
Towards the Ontological Foundations
for the Software Executable DEMO Action

and Fact Models

Marek Skotnica1(B), Steven J.H. van Kervel2, and Robert Pergl1

1 Czech Technical University, Prague, Czech Republic
skotnicam@gmail.com, robert.pergl@fit.cvut.cz

2 Formetis, Boxtel, The Netherlands
steven.van.kervel@formetis.nl

Abstract. The discipline of enterprise engineering and the DEMO
methodology enable a model-driven approach to enterprise software sys-
tems development.

Apart from the graphical notation, the DEMO models may be fully
specified in the DEMOSL language, which may become a basis for an
workflow software system implementation. However, the current specifi-
cation of DEMOSL has been designed mostly for the reasoning between
human stakeholders.

In this paper a formal calculation construct called a DEMO Machine
is proposed and basic ontological foundations of this machine are elabo-
rated based on the alignment with the theories of enterprise engineering,
various ontological and formal quality criteria and the application of the
Generic Systems Development Process for Model Driven Engineering
(GSDP-MDE methodology).

Keywords: Enterprise engineering · DEMO · DEMO machine ·
Enterprise operation system · Ontological foundations

1 Introduction

The domain of this paper encompasses enterprises, ontological foundations and
enterprise information systems. Enterprises, as defined in [1], are social systems
composed of human actors communicating about their productions to serve some
external entity, typically called the “customer”. An enterprise is an engineering
artefact, designed and implemented for a specific purpose. An enterprise infor-
mation system [2] is an information system (IS) that provides (i) some valuable
descriptive perspective on the operation of an enterprise, for example: financial,
personnel, inventory, production monitoring systems; or (ii) executes a prescrip-
tive role, a control system that steers the operation of an enterprise, driven by
the execution of a model of that enterprise. An example of such a prescriptive
control system is a workflow system.

c© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 151–165, 2016.
DOI: 10.1007/978-3-319-39567-8 10



152 M. Skotnica et al.

For the engineering of enterprises and the supporting information systems
(ISs), appropriate scientific foundations are provided by the DoEE [1] and other
theories, as described in Sect. 2. A promising approach is to derive IS directly
from conceptual models of enterprises, eliminating manual programming, i.e. a
manual translation of software specifications into propositions of a computer
programme expressed in a programming language. This approach is proposed
and generally elaborated by the Model-Driven Engineering [3].

The relevance of the MDE approach to derive ISs is very high, given that the
majority of IT projects in the professional world fails or are “challenged” [4,5].
There is no evidence available that MDE is a panacea to this situation, however
the MDE approach based on the DEMO methodology is scientifically interesting
due to its strong theoretical foundations (Sect. 2) and a good empirical degree
of appropriateness [6–8].

DEMO models are engineering specifications with the C4-ness qualities (mod-
els are Concise, Coherent, Consistent and Comprehensive [9]). The approach to
implementation of ISs directly derived from DEMO models [10] is a novel topic.
However, published professional results [7] document feasibility of this approach
that addresses several serious problems:

(i) The elimination of programming due to the fact that the DEMO model is
the source code for a native DEMO model executing software engine.

(ii) A substantially better business-IT alignment, enabled by automatic model
verification, early model validation, followed by incremental model improve-
ments, eliminating most of the human errors induced by manual program-
ming.

(iii) Reduction of complexity due to highly expressive specifications and abstrac-
tion layers.

The paper is organized as follows: In Sect. 2, the underlying scientific foun-
dations are briefly discussed. In Sect. 3, the research question is more precisely
defined. In Sect. 4, the axioms of the theory are proposed, investigated and rep-
resented in a formal notation. In Sect. 6, the related work is discussed. In Sect. 7,
the current results are summarised and further research is mentioned.

2 Scientific Theories and Methodologies Applied

We understand the notion of ontology as a “formal, explicit specification of a
conceptualization shared between stakeholders” [11]. The most important crite-
ria regarding the quality of any ontology [12] are (i) ontological truthfulness, an
ontology providing a truthful representation of the real world; (ii) ontological
completeness, completeness of expression for any phenomenon that may exist in
our domain of the real world; and (iii) ontological appropriateness, good sup-
port for shared reasoning between stakeholders. The mentioned C4-ness quality
criteria must be also met.

Other important concepts regarding ontologies, conceptual languages and
models are formulated by Guizzardi in [13].



Ontological Foundations for DEMO Action and Fact Models 153

Enterprise Ontology [9] is a theory for enterprises, composed of human
actors that communicate and cooperate about some production fact, to meet
the requirements of some external entity, typically called a “customer”.

The DEMO methodology [9] is an engineering methodology, based on the
theory of enterprise ontology, to devise conceptual models of enterprises.

The notion of the model quality is represented by the already mentioned
C4-ness criteria, as well as three cardinality laws [10,13,14].

MDE essentially means using ontologies for designing artefacts, which is the
domain of The Design Science Paradigm described by [15], who provides a frame-
work to devise engineering artefacts.

The Normalised Systems Theory formulates rules that software systems1

must adhere to, to be evolvable and maintainable over time [16].
The Generic Systems Development Process for Model Driven Engineering

(GSDP-MDE) [10,14] provides a methodology to devise a conceptual language
and a model-executing software system based on a domain ontology. The GSDP-
MDE is a special case of the Generic System Development Methodology, which
is based on the General Systems Theory [17]. GSDP-MDE provides a model-
instance driven approach where for each phenomenon instance in the real world,
there is one unique instance of a model that is a precise descriptive representa-
tion of the specific phenomenon instance in the real world. At the same time,
the model instance provides a prescriptive representation of the allowed state
transitions of this real world phenomenon instance. The model-instance driven
approach is the foundation for the descriptive and prescriptive ISs.

3 Formulation of the Research Question

3.1 The DEMO Machine Concept

The currently latest version of the DEMO 3 specifications of models and repre-
sentations [18] is based on DEMOSL, an acronym of DEMO Specification Lan-
guage. DEMOSL is specified using EBNF (extended Backus-Naur Form) [19].
This language is derived from reasoning on rules and facts from a modeller’s
perspective, primarily used for shared reasoning between stakeholders. The main
research question is: How should a DEMO Machine be designed that can
be used to interpret DEMOSL? Such a machine should take as its input a
specification based on DEMOSL and enhanced by necessary execution seman-
tics. As this is a very broad topic, we will limit ourselves here to discussing just
a fragment of this machine, as specified further. Moreover, the DEMO Machine
is meant as a formal computation model (similar to the e.g. Turing Machine),
i.e. we do not elaborate on software implementation.

3.2 Appropriateness of the DEMOSL for DEMO Machine
Implementation

The DEMO Machine needs to take into account the following challenges that
are induced by the execution level and thus not addressed in DEMOSL:
1 But not limited to.



154 M. Skotnica et al.

1. Integration. DEMOSL concepts are either new (to be carried out) or existing
concepts already present in the enterprise. DEMOSL does not deal with this
separation.

2. Facts duplication. The facts representation must be physically present in one
place to assure the consistency of enterprise systems [20]. This point is related
to Integration, but it is also valid on its own.

3. Lack of expressiveness. At the execution level, there are many domains, where
DEMOSL is not expressive enough to describe it, like scientific computations.

4. Modularity. DEMOSL does not specify, how the solution is modularised,
which is at the same time a crucial execution concern.

5. Lack of version transparency. DEMOSL does not deal with evolvability of the
models with the respect to the running instances.

6. Execution semantics of DEMOSL. Currently, the execution semantics of
DEMOSL is not fully specified. Let us demonstrate this on a simple example:

when T01(M) is requested with member(new M) = P
if age(P) < minimal_age then decline T01(M)
else promise T01(M)

The following semantics is not defined:

– How with should be executed?
– What does age(P) mean, where and how should it be calculated?
– What does minimal age mean, where and how should it be stored?

This list of topics is probably not complete, however it names the key chal-
lenges that definitely need addressing.

3.3 Formulation of Ontology for DEMO Machine

Based on these observations, we narrow our research question to: How to formu-
late a domain ontology for Facts, Agenda and Rules (FAR)? We started building
the DEMO Machine ontology from this topic, because facts, agenda and rules are
the “heart” of a DEMOSL execution. This ontology should address the points
listed above and it should exhibit the necessary qualities:

(i) To be based on and compliant with the FI, TAO and PSI theories of EE.
(ii) Truthfulness and good appropriateness qualities and compliance with the

three cardinality laws [13].
(iii) Maintaining the strict C4-ness criteria.

As for the notions of “Way of thinking” and “Way of working” distinguished
in the DEMO method and theories, the FAR ontology is rather a way of working,
as we come from the existing way of thinking (the PSI theory) and formulate
how to enhance it for the execution.



Ontological Foundations for DEMO Action and Fact Models 155

3.4 Verification and Validation Questions of the Research Question

The FAR domain ontology is proposed below that enables the construction of
executable Fact and Rule expressions that operate on Agenda. As for the model
verification, we must make sure that it is free of anomalies that may enable a con-
struction of rules and expressions that cannot exist in the world of phenomena.

4 Axiomatic Specifications of the Fact, Agenda and Rule
Ontology

4.1 Addressing the DEMOSL-DEMO Machine Deficiencies

Let us elaborate, how the FAR Ontology (as well as the whole DEMO Machine)
may address the challenges stated above.

1. Integration and Facts duplication. Based on the Separation of Concerns Prin-
ciple from the Normalised Systems Theory [16], the DEMO Machine should
not supply the functionality of the already-existing enterprise systems, such as
a database. Also, the DEMO Machine should not specify scales, dimensions,
sorts, units such as time, money and others.

2. Lack of expressiveness. For areas, where there are already established solu-
tions (like mathematical libraries), these should not be represented in a
DEMO Machine, to maintain the separation of concerns and the C4-ness
criteria.

3. Modularity and Version transparency are complex topics that cannot be easily
commented. They are a subject for future work that should be based on the
studies of Normalised Systems Theory mentioned above.

4. Execution semantics of DEMOSL. The execution semantics should be spec-
ified by the DEMO Machine. The FAR Ontology focuses on the subset of
execution, namely the facts, agenda and rules concepts.

Let us now dive into the specific part of the DEMO Machine, the FAR Ontol-
ogy, which will be specified as a set of axiomatic definitions.

4.2 Fact Axioms

The DEMO theory builds on the Φ theory. The letter Φ stands for “FI”, an
acronym for Fact and Information about a “world”, being a specific part of the
universe we are interested in, and of which we require factual information or
knowledge [9]. Our world of interest is “the world of enterprises”. A world of
interest is assumed to be composed of Acta, Facta and Stata. Stata are things
or phenomena that existed before the beginning of our observation. A Fact is
a proposition about something that exists in the real world and provides us
with factual knowledge about the world. Facts can be about either concrete or
abstract things or phenomena. They are the results of Acta, being actions or
acts, undertaken by an entity. Facts come to being by carrying out acts. Once
they originate, they cannot disappear; they can be only ignored.



156 M. Skotnica et al.

During the design time, we deal with facts as propositions about the real
world. They exist just as a symbolic structure and we cannot decide its truthful-
ness. Then, once the DEMO Machine executes (i.e. the fact “happens”), we may
valuate it as true, false or undefined. Undefined means that the subjects of
the proposition does not exist, yet, or we do not know the valuation, as a result
of e.g. a technical failure. The valuation may (and typically does) change during
the execution. Any calculations based on facts should take this into account.
Stata also represent factual knowledge about our world of interest that exist
since the beginning of time. Obviously any facts about Stata are always either
true or false.

Let us present the definitions here using the standard mathematical con-
structs.

Definition 1. Fact A fact is an ordered tuple:

Fact := (Identifier, Type, Proposition) (1)

Identifier – A unique identifier of the fact.
Type ∈ {Internal, External, Composed}
Proposition – A specification2 of the statement about the real world.

Definition 2. Value of a fact is a valuation function:

FactV alue : (TransactionInstance, Fact) → {True, False, Undefined} (2)

Definition 3. Transaction Instance Linking (TIL) is a ternary relation
that relates certain transaction instances to each other. This relation is defined
outside of the DEMO Machine, which requests this relation for the evaluation of
the rules.

TransactionInstanceLinking(TIL) :=
TransactionInstance × TransactionInstance × LinkingIdentifier

(3)

TransactionInstance – A transaction instance unique identifier.
LinkingIdentifier – A name of the relation that holds between the transaction
instances.

Example 1. Two transaction instances are sharing the same membership:
(“T01 1”,“T02 2”,“Membership”)

Definition 4. Internal Fact is a factual statement about a DEMO model
instance.

InternalFact := (Fact, InternalFactExpression) (4)

2 FAR does not specify the language, it may be a natural language or any other
language.



Ontological Foundations for DEMO Action and Fact Models 157

Definition 5.

InternalFactExpression :=
(singleTransactionComparison)|(multiTransactionComparison) (5)

singleTransactionComparison = (transaction).state (operator)
((transaction).state | (state))
multiTransactionComparison = (transactionSelector).(selectorFunction)
(t => (singleTransactionComparison))
transaction = this | this.parent
state = perfect tense intention” as defined in DEMOSL
operator = == | ! =
variable = (transaction).(attribute)
selectorFunction = all | any
transactionSelector = transactionType < (linkingIdentifier) > |
this.children < transactionType >
transactionType = existing transaction type defined in the model
linkingIdentifier = identifier of the relation between transactions

This grammar is using the Extended Backus-Naur Form (EBNF). Round
brackets denote non-terminals. Note that the presented grammar is very basic
and it is not able to capture all facts about the DEMO model instance or its
history. Complete grammar is a subject for further research.

Example 2. Let us show an example by formalising the fact F02 “Are invoices
paid?”, which is the situation when all instances of T03 that are linked to the
current transaction are in the same state as the current transaction.

F02 = ((“F02”,“Are invoices paid?”), T03< “Invoice” >.all(t => t.state
== this.state))

Definition 6. External Fact is a Fact about the world outside the DEMO
Machine

ExternalFact := (Fact, CalculationEngine) (6)

CalculationEngine – Identifier of the external system function evaluating the
fact.

Data in external data banks are represented as external facts, for instance.
External facts represent knowledge of phenomena in the environment that may
change over time and have no (known) calculation specification. We operate just
with a further unspecified reference to external system function that is able to
valuate the fact, thus carrying out the separation of concerns principle.

Example 3. A fact that evaluates that the person attached to the transaction
instance is older than 18 years

F01 = ((“F01”,“Is person older than 18 years?”), CalculationEngine)
CalculationEngine may be implemented in any computer technology such as

a web service (SOAP or REST), or locally as a system library. In the following
code, we implement it as a class in a standard programming language. The
calculation of a F01 would be realized as its method:



158 M. Skotnica et al.

public class CalculationEngine {
[DEMOEngineExternalFact(FactId="F01")]
public FactValue IsPersonEligible (TransactionInstance t) {
var person = DAL.GetPersonByTransactionInstanceId(t.Id);
if(person == null) return FactValue.Undefined;
else return person.Age > 18 ? FactValue.True : FactValue.False;
}}

Definition 7. Composed Fact is a fact composed from internal and external
facts.

ComposedFact := (Fact, ComposedFactExpression) (7)

Definition 8. Composed Fact Expression

1. InternalFactIdentifier and ExternalFactIdentifier are composed fact expres-
sions.

2. If x and y are composed fact expressions, then following expressions are also
composed fact expressions:
(a) (x and y)
(b) (x or y)
(c) not (x)

For valuation of composed facts, the Kleene and Priest three-valued logics is
used.

Example 4. A person is older than 18 years and he is accepted as a applicant in
a membership approval process of the Volley tennis club:

F01 = (("F01","Is person older than 18 years?"),
VolleyCalculationEngine)

F02 = (("F02","Is person accepted in the approval process?"),
VoleyCalculationEngine)

F03 = (("F03","Is person eligible for membership?"),
("F01 and F02"))

The resulting truth table is then:

F01 F02 F03 Result
True True True
True False False
True Undefined Undefined
False True False
False False False
False Undefined False
Undefined True Undefined
Undefined False False
Undefined Undefined Undefined



Ontological Foundations for DEMO Action and Fact Models 159

4.3 Agenda Axioms

An agenda is set of possible coordination acts (agendum) that is presented to
the actor. These are well-defined concepts in the PSI theory. An actor involved
in a transaction is offered, according to the transaction axiom, to choose one of
the valid options to perform coordination acts, which happens in asynchronous
time. Example: After a Request from the initiator, the executor may issue either
a Promise or a Decline, but other coordination acts such as a Reject are now
forbidden, to comply with the Transaction Axiom.

An agenda for an actor must be (re)calculated completely at run time by
the DEMO Machine of the model instance, after each state change of the model
instance. It will be shown that the allowed options for coordination acts are
restricted by causal and conditional dependencies and rules. It means that appli-
cation of rules is present to guarantee the compliance with the PSI theory. Any
extension, enlargement, of the transaction transition space or the state space is
impossible since this would violate the PSI theory axioms.

Definition 9. Coordination Act (cAct) is a proposed or intended action for
an actor.

cAct := (Transaction, TransactionInstance,

ActorInstance, Intention, SettlementType)
(8)

Transaction = Transaction kind as defined in DEMOSL.3

TransactionInstance = Associated transaction instance. May be empty.
ActorInstance = Associated actor instance.
Intention ∈ {Create(T, n), Promise, Decline, Request, Quit, Accept, Reject,
State, Stop, RevokeRequest, AllowRevokeRequest, RefuseRevokeRequest, Revoke-
Promise, AllowRevokePromise, RefuseRevokePromise, RevokeState, AllowRe-
voke State, RefuseRevokeState, RevokeAccept, AllowRevokeAccept, RefuseRe-
vokeAccept}
SettlementType ∈ { Allow, Enforce, Restrict }

There are two additions to the definition given by the DEMO theory. One is
the possibility to create a new transaction (generated by the composition axiom)
which will be used by the rules. Create(T, n) means “Create n transactions of
type T”, where n is a positive whole number. The second is the settlement type
which says how the cAct should be dealt with. Allow means that an actor is
allowed to perform the intention. Enforce cAct says that the given intention
should be actually performed, unless there is a Restrict cAct with the same
intention for the same transaction instance. Practically, the Restrict cAct also
informs the actor, why such an intention cannot be performed. In the DEMO
theory, an actor is allowed to perform an act even when it is restricted. How-
ever, in the enterprise practice, legal and other compliance is a crucial aspect of
execution. Thus, we enable this feature in the DEMO Machine.

3 Transaction is also defined by the TransactionInstance if present.



160 M. Skotnica et al.

Please note that in Definition 9 we do not take into account any additional
information from inside or outside of the organization. This is due to the sep-
aration of concerns principle addressing the Facts duplication (Sect. 4.1). All
external information (facts) are handled outside of the DEMO Machine.

Definition 10. Agenda is a function that calculates a set of actor’s possible
actions based on the current state of the model taking into account the composi-
tion axiom and the respective rules.

Agenda : (ModelInstance,ActorInstance) → {cAct} (9)

Definition 11. Perform cAct

PerformCAct : (ModelInstance,ActorInstance, CActToEnforce) → Agenda
(10)

To perform a cAct means that the actor makes a selection of an allowed cAct
from its agenda and it enforces it.

4.4 Rules and Dependencies Axioms

Rules and dependencies are specifications of either a prescriptive execution of a
coordination act, or a conditional prohibition of a coordination act for an actor,
depending on the evaluation of a fact.

A rule and a dependency restrict the available freedom of an actor to issue
coordination acts at the execution time. The evaluation, if the rule or dependency
applies, takes place at runtime, depending on the state of that model instance.
The transaction instance state space and the state transition space of a model
instance is further restricted (made smaller). It is impossible to add new options
for coordination acts since that would violate the axiomatic specifications derived
from the PSI theory.

Definition 12. Causal Rule and Dependency are defined as the application
of a rule that results in a transaction state change.

CausalRule = (Transaction, TransactionState, Fact, cActTrue, cActFalse)
(11)

Definition 13. Evaluation of Causal Rule and Dependency

if TransactionInstance.State == TransactionState
and FactValue(TransactionInstance, Fact) == True

then anAgenda.Add(cAct(cActTrue, Enforce))
else if False then anAgenda.Add(cAct(cActFalse, Enforce))

Definition 14. Conditional Rule and Dependency are defined as the appli-
cation of a rule that results in a restriction of an agendum, in such a way that
one of the allowed coordination acts is prohibited while the rule applies.

ConditionalRule = (Transaction, Fact, cActToRestrict) (12)



Ontological Foundations for DEMO Action and Fact Models 161

Since facts may change over time during execution, a condition that inhibits
a specific cAct can be met, and the specific cAct is permitted. If one of two
cActs is prohibited in the agenda, then the opposite cAct can be performed in
asynchronous time by the actor. As long as the fact in the conditional rule holds,
it is not possible for the actor to perform the cAct.

Definition 15. Evaluation of Conditional Rule and Dependency

if anAgenda(TransactionInstance).Contains(cActToRestrict(Allow))
and FactValue(TransactionInstance, Fact) != True

then anAgenda.Add(cActToRestrict(Restrict))

Prohibition or Prescription of an Agenda. From the above follows that
rules and dependencies operate on an agenda by prohibition or prescription.
They reduce the model instance state space and the model instance transition
space, which causes a desired limitation of complexity. It is impossible to increase
the state and transition spaces by “adding” new options for coordination acts
which would be violation of the PSI theory. Rules and dependencies are calcu-
lated immediately during the calculation of the agenda.

5 Discussion and Evaluation of the FAR Ontology

The relation between the FAR Ontology and the DEMO models is as follows.
The DEMO models provide a formal specification of the rules and facts, cre-
ated and accepted by stakeholders, that represent the enterprise interaction with
its environment. The DEMO Machine specifies the construction of an artefact
(a software system) that must fulfil the requirements of the created DEMO mod-
els. The FAR Ontology is a crucial part of the DEMO Machine.

The following reasoning is provided to assure:

(i) A compliance with the PSI theory, the causal and conditional dependencies,
and the application of explicitly specified causal and conditional AM rules.

(ii) A reduction of complexity while maintaining guaranteed ontological concise-
ness and comprehensiveness.

Assume a model composed of actors and transactions. The application of
the Transaction Axiom reduces the number of states of each transaction and
the number of states in the model state space, which results in a reduction of
complexity.

The application of the Composition Axiom demands that before any produc-
tion fact can be performed, all child production facts must have been produced,
i.e. Stated and Accepted. This further reduces the number of states in the model
state space. The ontological conciseness and comprehensiveness of the PSI theory
has been shown in [2].

The application of the causal dependencies reduce the state transition space
of the model instance, since a specific option of an agenda must be chosen, while
the other agenda options are forbidden.



162 M. Skotnica et al.

Conditional dependencies disable specific agenda options, until a specific con-
dition has been met. In this way, the state transition space is reduced further
and the state space is also reduced, without a loss of ontological conciseness and
comprehensiveness.

The DEMO Action Model conditional and causal rules modify the agenda
similarly to causal and conditional dependencies and they reduce the state space
and the state transition space further, without any loss of ontological conciseness
and comprehensiveness.

For a DEMO Machine based solely but precisely on the PSI theory, it has
been argued and shown that there is minimized expression, or zero entropy in
expression quality [14]. Any enterprise that may possibly exist in the real world
can then be represented by one and only one model. In addition, anything that is
not an enterprise cannot be represented. Based on this reasoning, it is argued that
such DEMO Machine based on a proper implementation of the FAR Ontology
will keep these qualities.

5.1 Falsifiable Proposition of the FAR Ontology

As any domain ontology is a hypothesis that provides falsifiable propositions
about the world of phenomena [21]. The following hypothetical assumptions
have been made:

1. “The PSI theory is a domain ontology, a falsifiable hypothesis about the world
of coordination between actors”. There is much empirical evidence for a good
degree of confidence in the ontological truthfulness and appropriateness of
the PSI theory. The C4-ness qualities have been proven. The construction of
the DEMO engine using the GSDP-MDE has been proven.

2. “Any business rule that may exist in the real world can be expressed in
restriction(s) of actor agenda, by conditional or causal rules”. This proposition
is directly derived from the PSI theory, hence with a good confidence.

3. “Any fact that can be defined in the real world may be used in a rule to
express any business rule in an enterprise”. As the facts are either Internal or
External, which is a complete list of fact types in the world, we may assume
that any given rule may be expressed using a Composed Fact.

4. The hypothesis that any imaginable fact represented using the DEMOSL rep-
resentation can be expressed in an appropriate way using the FAR Ontology,
needs further theoretical research and empirical validation.

6 Related Work

6.1 Model-Driven Development

Model-Driven Development (MDD) is a very popular approach in the recent
years realising the ideas of Model-Driven Engineering for implementing software
systems. It is a software development approach based on modelling and trans-
formations [22]. The product to be developed is described using various types



Ontological Foundations for DEMO Action and Fact Models 163

of models specifying the requirements, functions, structure and deployment of
the product. These models are used to construct the product using transfor-
mations between models and code generation. MDD was originally based on
Model-Driven Architecture (MDA) developed by the Object Management Group
(OMG) [23] defining these types of models: Computation Independent Model
(CIM), Platform Independent Model (PIM), Platform Specific Model (PSM),
Implementation Specific Model (ISM).

The most usual part of the MDD approach is the process of forward engineer-
ing to represent the transformations of more abstract models into more specific
ones. The most common use-case of such a process is the development of concep-
tual data models and their transformation into source codes or database scripts.

Our approach shares the idea of driving the development by models.
DEMOSL models represent CIM, DEMO Machine and the FAR Ontology brings
in execution semantics, which may be related to PIM. However, our approach is
to directly interpret the PIM model. In this respect, our approach is similar to
the following effort.

6.2 XModel

The solution of devising a workflow software system based on model presented
by Johanndeiter et al. in [24] is based on the OrgML modelling language, a part
of the MEMO framework, and the XMF metaprogramming platform. The idea
is also based on applying the MDE approach, while avoiding the error-prone
manual coding stage. The idea is based on applying multiple levels of meta-
modelling and utilising XMF’s unique features to support multiple dynamic lev-
els of abstraction. The approach seems very interesting, however it seems to lack
a proper evaluation in enterprise. Our approach also differs in a careful selection
of ontologically well-founded methodologies that exhibit necessary qualities and
benefits, as discussed in Sects. 2 and 5.

6.3 The DEMO Engine and the Enterprise Operating System

DEMO Engine of the ForMetis Consultants company is a software system for
designing DEMO models with the ability to simulate DEMO models for vali-
dation and to provide model execution in full production [7]. Construction of
DEMO models is done using the graphical representation of the DEMO ATD
in a graphical environment. In the current implementation, the DEMO Process
Model is primarily calculated from the ATD. Response links and waiting links
(causal and conditional dependencies) can be then specified using the graphical
representation of the PSD. There is a limited and not well-engineered support
for even simple Action Model rules, which is the aim of our FAR Ontology.

The Enterprise Operating System [10] is software system composed of a set
of DEMO models and a DEMO model executing software engine, the DEMO
Engine. The EOS captures and controls all phenomena that occur in operation
of the organizational business transactions. This is very similar to an operating
system of a computer that reads from and writes to binary registers of a CPU



164 M. Skotnica et al.

and peripheral controllers and supports many tasks. Using a computer without
an operating system is extremely difficult and error-prone. This seems to apply
also to controlling and monitoring enterprises without an appropriate enterprise
operating system. Many of the engineering challenges of this effort are directly
related to the DEMO Machine and open questions described in Sect. 3.

7 Conclusions and Further Research

We proposed the concept of a DEMO Machine as a theoretical construct for
DEMO models execution. We then proposed the FAR Ontology as a key part
of the DEMO Machine. The proposed further research topics are present in the
respective parts of the paper.

The FAR Ontology using the GSDP-MDE approach for model-driven infor-
mation systems provides an approach for enterprise information systems imple-
mentation with considerable benefits (Sect. 3). Some of the concepts have been
already implemented in DEMO Engine described in Sect. 6.3.

As for future work, the remaining parts of the DEMO Machine need to be
formulated, so that every DEMOSL model may be executed. This comprises an
exact formulation how the Transaction and Composition Axioms are applied for
the model execution. The work should address the concerns named in Sect. 3.
As for the FAR Ontology itself, algorithms with proper qualities implementing
the proposed functions need to be elaborated and a broader empirical research
on the appropriateness in the professional world is suitable. A single empirical
business case with inappropriate expressiveness would invalidate our hypothesis
and provide valuable clues for improvement of the FAR Ontology.

References

1. Dietz, J.L.G., Hoogervorst, J.A.P.: The discipline of enterprise engineering. Int. J.
Organ. Des. Eng. 3(1) (2013)

2. Guerreiro, S., Kervel, S., Babkin, E.: Towards devising an architectural framework
for enterprise operating systems. In: Proceedings of ICsoft 2013 8th International
Conference on Software Paradigm Trends. SciTePress (2013)

3. Bzivin, J., Gerb, O.: Towards a precise definition of the OMG/MDA framework.
In: IEEE International Conference on Automated Software Engineering (2001)

4. Sauer, C., Cuthbertson, C.: The State of IT Project Management in the UK.
Templeton College, Oxford University, Oxford (2003)

5. Budzier, A., Flyvbjerg, B.: Double Whammy, How ICT projects are fooled by
randomness and screwed by political intend. In: CRASHH Conference, University
of Oxford (2011). Draft v5

6. Mulder, J.B.F.: Rapid enterprise design. Ph.D. thesis, Delft University of Technol-
ogy (2006)

7. Hintzen, J., van Kervel, S.J.H., van Meeuwen, T., Vermolen, J.A.J., Zijlstra, B.:
A professional case management system in production, modeled and implemented
using DEMO. In: Proceedings of 16th IEEE Conference on Business Informatics
(CBI) (2014)



Ontological Foundations for DEMO Action and Fact Models 165

8. Op ’t Land, M.: Applying architecture and ontology to the splitting and allying of
enterprises. Ph.D. thesis, University of Technology Delft (2008)

9. Dietz, J.: Enterprise Ontology Theory and Methodology. Springer, New York
(2006). ISBN: 3-540-29169-5

10. van Kervel, S.J.H., Dietz, J.L.G., Hintzen, J., van Meeuwen, T., Zijlstra, B.: Enter-
prise ontology driven software engineering. In: Proceedings of ICsoft 2012 7th Inter-
national Conference on Software Paradigm Trends. SciTePress (2012)

11. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993). Knowledge Systems Laboratorium, Computer Sci-
ence Department, Stanford University

12. Guizzardi, G., Ferreira Pires, L., van Sinderen, M.: An ontology-based approach
for evaluating the domain appropriateness and comprehensibility appropriateness
of modeling languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,
vol. 3713, pp. 691–705. Springer, Heidelberg (2005)

13. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D.
thesis, University of Twente (2005)

14. van Kervel, S.J.H.: Ontology driven enterprise information systems engineering:
Ph.D. thesis, University of Technology Delft (2012)

15. Hevner, A.: A three cycle view of design science research. Scand. J. Inf. Syst.
19(2), 87–92 (2007). Information systems and Decision Sciences, University of
South Floria, USA

16. Mannaert, H., Verelst, J.: Normalized Systems Re-creating Information Technology
Based on Laws for Software Evolvability. Koppa, Belgium (2009)

17. von Bertalanffy, L.: General System Theory: Foundations, Development, Applica-
tions. George Braziller, New York (1968)

18. Dietz, J.: DEMOSL-specification: version 3.4, CIAO! enterprise engineering. Net-
work (2016). doi:10.5281/zenodo.47471

19. ISO, Geneva: ISO 14977. Information technology Syntactic metalanguage
Extended BNF, Norm (1996)

20. Coronel, C., Morris, S.: Database Systems: Design, Implementation, & Manage-
ment, 11th edn. Course Technology, Cambridge (2014)

21. Popper, K.R.: Zwei Bedeutungen von Falsifizierbarkeit [Two meanings of falsifia-
bility]. In: Seiffert, H., Radnitzky, G. (eds.) Handlexikon der Wissenschaftstheorie
(in German), pp. 82–85. Deutscher Taschenbuch Verlag, Mnchen (1994). ISBN:
3-423-04586-8

22. Mellor, S.J., Clark, A., Futagami, T.: Model-driven development. IEEE Softw.
20(5), 14–18 (2003)

23. OMG: Model driven architecture (MDA): The MDA guide rev 2.0. online. http://
www.omg.org/cgi-bin/doc?ormsc/14-06-01

24. Johanndeiter, T., Goldstein, A., Frank, U.: Towards Business Process Models at
Runtime, pp. 13–25. MoDELS@ Run. time 1079 (2013)

http://dx.doi.org/10.5281/zenodo.47471
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01

	Towards the Ontological Foundations for the Software Executable DEMO Action and Fact Models
	1 Introduction
	2 Scientific Theories and Methodologies Applied
	3 Formulation of the Research Question
	3.1 The DEMO Machine Concept
	3.2 Appropriateness of the DEMOSL for DEMO Machine Implementation
	3.3 Formulation of Ontology for DEMO Machine
	3.4 Verification and Validation Questions of the Research Question

	4 Axiomatic Specifications of the Fact, Agenda and Rule Ontology
	4.1 Addressing the DEMOSL-DEMO Machine Deficiencies
	4.2 Fact Axioms
	4.3 Agenda Axioms
	4.4 Rules and Dependencies Axioms

	5 Discussion and Evaluation of the FAR Ontology
	5.1 Falsifiable Proposition of the FAR Ontology

	6 Related Work
	6.1 Model-Driven Development
	6.2 XModel
	6.3 The DEMO Engine and the Enterprise Operating System

	7 Conclusions and Further Research
	References


