 2 gives the number of mutants being equal to 312 � 217 = 69,657,034,752
including the specification machine.

Fig. 5. An overview of the Simulink/Stateflow model in the controller

Multiple Mutation Testing from FSM 235

4.3 Mutation Analysis

To perform the mutation analysis, we needed a test suite, which could be generated
randomly, however, we find it difficult to obtain tests that hit suspicious transitions in
this case study, since 26 out of 336 transitions of the specification machine become
suspicious in the mutation machine. We decided to use an early prototype of a test
generation tool (which is work in progress) as an input for the mutation analysis tool.
The tool generates test cases one by one, so that the mutation analysis tool processes a
test suite of an increasing size. The process terminates once a current test suite is found
to be complete. In this experiment, the test suite completeness was determined when it
had 31 test cases. The length of the test cases varies from 4 to 25 and the number of
revealing executions triggered by each of them varies from 1 to 13. In the last, 31st

execution of Yices, it was given the formula of 69 clauses, for which it found no
solution, meaning that the test suite is complete for the given mutation machine. The
mutation analysis process took less than one minute on a desktop computer with the
following settings: 3.4 Ghz Intel Core i7-3770 CPU, 16.0 GB of RAM, Yices 2.4.1,
and ANTLR 4.5.1.

The fact that the tool was able to determine that the given test suite kills each
nonconforming mutant out of 69,657,034,752 possible mutants indicates that the
approach scales sufficiently well on a typical automotive controller even when the
number of mutants is big. In this experiment, we varied only the number of tests (from
1 to 31), hence more experiments by varying the specification as well as mutation
machines are needed to assess the tool scalability.

5 Conclusions

In this paper we focused on fault model based testing, assuming that a fault model is
given as a tuple of a specification FSM, equivalence as a conformance relation and a
fault domain. A fault domain is a set of implementation machines, aka mutants, each of
which models some faults, such as output, transfer or transition faults. Avoiding their
enumeration we define the fault domain as a set of all possible submachines of a given
nondeterministic FSM, called a mutation machine, as we did in our previous work. The
mutation machine contains a specification machine and extends it with a number of
mutated transitions, modelling potential faults. Thus a single mutant represents multiple
mutations and mutation machine represents numerous mutants. In the area of mutation

Tab. 1. The numbers of transitions for some pairs of states and inputs in the mutation machine
(for the remaining pairs no mutated transitions were added).

s21 s22 s231 s232 s233 s234 s235

a2 3 3 3 3 3 3 3
a4 2 2 2 2 2 2 2
a14 1 1 3 3 3 3 3
a16 1 1 4 4 4 4 4

236 A. Petrenko et al.

testing we could not find any attempt to analyze fault detection power of tests con-
sidering multiple mutants that avoids their enumeration.

We proposed a method for analyzing mutation coverage of tests which we cast as a
constraint satisfaction problem. The method relies on the notion of a distinguishing
automaton that is a product of the specification and mutation machines. To analyze
mutation coverage of a single input sequence we define a distinguishing automaton
constrained by this sequence. This allows us to determine all mutants revealing exe-
cutions that are triggered by the input sequence. The executions are then used to build
constraint formulas to be solved by an existing solver, Yices, in our experiments. The
approach avoids enumeration of mutants while still offering a possibility to estimate the
test adequacy (mutation score).

The preliminary experiments performed on an industrial controller indicate that the
approach scales sufficiently well. We are planning to further enhance the approach to
Extended FSMs [17] using mutation operators already defined for this type of FSMs.

Acknowledgements. This work is supported in part by GM R&D and the MEIE of Gou-
vernement du Québec. The authors would like to thank the reviewers for their useful comments.

References

1. Pomeranz, I., Sudhakar, M.R.: Test generation for multiple state-table faults in finite-state
machines. IEEE Trans. Comput. 46(7), 783–794 (1997)

2. Poage, J.F., McCluskey, Jr., E.J.: Derivation of optimal test sequences for sequential
machines. In: Proceedings of the IEEE 5th Symposium on Switching Circuits Theory and
Logical Design, pp. 121–132 (1964)

3. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the
practicing programmer. IEEE Comput. 11(4), 34–41 (1978)

4. DeMilli, R.A., Offutt, J.A.: Constraint-based automatic test data generation. IEEE Trans.
Softw. Eng. 17(9), 900–910 (1991)

5. Grunsky, I.S., Petrenko, A.: Design of checking experiments with automata describing
protocols. Automatic Control and Computer Sciences. Allerton Press Inc. USA.
No. 4 (1988)

6. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proceedings of the IEEE
5th Annual Symposium on Switching Circuits Theory and Logical Design, pp. 95–110.
Princeton (1964)

7. Koufareva, I., Petrenko, A., Yevtushenko, N.: Test generation driven by user-defined fault
models. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds.) Testing of Communicating Systems.
IFIP — The International Federation for Information Processing, vol. 21, pp. 215–233.
Springer, New York (1999)

8. Lee, D., Yannakakis, M.: Principles and methods of testing finite-state machines - a survey.
Proc. IEEE 84(8), 1090–1123 (1996)

9. Moore, E.F.: Gedanken - Experiments on sequential machines. In: Automata Studies.
Princeton University Press, pp. 129–153 (1956)

10. Petrenko, A., Yevtushenko, N.: Test suite generation for a FSM with a given type of
implementation errors. In: Proceedings of IFIP 12th International Symposium on Protocol
Specification, Testing, and Verification, pp. 229–243 (1992)

Multiple Mutation Testing from FSM 237

11. Petrenko, A., Yevtushenko, N., Bochmann, G.V.: Fault models for testing in context. In:
Gotzhein, R., Bredereke, J. (eds.) Formal Description Techniques IX, pp. 163–178.
Springer, USA (1996)

12. Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics 4, 653–665 (1973). Plenum
Publishing Corporation. New York

13. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw.
Eng. 4(3), 178–187 (1978)

14. Vuong, S.T., Ko, K.C.: A novel approach to protocol test sequence generation. In: Global
Telecommunications Conference, vol. 3, pp. 2–5. IEEE (1990)

15. Godskesen, J.C.: Fault models for embedded systems. In: Pierre, L., Kropf, T. (eds.)
CHARME 1999. LNCS, vol. 1703, pp. 354–359. Springer, Heidelberg (1999)

16. Cheng, K.T., Jou, J.Y.: A functional fault model for sequential machines. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 11(9), 1065–1073 (1992)

17. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE
Trans. Softw. Eng. 30(1), 29–42 (2004)

18. Gordon, F., Wotawa, F., Ammann, P.: Testing with model checkers: a survey. Softw. Test.
Verification Reliab. 19(3), 215–261 (2009)

19. Anand, S., et al.: An orchestrated survey of methodologies for automated software test case
generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

20. Petrenko, A.: Fault model-driven test derivation from finite state models: Annotated
bibliography. Modeling and verification of parallel processes, pp. 196–205. Springer,
Heidelberg (2001)

21. Petrenko, A., Bochmann, G.V., Yao, M.: On fault coverage of tests for finite state
specifications. Comput. Netw. ISDN Syst. 29(1), 81–106 (1996)

22. Simao, A., Petrenko, A., Maldonado, J.C.: Comparing finite state machine test coverage
criteria. IET Softw. 3(2), 91–105 (2009)

23. De Moura, L., Dutertre B.: Yices 1.0: An efficient SMT solver. In: The Satisfiability Modulo
Theories Competition (SMT-COMP) (2006)

24. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

25. Rӧsch, S., Ulewicz, S., Provost, J., Vogel-Heuser, B.: Review of model-based testing
approaches in production automation and adjacent domains - current challenges and research
gaps. J. Softw. Eng. Appl. 8, 499–519 (2015)

26. Bochmann, G.V., et al.: Fault models in testing. In: Proceedings of the IFIP TC6/WG6.
1 Fourth International Workshop on Protocol Test Systems, pp. 17–30. North-Holland
Publishing Co. (1991)

27. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifications. IEEE
Trans. Comput. 54(9), 1154–1165 (2005)

28. Korel, B., Tahat, L.H., Harman M.: Test prioritization using system models. In: Proceedings
of the 21st IEEE International Conference on Software Maintenance, pp. 559–568 (2005)

29. Petrenko, A., Dury, A., Ramesh, S., Mohalik, S.: A method and tool for test optimization for
automotive controllers. In: ICST Workshops, pp. 198–207 (2013)

30. Parr, T.: The Definitive ANTLR 4 Reference, vol. 2. Pragmatic Bookshelf, Raleigh (2013)

238 A. Petrenko et al.

The Challenge of Typed Expressiveness
in Concurrency

Jorge A. Pérez(B)

University of Groningen, Groningen, The Netherlands
j.a.perez@rug.nl

Abstract. By classifying behaviors (rather than data values), behav-
ioral types abstract structured protocols and enforce disciplined message-
passing programs. Many different behavioral type theories have been
proposed: they offer a rich landscape of models in which types delin-
eate concurrency and communication. Unfortunately, studies on formal
relations between these theories are incipient. This paper argues that
clarifying the relative expressiveness of these type systems is a press-
ing challenge for formal techniques in distributed systems. We overview
works that address this issue and discuss promising research avenues.

1 Introduction

Communication and types are increasingly relevant in (concurrent) program-
ming. To bear witness of this trend, several languages promoted by industry offer
advanced type systems (or type-based analysis tools) and/or support (message-
passing) communication. For instance, Facebook’s Flow [1] is a type checker for
JavaScript based on gradual typing; Mozilla’s Rust [4] exploits affine, ownership
types to balance safety and control; Google’s Go [3] supports process concur-
rency and channel-based communication. Other languages (e.g., Erlang [2]) also
offer forms of (message-passing) communication.

If communication and types are here to stay, on what foundations languages
integrating both features should rest? Much research within formal techniques
in distributed systems has been devoted to models for concurrency and commu-
nication. In particular, process calculi have been widely promoted as a basis for
type systems for concurrent programs. Indeed, building upon the π-calculus, a
variety of behavioral type systems have been put forward [24,35]: by classifying
behaviors (rather than values), these type structures abstract structured proto-
cols and enforce disciplined message-passing programs. Existing work suggests
that rather than a shortage of foundations for types and communication, we
have the opposite problem: there are many formal foundations and it is unclear
how to build upon them to transfer analysis techniques into practice.

The current situation calls for rigorous comparisons between well-established
(but distinct) behavioral typed frameworks. Besides revealing bridges between
different models of typed processes, such comparisons should clarify the
complementarities and shortcomings of analysis techniques based on types.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 239–247, 2016.
DOI: 10.1007/978-3-319-39570-8 16

240 J.A. Pérez

Developing a theory of typed expressiveness is thus a challenge for the specifica-
tion and analysis of distributed systems. The consolidation of communication-
centered software systems (collections of interacting, heterogeneous services) and
the renewed interest of software practitioners in communication and types endow
this research challenge with practical significance.

We argue that the much needed formal comparisons may draw inspiration
from results and frameworks for relative expressiveness, as studied in concurrency
theory. This area has elucidated important formal relations between untyped
process languages (see [49] for a survey); it thus appears as an adequate basis
for analogous formal results in a typed setting.

This short paper is organized as follows. Next we overview main achievements
in untyped expressiveness (Sect. 2). Then, we briefly review expressiveness results
that consider behavioral types and/or behaviorally typed processes (Sect. 3). We
conclude by discussing promising research directions (Sect. 4).

2 Expressiveness in Concurrency: The Untyped Case

Important studies of expressiveness in concurrency concern process calculi, a
well-established approach to the analysis of concurrent systems. These for-
malisms, in particular the π-calculus, also provide a basis for typed systems
for communicating programs. Process calculi promote the view of concurrency
as communication: they abstract the interactions of a system by means of atomic
communication actions. This view is simple and powerful, and has deep ramifi-
cations to computing at large.

The process calculi approach to concurrency has proved prolific. Starting
from a few “basic” process calculi (including CSP, CCS, the π-calculus, amongst
others), many extensions have been put forward, following modeling require-
ments (e.g., quantitative information) but also the need of representing forms of
interaction typical of application domains such as, e.g., systems biology, secu-
rity, and service-oriented computing. Given this jungle of process models [45],
the need for establishing formal relationships between them was soon evident.
To rise to this challenge, since the early 1990s a sustained body of work has
assessed the expressiveness of process languages. These studies may pertain, for
instance, to the nature of a process construct (e.g., whether it can be imple-
mented using more basic ones) or to the transfer of reasoning techniques (e.g.,
process equivalences) across languages.

The main device used in expressiveness studies is the notion of encoding :
a translation of a source language LS into a target language LT that satisfies
certain properties. Such properties are usually defined as syntactic and seman-
tic criteria; they are abstract indicators of an encoding’s quality. Two common
criteria are homomorphism with respect to parallel composition, which promotes
compositional encodings, and operational correspondence, which relates the (vis-
ible) behavior of source and target processes. Abstract formulations of encodings
and their criteria have been put forward (cf. [30]). An encoding of LS into LT

(a positive encodability result) indicates that LT is at least as expressive as LS :

The Challenge of Typed Expressiveness in Concurrency 241

all behaviors expressible in LS can also be expressed in LT . The non existence
of an encoding (a negative encodability result) may indicate that LS is more
expressive than LT : there are behaviors expressible in LS but not in LT .

Encodability results have clarified our understanding of notions of interaction
and communication as abstracted by process calculi. They have been crucial to:

(a) Formally relate different computational models. Two notable examples are
(i) the encodability of the λ-calculus in the π-calculus [44], and (ii) decid-
ability results for termination/convergence for CCS, which distinguish the
expressive power of processes with replication and recursion [6].

(b) Assess the expressive power of process languages. As an example, sev-
eral influential works have clarified the interplay of choice operators and
(a)synchronous communication, and its influence on the expressive power of
the π-calculus (see, for instance, [48]).

(c) Transfer proof techniques between different calculi. For instance, the fully
abstract encodability of process mobility (process passing) into name mobil-
ity has important consequences on the behavioral theory of higher-order
process calculi [50].

Expressiveness results can be useful in the design of concurrent languages. For
instance, the formalization of compilers usually requires encodings and behavior-
preserving translations. Similarly, the development of type systems for process
calculi, in particular behavioral types, has further reconciled process models and
actual concurrent languages.

3 Towards Relative Expressiveness for Behavioral Types

The development of process languages with verification techniques based on type
systems has received much attention. From Milner’s sortings [43] until recently
discovered logic foundations of concurrency [9,52]—passing through, e.g., graph
types [53], linear types [39], session types [31], and generic types [36]—type sys-
tems have revealed a rich landscape of concurrent models with disciplined com-
munication.

Within these different type systems, behavioral types stand out by their
ability to abstract notions such as causality, alternatives (choices), and repeti-
tion [35]. A behavioral type defines the resource-usage policy of a communication
channel, but also describes a series of actions realized through that channel along
time. Behavioral types are often defined on top of process calculi; this enables
the definition of general verification techniques that may be then adapted to dif-
ferent languages. Given this jungle of typed process models, the need for estab-
lishing formal relations between them rises again. Mirroring the achievements of
untyped expressiveness (cf. (a)–(c) above), we believe that research on formal
methods for distributed systems would benefit from efforts aimed at:

(i) Formally relating different typed models.
(ii) Assessing the expressiveness of languages governed by behavioral types.
(iii) Transferring analysis techniques between different typed languages and for-

malisms.

242 J.A. Pérez

These are challenging issues: as different type systems rely on unrelated concepts,
discrepancies on typability arise easily. Hence, objective comparisons are hard
to establish. Next we briefly review some works that address (i)–(iii) from vari-
ous angles. Most of them concern session types, one of the most representative
classes of behavioral types. Session types abstract structured communications
(protocols) by allowing sequential actions (input and output), labeled choices
(internal and external), and recursion. Binary session types [31] abstract proto-
cols between two partners; multiparty session types [32] overcome this limitation:
a global type (choreography) offers a high-level perspective for the local types real-
ized by each partner. Different formulations for binary/multiparty session types
have been developed, with varying motivations [35].

Linear Types and Session Types. Kobayashi appears to be the first to have
related distinct type disciplines for the π-calculus by encoding the (finite) session
π-calculus into a π-calculus with linear types with usages and variant types [38,
Sect. 10]. His encoding represents a session name by multiple linear channels,
using a continuation-passing style. Since Kobayashi does not explore the correct-
ness properties of his encoding, Dardha et al. [17] revisit it by establishing type
and operational correspondences and by giving extensions with subtyping, poly-
morphism, and higher-order communication. An extension of [17] with recursion
in processes and types is reported in [16].

In a similar vein as [17], Demangeon and Honda [19] encode a session
π-calculus into a linear/affine π-calculus with subtyping based on choice and
selection types, which generalize input and output types, resp. Their encoding
preserves subtyping. In contrast to [17], the encoding in [19] is fully abstract up to
may/must barbed congruences. Their linear/affine π-calculus can also encode a
call-by-value λ-calculus.

Gay et al. [28] encode a monadic π-calculus with (finite) binary session types
(as in [27]) into a polyadic π-calculus with generic process types (as in [36],
instantiated with linear, race-free communications). They aim at retaining origi-
nal constructs in both models and to ensure operational and type correspon-
dences. Their encoding enjoys these correspondences, but does not preserve
subtyping. The authors notice that encoding labeled choice into guarded, unla-
beled summation is challenging; also, that the target languages considered
in [17,19] admit simple encodings of labeled choice.

Concerning transfer of techniques, Carbone et al. [11] use the encoding in [17]
to relate progress in the session π-calculus to lock-freedom [37] in the linear
π-calculus. This path to progress in binary sessions is an improvement with
respect to previous works [12,25], as more session processes with progress are
accepted as well-typed.

Session Types and Automata-like Models. Just as (untyped) process calculi
have been related to sequential models of computation to characterize (un)decid-
ability properties (therefore identifying expressiveness gaps—see, e.g., [6]), ses-
sion types have been related to automata-like models. Initial results are due to
Villard [51] who, in the context of dual channel contracts, shows that a subclass
of communicating finite state machines (CFSMs) characterizes binary session
types. Deniélou and Yoshida [22] extend this characterization to the multiparty

The Challenge of Typed Expressiveness in Concurrency 243

setting by giving a class of generalized multiparty session types and their inter-
pretation into CFSMs. This class inherits key safety and liveness properties from
CFSMs. The work [23] complements [22] by offering a sound and complete char-
acterization of multiparty session types as CFSMs, identifying the key notion
of multiparty compatibility. Lange et al. [41] extend this work by developing
techniques to synthesize global graphs from CFSMs, covering more global pro-
tocols than [22,23]. Fossati et al. [26] overcome modeling limitations of textual
multiparty session types through an integration with Petri nets. Using Petri nets
token semantics they define a conformance relation between syntactic local types
and session nets.

Types in the ψ-calculi. The ψ-calculi [5] are a family of name-passing process
calculi that extends the π-calculus with terms, conditions, and assertions. Gen-
erality arises by treating terms as subjects in communication prefixes and by
allowing input patterns. Hüttel [33] proposes a type system for ψ-calculi that
generalizes simple types for the π-calculus; it enjoys generic formulations of type
soundness and type safety. Instantiations are shown for other process languages,
including the fusion calculus, the distributed π (Dπ), and the spi-calculus. The
work [34] extends [33] to the case of resource-aware type systems: it proposes
a type system for ψ-calculi that subsumes the system for linear channel usage
of [39], the action types of [54], and a type system similar to that in [21].

Other Approaches. López et al. [42] encode binary session processes into a
declarative process calculus, enabling the transfer of LTL reasoning to scenar-
ios of session communications. Cano et al. [10] encode a session π-calculus into
declarative process calculus with explicit linearity and establish strong opera-
tional correspondences. Padovani [47] relates labeled choice operators in session
types with intersection and union types. Orchard and Yoshida [46] encode PCF
with an effect type system into a session π-calculus; a reverse encoding that
embeds the session π-calculus into PCF with concurrency primitives is used to
offer a new implementation of sessions into Haskell.

4 Concluding Remarks and Future Directions

The works discussed above define insightful relations between different frame-
works of behavioral types. Although some works define the transfer of techniques
between typed models and/or enable practical applications (cf. [11,42,46]), most
existing works define isolated studies: since each work uses different techniques to
relate typed models, further research is needed to integrate their results. There
are promising research directions towards this ambitious goal. For space reasons,
below we discuss only three of them.

4.1 Expressiveness Without Processes

Using process calculi to study behavioral types allows to establish their prop-
erties by exploiting well-established process techniques. In practical multiparty

244 J.A. Pérez

communications [13,23,41], however, one is mostly interested in types (rather
than in processes), as they offer contracts/interfaces to derive safe implemen-
tations. These works use process calculi techniques to define, e.g., operational
semantics and equivalences for global types. If one focuses on types then expres-
siveness results should relate different behavioral types and their semantics.
Demangeon and Yoshida [20] develop this approach: they contrasted the expres-
sivity of different models of multiparty session types by comparing their trace-
based denotations. As global types become richer in structure, comparisons
will need to use techniques from relative expressiveness. The recent work of
Cruz-Filipe and Montesi [15] goes in this direction.

4.2 A Logic Yardstick for Typed Expressiveness

The variety of behavioral types rises a natural question: what should be a
“fair yardstick” to compare them? Recently developed Curry-Howard corre-
spondences for concurrency [9,14,52] define a fundamental model of behavioral
types: by relating session types and linear logic, they identify type preserving
and deadlock-free process models.

Some works connect [9,52] and other models. Wadler [52] gives a deadlock-
free fragment of the session-typed functional language in [29] by encodings into
concurrent processes. The work [18] contrasts two classes of deadlock-free, session
processes: the first class results from [9,52]; the other results by combining the
encoding in [17] and usage types [37]. The former class is shown to be strictly
included in the latter. The work [7,8] defines an analysis of multiparty session
types (lock-free choreographies, as in [23]) using techniques for binary session
types (as in [9]). Further work should relate [9,14,52] and other behavioral types.

4.3 Typed Encodability Criteria

Related to Sect. 4.1, another direction is clarifying how existing frameworks for
relative expressiveness (such as [30]) can account for behavioral types. This is
needed to understand how types induce encodability results, but also to relate
different behavioral types in source/target languages.

In their recent study of the relative expressivity of higher-order session
communication, Kouzapas et al. [40] define a notion of typed encoding that
extends [30] with session types. This work considers translations of processes
and types and two new encodability criteria: type soundness and type preser-
vation. The former says that translations preserve typability (well-typed source
processes are encoded into well-typed target processes), the latter says that
encodings of types preserve the structure of the session protocol, as represented
by session type operators. While demanding and focused to the case of binary
session types, these criteria are shown to be appropriate in classifying session-
based π-calculi. Further work is needed to generalize/relax these typed encod-
ability criteria, so to consider source and target languages with different type
systems.

The Challenge of Typed Expressiveness in Concurrency 245

Acknowledgments. I would like to thank Ilaria Castellani, Ornela Dardha,
Mariangiola Dezani-Ciancaglini, Dimitrios Kouzapas, Hugo A. López, and Camilo
Rueda for their useful feedback on previous drafts of this paper.

References

1. Flow: A Static Type Checker for JavaScript. http://flowtype.org
2. The Erlang Programming Language. http://www.erlang.org
3. The Go Programming Language. https://golang.org
4. The Rust Programming Language. https://www.rust-lang.org
5. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: mobile processes,

nominal data, and logic. In: Proceedings of LICS 2009, pp. 39–48. IEEE Computer
Society (2009). http://doi.ieeecomputersociety.org/10.1109/LICS.2009.20

6. Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion, repli-
cation and iteration in process calculi. Math. Struc. Comp. Sci. 19(6), 1191–1222
(2009). http://dx.doi.org/10.1017/S096012950999017X

7. Caires, L., Pérez, J.A.: A typeful characterization of multiparty structured conver-
sations based on binary sessions. CoRR abs/1407.4242 (2014). http://arxiv.org/
abs/1407.4242

8. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary theory,
and beyond. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp.
75–85. Springer, Heidelberg (2016)

9. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

10. Cano, M., Rueda, C., López, H.A., Pérez, J.A.: Declarative interpretations of
session-based concurrency. In: Proceedings of PPDP 2015, pp. 67–78. ACM (2015).
http://doi.acm.org/10.1145/2790449.2790513

11. Carbone, M., Dardha, O., Montesi, F.: Progress as compositional lock-freedom. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 49–64.
Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-43376-8 4

12. Carbone, M., Debois, S.: A graphical approach to progress for structured commu-
nication in web services. In: Proceedings of ICE 2010. EPTCS, vol. 38, pp. 13–27
(2010). http://dx.doi.org/10.4204/EPTCS.38.4

13. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Proceedings of POPL 2013, pp. 263–274. ACM (2013).
http://doi.acm.org/10.1145/2429069.2429101

14. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types as
coherence proofs. In: Proceedings of CONCUR 2015. LIPIcs, vol. 42, pp. 412–426
(2015). http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.412

15. Cruz-Filipe, L., Montesi, F.: Choreographies, computationally. CoRR
abs/1510.03271 (2015). http://arxiv.org/abs/1510.03271

16. Dardha, O.: Recursive session types revisited. In: Proceedings of BEAT 2014.
EPTCS, vol. 162, pp. 27–34 (2014). http://dx.doi.org/10.4204/EPTCS.162.4

17. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings
of PPDP 2012, pp. 139–150. ACM (2012). http://doi.acm.org/10.1145/2370776.
2370794

18. Dardha, O., Pérez, J.A.: Comparing deadlock-free session typed processes. In: Pro-
ceedings of EXPRESS/SOS. EPTCS, vol. 190, pp. 1–15 (2015). http://dx.doi.org/
10.4204/EPTCS.190.1

http://flowtype.org
http://www.erlang.org
https://golang.org
https://www.rust-lang.org
http://doi.ieeecomputersociety.org/10.1109/LICS.2009.20
http://dx.doi.org/10.1017/S096012950999017X
http://arxiv.org/abs/1407.4242
http://arxiv.org/abs/1407.4242
http://doi.acm.org/10.1145/2790449.2790513
http://dx.doi.org/10.1007/978-3-662-43376-8_4
http://dx.doi.org/10.4204/EPTCS.38.4
http://doi.acm.org/10.1145/2429069.2429101
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.412
http://arxiv.org/abs/1510.03271
http://dx.doi.org/10.4204/EPTCS.162.4
http://doi.acm.org/10.1145/2370776.2370794
http://doi.acm.org/10.1145/2370776.2370794
http://dx.doi.org/10.4204/EPTCS.190.1
http://dx.doi.org/10.4204/EPTCS.190.1

246 J.A. Pérez

19. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear
types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
280–296. Springer, Heidelberg (2011). http://dx.org/10.1007/978-3-642-23217-6 19

20. Demangeon, R., Yoshida, N.: On the expressiveness of multiparty sessions. In: Pro-
ceedings of FSTTCS 2015. LIPIcs, vol. 45, pp. 560–574. Schloss Dagstuhl (2015).
http://dx.org/10.4230/LIPIcs.FSTTCS.2015.560

21. Deng, Y., Sangiorgi, D.: Ensuring termination by typability. Inf. Comput. 204(7),
1045–1082 (2006)

22. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). http://dx.org/10.1007/978-3-642-28869-2 10

23. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicat-
ing automata: characterisation and synthesis of global session types. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 174–186. Springer, Heidelberg (2013).
http://dx.org/10.1007/978-3-642-39212-2 18

24. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: an overview.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer,
Heidelberg (2010)

25. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
257–275. Springer, Heidelberg (2008). http://dx.org/10.1007/978-3-540-78663-4 18

26. Fossati, L., Hu, R., Yoshida, N.: Multiparty session nets. In: Maffei, M., Tuosto,
E. (eds.) TGC 2014. LNCS, vol. 8902, pp. 112–127. Springer, Heidelberg (2014).
http://dx.org/10.1007/978-3-662-45917-1 8

27. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42,
191–225 (2005). http://portal.acm.org/citation.cfm?id=1104643.1104646

28. Gay, S.J., Gesbert, N., Ravara, A.: Session types as generic process types. In:
Proceedings of EXPRESS 2014 and SOS 2014. EPTCS, vol. 160, pp. 94–110 (2014).
http://dx.org/10.4204/EPTCS.160.9

29. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010). http://dx.org/10.1017/S0956796809990268

30. Gorla, D.: Towards a unified approach to encodability and separa-
tion results for process calculi. Inf. Comput. 208(9), 1031–1053 (2010).
http://dx.org/10.1016/j.ic.2010.05.002

31. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

32. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM (2008)

33. Hüttel, H.: Typed ψ-calculi. In: Katoen, J.-P., König, B. (eds.) CON-
CUR 2011. LNCS, vol. 6901, pp. 265–279. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-23217-6 18

34. Hüttel, H.: Types for resources in ψ-calculi. In: Abadi, M., Lluch Lafuente, A.
(eds.) TGC 2013. LNCS, vol. 8358, pp. 83–102. Springer, Heidelberg (2014).
http://dx.org/10.1007/978-3-319-05119-2 6

35. Huttel, H., Lanese, I., Vasconcelos, V., Caires, L., Carbone, M., Deniélou, P.M.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
(2016, to appear)

http://dx.org/10.1007/978-3-642-23217-6_19
http://dx.org/10.4230/LIPIcs.FSTTCS.2015.560
http://dx.org/10.1007/978-3-642-28869-2_10
http://dx.org/10.1007/978-3-642-39212-2_18
http://dx.org/10.1007/978-3-540-78663-4_18
http://dx.org/10.1007/978-3-662-45917-1_8
http://portal.acm.org/citation.cfm?id=1104643.1104646
http://dx.org/10.4204/EPTCS.160.9
http://dx.org/10.1017/S0956796809990268
http://dx.org/10.1016/j.ic.2010.05.002
http://dx.doi.org/10.1007/978-3-642-23217-6_18
http://dx.org/10.1007/978-3-319-05119-2_6

The Challenge of Typed Expressiveness in Concurrency 247

36. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theor. Com-
put. Sci. 311(1–3), 121–163 (2004). http://dx.org/10.1016/S0304-3975(03)00325–6

37. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159
(2002). http://dx.org/10.1006/inco.2002.3171

38. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K.
(ed.) Formal Methods at the Crossroads. From Panacea to Founda-
tional Support. LNCS, vol. 2757, pp. 439–453. Springer, Heidelberg (2003).
http://dx.org/10.1007/978-3-540-40007-3 26

39. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. In: POPL,
pp. 358–371 (1996)

40. Kouzapas, D., Pérez, J.A., Yoshida, N.: On the relative expressiveness of higher-
order session processes. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp.
446–475. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1 18

41. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Proceedings of POPL 2015, pp. 221–232. ACM (2015). http://
doi.acm.org/10.1145/2676726.2676964

42. López, H.A., Olarte, C., Pérez, J.A.: Towards a unified framework for declarative
structured communications. In: Proceedings of PLACES 2009. EPTCS, vol. 17,
pp. 1–15 (2009). http://dx.org/10.4204/EPTCS.17.1

43. Milner, R.: The Polyadic pi-Calculus: A Tutorial. Technical report, ECS-LFCS-91-
180 (1991)

44. Milner, R.: Functions as processes. Math. Struc. Comp. Sci. 2(2), 119–141 (1992)
45. Nestmann, U.: Welcome to the jungle: a subjective guide to mobile process calculi.

In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 52–63.
Springer, Heidelberg (2006). http://dx.org/10.1007/11817949 4

46. Orchard, D.A., Yoshida, N.: Effects as sessions, sessions as effects. In: Proceedings
of POPL 2016, pp. 568–581. ACM (2016). http://doi.acm.org/10.1145/2837614.
2837634

47. Padovani, L.: Session types = intersection types + union types. In: Proceedings of
ITRS 2010. EPTCS, vol. 45, pp. 71–89 (2010). http://dx.org/10.4204/EPTCS.45.6

48. Palamidessi, C.: Comparing the expressive power of the synchronous and
asynchronous pi-calculi. Math. Struct. Comput. Sci. 13(5), 685–719 (2003).
http://dx.org/10.1017/S0960129503004043

49. Parrow, J.: Expressiveness of process algebras. In: ENTCS, vol. 209, pp. 173–186
(2008). http://dx.org/10.1016/j.entcs.2008.04.011

50. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. Ph.D. thesis CST-99-93, University of Edinburgh (1992)

51. Villard, J.: Heaps and Hops. Ph.D. thesis, École Normale Supérieure de Cachan,
February 2011

52. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014).
http://dx.org/10.1017/S095679681400001X

53. Yoshida, N.: Graph types for monadic mobile processes. In: Chandru, V., Vinay, V.
(eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 371–386. Springer, Heidelberg (1996).
http://dx.org/10.1007/3-540-62034-6 64

54. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the pi -calculus. Inf.
Comput. 191(2), 145–202 (2004)

http://dx.org/10.1016/S0304-3975(03)00325--6
http://dx.org/10.1006/inco.2002.3171
http://dx.org/10.1007/978-3-540-40007-3_26
http://dx.doi.org/10.1007/978-3-662-49498-1_18
http://doi.acm.org/10.1145/2676726.2676964
http://doi.acm.org/10.1145/2676726.2676964
http://dx.org/10.4204/EPTCS.17.1
http://dx.org/10.1007/11817949_4
http://doi.acm.org/10.1145/2837614.2837634
http://doi.acm.org/10.1145/2837614.2837634
http://dx.org/10.4204/EPTCS.45.6
http://dx.org/10.1017/S0960129503004043
http://dx.org/10.1016/j.entcs.2008.04.011
http://dx.org/10.1017/S095679681400001X
http://dx.org/10.1007/3-540-62034-6_64

Type-Based Analysis for Session Inference
(Extended Abstract)

Carlo Spaccasassi(B) and Vasileios Koutavas

Trinity College Dublin, Dublin, Ireland
spaccasc@tcd.ie, vasileios.koutavas@scss.tcd.ie

Abstract. We propose a type-based analysis to infer the session proto-
cols of channels in an ML-like concurrent functional language. Combining
and extending well-known techniques, we develop a type-checking sys-
tem that separates the underlying ML type system from the typing of
sessions. Without using linearity, our system guarantees communication
safety and partial lock freedom. It also supports provably complete ses-
sion inference for finite sessions with no programmer annotations. We
exhibit the usefulness of our system with interesting examples, including
one which is not typable in substructural type systems.

1 Introduction

Concurrent programming often requires processes to communicate according to
intricate protocols. In mainstream programming languages these protocols are
encoded implicitly in the program’s control flow, and no support is available for
verifying their correctness.

Honda [6] first suggested the use of binary session types to explicitly describe
and check protocols over communication channels with two endpoints. Funda-
mentally, session type systems guarantee that a program respects the order
of communication events (session fidelity) and message types (communication
safety) described in a channel’s session type. A number of session type systems
(e.g., [2,3,16]) also ensure that processes fully execute the protocols of their
open endpoints, as long as they do not diverge or block on opening new sessions
(partial lock freedom).

To date, binary session type disciplines have been developed for various
process calculi and high-level programming languages (see [8] for an overview) by
following one of two main programming language design approaches: using a sin-
gle substructural type system for both session and traditional typing [5,7,18,19],
or using monads to separate the two [13,16].

In this paper we propose a third design approach which uses effects. Similar to
previous work, our approach enables the embedding of session types in program-
ming languages with sophisticated type systems. Here we develop a high-level

This research was supported, in part, by Science Foundatin Ireland grant
13/RC/2094. The first author was supported by MSR (MRL 2011-039).

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 248–266, 2016.
DOI: 10.1007/978-3-319-39570-8 17

Type-Based Analysis for Session Inference 249

language where intricate protocols of communication can be programmed and
checked statically (Sect. 2). Contrary to both monads and substructural type
systems, our approach allows pure code to call library code with communication
effects, without having to refactor the pure code (e.g., to embed it in a monad or
pass continuation channels through it—see Example 2.3). We apply our approach
to MLS, a core of ML with session communication (Sect. 3).

Our approach separates traditional typing from session typing in a two-level
system, which follows the principles of typed based analysis [12]. The first level
employs a type-and-effect system, which adapts and extends the one of Amtoft
et al. [1] to session communication (Sect. 4). At this level the program is typed
against an ML type and a behaviour which abstractly describes program struc-
ture and communication. Session protocols are not considered here—they are
entirely checked at the second level. Thus, each endpoint is given type Sesρ,
where ρ statically approximates its source. The benefit of extending [1] is that
we obtain a complete behaviour inference algorithm, which extracts a behaviour
for every program respecting ML types.

At the second level, our system checks that a behaviour, given an operational
semantics, complies with the session types of channels and endpoints (Sect. 5).
The session discipline realised here is inspired by the work of Castagna et al. [3].
This discipline guarantees that programs comply with session fidelity and com-
munication safety, but also, due to stacked interleaving of sessions, partial lock
freedom. However, one of the main appeals of our session typing discipline is that
it enables a provably complete session types inference from behaviours which,
with behaviour inference, gives us a complete method for session inference from
MLS, without programmer annotations (Sect. 6). The two levels of our system
only interact through behaviours, which we envisage will allow us to develop
front-ends for different languages and back-ends for different session disciplines.

To simplify the technical development we consider only sessions of finite
interactions. However, we allow recursion in the source language, as long as it
is confined : recursive code may only open new sessions and completely consume
them (see Sect. 2). In Sect. 7 we discuss an extension to recursive types. Related
work and conclusions can be found in Sect. 8. Details missing from this extended
abstract can be found in the appendix for the benefit of the reviewers.

2 Motivating Examples

Example 2.1 (A Swap Service). A coordinator process uses the primitive acc-swp
to accept two connections on a channel swp (we assume functions acc-c and req-c
for every channel c), opening two concurrent sessions with processes that want
to exchange values. It then coordinates the exchange and recurs.

let fun coord() =
let val p1 = acc-swp ()

val x1 = recv p1
val p2 = acc-swp ()
val x2 = recv p2

in send p2 x1; send p1 x2; coord ()
in spawn coord;

let fun swap(x) =
let val p = req-swp ()
in send p x; recv p

in spawn (fn => swap 1);
spawn (fn => swap 2);

250 C. Spaccasassi and V. Koutavas

Each endpoint the coordinator receives from calling acc-swp are used accord-
ing to the session type ?T.!T.end. This says that, on each endpoint, the coordi-
nator will first read a value type T (?T), then output a value of the same type
(!T) and close the endpoint (end). The interleaving of sends and receives on the
two endpoints achieves the desired swap effect.

Function swap : Int→T ′ calls req-swp and receives and endpoint which is used
according to the session type !Int.?T ′.end. By comparing the two session types
above we can see that the coordinator and the swap service can communicate
without type errors, and indeed are typable, when T = Int = T ′. Our type
inference algorithm automatically deduces the two session types from this code.

Because swp is a global channel, ill-behaved client code can connect to it too:

let val p1 = req-swp () in send p1 1;
let val p2 = req-swp () in send p2 2;
let val (x1, x2) = (recv p1, recv p2) in ecl

This client causes a deadlock, because the coordinator first sends on p2 and
then on p1, but this code orders the corresponding receives in reverse. The
interleaving of sessions in this client is rejected by our type system because it
is not well-stacked : recv p1 is performed before the most recent endpoint (p2) is
closed. The interleaving in the coordinator, on the other hand, is well-stacked.

Example 2.2 (Delegation for Efficiency). In the previous example the coordina-
tor is a bottleneck when exchanged values are large. A more efficient implemen-
tation delegates exchange to the clients:

let fun coord() =
let val p1 = acc-swp ()
in sel-SWAP p1;

let val p2 = acc-swp
in sel-LEAD p2;

deleg p2 p1;
coord()

let fun swap(x) =
let val p = req-swp ()
in case p {

SWAP: send p x; recv p
LEAD: let val q = resume p

val y = recv q
in send q x; y }

Function swap again connects to the coordinator over channel swp, but now
offers two choices with the labels SWAP and LEAD. If the coordinator selects the
former, the swap method proceeds as before; if it selects the latter, swap resumes
(i.e., inputs) another endpoint, binds it to q, and performs a rcv and then a send
on q. The new coordinator accepts two sessions on swp, receiving two endpoints:
p1 and p2. It selects SWAP on p1, LEAD on p2, sends p1 over p2 and recurs.

When our system analyses the coordinator in isolation, it infers the protocol
ηcoord = (!SWAP.η′ ⊕ !LEAD.!η′.end) for both endpoints p1 and p2. When it
analyses swap : T1 → T2, it infers ηp = Σ{?SWAP.!T1.?T2.end, ?LEAD.?ηq.end}
and ηq = ?T2.!T1.end as the protocols of p and q, respectively. The former selects
either options SWAP or LEAD and the latter offers both options.

If the coordinator is type-checked in isolation, then typing succeeds with any
η′: the coordinator can delegate any session. However, because of duality, the
typing of req-swp in the swap function implies that η′ = ηq and T1 = T2. Our
inference algorithm can type this program and derive the above session types.

Type-Based Analysis for Session Inference 251

Example 2.3 (A Database Library). In this example we consider the implemen-
tation of a library which allows clients to connect to a database.

let fun coord() =
let val p = acc-db ()

fun loop() = case p {
QRY: let val sql = recv p

val res = process sql
in send p res; loop ()

END: () }
in spawn coord; loop ()

in spawn coord;

let fun clientinit () =
let val con = req-db ()

fun query(sql) = sel-QRY con;
sendcon sql;
recv con

fun close () = sel-END con
in (query, close)

in eclient

The coordinator accepts connections from clients on channel db. If a con-
nection is established, after spawning a copy of the coordinator to serve other
clients, the coordinator enters a loop that serves the connected client. In this
loop it offers the client two options: QRY and END. If the client selects QRY, the
coordinator receives an SQL query, processes it (calling process : sql → dbresult,
with these types are defined in the library), sends back the result, and loops. If
the client selects END the connection with the coordinator closes and the current
coordinator process terminates.

Function clientinit is exposed to the client, which can use it to request a con-
nection with the database coordinator. When called, it establishes a connection
con and returns two functions to the client: query and close. Then, the client
code eclient can apply the query function to an sql object and receive a dbresult
as many times as necessary, and then invoke close to close the connection. Using
our two-level inference system with recursion Sect. 7, we can infer the session
type of the coordinator’s endpoint p: μX.Σ{?QRY.?sql.!dbresult.X, ?END.end},
and check whether the client code eclient respects it.

This example is not typable with a substructural type system because query
and close share the same (linear) endpoint con. Moreover, in a monadic system
eclient will need to be converted to monadic form.

3 Syntax and Operational Semantics of MLS

Figure 1 shows the syntax and operational semantics of MLS, a core of ML
with session communication. An expression can be one of the usual lambda
expressions or spawn e which evaluates e to a function and asynchronously applies
it to the unit value; it can also be case e {Li : ei}i∈I which, as we will see,
implements finite external choice. We use standard syntactic sugar for writing
programs. A system S is a parallel composition of closed expressions (processes).

The operational semantics of MLS are standard; here we only discuss session-
related rules. Following the tradition of binary session types [7], communication
between processes happens over dynamically generated entities called sessions
which have exactly two endpoints. Thus, MLS values contain a countably infinite
set of endpoints, ranged over by p. We assume a total involution (·) over this
set, with the property p �= p, which identifies dual endpoints.

252 C. Spaccasassi and V. Koutavas

Exp: e ::= v (e, e) e e let x = e in e if e then e else e spawn e case e {Li : ei}i∈I

Sys: S ::= e S S

Val: v ::= x k ∈ Const (v, v) fnx ⇒ e fun f(x) = e p
req-c acc-c send recv sel-L deleg resume

ECxt: E ::= [·] (E, e) (v, E) E e v E let x = E in e if E then e else e
spawn E case E {Li : ei}i∈I

RIft if tt then e1 else e2 → e1 RLet let x = v in → e[v/x]
RIff if ff then e1 else e2 → e2 RFix (fun f(x)= e) → e[fun f(x)= e/f][v/x]

RBeta E[e] S −→ E[e] S if → e
RSpn E[spawn v] S −→ E[()] v () S
RInit E1[req-c ()] E2[acc-c ()] S −→ E1[p] E2[p] S if p, p fresh
RCom E1[send (p, v)] E2[recv p] S −→ E1[()] E2[v] S
RDel E1[deleg (p, p)] E2[resume p] S −→ E1[()] E2[p] S
RSel E1[sel-Lj p] E2[case p {Li : ei}i∈I] S −→ E1[()] E2[ej] S if j ∈ I

Fig. 1. MLS syntax and operational semantics.

A process can request (or accept) a new session by calling req-c (resp., acc-c)
with the unit value, which returns the endpoint (resp., dual endpoint) of a new
session. Here c ranges over an infinite set of global initialisation channels. To
simplify presentation, the language contains req-c and acc-c for each channel c.

Once two processes synchronise on a global channel and each receives a fresh,
dual endpoint (RInit reduction), they can exchange messages (RCom), delegate
endpoints (RDel) and offer a number of choices Li∈I , from which the partner
can select one (RSel). Here L ranges over a countably infinite set of choice
labels, and I is a finite set of natural numbers; Li denotes a unique label for
each natural number i and we assume sel-Li for each Li.

The next two sections present the two-level type system of MLS.

4 First Level Typing: ML Typing and Behaviours

Here we adapt and extend the type-and-effect system of Amtoft et al. [1] to
session communication in MLS. A judgement C; Γ � e : T � b states that e has
type T and behaviour b, under type environment Γ and constraint environment
C. The constraint environment relates type-level variables to terms and enables
type inference. These components are defined in Fig. 2.

An MLS expression can have a standard type or an endpoint type Sesρ. Func-
tion types are annotated with a behaviour variable β. Type variables α are used
for ML polymorphism. As in [1], Hindley-Milner polymorphism is extended with
type schemas TS of the form ∀(γ :C0). T , where γ ranges over variables α, β, ρ, ψ,
and C0 imposes constraints on the quantified variables with fv(C0) ⊆ {	γ}. Type
environments Γ bind program variables to type schemas; we let ∀(∅).T = T .

The rules of our type-and-effect system are shown in Fig. 3 which, as in [1,
Sect. 2.8], is a conservative extension of ML. This system performs both ML

Type-Based Analysis for Session Inference 253

Variables: α(Type) β(Behaviour) ψ(Session) ρ(Region)

T. Schemas: TS ::= ∀(ψ : C). T Regions: r ::= l ρ

Types: T ::= Unit Bool Int T × T T
β→ T Sesρ α

Constraints: C ::= T ⊆ T cfd(T) b ⊆ β ρ ∼ r c ∼ η c ∼ η C, C

Behaviours: b ::= β τ b ; b b ⊕ b recβ b spawn b push(l : η)

ρ!T ρ?T ρ!ρ ρ?l ρ!Li &
i∈I

{ρ?Li ; bi}
Type Envs: Γ ::= x : TS Γ, Γ

Fig. 2. Syntax of types, behaviours, constraints, and session types.

type checking (including type-schema inference), and behaviour checking (which
enables behaviour inference). Rules TLet, TVar, TIf, TConst, TApp, TFun,
TSpawn and the omitted rule for pairs perform standard type checking and
straightforward sequential (b1 ; b2) and non-deterministic (b1 ⊕ b2) behaviour
composition; τ is the behaviour with no effect.

Just as a type constraint T ⊆ α associates type T with type variable α, a
behaviour constraint b ⊆ β associated behaviour b to behaviour variable β. Intu-
itively, β is the non-deterministic composition of all its associated behaviours.
Rule TSub allows the replacement of behaviour b with variable β; such replace-
ment in type annotations yields a subtyping relation (C � T <: T ′). Rules
TIns and TGen are taken from [1] and extend ML’s type schema instantia-
tion and generalisation rules, respectively. Because we extend Hindley-Milner’s
let polymorphism, generalisation (TGen) is only applied to the right-hand side
expression of the let construct. The following definition allows the instantiation
of a type schema under a global constraint environment C. We write C � C ′

when C ′ is included in the reflexive, transitive, compatible closure of C.

Definition 4.1 (Solvability). ∀(γ : C0). T is solvable by C and substitution σ
when dom(σ) ⊆ {	γ} and C � C0σ.

In TRec, the communication effect of the body of a recursive function should
be confined, which means it may only use endpoints it opens internally. For
this reason, the function does not input nor return open endpoints or other
non-confined functions (C � confd(T, T ′)). Although typed under Γ which may
contain endpoints and non-confined functions, the effect of the function body
is recorded in its behaviour. The second level of our system checks that if the
function is called, no endpoints from its environment are affected. It also checks
that the function fully consumes internal endpoints before it returns or recurs.

A type T is confined when it does not contain any occurrences of the endpoint
type Sesρ for any ρ, and when any b in T is confined. A behaviour b is confined
when all of its possible behaviours are either τ or recursive.

To understand rule TEndp, we have to explain region variables (ρ), which
are related to region constants through C. Region constants are simple program
annotations l (produced during pre-processing) which uniquely identify the tex-
tual sources of endpoints. We thus type an extended MLS syntax

254 C. Spaccasassi and V. Koutavas

TLet
C; Γ e1 : TS 1 C; Γ, x : TS e2 : 2

C; Γ let x = e1 in e2 : 1 ; b2

TVar
C; Γ x : Γ (x)

TIf
C; Γ e1 : Bool 1 C; Γ ei : i (i∈{1,2})

C; Γ if e1 then e2 else e3 : 1 ; (b2 ⊕ b3)

TConst
C; Γ k : typeof (k)

TApp
C; Γ e1 : T

β→ 1 C; Γ e2 : T 2

C; Γ e1 e2 : 1 ; b2 ; β

TFun
C; Γ, x : T e : T

C; Γ fn x ⇒ e : T
β→ T

TMatch
C; Γ e : Sesρ ; Γ ei : i (i∈I)

C; Γ case e {Li : ei}i∈I : ; &
i∈I

{ρ?Li ; bi}
TEndp
C; Γ pl : Sesρ C ρ ∼ l

TSpawn
C; Γ e : Unit

β→ Unit

C; Γ spawn e : Unit ; spawn β

TSub
C; Γ e :

C; Γ e : T

C T <: T
C b ⊆ β

TRec
C; Γ, f : T

β→ T , x : T e : T

C; Γ fun f(x)= e : T
β→ T

C confd(T, T)
C recβ b ⊆ β

TIns
C; Γ e : ∀(: C0)

C; Γ e :

dom(σ) ⊆ { }
∀(: C0). T is solvable by C and σ

TGen
C ∪ C0; Γ e :

C; Γ e : ∀(: C0)

{ } ∩ fv(Γ, C, b) = ∅
∀(: C0).T is solvable by C and some σ

Fig. 3. Type-and-Effect system for MLS expressions (omitting rule for pairs).

Values: v :: = . . .
∣
∣ pl

∣
∣ req-cl

∣
∣ acc-cl

∣
∣ resumel

If a sub-expression has type Sesρ and it evaluates to a value pl, then it must
be that C � ρ ∼ l, denoting that p was generated from the code location iden-
tified by l. This location will contain one of req-cl, acc-cl, or resumel. These
primitive functions (typed by TConst) are given the following type schemas.

req-cl : ∀(βρψ : push(l : ψ) ⊆ β, ρ ∼ l, c ∼ ψ). Unit
β→ Sesρ

acc-cl : ∀(βρψ : push(l : ψ) ⊆ β, ρ ∼ l, c ∼ ψ). Unit
β→ Sesρ

resumel : ∀(βρρ′ : ρ?l ⊆ β, ρ′ ∼ l). Sesρ β→ Sesρ′

An application of req-cl starts a new session on the static endpoint l. To type
it, C must contain its effect push(l : ψ) ⊆ β, where ψ is a session variable, rep-
resenting the session type of l. At this level session types are ignored (hence
the use of a simple ψ); they become important in the second level of our typing
system. Moreover, C must record that session variable ρ is related to l (ρ ∼ l)
and that the “request” endpoint of channel c has session type ψ (c ∼ ψ). The
only difference in the type schema of acc-cl is that the “accept” endpoint of c
is related to ψ (c ∼ ψ). Resume receives an endpoint (ρ′) over another one (ρ),

Type-Based Analysis for Session Inference 255

recorded in its type schema (ρ?ρ′ ⊆ β); ρ is an existing endpoint but ρ′ is treated
as an endpoint generated by resumel, hence the constraint ρ′ ∼ l.

The following are the type schemas of the rest of the constant functions.
recv : ∀(αβρ : ρ?α ⊆ β, cfd(α)). Sesρ β→ α

send : ∀(αβρ : ρ!α ⊆ β, cfd(α)). Sesρ × α
β→ Unit

deleg : ∀(βρρ′ : ρ!ρ′ ⊆ β). Sesρ × Sesρ′ β→ Unit

sel-L : ∀(βρ : ρ?L ⊆ β). Sesρ β→ Unit

These record input (ρ?α), output (ρ!α), delegation (ρ!ρ′), or selection (ρ!Li)
behaviour. For input and output the constraint cfd(α) must be in C, recording
that the α can be instantiated only with confined types.

5 Second Level Typing: Session Types

Session types describe the communication protocols of endpoints; their syntax is:
η :: = end

∣
∣ !T.η

∣
∣ ?T.η

∣
∣ !η.η

∣
∣ ?η.η

∣
∣ ⊕
i∈I

{Li : ηi}
∣
∣ &{Li : ηi}

i∈(I1,I2)

∣
∣ ψ

A session type is finished (end) or it can describe further interactions: the input
(?T.η) or output (!T.η) of a confined value T , or the delegation (!η′.η) or resump-
tion (?η′.η) of an endpoint of session type η′, or the offering of non-deterministic
selection (⊕{Li : ηi}i∈I) of a label Li, signifying that session type ηi is to be
followed next.

Moreover, a session type can offer an external choice &{Li : ηi}i∈(I1,I2) to
its communication partner. Here I1 contains the labels that the process must be
able to accept and I2 the labels that it may accept. We require that I1 and I2
are disjoint and I1 is not empty. Although a single set would suffice, the two sets
make type inference deterministic and independent of source code order.

We express our session typing discipline as an abstract interpretation seman-
tics for behaviours shown in Fig. 4. It describes transitions of the form Δ � b −→C

Δ′ � b′, where b, b′ are behaviours. The Δ and Δ′ are stacks on which static end-
point labels together with their corresponding session types (l : η) can be pushed
and popped. Inspired by Castagna et al. [3], in the transition Δ � b −→C Δ′ � b′,
behaviour b can only use the top label in the stack to communicate, push another
label on the stack, or pop the top label provided its session type is end. This
stack principle gives us a partial lock freedom property (Theorem5.2).

Rule End from Fig. 4 simply removes a finished stack frame, and rule Beta
looks up behaviour variables in C; Plus chooses one of the branches of non-
deterministic behaviour. The Push rule extends the stack by adding one more
frame to it, as long as the label has not been added before on the stack (see
Example 5.2). Rules Out and In reduce the top-level session type of the stack
by an output and input, respectively. The requirement here is that the labels
in the stack and the behaviour match, the usual subtyping [4] holds for the
communicated types, and that the communicated types are confined. Note that
sending confined (recursive) functions does not require delegation of endpoints.

Transfer of endpoints is done by delegate and resume (rules Del and Res).
Delegate sends the second endpoint in the stack over the first; resume mimics

256 C. Spaccasassi and V. Koutavas

Fig. 4. Abstract interpretation semantics.

this by adding a new endpoint label in the second position in the stack. Resume
requires a one-frame stack to guarantee that the two endpoints of the same
session do not end up in the same stack, thus avoiding deadlock [3]. If we aban-
don the partial lock freedom property guaranteed by our type system, then the
conditions in Res can be relaxed and allow more than one frame.

A behaviour reduces an internal choice session type by selecting one of
its labels (ICh). A behaviour offering an external choice is reduced non-
deterministically to any of its branches (ECh). The behaviour must offer all
active choices (I1 ⊆ J) and all behaviour branches must be typable by the
session type (J ⊆ I1 ∪ I2).

As we previously explained, recursive functions in MLS must be confined.
This means that the communication effect of the function body is only on end-
points that the function opens internally, and the session type of these endpoints
is followed to completion (or delegated) before the function returns or recurs.
This is enforced in Rule Rec, where recβ b must have no net effect on the stack,
guaranteed by ε � b ⇓C′ . Here C ′ = (C\(recβ b ⊆ β))∪(τ ⊆ β) is the original
C with constraint (recβ b ⊆ β) replaced by (τ ⊆ β) (cf., Definition 5.1). This
update of C prevents the infinite unfolding of recb β. Spawned processes must
also be confined (Spn). We work with well-formed constraints:

Type-Based Analysis for Session Inference 257

(a) let val (p1, p2) = (req-cl1 , req-dl2)
val p3 = if e then p1 else p2

in send p3 tt

(b) let fun f = req-cl

val p1 = f ()
in send p1 1;

let val p2 = f () in send p1 2;

Fig. 5. Examples of aliasing

Definition 5.1 (Well-Formed Constraints). C is well-formed if:

1. Type-Consistent: for all type constructors tc1, tc2, if (tc1(t1) ⊆ tc2(t2)) ∈ C,
then tc1 = tc2, and for all t1i ∈ 	t1 and t2i ∈ 	t2, (t1i ⊆ t2i) ∈ C.

2. Region-Consistent: if C � l ∼ l′ then l = l′.
3. Behaviour-Compact: behaviour constraints cycles contain a (recβ b ⊆ β) ∈ C;

also if (recβ b ⊆ β′) ∈ C then β = β′ and ∀(b′ ⊆ β) ∈ C, b′ = recβ b.
4. Well-Confined: if C � confd(T) then T �= Sesρ; also if C � confd(b) then

b �∈ {ρ!T, ρ?T, ρ!ρ, ρ?l, ρ!Li, &
i∈I

{ρ?Li ; bi}}.

The first and fourth conditions are straightforward. The third condition
disallows recursive behaviours through the environment without the use of a
recβ b effect. All well-typed MLS programs contain only such recursive behav-
iours because recursion is only possible through the use of a recursive function.
The second part of the condition requires that there is at most one recursive
constraint in the environment using variable β. This is necessary for type preser-
vation and decidability of session typing. The second condition of Definition 5.1
requires that only endpoints from a single source can flow in each ρ, preventing
aliasing of endpoints generated at different source locations.

Example 5.1 (Aliasing of Different Sources). Consider the program in Fig. 5(a).
Which endpoint flows to p3 cannot be statically determined and therefore the
program cannot yield a consistent session type for channels c and d. The program
will be rejected in our framework because p3 has type Sesρ and from the constrain
environment C � ρ ∼ l1, ρ ∼ l2, which fails Definition 5.1.

Because endpoints generated from the same source code location are iden-
tified in our system, stacks are treated linearly : an endpoint label l may only
once be pushed onto a stack. Every stack Δ contains an implicit set of the labels
Δ.labels to record previously pushed labels.

Example 5.2 (Aliasing from Same Source). Consider the program in Fig. 5(b)
where endpoint p1 has type Sesρ, with C � ρ ∼ l. The program has behaviour
push(l : η); ρ!Int; push(l : η); ρ!Int; τ . Label l is pushed on the stack twice and the
behaviour complies with the session type η = !Int.end. However the program
does not respect this session type because it sends two integers on p1 and none
on p2. Our system rejects this program due to the violation of stack linearity.

Our system also rejects the correct version of the program in Fig. 5(b), where
the last send is replaced by send p2 2. This is because the label l associated with

258 C. Spaccasassi and V. Koutavas

the variable ρ of a type Sesρ is control flow insensitive. Existing techniques can
make labels control flow sensitive (e.g., [14,15]).

Using the semantics of Fig. 4 we define the following predicate which requires
behaviours to follow to completion or delegate all (l : η) frames in a stack.

Definition 5.2 (Strong Normalization). Δ � b ⇓C
	Δ′ when for all b′,Δ′

such that Δ � b −→∗
C Δ′ � b′ �→C we have b′ = τ and Δ′ ∈ { 	Δ′}. We write

Δ � b ⇓C when Δ � b ⇓C ε, where ε is the empty stack.

Lastly, session types on dual session endpoints (c ∼ η, c ∼ η′) must be dual
(C � η �� η′) The definition of duality is standard, with the exception that
internal choice is dual to external choice only if the labels in the former are
included in the active labels in the latter.

Definition 5.3 (Valid Constraint Environment). C is valid if there exists
a substitution σ of variables ψ with closed session types, such that Cσ is well-
formed and for all (c ∼ η), (c ∼ η′) ∈ Cσ we have C � η �� η′.

Combining the Two Levels. The key property here is well-stackedness, the
fact that in a running system where each process has a corresponding stack of
endpoints, there is a way to repeatedly remove pairs of endpoints with dual
session types from the top of two stacks, until all stacks are empty.

Definition 5.4 (Well-Stackedness). C �ws S is the least relation satisfying:

C �ws ε

C �ws S,
(
Δ � b, e

)
,

(
Δ′ � b′, e′) C � η �� η′ p, p � Δ,Δ′,S

C �ws S,
(
(pl : η) · Δ � b, e

)
,
(
(pl′ : η′) · Δ′ � b′, e′)

Note that this does not mean that programs are deterministic. Multiple pairs
of endpoints may be at the top of a set of stacks. Duality of endpoints guaran-
tees that communications are safe; the ordering of endpoints in removable pairs
implies the absence of deadlocks.

We let P , Q range over tuples of the form
(
Δ � b, e

)
and S over sequences of

such tuples. In this section stack frames (pl : η) store both endpoints and their

labels. We write C �
−−−−−−−→(
Δ � b, e

)
if C is well-formed and valid, (C; ∅ � −−−−−→

e : T � b),
and (

−−−→
Δ � b ⇓C), for some

−→
T . We write C �ws S if

−→
Δ is well-stacked. Well-typed

systems enjoy session fidelity and preserve typing and well-stackedness.

Theorem 5.1. Let S =
−−−−−→
Δ � b, e and C � S and C �ws S and −→e −→ −→e ′; then

there exist
−→
Δ ′,

−→
b ′ such that S ′ =

−−−−−−−−→(
Δ′ � b′, e′) and:

1. C � S ′ (Type Preservation)
2.

−−−→
Δ � b →∗

C

−−−−→
Δ′ � b′ (Session Fidelity)

3. C �ws S ′ (Well-Stackedness Preservation)

Session fidelity and well-stackedness preservation imply communication
safety, since the former guarantees that processes are faithful to session types in
the stacks, while the latter that session types are dual for each pair of open end-
points p and p̄. Moreover, well-stackedness implies deadlock freedom. P depends
on Q if the endpoint at the top of P ’s stack has dual endpoint in Q.

Type-Based Analysis for Session Inference 259

Lemma 5.1 (Deadlock Freedom). C �ws S; dependencies in S are acyclic.

Type soundness is more technical. We divide system transitions to communi-
cation transitions between processes (−→c) and internal transitions (−→i). Let
S −→c S ′ (S −→i S ′) when S −→ S′, derived by Rule RInit, RCom, RDel or
RSel of Fig. 1 (resp., any other rule); S =⇒c S′ when S −→∗

i −→c−→∗
i S′.

Theorem 5.2 (Type Soundness). Let C � S and C �ws S. Then

1. S =⇒c S ′, or
2. S −→∗

i (F ,D,W,B) such that:
Finished processes, F : ∀P ∈ F . P =

(
ε � τ, v

)
, for some v;

Diverging processes, D: ∀P ∈ D. P −→∞
i ;

Waiting proc., W: ∀P ∈ W. P =
(
Δ � b, E[e]

)
and e ∈ {req-cl, acc-cl};

Blocked processes, B: ∀P ∈ B. P =
(
Δ � b, E[e]

)
and e ∈ {send v, recv v,

deleg v, resume v, sel-Lv, case v {Li ⇒ ei}i∈I} and P transitively depends
on a process in D ∪ W.

A well-typed and well-stacked MLS system will either be able to perform a
communication, or, after finite internal steps, it will reach a state where some
processes are values (F), some internally diverge (D), some are waiting for a
partner process to open a session (W), and some are blocked on a session com-
munication (B). Crucially, in states where communication is not possible, B
transitively depends on D ∪ W. Thus, in the absence of divergence and in the
presence of enough processes to start new sessions, no processes can be blocked;
the system will either perform a communication or it will terminate (partial lock
freedom).

Corollary 5.1 (Partial Lock Freedom). If C � S, C �ws S, and S�=⇒c and
S −→∗

i (F , ∅, ∅,B) then B = ∅.

6 Inference Algorithm

We use three inference algorithms, W, SI and D. The first infers functional
types and communication effects and corresponds to the first level of our type
system. The other two infer session types from the abstract interpretation rules
of Fig. 4 (SI) and the duality requirement of Definition 5.3 (D), corresponding
to the second level of the type system.

Algorithm W is a straightforward adaptation of the homonymous algorithm
from [1]: given an expression e, W calculates its type t, behaviour b and con-
straints set C; no session information is calculated. W generates pairs of fresh
constraints c ∼ ψ and c ∼ ψ′ for each global channel c in the source program; ψ
and ψ′ are unique. Results of W’s soundness and completeness follow from [1].

For all constraints (c ∼ ψ) ∈ C, Algorithm SI infers a substitution σ and a
refined set C ′ such that ε � bσ ⇓C′ ε. The substitution only maps ψ variables to
session types. The final C ′ is derived from C by applying σ and possibly adding

260 C. Spaccasassi and V. Koutavas

more type constraints of the form (T ⊆ T ′). The core of this algorithm is the
abstract interpreter MC, which explores all possible transitions from ε � b.

Algorithm MC is designed in a continuation-passing style, using a continu-
ation stack K:: = ε

∣
∣ b · K.

As transition paths are explored, previously discovered branches of internal
and external choices in session types may need to be expanded. For example,
if Algorithm MC encounters a configuration (l : ⊕{Li : ηi}i∈I) � l!Lj where
j �∈ I, the inference algorithm needs to add the newly discovered label Lj to the
internal choice on the stack.

To do this, internal and external choices are removed from the syntax of
sessions, and replaced with special variables ψin and ψex. These variables are
bound by unique choice constraints, extending the syntax of constraints (Fig. 2):

C:: = . . .
∣
∣ ⊕{Li : ηi}i∈I ∼ ψin

∣
∣ &{Li : ηi}i∈(I1,I2) ∼ ψex

MC updates ψin and ψex constraints in C with newly discovered branches. For
example it may add new labels to an internal choice, or move active labels to
inactive in an external choice.

We now give more detail for some inference steps of Algorithm MC. The full
algorithm can be found in an online technical report1. Algorithm MC terminates
successfully when all sessions on the stack have terminated, the input behaviour
is τ and the continuation stack is empty:

When this clause succeeds, Δ may be empty or it may contain frames of the
form (l : ψ) or (l : end). The helper function finalise Δ returns a substitution σ
that maps all such ψ’s to end. If this is not possible (i.e., a session on Δ is not
finished) finalise raises an error.

New frames are pushed on the stack when the behaviour is push(l : η):

where checkFresh checks that l has never been in Δ.
When the behaviour is an operation that pops a session from the stack, such

as a send (l!T), MC looks up the top frame on the stack, according to the stack
principle. There are two cases to consider: either the top frame contains a fresh
variable ψ, or some type has been already inferred. The algorithm here is:

1 Spaccasassi, C., Koutavas, V.: Type-Based Analysis for Session Inference. ArXiv
e-prints (Oct. 2015), http://arxiv.org/abs/1510.03929v3.

http://arxiv.org/abs/1510.03929v3

Type-Based Analysis for Session Inference 261

In the first case, MC checks that ρ in the behaviour corresponds to l at the
top of the stack. It then produces the substitution [ψ �→ !α.ψ′], where α and ψ′

are fresh, and adds (T ⊆ α) to C. The second case produces no substitution.
The clauses for delegation are similar:

The main difference here is that, in the second clause, the sub function checks
that C � η′

d <: ηd and performs relevant inference. Moreover, the input Δ must
contain at least two frames (the frame below the top one is delegated).

The cases for receive, label selection and offer, and resume are similar (see
online report). In the cases for label selection and offering, the algorithm updates
the ψin and ψex variables, as discussed above. In the case of resume, the algorithm
checks that the stack contains one frame.

In behaviour sequencing and branching, substitutions are applied eagerly and
composed iteratively, and new constraints are accumulated in C:

When a recursive behaviour recb β is encountered, Algorithm MC needs to
properly setup the input constraints C according to Rule Rec of Fig. 4:

Here the algorithm first calls MC on ε � b, checking that the recursion body
b is self-contained under C ′, in which the recursion variable β is bound to τ .
This update of C prevents the infinite unfolding of recb β. It then restores back
the constraint on β, applies the substitution σ1, and continues inference.

The clause for spawn b is similar, except that C is unchanged. Variables β are
treated as the internal choice of all behaviours bi bound to β in C:

Inference fails when MC reaches a stuck configuration Δ � b other than
ε � τ , corresponding to an error in the session type discipline.

To prove termination of SI, we first define the translation [[b]]gC , that replaces
β variables in b with the internal choice

⊕{ bi | ({bi ⊆ β}) ∈ C }. Due to

262 C. Spaccasassi and V. Koutavas

behaviour-compactness (Definition 5.1), [[b]]gC is a finite ground term, i.e. a finite
term without β variables. Except for Rule Beta, transitions in Fig. 4 never
expand b; they either consume Δ or b. Since [[b]]gC is finite when C is well-formed,
ε � [[b]]gC generates a finite state space and Algorithm MC always terminates.

Similar to ML type inference, the worst-case complexity of MC is exponential
to program size: MC runs in time linear to the size of [[b]]gC , which in the worst
case is exponentially larger than b, which is linear to program size. The worst case
appears in pathological programs where, e.g., each function calls all previously
defined functions. We intend to explore whether this is an issue in practice,
especially with an optimised dynamic programming implementation of MC.

Soundness and completeness of SI follow from the these properties of MC.

Lemma 6.1 (Soundness of MC). Let C be well-formed and MC(Δ � b, C) =
(σ1, C1); then Δσ1 = Δ′ and Δ′ � bσ1 ⇓C1 .

Lemma 6.2 (Completeness of MC). Let C be well-formed and (Δ � b)σ ⇓C ;
then MC(Δ � b, C0) = (σ1, C1) and ∃σ′ such that C � C1σ

′ and ∀ψ ∈ dom(σ),
C � σ(ψ) <: σ′(σ1(ψ)).

Completeness states that MC computes the most general constraints C1 and
substitution σ1, because, for any C and σ such that (Δ � b)σ type checks, C
specialises C1 and σ is an instance of σ1, after some extra substitution σ′ of
variables (immaterial for type checking).

Algorithm D collects all c ∼ η1 and c̄ ∼ η2 constraints in C ′, generates
duality constraints η1 �� η2 and iteratively checks them, possibly substituting ψ
variables. It ultimately returns a C ′′ which is a valid type solution according to
Definition 5.3. Soundness and completeness of Algorithm D is straightforward.

We now show how SI infers the correct session types for Example 2.1 from
Sect. 2. We assume that Algorithm W has already produced a behaviour b and
constraints C for this example. For clarity, we simplify b and C: we remove
spurious τs from behaviour sequences, replace region variables ρ with labels
(only one label flows to each ρ), and perform simple substitutions of β variables.

Example 6.1 (A Swap Service). There are three textual sources of endpoints in
this example: the two occurrences of acc-swp in coord, and req-swp in swap. A pre-
processing step automatically annotates them with three unique labels l1, l2 and
l3. Algorithm W infers b and C for Example 2.1; the behaviour b (simplified) is:

spawn (βcoord); spawn (βswap); spawn (βswap)

In this behaviour three processes are spawned: one with a βcoord behaviour,
and two with a βswap behaviour. The behaviour associated to each of these
variables is described in C, along with other constraints:

1. recβcoord
(push(l1 : ψ1); l1?α1; push(l2 : ψ1); l2?α2; l2!α1; l1!α2);βcoord ⊆ βcoord

2. push(l3 : ψ2); l3!Int; l3?α3 ⊆ βswap

3. swap ∼ ψ1

4. swap ∼ ψ2

Type-Based Analysis for Session Inference 263

The above behaviour and environment are the inputs to Algorithm SI,
implementing session type inference according to the second level of our frame-
work. The invocation SI(b, C) calls MC(

ε � b, C, ε
)
, where the first ε is the

empty endpoint stack Δ and the second ε is the empty continuation stack.
Behaviour b is decomposed as b = K[b′], where b′ = spawn (βcoord) and K
is the continuation []; spawn (βswap); spawn (βswap). The algorithm thus calls
MC(

ε � spawn (βcoord), C, K
)
, which, after replacing βcoord and unfolding its

inner recursive behaviour becomes:

MC(
ε � push(l1 : ψ1); l1?α1; push(l2 : ψ1); l2?α2; l2!α1; l1!α2;βcoord, C1, ε

)

Here C1 is equal to C above, with the exception of replacing Constraint 1 with
the constraint (τ ⊆ βcoord). Inference is now straightforward: the frame (l1 : ψ1)
is first pushed on the endpoint stack. From behaviour l1?α1 the algorithm applies
substitution [ψ1 �→?α4.ψ4], where ψ4 and α4 are fresh, and generates constraint
(α4 ⊆ α1) obtaining C2. We thus get:

MC(
(l1 : ψ4) � push(l2:?α4.ψ4); l2?α2; l2!α1; l1!α2;βcoord, C2, ε

)

After the next push, the endpoint stack becomes (l2 :?α4.ψ4) · (l1 : ψ4). The
next behaviour l2?α2 causes MC to create constraint (α4 ⊆ α2) obtaining C3,
and to consume session ?α4 from the top frame of the endpoint stack.

MC(
(l2 : ψ4) · (l1 : ψ4) � l2!α1; l1!α2;βcoord, C3, ε

)

Because of l2!α1, MC generates [ψ3 �→ !α5.ψ5] and (α1 ⊆ α5) obtaining C4.

MC(
(l2 : ψ5) · (l1 :!α5.ψ5) � l1!α2;βcoord, C4, ε

)

Since l1 in the behaviour and l2 at the top of the endpoint stack do not
match, MC infers that ψ5 must be the terminated session end. Therefore it
substitutes [ψ5 �→ end] obtaining C5. Because of the substitutions, C5 contains
swap ∼ ?α4.!α5.end. After analysing βswap, MC produces C6 where swap ∼
!Int.!α6.end.

During the above execution MC verifies that the stack principle is respected
and no endpoint label is pushed on the stack twice. Finally the algorithm calls
D(C6) which performs a duality check between the constraints of swap and
swap, inferring substitution [α4 �→ Int, α6 �→ α5]. The accumulated constraints
on type variables α give the resulting session types of the swap channel endpoints:
(swap ∼?Int.!Int.end) and (swap ∼!Int.?Int.end).

7 A Proposal for Recursive Session Types

The system we have presented does not include recursive session types. Here
we propose an extension to the type system with recursive types. The inference
algorithm for this extension is non-trivial and we leave it to future work.

264 C. Spaccasassi and V. Koutavas

In this extension, a recursive behaviour may partially use a recursive session
type and rely on the continuation behaviour to fully consume it. First we add
guarded recursive session types: η:: = . . .

∣
∣ μX.η

∣
∣ X. The first level of our type

system remains unchanged, as it is parametric to session types, and already
contains recursive functions and behaviours.

A recursive behaviour recβ b operating on an endpoint l with session type
μX.η may: (a) run in an infinite loop, always unfolding the session type;
(b) terminate leaving l at type end; (c) terminate leaving l at type μX.η. Behav-
iour b may have multiple execution paths, some terminating, ending at τ , and
some recursive, ending at a recursive call β. They all need to leave l at the same
type, either end or μX.η; the terminating paths of b determine which of the two
session types l will have after recβ b. If b contains no terminating paths then
we assume that l is fully consumed by recβ b and type the continuation with l
at end.

To achieve this, we add a stack environment D in the rules of Fig. 4, which
maps labels l to stacks Δ. If Δ1 = (l : μX.η), we call an l-path from Δ1 � b1 any
finite sequence of transitions such that Δ1 � b1 →C,D . . . →C,D Δn � bn �→C,D.
A l-path is called l-finitary if there is no bi = τ l for any configuration i in
the series; otherwise we say that the path is l-recursive. We write (l : μX.η) �
b ⇓fin

C,D Δ′ when the last configuration of all l-finitary paths from (l : μX.η) � b
is Δ′ � τ . Similarly, we write (l : μX.η) � b ⇓rec

C,D Δ′ when the last configuration
of all l-recursive paths from (l : μX.η) � b is Δ′ � τ l. When no l− paths from
(l : μX.η) � b is l-finitary, we stipulate (l : μX.η) � b ⇓fin

C,D (l : end) holds. We
add the following rules to those of Fig. 4.

Rule Rec2 requires that both l-finitary and l-recursive paths converge to
the same stack Δ′, either (l : end) or (l : μX.η). In this rule, similarly to rule
Rec in Fig. 4, we replace the recursive constraint (recβ b ⊆ β) with (τ l ⊆ β),
representing a trivial recursive call of β. This guarantees that all l-paths have
a finite number of states. The D environment is extended with l �→ Δ′, used
in Rule RCall to obtain the session type of l after a recursive call. Rule Unf
simply unfolds a recursive session type.

8 Related Work and Conclusions

We presented a new approach for adding binary session types to high-level pro-
gramming languages, and applied it to a core of ML with session communication.

Type-Based Analysis for Session Inference 265

In the extended language our system checks the session protocols of interesting
programs, including one where pure code calls library code with communication
effects, without having to refactor the pure code (Example 2.3). Type soundness
guarantees partial lock freedom, session fidelity and communication safety.

Our approach is modular, organised in two levels, the first focusing on the
type system of the source language and second on typing sessions; the two levels
communicate through effects. In the fist level we adapted and extended the
work of Amtoft et al. [1] to session communication, and used it to extract the
communication effect of programs. In the second level we developed a session
typing discipline inspired by Castagna et al. [3]. This modular approach achieves
a provably complete session inference for finite sessions without programmer
annotations.

Another approach to checking session types in high-level languages is to use
substructural type systems. For example, Vasconcelos et al. [18] develop such
a system for a functional language with threads, and Wadler [19] presents a
linear functional language with effects. Type soundness in the former guarantees
session fidelity and communication safety, and in the latter also lock freedom
and strong normalisation. Our system is in between these two extremes: lock
freedom is guaranteed only when processes do not diverge and their requests for
new sessions are met. Other systems give similar guarantees (e.g., [3,16]).

Toninho et al. [16] add session-typed communication to a functional language
using a monad. Monads, similar to effects, cleanly separate session communica-
tion from the rest of the language features which, unlike effects, require parts
of the program to be written in a monadic style. Pucella and Tov [13] use an
indexed monad to embed session types in Haskell, however with limited end-
point delegation: delegation relies on moving capabilities, which cannot escape
their static scope. Our Example 2.2 is not typable in that system because of this.
In [13] session types are inferred by Haskell’s type inference. However, the pro-
grammer must guide inference with expressions solely used to manipulate type
structures.

Tov [17] has shown that session types can be encoded in a language with a
general-purpose substructural type system. Type inference alleviates the need for
typing annotations in the examples considered. Completeness of session inference
relies on completeness of inference in the general language, which is not clear.

Igarashi et al. [9] propose a reconstruction algorithm for finite types in the lin-
ear π calculus. Inference is complete and requires no annotations. Padovani [11]
extends this work to pairs, disjoint sums and regular recursive types.

Mezzina [10] gives an inference algorithm for session types in a calculus of
services. The type system does not support recursive session types and endpoint
delegation. It does allow, however to type replicated processes that only use
finite session types, similar to our approach.

266 C. Spaccasassi and V. Koutavas

References

1. Amtoft, T., Nielson, H.R., Nielson, F.: Type and Effect Systems - Behaviours for
Concurrency. Imperial College Press, London (1999)

2. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

3. Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.: Foundations of
session types. In: PPDP, pp. 219–230. ACM (2009)

4. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2–3), 191–225 (2005)

5. Gay, S., Vasconcelos, V.: Linear type theory for asynchronous session types. J.
Funct. Prog. 20(01), 19–50 (2010)

6. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

7. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

8. Hüttel, H., Lanese, I., Vasconcelos, V., Caires, L., Carbone, M., Deniélou, P.,
Padovani, L., Ravara, A., Tuosto, E., Vieira, H., Zavattaro, G.: Foundations of
session types and behavioural contracts. ACM Comp. Surv. (To appear)

9. Igarashi, A., Kobayashi, N.: Type reconstruction for linear π-calculus with I/O
subtyping. Inf. Comput. 161(1), 1–44 (2000)

10. Mezzina, L.G.: How to infer finite session types in a calculus of services and sessions.
In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp.
216–231. Springer, Heidelberg (2008)

11. Padovani, L.: Type reconstruction for the linear π-calculus with composite regular
types. Logical Methods Comput. Sci. 11(4) (2015)

12. Palsberg, J.: Type-based analysis and applications. In: PASTE, pp. 20–27. ACM
(2001)

13. Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Haskell
Symposium, pp. 25–36. ACM (2008)

14. Shivers, O.: Control-flow analysis of higher-order languages. Ph.D. thesis, CMU
(1991)

15. Tofte, M., Talpin, J.: Implementation of the typed call-by-value lambda-calculus
using a stack of regions. In: POPL, pp. 188–201. ACM (1994)

16. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013)

17. Tov, J.: Practical programming with substructural types. Ph.D. thesis,
Northeastern University (2012)

18. Vasconcelos, V., Gay, S., Ravara, A.: Type checking a multithreaded functional
language with session types. Theor. Computer Sci. 368(1–2), 64–87 (2006)

19. Wadler, P.: Propositions as sessions. In: ICFP, pp. 273–286. ACM (2012)

SimAutoGen Tool: Test Vector Generation
from Large Scale MATLAB/Simulink Models

Manel Tekaya1(B), Mohamed Taha Bennani3,
Nedra Ebdelli2, and Samir Ben Ahmed3

1 TELNET Innovation Labs, University of Carthage, Tunis, Tunisia
manel.tekaya@gmail.com

2 University of Mannouba, Manouba, Tunisia
Nedra1ebdelli@gmail.com

3 University of Tunis El Manar, Tunis, Tunisia
Taha.Bennani@enit.rnu.tn,Samir.benahmed@fst.rnu.tn

Abstract. Safety-critical applications require complete high-coverage
testing, which is not always guaranteed by model-based test genera-
tion techniques. Recently, automatic test generation by model checking
has been reported to improve the efficiency of test suites over conven-
tional test generation techniques. This study introduces our novel tool
SimAutoGen, which employs the model checking technique (as a formal
verification technique) to derive test vectors from Simulink models of
automotive controllers according to structural coverage metrics. Model
checking based on test generation is challenging for two reasons. First,
the input model to the model checker requires conversion into a formal
language. Second, standard tools have limited ability to generate test
vectors for large-scale Simulink models because the state-space explodes
with increasing model size. Our proposed SimAutoGen avoids the first
problem by expressing the properties to be verified, which correspond
to a structural coverage metric, in the Simulink language. To solve the
state-space explosion problem, we developed a new algorithm that slices
the Simulink model into hierarchical levels.

1 Motivation

Apart from providing formal verification, model checking efficiently and auto-
matically derives test sequences from transition system models. Automatic
test generation exploits the capabilities of model checkers, generating counter-
examples with properties that violate the model [3]. As demonstrated by Gadhari
et al. [4], the model checking technique generates test cases from models more
efficiently than random generation and guided simulation. Motivated by this
study, we began developing SimAutoGen three years ago. We limit our scope

This research and innovation work is conducted within a MOBIDOC thesis funded by
the European Union under the PASRI project. This work is a collaboration between
TELNET Innovation Labs and computer science and industrial systems laboratory.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 267–274, 2016.
DOI: 10.1007/978-3-319-39570-8 18

268 M. Tekaya et al.

to Simulink models because Simulink is the most popular graphical modeling
language for embedded automotive software. Several model checking approaches
for test case generation from MATLAB/Simulink models have been already pro-
posed, including AutomotGen [4], SmartTestGen [9], and SAL (which integrate
the sal–atg tool for automatic test generation) [10] and the V&V Diversity plat-
form [8]. In [5], we compared the performances of SimAutoGen, sal–atg and the
SLDV test case generator. Model checkers are recognized for their flexibility and
ease of use [3]. However, we identified three main problems with model checkers:

1. Test case generation with model checkers is feasible only when the available
model can be handled by the model checker.

2. Model checkers are severely limited by the state-space explosion problem.
3. The properties of model checkers are usually expressed in Linear Temporal

Logic or Computational Tree Logic, which differ from the language of the
model.

Our tool SimAutoGen corrects these problems in the context of test vector
generation from Simulink models. First, SimAutoGen does not transform the
Simulink model. Second, we implement a new slicing algorithm inspired by the
method described in [7], which solves the state-space explosion problem in large-
scale Simulink models. Third, the properties to be verified are expressed in the
Simulink language, and specified according to the criterion of the structural
coverage model.

2 Structural Model Coverage Criteria

The structural coverage metric can be utilized in two ways, as a test adequacy
criterion that decides whether a given test set completely or adequately complies
with that criterion, or as an explicit specification for test vector selection. In the
second case, the structural coverage metric behaves as a test selection criterion
(a generator for white-box tests), because the model and the code generated from
it are structurally similar. Thus, we can expect certain interrelations between
the attained model and the code coverage. Kirner [11] discussed the preservation
of code coverage at the model level. In our work, the structural coverage metrics
are employed as the test selection criterion. The test vectors generated from the
Simulink models by our model checking technique must conform to the struc-
tural coverage criterion. To accomplish this objective, we specify the Simulink
properties for three criteria of the control flow coverage (Condition, Decision,
and MC/DC), and the criterion of boundary value analysis. These four criteria
are briefly described below.

1. Condition coverage criterion: This criterion is determined by ensuring
the coverage of the Boolean inputs to the logical Simulink blocks.

2. Branch/Decision coverage criterion: According to this criterion, a block
with conditional behavior is covered provided that all conditional behavior
has been exercised at least once. For this purpose, SimAutoGen supports
the following blocks: Logical Operators, Switch, MultiportSwitch, Relational
Operator, and Saturation.

SimAutoGen Tool: Test Vector Generation from Large Scale 269

3. MC/DC coverage criterion: Chilenski [13] investigated three categories
of MC/DC: Unique Cause MC/DC, Unique Cause + Masking MC/DC, and
Masking MC/DC. Based on [13], we employ masking MC/DC. In masking
MC/DC, a basic condition is masked if varying its value cannot affect the
outcome of a decision due to structure of the decision and the value of other
conditions. Masking MC/DC for logical operator blocks is described in [14].
Besides the properties, each block needs an assumption to ensure generation
of the required test vector. In SimAutoGen, the masking MC/DC coverage
criterion is applied to the following blocks: Logical Operators, Switch, Mul-
tiportSwitch, Relational Operator, and Saturation.

4. Boundary value analysis: This criterion ensures data coverage of the
numeric type inputs to the mathematical Simulink blocks (Sum, Product,
Division, and Subtraction).

3 Software Description

We present SimAutoGen, a tool that automatically generates test vectors from
MATLAB/Simulink models [2]. Our methodology is based on model checking
[6]. The main highlights of the tool, which is designed for automotive controller
testing, are listed below:

1. Determines structural coverage metrics at the model level corresponding to
the coverage metrics at the code level.

2. Generates test inputs by model checking, thus obtaining the model coverage
criteria.

3. Does not convert the Simulink model to an intermediate formal language.
4. Specifies the test objectives (properties) as Simulink properties.
5. Avoids the state-space explosion problem during model checking by enhancing

an existing solution.
6. Improves the reliability of testing, thus reducing the test phase cost of large-

scale Simulink models.

The current implementation of SimAutoGen uses the model checker Prover Plug-
In [12] integrated into the Simulink Design Verifier tool (SLDV) [1]. SimAutoGen
is implemented in Java (Eclipse Environment) and extracts the relevant informa-
tion from the Simulink models by a MATLAB script. This information is then
used for test generation.

4 Software Architecture

SimAutoGen is developed in the Eclipse and MATLAB environments. The porta-
bility of SimAutoGen is ensured by the Java script. A structural overview of
SimAutoGen is presented in Fig. 1.

User Interface. It is a Java Swing-based application that displays the inputs
and outputs of SimAutoGen. The three inputs to SimAutoGen are (1) a Simulink

270 M. Tekaya et al.

Fig. 1. SimAutoGen overview

model (a .mdl file), (2) a user-selected structural coverage criterion, and (3) a
user-selected process. The three processes, Atomic testing, Unit testing, and
Slicing, will be detailed in the appendix. The Atomic testing feature processes
tiny Simulink models that require no slicing (i.e., single-output models). This
feature is useful for a preliminary implementation testing. The Unit testing fea-
ture slices large Simulink models with two or more outputs, and is suitable for
testing advanced implementations. The output of SimAutoGen is a set of test
vectors or a set of slices. Slicing can be selected for purposes other than test
vector generation.

Core Elements. SimAutoGen is a new approach called MB–ATG [5], whose
structure is described in Fig. 2. MB–ATG is implemented in three steps. The
first, second, and third steps handle large-scale Simulink models, automatic test
vector generation from each slice (according to the structural coverage criterion),
and integration of the test vectors generated from each slice, respectively. The
second step uses the model checker Prover Plug-In and expresses the properties
in the Simulink language. The property ψ and the assumption H as the model
M are implemented with Simulink operators called Proof objective and Assump-
tion, labeled P and A, respectively. Both operators are accessible through the
SLDV library. In the third step, redundant test vectors are eliminated from the
integration.

Fig. 2. Structure of MB–ATG

SimAutoGen Tool: Test Vector Generation from Large Scale 271

Fig. 3. Decision coverage for the Switch block

SimAutoGen implements two MB–ATG components: large-scale Simulink
model slicing and test vector generation. Large-scale slicing is performed by
a new slicing algorithm inspired by the static method described in [7], which
constructs dependency graphs based on two dependence relations: Data Depen-
dence and Control Dependence. The Simulink blocks Data-store/Data-read
pairs and From/Goto pairs were not treated in the dependence analysis of [7]
because they are not connected through explicit links; rather, they communi-
cate remotely through implicit communication protocols (Data-store/Data-read
pairs, for example). Our new algorithm models both types of links. The authors
of [7] extracted the blocks corresponding to the specific slicing criterion. How-
ever, our objective is to slice the whole model into disjoint components (slices).
To this end, we trialed two methods; forward slicing and backward slicing. The
slicing criteria in forward slicing are the global inputs. This solution is problem-
atic because most of the Simulink models contain Event input variables, which
affect all blocks. Consequently, we adopted backward slicing, whose outputs are
the slicing criteria. In particular, we compute the slices of the Simulink model
by performing a backward reachability analysis and marking the relevant blocks
for each output. We then remove the unmarked blocks and all empty subsystems
from the model. A subsystem is a set of blocks that you replace with a single
Subsystem block. The second MB–ATG component (test vector generation) has
two elements: a model transformation protocol and test-vector integration. The
model transformation protocol parses each slice and weaves the properties and
assumptions according to the block type and the user-selected structural cover-
age criterion. Before the weaving of properties and assumptions, this protocol
locates and calculates ψ and H insertion position. Next, it updates the location
of the neighboring blocks. Finally, it weaves P and H over the Simulink model.
The model transformation protocol is described in [5]. Figure 3 shows the cov-
erage of the Switch block according to the model decision coverage, with the
properties woven on it. The transformed slice is processed by the model checker
Prover Plug-In. In this case, a counterexample (equivalent to a test vector) is

272 M. Tekaya et al.

generated. The test vectors generated and output from each slice are saved in an
XL file. All of these test vectors are then integrated while eliminating the repet-
itive and useless elements in the saved XL file. For this purpose, we implement
a new algorithm that compares different XL files.

5 Evaluation and Measures

5.1 Model Description

Our tool was evaluated on six automotive industrial models, classified as shown
in Table 1. The FastCor and Detection models are large-scale models with 400–
800 blocks. AirFlow and AirMPmp have two outputs and between 44 and 75
blocks. ThrAr and AirMnfld are smaller models with 40 blocks and a single
output.

Table 1. Models description

5.2 Output Description

Table 2 shows the slicing results of the four large-scale Simulink models described
above. The two largest models, FastCor and Detection, are respectively parti-
tioned into three and five slices, whereas both medium-sized models are divided
into two slices. The model splitting decreases the average number of inputs,
blocks, and subsystems per slice, thereby avoiding the state-space explosion. The
number of implicit connections represents the number of hidden links between
the blocks of a single slice.

Table 2. Slices description

SimAutoGen Tool: Test Vector Generation from Large Scale 273

Table 3. Measures related to the execution time of SimAutoGen

Table 3 shows various measures related to the execution time in milliseconds
of the large- and atomic-scale models. Here, WT, IT, and GT denote the execu-
tion time of weaving, integration, and generation of all slices, respectively. The
variables TV and ITV denote the number of test vectors generated per slice
and the number of integrated vectors in the entire model (after removing the
redundant input values), respectively. For the slicing action, we determined the
parallel slicing time (PST) and sequential slicing time (SST). A comparison of
the execution times of the slicing algorithm using sequential and parallel meth-
ods shows the improvement because of the use of Parallel Computing Toolbox
of MATLAB. Therefore, we have used this toolbox in weaving and test vector
generation processes. GT presents the execution time of counterexample gener-
ation. It shows that the model checker prover Plug-In consumes a large part of
the total execution time.

References

1. Simullink Design Verifer 1: User’ Guide. Mathworks, Inc (2012)
2. Getting Started Guide: R2014b. Mathworks, Inc (2014)
3. Fraser, G., Wotawa, F., Ammann, P.: Issues in using model checkers for test case

generation. J. Syst. Softw. 82(9), 1403–1418 (2009). Elsevier
4. Gadkari, A., Yeolekar, A., Suresh, J., Ramesh, S., Mohalik, S., Shashidhar, K.:

Automatic test case generation from simulink/stateflow models using model check-
ing. Softw. Test. Verification Reliab. 24(2), 155–180 (2014). Wiley Online Library

5. Tekaya, M., Bennani, M.T., Alagui, M.A., Ben Ahmed, S.: Aspect-oriented test
case generation from Matlab/Simulink models. In: Zamojski, W., Mazurkiewicz, J.,
Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Theory and Engineering of Complex
Systems and Dependability. AISC, vol. 365, pp. 495–504. Springer, Heidelberg
(2015)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

7. Reicherdt, R., Glesner, S.: Slicing MATLAB simulink models. In: 34th Interna-
tional conference on software engineering (ICSE), pp. 551–561. IEEE (2012)

8. Bahrami, D., Faivre, A., Lapitre, A.: DIVERSITY-TG : Automatic test case gener-
ation from Matlab/Simulink models. In: Embedded real time software and systems
(2012)

274 M. Tekaya et al.

9. Peranandam, P., Raviram, S., Satpathy, M., Yeolekar, A., Gadkari, A., Ramesh,
S.: An integrated test generation tool for enhanced coverage of Simulink/State-
flow models. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 308–311. IEEE (2012)

10. Hamon, G., De Moura, L., Rushby, J.: Automated test generation with SAL. In:
CSL Technical Note, p. 15 (2005)

11. Kirner, R.: Towards preserving model coverage, structural code coverage.
EURASIP J. Embedded Syst. 2006(6), 1–15 (2009). Hindawi Publishing Corp

12. Sheeran, M.: Prover Technology - Prover plug-in documentation (2000)
13. Chilenski, J., Miller, S.P.: Applicability of modified condition/decision coverage to

software testing. Softw. Eng. J. 9(5), 193–200 (1994)
14. Rajan, A., Whalen, M., Heimdahl, M.: The effect of program and model structure

on MC/DC test adequacy coverage. In: ACM/IEEE 30th International Conference
on Software Engineering ICSE 2008, pp. 161–170. IEEE (2008)

Author Index

Abd Alrahman, Yehia 1
Abdulla, Parosh Aziz 19
Altisen, Karine 36
Atig, Mohamed Faouzi 19
Atzei, Nicola 52

Bartoletti, Massimo 52
Basile, Davide 62
Bejleri, Andi 96
Ben Ahmed, Samir 267
Bennani, Mohamed Taha 267
Bonakdarpour, Borzoo 124

Caires, Luís 74
Chen, Tzu-Chun 96
Corbineau, Pierre 36
Cruz-Filipe, Luís 114

de Frutos Escrig, David 142
De Nicola, Rocco 1
Degano, Pierpaolo 62
Devismes, Stéphane 36

Ebdelli, Nedra 267
Eugster, Patrick 96

Faghih, Fathiyeh 124
Ferrari, Gian-Luigi 62

Hajdu, Ákos 158
Henrio, Ludovic 175

Kaxiras, Stefanos 19
Keiren, Jeroen J.A. 142
Koutavas, Vasileios 248
Kulkarni, Sandeep 124

Leonardsson, Carl 19
López, Hugo A. 195
Loreti, Michele 1

Madelaine, Eric 175
Majzik, István 158
Mercaldo, Francesco 212
Montesi, Fabrizio 114

Nardone, Vittoria 212
Nguena Timo, Omer 222
Nielson, Flemming 195
Nielson, Hanne Riis 195

Pérez, Jorge A. 74, 239
Petrenko, Alexandre 222

Ramesh, S. 222
Ros, Alberto 19

Santone, Antonella 212
Spaccasassi, Carlo 248

Tekaya, Manel 267
Tixeuil, Sébastien 124
Tóth, Tamás 158
Tuosto, Emilio 62

Viering, Malte 96
Visaggio, Corrado Aaron 212
Vörös, András 158

Willemse, Tim A.C. 142

Zhang, Min 175
Zhu, Yunyun 19
Ziarek, Lukasz 96

	Foreword
	Preface
	Organization
	Verifying Generalized Differential Privacy in Concurrent Systems (Abstract of Invited Talk)
	Contents
	On the Power of Attribute-Based Communication
	1 Introduction
	2 The AbC Calculus
	3 AbC Operational Semantics
	3.1 Operational Semantics of Component
	3.2 Operational Semantics of System

	4 Expressiveness of AbC Calculus
	4.1 A Swarm Robotics Model in AbC
	4.2 Encoding Interaction Patterns

	5 Behavioral Theory for AbC
	6 Encoding Channel-Based Interaction
	7 Related Work
	8 Concluding Remarks
	References

	Fencing Programs with Self-Invalidation and Self-Downgrade
	1 Introduction
	2 Programs -- Syntax and Semantics
	2.1 Syntax
	2.2 Configurations
	2.3 Semantics
	2.4 Program Semantics Under an Si Protocol
	2.5 Transition Graph and the Reachability Algorithm

	3 Fence Insertion
	3.1 Witness Analysis

	4 Experimental Results
	4.1 Fence Insertion Results
	4.2 Simulation Results

	5 Conclusions and Future Work
	References

	A Framework for Certified Self-Stabilization
	1 Introduction
	2 Locally Shared Memory Model with Composite Atomicity
	3 Self-Stabilization and Silence
	4 General Tools for Proving Termination
	5 Case Study
	6 Self-Stabilization of D(k)
	6.1 Termination of D(k).
	6.2 Partial Correctness of D(k)

	7 Quantitative Properties
	8 Conclusion
	References

	Developing Honest Java Programs with Diogenes
	1 Introduction
	2 Diogenes in a Nutshell
	3 Architecture
	4 Conclusions
	References

	Playing with Our CAT and Communication-Centric Applications
	1 Introduction
	2 Background: Contract Automata
	3 CAT at Work
	4 Detailing the Implementation of CAT
	5 Linear Programming and Contract Automata
	6 Concluding Remarks
	References

	Multiparty Session Types Within a Canonical Binary Theory, and Beyond
	1 Introduction
	2 Preliminaries: Binary and Multiparty Session Types
	3 Relating Multiparty and Binary Session Type Theories
	3.1 Characterization Results
	3.2 A Behavioral Characterization of Global Swapping
	3.3 Operational Correspondence Results

	4 Example: Sharing in Multiparty Conversations
	5 Multiparty Session Types with Behavioral Genericity
	5.1 Binary Session Types with Parametric Polymorphism
	5.2 Multiparty Session Types with Polymorphism
	5.3 Mediums for Multiparty Session Types with Polymorphism

	6 Mediums at Work: A Behaviorally Generic Multiparty Protocol
	7 Concluding Remarks and Related Works
	References

	A Type Theory for Robust Failure Handling in Distributed Systems
	1 Introduction
	2 Protocol Types, Local Types, and Transformation
	2.1 Protocol Types
	2.2 Local Types and Transformation

	3 Processes for Decentralised Multiple-Failure-Handling
	4 Typing Local Processes
	5 Typing the Network
	6 Properties
	7 Related Works
	8 Concluding Remarks
	References

	Choreographies in Practice
	1 Introduction
	2 Background
	3 Quicksort
	4 Gauss Elimination
	5 Fast Fourier Transform
	6 Graphs
	7 Related Work and Conclusions
	References

	Specification-Based Synthesis of Distributed Self-Stabilizing Protocols
	1 Introduction
	2 Model of Computation
	2.1 Distributed Programs
	2.2 Predicates
	2.3 Topology

	3 Formal Characterization of Self- and Ideal-Stabilization
	3.1 The Functional Behavior
	3.2 Self-Stabilization
	3.3 Ideal-Stabilization

	4 Problem Statement
	5 SMT-based Synthesis Solution
	5.1 SMT Entities
	5.2 General SMT Constraints
	5.3 Specific SMT Constraints for Self- and Ideal-Stabilizing Problems

	6 Case Studies and Experimental Results
	6.1 Case Studies for Synthesis of Self-Stabilizing Systems
	6.2 Case Studies for Synthesis of Ideal-Stabilizing Systems

	7 Related Work
	8 Conclusion
	References

	Branching Bisimulation Games
	1 Introduction
	2 Preliminaries
	3 Branching Bisimulation Games
	3.1 The Branching Bisimulation Games
	3.2 The Branching Bisimulation with Explicit Divergence Games

	4 Some Small Applications
	4.1 A Simple Application
	4.2 A More Elaborate Application

	5 Branching Simulation Games
	6 Discussion & Future Work
	References

	A Configurable CEGAR Framework with Interpolation-Based Refinements
	1 Introduction
	2 Background
	2.1 Symbolic Transition Systems
	2.2 Model Checking
	2.3 Interpolation

	3 Related Work and Contributions
	4 A Configurable CEGAR Framework
	4.1 Initial Abstraction
	4.2 Model Checking
	4.3 Counterexample Concretization
	4.4 Abstraction Refinement
	4.5 Incremental Model Checking

	5 Evaluation
	5.1 Industrial PLC Codes
	5.2 Fischer's Protocol
	5.3 Hardware Models
	5.4 Summary

	6 Conclusions
	References

	A Theory for the Composition of Concurrent Processes
	1 Introduction
	2 Parameterised Networks (pNets): Definition
	2.1 The (open) pNets Core Model

	3 Operational Semantics for Open pNets
	3.1 Computing and Using Open Automata

	4 Bisimulation
	5 Composability
	6 Conclusion and Discussion
	References

	Enforcing Availability in Failure-Aware Communicating Systems
	1 Introduction
	2 Towards a Language for CPS Communications
	2.1 Unique Features in CPS Communications
	2.2 Model Preview

	3 The Global Quality Calculus (GCq)
	3.1 Semantics

	4 Type-Checking Progress
	5 Related Work
	6 Conclusions and Future Work
	A Additional Definitions
	A.1 Type System

	References

	Ransomware Steals Your Phone. Formal Methods Rescue It
	1 Introduction and Motivation
	2 The Methodology
	2.1 Formal Methods for Ransomware Detection

	3 Results and Discussion
	3.1 Empirical Evaluation Procedure
	3.2 Experimental Dataset
	3.3 Evaluation

	4 Related Work
	5 Conclusions
	References

	Multiple Mutation Testing from FSM
	Abstract
	1 Introduction
	2 Background
	2.1 Finite State Machines
	2.2 Fault Model

	3 Mutation Testing
	3.1 Distinguishing Automaton
	3.2 Mutation Coverage Analysis
	3.3 Applications

	4 Experimental Results
	4.1 Prototype Tool
	4.2 Case Study
	4.3 Mutation Analysis

	5 Conclusions
	Acknowledgements
	References

	The Challenge of Typed Expressiveness in Concurrency
	1 Introduction
	2 Expressiveness in Concurrency: The Untyped Case
	3 Towards Relative Expressiveness for Behavioral Types
	4 Concluding Remarks and Future Directions
	4.1 Expressiveness Without Processes
	4.2 A Logic Yardstick for Typed Expressiveness
	4.3 Typed Encodability Criteria

	References

	Type-Based Analysis for Session Inference (Extended Abstract)
	1 Introduction
	2 Motivating Examples
	3 Syntax and Operational Semantics of MLS
	4 First Level Typing: ML Typing and Behaviours
	5 Second Level Typing: Session Types
	6 Inference Algorithm
	7 A Proposal for Recursive Session Types
	8 Related Work and Conclusions
	References

	SimAutoGen Tool: Test Vector Generation from Large Scale MATLAB/Simulink Models
	1 Motivation
	2 Structural Model Coverage Criteria
	3 Software Description
	4 Software Architecture
	5 Evaluation and Measures
	5.1 Model Description
	5.2 Output Description

	References

	Author Index

