
 123

LN
BI

P
25

2

6th Enterprise Engineering Working Conference, EEWC 2016
Funchal, Madeira Island, Portugal, May 30 – June 3, 2016
Proceedings

Advances in
Enterprise Engineering X

David Aveiro · Robert Pergl
Duarte Gouveia (Eds.)

Lecture Notes
in Business Information Processing 252

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

David Aveiro • Robert Pergl
Duarte Gouveia (Eds.)

Advances in
Enterprise Engineering X
6th Enterprise Engineering Working Conference, EEWC 2016
Funchal, Madeira Island, Portugal, May 30 – June 3, 2016
Proceedings

123

Editors
David Aveiro
University of Madeira
Funchal
Portugal

Robert Pergl
Faculty of Information Technology
Czech Technical University in Prague
Prague
Czech Republic

Duarte Gouveia
University of Madeira
Funchal
Portugal

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-39566-1 ISBN 978-3-319-39567-8 (eBook)
DOI 10.1007/978-3-319-39567-8

Library of Congress Control Number: 2016940338

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The CIAO! Enterprise Engineering Network (CEEN) is a community of academics and
practitioners who strive to contribute to the development of the discipline of enterprise
engineering (EE) and to apply it in practice. The aim is to develop a holistic and general
systems theory-based understanding on how to (re)design and run enterprises effec-
tively. The ambition is to develop a consistent and coherent set of theories, models, and
associated methods that (a) enable enterprises to reflect, in a systematic way, on how to
realize improvements, and (b) assist them, in practice, in achieving their aspirations.

In doing so, sound empirical and scientific foundations should underlie all efforts
and all organizational aspects that are relevant should be considered, while combining
already existing knowledge from the scientific fields of information systems, software
engineering, management, as well as philosophy, semiotics, and sociology, among
others. In other words, the (re)design of an enterprise and the subsequent implemen-
tation of changes should be the consequence of rationalized decisions that take in
account the nature and reality of the enterprise and its environment, and respect rele-
vant empirical and scientific principles.

Enterprises are taken to be systems whose reality has a dual nature by being
simultaneously, on one hand, centrally and purposefully (re)designed; and, on the other
hand, emergent in a distributed way, given the fact that, its main agents, the humans
that are the pearls of the organization, act with free will, in a creative and in a
responsible (or sometimes not) way. We acknowledge that, in practice, the develop-
ment of enterprises is not always a purely rational/evidence-based process. As such, we
believe the field of EE aims to provide evidence-based insights into the design and
evolution of enterprises and the consequences of different choices irrespective of the
way decisions are made.

The origin of the scientific foundations of our present body of knowledge is the
CIAO! Paradigm (Communication, Information, Action, Organization) as expressed in
our Enterprise Engineering Manifesto and the paper “The Discipline of Enterprise
Engineering.” In this paradigm, organization is considered to emerge in human com-
munication through the intermediate roles of information and action. Based on the
CIAO! Paradigm, several theories have been developed, and are still being proposed.
They are published as technical reports.

The CEEN welcomes proposals of improvements to our current body of knowledge,
as well as the inclusion of compliant and alternative views, always keeping in mind the
need to maintain global systemic coherence, consistency, and scientific rigor of the
entire EE body of knowledge as a prerequisite for the consolidation of this new
engineering discipline. Yearly events like the Enterprise Engineering Working Con-
ference and associated Doctoral Consortium are organized to promote the presentation
of EE research and application in practice, as well as discussions on the contents and
current state of our body of theories and methods.

Since 2005 the CEEN has organized the CIAO! Workshop and, since 2008, its
proceedings have been published as Advances in Enterprise Engineering in the
Springer LNBIP series. From 2011 on, this workshop was replaced by the Enterprise
Engineering Working Conference (EEWC). This volume contains the proceedings
of the 6th EEWC, held in Funchal, Madeira Island, Portugal. There were 34 submis-
sions. Each submission was reviewed by three Program Committee members and
12 papers were selected after careful review for inclusion in this volume.

The EEWC aims at addressing the challenges that modern and complex enterprises
are facing in a rapidly changing world. The participants of the working conference
share a belief that dealing with these challenges requires rigorous and scientific solu-
tions, focusing on the design and engineering of enterprises. The goal of EEWC is to
stimulate interaction between the different stakeholders, scientists, as well as practi-
tioners interested in making enterprise engineering a reality.

May 2016 David Aveiro
Robert Pergl

Duarte Gouveia

VI Preface

Organization

EEWC 2016 was the sixth working conference resulting from a series of successful
CIAO! Workshops and EEWC Conferences over the past years. These events were
aimed at addressing the challenges that modern and complex enterprises are facing in a
rapidly changing world. The participants in these events share the belief that dealing
with these challenges requires rigorous and scientific solutions, focusing on the design
and engineering of enterprises.

This conviction has led to the effort of annually organizing an international working
conference on the topic of enterprise engineering, in order to bring together all
stakeholders interested in making enterprise engineering a reality. This means that not
only scientists are invited, but also practitioners. Next, it also means that the conference
is aimed at the active participation, discussion, and exchange of ideas in order to
stimulate future cooperation among the participants. This makes EEWC a working
conference contributing to the further development of enterprise engineering as a
mature discipline.

The organization of EEWC 2016 and the peer review of the contributions to EEWC
2016 were accomplished by an outstanding international team of experts in the fields of
enterprise engineering. The following is the organizational structure of EEWC 2016.

Advisory Board

Antonia Albani University of St. Gallen, Switzerland
Jan Dietz Delft University of Technology, The Netherlands

Conference Chairs

Robert Pergl Czech Technical University in Prague, Czech Republic
Jorge Sanz National University of Singapore, Singapore

Program Chairs

David Aveiro University of Madeira, Madeira Interactive Technologies
Institute and Center for Organizational Design
and Engineering, INESC INOV Lisbon, Portugal

Antonia Albani University of St. Gallen, Switzerland

Organizing Chairs

David Aveiro University of Madeira, Madeira Interactive Technologies
Institute and Center for Organizational Design
and Engineering, INESC INOV Lisbon, Portugal

Duarte Gouveia University of Madeira and Madeira Interactive Technologies
Institute, Portugal

Program Committee

Alberto Silva INESC and University of Lisbon, Portugal
Artur Caetano University of Lisbon, Portugal
Carlos Mendes University of Lisbon, Portugal
Carlos Páscoa Portuguese Air Force Academy, Portugal
Christian Huemer Vienna University of Technology, Austria
Duarte Gouveia University of Madeira, Portugal
Eduard Babkin Higher School of Economics, Nizhny Novgorod, Russia
Florian Matthes Technical University of Munich, Germany
Frank Harmsen Maastricht University and Ernst & Young Advisory,

The Netherlands
Geert Poels University of Ghent, Belgium
Gil Regev École Polytechnique Fédérale de Lausanne, Switzerland
Graham McLeod University of Cape Town and Inspired.org, South Africa
Hans Mulder University of Antwerp, Belgium
Henderik Proper Luxembourg Institute of Science and Technology,

Luxembourg
Jan Dietz Delft University of Technology, The Netherlands
Jan Verelst University of Antwerp, Belgium
Jens Gulden University of Duisburg-Essen, Germany
João Pombinho University of Lisbon, Portugal
Joop de Jong Mprise, The Netherlands
Jose Tribolet INESC and University of Lisbon, Portugal
Joseph Barjis Institute of Engineering and Management, San Francisco,

CA, USA
Junichi Iijima Tokyo Institute of Technology, Japan
Marcello Bax Federal University of Minas Gerais, Brazil
Martin Op ’t Land Capgemini, The Netherlands; University of Antwerp,

Belgium
Mauricio Almeida Federal University of Minas Gerais, Brazil
Miguel Mira Da Silva INESC and University of Lisbon, Portugal
Niek Pluijmert INQA Quality Consultants, The Netherlands
Olga Oshmarina Higher School of Economics, Nizhny Novgorod, Russia
Peter Loos University of Saarland, Germany
Philip Huysmans University of Antwerp, Belgium
Renata Baracho Federal University of Minas Gerais, Brazil
Robert Lagerström KTH – Royal Institute of Technology, Sweden
Robert Pergl Czech Technical University in Prague, Czech Republic
Sérgio Guerreiro Lusófona University, Lisbon, Portugal
Sanetake Nagayoshi Waseda University, Japan
Steven van Kervel Formetis, The Netherlands
Stijn Hoppenbrouwers HAN University of Applied Sciences, The Netherlands
Ulrich Frank University of Duisburg-Essen, Germany
Ulrik Franke Swedish Defense Research Agency, Sweden

VIII Organization

Contents

Organization Implementation

Formalizing Organization Implementation . 3
Marien R. Krouwel, Martin Op ’t Land, and Tyron Offerman

Supporting Goal-Oriented Organizational Implementation - Combining
DEMO and Process Simulation in a Practice-Tested Method 19

Lotte de Laat, Martin Op ’t Land, and Marien R. Krouwel

Value and Co-creation

Objectifying Value Co-creation – An Exploratory Study 37
João Pombinho, Carlos Mendes, Bruno Fragoso, Ricardo Santos,
Nuno Silva, Elton Sixpence, and José Tribolet

Towards Co-creation and Co-production in Production Chains Modeled
in DEMO with REA Support . 54

Frantisek Hunka, Steven J.H. van Kervel, and Jiri Matula

Evolvability

Building an Evolvable Prototype for a Multiple GAAP Accounting
Information System . 71

Els Vanhoof, Peter De Bruyn, Walter Aerts, and Jan Verelst

On the Evolvable and Traceable Design of (Under)graduate Education
Programs . 86

Gilles Oorts, Herwig Mannaert, Peter De Bruyn, and Ilke Franquet

Modelling, Patterns and Viability

Perceptual Discriminability in Conceptual Modeling 103
Jeannette Stark

From the Essence of an Enterprise Towards Enterprise Ontology Patterns . . . 118
Tanja Poletaeva, Habib Abdulrab, and Eduard Babkin

Extended Viable System Model . 132
Alexey Sergeev and José Tribolet

http://dx.doi.org/10.1007/978-3-319-39567-8_1
http://dx.doi.org/10.1007/978-3-319-39567-8_2
http://dx.doi.org/10.1007/978-3-319-39567-8_2
http://dx.doi.org/10.1007/978-3-319-39567-8_3
http://dx.doi.org/10.1007/978-3-319-39567-8_4
http://dx.doi.org/10.1007/978-3-319-39567-8_4
http://dx.doi.org/10.1007/978-3-319-39567-8_5
http://dx.doi.org/10.1007/978-3-319-39567-8_5
http://dx.doi.org/10.1007/978-3-319-39567-8_6
http://dx.doi.org/10.1007/978-3-319-39567-8_6
http://dx.doi.org/10.1007/978-3-319-39567-8_7
http://dx.doi.org/10.1007/978-3-319-39567-8_8
http://dx.doi.org/10.1007/978-3-319-39567-8_9

Foundations of Enterprise Engineering

Towards the Ontological Foundations for the Software Executable DEMO
Action and Fact Models . 151

Marek Skotnica, Steven J.H. van Kervel, and Robert Pergl

Cross Channel Communication Design Critical Literature Review 166
M.A.T. Mulder

Things, References, Connectors, Types, Variables, Relations
and Attributes – A Contribution to the FI and MU Theories 181

Duarte Gouveia and David Aveiro

Author Index . 197

X Contents

http://dx.doi.org/10.1007/978-3-319-39567-8_10
http://dx.doi.org/10.1007/978-3-319-39567-8_10
http://dx.doi.org/10.1007/978-3-319-39567-8_11
http://dx.doi.org/10.1007/978-3-319-39567-8_12
http://dx.doi.org/10.1007/978-3-319-39567-8_12

Organization Implementation

Formalizing Organization Implementation

Marien R. Krouwel1,2(B), Martin Op ’t Land1,3, and Tyron Offerman1,4

1 Capgemini Netherlands, P.O. Box 2575, 3500 GN Utrecht, The Netherlands
{Marien.Krouwel,Martin.OptLand,Tyron.Offerman}@capgemini.com

2 Radboud Universiteit, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands
3 Antwerp Management School, Sint-Jacobsmarkt 9-13, 2000 Antwerp, Belgium
4 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract. Our research program aims at finding building blocks that
are able to deal quickly with the constant change that organizations
face. In order to do so, a deeper understanding of possible organization
implementation variants is necessary, as well as the implications on the
operation and IT support of organizations. In earlier research, we have
composed a list of Organization Implementation Variables to informedly
decide upon organization implementation, enabling traceability in gov-
erning enterprise and IT transformations. This list has been validated
and extended by four practical case studies and has been formalized
afterwards and validated by prototyping. In this paper the resulting
framework is presented which (a) is broader and more detailed than
before, (b) has a sound theoretical basis, and (c) contains precise and
validated definitions of the variables itself. This paper shows that the
framework is not only suitable for organization modeling, but also has
possibilities for designing software in which implementation choices can
be made explicit and variable. This paper also provides insights in the
implications of implementation choices on the operation of an organiza-
tion.

Keywords: DEMO · Enterprise engineering · Organization implemen-
tation · Agile

1 Introduction

As strategic and operating conditions become increasingly turbulent due to fac-
tors such as hyper-competition, increasing demands from customers, regulatory
changes, and technological advancements, the ability to change, often referred
to as ‘agility’ [1], becomes an important determinant of firm success [2]. Though
change occurs in organizational essence, such as products and services delivered,
most of the time change deals with different implementations [3]. Our research
program [4] aims at finding building blocks that are able to deal quickly with
the constant change that organizations face. In order to do so, a deeper under-
standing of possible organization implementation variants is necessary, as well
as the implications for the operation and IT support of organizations.

c© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-39567-8 1

4 M.R. Krouwel et al.

For the process level, several approaches have been proposed for describing
different process variants, e.g., [5,6]. Variants of the same process describe differ-
ent implementations of the same process, differing by e.g. product type or loca-
tion. These variants may either coexist or exist sequentially. These dimensions
for variance can be seen as types of change, each being variable in the implemen-
tation of the processes. Others have classified different types and dimensions of
process change, e.g. [7,8]. However, these approaches are restricted to the process
area, whereas change does not only occur on the process level but also in the
organizational structure and the (supporting) means that are available. Also,
the implications for the operation and IT support are not described.

For variability in IT, the Normalized Systems theory [9] describes a list of
anticipated types of changes and proposes a set of building blocks that can
deal with these types of change in order to avoid combinatorial effects in which
change becomes harder and harder over time. This list, however, is on a very
technical level and not in terms of typical organizational changes. Instead, we
are looking for a list of anticipated types of change on the organizational level,
including a way in which organizational changes are transparently translated into
IT changes, enabling traceability in governing enterprise and IT transformations.

Other researchers have tried to bridge the gap between organization model
and IT, while leaving room for different implementation variants, making the
implementation variable in some dimensions, e.g. [10–12]. However, only de Jong
[12] provides a framework to systematically detail some of the design decisions
that are needed to specify an Enterprise Information System. Also, none of
the authors make explicit how their organizational models are used to design
software; traceablity or completeness of design choices is not possible.

As an alternative, in 2013, Op’t Land and Krouwel composed a list of Orga-
nization Implementation Variables (OIVs) [13], based on literature and struc-
tured according to the Enterprise Engineering Framework (EEF) [14]. The EEF
has the same theoretical basis as the Design and Engineering Methodology for
Organizations (DEMO) [15] which has shown to offer a quick way for finding
the essence of an organization as starting point for identifying local differences
[16–18]. Since then, this list of OIVs has been validated and extended by four
practical case studies [19–22]. It was noticed by many reviewers that the goals
and concepts of this framework were not clear. Also it was concluded that the
implications towards operation and IT support should be made more clear in
order to avoid implicit design choices.

Within the goals of the research program, in this paper the OIV framework
is presented: its goals, requirements, concepts, as well as some example contents
and its implications on the operation and IT support of organizations. With
this formalized framework, it becomes easier to validate whether the framework
really meets its goals. One of these goals is validated by prototyping.

The remainder of this paper is structured as follows. In Sect. 2, we will outline
some terms used in this paper. Next, in Sect. 3 the research approach is presented
and in Sect. 4 the resulting framework is presented, including some examples.
Section 5 provides the conclusions, including the implications on operation and
IT, and provides directions for future research.

Formalizing Organization Implementation 5

2 Way of Thinking

Weinberg and Dietz discern two distinct perspectives on any system: function
and construction [23,24]. The functional perspective, or black-box model clar-
ifies the behavior of the system in terms of (functional) relationships between
input and output of the system. The constructional perspective, or white-box
model clarifies the internal construction and operation of the system in terms of
collaboration between its elements to deliver products to its environment. The
highest level white-box model of a system, completely independent of the way
in which it is realized and implemented, is called its ontology. The lowest level,
most detailed white-box model of a system is called its implementation model.
By implementation is understood the assignment of technological means to the
elements in the ontological and implementation model, so that the system can
be put into operation. By technology we understand the means by which a sys-
tem is implemented. For organizations, a wide range of technologies is available,
including human beings and organizational entities, ICT artifacts (e.g., phone,
email, computer programs) and mechanical means.

DEMO is a methodology for the design, engineering, and implementation
of organizations [15]. As the highest level white-box model of an enterprise – a
goal-oriented cooperative – DEMO defines the enterprise ontology : the essence
of an organization, fully independent from the way in which it is realized and
implemented. The organization of an enterprise is a heterogeneous system, con-
stituted as the layered integration of three aspect systems, namely the Business
(B) system, the Informational (I) system and the Documental (D) system [15,
p. 115]. The production of these systems concern (B) original acts (material and
immaterial), such as deciding, judging and creating, (I) informational acts, such
as remembering, recalling and computing and (D) documental acts, such as stor-
ing, retrieving, transmitting and copying. The ontology of any organization (B, I
or D) can be expressed in a DEMO model which consists of four aspect models:

Construction Model (CM) represents the composition, environment and struc-
ture of the organization and consists of transaction kinds, associated (initi-
ating and executing) actor roles, and information banks including the links
between these banks and actor roles;

Process Model (PM) details each transaction kind according to the transaction
axiom and makes explicit the waiting links between coordination acts;

Action Model(AM) specifies for every agendum kind the action rules to be
applied by the actor roles;

Fact Model (FM) contains entity types with their property types, product kinds
and their relationships (fact types).

DEMO is grounded in a set of theories, among which are the FI and MU
theory. FI [25] is a philosophical theory about knowledge in general and clar-
ifies the notion of (factual) knowledge and information. It also explains how
factual knowledge is created from perceptions of concrete things, directed by
(fact) types, which operate as conceptual sieves. MU [26] is a theory of mod-
els and modeling in general, and of conceptual modeling in particular. It also

6 M.R. Krouwel et al.

presents General Ontology Specification Language (GOSL), a universal language
for specifying conceptual complexes, conceptual schemas and meta schemas. As
we are building a framework to model facts about the implementation of an
organization, both theories provide a sound basis to build the framework on.

3 Way of Working

The goal of this research is to design a framework for the understanding and
modeling of organization implementation, based on sound theories and vali-
dated in practice. As the result is an artifact that needs to be designed, in this
research we adopt the design science methodology [27] as main methodology.
Where behavioral science seeks to develop and justify theories that explain or
predict phenomena related to the identified business need, design science seeks
to construct and evaluate artifacts designed to meet the identified business need
[28]. However, as Hevner states, these methodologies cannot be separated and
should be used complementary [29]. Because design is inherently an iterative and
incremental activity, Hevner suggests three cycles for Design Science Research
[30] which can be applied in as many iterations as needed (Fig. 1):

– the relevance cycle provides the requirements for the research and determines
whether the resulting artifact improves the environment;

– the rigor cycle provides past knowledge to the project and ensures new con-
tributions are added to the knowledge base;

– the design cycle is where the artifact is constructed and evaluated.

In this paper, the result of several iterations is presented. Hevner suggests
a checklist for design science research [31]. We will use that checklist (Table 1)
to assess progress on this design research project. In Sect. 4 we will discuss the
answers to these questions.

Fig. 1. Design Science Research Cycles [30], including references to the questions of
the checklist (Table 1)

Formalizing Organization Implementation 7

Table 1. Checklist for design science research [31] and section in which the question
will be addressed

1 What is the research question (design requirements)? Subsect. 4.1

2 What is the artifact? How is the artifact represented? Subsect. 4.3

3 What design processes (search heuristics) will be used to build the
artifact?

Subsect. 4.4

4 How are the artifact and the design processes grounded by the
knowledge base? What, if any, theories support the artifact
design and the design process?

Subsect. 4.2

5 What evaluations are performed during the internal design cycles?
What design improvements are identified during each design
cycle?

Subsect. 4.4

6 How is the artifact introduced into the application environment and
how is it field tested? What metrics are used to demonstrate
artifact utility and improvement over previous artifacts?

Subsect. 4.4

7 What new knowledge is added to the knowledge base and in what
form (e.g., peer-reviewed literature, meta-artifacts, new theory,
new method)?

Subsect. 4.5

8 Has the research question been satisfactorily addressed? Subsect. 4.5

4 Result

In this section the result of several iterations of the OIV framework development
is presented, by answering the questions of Hevners checklist (Table 1).

4.1 Goals and Requirements

Answering question 1, the goal of the framework is to gain insight in the imple-
mentation of an organization (either B, I or D) in order to

(a) decide informedly upon organizational changes;
(b) enable traceability and completeness in governing enterprise and IT trans-

formations;
(c) assess to what extent IT platforms (can) support organizational implemen-

tation variability;
(d) design IT that inherently supports typical organizational changes; and, ulti-

mately
(e) design organizations (or, better, implementations) that support typical orga-

nizational changes.

Moreover, the ontology plus implementation choices should capture all design
decisions that need to be taken to come to a complete implementation model
that can be put into operation. Note that the framework only concerns the ‘hard’
aspects that really can be chosen and changed on the short term and not the
more ‘soft’ aspects that cannot really be changed or are very hard to change,
like culture, beliefs, (shared) values or (management) style [32,33].

8 M.R. Krouwel et al.

4.2 Use of Existing Theories

Answering question 4, the framework is based on existing theories in the field of
Enterprise Engineering as outlined in Sect. 2. More specifically, it is built on top
of the Enterprise Engineering Framework [14], fed by earlier literature research
[13], and structured using DEMO [15] and the FI [25] and MU [26] theories.
For the construction and evaluation, design science theories [27,28] are used, as
explained in Sect. 3. The resulting framework and its concepts are presented in
the next sections.

4.3 Concepts

In this section, the concepts of the framework are explained (question 2).

Organization Implementation. In the framework, by organization implemen-
tation is meant all design decisions that are taken to create the implementation
model, the lowest level and most detailed white-box model, of an organization,
including the assignment of technological means to the elements in the imple-
mentation model, so that the system can be put into operation.

Variable. In mathematics, a variable is a placeholder of some element in some
set. In general, a variable is any entity that can take on different values.

Organization Implementation Variable. Following the mathematical defin-
ition of a variable, we will define an Organization Implementation Variable (OIV)
as a placeholder for an element in the set of possible organization implementation
design choices in some category. Thus, an Organization Implementation Variable
describes the design freedom or restrictions in some organization implementation
design category. For example, the functionary types, organizational units, work
locations and authorizations, need to be decided upon before an organization
can become operational. Moreover, they may be subject to change, and thus are
(a) variable in the implementation of an organization. Note that an OIV is not a
target variable or KPI, nor does it contain the principles that guide the decisions
or the rationale behind it – an OIV belongs to the construction of an organiza-
tion, while target variables and KPI’s belong to the function of an organization;
the principles belong to the context or environment in EEF terms.

Two kinds of OIVs can be distinguished: elementary and cross reference
OIVs. An elementary OIV is an OIV that is not dependent on the existence
of some other OIV or element in the ontology, e.g. functionary type. On the
other hand, a cross reference OIV is an OIV of which the existence depends on
the existence of some other OIV or element in the ontology, e.g. authorization.
Therefore, a cross reference variable can be compared to a weak entity type in
ER modeling [34]. More example OIVs can be found in Subsect. 4.6.

Formalizing Organization Implementation 9

OIV Values. Note that there are two ways to express the value(s) of any
variable:

1. by expressing the specific value or set of values by enumerating the/each
value, and

2. by setting constraints, implicitly defining the value(s) of the variable.

For elementary OIVs, the first way is recommended as its value can often easily
be expressed in an amount or entity. For cross reference OIVs, declaring con-
straints makes the resulting set more flexible, allowing for future values without
having to enumerate every value explicitly.

The assignment of a value to a OIV can be modeled as a set of transaction
kinds; the process of implementation design itself can be modeled in a DEMO
Construction Model. The choices itself can be considered facts which are the
results of transactions. They can be modeled in a DEMO Fact Model. Note that
a cross reference OIV can be discerned in the FM by the presence of a mandatory
role constraint [35, p. 315], denoted by a black dot (see legend in Fig. 2).

Layers. The EEF contains the layers Parties and People and ICT and other
means while Dietz and Hoogervorst propose three categories for the implemen-
tation: implementation, installation, and operation [36, p. 43]1. However, the
meaning of the layers and categories was not fully spelled out, and they do not
fully encompass the sourcing process as well as the assignment and scheduling
of (human) resources. Therefore we propose the following layers or categories in
the OIV framework.

Implementation contains the (non-ontological) structure of the organization such
as functionary types, organizational units, work locations as well as the rela-
tions between them and with the ontological elements (mainly agendum type);

Means contains all technological means, including human beings and ICT arti-
facts – also known as silicon and carbon servers [37] – as introduced in Sect. 2,
needed to operate;

Installation contains the (temporary or more durable) assignment of specific
means to elements in the implementation;

Operation contains the assignment of specific agenda to specific means.

4.4 Construction and Evaluation Process

Answering question 3, in the design process, every OIV is defined as an entity
type in a DEMO Fact Model, including definitions and examples from the EU-
Rent case [38]. The example instances are used for validation by population
[39,40]2. For every entity type, its producing transaction kind is identified and
1 Note that it might be confusing that implementation itself is a category within the

broader meaning of implementation. For the rest of this section, implementation is
meant in the narrow definition.

2 The term ‘population’ is used instead of ‘instantation’ as instantiation may imply
that one instance is enough, where population implies multiple instances should be
used for validation.

10 M.R. Krouwel et al.

modeled in a DEMO Construction Model. In order to enable iterations in the
construction and evaluation process (questions 3 and 5), the implementations
of four large European public organizations and one academic case have been
modeled (for details, see Table 2), by assigning values to each of the (applicable)
OIVs. This may also count as field application (question 6).

Table 2. Details of case studies: organization, research question, approach and results

Rijkswaterstaat (RWS) [19]

Question To what extent can OIVs be found in the documentation of RWS?

Approach Analysis of IVS90, the national supporting Information and Monitoring
System of the (main) waterways and the Maritime in the Netherlands

Results Clearer definitions; observation instructions; 1 new OIV: Region

Jeugdzorg Nederland [20]

Question Which of the proposed OIVs can be identified in an enterprise?

Approach Analysis of documentation and interviews regarding the implementation
of Jeugdzorg and their recently built case management system (WIJZ)

Results Clearer definitions; 1 new OIV: Region

European parking law enforcer [21]

Question How to build a simulation model based on a DEMO model and OIVs?

Approach Proposed method is applied to two cases: one fictional and one real

Results Clearer definitions; 2 new OIVs: agenda cluster, X-ref

Dutch municipal subsidy providers [22]

Question To what extent does the Capgemini MultiSubsidy application support the
different implementations of Dutch subsidy providers?

Approach Analysis of documentation and interviews regarding the implementation
of Dutch municipal subsidy providers and the MultiSubsidy application

Results Clearer definitions; no new OIVs

EU-rent [41]

Question How to construct a model to assess the support of OIVs by IT?

Approach Construction of DEMO CM and FM of organization implementation,
validation by population with examples from EU-Rent case

Results Clearer definitions; CM and FM of implementation; no new OIVs

Additionally, a prototype has been built, based on the DEMO Fact Model
(FM) as presented in Subsect. 4.6, in which the implementation, including means,
installation and operation, can be configured on top of the identified transaction
kinds. This helped in defining the OIVs to the level where they can be instantiated.
Also, it helped gain insight in the impact on the operation. The result is a fully
functional prototype in which transactions can be started and agenda are routed to
authorized persons who can deal with the agenda, creating new agenda, while com-
pletely adhering to the organization implementation choices. In this prototype, no

Formalizing Organization Implementation 11

software (programming code) needs to be changed when changing the organiza-
tional implementation.

4.5 Additions to Knowledge Base and Practice

Answering question 7, the framework provides a more detailed insight in what
organization implementation entails than earlier research does. Also, a set of
Organization Implementation Variables is provided, including a method to assign
a value to each OIV. This forms the foundations for a sound theory regarding
organization implementation.

Answering question 8, it can be concluded from the five cases that the frame-
work provides insight in the implementation of an organization. More specifically,
we will elicit to what extent the goals of the framework are met.

(a) decide informedly upon organizational changes: this goal is met as a
direct consequence of a detailed insight in the implementation of an orga-
nization. Although only in the case of the European parking law enforcer
organizational change was proposed, the other cases show that it is possible
to provide insight in the proposed change, as well as its consequences.

(b) enable traceability and completeness in governing enterprise and
IT transformations: this goal is almost met; the detailed insight in the
implementation of an organization enables traceability. Completeness is hard
to claim, but the cases have only brought three new OIVs with respect to
the original set of OIVs [13]. It is expected this set will not grow significantly
from new case studies.

(c) assess to what extent IT platforms (can) support organiza-
tional implementation variability: this goal is met as confirmed by the
Jeugdzorg and Dutch municipal subsidy case. However, more research is
required to come to a complete method for such an IT agility assessment.

(d) design IT that inherently supports typical organizational changes:
this goal is partly met as a first prototype is built. More research in this
area will be needed in order to be able to support all relevant OIVs, which
requires that it is clear for each OIV whether it is possible, relevant and
necessary to support it in IT.

(e) design organizations (or, better, implementations) that support
typical organizational changes: this goal is not yet met as the framework
is not yet used to design implementations without combinatorial effects, i.e.,
such that change does not become harder over time.

4.6 Examples

In this section some example Organization Implementation Variable are outlined
(Table 3), including some definitions and example instances (Tables 4, 5, 6, 7, 8
and 9) as well as a DEMO FM (Fig. 2) of it. This paper does not attempt to be
complete as it is impossible to provide definitions for all 25 variables within the
restriction of 15 pages.

12 M.R. Krouwel et al.

Table 3. Example organization implementation variables

Category Example OIVs

Elementary Cross reference

Implementation Competence Competence requirement

Functionary type Logical unit of work

Organizational unit Task competence

Work location Authorization

Addressee Event location restriction

Juristic person Order of working

Means Human resource Competence validation

ICT artifacts

Mechanical means

Installation Installation

Operation Incidental delegation Addressee specification

Fig. 2. (part of) DEMO FM for implementation design, in ORM notation [40]

Table 4. Functionary type

Definition A functionary type is a call sign intended for the assignment of
agendum types

Example(s) 1. Desk officer

2. Distributor

Formalizing Organization Implementation 13

Table 5. Organizational unit

Definition An organizational unit is a named element or segment of an
organization, possibly with an hierarchical relation to another
organizational unit.

Example(s) 1. Sales

2. Logistics

3. Distribution, placed under Logistics

4. Transportation, placed under Logistics

Table 6. Logical unit of work (LUW)

Definition A logical unit of work is then union of agendum types of which
instances are usually dealt with by a single person as being an
inseparable unit of work. Note that it is often separable, therefore
the term logical is used.

Example(s) 1. T1/pm, T1/ex and T1/st are combined in LWU ‘T1 dealing’

Table 7. Authorization

Definition An authorization is the assignment of a functionary type to a (set
of) LWU(s), a(n) (set of) organizational unit(s) and a (set of)
work location(s), with some responsibility (e.g. cf. RACI [42]).
Note that authorization includes structural delegation, i.e., it
might be possible that one functionary type is Responsible for the
work, while another functionary type is Accountable.

Example(s) 1. Desk officer is assigned to deal with T01/rq (Accountable and
Responsible), in the sales unit at ABC Street 123, Leiden

2. Distributor is assigned to deal with T07/rq (Accountable and
Responsible), in the distribution unit at Air Lane 23, Amsterdam

Table 8. Human resource

Definition A human resource is a natural person who works under a contract of
employ or hire agreement. Note that this includes volunteers.

Example(s) 1. Jane is employed at RAC.

2. Chiara is employed at RAC.

3. Anthony is hired externally at RAC

14 M.R. Krouwel et al.

Table 9. Installation

Definition An installation is the assignment of a mean, either a human resource
or a technological or mechanical mean, to a (set of) functionary
type(s), a(n) (set of) organizational unit(s) and a (set of) work
locations.

Example(s) 1. Jane is assigned to desk officer in the sales department at
ABCstreet 123, Leiden, Netherlands.

2. Anthony is assigned distributor in the distribution department at
Air lane 23, Amsterdam, Netherlands

Operation. For the operation layer, additional concepts were identified, that
could not be defined as an OIV. For instance, an organization might define
info@company.com as its general email address. Any agendum that is received
on this email address needs to be routed to the right person. Often this is done
by some secretary or automated system, for which the actor role dispatcher can
be identified. This actor role needs knowledge about the possible addressees and
the rules for routing general requests to a person in the organization who can
deal with such a request. Note that the same reasoning holds for phone numbers
and other communication channels, as well as for other agenda types that come
from outside the organizations. In conclusion, additional actor roles, necessary
for the implementation, installation and operation of an organization, can be
identified and should be modeled in a (generic) DEMO Construction Model.

5 Conclusions and Future Research

The goal of this paper was to present a framework for the understanding and
modeling of possible organization implementation variants, as well as to under-
stand the implications on the operation and IT support of organizations. Using
Hevners checklist, as part of looping through the three cycles of design science,
we have elaborated the process, progress and preliminary results of our research;

1. the framework has as goal to gain insight in the implementation of orga-
nizations, in order to informedly decide upon organization implementation,
enabling traceability in governing enterprise and IT transformations, as well
as to design more agile organizations and IT;

2. the framework is built on top of several existing EE theories, fed by literature
research, while DEMO is used to model the OIVs in a Fact Model, giving the
framework a sound theoretical basis;

3. the framework has been evaluated against and extended by four practical case
studies and one academic case study, resulting in additional OIVs and more
precise definitions;

4. a prototype has been built in which the OIVs can be instantiated and its
effect on the operation and IT support can be studied.

Formalizing Organization Implementation 15

The five case studies show that the framework can indeed be used for organiza-
tion implementation modeling. The prototype shows that it is possible to design
software in which implementation choices can be made explicit, while allowing
for future change. However, reflecting on the goals of the framework:

– The case studies are limited to public organizations. Case studies at commer-
cial organizations should be performed in order to investigate whether they
reveal new OIVs.

– Although the framework already enables assessing whether software (can) sup-
port the OIVs, it is worthwhile to investigate whether a thorough method for
the assessment of IT agility can be designed.

– More research is needed to investigate whether it is possible, relevant and
worthwhile to support all OIVs in software, preferably in a way that does not
create combinatorial effects and consequently allowing future change without
growing efforts.

– Also, more research is needed to investigate whether agile organizations with-
out or with little combinatorial effects can be designed, enabling the agile
enterprise, based on this framework.

The original framework [13] contained a layer called ICT and other means. In
subsequent work, OIVs in this layer did not receive much attention. In fact, they
are now aggregated in just two OIVs in the Means layer. It might be worthwhile
to put more effort in finding detailed design choices in this layer, e.g. by looking
at methods and modeling languages that are more focused on this layer, such as
ArchiMate [43,44].

As shown in Subsect. 4.6, research in the operation layer shows that there
might be some generic actor roles that should be implemented in every orga-
nization. Extending the prototype might be helpful to find all OIVs and other
concepts in the operation layer. Moreover, a generic DEMO Construction Model
could be made of the concepts in that layer, or maybe even for every process
in the organization that is concerned with designing the organizations ontology,
implementation and operation.

The prototype has not yet incorporated revocation patterns [45]. Though
other researchers have put effort in translating the transaction pattern, including
revocations, to software [11,46], additional research is required to investigate
the impact of organization implementation (variables) on revocation, especially
when implemented in software. Additionally, the topic of time outs has to be
addressed, both in organization and ICT.

References

1. Oosterhout, M.P.A.: Business agility and information technology in service orga-
nizations. Ph.D. thesis, Erasmus University Rotterdam, June 2010

2. Overby, E., Bharadwaj, A., Sambamurthy, V.: Enterprise agility and the enabling
role of information technology. Eur. J. Inf. Syst. 15, 120–131 (2006)

16 M.R. Krouwel et al.

3. Dietz, J.L.G., Hoogervorst, J.A.P.: Enterprise ontology and enterprise architecture
- how to let them evolve into effective complementary notions. GEAO J. Enterp.
Architect. 2007, 1 (2007)

4. Krouwel, M.: Towards designing modular structures for reducing non-linear
effects of organizational change: research proposal. http://www.ciaonetwork.org/
uploads/eewc2013/presentations/doctoral consortium/1 krouwel.ppt. Accessed 3
April 2016

5. Lind, M., Goldkuhl, G.: Designing business process variants – using the BAT frame-
work as a pragmatic lens. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS,
vol. 3812, pp. 408–420. Springer, Heidelberg (2006)

6. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the provop approach. J. Softw. Maintenance Evol. Res. Pract. 22(6–7),
519–546 (2010)

7. Regev, G., Soffer, P., Schmidt, R.: Taxonomy of flexibility in business processes. In:
Regev, G., Soffer, P., Schmidt, R. (eds.) BPMDS, CEUR Workshop Proceedings,
vol. 236 (2006). CEUR-WS.org

8. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.:
Towards a taxonomy of process flexibility. In: Bellahsne, Z., Woo, C., Hunt, E.,
Franch, X., Coletta, R. (eds.) CAiSE Forum, CEUR Workshop Proceedings, vol.
344, pp. 81–84 (2008). www.CEUR-WS.org

9. Mannaert, H., Verelst, J.: Normalized Systems: Re-creating Information Technol-
ogy Based on Laws for Software Evolvability. Koppa, Kermt, Belgium (2009)

10. Terlouw, L.: Modularization and specification of service-oriented systems. Ph.D.
thesis, TU Delft (2011)

11. van Kervel, S.: Ontology driven enterprise information systems engineering. Ph.D.
thesis, TU Delft (2012)

12. de Jong, J.: A method for enterprise ontology based design of for enterprise infor-
mation systems. Ph.D. thesis, TU Delft (2013)

13. Op ’t Land, M., Krouwel, M.: Exploring organizational implementation fundamen-
tals. In: Proper, H.A., Aveiro, D., Gaaloul, K. (eds.) EEWC 2013. LNBIP, vol. 146,
pp. 28–42. Springer, Heidelberg (2013)

14. Op ’t Land, M., Proper, H.A.: Impact of principles on enterprise engineering. In:
Österle, H., Schelp, J., Winter, R. (eds.) Proceedings of the 15th European Con-
ference on Information Systems, pp. 1965–1976 (2007)

15. Dietz, J.L.G.: Enterprise Ontology - Theory and methodology. Springer, Heidelberg
(2006)

16. Mulder, J.B.F.: Rapid enterprise design. Ph.D. thesis, TU Delft (2006)
17. Op ’t Land, M., Zwitzer, H., Ensink, P., Lebel, Q.: Towards a fast enterprise

ontology based method for post merger integration. In: Proceedings of the 2009
ACM symposium on Applied Computing (SAC-ACM2009), pp. 245–252. ACM
(2009)

18. Krouwel, M.R., Op ’t Land, M.: Using enterprise ontology as a basis for require-
ments for cross-organizationally usable applications. In: Figueiredo, A.D., Ramos,
I., Trauth, E. (eds.) Proceedings of the 7th Mediterranean Conference on Informa-
tion Systems 2012 (MCIS2012), MCIS Proceedings, University of Minho, Portugal,
AIS Electronic Library (AISeL) Paper 23(2012)

19. Molly, S.: Exploring organizational implementation fundamentals in a real enter-
prise. Master’s thesis, Antwerp Management School (2014)

20. van Bockhooven, S., Op ’t Land, M.: Organization implementation fundamentals:
a case study validation in the youthcare sector. In: Complementary Proceedings of
the Workshops TEE, CoBI, and XOC-BPM at IEEE-COBI 2015 (2015)

http://www.ciaonetwork.org/uploads/eewc2013/presentations/doctoral_consortium/1_krouwel.ppt
http://www.ciaonetwork.org/uploads/eewc2013/presentations/doctoral_consortium/1_krouwel.ppt
http://ceur-ws.org/
www.CEUR-WS.org

Formalizing Organization Implementation 17

21. de Laat, L., Op ’t Land, M., Krouwel, M.: Supporting goal-oriented organiza-
tional implementation - combining DEMO and process simulation in a practice-
tested method. In: Aveiro, D.G.D. (ed.) EEWC 2016. LNBIP, vol. 252, pp. 19–33.
Springer, Heidelberg (2016)

22. Krouwel, M.R., Huysmans, P.: Observing organization implementation variables
in practice: a case study on dutch municipal subsidy agents. Forthcoming

23. Weinberg, G.M.: An Introduction to General Systems Thinking. Wiley-
Interscience, New York (1975)

24. Dietz, J.L.G.: Enterprise engineering - the manifesto. http://www.ciaonetwork.
org/publications/EEManifesto.pdf. Accessed 3 April 2016

25. Dietz, J.L.: The FI theory - understanding information and factual knowledge.
Technical report, Czech Technical University in Prague, Delft University of Tech-
nology version 2.3 (2015)

26. Dietz, J.L.: The MU theory - understanding models and modelling. Technical
report, Czech Technical University in Prague, Delft University of Technology,
Antwerp Management School version 1.2 (2015)

27. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
28. March, S.T., Smith, G.F.: Design and natural science research on information

technology. Decis. Support Syst. 15(4), 251–266 (1995)
29. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Q. 28(1), 75–105 (2004)
30. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst.

19(2), 87–92 (2007)
31. Hevner, A., Chatterjee, S.: Design Research in Information Systems: Theory and

Practice, 1st edn. Springer Publishing Company, Heidelberg (2010)
32. Hayes, J.: The Theory and Practice of Change Management, 4th edn. Palgrave

Macmillan, Basingstoke (2014)
33. Schein, E.H.: Organization Culture and Leadership, 3rd edn. Wiley, Hoboken

(2006)
34. Chen, P.P.: The Entity Relationship Approach to Logical Database Design. Q.E.D.

Information Sciences, Wellesley (1977)
35. Halpin, T.: Information Modeling and Relational Databases, 1st edn. Academic

Press, Cambridge (2001)
36. Dietz, J.L.G., Hoogervorst, J.A.: EE theories Overview. Technical report, Czech

Technical University in Prague (2015)
37. Tribolet, J.: An engineering approach to natural enterprise dynamics: From top-

down purposeful systemic steering to bottom-up adaptive guidance control. In:
2014 International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE), p. 1, April 2014

38. Object Management Group: Business Motivation Model (BMM) Specification,
V1.1. OMG Available Specification OMG Document Number: formal/2010-
05-01, Object Management Group http://www.omg.org/spec/BMM/1.1/PDF/.
Accessed 3 April 2016

39. Dietz, J.L., Halpin, T.: Using DEMO and ORM in concert - a case study. In: Siau,
K. (ed.) Advanced topics in database research, vol. 3, pp. 218–236. Idea Group
Publishing, Hershey (2004)

40. Halpin, T.: Object-role modeling version 2. In: Liu, L., Özsu, M.T. (eds.) Encyclo-
pedia of Database Systems, pp. 1941–1946. Springer, Heidelberg (2009)

41. Offerman, T.: Improving IT Supported organizational change; formalizing organi-
zational implementation fundamentals. Master’s thesis, Universiteit Leiden (2014)

http://www.ciaonetwork.org/publications/EEManifesto.pdf
http://www.ciaonetwork.org/publications/EEManifesto.pdf
http://www.omg.org/spec/BMM/1.1/PDF/

18 M.R. Krouwel et al.

42. Mike, J.M., Keller, P.J.: Business Process Mapping: Improving Customer Satisfac-
tion. Wiley, New York (2009)

43. Open Group: Archimate 2.1 Specification. Van Haren Publishing, Zaltbommel
(2013)

44. Ettema, R., Dietz, J.L.G.: ArchiMate and DEMO – mates to date? In: Albani, A.,
Barjis, J., Dietz, J.L.G. (eds.) CIAO! 2009. LNBIP, vol. 34, pp. 172–186. Springer,
Heidelberg (2009)

45. Dietz, J.L.: The DELTA theory - understanding systems ontology. Technical report,
Czech Technical University in Prague, Delft University of Technology, Antwerp
Management School version 3.0 (2015)

46. Gouveia, D., Aveiro, D.: Two Protocols for DEMO Engines: PSI or Tell&Agree.
CIAO DC 2015 (2015)

Supporting Goal-Oriented Organizational
Implementation - Combining DEMO

and Process Simulation in a Practice-Tested
Method

Lotte de Laat1(B), Martin Op ’t Land2,3, and Marien R. Krouwel2,4

1 ZorgDomein Netherlands, Straatweg 68, 3621 BR Breukelen, The Netherlands
mail@lottedelaat.com

2 Capgemini Netherlands, P.O. Box 2575, 3500 GN Utrecht, The Netherlands
{Martin.OptLand,Marien.Krouwel}@capgemini.com

3 Antwerp Management School, Sint-Jacobsmarkt 9-13, 2000 Antwerp, Belgium
4 Radboud Universiteit, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands

Abstract. The increasing need for agility on one hand, and for timely
and well-founded decisions on organization implementation on the
other hand makes goal-oriented process simulation increasingly popular.
However, a computer simulation may be of little value without a con-
ceptual model which precedes the simulation. The Design and Engineer-
ing Methodology for Organizations (DEMO) assists in understanding
and (re)designing business processes and their implementation. How-
ever, current simulation methods based on DEMO lack the notion of
goal-orientation on desirable KPIs, such as service windows and reaction
time. We developed a goal-oriented combined method that addresses the
aforementioned issues, and tested it using both an educational and real-
life case. This method helped deciding on the organization implemen-
tation, including e.g. number of FTEs and order of working, making
modeling choices explicit. Combining DEMO and process simulation
allows the modeler to make a well-defined balance between (a) project
time and money constraints and (b) completeness of the simulation
model.

Keywords: Computer simulation · DEMO · Organizational implemen-
tation · Goal-oriented simulation method · Enterprise engineering

1 Introduction

Enterprise process simulation has received increasing interest in the last years,
because it offers a safe and controlled way to compare alternative enterprise
implementations, and their expected outcomes [1]. However, a computer sim-
ulation may be of little value without a conceptual model that precedes the
simulation [2]. Because of its claimed stability over time and its independence
of organizational implementation, DEMO’s ontological models have been used
c© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 19–33, 2016.
DOI: 10.1007/978-3-319-39567-8 2

20 L. de Laat et al.

for such a conceptual modeling of business processes [3]. However, numerical
evaluation of a system is not possible when solely using DEMO models. As a
consequence, DEMO modeling and computer process simulation are complemen-
tary. Therefore, it would be interesting to explore whether value can be found
from a method that combines the benefits of DEMO and process simulation.

Previous research has shown that it is possible to use a combination of DEMO
and simulation [2,4,5]. However, the herein proposed methods result in a process
simulation of a DEMO model instead of a simulation model of process implemen-
tation alternatives. Also, to implement the enterprise ontology of a domain, many
implementation choices have to be made, instantiating Organization Implemen-
tation Variables (OIVs) [6] such as delegation, order of working, and splitting or
combining of roles. Current literature on DEMO and simulation does not make
these choices explicit and even restricts them heavily by leaving these choices
implicit. Therefore, the resulting simulation lacks significant value for supporting
decision making on a broad range of implementation choices.

In this paper we propose and test the first goal-oriented method to come to a
simulation process model based on a DEMO model that can support decision mak-
ing in practice. We classify the method as goal-oriented, since the simulation model
that is obtained by using the method differs per simulation question and project
goal that is defined. The method therefore starts to clearly define the project goal
or simulation question.Next, theDEMOmodels are built (or reused)with the same
level of detail for internal and external actors. Then the method selects Organiza-
tional Implementation Variables (OIVs) [6], to define the degrees of freedom that
are relevant for the goal at hand, and sets its range of values of interest. Finally the
simulation is programmed such that, using collected data, it can answer the sim-
ulation question in terms of the selected OIVs. This method is applied on both an
educational (simple pizzeria) and real-life (parking business for a large city) case.

Our method offers a way to simulate organization implementation alterna-
tives for the same DEMO model and assess their expected outcomes. The result-
ing simulation model provides practically usable numerical information that
supports decision making on feasible or desirable KPIs, such as service windows
and reaction time, or other relevant measures such as personal or material costs.
This makes the method goal-oriented, offering answers to organizational design
questions. The outcomes can then be used for making organizational implemen-
tation decisions. Using organizational implementation variables, the modeler can
balance between degrees of freedom expressed in OIVs, completeness of the sim-
ulation, and modeling and computational time and effort. This is a way to cope
with project time and money constraints and to obtain a reusable basis for goal-
oriented process simulation. In addition, this method gives the opportunity to
control the Return on Modeling Effort (ROME).

The remainder of this paper is structured as follows. In Sect. 2 the problem
statement of this research is given. In addition, the way of thinking and way of
working is explained. In Sect. 3, the proposed method developed in this research
is applied to the real-life Parking case. The results hereof can be found in Sect. 4.
Lastly, the conclusions of this research can be found in Sect. 5.

Supporting Goal-Oriented Organizational Implementation 21

2 Research Design

2.1 Problem Statement

Our research aims at investigating how to make well underpinned decisions on
enterprise implementation. We adopt the definition that an enterprise is a goal-
oriented co-operative [7]. In order to let an enterprise operate, it should be
implemented with people and (a/o ICT-) means. The implementation of an
organization is the assignment of people and (technological) means such that the
system can be put to operation. Lastly, a good decision is making choices such
that a set of goals is achieved. Therefore, a good organization implementation
decision is defined as the assignment of people and means in the organization
such that organization goals are achieved.

DEMO’s ontology model can help support good implementation decision
making, since it is a stable basis for an implementation model [8]. However,
there are many implementation alternatives that correspond to the same DEMO
model. It can be difficult to make good implementation decisions without a
conceptual model behind it [4], since goals, means, and technology can change
quickly over time. The Design and Engineering Methodology of Organizations
(DEMO) [3] clarifies the essence or ontology of an enterprise. DEMO theory
considers the essence of an enterprise to be the network of actors entering into
and complying with commitments regarding the products or services that they
bring about in cooperation, independent of the way this is organized with people
and (other) means [3]. A DEMO model fully abstracts from the way objectives
are realized or implemented. DEMO clarifies this on one hand by a consistent set
of four ontological aspect models - hereafter called DEMO models - and on the
other hand by concepts (a) for the relationship between essence and implemen-
tation with people and means and (b) for the relationship between the business
organization (B-organization) and how this is realized in the Information orga-
nization (I-organization) and the Documental organization (D-Organization).
Since DEMO models are implementation independent, the models stay true and
stable over time, although technology, culture, and even processes may change
[3]. Therefore, the DEMO models of an organization can be used as a stable
foundation for considering implementation alternatives.

Previously defined transformation methods from DEMO’s ontology model
to implementation model have only been partly satisfactory until now. Sev-
eral researchers have tried to transform a DEMO model into an implementa-
tion model or simulation model [1,2,4,5,9,10]. However, whether the proposed
methods give desirable results for a broad range of simulation questions (such
as different groupings of roles, or order of working) has not been researched
yet. In addition, the goal of those methods is not the same as in our proposed
method. Barjis [1,2] uses (discrete event) simulation, but only to visualize the
DEMO models - clarifying the state of each transaction, and when a certain actor
is ready to deal with an agendum. A main improvement was made by adding
important operational elements like distributions and queues [5] to the basic
model. However, by adding those elements on predefined places in the model,

22 L. de Laat et al.

there is no guarantee that the relevant “good implementation decision making”
can be supported.

Computer simulation is increasingly popular due to increasing computer
power. However, in general computer simulation theory the problem of implicitly
making organizational decisions is not discussed. A possible solution is to use
a list of Organizational Implementation Variables (OIVs) [6]. One of the main
arguments to introduce OIVs was to professionalize the work field of the business
analyst [6]. In that list, the possible types of implementation choices that can be
made in an organization are defined, making it possible to make implementation
choices explicit and structured.

We want to develop a method that supports good implementation decision
making based on a conceptual model. Our idea is that the DEMO model of an
(sub)organization and the list of OIVs can be used as a stable framework to
support the model building process of a goal-oriented simulation model of the
organization. The developed simulation model should be (a) (partly) reusable,
(b) systematically constructed, and (c) supporting explicit decision making on
implementation choices. In addition, the developed method (a) takes the sim-
ulation question of interest into account, and (b) has an attractive Return On
Modeling Effort (ROME).

2.2 Proposed Way of Thinking

As DEMO models have proven to be a stable framework independent of imple-
mentation decisions, DEMO is used as a starting point of our method. The
following two axioms from the main underlying theory of DEMO, the Ψ -theory,
are relevant for our method:

– Operation Axiom: People in an organization (subjects) perform two kinds of
acts: Production acts (P-acts) and Coordination acts (C-acts). To focus on the
acts that the subjects perform we abstract from the subjects and concentrate
on the different actor roles they have in the enterprise. An actor is a subject
fulfilling an actor role. Performing P-acts contributes to the purpose or the
mission of the enterprise. By performing C-acts the actor enters into and
complies with commitments about P-acts.

– Transaction Axiom: C-acts and P-acts occur in standard patterns, called
transactions. These patterns are always started by an actor role that is referred
to as initiator and executed by the actor role referred to as the executor.
The basic transaction pattern for one transaction consists of five acts in the
following order: request, promise, execute, state, and accept. First the initiator
does the request (C-act) for production of a P-fact, followed by a promise
of that P-fact by the executor. In the execution step (P-act) the executor
produces the P-fact. The P-fact is presented to the initiator by the C-act state,
and finally, the P-fact is accepted by the initiator. Next to these successful
C-acts, seven other types of C-acts exists. Four if there is a problem with the
transaction (quit, decline, stop, reject), and three that are involved with the
revocation pattern of a transaction (revoke, refuse, allow). Finally, in practice
the C-acts may be explicitly or implicitly performed.

Supporting Goal-Oriented Organizational Implementation 23

A DEMO model of the essential level of the organization consists of four aspect
models:

– Construction Model (CM): represents the composition, environment and
structure of the organization. The model consists of transaction types, actor
roles and coordination and production bases that are connected via initiator,
executor, and information links. An example of a DEMO Organizational Con-
striction Diagram is shown in Fig. 1.

– Process Model (PM): details each transaction type according to the trans-
action axiom. In addition to the causal links as defined in the Construction
Model, waiting relationships between coordination acts are represented.

– Action Model (AM): translates the Process Model into business rules that
are guidelines for actors. For every agendum type, there exists at least one
action rule. Additional essential rules that are not present in the Process
Model can be modeled here.

– Fact Model (FM): specifies the state space of the aspect models. The way
objects, facts, and results are linked to each other is modeled in the FM.

Methods from existing literature that uses DEMO modeling as starting point for
a simulation study [1,5] were replicated using two case studies, and tested using
a set of simulation questions. The simulation questions were chosen such that
they represent different types or specific areas of research, namely: (1) current
system statistic, (2) what-if question, (3) DEMO unhappy flow, (4) specific goal
to reach, (5) strategy change, and (6) optimization question. A main problem
that should be addressed is that all currently existing methods make implicit
choices about the implementation of an organization. An example is that stock
can be made of semi-finished products before an order of the finished product is
placed. Due to natural order of acts that is modeled in the DEMO model, it is
implicitly assumed that the start of the execution of a P-act always occurs after
the request of the finished product in currently existing methods. Obviously, this
does not have to be true in practice. Therefore it is important to always keep
track of all assumptions that are made, and by doing so making implementation
choices explicit. Therefore, an assumptions document should always be written
during the modeling process [11]. From the assumptions document it should be
clear what the implications of the assumptions are.

Since so many implicit choices were found in simulation examples in litera-
ture, OIVs are used in our method. The list of OIVs aims at providing a complete
list of types of variable elements in an organization, independent of the orga-
nization at hand. By knowing which elements of an enterprise are variable, the
choice of value for those variables can be made explicitly. Three examples of
variables from this list are given [12]:

– Functionary type: a functionary type is a call sign intended for the assign-
ment of agendum types. E.g. functionary type “transporter”, who can react on
the agendum types paid purchase/stated and completed purchase/promised.

– Human Resource: a human resource is a natural person who works under
a contract of employ or hire agreement.

24 L. de Laat et al.

– Competences: relevant competences necessary in the organization to fulfill
P-acts and C-acts.

In addition to the list of variable elements in the organization, cross-references
are defined. Those can be interpreted as implementation rules for the range of
possible implementations. An example of such a cross reference is functionary
type y can only work at work location x. So, although multiple work locations and
functionary types exists, the set of feasible implementations should be defined.

Next to the lack of explicit choices, other problems with the previously devel-
oped methods were found. Based on a simple pizzeria case, a set of simulation
questions were identified to test the existing methods. An important implication
that was found is that the transformation methods are not goal-oriented. A sim-
ulation model of the organization should be goal-oriented such that it can be
defined whether the obtained simulation is satisfactory. A simulation question
should be defined at the beginning of a simulation project and has to reflect the
goal of the project. The simulation question makes the project goal-oriented and
makes every participant of the project heading in the same direction [11]. Exist-
ing methods do not define a simulation question, however the way a simulation is
built highly depends on it. An example is that a company may consider to merge
two departments, or the company wants to know how queuing time changes when
increasing the number of costumers with 20 %. With the first question, two dif-
ferent company structures have to be compared within one environment. The
second question implies only one structure, but a changing environment. For that
reason, the elements of the simulation that can be hard coded or should be kept
variable in the simulation differ. Furthermore, the methods make use of a (semi)
automatic transformation from DEMO model to simulation model. This results
in one possible (sub)implementation. The simple example of a pizzeria shows
that a one-to-one relation between essence and implementation is not true. For
example, a pizzeria has as essence to deliver pizzas. The pizzeria can choose to
prepare pizzas in advance and only finish them at the moment of order entry, or
the pizzeria can start from scratch at the moment of order entry. Therefore, the
relation between ontology and implementation is one-to-many, since there can be
an endless amount of implementation alternatives for one DEMO model. There-
fore, the range of simulation questions that can be answered with one possible
implementation model is limited.

Lastly, the method allows for both continuous and discrete event simulation
and does not restrict the choice of simulation software or programming language.

2.3 Proposed Way of Working

We will now elaborate on a way of working for transforming a DEMO model
into a simulation model, based on the way of thinking outlined above. The main
principles behind our way of working are:

– The method is goal-oriented;
– All implementation choices are made explicitly;

Supporting Goal-Oriented Organizational Implementation 25

– All (modeling) assumptions and choices are documented;
– The modeling time and effort can be controlled.

Based on the above principles, the results found by testing multiple transfor-
mation methods, and the boundary condition that simulation is suitable for this
project (e.g., instead of static analysis or intervening in the operational situation;
see [11]), the following steps are defined for our method:
Step 1: formulate the simulation question and plan the study, taking time and
money constraints into account.
Step 2: make or reuse the four DEMO aspect models of the enterprise. The
boundaries of the relevant part of the enterprise can be adapted to fit the research
question.
Step 3a: define relevant OIVs. Not all OIVs are relevant for the simulation
study. Dependent on the research question and time and money constraints, a
distinction is made between relevant and irrelevant OIVs.
Step 3b: select a range for the relevant OIVs. If an OIV is relevant for the goal
of the study, it should be given a one point solution (not variable in the study),
or a range of possible solutions (variable in the study). The larger the amount
of possible solutions, the harder it is to answer the research question, but the
more precise and realistic the solution will be.
Step 4: make an assumptions document, collect data and define and design
the simulation model(s). In the assumptions document the assumptions made in
step 3 are noted. Furthermore, assumptions made on the DEMO model, OIVs,
attributes and distributions of entities1, attributes and entities of resources, and
any other relevant choice made during the modeling process has to be denoted
in this document. Entities entering the model can be based on the Fact Model.
In addition, assumptions are made about agenda clusters that can be simu-
lated as a whole. The model can now be designed based on the structure of the
DEMO model, implementation choices explicitly made about the OIVs, and the
assumptions document; this designed model should reflect the assumptions that
are made. Finally, note that the internal and external actor roles should be con-
sidered with the same importance in this document, even though the business
rules for those actor roles are not known. This indicates that assumptions about
this business rules have to be made.
Step 5: build the designed simulation model and check validity. Does the
assumptions document match with the built simulation model? Only if valid-
ity is confirmed, the modeler can continue to the next step.
Step 6: run the computer simulation model. Finally, the simulation model can
be programmed using the chosen software/language and run for a range of sim-
ulation parameters.
Step 7: did the simulation answer the simulation question? If not re-iterate from
step 3.
1 Attributes are parameters which accompany an entity as it moves through the model

[13]. An example of an attribute is the amount of pizzas that are part of the order.

26 L. de Laat et al.

3 The Approach in Practice

A real-life case referred to as the Parking case is used to test the proposed Way of
Working. A city in Europe is outsourcing all its parking activities. This includes
managing long and short term parking rights, parking law enforcement, parking
meter control and maintenance, and all information providing activities. In this
paper we focus on the law enforcement activities of the case. Law enforcement
is conducted by scan cars, which are equipped with scanners that can match
license plates with parking licenses. When no match is found between a scanned
car and a valid parking license, a scan scooter is send to the suspicious car.
The scan scooter is equipped with similar scanning tools, which are used by the
driver to check whether there is a case of illegal parking. This step is necessary
because the suspicious vehicle has the right to some time to buy a ticket (5 min),
or could have been (un)loading cargo (for which a vehicle does not require a
parking license). When the scan scooter confirms that no valid license ticket
matches the vehicle, the vehicle will receive a fine. This fine has to be paid to
the city’s tax office.

The potential international contractor has to present a plan to the city how
the parking activities are going to be filled in if they are contracted. The city will
contract the party with the best procurement plan. The city and the contractor
have conflicting incentives. The goal of the city is to maximize the percentage of
fined cars of all cars in violation and maximize the number of bought licenses.
The contractor wishes to fulfill its tasks at the lowest possible costs, since it
receives money for the assignment in total and not per imposed fine. Therefore,
the contracted party receives a payment for carrying out the project, and addi-
tionally a bonus or malus. This bonus-malus calculation is based on 2 KPI’s,
namely (1) the payment- and (2) the checking-rate in the different districts of
the city, as estimated by the city. If both the estimated payment- and checking-
rate is not above a threshold in a district, the contracted party will receive a
malus for that district, and no bonus for any other district. If the estimated
payment rate is above a certain threshold for all districts the contractor receives
a bonus.

The DEMO model of the Parking case was made before the simulation project
started. Part of the Organizational Construction Diagram that is relevant for the
parking law enforcement activities can be found in Fig. 1.

In step 1 of the simulation project the goal of the project is defined. The
goal of the contractor is to get more insight in the parking law enforcement
area of the city in general and the potential profit that can be made. It is
decided that the best way to do this is to simulate the Parking case to find the
optimal implementation strategy for the case. Therefore, the following simulation
question is constructed: what is the most profitable way for the contractor to
conduct the parking-law enforcement activities?

For step 2 of the project the simulation plan of the DEMO model is reused.
The part of the DEMO model that is reused is based on the key actor roles. Note
that, in contrast with DEMO theory, no difference will be made between internal
and external actor roles within the simulation project. The parker and parking

Supporting Goal-Oriented Organizational Implementation 27

Fig. 1. Part of organizational construction diagram of the Parking case.

law enforcers are defined as the most important roles, based on the assignment
and research question. From this two roles, the parker is an external actor role,
since it cannot be controlled within the boundaries of the enterprise. However,
the environment of the enterprise will have to be simulated to obtain any results,
even though the action rules of the enterprise environment are not all known. All
elements of the DEMO model that are connected (via a causal or information
link) with at least one of the key actor roles are defined as relevant. Remark is
that it may be that self-initiating actor roles are relevant for the project, but
may not be connected with a key player. In our case study it happens that one
self-initiating actor role was not present in the DEMO model that was relevant
for the simulation study. A second difficulty to finding this actor role was that
it was an information providing actor role (DEMO informa level), and in our
DEMO model only actor roles that produce original facts are modeled (DEMO
performa level).

Step 3 is the next step to come from the DEMO model to an implementation
model, by defining the relevant OIVs. First the OIVs that are relevant for the
simulation question are set. For example, language support is not relevant for this
simulation question, since the supported languages in the organization do not
influence the parking law enforcement. Now that this OIV is set to be irrelevant,
it is not variable within the organization. An example of a relevant OIV is com-
petence, since certain diplomas are needed to drive a scooter or car. However, to
answer the simulation question we are looking for an answer on how many scan
scooters and cars are optimal. It can be assumed that the competences needed

28 L. de Laat et al.

are not an issue when contracting personal (this is denoted in the assumptions
document). Therefore, this OIV is not set to be variable within the simulation.
An example of an OIV that is variable within the organization is human resource,
since the amount of personnel will vary in the simulation scenarios. However,
although the amount of human resources will be variable, more detailed infor-
mation on human resources is irrelevant for the simulation question in this stage
of the project.

On top of the OIVs one new concept is introduced for simulation purposes:
agenda clusters. Some agenda will be performed in a (undisturbed) sequence. By
introducing this OIV, an important bridge between agenda and implementation
is made. In the simulation, a sequence of agenda can be simulated as a whole
instead of considering C- and P-acts separately as is done in previous methods.
The advantage hereof is that some agenda are performed tacitly in practice,
which may make them irrelevant for the simulation. Since they do not take
(a significant amount of) time to take place they do not influence the results
of the simulation. However, they do take unnecessary computer time to run.
Secondly, the time it takes to finish an agenda may be impossible to measure.
For example, a phone call is made in which an order is requested and promised.
The whole length of the phone call is relevant for the performance of the orga-
nization, but it is unclear how one would measure the exact time of the request
and the promise separately. However, it is fairly easy to measure the time it
takes to handle a phone call, and even some administrative tasks that are cor-
related. Therefore, it is a natural choice to simulate some agenda together, that
makes the data collection process for the simulation much more manageable. The
clustering of agenda for the parking case is shown in Fig. 2. Note that clusters
should be based on the Process Structure Diagram (PSD) and not the Orga-
nizational Construction Diagram (OCD), since a cluster of agenda can handle
agenda related to more than one transaction or part of a transaction. Take for
example the delivery of a pizza. The request of payment is simulated in a clus-
ter together with the delivery of the pizza. However, the promise and payment
itself is simulated within another cluster. The choice for a cluster can be led by
the natural order of things, the possibilities for data collecting, and the time
constraints of the simulation.

The choices made on the clusters, and other OIVs may impact the outcome
of the simulation. Therefore, all assumptions that are made, for example that
language support does not influence the outcome of the simulation, are written
down in an assumptions document, which is step 4 of the project. All the choices
made on relevance, variability, and level of detail lead to one or more simulation
models, and the correlated data collection. The assumptions document contains
all this information, including the DEMO model, and is written in such a way
that there is insight in the simulation choices and the impact of those choices
for anyone concerned. In every step of the simulation process, the assumptions
document is filled and checked for correctness. Based on the information col-
lected in the assumptions document, it may be that relevant information for
the project becomes clear without building the simulation. For the parking case,
basic statistical calculations were performed to calculate an expected chance for

Supporting Goal-Oriented Organizational Implementation 29

Fig. 2. Agenda clusters of the Parking case, drawn over the DEMO PSD.

a malus. The resulting chance was much higher than expected, and this informa-
tion was used to change the plan for the simulation model slightly with respect
to the output that should be delivered.

The assumptions document now contains all information to program the
simulation model(s). This step is integrated with the writing of the assumptions
document, because an important principle is that the built model reflects the
assumptions that are made. For example, the way a queue is programmed reflects
the assumption on the handling of a queue in practice. Therefore, both the
assumption on the queue, and the way it is programmed are documented. In
addition, the translation from DEMO model to simulation model is documented.
An example is that the actor role establisher fiscal parking offense is implemented
by both the contractor and the city. The contractor to be able to hand out fines,
and the city implements this role to estimate the extent of the bonus or malus.
Both implementations are documented and programmed to make an estimation
of the impact of the implementations on the simulation question.

The confirmation of the correctness of the built model is step 5 of the project.
It is checked whether the proposed model reflects all assumptions and business
rules correctly. For the parking case Arena Simulation was used for step 6 of
the project. There is no restriction in the choice of simulation program or lan-
guage. The project team should choose the simulation program or programming

30 L. de Laat et al.

language that suits the needs of the project. For the Parking case the built sim-
ulation model satisfied the information-need to answer the simulation question,
and therefore no re-iteration was needed in step 7.

4 Results in Practice

By carrying out the simulation study, it was found that the chance of getting
a bonus is not high enough to compensate for the extra corresponding personal
costs, which implies that the bonus system does not trigger the intended incen-
tive. This result is in contrast with the incentive of the city. At some point in
time a period is reached in which the incentive of the city is counteracted by its
own introduced Bonus-Malus scheme. From the simulation it became clear that
this is due to two reasons. First, the potential difference between real checking-
rate and the estimated checking-rate, since this may result in an ‘unfair’ malus.
Secondly, this effect is increased since this system is in place for eight districts,
and receiving a malus for at least one district cancels the bonus for any other
district. For that reason, the advice for the potential contractor is to propose
a new method to estimate payment- and checking-rates, which reflects the real
goals of all stakeholders better.

By discussing the outcome of the simulation study with the possible contrac-
tor, it became clear that the outcome of the study was a surprise. The chance of
a malus, with as consequence no bonus, was much higher than anticipated. The
possible contractor only worked with the DEMO models to make a plan, before
the simulation was available. DEMO models do not give numerical insight or
information about the probabilities of an event. Therefore, the possible contrac-
tor was surprised about this result. This is an indication of the value that can
be added by making use of simulation models as an addition to DEMO models.

Furthermore, value was also added by the data collection process which pre-
ceded the finished simulation study. An example is that a current payment rate
in one of the districts is 72 %. However, the payment threshold is equal to 80 %.
This is an unrealistic requirement, which is out of the power of the possible
contractor. When only the DEMO models of the project would have been con-
sidered, these kind of numerical issues would not have been encountered. Due to
the insights given by the simulation, the impact of those unrealistic numbers is
brought to the surface and discussed with the city.

An advantage of the proposed method became clear while programming the
simulation. There was only a short time period between the moment data was
made available by the city and when the contract plan had to be submitted.
Therefore, it was decided to build only a part of the simulation, and add more
level of detail when insufficient results were found or time constraints allowed
it. First, only the clusters enforcement planning, scan car, and scan scooter
where programmed, with the correct variable parameters as decided upon in the
assumptions document. The resulting set of simulations already gave enough
insight to know that the bonus-malus system is expected to cause the wrong
incentives. Due to the structure of the implementation, the remaining clusters

Supporting Goal-Oriented Organizational Implementation 31

of acts would only give another indication of additional costs. Mathematical
methods could be used to give an expectation of these costs. This saved both
programming time, and computer time. Since computer time was the biggest
issue with this particular simulation study, this choice allowed for a successful
optimization of the simulation within the available time period.

It was known that if the possible contractor would be chosen, there would be
a need for a more detailed simulation study. Therefore, the simulation was built
in such a way that it can be extended easily with the clusters of agenda that
were not programmed yet. Calculation time would grow significantly for this
renewed simulation, but the available time will not be a restriction anymore.
Note that it is possible to take into account future changes in the simulation
program, since the DEMO models and OIVs on the topic are clear. Therefore,
not only the DEMO models are reusable, but also the simulation program. The
reusability of the program can be taken into account depending on the nature
of the study and the time constraints of the project.

5 Conclusions and Future Research

The goal of this research was to develop a goal-oriented method, based on DEMO
conceptual modeling, that supports decision making on organizational imple-
mentation alternatives. Three existing transformation methods have been tested
for this purpose. The main conclusion is that these methods result in the sim-
ulation of a DEMO model and do not support decision making on organiza-
tional implementation alternatives. In addition, implicit assumptions are made
within currently existing methods. As a result, not all simulation question can
be answered, or the resulting simulation model may even be wrong. It can be
concluded that current literature focuses on providing proof that a simulation
model can be based on a DEMO model. In this paper, the focus is shifted to
combining DEMO and simulation in order to reach the goal of the simulation
study.

The first step for improvement is to take the goal of the simulation study
explicitly into account, thus making the transformation method goal-oriented.
In addition, all modeling choices should be made explicitly and should be doc-
umented. A seven-step method is developed that suffices these needs. In this
newly proposed method OIVs are used to bridge the gap between the enterprises
ontology and its implementation. Additionaly to existing OIVs, the concept of
agenda clusters was introduce which deals with the gap between strict separa-
tion of agenda in DEMO theory, and the fuzzy gap between agenda that may
be present in practice. This full list gives the modeler the opportunity to find
a balance between simulation time, project time and money constraints, and
completeness of the simulation model. Although the usage of OIVs and agenda
clusters bring ontology and implementation together, the DEMO model still has
to be built with caution with respect to the goal of the study. Next to that, the
need for agenda clusters shows that OIVs alone is not enough to bridge the gap
between ontology and simulation. Whether the additional agenda clusters fulfills
this need for any simulation study in general should be further researched.

32 L. de Laat et al.

In this research it became clear that the line between internal and external
actor roles becomes fuzzy in a simulation environment. The answer to a simu-
lation question depends heavily on the simulated business environment. When
using a DEMO model for simulation purposes it may be an improvement to draw
the boundary of an enterprise around actor roles that are important for the sim-
ulation question of interest instead of using the boundary line as a separation
based on the control over the action rules of the actor role. In addition, for the
simulation it may be necessary that actor roles with an information providing
(informa) service should be modeled, because non-standard calculations may be
necessary to answer the simulation question.

The value of the use of computer simulation is highlighted by results of the
Parking case. With the use of the simulation method proposed in this paper
several implementation options in terms of the number of employees could be
compared. This comparison could not have been made by the sole consideration
of a DEMO model or filled in OIVs. However, the impact of the use of simulation
extends beyond the possibility of comparing multiple options. In the Parking
case, the results of the simulation study showed that the incentives of the city
and the potential contractor are conflicting. Now that this information is known,
a proposal can be made based on that information to change the contract in
a way that is beneficial for both the client and the contractor. In addition,
numerical mistakes and unrealistic requirements from the client were identified
in the process of building the simulation model. It should be noted that the value
of (static) mathematical methods should not be neglected during the simulation
process. Static calculations can be used as a quick way to find focus areas in the
simulation study, or even to sharpen the simulation question.

The proposed method is the first step to bring DEMO modeling and com-
puter simulation together, while simultaneously considering the goal of the study.
The method has been based on the results of a theoretical case study, and tested
on one real life case study. Additional testing on several cases is required to
see whether the method is adequate in general. The generality of the methods
proposed in current literature and in this paper were tested. Although the pro-
posed method gave better results on the basis of the studied cases, this is no
proof that this holds for all simulation questions in general. This is an additional
reason that the proposed method should be tested on multiple cases. Lastly, the
method proposed in this paper provides much more degrees of freedom for the
modeler, because choices are made explicitly. This takes both more modeling and
documentation time than in the methods from previous literature. However, the
modeling time and effort to come to the simulation model can be controlled by
the modeler in the proposed method. Therefore, together with the goal orienta-
tion, a good Return On Modeling Effort (ROME) can be obtained. The ROME
can not be controlled in the previously defined models, since the base structure
is based on a one-to-one translation of the underlying DEMO model.

Finally, during the modeling of several implementation alternatives of the
different cases that were considered, the relationship between technological
progress and a DEMO model was sometimes unclear. The DEMO methodol-
ogy for Process Modeling and Action Modeling relatively easily introduces wait

Supporting Goal-Oriented Organizational Implementation 33

conditions, of which some appear to embody “order of working” in stead of
pure (unavoidable) ontological dependencies. For example, a PSD for a pizzeria
could show a wait condition between the C-act accept baking and the P-act
of delivery. However, when using a food-truck with a built-in oven, it is pos-
sible to drive the order to the customer, while baking the order. This implies
that the introduction of a certain technology would change the DEMO model,
while the moment of baking could be interpreted as an implementation choice.
Therefore, this choice might better not be made via a wait condition within the
DEMO model. The question arises: how do implementation possibilities that do
not exist right now, but might exist in the future, change a DEMO model? Fur-
ther research should help making the DEMO methodology here more precise to
prevent implicit implementation choices, which might hinder future agility.

References

1. Barjis, J.: Enterprise modeling and simulation within enterprise engineering. J.
Enterp. Transform. 1, 185–207 (2011). Taylor & Francis

2. Barjis, J.: Automatic business process analysis and simulation based on DEMO.
Enterp. Inf. Syst. 1(4), 365–381 (2007a). Taylor & Francis

3. Dietz, J.L.G.: Enterprise Ontology. Springer, Heidelberg (2006)
4. Barjis, J.: Developing executable models of business systems. In: Enterprise Infor-

mation Systems (ICEIS), vol. 3, pp. 5–13. Taylor & Francis (2007b)
5. Liu, Y., Iijima, J.: Automatic model transformation for enterprise simulation.

In: Aveiro, D., Tribolet, J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174,
pp. 136–150. Springer, Heidelberg (2014)

6. Op ’t Land, M., Krouwel, M.: Exploring organizational implementation fundamen-
tals. In: Proper, H.A., Aveiro, D., Gaaloul, K. (eds.) EEWC 2013. LNBIP, vol. 146,
pp. 28–42. Springer, Heidelberg (2013)

7. Daft, R.: Organization Theory and Design. Cengage learning, Boston (2012)
8. Krouwel, M., Op ‘t Land, M.: Using Enterprise Ontology as a basis for Require-

ments for Cross-Organizationally Usable Applications. AIS Electronic Library
(2012)

9. Poletaeva, T., Abdulrab, H., Babkin, E.: Ontological foundations of multi-agent
framework for organizational diagnosis. In: Kobyliński, A., Sobczak, A. (eds.) BIR
2013. LNBIP, vol. 158, pp. 170–184. Springer, Heidelberg (2013)

10. Wang, Y., Albani, A., Barjis, J.: Transformation of DEMO metamodel into XML
schema. In: Albani, A., Dietz, J.L.G., Verelst, J. (eds.) EEWC 2011. LNBIP, vol.
79, pp. 46–60. Springer, Heidelberg (2011)

11. Law, A.M.: Simulation Modeling and Analysis, 4th edn. McGraw Hill, New York
(2007)

12. Krouwel, M., Op ’t Land, M., Offerman, T.: Formalizing organization implementa-
tion. In: Aveiro, D. (eds.) EEWC 2016, LNBIP 252, pp. 3–18. Springer, Heidelberg
(2016)

13. Kelton, W.D., Sadowski, R.P., Sadowski, S.N.B.: Simulation with ARENA.
WCB/McGraw-Hill, New York (2011)

Value and Co-creation

Objectifying Value Co-creation –

An Exploratory Study

João Pombinho1(&), Carlos Mendes1, Bruno Fragoso1,
Ricardo Santos1, Nuno Silva1, Elton Sixpence1, and José Tribolet1,2

1 Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
{jpmp,carlos.mendes,bruno.fragoso,ricardomssantos,

nuno.miguel,elton.sixpence}@tecnico.ulisboa.pt
2 Instituto de Engenharia de Sistemas e Computadores,

Investigação e Desenvolvimento, Lisbon, Portugal
jose.tribolet@inesc.pt

Abstract. Understanding value co-creation has been identified has a critical
research topic area due to the evolution on how customers design, produce and
consume products/services. Moreover, there is a plethora of theory sources that
address it and an apparent lack of alignment between them. In this exploratory
study, we use enterprise engineering techniques, namely organizational mod-
elling methodologies (DEMO and e3Value), to clarify the co-creation and
co-design concepts. In order to do so, we extended the Flower Shop case with
procedures that were identified in the literature as co-creation. The analysis of
this case allowed us to objectify the co-design and co-production concepts by
defining in which specific modelling patterns these concepts can be illustrated,
in order to make them explicit and assert alignment with the business model.
Furthermore, such analysis has supported specification of a generic co-creation
(sub)organization which serves as a reference for alignment with service design
and management knowledge areas.

Keywords: Enterprise ontology � DEMO � e3Value � Value co-creation �
Co-design � Co-production � Value model � Value network

1 Introduction

The context involving services has dramatically changed in the last decades.
Achievements in information technology allowed the development of new revolu-
tionary services and changed how customers serve themselves before, during, and after
purchase (Ostrom et al. 2015). In order to deal with, and understand these changes, new
disciplines emerged. One of these disciplines is Service Science that focuses not merely
on one aspect of service, but rather on service as a system of interacting parts that
include people, technology, and business (Chesbrough and Spohrer 2006). Addition-
ally, Service Science is the study of service systems and the co-creation of value in
complex configurations of resources (Vargo et al. 2008).

Despite the contributions to this discipline there is still the need for further devel-
opment in topics such as the 12 research priorities identified by (Ostrom et al. 2015).

© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 37–53, 2016.
DOI: 10.1007/978-3-319-39567-8_3

One of these topics is understanding value creation. This topic involves the orchestration
of several roles and resources in order to produce results that may be in the interest of
several stakeholders. Clarifying some topics involved in this orchestration is a critical
research area (Ostrom et al. 2015). We focused in three subtopics of the research priority
‘understanding value creation’:

– Integrating the roles of customers, employees, and technology for value creation;
– Understanding value creation in multi-actor, network, and collaborative contexts;
– Specifying the concept and operationalization of value co-creation.

Another research priority identified by (Ostrom et al. 2015) addressed in this
research is leveraging service design and the respective subtopics:

– Involving customers through participatory design and co-design to enhance service
experience;

– Aligning service design approaches with existing organizational structures.

These five subtopics are the fields in which this exploratory research may contribute
with new knowledge. In order to do so, we propose to use enterprise engineering
principles to clarify the co-creation concept. In the process we use DEMO (Design &
Engineering Methodology for Organizations) white box models and e3Value models to
differentiate co-creation and co-design, and to specify a generic co-design organization.
A white-box model is a conceptualization of the definition of an ontological system and
captures its construction and the operation, while abstracting from implementation
details (Dietz, J. 2006). Therefore, we present the ontological transactions (DEMO) and
value objects (e3Value) that may be involved in co-creation and co-design.

The remaining document is structured as follows. Next, we present related work,
starting with an overview of related work in service science, enterprise engineering and
business modelling. Then, we will use the case of a florist to highlight certain aspects
relevant to our research through the creation of DEMO and e3Value models. The
following section, (re)defining co-creation: co-design and co-production, presents the
main contribution. The paper closes with conclusions, limitations in the present
research and projection of future work.

2 Related Work

This research crosses different knowledge areas, namely Service Science, Enterprise
Engineering and Business Modelling. In this section we will briefly introduce relevant
aspects of each and how they are related in addressing our problem.

2.1 Service Science

Service science focuses not merely on one aspect of service, but rather on service as a
system of interacting parts that include people, technology, and business (Chesbrough
and Spohrer 2006). This discipline has given a greater focus and attention toward
intangible and dynamic aspects of exchange (Vargo et al. 2010), where its service-centred

38 J. Pombinho et al.

view is based on the idea that service – the application of competences for the benefit of
another – is the basis of all exchange (Vargo and Akaka 2009).

In this understanding of service is important to note that in Service Dominant logic
(S-D-logic) there are no “services” (intangible units of output), but only the service
provision that occurs among service systems, and the nature of value co-creation
among service systems (Vargo et al. 2010). Service provision can then be considered
central to value creation and holistically, embedded in reciprocal systems of exchange,
where service exchange and value co-creation need to be analysed as a complex
phenomenon due to the fact that Actor relations characterize value co-creation as
embedded in multi-agent systems with converging contributions (Wieland, Polese,
Vargo & Lusch 2012).

In (Chathoth, P. et al. 2013), a fundamental distinction is made regarding
multi-actor collaboration in different facets of service system development and
operation:

– Co-production refers to the “interactive nature of services” (Yen et al. 2004). Yen
et al. point out that “in service encounters characterised by high customer partici-
pation (e.g., hairdressing, medical consultations, education) customers are usually
physically present to receive the service and are often called on to provide critical
information that is necessary for effective delivery of the service”.

– Co-creation is described as involving a high level of customer participation in
customising the product or service, which requires “collaboration with customers
for the purpose of innovation” (Kristensson et al. 2008).

(Chathoth, P. et al. 2013) compares those two concepts according 6 criteria,
namely, value creation, customer’s role, customer participation and expectation, focus,
innovation and communication. On co-production the customer is passive, rely on the
physical environments provided and is perceived as resource, whereas, on co-creation
customer is active, provide input to service provider before, during, and after service.
Act as information provider or value creator. In fact, the authors already consider these
two concepts as a continuum rather than a dichotomy. In this research, we propose a
more objective definition of each through modelling.

2.2 The Discipline of Enterprise Engineering (EE)

The EE discipline addresses a set of methodological foundations for answering three
generic goals: intellectual manageability, organisational concinnity, and social devotion
(Dietz et al. 2013). Each of these goals are correlated with the design, governance, and
management of an enterprise. In order to achieve these goals, Dietz (Dietz et al. 2013)
has formulated seven fundamentals to be used as guidelines that are easier adopted than
the class of EE theories.

Enterprise Ontology (EO): Theory and Methodology. The Ontological theory is
one of the EE theory classes that addresses cause-effect relationships in systems. Its
w-theory (Performance in Social Interaction theory) concern is towards the ontological
essence of organizations. It clarifies and explains the construction and operation of

Objectifying Value Co-creation – An Exploratory Study 39

organizations as social systems, where humans are given social roles, with a degree of
authority and responsibility according to their role (Dietz et al. 2013). Hence, the
w-theory provides an effective notion of EO, as the (constructional) essence of an
organization depriving all of the realization and implementation understanding.

DEMO. Design and Engineering Methodology for Organizations (DEMO) includes a
sound theory and a method for supporting EE. It goes beyond traditional function
(black-box) perspective, aiming at changing organizations based on the construction
(white-box) perspective. Organizations are considered as systems composed of social
actors and their interactions in terms of social commitments regarding the production of
business facts. From its Transaction Axiom, we find that actors perform two kinds of
acts. By performing production acts (P-acts), the actors contribute to bringing about
and delivering services to the environment. By performing coordination acts (C-acts),
ac-tors enter into and comply with commitments. P-acts and C-acts occur in generic
re-current patterns, called transactions. According to DEMO theory, every transaction
process is some path through this complete pattern, and every business process in every
organization is a connected collection of such transaction processes.

DEMO is able to produce concise, coherent and complete models (regarding its
scope of application) with a significant reduction in model complexity, compared to
traditional approaches like flowcharts and BPMN (J. L. G. Dietz 2008). This feature
has a major role in intellectually managing complexity as it allows abstracting from
information and data and to focus on business transactions specification.

DEMO does not aim at modelling the teleological aspects of a system, namely its
purpose and development rationale. As such, while it excels at applying sound actor
interaction theory to static configurations, its application to evaluating, deciding and
executing change benefits from being used in conjunction with other approaches.

2.3 Value Modelling

e3Value. e3Value (Gordijn 2002) is an ontological approach for modelling networked
value constellations. It is directed towards e-commerce and analyses the creation,
exchange and consumption of economically valuable objects in a multi-actor network.

In e3Value, an Actor is perceived by his or her environment as an economically
independent entity. Actors exchange Value Objects (VO) transferred through Value
Ports, which are directional elements of Value Interfaces. Actors form an intercon-
nected, value object-exchanging network. e3Value provides essential value mapping
from a high-level perspective but, unlike DEMO, it lacks a holistic and formal
framework for enterprise modelling, i.e., constructability.

In conjunction, the two approaches provide an integrated and complete conceptual
coverage the 3 complementary perspectives of a system (Pombinho 2015): construction
(white-box), function (black-box) and purpose (outside-box), as depicted in Fig. 1.

40 J. Pombinho et al.

DEMO is adequate for construction and function perspectives and e3Value
addresses the purpose perspective. As such, we chose to apply both approaches to shed
light on different value co-creation modelling issues.

2.4 Value-Oriented System Development Process

In order to deal with model-supported change in enterprise settings (Pombinho 2015)
defines an Enterprise Transformation Cycle. A formal specification of the process and
the (sub) organization that implements it follows (Figs. 2, 3, and 5).

The cycle comprises 5 stages:

– I. Establish Problem. The process involves first establishing the problem in terms
of a value model and ontological model of the Using System (US).

– II. Define Solution Scenarios. Beginning with the VO sought-after by the US, a
number of solution scenarios is generated, followed by the corresponding value,
construction and implementation models.

Fig. 1. Construction, function and purpose perspectives of a system – Library example

Fig. 2. Enterprise transformation cycle, adapted from (Pombinho 2015)

Objectifying Value Co-creation – An Exploratory Study 41

Fig. 3. Solution development organization (ATD), adapted from (Pombinho 2015)

Fig. 4. Florist shop Actor Transaction Diagram (ATD)

42 J. Pombinho et al.

– III. Select Solution Scenario. From the viable value models obtained in II, an
estimated valuation of each implementation model is be propagated bottom-up in
order to instantiate the corresponding value models.

– IV. Implement Solution. The selected solution is implemented using the specific
technologies from the implementation models.

– V. Evaluate Solution. By using the value model of the implemented scenario, it is
possible to evaluate operational reality versus estimated valuations and identify any
gaps to address in a new iteration of the system development cycle.

Following, a specification of the (sub)organization that performs such method – the
Solution Development Organization (SDO) – is presented.

The process begins with an external request to provide a solution (T01). The solution
provider asks the solution requester to specify the Using System purpose model (T02),
which is critical to identify rational solutions. Note that such model can be derived from
the results of a process such as Design Thinking, by mapping a Value Proposition
Canvas (Osterwalder et al. 2014) to the corresponding e3Value model as specified in
(Caetano et al. 2016), for instance. This implies that, by construction of the SDO, every
development decision is traceable and grounded on value specification. The solution
provider then requests that the solution list specifier specifies a solution list (T03) to
produce the requested result. A solution is a set of coherent models that include the
purpose, function and construction perspectives of a (sub)system. The solution list
manager actor role is responsible for setting and controlling available resources for
specifying solutions, including time and effort, and negotiating with the requester
whether to stop the analysis of a particular solution or expand solution search space.

The specify Object System purpose model transaction (T04) is the first creative step
of this process, where different VOs that may provide a solution to the requester’s
demand are identified. This step can be based on a number of techniques, such as
specialist input, brainstorming, research or knowledge bases.

Following, a set of function models that produce the transaction results that yield
the required VOs identified in the purpose model are then specified (T05).

Fig. 5. Florist shop Object Fact Diagram (OFD)

Objectifying Value Co-creation – An Exploratory Study 43

Next, one or more construction model are created (T06), possibly reflecting dif-
ferent ways of structuring the internal system for offering the function specification.
Ontological transactions and actors are specified in the construction model.

The next step, creating an implementation model (T07), describes the technological
means used to instantiate the construction model, particularly assigning operant and
operand resources. Implementation models are needed as the costs can only be
determined after assigning specific valuations and number of occurrence to the value
transactions, both implementation technology specific.

If anytime during model specification a dependency comes about in producing the
result, the current OS is repositioned, assuming the role of US in the new development
cycle. Such a request would be made by the level N solution list manager to level N + 1
providers. For each crossing of these levels, a new system development cycle iteration
takes place. Along each single thread of a solution chain, the alternation between each
pair of levels is described by Dietz and Hoogervorst as function/construction alternation
(J. L. G. Dietz 2006).

When the set of known solutions is considered satisfactory by the solution provider,
it requires that the solution requester elects a solution from the presented alternatives
(T08). The elected solution is then implemented (T09) and its value proposal is peri-
odically monitored by the value manager (T10). If an inconsistency is found, the
provide solution transaction is invoked to address the gap, presented as an economic
viability problem.

The Solution Development Organization is a generic specification of the organi-
zation that runs the process of creating the set of aggregate models of each link in a
value network. As we will see, the fact that the specification is actor independent is
instrumental in objectifying co-design activities.

3 Objectifying Value Co-creation: Modelling Co-design
and Co-production

In this section we begin by presenting the Flower Shop case built to include examples
of co-design and co-production usually mentioned in the literature. Then, we model the
case using DEMO and e3Value to bring about the relevant modelling issues. The
resulting models are the basis for the next subsection, where we refine the co-creation,
co-design and co-production definitions and principles.

3.1 Flower Shop Case Description

In this section we use a Flower Shop case considering the co-creation definitions in
(Chathoth, P. et al. 2013):

– Value creation: creation of unique personalized experiences;
– Customers’ role: active, providing input before, during and after service delivery;
– Customers’ participation: repeated interactions and transactions across multiple

channels. Co-create products and services;

44 J. Pombinho et al.

– Focus: customer and experience centric;
– Innovation: co-innovate and co-design with customers;
– Communication: ongoing dialogue with customers.

Based on these topics we created a Flower Shop case with the following
description1:

Florist ACME is a company based in Lisbon. It < sells > bou-
quets of flowers in the shop and online. Each purchase may have
several types of bouquets and each bouquet may have several
types of flowers. In both cases, each purchase must < pre-
pared > by the florist or by the client itself and it must be <
paid > by the client. On some occasions the client needs are not
represented in the bouquet types available. When that happens
the florist may < create > a new bouquet type according to these
needs and current available resources. In those situations and
after the purchase is < completed >, the new bouquet type may
be < discontinued >.

In order to continuously align the florist offer with clients’
needs, the florist implemented co-creation techniques in which
customers are active co‐creators of the products they buy and
use. The two essential activities in co-creation are: (1) the
contribution of novel concepts and ideas, and (2) the selection
of which specific concepts and ideas should be pursued. This
florist decided to adopt a collaborating co-creation technique,
meaning that customers have an active role in contributing with
their own ideas and in selecting the components that should be
incorporated into a new product offering.

Regarding the contribution of novel concepts and ideas, the
florist decided to periodically < open > a competition for new
ideas. To stimulate the participation, the florist < offers > a
bonus (for instance a free bouquet) to the accountable of each
chosen idea. The clients are (called) to participate in the
competition and < create > new ideas when they visit the store
and/or by email. In order to (submit) their ideas, the clients
can do it physically in the store when they are buying products
or submit it directly in a website used to store all the infor-
mation regarding the competitions. In the first case, the florist
enters the idea in the website afterwards.

Regarding the selection of which specific concepts and ideas
should be pursued, the florist has the accountability for < ap-
proving > the ideas that should be implemented. However, the
florist takes into consideration the clients’ feedback when doing

1 The description was edited to identify the C-acts and P-acts, described by Enterprise Ontology
(Dietz, J. 2006), with the following notation: brackets “(” and “)” to identify C-acts/facts and angled
brackets “<” and “>” to identify P-acts/facts.

Objectifying Value Co-creation – An Exploratory Study 45

so. The florist (invites) the clients (in the store and by email)
to < rate > the ideas that are available in the website. When the
competition period ends, the florist selects the ideas with most
votes and for each one < makes > a viability evaluation in order
to < approve > the ones that should be incorporated into a new
product offering. Then the florist < rewards > the accountable
for those ideas with the defined bonus, and informs all clients
about the new offer.

The implementation of the ideas may have impact on the type of
bouquets that are sold by the florist (new ones can be < added >
and current ones can be < discontinued >) and even have impact on
the construction of the florist itself (can be modelled using the
G.O.D. theory2).

3.2 Modelling the Case with DEMO and e3Value

As described in the related work, we chose to use DEMO and e3Value to model the
Flower shop case to bring about the characteristics of the two perspectives we have
elected for improving objectivity in value co-creation modelling. The next subsections
present the respective models in DEMO and e3Value.

DEMO. After applying the method to the case description, the result was a DEMO
white-box model composed by four models: Construction Model (CM), Process Model
(PM), Action Model (AM), and State Model (SM). These models can be described
using the diagrams and cross-model tables, such as the Transaction Result
Table (TRT), Actor Transaction Diagram (ATD) and Object Fact Diagram (OFD) pre-
sented below (Table 1).

We identified 13 transactions: 3 concerning the usual transactions in the Florist
Shop case (T01, T02, and T03), 2 transactions focusing on offer management (T04 and
T05) and 8 transactions relating with co-designing of new business ideas (T06 through
T13). The ATD represents these different environments more clearly.

We also modelled a connection with the G.O.D. theory (Aveiro, D. 2009), since the
implementation of new ideas may involve changes in the ontological models of the
florist and, therefore, the start of an organizational engineering process (OEP). Con-
sequently, each idea may have one organizational engineering process as the OFD
below illustrates.

This relation with the G.O.D theory contributes to the research subtopic presented
in the introduction: aligning service design approaches with existing organizational
structures. By connecting the creation of new designs (through ideas) with the G.O.D.
theory we can establish a direct relation on how new service designs will impact the

2 The G.O.D. Theory (Aveiro, D. 2009) explains ontological change events in organizations and
specifies the sub(organization) that handles organizational artefact generation, operationalization and
discontinuation according to EE principles.

46 J. Pombinho et al.

current ontological models of organizations. Nevertheless, the details the connection
with the G.O.D. theory are still in development. For instance, we need to specify how
the florist Process and Action Models relate with the G.O.D theory respective models,
and if there are more categories from this theory related with the ones from this case.

e3Value. We will now present a value model to obtain a different perspective of the
florist case, this time focused on content (i.e. the bouquet) creation instead of organi-
zational design of its provider. Applying the methodology defined in (Pombinho 2015)
we modelled this scenario as a series of successive solutions to a problem in the form of
problem/solution pairs. In this case, we focus on making the “right” bouquet available to
the customer and there are obvious many ways to make it happen. Particularly, this
implies addressing both the creation of the bouquet value object and making sure it is
made available to the customer (which can range from over-the-counter to scheduled
delivery). We focused on the following value activities: create bouquet idea, compose
bouquet, produce bouquet element, prepare bouquet, and deliver bouquet. Suchsuc-
cession of value activities is the result of a system development process as the one
presented in Sect. 2 and is one of many possible solutions for arriving at the desired
end state.

Table 1. Florist shop Transaction Result Table (TRT)

Transaction Result Executed by

T01 – Purchase
Completion

R01 – Purchase P has been completed Florist

T02 – Purchase
Preparation

R02 – Purchase P has been prepared Florist/Customer

T03 – Purchase
Payment

R03 – Purchase P has been paid Customer

T04 – Bouquet Type
Start

R04 – Bouquet Type BT has been started Florist

T05 – Bouquet Type
End

R05 – Bouquet Type BT has been ended Florist

T06 – Competition
Management

R06 – Competition management for Period P
has been done

Florist

T07 – Idea Competition
Start

R07 – Idea Competition IC has been started Florist

T08 – Idea Creation R08 – Idea I has been created Customer
T09 – Idea Rate R09 – Idea I has been rated Customer
T10 – Idea Viability
Evaluation

R10 – Idea I viability has been evaluated Florist

T11 – Idea Approval R11 – Idea I has been approved Florist
T12 – Idea Competition
End

R12 – Idea Competition IC has been ended Florist

T13 – Bonus Delivery R13 – Bonus B has been delivered Florist

Objectifying Value Co-creation – An Exploratory Study 47

Furthermore, note there are many possible configurations of actors that can be
assigned to execute these activities. For instance, it is very common that the bouquet is
created by the florist taking a simple expression of intention by the buyer, e.g. a
romantic occasion, as a starting point. In this case, we considered the bouquet creation
was performed by the customer itself and derived the value model in Fig. 6.

The fact that the buyer can perform one or more value activities on behalf of the
florist can create cycles in the value network, as it is apparent in this case by the start
stimulus, end stimulus and the value paths between them.

3.3 (Re)defining Co-creation: Co-design and Co-production

Having set the goal of achieving a more objective value co-creation conceptualization
we have defined it in terms of co-design and co-production. For each, we devised
assertive actions that reflect our way of thinking:

1. Assert co-design support by checking compatibility of the white-box models of the
organization with the generic co-design model;

2. Assert value co-production based on the corresponding value model.

We therefore consider value co-creation as a combination of co-design and
co-production, each understood at follows.

Co-design. According to our observations of the Flower Shop case and other real
examples (for instance Lego or Starbucks), we propose that there is value co-design if
there is one external actor role that participates in the creation of the design. We
define participation as fulfilling an actor role in the corresponding ontological trans-
actions. This was the case on the Flower shop case, since there is an actor role that
produces ideas and another actor role that rates ideas. These ideas, if approved, can be
included by the organization in the future designs. We can, therefore, say that in the
Flower shop case there is co-design since there are external actor roles that participate
in the production and evaluation of new designs. Note that the co-designer customer

Fig. 6. Florist - bouquet creation and delivery (For clarity, only the value path of creating and
delivering the bouquet is represented) value model

48 J. Pombinho et al.

may or not be a participant customer in runtime value production of the organization he
co-designed.

Using this definition, we can find co-design examples in the industry, such as in
Lego and Starbucks. Lego created the Digital Designer program3 that allows customers
to create their own toy designs and evaluate the designs that are eventually submitted
online. Starbucks created the mystarbucksidea platform4 that encourages the customers
to share their ideas for new products/services.

This definition conforms to the implementation of the SDO (cf. Fig. 7) where the
tester/evaluator impersonates the requester role. In this case, to support the scenario of
an evaluator that is different from the solution requester, the solution requester actor
role would have to be split to create an independent actor that implements the trans-
action T08 – select solution. Analogously, any of the modellers A04-A07 (respectively
purpose, function, construction and implementation modellers) can be implemented by
an actor that is external to the organization, thereby creating a coherent model
instantiation of the co-design scenario.

By providing an accurate ontological specification in which to instantiate actors and
perform validation, this definition objectifies co-design and contributes to the research
topic on how to involve customers through participatory design and co-design to
enhance service experience.

Fig. 7. Solution Development Organization (ATD), adapted from (Pombinho 2015)

3 Available at http://ldd.lego.com.
4 Available at http://mystarbucksidea.force.com/.

Objectifying Value Co-creation – An Exploratory Study 49

http://ldd.lego.com
http://mystarbucksidea.force.com/

Co-production. Co-production essentially differs from co-design since it focuses on
can only be asserted during operation. Our definition is: there is value co-production
if the graph of value exchanges in the value model between 2 or more value actors
is cyclic. This definition applies to our bouquet creation scenario, presented in Fig. 6
(Sect. 3.2), where the customer performs the role of bouquet creator. Notice it could
also perform the delivery role and any other, as long as the provider retained a
value-generating activity. As it can be seen, both the degree of involvement of each
participant and the number of participants can vary and by identifying the configuration
of the cycle there can be specified a series of patterns.

The definition extends from the trivial configuration of a reciprocal value exchange
between two actors – mutually dependent to generate value – to arbitrarily complex
scenarios, for instance the case of ZON-FON in Fig. 8.

The ZON-FON case (Pombinho 2015) is a particular cyclic value production
between 3 actors – a quite interesting one, as it is exponential due to network effect.
FON5 is a global network of hotspots that takes dramatic advantage of network effect
by providing the means for users to share their third party internet access and, in return,
get free access to hotspots made available by other users in the network. In the original

Fig. 8. ZON-FON case – mutual dependencies in value co-production with network effect.

5 Institutional information available at https://corp.fon.com.

50 J. Pombinho et al.

https://corp.fon.com

business model, these means implied having a standalone FON wireless router in
addition to the third party internet access equipment such as a cable modem. In this
particular scenario, ZON Multimédia has partnered with FON to bundle the FON
firmware into the wireless cable modems provided by ZON to its customers. ZON
offered its customers free access to FON’s network in exchange for sharing fixed
internet connection bandwidth. Since the ZON cable modem incorporated the firmware
and was made available to the customer as part of the fixed internet service, i.e. at no
additional cost, the customer did not need to acquire neither accommodate physical
space or power supply to FON’s equipment – an innovative scenario targeted at value
co-creation for the three parties. This improved the value proposal towards ZON
customers, consolidating fixed internet service attractivity and improving customer
retention, increases as the coverage of the network expands. The benefits for each
participant can be informally summarized as follows:

– FON increases customers and their network effect, while providing centralized
authentication and governance;

– NOS increases customer value proposal and reuses the same logistics scenario of a
regular internet service user;

– Customer receives access to Wi-Fi network outside, while keeping the same service
fee and having no additional equipment costs; in turn, he provides premises and
power to the FON router.

Regarding value co-creation, the business model can informally be viewed as a
win/win/win situation. This is a special case of co-creation, the three actors are tied
together by a cyclic value generation cycle that benefits from network effect – each
time an actor joins the network and shares his access, every other user gets additional
value due to increased network coverage. It is worth noticing the fact that the actors
don’t need to be directly included in the network design process order to benefit from
value co-production. In this case, the customers were not involved in the design process
and clearly benefit from it, as a sustainable component of the value generation network.
Actually, customer input was later used in the ongoing phase of the business model, for
instance to improve the registration process and pre-activation of the equipment.

4 Conclusion

In this research we addressed the goal of clarifying value co-creation by specifying
co-design and co-production using sound theory and modelling techniques. Both Value
Modelling (e3Value) and Enterprise Ontology (DEMO) were useful to analyse and
refine the notions of co-creation, co-design and co-production of value.

First, we identified a co-creation (sub)organization that can be used as a template to
assert the existence of white-box components that support the validation of the designer
and evaluator roles in value co-design settings. Then, we differentiated (1) co-design -
changes to structure resulting from incorporation of inputs from other participants in
the value network and (2) co-production - operational, cyclic value generation between
interdependent systems. Both contributions provide understanding of the ontological
transactions and serve as a basis to address value co-creation in EE.

Objectifying Value Co-creation – An Exploratory Study 51

4.1 Limitations

This research is based on an exploratory study and the resulting artefacts are currently
being developed. Consequently, a field study is necessary to evaluate the proposed
artefacts. Additionally, there is an inherent limitation regarding DEMO modelling.
Since DEMO models are implementation independent, these models do not include
details concerning the subjects that implement the ontological transactions. That
information is necessary to instantiate the value models and to understand value cre-
ation in multi-actor, network, and collaborative contexts.

4.2 Future Work

This research needs further development on the concepts presented in this paper,
namely a deeper analysis of the five subtopics presented in the introduction. For
instance, the relation with G.O.D. theory (Aveiro, D. 2009) be explored and integrated
with the co-design DEMO white-box model (Fig. 4) in order to better align service
design approaches with existing organizational structures. Furthermore, the proposed
artefacts could be applied through field studies in real organizations and the value
networks they take part in. This would allow evaluating if the preliminary proposal is
generic enough to be applied to several contexts and also to validate its benefits.
Nevertheless, we are convinced this contribution is a small but important step in
evolving the research of value co-creation in organizations.

References

Aveiro, D.: Towards a GOD-theory for organizational engineering: continuously modeling the
(re)generation, operationalization and discontinuation of the enterprise. Ph.D. thesis, Instituto
Superior Técnico (2009)

Caetano, A., Antunes, G., Pombinho, J., Bakhshandeh, M., Granjo, J., Borbinha, J., Mira da
Silva, M.: Representation and analysis of enterprise models with semantic techniques: an
application to Archimate, e3Value and business model canvas. Knowl. Inf. Syst., 1–32 (2016)

Chathoth, P., et al.: Co-production versus co-creation: a process based continuum in the hotel
service context. Int. J. Hospitality Manage. 32, 11–20 (2013)

Chesbrough, H., Spohrer, J.: A research manifesto for services science. Commun. ACM 49(7),
35–40 (2006)

Dietz, J.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg (2006)
Gordijn, J.: Value-based Requirements Engineering: Exploring Innovatie e-commerce Ideas.

Vrije Universiteit Amsterdam, Amsterdam (2002)
Osterwalder, A., Pigneur, Y., Bernarda, G., Smith, A., Papadakos, T.: Value Proposition Design:

How to Create Products and Services Customers Want. Wiley, Hoboken (2014)
Ostrom, A., et al.: Service research priorities in a rapidly changing context. J. Serv. Res. 18(2),

127–159 (2015)
Pombinho, J.: Value-oriented enterprise transformation - design and engineering of value

networks. Ph.D. thesis, Instituto Superior Técnico, Universidade de Lisboa (2015)

52 J. Pombinho et al.

Vargo, S., Maglio, P., Akaka, M.: On value and value co-creation: a service systems and service
logic perspective. Eur. Manage. J. 26, 145–152 (2008). Elsevier

Vargo, S.L., Akaka, M.A.: Service-dominant logic as a foundation for service science:
clarifications. Serv. Sci. 1(1), 32–41 (2009)

Vargo, S.L. et al.: Advancing service science with service dominant logic - clarifications and
conceptual development (2010)

Wieland, H., Polese, F., Vargo, S.L., Lusch, R.F.: Toward a service (Eco) systems perspective on
value creation. Int. J. Serv. Sci. Manage. Eng. Technol, 12–25, July–September 2012

Objectifying Value Co-creation – An Exploratory Study 53

Towards Co-creation and Co-production
in Production Chains Modeled in DEMO

with REA Support

Frantisek Hunka1(&), Steven J.H. van Kervel2, and Jiri Matula1

1 Ostrava University, Ostrava, Czech Republic
{frantisek.hunka,jiri.matula}@osu.cz
2 Formetis Consultants BV, Boxtel, The Netherlands

info@formetis.nl

Abstract. Co-creation and Co-production in production chains is the typical
way of cooperation one observes in high value industrial production chains. The
enterprises in these production chains constitute together also a sophisticated
virtual enterprise. While many professional IT systems are operational within
these enterprises, there are only IT technologies with a limited scope at a small
scale available between these enterprises. The new technologies currently pro-
vided by enterprise engineering promise substantial operational improvements;
operational control, compliance to business rules, optimization of efficiency and
effectiveness. Another objective is support for the REA ontology for high
quality financial information systems, which requires a conceptual mapping
between REA and DEMO to be found. The first step, a generic DEMO model
for co-creation and co-production, has been devised and subjected to early
validation. This paper is also a positioning paper, defining future research,
specifies two challenges for the DEMO theory and provides foundations for a
professional production system.

Keywords: REA ontology � Enterprise ontology � DEMO � Co-creation �
Co-production

1 Introduction

Co-creation and Co-production in production chains is the typical way of cooperation
one observes in many high value industrial production chains such as finance, auto-
motive etc. Instead of well-defined products directly available from stock, companies -
contractors - that are part of virtual enterprise chains propose to develop custom-made
products within a clearly defined domain of their competences and well-matching the
specific needs of the customers - principals.

One sees [Sect. 3.1] that a whole production chain is composed of many specific
‘virtual’ ‘co-creation and co-production enterprise pairs, triplets etc’. For each of these
virtual enterprises the co-creation and co-production is so sophisticated that they are
actually an independent virtual enterprise, composed of the independent enterprises,
principal (DEMO initiator) and one or more contractor(s) (DEMO executor). There is a

© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 54–68, 2016.
DOI: 10.1007/978-3-319-39567-8_4

great need to improve the operation of these virtual enterprises to meet the following
objectives:

(i) Governance, defined here being the system and ways by which companies are
directed and controlled. In virtual co-creation and co-production enterprises this
is mostly defined by the contract(s) devised and signed by the constituting
enterprises.

(ii) Risk, the application of methodologies through which parties identify, analyze,
prioritize, define and mitigate risks that affect the interests of stakeholders.

(iii) Compliance, defined being the overall approach through which an operation of
the parties conform with stated requirements from outside the enterprise, such as
legal regulations and moral rules. Notably the banking crisis resulted in exten-
sive complex regulations such as Sarbanes-Oxley Act [22] that must be
implemented by banks.

(iv) Efficiency, the careful use of precious resources to realize the desired results.
(v) Effectiveness, the degree of how well the requirements of the principal are met; a

degree for quality.
(vi) Agility, the capability to adapt the operation of an enterprise at any time, driven

by unpredictable changes in markets, imposed legislation and strategy.

There are many partial solutions for the co-creation and co-production domain in
the professional world. Examples include Business-to-Business (B2B) and
Business-to-Business-Customer (B2BC) electronic “e-invoicing” systems. Domain
experts [7, 8] state that in general this domain is fragmented, captured by many
stand-alone proprietary vendor-specific systems. The European Economic Community
(EEC) estimates [21] annual savings of 65 billion euro if e-invoicing is widely adopted.
This mass market is represented by 216 million households and 21.2 million SMEs in
the European Uion-28 (EU-28).

No generic approaches that address the whole domain of co-creation, co-production
and electronic invoicing and payments have been found today. The most serious
limitations are: (i) they capture only a part of the important interactions between
participating enterprises; (ii) they are not generic and not domain-independent; and
(iii) they are proprietary, closed architectures, with vendor lock in mechanisms. Cap-
turing the co-creation and the contract phase is mostly left out but is considered here of
vital importance since the contract is the foundation of all interactions between par-
ticipating enterprises, including electronic payments.

There is a lack of a generic, comprehensive approach to support production chains
with high quality information systems. We define here high quality information sys-
tems as systems that either (i) provide some, one of several, descriptive, truthful and
functionally appropriate perspective on the operation of an enterprise [12, 13]; or
(ii) provide a prescriptive control [10–14] of the model-driven operation of the
enterprise. An example of a descriptive information system is a financial information
system that meets GAAP (Generally Accepted Accounting Principles) criteria. An
example of a prescriptive information system is a workflow(-like) system that imposes
actors in the enterprise to operate as defined by the workflow procedure.

Towards Co-creation and Co-production in Production Chains Modeled 55

1.1 Objectives of this Paper

The main objective of this paper is to provide a generic, application and
business-independent foundation for IT systems, directly derived from enterprise
models [13, 19], that support production chains and to identify future research topics to
realize this further. The following derived objectives have to be met:

(i) The need for a generic, application and industry-independent ontological DEMO
enterprise model for co-creation and co-production chains [Sects. 3.1, and 3.2].

(ii) The generic ontological DEMO model is/will be, the foundation for the many
industry-specific implementations, extended with infological and datalogical
transactions1. In this paper we limit ourselves to the ontological DEMO model.

(iii) The Resource-Event-Agent (REA) ontology [Sect. 2.1] aims to provide onto-
logical foundations for descriptive financial information systems that must
provide a truthful and appropriate perspective on the operation of the enterprise.

(iv) Application of the available technologies of enterprise engineering [Sects. 2.3,
and 2.4], needed to bring such a system in professional production.

1.2 Practical Objectives of the Approach

The various technologies needed to bring such a system in real world production are
available with either proof of concept or already operating in professional production. It
means that such a system may go into production when the objectives of this paper and
the specified research [Sect. 4] have been realized. Specific benefits may be:

(i) Reduction of costs for invoicing and payments, as described [7, 8]. If the whole
of the co-creation and co-production domain is captured, the costs reductions
may be even substantially higher.

(ii) Reduction of risks of payments and related identity fraud since identities are
already well-defined and cannot be falsified. If payments are controlled by such a
system, essentially precisely defined payments only need to be (dis)approved but
the payments cannot be tampered with.

(iii) Since total knowledge of all financial transactions of a specific enterprise is
totally captured2, a complete financial report, balance, profit and loss, can be
rendered automatically, preferably using a REA based system.

(iv) The “owner” of this data gains deep insight in all operations.

1 DEMO theory [3] distinguishes (i) ontological transactions, those transactions that bring about
changes in the world; (ii) so-called infological transactions where information is being produced; and
(iii) datalogical transactions where data is transformed from one representation into another.
Datalogical transactions support infological transactions and infological transactions support
ontological transactions. A model comprised on only ontological transactions provides the highest,
implementation-independent representation of such an enterprise.

2 The Enterprise Operating System [Sect. 2.3] records each communicative act and fact for each actor,
which provides ‘total factual knowledge’ of the enterprise in operation.

56 F. Hunka et al.

(v) The complete history of all acts, facts and commitments is recorded. In a dispute
the total truth is immediately available, which reduces/eliminates legal dispute
costs.

This paper is mainly a position paper; it proposes an approach with an enterprise
model, specifies further research topics but also reports on current progress. Several
controversial stances are taken that will be refuted if proven wrong. In Sect. 1 the
objectives and the potential of a system for co-creation and co-production have been
described. In Sect. 2 an introduction to the REA and DEMO ontologies is provided
with the supporting technologies for enterprise information systems engineering. In
Sect. 3 an ontological DEMO model for co-creation and co-production is proposed. In
Sect. 4 some topics for future research are described.

2 Introduction to REA, DEMO and Software Technologies

The REA ontology is very promising for so-called REA model driven financial
information systems. We aim to enhance the REA ontology to a “high quality”
ontology, meeting several very strict formal criteria. Once this has been realized, the
Generic Systems Development Process for Model-Driven Information Systems
(GSDP-MDE) [8, 13] provides a very clear and concise way to engineer (i) a suitable
formal language for REA models (of financial information systems) and (ii) a matching
model-executing REA software engine. Financial information systems are models
expressed in the REA language, executed by the REA software engine. This constitutes
a financial information system without programming and hence without software bugs.
The costs in development of financial information systems can be reduced in a
tremendous way. Further, adaptations to changing legal requirements, so-called
GAAP’s are most easily to implement and validate. The GSDP-MDE has been applied
for the enterprise operating system [2.3] and proven strong enough for professional
software [17]. However, this approach for REA is a long term goal.

2.1 REA Ontology

REA ontology originates from accountancy systems and provides a domain specific
platform for value modeling business processes, see [20]. The term value modeling
means that the REA modeling approach keeps track of primary and raw data about
economic resource values. Economic resources can be exchanged for other economic
resources within the scope of REA exchange process or they can be consumed, used or
produced within the scope of the REA conversion process. REA model which
describes the exchange or conversion process is composed of at least two transactions
of economic resources, in which one transaction is in consideration for the other. Apart
from economic resources, the REA approach to value modeling in its core pattern
covers economic events, in which the corresponding economic resource changed its
amount or feature, and the agents (actors) that participate in these events. The economic
events are marked increment and decrement in relation to one of the economic agents
which means the increasing or decreasing value of economic resources. The duality

Towards Co-creation and Co-production in Production Chains Modeled 57

relationship that relates the economic events to each other holds the transactions
together.

In REA, a commitment addresses the issue of modeling promises of future eco-
nomic events and the issue of reservation of resources [6, 18]. The exchange reciprocity
relationship between the increment and the decrement commitments identifies which
resources are promised to be exchanged for which others. The claim entity is a tem-
porary entity which reconciles time differences between economic events and can be
materialized, for example as an invoice (Fig. 1).

The main benefit of the REA approach is that it facilitates the keeping track of
primary and raw data about economic resources, thereby offering a wider, more precise,
and more up-to-date range of reports, according to [18]. All accounting artifacts such as
debit, credit, journals, ledgers, receivables, and account balances are derived from the
data describing exchange and conversion REA processes. Reports based on accounting
artifacts are always consistent, being derived from the same data [18]. The economic
events provide the information on when, where, and how the exchanges of resources
occurred. The economic agents provide the information on who controlled the eco-
nomic resources during these exchanges. All this information is necessary for future
generation of IT systems. In addition, REA models (business processes) can be
arranged into REA value chains by which enterprise transaction cycles can be
described.

REA ontology anomalies have its origin in absence of rigorous theoretical foun-
dation. REA model itself does not have specific states from which a state machine can
be derived. Instead, only the resource states are identified and frequently used as the
states of the state machine. As a result of this, REA model does not provide revoking
operations such as cancellation. In addition, REA model is predominantly design to

Fig. 1. REA model with commitments and claims entities. Adopted from [18]

58 F. Hunka et al.

capture events that are concerned with the resource value or resource feature. The other
events such as business events or information events are difficult to capture and further
processed. Consequently, REA has difficulty with so called information or knowledge
entities such as contract or schedule because they are not resources. It is possible to
create them because creation expresses some value. But the real problem comes to
determine the state from which the contract is valid.

Core REA pattern which comes from double booking entry and covers resources,
events and agents is a good and verified basis for further development. However, the
other REA entities such as commitments, claims, contracts and schedule needs further
elaboration and research. The high quality C4-ness criteria and the three cardinality
laws must be met.

2.2 DEMO Ontology

DEMO, a methodology to derive conceptual models of enterprises, is based on an
ontological theory, enterprise ontology [1–4] comprised of four axioms and a theorem.
DEMO is part of the discipline of ‘enterprise engineering’ [4]. The emerging discipline
of enterprise engineering is in fact founded on the same kind of theories as more mature
engineering disciplines such as aviation and electronics. The quality of the applied
methodology is guaranteed by the underlying theories, methodologies, formal methods
[4, 13, 19] and a good body of empirical cases in many domains [17]. The DEMO
methodology claims to provide models that meet the so-called C4-ness3 quality criteria
[9]. Specific results of C4-ness qualities are (i) that any enterprise that may exist in the
real world, including virtual CC-CP enterprises, can be modeled correctly in one and
only one way; and (ii) the DEMO model(s) for any such enterprise must provide
concise and comprehensive factual knowledge about the operation of the enterprise.
These two claimed results must be empirically tested for co-creation and co-production,
as described in Sect. 3.

The generic pattern of DEMO transactions with clear phases of communication
(actagenic, action execution, factagenic) provides analysts and participating enterprises
with a powerful conceptual framework for reflection upon the trust foundations and
risks between the initiator and the executor of the transaction.

An enterprise in operation is defined as a social system of actors who communicate
about their productions [3]. The system is purposefully constructed to fulfill a specific
function. Actors communicate about their productions by communication acts, which
result in communication facts. All communication facts represent a shared under-
standing and a binding agreement of all actors about their production.

3 C4-ness [3], an ontological quality criterion, is the abbreviation of Concise and Coherent and
Consistent and Comprehensive. (i) Conciseness refers to the requirement that anything that is not in
the domain of the ontology should not be represented in any model; (ii) Coherence refers to the
‘semantic meaningfulness of the symbols and their relations from every perspective’; (iii) Consis-
tency refers to the absence of anomalies; (iv) Comprehensiveness refers to the condition that the
model encompasses “everything” that is part of the ontology.

Towards Co-creation and Co-production in Production Chains Modeled 59

2.3 Enterprise Operating System

In order to implement a working software engineering artifact, a number of tech-
nologies are available. The Enterprise Operating System (EOS) [8] is founded on (i) the
DEMO methodology and theories [3, 4] to develop high quality DEMO enterprise
models; (ii) the DEMO Engine [19], a software engine that executes DEMO models “as
native source code”; and (iii) state of the art process mining tools. The enterprise
operating system has been implemented precisely following the Generic Systems
Development Process for Model-Driven Engineering (GSDP-MDE) [19].

The EOS is analogous to an operating system for a computer, and represents the
active abstraction layer between human actors of the organization, “enterprise in
operation” and the enterprise information systems such as the intended REA based
information systems and many more. The overview contains the following elements:

(i) DEMO Modeling. The starting point of the process is some desired enterprise
that must operate in the real world. Application of the DEMO modeling
methodology provides the four DEMO aspect models, which are actually design
specifications for an enterprise;

(ii) Model Validation. The design science cycle [15, 16] of model validation by
shared reasoning of stakeholders - designers may return a functionally ‘better’
design of that enterprise. This cycle is repeated until the stakeholder/designers
accept a specific model as appropriate for the desired functional purpose;

(iii) Execution of DEMO models by the DEMO Engine. The DEMO engine that
executes a DEMO model constitutes the enterprise operating system (EOS) [8].
Enterprise models in execution are dynamic discrete systems with a precisely
defined state space and state transition space [10–12].

Fig. 2. Overview of the Enterprise Operating System (EOS) [13]

60 F. Hunka et al.

2.4 The Four Technologies of the Enterprise Operating System

The EOS provides four technologies to ensure that enterprises operate precisely
according the defined DEMO models and that complete information is provided.

(i) Total Prescriptive control [10–12, 14], implying that the whole enterprise,
including each actor - here the participating enterprises Principal and Contractor
(Fig. 3), can act exclusively within the boundaries of the (DEMO) business
process. More precisely stated: any actor can execute exclusively within the
allowed discrete state space of the DEMO model. It is impossible [10, 11, 14] for
an actor “doing things their own way”, which guarantees operational compliance
of each actor to the model. This approach provides all capabilities provided by
contemporary BPMN-based workflow systems, offers new capabilities and
eliminates the many flaws of BPMN-based workflow systems [21].

(ii) Total descriptive knowledge. Each communication act and resulting communi-
cation fact is captured and recorded [13, 19]. The completeness and correctness
of all acts is guaranteed (within the scope of the EOS).

(iii) Factual Knowledge. Based on (a) the recorded total descriptive knowledge;
(b) the factual knowledge of the “outside world”; (c) specification of facts
defined in the DEMO OFD (Object Fact Model) [3], the EOS renders Factual
Knowledge about the operation of the enterprise with guaranteed completeness
and correctness.

(iv) Enterprise Operation Analysis (EOA). The factual knowledge can be analysed
using state of the art process mining tools [5]. This provides deep insight in the
quality of the operation in terms of governance, risk, compliance, effectiveness
and efficiency. This insight may lead to a redesign of an improved DEMO
model.

2.5 REA Ontology Support

The new technology to be investigated, defined in this paper [Sect. 4] as future
research, is the provisioning of factual knowledge to REA based information systems.
This demands some yet unknown conceptual mapping system to be devised. Factual
knowledge for financial information systems may comprise items such as “invoice has
been sent”, “Payment has been made”, “goods have been delivered”, but also “invoice
is disputed”, “goods have been rejected”, all items of relevance for financial infor-
mation systems. The challenge is to map facts, defined by the DEMO Fact Model to
REA defined facts for financial information systems, in such a way that correctness and
completeness is guaranteed.

3 Ontological DEMO Model for Co-creation
and Co-production

In this section the world of co-creation and co-production (“CC-CP”) is investigated.
The first version of a generic ontological CC-CP DEMO model is proposed and briefly
validated.

Towards Co-creation and Co-production in Production Chains Modeled 61

3.1 The World of Co-creation and Co-production

Many highly specialized enterprises do not have a well-defined portfolio of products
with fixed prices but offer their capabilities to meet the specific requirements of their
Principals. We define as follows here: co-creation captures the principal and the con-
tractor(s) working together on the engineering of an acceptable artifact; co-production
captures the shared production of the engineering artifact by both principal and con-
tractor(s), including matching financial transactions.

Typical examples are consulting firms, advertising companies and subcontractors in
industries like the automotive industry. We observe, in line with the DEMO con-
struction axiom, a hierarchical tree of enterprises, shown in Fig. 3, where ontological
“red” transactions are shown. There is a parent enterprise, “Principal” CA-1,
co-operating closely with “Contractor” enterprises, CA-2 to CA-6. A Principal with
one or more Contractor enterprise constitute together a virtual co-creation and
co-production “CC-CP” enterprise. In Fig. 3, CA-1 with CC-CP transaction T-1 and
Contractor/Principal CA-2 constitute a CC-CP enterprise. Similarly CA-1 with CA-3,
etc. CA-2 plays a dual role, within the CC-CP enterprise with CA-1, CA-2 executes the
role of Contractor. Within the CC-CP enterprise between CA-2 and CA-5 CA-2 exe-
cutes a Principal role. The difference with a “typical” enterprise is that a normal
enterprise has boundaries defined by company status, has a management, has a business

Fig. 3. Production chain example of virtual CC-CP enterprises. (Color figure online)

62 F. Hunka et al.

objective to be profitable etc. A virtual enterprise is only bound by the ad-hoc CC-CP
agreements, captured by commitments based on communicative acts.

3.2 Proposed Ontological Co-creation and Co-production Model

The proposed CC-CP model is shown in Fig. 4, with two compound actors, Principal
and Contractor. The Principal needs products from the Contractor of which the spec-
ifications and price are not yet well-defined. There are three different phases.

The Co-creation Phase. Transaction T-1 represents a production fact the definition of
what the production to be delivered by the Contractor must be. Typically production
specifications with quality criteria, materials used, testing procedures to be followed.
The initiator of T-1 is the Principal who issues T-1.Request to the executor, Contractor,
to provide appropriate production specifications. Usually this transaction encapsulates
other transactions for engineering, product development etc. If T-1 is Stated and
Accepted then there is a shared agreement, without any ambiguity, between Principal
and Contractor about what the co-production must be.

Transaction T-2 represents as production fact the definition of the price, including
specific payment terms and conditions, etc. precisely applied to the production defined
by the transaction result of T-1. The Principal is the initiator who issues a T-2.Request
to the Contractor for a price for the production defined in T-1. This implies the
condition that T-1.Accepted must be true before T-2.Request can be issued by the
Principal. T-2.Accepted means that the two actors agree that there is a well-defined
price for the production. It does not mean yet that the two actors have decided to
commit to a delivery and payment. However, price negotiations may occur here; a T-2.
Stated is a quotation that can be accepted or rejected. One option is that there is no
agreement, for example the production in this way is too expensive. This is a common
situation, leading to the possibility to revoke T-1.Accepted and T-1.Stated and redesign
the production in T-1 via a renewed T1.Request and T-1.Promise.

The Contract Phase. At this stage, with T-1.Accepted and T-2.Accepted, represent
the situation that there is a well-defined but yet unsigned contract on the table. The
contract is composed of two directly related mutually binding obligations; defined by
the two transaction results of T-1 and T-2. It is important to realize that a contract is not
the delivery of goods/services itself, a contract is a binding commitment to deliver
goods/services/payments in both directions, depending on certain defined conditions.
The Principal requests the Contractor a commitment to deliver the production, T-3, by
issuing T-3.Request. The Contractor requests the Principal a commitment to pay the
price, T-4, by issuing T-4.Request. The two signatures on the contract are represented
by T-3.Promised and T-4.Promised. Transaction T-3 represents the commitment, an
obligation that the production has to be delivered by the Contractor, executor, to the
Principal, initiator. This obligation is not identical to the actual delivery of productions,
which are represented by multiple transaction instances of transaction T-5.

At some moment the Contractor may issue T-3.State, meaning that the Contractor
thinks that the contractual agreement to deliver the product has been fulfilled.

Towards Co-creation and Co-production in Production Chains Modeled 63

If the Principal agrees then the Contractor may issue T-3.Accept, the contractual
obligation for the production has been fulfilled. Similarly, transaction T-4 represents
the obligation to pay the price to be paid by the Principal, executor, to the Contractor,
initiator. Multiple instances of T-6, separate payment(s) may constitute the fulfillment
of the obligation of T-4. If both actors agree, they will issue T-4.State and T-4.Accept,
the contractual obligation to pay the correct price has been fulfilled. Contract disputes
are very common and may involve either the payment, or the production or both.
Parties may reach agreement that the contract has been fulfilled partially, only correct
payment of the price (T4.Accepted) or correct delivery of the production (T-3.
Accepted). The communicative act T-3.Promised by the Contractor binds the Con-
tractor to its obligation. This obligation can be fulfilled by one or more deliveries of
“things” to the Principal, each delivery represented by an instance of T-5. When the

Fig. 4. The proposed ontological CC-CP DEMO model.

64 F. Hunka et al.

whole of all delivered “things” may constitute the fulfillment of the contract, the
Contractor may issue T-3.State. If the Principal agrees he issues a T-3.Accept and
parties agree that the contract has been fulfilled by the Contractor. Parties may disagree
about the delivery by a T-3.Reject etc.

Similarly, the Contractor may request for partial payments, each represented by an
instance of T-6.Request, implemented by sending an invoice. These payments may or
may not be directly linked to accepted deliveries, depending on the contract. An
invoice may be rejected by issuing a T6.Decline. A payment (by bank) by the Principal,
executor, represents an implicit T6.Promise followed by a T6.State. The Contractor,
initiator may however reject this payment, typically if the payment does not comply
with the amount specified by the invoice. This an important legal figure, a partial
payment that is either going to be accepted or rejected.

The Co-Production Phase. The actual co-production is captured by one or more
instances of transaction T-5 and T-6. Since the Contractor signed the contract, he has
the obligation to issue T-5.Promise for multiple deliveries of productions, as long as the
T-5.Request fits within the contract. The co-production phase encompasses also mul-
tiple payments, instances of T-6. Often an instance of T-6 is directly related to an
instance of T5, as stipulated in the contract. The co-production phase ends when the
Principal and the Contractor have fulfilled their obligations defined in T-3 and T-4. The
fulfilment of the obligation of goods/services delivered by instances of T-5 will result
in T-3 being Stated and Accepted. Similarly, the fulfilment of the obligation of Pri-
cePaid delivered by instances of T-6 will result in T-4 being Stated and Accepted. The
contract has been fulfilled by both parties.

3.3 Discussion of the Model Duality

There is a strong duality in this model; the specification of the products versus the price
to be paid in T-1 and T-2; the two sides of the contract in T-3 and T-4 and the deliveries
of products and price being paid in T-5 and T-6. The notions product and price are
commonly used in daily language. However, in the CC-CP model there is no real
difference between products and price. A transfer of goods/services in T-5 is balanced
by a matching transfer of something else, also goods/services in T-6. In daily life the
goods of T-6 are concrete (or abstract titles to) certain round pieces of metal, also
known as “coins”. In other economic systems this might be potatoes or shoes. A bank
transfer is the delivery of a number of abstract coins from one account to another. So,
the Principal and the Contractor agree finally in T-3 and T-4 that the goods/services
defined in T-1 are well-balanced by the coins/potatoes/shoes defined in T-2.

3.4 Avoiding the Notion of Value in DEMO Models

The notion of ‘value’ is relevant in society. In most cases we observe there is not a one
sided transaction with only a transfer of goods/services from the executor to the ini-
tiator. The matching exchange is usually called value, price or payment. Also in
production environments some value has to be assigned to products in the inventory.

Towards Co-creation and Co-production in Production Chains Modeled 65

However, there are deep-rooted problems with the stance that “value” should be part of
DEMO models. The most important is the recognition that value is a (inter)subjective
“concept”, “in the eye of the beholder(s)”. Value is not an abstract or concrete thing
that exists within the theory of enterprise ontology. Adding such a notion to enterprise
ontology would give rise to unacceptable flaws. Value is certainly a concept that drives
actors’ behaviour or the design of DEMO models. Another problem is that there is no
objective way to assign a well-defined value to some objects in the real world. Shared
definitions formulated in an objective way can be devised for the calculation of some
value, but these definitions are also intersubjectively created. In the REA ontology the
notion of value exists, and this is one of the major problems to solve. It is recognized
that this stance is controversial. If it is flawed this stance will be refuted and other
approaches will be investigated.

4 Future Research Topics

4.1 Extensive Ontological CC-CP Model Validation

The CC-CP model validation should provide sufficient confidence that any imaginable
Co-creation and Co-production cooperation is well captured. This means that the
ontological model is generic, application-independent and suitable for real life appli-
cation. Analysis of a sufficient number of business cases is needed.

4.2 Extension of the CC-CP Model with Implementation Specific
Transactions

The ontological CC-CP model is implementation-independent, which means that the
model is absolutely generic. Validation using real life cases should also lead to
extension of the ontological model into an implementation specific DEMO models.
So-called infological and datalogical transactions are defined. The extended CC-CP
models should align well with the delivered business cases. Of great importance is the
requirement that any imaginable CC-CP enterprise must be implemented with perfect
correctness, meaning that the model reflects precisely the business case.

Notably extensions include transactions that implement:

(i) electronic invoicing with matching payments (implemented, fit for a
production);

(ii) verification of authorized actors following company specific procedures, for
example, a payment must be approved by at least two different authorized actors;

(iii) transactions that handle legal Value Added Tax obligations, and ensure that
these are followed correctly, implementation of other fiscal laws;

(iv) for the Contract Phase the (bitcoin) blockchain technology may provide trustless
truth, guaranteed correctness about authenticity of the contract.

66 F. Hunka et al.

4.3 Conceptual Mapping of DEMO to REA

The result is an executable specification how factual knowledge rendered by the EOS
can be mapped to the REA (Fig. 2, “Conceptual Mapping”) in such a way that a
REA-based information system can operate directly. This is considered a major task.

4.4 REA Value Chain Analysis

Value chains as proposed by the REA ontology seem to be, or must be, well repre-
sented by DEMO CC-CP models. The mapping of concepts must be elaborated.
An REA value chain is represented by a network of REA models that are linked
together by resource stockflow creating thus so called transaction cycle that is con-
tinually repeated. The purpose of REA value chain is to directly or indirectly contribute
to the creation of the desired features of the final product or service. An REA value
chain defines interfaces between individual REA models. In REA value chain analysis
“conceptual mapping” will be utilized, in which a resource is represented by a pro-
duction fact in DEMO methodology. Apart from conceptual mapping between DEMO
primitives and REA concepts, synchronization mechanism between individual business
processes has to be identified and described. By utilizing value chain one can get an
overview of the whole enterprise model.

Acknowledgements. The paper was supported by the grant provided by Ministry of Education,
Youth and Sports Czech Republic, reference no. SGS15/PRF/2016. We thank Dr. Jorge Sanz
who identified the challenges of the CC-CP domain to us.

Reflection. The representation of the real world, populated with humans, based on the limited set
of concepts of an ontology and control their actions, is a reductionist approach. On one side it
may be very useful, on the other side it may turn out later to be inhumane. If it is found to be
inhumane then it must be refuted.

References

1. Ciao! Consortium; Cooperation & Interoperability - Architecture & Ontology. www.
ciaonetwork.org

2. DEMO Knowledge Centre, Design and Engineering Methodology for Organizations (2012).
www.demo.nl

3. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg (2006)
4. Dietz, J.L.G., Hoogervorst, J.A.P.: The discipline of enterprise engineering. Int.

J. Organisational Des. Eng. 3(1), 86–114 (2013)
5. Dudok, E., Guerreiro, S., Babkin, E., Pergl, R., van Kervel, S.J.: Enterprise operational

analysis using DEMO and the enterprise operating system. In: Aveiro, D., Pergl, R., Valenta,
M. (eds.) EEWC 2015. LNBIP, vol. 211, pp. 3–18. Springer, Heidelberg (2015)

6. Dunn, C.L., Cherrington, O.J., Hollander, A.S.: Enterprise Information Systems: A Pattern
Based Approach. McGraw-Hill/Irwin, New York (2004)

7. e-Invoicing/e-Billing – Key stakeholders as game changers - Bruno Koch, Billentis, August
2014

Towards Co-creation and Co-production in Production Chains Modeled 67

http://www.ciaonetwork.org
http://www.ciaonetwork.org
http://www.demo.nl

8. European Multi-Stakeholder Forum on e-invoicing. Electronic invoicing for small and
medium enterprises: Activity 2 – Experience and Good practice (2013)

9. Gómez-Pérez, A., Rojas-Amaya, D.: Ontological reengineering for reuse. In: Fensel, D.,
Studer, R. (eds.) EKAW 1999. LNCS (LNAI), vol. 1621, pp. 139–156. Springer, Heidelberg
(1999)

10. Guerreiro, S.: Enterprise governance enforcement in the operation of the runtime
transactions using DEMO and ACM. In: Enterprise Engineering Working Conference

11. Guerreiro, S., Vasconcelos, A., Tribolet, J.: Adaptive access control modes enforcement in
organizations. In: Quintela Varajão, J.E., Cruz-Cunha, M.M., Putnik, G.D., Trigo, A. (eds.)
CENTERIS 2010. CCIS, vol. 110, pp. 283–294. Springer, Heidelberg (2010)

12. Guerreiro, S., van Kervel, S.J., Vasconcelos, A., Tribolet, J.: Executing enterprise dynamic
systems control with the demo processor: the business transactions transition space
validation. In: Rahman, H., Mesquita, A., Ramos, I., Pernici, B. (eds.) MCIS 2012. LNBIP,
vol. 129, pp. 97–112. Springer, Heidelberg (2012)

13. Guerreiro, S., Kervel, S., Babkin, E.: Towards devising an architectural framework for
enterprise operating systems. In: Proceedings of the 8th International Conference on
Software Paradigm Trends (2013)

14. Guerreiro, S., Tribolet, J.: Conceptualizing enterprise dynamic systems control for run-time
business transactions. In Proceedings of the 21st European Conference on Information
Systems, paper 56 (2013)

15. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75–105 (2004)

16. Hevner, A.R.: A three cycle view of design science research. Scandinavian J. Inf. Syst.
19 (2), 87–92 (2007). Information systems and Decision Sciences

17. Hintzen, J., van Kervel, S.J.H., van Meeuwen, T., Vermolen, J.A.J., Zijlstra, B.:
A professional case management system in production, modeled and implemented using
DEMO. In: Proceedings of the 16th IEEE Conference on Business Informatics (2014)

18. Hruby, P.: Model-Driven Design Using Business Patterns. Springer, Heidelberg (2006)
19. van Kervel, S.J.H., Dietz, J.L.G., Hintzen, J., van Meeuwen, T., Zijlstra, B.: Enterprise

ontology driven software engineering. In: Proceedings of the International Conference on
Software Paradigm Trends (2012)

20. McCarthy, W.E.: The REA accounting model: a generalized framework for accounting
systems in a shared data environment. Account. Rev. 57, 554–578 (1982)

21. Van Nuffel, D., Mulder, H., Van Kervel, S.: Enhancing the formal foundations of BPMN by
enterprise ontology. In: Albani, A., Barjis, J., Dietz, J.L. (eds.) CIAO! 2009. LNBIP, vol. 34,
pp. 115–129. Springer, Heidelberg (2009)

22. Sarbanes-Oxley act, “SoX”, 107th Congress Public Law 204, United States of America,
30 July 2002. http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.
htm

68 F. Hunka et al.

http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm

Evolvability

Building an Evolvable Prototype for a Multiple
GAAP Accounting Information System

Els Vanhoof1(B), Peter De Bruyn1, Walter Aerts1,2, and Jan Verelst1

1 University of Antwerp, Antwerp, Belgium
{Els.Vanhoof,Peter.DeBruyn,Walter.Aerts,Jan.Verelst}@uantwerp.be

2 Tilburg University, Tilburg, The Netherlands

Abstract. In this paper we build a prototype of an evolvable Account-
ing Information System (AIS) that supports multiple Generally Accepted
Accounting Standards (GAAP) reporting. Reporting in multiple GAAP
can have different origins: differences in local and tax GAAP, belonging
to an economic group or additional regulations. Regulations change fre-
quently: additional GAAP are imposed on companies and GAAP them-
selves are updated to changing economic conditions. AIS need to support
multiple GAAP and evolvability is important because of the changing
nature of these GAAP. Normalized Systems Theory (NST) proposes the-
orems for building evolvable information systems, but lacks specific guid-
ance in business domains (e.g. accounting). Therefore we contribute to
literature by showing the feasibility of using NST to design and build an
AIS. We use design principles from literature to start building our pro-
totype. The resulting prototype shows into more detail how the design
principles are used into an actual software design.

Keywords: Multiple GAAP · Normalized Systems Theory · Design
science · Mixed methods · Prototyping

1 Introduction

Companies need to report financial information to different stakeholders like
the regulating and supervisory (government) bodies, investors/shareholders, cus-
tomers and suppliers. However, the different regulators use different GAAP (gen-
erally accepted accounting principles) that prescribe how companies need to
record and process events, which financial information they need to report, how
this information needs to be presented and so on [1]. A company might be obliged
to simultaneously record and process events in reports using different GAAP.

Moreover, GAAP are not a static given: they change frequently. For example,
recent events like the credit crisis and corporate fraud scandals have increased the
demand for transparency (and an increased quality and relevance) of financial
information. Other changes might include more guidance on specific issues that
were not addressed before.

To support recording and processing of events, companies use accounting
information systems (AIS). Therefore, such information systems need a design
c© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 71–85, 2016.
DOI: 10.1007/978-3-319-39567-8 5

72 E. Vanhoof et al.

which supports reporting in multiple GAAP (each subject to change). While the
implementation of different and multiple GAAP typically requires customiza-
tions and changes to an AIS over time, research indicates that performing
changes to software packages becomes more difficult over time [2]. AIS are usu-
ally not designed to cope with multiple GAAP, although this is not a new issue
[3]. Moreover, whenever changes occur in these GAAP or a change of GAAP is
necessary, this results in difficulties in changing and maintaining the AIS [4]. In
the AIS literature, evolvability is not studied and no guidance on how to handle
multiple GAAP is provided. Although multiple authors acknowledge the need
to study the multiple GAAP issue [3,5,6].

Normalized Systems Theory (NST) [7] prescribes principles and design the-
orems to design an evolvable information system so that a set of predefined
anticipated changes can be applied easily. This theory is aimed towards infor-
mation systems in general and hence does not formulate specific guidelines for
the design of AIS that are able to report in multiple GAAP.

Previous research on this matter is conducted by [8,9]. [8] identifies com-
binatorial effects in existing multiple GAAP AIS by the use of case studies.
Combinatorial effects are used within NST to operationalize instances of lack of
evolvability (see Sect. 4). [9] uses these combinatorial effects to formulate a set of
design guidelines (or design principles). We contribute to literature by building
a prototype that adheres to three of the design principles of [9], which have been
only theoretically evaluated up to now. The prototype will serve as a proof-of-
concept for the first three design principles of [9]. Moreover, the prototype has
practical relevance by investigating the relevance and feasibility of the design
principles of [9] in a realistic setting. In this paper we ask ourselves the following
research question: can we implement an AIS for multiple GAAP using NST?
This general research question can be refined into the following questions:

1. Can we use the design principles of [9]?
2. If not, how can we redefine them?
3. What do we need in addition to these design principles?
4. How feasible is it to build an evolvable multiple GAAP AIS?

We frame our work within design science methodology work in Sect. 2. In
Sect. 3, we elaborate on the multiple GAAP reporting problem within AIS. Nor-
malized Systems Theory, our theoretical framework, is the subject of Sect. 4.
Next, we describe how we built our prototype in Sect. 5. In Sect. 6, we evaluate
the prototype. We conclude this paper in Sect. 7.

2 Design Science Methodology

The use of design science can be motivated by the perceived lack of professional
relevance of IS research [10,11]. Design science addresses this relevance problem
by designing artifacts (such as software systems) that solve real-world problems
or improve upon existing solutions [12,13]. Hevner [14] proposes three cycles
to conduct design science research: relevance, rigor and design. We address the

Building an Evolvable Prototype for a Multiple GAAP AIS 73

relevance of our research (which addresses both professional as academic rel-
evance) by electing the real-world problem of designing an evolvable AIS that
supports multiple GAAP reporting. The motivation for this problem is described
in Sects. 1 and 3. Rigor in this paper is ensured by using NST (described in
Sect. 4). The results of this paper, described in Sect. 7, contribute to literature
(and hence also to the rigor) because the evolvability criterion is an improvement
(positioned in the DSR knowledge contribution framework of [15]) upon existing
solutions. In Sects. 5 and 6, we describe the design cycle: the actual building and
evaluation of our artifact, the prototype. The prototype itself is a level 1 contri-
bution (classified as in [15]): a situated implementation of an artifact. Additional
design principles we develop, based on the prototype are a level 2 contribution
[15]: nacent design theory, which is prescriptive in nature.

Lastly we want to relate our paper to the research project it is part of. In order
to describe the overall methodology, we can use the framework presented by [16].
The entire research project consists of four design science research activities:
identify problem, design, construct and use. After each of these activities, an
evaluation of the activity needs to take place. Applied to our research project,
the first activity (identify problem) and its evaluation are described in [8] and the
design activity and its evaluation in [9]. The current paper is the third activity,
being the construct in the form of a prototype and its evaluation. If our prototype
would be further developed into a working AIS that can be used in practice, the
actual implementation by a real company could be the fourth activity.

The evaluation we conduct in Sect. 6 adheres to the evaluation framework
presented by [17] in the following ways. First, we explicate the goals of the
evaluation. We want to know whether the prototype we have built adheres to
the principles of the NST and in which way. Moreover, we want to evaluate to
which extent the design principles of [9] are applicable in a prototype and to
which extent they provide a sufficient degree of guidance. Second, we discuss
the why, when and how of our evaluation. We use a formative (why) ex-post
(when) evaluation, because our prototype is not a finished product yet and will
only provide us with insights to further develop a working AIS. The how of our
evaluation is performed by imposing changes to the prototype and evaluating
whether they cause combinatorial effects or not. Thirdly, the main property
we want to evaluate is whether the prototype is evolvable or not. Fourth, the
individual evaluation episodes are described in Sect. 6.

To be able to build the prototype, we first describe the basic modular struc-
ture of the accounting domain as shown in Fig. 1 in terms of the NST elements.
This includes the identification of data elements, their relationships and their
attributes. Next, we use the design principles of [9] to guide us during the exten-
sion of this initial design with additional functionality (to provide for instance
the multiple GAAP possibility). Then we impose two changes as mentioned in
[8,9] on the prototype and evaluate their impact. We conclude how we should
implement the design principles and what additional implementing principles we
need, by relating our conclusions to NST theorems.

74 E. Vanhoof et al.

3 Problem Statement and Earlier Research

3.1 Problem Statement

Multiple GAAP reporting affects most companies, even though some of them
are not aware of this. Several situations force companies to deal with multiple
reporting standards concurrently and/or over time. First, all companies need to
report their statutory annual financial statements to the local filing office (in
Belgium for example the National Bank, in the USA the SEC) and an adjusted
report to the tax authorities. Tax legislation is usually only seen as an additional
burden and never considered as a separate GAAP. Often, companies adjust their
chosen accounting methods to limit the differences between local GAAP and tax
GAAP. Second, an additional reporting burden is put on a company when it is
part of an international group, as it usually needs to report in the standard of
the parent company or an international standard like International Financial
Reporting Standards (IFRS) or US GAAP. Third, in case of mergers or acqui-
sitions the GAAP might change: being sold to another parent company might
result in the need to report in yet another GAAP. Finally, many companies get
additional questions from authorities to provide complementary information for
statistical purposes or get requests from suppliers, customers or the bank to
provide certain information. Although these additional reporting requirements
become only apparent on an ad-hoc basis, they might require a vast effort from
the person preparing the reports by re-collecting the information from scratch
in case the AIS is not adequately designed to cope with it.

Next to the fact that companies have to handle the different GAAP in which
they need to report, changes related to these GAAP occur as well. This concerns
both changes regarding the GAAP in which they need to report (like in case
of mergers and acquisitions) as well as changes authorities make to the GAAP
themselves. GAAP can differ from each other in five different ways [18]: definition
of concepts, recognition, measurement, presentation and disclosure and the two
additional issues of alternatives and lack of requirements.

3.2 Earlier Research

Some explicit research efforts to design multiple GAAP handling AIS are [8,9].
[8] uses case studies to study how companies design their AIS to be able to
report in multiple GAAP. Next they describe combinatorial effects (violations of
NST principles) present in those designs. These combinatorial effects are used by
[9] to propose a set of design principles to prevent combinatorial effects. These
design principles are the following [9]:

– “Postings to different GAAP should be made in separate ledgers;
– All GAAP should use the same chart of accounts;
– Postings to different GAAP should be made independently of each other;
– Every transaction that could have an accounting impact should pass through

at least five tasks (versions of the following tasks: definitions of concepts,

Building an Evolvable Prototype for a Multiple GAAP AIS 75

recognition, measurement, presentation and disclosure) before any posting is
made;

– Every measurement method, definition of a concept, recognition criterion, pre-
sentation requirement and disclosure requirement that has a separate change
driver should be separated in a distinct task, independent of the GAAP.”

Although the design principles already provide some specific guidance on how a
more evolvable multiple GAAP AIS should be built, the principles were merely
proposed on a theoretical basis. Also their impact was merely tested conceptually
by assessing the impact of the following three changes on a hypothetical design
[8,9]: (1) Creating a new account (2) New version of an entry processing task for
one GAAP (3) New version of an entry processing task for all GAAP. This means
that neither the actual effectiveness, nor the feasibility of the above mentioned
design principles to actually build an AIS in practice have been tested up to now.
Therefore, in order to perform this validation in practice, this paper reports on
the construction of an AIS prototype based on the first three design principles.

4 Normalized Systems Theory

NST uses the concepts of stability (from systems theory) and entropy (from ther-
modynamics) to prove a set of theorems for the design of information systems
[7,19]. It is aimed towards the elimination of combinatorial effects. Combina-
torial effects occur when a functional change to a system has a constructional
impact that is not only proportional to the change itself, but is also proportional
to the size of the system to which the change is proposed [7,20,21]. The theory
proposes a set of theorems which should be adhered to in order to avoid com-
binatorial effects. NST is originally applied in software design [7,20], but has
shown its relevance in the context of business process design [22] and enterprise
architectures [23]. [21] generalizes the theory so it becomes applicable for the
design of modular structures in general. This causes the study of combinator-
ial effects and the application of NST theorems to become relevant in domains
outside software design as well. The NST theorems can therefore be considered
as ways to design modular structures so that they exhibit a higher degree of
evolvability.

Applying the theory in the context of accounting, we could consider a multi-
national company with a considerable number of subsidiaries (which we consider
to be its modules), each having their own AIS. We assume that all subsidiaries
report to the parent using US GAAP. Suppose the parent wants to change the
internal reporting standard from US GAAP to IFRS. The impact of this change
is now proportional to the number of subsidiaries: every subsidiary needs to
change their AIS. Since the change is proportional to the size of the system
(here: organization), it can be considered as a combinatorial effect. Another way
to modularize (a part of) the accounting domain was proposed by [8]. Figure 1
provides a visual representation of these primitives (modular building blocks).
In this paper, we therefore use a modularity viewpoint to analyze the accounting

76 E. Vanhoof et al.

Fig. 1. Modular structure

domain and the NST theorems [7,19,21] to design a modular (accounting) struc-
ture which meets the evolvability criterion we put forward. That is, a modular
structure that adheres to the theorems will be able to change more easily over
time (with respect to a set of predefined anticipated changes), as it will not be
subject to combinatorial effects.

As adhering to NST theorems has proven to be challenging, a set of design
patterns have been proposed in certain domains [21]. These patterns are called
elements and facilitate the application of the theorems in that particular domain.
They are the recurring building blocks used to construct the envisioned mod-
ular structure. Five elements have been proposed at the software level by [24]:
data element, action element, workflow element, connector element and trigger
element. As a consequence, the development of a working software application
prototype requires the identification of the different instances of each of these
elements for the considered domain. Based on the instantiation of these elements,
major parts of the actual software code can be generated (each element instance
is expanded into a predefined recurring software structure) providing basic out-
of-the-box functionalities such as CRUD screens, waterfall screens, data import,
document upload/download, basic user management, basic reporting, etcetera.
Customizations (additional required functionality which is not offered by the
code expansion in a standard way) can afterwards be added in a structured way
by software developers, if necessary.

5 Prototype

5.1 Creating Prototypes

Our prototype was built by using the Prime Radiant, a software tool developed
by the Normalized Systems Institute (NSI) and Normalized Systems eXpanders
factory (NSX). Among other things, this tool provides a graphical user inter-
face (GUI) for the formulation of NST software elements. It therefore allows a
business analyst to insert the specification of data elements, action elements and
flow elements into the Prime Radiant. The analyst can subsequently also expand

Building an Evolvable Prototype for a Multiple GAAP AIS 77

(generate) and build (compile) software code into a working software prototype.
In this way, the analyst (1) has a more concrete representation of the envisioned
application (a real working application vs. an abstract UML diagram) to validate
the completeness, consistency, accuracy, etcetera of his own analysis model, (2)
can use this prototype to communicate and refine the functional requirements in
consultation with potential end users (a real working application vs. an abstract
UML diagram or set of use cases), (3) prove the actual feasibility of the devel-
opment of a NST compatible application of the considered model and domain,
and (4) use this prototype as a starting point to interact with software develop-
ers adding custom code into the generated application to provide non-generated
functionality [25]. Moreover, it allows an iterative way of working in which a first
version of a prototype is built, feedback is given and incorporated in an updated
model, after which a new version of the prototype is developed, and so on.

5.2 Building an Initial Data Model and Prototype

We stated before that the first step of building a NST software prototype should
consist out of the identification of instances of the different NST software ele-
ments. As our prototype aims to assess the feasibility of the design principles
of [8], they should be taken into account. Moreover, NST analysis best prac-
tices suggest the identification of these elements on an anthropomorphic (i.e.,
concurring with meaningful real-world entities) basis [25]. In doing so, we iden-
tify the following core data elements within a typical AIS as our starting point,
based on the modular structure which is visualized in Fig. 1: Event, Journa-
lEntry, Gaap, CompanyCode, Ledger, ChartOfAccounts and Account. Several
remarks regarding this first set of data elements can be made. First, we cur-
rently leave out the entry processing module and entry processing tasks for
reasons of simplicity. Second, it can be noticed that a many-to-one relationship
exists between Account–ChartOfAccounts, Ledger–JournalEntry, Ledger–Gaap,
Ledger–CompanyCode and Event–JournalEntry. A many-to-many relationship
exists between JournalEntry–Account, which should be avoided [25]. This leads
to the creation of an additional data element JournalEntryLine and a many-
to-one relationship between Account–JournalEntryLine and JournalEntryLine–
JournalEntry. Third, we cannot use the data element Event, as it is too general:
we need to identify different events that occur and should be recorded in an
AIS. For example, we identify a SalesInvoice, a SalesDelivery, a SalesOrder and
a Payment as events in a standard order-to-cash process and therefore addi-
tional data elements. Lastly, the data element CompanyCode is artificial and
non-anthropomorphic (in the sense that it does not concur with an actual real-
world concept) in nature. As a consequence, we replace this data element with
the data element Company.

Next, attributes (fields) for the different data elements can be identified. First,
all data elements have an attribute “name”, which acts as a unique identifier.
Next, for all many-to-one relationships, the data element at the many side of
the relationship needs to have an attribute that links the data element to one
particular instance of the other data element. For ChartOfAccounts, Company,

78 E. Vanhoof et al.

Fig. 2. Entity relationship diagram of the prototype

Ledger and Gaap no additional attributes are needed, at this point in time. For
Account we use both a name and a number as attributes. A JournalEntry has
a date, a JournalEntryLine has an amount and a debit/credit attribute. The
determination of data value types (such as String or Integer) is currently left
out of scope. In Fig. 2, we represent the final model in an entity relationship
diagram.

Based on the data model as described above, we can generate a first version
of a prototype. As explained earlier, a set of out-of-box functionalities such
as CRUD screens is provided by the code generation as triggered by the Prime
Radiant. We can therefore immediately start to create instantiations of the data
elements in the model. Stated otherwise: we can start with inserting data of the
company for which we want to use this AIS.

5.3 A Second Version of the Prototype

In the first version of the prototype, the design principles of [9] are not yet
used. Therefore, in this section we propose additional functionality that helps

Building an Evolvable Prototype for a Multiple GAAP AIS 79

to enforce the first two design principles. For the first design principle, “sepa-
rate ledgers”, we add functionality that automatically creates the needed ledgers
when a new GAAP or a new company is added to the system. For the second
design principle, “use the same chart of accounts”, an additional restriction
should be added to the data model: a many-to-one relation between Company
and ChartOfAccounts. Further, the prototype should make sure only Accounts
from the right ChartOfAccounts can be selected in a JournalEntryLine. Updat-
ing the model (for the second adaptation), implementing some small customiza-
tions (for the first and third adaptation), and regenerating the application then
results in a second version of the prototype.

5.4 Adding Posting Functionality to the Prototype

Now that we have set up an AIS, we want it to be capable to allow the actual
posting of journal entries based on events. We will use an example in which Rev-
enue needs to be posted after a SalesInvoice event. Hence, we create a data ele-
ment SalesInvoice with a date and amount attribute. For example, the date of a
particular SalesInvoice is 15/08/2016 and the amount is 20,000. The SalesInvoice
is related to the data element JournalEntry with a one-to-many relationship.

Furthermore, some processing functionality needs to be added to the proto-
type as an accounting context requires the processing of a SalesInvoice resulting
in journal entries for all GAAP. We therefore create a SalesInvoiceProcessor
action element which is triggered after a SalesInvoice is created, therefore repre-
senting an elementary flow element operating on the SalesInvoice data element.
This action element is responsible for processing each individual SalesInvoice
which is created by instantiating the appropriate JournalEntries and JournalEn-
tryLines. In a situation with two GAAP (for example, Belgian GAAP and IFRS)
having identical recognition criteria, the SalesInvoiceProcessor would therefore
create two identical JournalEntries, with linked JournalEntryLines. Adding this
processing functionality results in a third version of our prototype.

Table 1 provides an overview of the exemplary booking in this context. For
every data element (indicated in bold), the attributes are indicated in the left
column and their specific values in the right column.

6 Evaluation

6.1 Evaluation Regarding the Design Principles

The initial data model (described in Sect. 5.2) is rather general and does not yet
incorporate the design principles as proposed by [9]. It is also not straightfor-
ward to actually impose these principles on the system. For instance, the first
design principle requires to separate ledgers for different GAAP in the system:
however, this is not enforced by this data model, this is a choice that needs
to be made when preparing the system for operational use (by setting up the
configuration such as the creation of actual ledgers, accounts, GAAPs, etcetera).

80 E. Vanhoof et al.

Table 1. Resulting journal entries from SalesInvoiceProcessor

SalesInvoiceProcessor

JournalEntry 1 JournalEntry 2

ledger ledger for Belgian GAAP ledger ledger for IFRS

date 15/08/2016 date 15/08/2016

journalEntryLine link to: journalEntryLine link to:

JournalEntryLine 1 JournalEntryLine 3

JournalEntryLine 2 JournalEntryLine 4

JournalEntryLine 1 JournalEntryLine 3

debit/credit debit debit/credit debit

amount 20,000 amount 20,000

account Trade Receivables account Trade Receivables

JournalEntryLine 2 JournalEntryLine 4

debit/credit credit debit/credit credit

amount 20,000 amount 20,000

account Revenue account Revenue

Stated otherwise: this prototype allows but does not enforce the adherence of
the considered design principles. Accurate documentation could assist in this
matter. For example, such documentation would describe that the data element
Ledger is the collection of JournalEntries according to one GAAP. The second
design principle, to use only one chart of accounts, is also not enforced by the
current data model and again a configuration setting. Hence, documentation
should clarify that all Ledgers should use the same ChartOfAccounts.

Also in the second version of the prototype, there are some additional con-
straints added, but they do not prevent misuse of the system. For example, it is
still possible to create multiple Companies for the different GAAP and in that
way avoid the constraint to use the same ChartOfAccounts. Therefore, we believe
these design principles cannot be enforced by the data model, but documentation
for the use of the prototype is necessary.

The third design principle is proposed in the third version of the prototype.
Although, it depends on the implementation of the SalesInvoiceProcessor, which
is a choice made at design time.

6.2 Configuration of Prototype

Now we start to configure our prototype for use. First, we create an instance of
the data element Company for which we want to set up the AIS (we will call
this company “AntwerpComp”). Second, we instantiate “IFRS” and “Belgian
Gaap” from the data element Gaap, assuming that our company needs to report
in multiple GAAP. Third, we create a separate Ledger for each GAAP (following
the design principle “separate ledgers”). Next, we create a ChartOfAccounts in

Building an Evolvable Prototype for a Multiple GAAP AIS 81

which all needed accounts can be contained (following the design principle “use
the same chart of accounts for all GAAP”). Finally, we create some Accounts
that belong to the created ChartOfAccounts (for example, 7000000 Revenue
product X and 7100000 Revenue product Y).

6.3 Evaluating the Impact of Change 1

To further demonstrate the practical value of the design principles, we impose
changes to the prototype incorporating the design principles of [9] and analyze
whether they result in a combinatorial effect. This allows us to further evaluate
the effectiveness of the design principles and the prototype.

As a first change, we consider the creation of a new account in the ChartO-
fAccounts that is used by all GAAP. For example, a company starts selling a
new product and wants a separate account to record the revenue of the product:
account number 7200000 with description “Revenue product Z”. This requires
the creation of that one Account and the definition to which ChartOfAccounts
that Account belongs. Since we are enforced to use the same ChartOfAccounts
for all Ledgers of the same Company, the Account should only be created once
within the same Company. This impact is located at only one place and is not
related to the number of GAAP, the amount of entries in the system or any
other variable reflecting the size of the system.

By using our prototype, we can therefore conclude that the creation of a
new account can be incorporated without a combinatorial effect. The prototype
furthermore illustrates the feasibility of the first two design principles of [9]. We
can also clearly define the boundary of our current design: the combinatorial
effect that arises when adding a new account is prevented as long as the new
account is only used by one company. If a new Account needs to be added to
all ChartOfAccounts of all Companies (for example, a new kind of tax on labor
is introduced by the government and this new kind of tax needs to be recorded
separately in the statement of profit or loss), this change causes a combinatorial
effect.

6.4 Evaluating the Impact of Change 2

As a second change, we study the creation of a new version of an entry processing
task for one GAAP. We consider the situation in which some revenue recognition
criteria are changed [8,9]: from recognition when the invoice is drafted to recog-
nition when the goods are delivered. For this purpose, we first need to add some
data element instances to our prototype to represent this additional complexity.
Next to the event SalesInvoice, also the event SalesDelivery becomes relevant
now, which we add. Date is the only relevant attribute for SalesDelivery. For
example: the date of a particular SalesDelivery is 03/08/2016.

Having created these data and action element (instances), we can analyze the
impact of changing one entry processing task. If we change the considered rev-
enue recognition criterion, a SalesDelivery will from that moment also be related
to a JournalEntry with a one-to-many relationship. Moreover, SalesDelivery and

82 E. Vanhoof et al.

Table 2. Resulting journal entries from SalesDeliveryProcessor and SalesInvoice-
Processor

SalesDeliveryProcessor

JournalEntry 1

ledger IFRS ledger

date 03/08/2016

journalEntryLine link to nr 1 and 2

JournalEntryLine 1 JournalEntryLine 2

debit/credit debit debit/credit credit

amount 20,000 amount 20,000

account Invoices to be prepared account Revenue

SalesInvoiceProcessor

JournalEntry 2 JournalEntry 3

ledger Belgian GAAP ledger ledger IFRS ledger

date 15/08/2016 date 15/08/2016

journalEntryLine link to nr 3 and 4 journalEntryLine link to nr 5 and 6

JournalEntryLine 3 JournalEntryLine 5

debit/credit debit debit/credit debit

amount 20,000 amount 20,000

account Trade Receivables account Trade Receivables

JournalEntryLine 4 JournalEntryLine 6

debit/credit credit debit/credit credit

amount 20,000 amount 20,000

account Revenue account Invoices to be prepared

SalesInvoice have a one-to-one relationship. To process the SalesDelivery in an
accounting context we need a task, SalesDeliveryProcessor, to be executed after
the SalesDelivery is created. For IFRS, revenue should from now on be recog-
nized on delivery, so we need to adjust the IFRS journal entries. The entries
for Belgian GAAP remain unchanged. The result of the SalesDeliveryProces-
sor cannot yet be depicted, because at delivery date no instance of SalesInvoice
is created yet and since the SalesDelivery has no amount, the amount of Rev-
enue is not yet known. Therefore we introduce another event, SalesOrder, having
the attributes date and amount. In our example we assume an order with date
01/08/2016 and amount 20,000. SalesOrder also has a one-to-one relationship
with SalesDelivery. The amount of the SalesOrder will be used as the amount of
revenue we recognize. In Table 2 we show the resulting JournalEntries and Jour-
nalEntryLines for the SalesDeliveryProcessor and the SalesInvoiceProcessor. We
also show the result in JournalEntries and JournalEntryLines in the graphical
user interface of the prototype in Fig. 3.

The impact of the change is a change of the JournalEntry for the chang-
ing GAAP (IFRS), the creation of a SalesDeliveryProcessor and the additional
JournalEntry for the IFRS. All these changes are dependent on the change itself

Building an Evolvable Prototype for a Multiple GAAP AIS 83

Fig. 3. Three screenshots of the JournalEntries and JournalEntryLines in the prototype

and not on the number of GAAP, the amount of entries in the system or any
other variable reflecting the size of the system.

By using our prototype, we can therefore conclude that changing an entry
processing task for one GAAP can be performed without combinatorial effects.
The prototype furthermore illustrates the feasibility of the third design principle
of [9]. We can even note that ideally, the principle should be applied in a more
strict way: the processor tasks should be separated for each GAAP. Moreover,
where we considered the entire entry processing module as one atomic (processor)
task for illustrative reasons, the module might consist out of different tasks in
reality. Some more guidance on how to design this inner structure of an entry
processing module is provided by design principles 4 and 5 of [9], of which we
stated before that they are out of scope for this paper.

7 Conclusion

In this paper, we test the first three design principles of [9] to build a pro-
totype AIS that supports multiple GAAP reporting. With this prototype we
contribute to the literature by providing evidence that building an evolvable

84 E. Vanhoof et al.

AIS (with respect to certain changes) is feasible. Moreover, we provide practical
evidence for three of the design principles of [9]: (1) Postings to different GAAP
should be made in separate ledgers (2) All GAAP should use the same chart
of accounts (3) Postings to different GAAP should be made independently of
each other. In this process, some additional insights were obtained regarding the
limitations and required additions of these design principles in the context of
building an actual software system. The design principles have implications at
both the design time and run time of the prototype: whereas some principles
can be enforced during the definition of the model of the prototype, others (like
using the same chart of accounts) have to be configured at run time. This con-
figuration phase is the phase before actually starting the posting of individual
JournalEntries to Ledgers of a company.

This paper is limited to building a prototype that does not cover enough
functionality to be regarded as a comprehensible AIS, testable by companies in
practice. Moreover, since the design principles do not cover all possible com-
binatorial effects of AIS, our prototype is also limited to providing a solution
to avoid the combinatorial effects targeted by the considered design principles.
That also implies that several design issues in AIS have not been covered. In
future research this can be solved by extending the scope: searching for addi-
tional combinatorial effects in AIS by studying more case companies and by
studying other aspects of AIS like for example XBRL and cash flow statements
using the direct method. Next, there are research opportunities in other business
domains like logistics, production, etcetera. Moreover, additional research efforts
will be made to develop additional general design principles at the business (like
[22]) and the enterprise level (like [21,23]) based on NST.

References

1. Sinnett, W.M., Willis, M.: The time is right for standard business reporting.
Financ. Executive 25(9), 23–27 (2009)

2. Lehman, M.: Programs, life cycles, and laws of software evolution. Proc. IEEE
68(9), 1060–1076 (1980)

3. Grabski, S.V., Leech, S.A., Schmidt, P.J.: A review of ERP research: a future
agenda for accounting information systems. J. Inf. Syst. 25(1), 37–78 (2011)

4. Meall, L.: Can you comply? Accountancy 133(1329), 73–74 (2004)
5. Guan, J., Levitan, A.S., Kuhn, J.R.: How AIS can progress along with ontology

research in IS. Int. J. Acc. Inf. Syst. 14(1), 21–38 (2013)
6. Geerts, G.L., Graham, L.E., Mauldin, E.G., McCarthy, W.E., Richardson, V.J.:

Integrating information technology into accounting research and practice. Acc.
Horiz. 27(4), 815–840 (2013)

7. Mannaert, H., Verelst, J.: Normalized Systems: Re-creating Information Technol-
ogy Based on Laws for Software Evolvability. Koppa (2009)

8. Vanhoof, E., Huysmans, P., Aerts, W., Verelst, J.: Evaluating accounting infor-
mation systems that support multiple GAAP reporting using normalized systems
theory. In: Aveiro, D., Tribolet, J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol.
174, pp. 76–90. Springer, Heidelberg (2014)

Building an Evolvable Prototype for a Multiple GAAP AIS 85

9. Vanhoof, E., Aerts, W.: Guidelines to design evolvable multiple GAAP accounting
information systems. In: Proceedings of the Twentieth Americas Conference on
Information Systems (AMCIS 2014), Savannah, 7–9 August 2014

10. Benbasat, I., Zmud, R.W.: Empirical research in information systems: the practice
of relevance. MIS Q. 23(1), 3–16 (1999)

11. Hirschheim, R., Klein, H.K.: Crisis in the is field? a critical reflection on the state
of the discipline. J. Assoc. Inf. Syst. 4, 237–293 (2003)

12. March, S.T., Smith, G.F.: Design and natural science research on information
technology. Decis. Support Syst. 15(4), 251–266 (1995)

13. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75–105 (2004)

14. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst.
19, 87–92 (2007)

15. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for
maximum impact. MIS Q. 37(2), 337 (2013)

16. Sonnenberg, C., vom Brocke, J.: Evaluations in the science of the artificial –
reconsidering the build-evaluate pattern in design science research. In: Peffers,
K., Rothenberger, M., Kuechler, B. (eds.) DESRIST 2012. LNCS, vol. 7286, pp.
381–397. Springer, Heidelberg (2012)

17. Venable, J., Pries-Heje, J., Baskerville, R.: A framework for evaluation in design
science research. Eur. J. Inf. Syst. 25(1), 77–89 (2014)

18. Fischer, M., Marsh, T.: Accounting and reporting convergence. Int. J. Acad. Bus.
World 6(1), 1–10 (2012)

19. Mannaert, H., De Bruyn, P., Verelst, J.: Exploring entropy in software systems
- towards a precise definition and design rules. In: Proceedings of the Seventh
International Conference on Systems, Saint Gilles, Reunion, pp. 93–99 (2012)

20. Mannaert, H., Verelst, J., Ven, K.: The transformation of requirements into soft-
ware primitives: studying evolvability based on systems theoretic stability. Sci.
Comput. Program. 76(12), 1210–1222 (2011)

21. De Bruyn, P.: Generalizing normalized systems theory: towards a foundational
theory for enterprise engineering, Antwerp. Ph.D. dissertation - AES faculty, MIS
department, University of Antwerp, Antwerp (2014)

22. Van Nuffel, D.: Towards Designing Modular and Evolvable Business Processes.
Ph.D. dissertation - AES faculty, MIS department, University of Antwerp (2011)

23. Huysmans, P.: On the Feasibility of Normalized Enterprises: Applying Normalized
Systems Theory to the High-Level Design of Enterprises. Ph.D. dissertation - AES
faculty, MIS department, University of Antwerp (2011)

24. Mannaert, H., Verelst, J., Ven, K.: Towards evolvable software architectures based
on systems theoretic stability. Softw. Pract. Experience 42(1), 89–116 (2012)

25. Mannaert, H., Verelst, J., De Bruyn, P.: Normalized Systems Theory: Towards a
Foundational Theory for Evolvable Design (2016)

On the Evolvable and Traceable Design
of (Under)graduate Education Programs

Gilles Oorts1(B), Herwig Mannaert1,2, Peter De Bruyn1, and Ilke Franquet2

1 Normalized Systems Institute, University of Antwerp, Antwerp, Belgium
gilles.oorts@uantwerp.be

2 Unit for Innovation and Quality Assurance in Education of the Faculty of Applied

Economics, University of Antwerp, Antwerp, Belgium

Abstract. Over the past decades, universities have been required to
offer increasingly flexible study programs. Furthermore, study program
designs exhibit by their nature large amounts of dependencies due to
constraints of prerequisite courses, courses being taught in several study
programs, etcetera. These characteristics make managing and changing
study programs very complex, on occasion even preventing study pro-
gram changes. In this paper we present solutions to these challenges
based on the concept of modular and evolvable system design. Basic
engineering concepts such as modularity, coupling and cohesion are used
to explain and illustrate the evolvability and traceability of study pro-
grams.

Keywords: Normalized systems theory · Pedagogic · Case study ·
System engineering · Modularity · Evolvability

1 Introduction

Over the past decades, several educational challenges have emerged with which
universities have to cope. The global financial crisis has put a strain on budgets,
the internationalization of education has made coordinating with other universi-
ties ever more important. Furthermore, higher demands for accountability mean
there are ever more increasing quality requirements that need to be monitored
and satisfied [1]. The integration of sustainability concerns in academic curricula
is getting essential in the search of long term solutions to the current societal
issues.

Another immanent challenge universities have to tackle is the need for greater
flexibility. This is fueled by amongst others things the marketization of higher
education, students increasingly assuming the role of consumers (i.e., demanding
new ways of educational provision) and the need for customization by offering
an ever growing variety of study programs [2]. These trends are strongly related
to the massification and widening access of higher education [1]. Traditionally,
study programs define the prescribed composition and succession of courses for
a student to take in order to graduate. As such, every subject or degree has
c© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 86–100, 2016.
DOI: 10.1007/978-3-319-39567-8 6

On Evolvable and Traceable Education Programs Design 87

one corresponding study program. Yet, when students are free to select courses
within a subject, several variants of the study program will emerge. Nowadays,
students are often required to choose a major and/or minor discipline in which to
graduate, several optional courses, etcetera. As students are offered an increasing
amount of customization options within a study program, the amount of poten-
tial study program variants will grow exponentially. Any potential combination
of these customization options represents one version of a study program. This
poses serious complications for managing study programs.

As a result of these trends and characteristics, the concept of study programs
has been subjected to great pressure to become ever more flexible. For example,
some study programs at Belgian universities allow students to compose up to
70 % of their study programs from courses off an eligible course list [3]. As a
consequence, very few students have the same variant of a study program. This
results in a drastic increase in the possible variations of a study program. All
these effects have resulted in the design, management and updating of study
programs to become ever more complex endeavors.

One obvious tool that has been proposed to satisfy the study programs flex-
ibility requirements is digitalization [1]. In this paper however, we will propose
a solution that addresses the root of the problem (i.e., the study program archi-
tecture) using of Normalized Systems theory. This theory specifies the design of
modular and evolvable (i.e., flexible) software [4]. In this paper, we will discuss
how Normalized Systems thinking can be used as guiding principles to structure
study program design and improve its flexibility.

As the principles of Normalized System theory are the underpinning of the
solutions proposed in this paper, the theory will first be discussed in the next
section. Next, we will discuss our vision of a study program design as a modular
system in Sect. 3. Based on this proposition, Sect. 4 will include solutions on how
to improve the evolvability and traceability of a study program design. We will
conclude the paper by illustrating how these solutions are implemented in two
cases in Sect. 5.

2 Normalized System Theory

In contemporary advanced and agile (economic) environments, all sorts of sys-
tems need to cope with changes in their structure and functionality. The way in
which systems can assimilate these changes, determines their evolvability. Fur-
thermore, current systems are more complex than they have ever been in both
their structure and functionality. To handle these challenges, modularity has
been repeatedly proposed as a way to divide complex system in easier to handle
subsystems. Additionally, modularity also allows system engineers to cope with
the flexibility or evolvability requirement by allowing the modules to change
independently [5,6].

Based on the modularity concept, Normalized Systems (NS) theory was
proposed to achieve such modular evolvability. Although originally defined for
software architectures, its applicability and value in other domains (e.g., orga-
nizational design, business processes, accountancy) quickly became clear [7–9].

88 G. Oorts et al.

To obtain flexible systems that can easily evolvable over time, NS theory
states that so-called combinatorial effects should be eliminated. These effects
occur when changes to a modular structure are dependent on the size of the sys-
tem they are applied to [10]. This means the impact of the change does not solely
depend on the nature of change itself. Assuming systems become more complex
over time, combinatorial effects would therefore become ever bigger barriers to
change. As such, it is clear how combinatorial effects should be avoided if systems
need to be changed easily (i.e., be evolvable).

To eliminate combinatorial effects, NS theory proposes four theorems, two of
which are of importance in this paper [10]:

– Separation of Concerns, stating that each change driver (concern) should be
separated from other concerns. This closely relates to the concept of cohesion,
which will be discussed later on;

– Version Transparency, stating that modules should be updatable without
impacting any linked modules;

In practice, the consistent application of these theorems results in a very fine-
grained modular structure.

The theory also defines cross-cutting concerns. This concept is often used
in information technology and refers to functionality or concerns that cut right
across the functional structure of a system. These cross-cutting concerns should
also be encapsulated to exhibit any form of evolvability. As we will illustrate
in this paper, this is not self-evident as the functionality of these concerns are
embedded deep down within systems.

3 Study Program Design as a Modular System

As we demonstrated in previous work (i.e., the work mentioned earlier), sev-
eral systems (such as accountancy, business processes and enterprises) can be
regarded as modular systems. Applying this view of the systems also entails
important benefits in the design, maintenance and support to the system. In the
next sections, we will illustrate this modular view of a study program design by
discussing some basic principles of a modular system.

3.1 Modularity

Over the last decades, the concept of modularity has proven to be a very popular
and useful as a design principle in various settings. Areas it has been applied to
include product, system and organizational design [11].

We will argue a study program can be considered a modular system as well.
In our approach, we define a module as a part of the system that is used or
activated separately. Once a part of the system cannot be used or activated as
such, it is considered to be on a sub-modular level.

Looking at the study programs, it is generally accepted they consist of at
least one level of modules: courses. In most educational institutions this still is

On Evolvable and Traceable Education Programs Design 89

the only level of hierarchy in study programs. We however advocate the use of
intermediate and sub-levels of hierarchy for several reasons. The advantages of
these additional levels of modules will be discussed later on.

Specifically, we suggest the use of two intermediate levels of modules:
learning-teaching tracks and sub-tracks. Each study program should consist of
several learning-teaching tracks. These tracks are defined as collections of simul-
taneous or sequential courses within a study domain. Learning-teaching sub-
tracks are related to more specific sub-study domains. An example of such track
and sub-track are respectively ‘Business economics’ and ‘Accountancy’. More
extensive examples of this modules will be discussed in Sect. 5.

A second level of modules that would offer significant benefits is the addition
of course parts as the lowest level of modularity. These course parts can vary
significantly in size. As such, a lecture can consist of several course parts, or
a course part can be the subject of several lectures. Currently, courses are the
most modular level within study program hierarchies in practice. This because
they are the most basic module that can be used or activated (i.e., it can be
taken by students). Therefore, course parts are currently considered to be on a
sub-modular level, as they cannot be taken as such by students and therefore
cannot be included in a study program.

3.2 Cohesion

When structuring a system into modules, an essential question becomes how
exactly to split a system into modules. A specific division for a study program
design has already been proposed in the previous section. Why we proposed this
specific division has a lot to do with the principle of cohesion.

The cohesion of a module is defined as the coherence of its content. General
design principles advise to pursue high cohesion within modules [12]. This means
the module exhibits internal content that is highly connected and related.

There are several reasons for which one would pursue to design modules with
a high degree of cohesion. First, having related content bundled into modules
benefits the management and maintenance. This can be done by people with the
best skills and expertise for the specific content. Second, bundling related content
improves reusability of a module. And when unrelated content is included into
a module that is reused, it needs to be needlessly duplicated which can cause
negative effects. Either this leads to additional effort to update this unnecessary
content, or the outdated content could cause troubles.

A study program design can be structured in several ways. We will discuss
three solutions that are situated on a spectrum of possible implementations.

One extreme implementation would be to have a single module for an entire
study program. This means a study program would be considered as one single
monolithic module. There would be one single version of the study program
without any breakdown into courses. This implementation is however purely
theoretical, as it clearly is unrealistic in practice.

A second possible implementation would mean having customized study pro-
grams for every combination of courses in every order, including uncommon

90 G. Oorts et al.

courses such as preparatory and optional courses. Even with a small amount of
courses offered, this would result in an enormous amount of study programs.
Of course, not all combinations of courses need to be defined as a study pro-
gram. Conditions such as ineligible courses and prerequisite courses somewhat
limit the amount of combinations that constitute a study program. Still, courses
are included and unnecessarily duplicated in many study programs. This is detri-
mental to the cohesion of the proposed architecture. Additionally, the develop-
ment and maintenance costs of this implementation are high as well. Although
the knowledge required to manage a study program is extensively smaller than
the previous implementation, every study program still needs to be managed
individually. This entails extensive overhead costs.

Finally, a third possible implementation is the solution presented in the pre-
vious section. In this implementation every course is considered a module, which
consist of course parts that are on a sub-modular level. This allows every study
program to exist of a set of courses without having to unnecessarily duplicate
this courses. This implementation constitutes the highest level of cohesion. There
is a separate module (i.e., course) for every collection of related subject material.
As such, the development and maintenance of the modules enables a wide set of
possible compositions of study programs.

As advocated in the previous section, splitting the courses even further (into
‘course parts’) would even further improve the modular composition of a study
program design. According of the Separation of Concerns principle, this would
allow the course parts to evolve freely, independent of other course parts. Addi-
tionally, it would increase the level of cohesion within the course part modules.

To illustrate this, we will look for example at a course which is taught to stu-
dents in several study programs. Although the course is instructed by the same
teacher, the course needs to differ partially because of the different foreknowledge
and skills of students from the different study programs. In this case, one is placed
in the dilemma to define these courses either as two different courses or as two
variants of the same course. Arguments can be made for either solution. On the
one hand, the courses are named identically and have the same instructor so they
should be defined as two variants of the same course. On the other hand, they are
part of other study programs and have (slightly) different contents and should
therefore be different courses. If course parts were to be included as a new lower
modular level however, this dilemma would disappear. This additional level would
enable the course parts to be taught and examined. As such, two variants of the
course can be defined without the duplication of course parts, each included within
a specific study program. It is however important to bear in mind the increased
coupling of such a solution, as changes in a common course part could have an
impact within several study programs. Therefore a careful implementation of ver-
sion transparency is necessary. This kind of coupling that is a result of this addi-
tional level in hierarchy will be discussed in the next section.

3.3 Coupling

One of the other consequences of having a modular system architecture, is that
modules will be coupled. Coupling refers to the amount of dependencies and

On Evolvable and Traceable Education Programs Design 91

interactions one module has with other modules in order to function properly.
It is generally accepted that one should strive for lowly coupled modules. There
are several reasons for this pursuit. First of all, dependencies from other modules
will negatively impact reliability. Any dependency that is added, brings along a
possibility to disturb the proper functioning of a module. The module becomes
prone to any faulty behavior from the linked modules in addition to its own
possible errors. A second advantage of low coupling is the opportunity it creates
for reusing modules. Modules that are independent of other parts of a system
can be more easily reused to provide the same functionality in other use cases.
As reuse decreases the need for duplicate modules, this reduces the amount of
impact locations affected by changes to the system, thus improving evolvability.
Finally, low coupling also reduces the probability that changes should be made
when adjacent (but not coupled) modules undergo modifications.

Study program designs are traditionally susceptible to large amounts of cou-
pling. This is because coupling manifests itself in several ways. A study program
is carefully designed to support the learning process of students. This means the
succession of courses is planned so all students have the necessary foreknowledge
to start a course. This is mostly achieved by defining prerequisite courses that
need to be completed before one is allowed to start a course. When we now look
at courses as being modules in the system of a study program, we can see how
courses are naturally highly coupled. Additionally, some courses are taught in
several study programs. As such, these courses are inextricably bound with pre-
requisite and follow-up courses from different study programs. These ties can in
fact be defined on the underlying level of course parts. Take for example a single
change in the content of a course that is taught in several study programs. This
change will have ripple effects in several other courses. Because of the change
in content, follow-up courses –and potentially even prerequisite courses– might
need to be adapted. Furthermore, second-degree or even higher-degree ripple
effects will extend the amount of changes needed to courses or course parts.
Similar to ripple effects that result from a stone dropped in water, ripple effects
in study programs affect larger areas further away from the initial impact area.
As such, higher-degree ripple effects symbolize the potential for ever-increasing
impact locations due to the initial change in a course part. This example clearly
shows the negative impact of high coupling on the evolvability of a system.

4 Evolvability and Traceability of a Study Program
Design

Based on the fundamental principles of Normalized System theory, we believe a
flexible design of study programs can be achieved. As such, the study program
design becomes less prone to ripple effects caused by changes to a system with
a high level of dependencies. In the next sections, we will show how exactly a
flexible design of study programs can be achieved through the use of several
engineering practices defined in Normalized System theory.

92 G. Oorts et al.

4.1 Evolvability

Study program are very susceptible to ripple effects due to changes in courses and
course parts. Looking at higher level modules of study programs, this problem
becomes even more complex. Changing the composition, sequence or prerequisite
requirements of courses in a study program leads to ripple effects. These effects
occur as a result of what seem to be trivial changes. Take for example moving
a course to a different semester or year, replacing a course by a new one or
adding the requirement for a prerequisite course. Although these changes might
seem easy to implement, the range of dependencies and cohesion prevents such
straightforward changes, making it in some instances even impossible to perform
these changes.

One other challenge that hinders study program changes are transition
effects. It is both financially and practically impossible for a university to sup-
port both the old and new version of a study program when this is changed.
Instructors cannot be expected to teach both old and new versions of courses or
change a course for specific students if they do not have the foreknowledge spec-
ified in new prerequisite courses. Traditionally this problem is solved by phasing
out the old version of the study program one year at a time, starting at the first
bachelor year. The emergence of increased flexibility in study programs (i.e.,
optional courses, taking a course for a second time, etc.) and interrelated study
programs (i.e., courses taught in several study programs) have made this solution
less suitable. This means phasing out a study program equally for every student
is no longer possible. Therefore a university needs to cope with transition effects.
These are measures that need to be taken for students for whom the phasing out
implementation cannot be applied because of the flexibility complexity. For these
students, individual solutions need to conceived in which courses are moved to
a different year, they receive an exceptional exemption for a course, they need
to take a part of a course of the new study program, etc. These transition effect
are very labor-intensive to plan and execute and should therefore be avoided at
all costs. To demonstrate how this can be done, consider the following numerical
example.

A bachelor study program change requires a transition for every student
that has started the study program. This change needs to occur in a bachelor
study program consisting of 30 courses. To simplify the calculation, we will
abstract from the definition of prerequisite courses. Considering a student can
have either taken or not taken each of these 30 courses, there are 230 states to
indicate the study program progress of students. This equals to more than 1
billion permutations. Although the exact amount of study progress cases also
depends on the number of students and will therefore not be as high as this
number, the calculation shows the potential amount of labor-intensive transition
effects. If the university were to add the learning-teaching track and sub-track
levels of modularity, the amount of permutations would drastically decrease.
Consider a bachelor study program which consist of 6 sub-tracks, each filled
with 5 courses. This would result in 6∗25 = 192 possible states of study progress
in the study program. Handling transition effects for study programs that not

On Evolvable and Traceable Education Programs Design 93

comply with the phasing out solutions clearly becomes much more feasible with
this remarkably smaller amount of variants to deal with. One could argue that
this problem requires the definition of even more variants of study programs,
in addition to the ones needed due to the customization options within study
programs. The state of study progress of a specific student could be included as
an additional dimension in which study program variants can be defined. This
would in turn drastically increase the complexity of managing study programs.

This example clearly shows the practical impact of adding hierarchical struc-
ture to the study program design. By implementing intermediary levels of modules
(i.e., learning-teaching tracks and sub-tracks), the design is much less resistant to
change. The amount of transition effects that need to be drawn up for students is
far lower, meaning that the effort to facilitate a study program change is drasti-
cally lower. As such, study program that would otherwise have been postponed or
canceled due to required effort can efficiently be implemented.

4.2 Traceability

As mentioned before, there are ever more quality and environmental require-
ments that need to be monitored and satisfied in education. Such requirements
include achieving course and teaching quality requirements, the realization of a
number of student competences (both domain specific and knowledge related),
and more generic competences like for instance skills related to international
and multicultural environments, or various teaching and evaluation methods like
papers, presentations, and assignments. These requirements may also include
the realization of competences and skills related to certain societal issues, like
sustainability and/or ethical awareness.

Many of these requirements are specified or articulated at a general study
program level, while they need to be realized and implemented at the level of
individual courses and assignments. Like in all system consisting of many parts
and/or modules, this gives rise to a problem of traceability: how to ensure that
overall requirements articulated at a general level are realized throughout the
individual parts or modules. In other words, the realization of the requirements
needs to be traced all the way down to the individual course modules.

Traceability and Cross-Cutting Concerns. The realization of global
requirements throughout the individual functional modules is in fact quite simi-
lar to the concept of cross-cutting concerns in information technology. The intro-
duction or modification of such concerns may yield a significant impact – or
combinatorial effect – through the many modules that are affected.

The concept of cross-cutting concerns is an intrinsic part of Normalized Sys-
tems theory. Its name however might suggest otherwise, as it seems to insinuate
this functionality is somewhat less important. We argue that this is not the case,
and one should consider cross-cutting concerns as often occurring functionality
that manifests itself in a second dimension. This functionality has always existed,
but is simply from a different nature due to its frequent recurrence.

94 G. Oorts et al.

One can think of several cross-cutting concerns related to the courses offered
in study programs. Potential cross-cutting concerns include e-learning, planned
learning, case studies, internationalization, assignments, teaching methods, eth-
ical awareness, sustainability, etc. It is import to realize that although this is an
extensive enumeration of cross-cutting concerns, it is far from an exhaustive list.
Cross-cutting concerns may also appear in a limited amount of courses and are
therefore more difficult to define. An important requirement to manage cross-
cutting concerns is to provide traceability of the concerns. As mentioned earlier,
it is imperative to trace the courses in which cross-cutting concerns are present.
One way of representing the presence of cross-cutting concerns is using a matrix,
of which an example is included later on in Fig. 2.

Embedding the Cross-Cutting Concerns. There are several ways of struc-
turing cross-cutting concerns in study program designs. In the next paragraphs,
we will propose three potential implementations. These will be discussed using
the example in which the cross-cutting concern of case studies is required to be
added to several courses.

One possible implementation is to have lecturers provide the cross-cutting
concern for the courses it is required for. This means every lecturer has to make
the effort to search for applicable case studies and convert them into usable
pedagogic material for every single course he would like to use cases in. From
a modularity standpoint, this entails the duplication of functionality and effort
in the organization of a study program. This implementation can generically
be presented as separate case study modules that are located within the course
they relate to. This is shown by the smaller modules in the upper left panel
of Fig. 1. Traditionally, cross-cutting concerns are implemented in this way in
study programs. There are however some disadvantages to this implementation.
Consistent with the discussed additional effort, this implementation does not
allow benefits of economies of scale. Every instance of the implementation needs
to be applied from scratch. Second, when a change is required in the way case
studies are used in courses, this would require a change by every instructor in
every course where case studies are used. This clearly constitutes combinatorial
effects as defined in Normalized System theory.

A second way of implementing the cross-cutting concerns is through the use
of a centralized entity. Some cross-cutting concerns are so widespread that many
systems need to deal with them. As a result, it is viable for centralized providers
of this cross-cutting concern to exist. The university could for example set up a
centralized entity specialized in providing educational case studies. They would
provide turnkey case studies composed according to the wishes of lecturers. The
upper right panel of Fig. 1 shows how this centralized entity in linked to all
courses with case studies. This also shows how this entity is located in a different
functional dimension (shown as a plane) on top of the course dimension. One
limitation of this implementation is that lecturers become dependent on this
centralized entity. Because of its specialization in delivering case studies, the
provider can however achieve economies of scale and leverage its knowledge in
the matter to provide better quality cases.

On Evolvable and Traceable Education Programs Design 95

Fig. 1. Overview of three implementations of cross-cutting concerns in a study program

A third and final option we suggest for implementing cross-cutting concerns
is to clearly separate modules with different functionalities. As such, the main
modules can be shielded from changes in the case studies, thereby providing
loose coupling. This setup is presented in the lower panel of Fig. 1. The case
study modules are also positioned in a different functional dimension. Within the
study program setting, this could be implemented by having working groups that
provide case studies for each course in which they are needed. Such a working
group could be a single person (such as a teaching assistant) or a group of
university employees. Every entity however coordinates the case studies with
other entities in a way that the organization of the case studies is similar. For
this reason there are links shown between the case study modules. In this system,
changes can be made more easily to the way case studies are organized because
of the cooperation and coordination between the case study working groups.

It is important to remark that the implementation of cross-cutting concerns
can pose a hurdle for the evolvability of study programs. The three implemen-
tation types will each have an impact on the cohesion of the modules, as the
cross-cutting concerns will be spread over one, several or even all modules. It is
clear from the unconnected cross-cutting modules (represented as small boxes
within courses) in the upper left panel of Fig. 1 how making a change will require
more effort in this implementation. Every lecturer has to be informed of the
change, and needs to individually implement it without the help of a centralized
or specialized unit. In the upper right implementation, the cross-cutting concerns
are centrally managed and changes can be applied in one location by experts in
case studies. In the third solution (presented in the lower panel), changes need
to be done by several people. There is however coordination and cooperation in
managing the change in the cross-cutting concern.

96 G. Oorts et al.

5 Study Program Cases

5.1 Study Program Design at a Faculty of Applied Economics

Recently, the study program design of the Faculty of Applied Economics at the
University of Antwerp was modified to include learning-teaching tracks and sub-
tracks. In this section, we will discuss how this new study program design was
updated to include the solutions presented in this paper.

To its 3,250 students, the faculty offers five distinct bachelor study programs
and seven study programs at a master level. The bachelor programs are ‘Applied
Economic Sciences - Business Economics’ (BE), ‘Applied Economic Sciences -
Economic Policy’ (EP), ‘Business Engineering’ (BE), ‘Business Engineering in
Management Information Systems’ (MIS) and ‘Social and Economic Sciences’.
At the master level, two additional study programs are offered by the faculty:
‘Culture Management’ and ‘Organization and Management’. The Social and
Economic Sciences and the two master study programs are quite different from
the other study programs, and will therefore not be included in this case study.

Across the study programs, a total of 258 courses are offered. As proposed
in this paper, these courses are incorporated into nine learning-teaching tracks
consisting of 27 sub-tracks, shown in Table 1. Each course belongs to one main
(sub)track, but can be connected to other (sub)tracks. This because a course can
contain subject matters belonging to several (sub)tracks. The collection of tracks
is used to define the four well composed, balanced and comprehensive study
programs. The premise of these learning-teaching tracks is that the knowledge
and skills of students start out small at the beginning of their studies, but grow
as they progress and take the courses defined within a track.

Take for example the learning-teaching track ‘Quantitative methods’. This
track consists of the sub-tracks ‘Mathematics’ and ‘Statistics’. Within the ‘Busi-
ness Engineering’ study program, this track holds the courses ‘Statistics 1’, ‘Sta-
tistics 2’ and ‘Mathematics 1’ in the first year of the bachelor degree. During
the second year, the course ‘Mathematics 2’ and seminar ‘Applied mathematics’
continue to expand the knowledge and hone the skills of the students according
to the ‘Quantitative methods’ learning-teaching track. The mandatory part of
the track is finalized with the courses ‘Econometrics and multivariate statistics’
and ‘Advanced data sciences’ during the third bachelor and first master year.

How courses within a sub-track can be linked to study programs is shown
in Table 2. This table contains all courses that are part of the bachelor sub-
track ‘General economics - Fundamentals’. Each course has its unique course
code, course name and amount of ECTS credits listed. The next columns show
whether the course is included in the particular study programs offered by the
faculty. As such, this table shows a clear overview of which year and study
program the courses are a part of.

As we proposed in this paper, considerable attention was also paid to defin-
ing cross-cutting concerns that manifest themselves in the courses taught in the
faculty. In Fig. 2, some of these cross-cutting concerns are presented on the ver-
tical axis. On the horizontal axis, the learning-teaching tracks and sub-tracks

On Evolvable and Traceable Education Programs Design 97

Table 1. Overview of the learning-teaching tracks and sub-tracks

Learning-teaching track Sub-track

General economics Fundamentals

Policy

Business economics Accountancy

European and international business

Finance

Marketing

Strategy and organization

Transport and logistics

Engineering Fundamentals

Sustainable technology

Supply chains and operations

Information systems Fundamentals

Engineering and architecture

Governance and audit

Quantitative methods Mathematics

Statistics

Practice Apprenticeship and internship

Summer school

Broadening areas of study Social sciences

Jurisprudence

Business communication English

French

German

Spanish

Projects and dissertations Bachelor project

Master dissertation

Master integration project

Table 2. Courses in the bachelor sub-track ‘General economics - Fundamentals’

Course code Course name Cr. BE EP BE MIS

1101TEWAEC Introduction to general economics 6 B1 B1 B1 B1

1103TEWVSG European and international law 6 B1 B1

1201TEWAEC Micro economics 6 B2 B2 B2 B2

1201TEWKOO History of economic thought 6 B3 B3 B3 B3

1202TEWAEC Macro economics 6 B2 B2 B2 B2

1301TEWECB Contemporary economic and political history 6 B3

98 G. Oorts et al.

Marketing

Course 1 Course 2 …

Fundamentals

Course 2 …

Accountancy

Course 1 Course 2 … …

…

Course 2

Business economics Engineering

Sustainable technology

…

…

Content

Teaching method

Learning outcomes

Assignments

Internationalization

Social impact

Sustainability

Ethical awareness

Course 1 Course 1 Course 1 Course 2

Fig. 2. The cross-cutting concern presence in learning-teaching tracks and courses

are listed, each with the included courses. This matrix facilitates the design of
well-balanced study programs. It allows for example to check that there is at
least one course in each learning-teaching sub-track that includes assignments
by marking cells in the matrix. At this moment, the faculty has made a map-
ping of all learning outcomes, teaching methods and assignments. The mapping
of internationalization, sustainability and ethical awareness are still in progress.

5.2 Study Program Design at a NGO

As a second case, we consider a set of training programs offered by some NGOs
(non-governmental organizations) in Antwerp. These organizations have as their
goal to assist people during their quest for fixed employment in the labor market.
Although the considered NGOs are different from the previous case organiza-
tion in several aspects (types of courses, number of students, target audience,
etcetera), several similarities can be noticed. We now discuss how a similar mod-
ularity assessment and design can be applied for this case in terms of learning-
teaching tracks, coupling and cross-cutting concerns.

To start with, learning-teaching tracks can be discerned. Typically, however
different the profile of coached people in the NGOs may be, three major learning-
teaching tracks are present (Table 3). First, people are screened for their general
Dutch and mathematical knowledge. If their level on these subjects is insuffi-
cient for their envisioned job, they are signed up for a course in these domains.
Sharpening their general knowledge therefore constitutes a first learning-teaching
track. Next to that, people follow one or more courses to sharpen their techni-
cal knowledge. Finally, an important third learning-teaching track consists of
courses for increasing the job application skills of the participants.

On Evolvable and Traceable Education Programs Design 99

Next, it is clear that coupling between the several organized courses is
present. This holds for both the courses within one learning-teaching track and
between different learning-teaching (sub)tracks. Within tracks, as several consec-
utive courses of Dutch, electronics etcetera exist of which the end competences
of a preceding course are considered as the starting competences of the follow-up
course(s). And between tracks, as the “general knowledge” needs to be sufficient
before the courses within the technical knowledge track can be initiated and the
job application courses can only be initiated as soon as the profile of the coached
person is more or less determined.

Finally, some similar types of cross-cutting concerns as in the previous case
are relevant here. That is, the need for ethical awareness, content and end com-
petence tracking, as well as a vision on what types of assignments have been
fulfilled are present in this context as well. Some dimensions are new, such as
the need to show that each course contributes to more mature job compliant
attitudes. Others seem less relevant in the context of the considered NGOs, such
as the need for internationalization. As stated before, this shows that the concept
of cross-cutting concerns is relevant and useful in the context of study programs,
although the specific filling-in might differ from case to case.

Table 3. Overview of all learning-teaching tracks and sub-tracks of the NGOs

Learning-teaching track Sub-track

General knowledge Dutch

Mathematics

Technical knowledge Metal

Electronics

Cleaning

Administration

Job application

6 Conclusion and Future Research

In this paper, we demonstrated that managing and changing study programs is
far more complex than one might think. Study program designs exhibit by their
nature a large amount of dependencies. These may result in ripple effects that
spread across the whole system when changes need to be made to a study pro-
gram. This may hamper or even prevent changes being made in study programs.

To offer a solution to these problems, we illustrated how study program
designs can be regarded as modular systems. As Normalized Systems theory
offers a well-founded solution to design evolvable modular systems, we have
shown how study programs can be shielded from detrimental combinatorial and
ripple effects. By adding modular layers to the hierarchical architecture, one can

100 G. Oorts et al.

also reduce the impact and added complexity of study program changes. Fur-
thermore, these additional layers help managing the expansion of study program
variants that occur with transition effects when changing a study program.

An interesting avenue for future research is the document management
related to study programs. Naturally, an evolvable study program design requires
all related documents to be adaptable as well. Additionally, the well-defined mod-
ular structure of the study programs allows for new possibilities in generating
related supporting documents. Just imagine being able to generate on the fly the
entire collection of course materials of all courses in a specific learning-teaching
track of a specific study program.

References

1. D’Andrea, V., Gosling, D.: Improving Teaching And Learning in Higher Education:
A Whole Institution Approach. McGraw-Hill Education, Maidenhead (2005)

2. Barnett, R.: Conditions of Flexibility: Securing a More Responsive Higher Educa-
tion System. The Higher Education Academy, York (2014)

3. University of Antwerp. Study program: Bachelor of social and economic sci-
ences (2016). https://www.uantwerpen.be/en/education/education-and-training/
e-bachelor-in-de-socia/study-programme/

4. Huysmans, P., Oorts, G., De Bruyn, P., Mannaert, H., Verelst, J.: Positioning the
normalized systems theory in a design theory framework. In: Shishkov, B. (ed.)
BMSD 2012. LNBIP, vol. 142, pp. 43–63. Springer, Heidelberg (2013)

5. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity, vol. 1. MIT
Press, Cambridge (1999)

6. MacCormack, A., Lagerstrom, R., Dreyfus, D., Baldwin, C.Y.: A methodology
for operationalizing enterprise architecture and evaluating enterprise it flexibility.
Harvard Business School Working Paper, vol. 15–060, January 2015

7. Van Nuffel, D.: Towards designing modular and evolvable business processes. Ph.D.
dissertation, University of Antwerp (2011)

8. Huysmans, P.: On the feasibility of normalized enterprises: Applying normalized
systems theory to the high-level design of enterprises. Ph.D. dissertation, University
of Antwerp (2011)

9. Vanhoof, E., Huysmans, P., Aerts, W., Verelst, J.: Evaluating accounting infor-
mation systems that support multiple GAAP reporting using normalized systems
theory. In: Aveiro, D., Tribolet, J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol.
174, pp. 76–90. Springer, Heidelberg (2014)

10. Mannaert, H., Verelst, J., Ven, K.: Towards evolvable software architectures based
on systems theoretic stability. Softw. Pract. Experience 42(1), 89–116 (2012)

11. Campagnolo, D., Camuffo, A.: The concept of modularity in management studies:
a literature review. Int. J. Manage. Rev. 12(3), 259–283 (2010)

12. Ethiraj, S.K., Levinthal, D.: Modularity and innovation in complex systems. Man-
age. Sci. 50(2), 159–173 (2004)

https://www.uantwerpen.be/en/education/education-and-training/e-bachelor-in-de-socia/study-programme/
https://www.uantwerpen.be/en/education/education-and-training/e-bachelor-in-de-socia/study-programme/

Modelling, Patterns and Viability

Perceptual Discriminability in Conceptual
Modeling

Jeannette Stark(&)

Chair of Wirtschaftsinformatik, esp. Systems Development, Technische
Universität Dresden, Dresden, Germany

jeannette.stark@tu-dresden.de

Abstract. Perceptual discriminability can be used to help distinguishing
modeling constructs in conceptual models. It can further be used to produce
parallel processing of modeling constructs that make these constructs virtually
pop-out from the model. Moody has described a condition which is necessary to
produce a pop-out effect in his principle of perceptual discriminability. This
work extends the principle of perceptual discriminability for further conditions
to produce a pop-out. Extended perceptual discriminability is exemplarily
applied to a modeling grammar.

Keywords: Conceptual modeling � Parallel processing � Pop-out � Perceptual
discriminability � Visual attention

1 Introduction

Using conceptual models for communication can reveal advantages over textual rep-
resentations as information of these models can visually be perceived within a short
time and is rapidly available for further cognitive processing in working memory
(WM) [1]. Yet, not every conceptual model does better than text. Several empirical
studies show that conceptual models may be poorly understood if the visual notation of
the modeling grammar used to create the model is defined on the soul basis of instinct
and imitation [2]. To exploit advantages of conceptual models for understanding, prior
research has developed several design principles (see [1, 3–5] for example). In par-
ticular, the principles described within the ‘Physics of Notation’ (PoN) have exten-
sively been used to assess and improve visual notations of modeling grammars [6, 7].
PoN “defines a theory of how visual notations communicate” [1], p. 759 and further
succeeds in providing “the foundations for a science of visual notation” [1], p. 759. In
this work MOODY proposes nine design principles that are based on several cognitive
theories and models such as Human graphical information processing. This process is
divided into two stages: Perceptual processing and cognitive processing (see Fig. 1). In
perceptual processing elementary visual variables used to encode information such as
colour and shape [8] are visually perceived and distinguished from the background
(perceptual discrimination) as well as structure and relationships among them are
detected (perceptual configuration) [9, 10]. In this stage visual variables are perceived
in parallel and without any attention [10]. A part of the information perceived is then
transferred into WM and integrated into a mental model that now enables reasoning by

© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 103–117, 2016.
DOI: 10.1007/978-3-319-39567-8_7

using thinking operations as well as enrichment from long-term memory (LTM) in the
stage of cognitive processing [11]. PoN design principles aim at effecting perceptual
processing or cognitive processing. For example, the principle of perceptual discrim-
inability relates to perceptual processing. Perceptual discriminability is defined as ‘the
ease and accuracy with which graphical elements can be differentiated from each other’
[1], p. 763 and depends on the extent of visual variables in which the symbols differ
[7]. While perceptual discriminability mainly impacts on perceptual processing other
principles such as cognitive fit have an effect on cognitive processing. Cognitive fit is
reached when a suitable representation is selected for a certain task or for a certain
audience and allows a construction of an appropriate mental model that rather reflects
the solutions than a mental model built on representations that do not fit task or
audience [12]. That way, design principles help deriving conceptual models that are
cognitive effective for perceptual and cognitive processing.

Yet, perceptual and cognitive processes do not cover the whole process of human
graphical information processing. The two stages do not explain how information is
selected for being transferred into WM. Therefor attention is required. Only the part of
perceived information that is seen with attention can further be used for cognitive
processing and can hence be understood. Attention is studied within Theories of Visual
Attention [13] and is dependent on goals and objectives (influence from top down) [14]
as well as on how visual variables are used (influence from bottom up) [15].

The principle of perceptual discriminability is related to the stage of perceptual
discrimination of human graphical information processing but does already touch the
stage of visual attention between perceptual and cognitive processing. In this principle
MOODY proposes that if a modeling construct has a unique value for at least one visual
variable it appears to ‘pop-out’ from the rest of the model [1]. Yet, there are further
conditions for such a ‘pop-out’ effect that are discussed within the theories of Visual
Attention [13]. Furthermore, not every modeling construct needs to pop-out to increase
model understanding. We have to decide for the most important constructs of a model
to pop-out.

This work extends the principle of perceptual discriminability for further conditions
to produce a pop-out and discusses several opportunities how to find the most

Fig. 1. Human graphical information processing based on [1]

104 J. Stark

important constructs for a pop-out. The contribution is twofold. For theory, the fun-
dament of cognitive theories is increased with those of Visual Attention. Furthermore, a
procedure how perceptual discriminability can be expanded for different modeling
grammars is provided. For practice, a framework which can be used to apply a pop-out
for modeling constructs is described.

This paper is structured as follows: After having motivated the research, Sect. 2
introduces the principle of perceptual discriminability. Theories of Visual attention are
used to extend this principle for a bottom-up as well as top-down perspective in Sect. 3.
Section 4 deals with further operationalizing the top-down perspective by specifying
the basis for a pop-out and exemplarily shows how this can be done for an Entity
Relationship Diagram (ERD) in Sect. 5. The outcome of the paper will be discussed
and future research ideas are presented in Sect. 6.

2 Perceptual Discriminability

Perceptual Discriminability determines how easy it is for a model user to visually
distinguish between different modeling constructs [7]. Perceptual discriminability is
principally improved when the visual distance of modeling constructs increases. This
can be achieved (a) with an increasing number of visual variables on which the con-
structs differ and (b) with an increasing extent of these differences [1, 10]. Bertin has
defined horizontal and vertical position, shape, size, colour, brightness, orientation and
texture as visual variables that are used to encode information [8]. Out of these vari-
ables shape has a significant impact on object recognition [16]. Humans mainly dis-
tinguish objects on the basis of shape which is why Moody suggests shape to be the
primary visual variable to distinguish between modeling constructs [1]. For producing
a high visual distance he further proposes that modeling constructs should be differ-
entiated in multiple visual variables. Some variables are necessary to encode semantic
information in modeling constructs. For example, in BPMN 2.0 shape and texture is
used to derive the majority of modeling constructs [6]. While shape and texture are
required to distinguish between constructs, the variables colour, brightness, orientation,
position and size are free to redundantly encode modeling constructs for an increase of
visual distance. That way, Genon et al. propose to use colour in an additive manner to
distinguish between BPMN constructs [6].

Perceptual discriminability can also be used to allow parallel processing of mod-
eling constructs which leads these constructs to virtually pop-out from the rest of the
model [1]. Reijers et al. have assessed this effect by highlighting matching operators in
business process models (BPM) with the use of colour [17]. To achieve parallel pro-
cessing for a certain modeling construct, this construct needs to have a unique value for
at least one visual variable [18, 19]. There are, however, further conditions that are
discussed in theories of Visual Attention. If these conditions are met, modelers and
notation designers can use parallel processing effectively to guide attention to relevant
aspects of a model.

Perceptual Discriminability in Conceptual Modeling 105

3 Visual Attention

TREISMAN was the first who made an attempt to determine those variables that can be
detected preattentively and can hence be processed in parallel in experiments such as
the one depicted in Fig. 2 [20, 21]. In Fig. 2a) only one visual variable of the elements
is discriminated: Shape of the objects. In such a display the target item, circle, can be
easily detected preattentively within less than 200–250 ms, in less than a fixation. The
target value has a unique value for at least one visual variable and virtually pops-out of
the display regardless of the number of distractor elements [13, 22]. In Fig. 2b) the
target is defined by two visual variables: Colour and shape with the target values red
and circular. In this case the target does not have a unique value since red and circular
do also appear in distractor elements. This is why probands must perform a serial
search to confirm the presence of the red circle. This task is called conjunction search
and can in general not be performed within a single fixation [13].

TREISMAN further gave an explanation of how the visual system performs
preattentive processing in her Feature Integration Theory (FIT) [19]: When an indi-
vidual views an image, visual variables are encoded into individual feature maps. These
maps only record activity for a particular variable such as colour or size (see Fig. 2c).
Feature maps do not contain information about spatial arrangements, locations and
relationships to those variables of other maps. This information is collected within a
master map. While individual maps can be assessed in parallel, information that is
depicted within the master map is mainly assessed in serial (conjunction search) [13].
A target element that has a unique value for at least one visual variable can be found on
an individual target map and can according to FIT be processed in parallel. In her early
research Treisman supposed a strict dichotomy of processing visual variables in parallel
or in serial which was expanded within her later work, where parallel and serial pro-
cessing represent two pols of a spectrum. Healey and Enns have reviewed theories of
Visual Attention that try to explain the continuum of parallel and serial processing [13].

Fig. 2. Target detection: a) target: circle; b) target: red circle [13] and c) Feature integration
theory from [13, 19] (Color figure online)

106 J. Stark

3.1 Similarity Theory

Founders of Similarity Theory supposed that the time to identify a target is influenced
by target-nontarget similarity (T-N-similarity) and nontarget-nontarget similarity
(N-N-similarity) [15, 23]. Figure 3 demonstrates the effect of N-N-similarity when
searching an L-shaped target: While search efficiency for target-detection in a) is
relatively high it decreases in b) with decreasing N-N-similarity. Duncan and Hum-
phreys have also assessed the influence of T-N-similarity: Individuals have templates of
the target’s properties available during search. While searching, an image is structured
into structural units that show some common variables such as color or shape. The
more similar a structural unit is to the individual’s target-template, the more attention it
receives in respect to other units. If only little similarity between template and structural
unit exists, the individual rejects the structural unit. Other units that are similar to the
rejected unit can also efficiently be rejected [15]. That way, a structural unit that closely
matches the target-template has the highest probability to access WM [13].

3.2 Boolean Map Theory

According to Boolean Map Theory the visual system is capable to divide elements into
selected and excluded elements (boolean map). Selected elements can then be pro-
cessed within a more detailed analysis [24]. Boolean maps can be created in two
different ways: First, a map can be created based on elements located within a spatial
location. Second, a viewer can select all elements that contain a specific value for a
visual variable (for example blue items for a search of a blue horizontal item as
depicted in Fig. 3c and d). The selected items can now be subject for a further oper-
ation (in this case the viewer can assess all blue items for a horizontal arrangement).
A viewer can only cognitively process a single boolean map. The processing outcome
immediately replaces the current map. According to this theory the time to finish search
depends on how many boolean maps are required [13].

Fig. 3. a) and b): N-N similarity effects for an L-shaped target based on [15]; c) and d) Boolean
map search for a blue horizontal target: present in c), absent in d) [13] (Color figure online)

Perceptual Discriminability in Conceptual Modeling 107

3.3 Feature Hierarchy

Researchers of Feature Hierarchy (FH) discovered that a hierarchy for visual variables
appears to exist in the visual system [13]. Callaghan for example showed that the visual
system favors colour over shape [25]. As presented in Fig. 4a) background variations
in colour can slow the ability to identify the presence of spatial patterns formed by
different shapes. On the contrary, if the background varies in shape as in Fig. 4b)
spatial patterns formed by different colours are immediately visible [13]. Further
dominances have been found for brightness over colour [26], colour over texture [27]
and colour plus depth over orientation [22] (see Fig. 4c).

3.4 Implications for Conceptual Modeling

Based on presented theories parallel and serial processing present two ends of a con-
tinuum (Fig. 5). A construct can be arranged within this continuum based on (a) its
unique values for one or several visual variables (according to FIT), (b) similarities
between the construct and non-targets (T-N) as well as similarity between the
non-targets (N-N) in the model (according to Similarity Theory) and (c) the number of
boolean maps required to reach the construct (according to Boolean Map Theory).

Fig. 4. (a) and (b) colour over shape experiment from [13]; (c) Feature hierarchy

Fig. 5. Influencing factors of parallel and serial processing of modeling constructs

108 J. Stark

The unique value for visual variables is already mentioned as influencing factor for
parallel processing within the principle of perceptual discriminability [1]. Yet, this
factor should be extended for implications from FH. A unique value for the visual
variable texture would not have the same effect than a unique value for brightness.
According to FH brightness dominates texture. While a search for a construct with a
unique variable in brightness would not be affected by the presence of constructs
having a unique value in texture, a search for a construct with a unique value in texture
might be influenced by the presence of constructs with a unique value for brightness.
That way, the influence of the unique value for a visual variable depends on the
position within FH. Influencing factors from FIT and FH effect parallel processing from
bottom up as these factors focus on how to use visual variables without focusing on
possible objectives and targets of the model user. On the contrary, influencing factors
from Similarity Theory and Boolean Map Theory effect from bottom-up as well as
from top-down since both theories comprise goals and targets and can be used to align
visual variables based on these targets. Before applying influencing factors, possible
objectives and targets of a model user need to be integrated which is why the top-down
perspective is further elaborated in Sect. 4.

4 Central Constructs of Modeling Grammars

Several items can be placed among the continuum between parallel and serial pro-
cessing that comprise modeling constructs, elements that belong together or even
elements that are perceived as a chunk in WM. Reijers et al. have shown in [17] that
parallel processing of matching operators in BPMs reveal advantages for model
understanding. That way, elements that belong together pop-out from the model and
allow model users to easier understand the structure of the model. Zugal et al. have
discussed chunks as an integration of elements that belong together and have proposed
optional activities as a chunk in BPMs. If a schema for chunks like optional activities
has already been learned and does this way exist in LTM, it can be used as only one
information item in WM. Those who have integrated the optional activity chunk into
LTM can increase their WM capacity, while those who have not integrated this chunk
into LTM might need more items for the same amount of information [28]. Yet,
capacity for WM is limited to around seven information items [29] and recent research
estimates its capacity even lower to 3, 4 items [30]. Using chunks can help model users
to increase the number of elements that can be processed in WM. In [31] further chunks
such as parallel and alternative activities are discussed. Placing these chunks on the
parallel side of the continuum would also help model users to easier understand the
model. Besides parallel processing of matching operators and chunks, also parallel
processing of single constructs might reveal advantages for model understanding.
Notation designers usually not distinguish semantic constructs on a systematic basis.
Sometimes constructs are even treated equally. But some studies have already ques-
tioned equality for modeling constructs. For example Zur Muehlen and Recker have
analyzed 120 BPMN diagrams and found that less than 20 % of its constructs are used
regularly [32]. Based on the theories of Semantic Network [33] and Spreading Acti-
vation [34] Weber has shown that entities dominate attributes [35]. This is why

Perceptual Discriminability in Conceptual Modeling 109

notation designers should decide which constructs are most important for model
understanding. Not every modeling construct can be processed in parallel as (a) free
visual variables are limited and can therefore not be used to highlight any modeling
construct and (b) visual variables influence according to the FH. If a unique value for
brightness is used to highlight a certain construct, it would slow the processing for
another construct, even if that construct has a unique value for another visual variable.
That way, only few modeling constructs can be placed on the parallel side of the
continuum. Notation designers need to decide which constructs should be placed there.
Based on their decision they influence parallel processing from top-down.

This work focusses on single constructs and tries to determine those constructs that
are central for model understanding (hereafter called central constructs) by searching
for questions that can be answered with conceptual models. Based on a content analysis
according to Krippendorff [36], typical questions and ERDs investigated. ERDs were
used for the following reasons: First, results of this research are broadly accessible as
the modeling grammar is easily comprehensible and widespread. Second, ERDs that
contain complex domain information tend to be relatively large and that way show a
relevant effect when central constructs are processed in parallel. Third, results of this
study of this relatively low complex grammar, which comprises only few different
semantic constructs, can also be applied to other grammars that focus on data modeling.
To assure a high quality for questions and models we have based our analysis on
laboratory experiments that have been published in IS-centric-journals summarized in
[37], (Appendix c). Out of obtained articles the following data is assessed: Type and
content of questions (Table 1), searches based on the conceptual model(s) necessary to
answer the questions and the visual variables used within the models. Out of identified
169 studies 163 could be rejected because no experiment was conducted, the experi-
ment did not match the right scenario or no models and questions were provided. Six
articles are left for further evaluations.

Across the articles either schema-based or recall-questions were found. While in
schema-based questions the model is still provided to find the answer, recall-questions
have to be solved without the model. In this work schema-based semantic

Table 1. Relevant experiments of IS-Centric-Journals

IS-Journal Lit. Semantic
comprehension

Syntactic
comprehension

Problem
solving

Data and
Knowledge Eng.

[38] schema-based schema-based recall
[39] schema-based schema-based -

Inf. Systems
Research

[40] schema-based schema-based schema-based
[41] schema-based,

recall
schema-based recall

J. of Database
Manag.

[42] schema-based,
recall

- recall

J. of Man.. Inf.
Systems

[43] schema-based schema-based -

110 J. Stark

comprehension and problem-solving tasks are included. Recall-tasks are excluded as
no visual search occurs. Moreover, syntactic comprehension questions are not used, as
these questions aim on focusing on model grammar comprehension instead of domain
understanding. Out of the six relevant experiments 76 relevant questions were
extracted. Only three questions were problem-solving tasks as most problem-solving
experiments consisted of recall-tasks. 83 visual search processes were required to solve
these 76 questions. One problem-solving question consisted of two sub-questions [40]
and in six questions the searches differed due to variations of the independent variable
(mandatory vs. optional attributes) [38, 41].

Ten search-types could be identified (see Fig. 6a) out of the search processes taken
into consideration. In these search-types ERD users generally proceed their searches in
two different steps. They first search the whole model for one or more construct(s) and
than process searching the area around the(se) construct(s) they previously identified.
This is why in this paper the first step is called global search because the whole model
is scanned for relevant constructs and the second step local search as search occurs
locally around previously identified constructs. In global search ERD users generally
search for one or more entity-types that fit their problem, which is why for global
search entity-types can be identified as central constructs. For local search, diversity of
constructs that ERD users search for is much higher than for global search (see
Fig. 6b). In local search ERD users mainly focused on cardinalities, relationship-types,
attributes and paths. Within the conceptual models, semantic constructs were distin-
guished in shape. Furthermore, texture is used to differentiate attributes [40] and car-
dinalities [39]. Those studies that discriminate between optional and mandatory
attributes have used the visual variable brightness [39, 41].

Fig. 6. a) search types; b) rank of constructs for global and local search

Perceptual Discriminability in Conceptual Modeling 111

5 Applying (Extended) Perceptual Discriminability to ERD

ERD users generally process global search for entity-types and local search for a wide
range of constructs (see Sect. 4), which is why entity-types are treated as central
constructs. This section shows how entity-types can be placed on the parallel side of the
continuum between serial and parallel processing. For local search cardinalities,
relationship-types and attributes are identified as constructs ERD users were mostly
searching for and are further placed along the continuum (Fig. 7). Original and changed
variables of these constructs are shown in Fig. 8.

Unique values exist for entity-types, relationship-types, attributes as well as car-
dinalities. For Entity-types, relationship-types and attributes the number of variables is
increased (for colour and brightness). Furthermore, these constructs have at least two
variables with a unique value (shape, colour) whereas shape is necessary to encode the
semantic construct. Colour as well as brightness are used redundantly to allow ERD
users to better distinguish between the constructs. In Fig. 8a) cardinalities are so far not
visually encoded whereas in Fig. 8b) the crow foot notation is used to encode the
semantic constructs with a unique value for shape. That way, the number of visual
variables for entity-types, relationship-types, attributes as well as cardinalities could be
increased. For the entity-type a further unique value for brightness is created. That way,
this construct is characterized with three unique values in brightness, colour and shape.
Since brightness is the variable in highest FH and the entity-type is the only construct
with a unique value for this variable, this construct is processed in parallel and pops-out
from the rest of the model. Also attributes and relationship-types have a unique value
for colour and shape. Yet, these constructs should not interfere a search for entity-types
since their variables with unique values are lower in FH. The differences of value
intensity vary among the constructs. The greatest differences of value intensity exists
for the entity-type. This construct differs in brightness about 30 % from attributes and
relationships while brightness is hold constant among attributes and relationships. The
colour of the entity-type is also the most intense colour of those used with a saturation
of 100 % and the unique hue red. Differences in value intensity is the only dissimilarity
between relationship-types and attributes and was used to create different places among
the continuum for these constructs. While relationship-types have a saturation of 62 %
and a blue hue (not unique to create differences to the entity-types) attributes are not
saturated and achromatic. That way, relationship-types have a greater difference in
value intensity to other constructs than attributes.

N-N similarity is influenced by the unique value for brightness of the entity-type. If
relationship-types, attributes or cardinalities would be a target in local search in Fig. 8
than N-N similarity in Fig. 8a) would be higher than in Fig. 8b) since we introduced
more variables. That way, we could not increase N-N similarity.

T-N similarity has been increased for all constructs placed into the continuum
between parallel and serial processing. Entity-types have the highest T-N similarity as
this construct has a unique value for three different visual variables. Cardinalities have
the lowest T-N similarity since this construct has only one unique value for shape. T-N
similarity of relationship-types and attributes is arranged between those of entity-types
and cardinalities.

112 J. Stark

Fig. 7. Placing ERD constructs within continuum of parallel and serial processing

Perceptual Discriminability in Conceptual Modeling 113

Fig. 8. a) original ER-model (on the basis of [40]) and b) optimized ERD (Color figure online)

114 J. Stark

As only one boolean map is required to identify entity-types, attributes and
relationship-types in Fig. 8a) no reduction of Boolean maps could be achieved for
those constructs. Nevertheless, creating a boolean map is enhanced based on visual
variables since redundant coding is used for all three constructs. For cardinalities the
construction of Boolean maps on the basis of shape is allowed. In Fig. 8a) a con-
struction of boolean maps is prevented since cardinalities were so far not visually
encoded.

6 Discussion

With this paper the PoN principle of perceptual discriminability has been extended for
further conditions and its application to produce parallel processing for central con-
structs of a modeling grammar. While reviewing theories of Visual Attention this work
describes how visual variables can be used to allow parallel processing and could
thereby describe further conditions for a pop-out effect (extension from bottom-up). To
effectively use parallel processing for conceptual modeling, notation designers need to
decide which constructs are important for model understanding. The focus of this work
lays on those constructs that are central to answer typical questions. Additionally, it is
exemplarily shown how this can be done for ERDs (extension from top-down).

For both perspectives further research is required. For the top-down perspective this
work has only focussed on central constructs. Yet, parallel processing might further
reveal advantages for compositions of constructs that can be used as a single chunk or a
combination of model elements that belong together. Parallel processing can also be
used to highlight a certain story within the model or as a filter on a tool-level to help
answering different types of questions. Furthermore, advantages of this research for
ERDs have only been shown exemplarily for a low complex modeling grammar.
Results from this work still need to be applied to more complex grammars such as
BPMN. For the bottom-up perspective more research is needed to effectively combine
visual variables such as colour and brightness. Researching in detail only one or few of
those variables might lead to further extensions of perceptual discriminability since
these variables interrelate. Finally, an evaluation is still required to confirm advantages
of extended perceptual discriminability.

References

1. Moody, D.: The “physics” of notations: toward a scientific basis for constructing visual
notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)

2. Caire, P., Genon, N., Heymans, P., Moody, D.: Visual notation design 2.0: towards user
comprehensible requirements engineering notations. In: 21st Requirements Engineering
Conference, pp. 115–124 (2013)

3. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines
(7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)

Perceptual Discriminability in Conceptual Modeling 115

4. Blackwell, A.F., Britton, C., Cox, A., et al.: Cognitive dimensions of notations: design tools
for cognitive technology. In: Beynon, M., Nehaniv, C.L., Dautenhahn, K. (eds.) CT 2001.
LNCS (LNAI), vol. 2117, pp. 325–341. Springer, Heidelberg (2001)

5. Green, T.R., Petre, M.: Usability analysis of visual programming environments: a ‘cognitive
dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996)

6. Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the BPMN 2.0
visual notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol.
6563, pp. 377–396. Springer, Heidelberg (2011)

7. Figl, K., Mendling, J., Strembeck, M.: The influence of notational deficiencies on process
model comprehension. J. Assoc. Inf. Syst. 14(6), 312 (2013)

8. Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. Univ. of Wisconsin Press,
Madison (1983)

9. Palmer, S., Rock, I.: Rethinking perceptual organization: the role of uniform connectedness.
Psychon. Bull. Rev. 1(1), 29–55 (1994)

10. Winn, W.: An account of how readers search for information in diagrams. Contemp. Educ.
Psychol. 18(2), 162–185 (1993)

11. Wade, N., Swanston, M.: An Introduction to Visual Perception. Routledge, London (1991)
12. Agarwal, R., Sinha, A.P., Tanniru, M.: Cognitive fit in requirements modeling: a study of

object and process methodologies. J. Manag. Inf. Syst. 13, 137–162 (1996)
13. Healey, C.G., Enns, J.T.: Attention and visual memory in visualization and computer

graphics. IEEE Trans. Vis. Comput. Graph. 18(7), 1170–1188 (2012)
14. Wolfe, J.M., Cave, K.R., Franzel, S.L.: Guided search: an alternative to the feature

integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15(3), 419
(1989)

15. Duncan, J., Humphreys, G.W.: Visual search and stimulus similarity. Psychol. Rev. 96(3),
433 (1989)

16. Biederman, I.: Recognition-by-components: a theory of human image understanding.
Psychol. Rev. 94(2), 115 (1987)

17. Reijers, H.A., Freytag, T., Mendling, J., Eckleder, A.: Syntax highlighting in business
process models. Decis. Support Syst. 51(3), 339–349 (2011)

18. Quinlan, P.T.: Visual feature integration theory: past, present, and future. Psychol. Bull. 129
(5), 643–673 (2003)

19. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognit. Psychol. 12
(1), 97–136 (1980)

20. Treisman, A., Gormican, S.: Feature analysis in early vision: evidence from search
asymmetries. Psychol. Rev. 95(1), 15 (1988)

21. Treisman, A.: Search, similarity, and integration of features between and within dimensions.
J. Exp. Psychol. Hum. Percept. Perform. 17(3), 652 (1991)

22. Snowden, R.J.: Texture segregation and visual search: a comparison of the effects of random
variations along irrelevant dimensions. J. Exp. Psychol. Hum. Percept. Perform. 24(5),
1354–1367 (1998)

23. Duncan, J.: Boundary conditions on parallel processing in human vision. Perception 18(4),
457–469 (1989)

24. Huang, L., Pashler, H.: A Boolean map theory of visual attention. Psychol. Rev. 114(3), 599
(2007)

25. Callaghan, T.C.: Interference and dominance in texture segregation: hue, geometric form,
and line orientation. Percept. Psychophys. 46(4), 299–311 (1989)

26. Calloghan, T.C.: Dimensional interaction of hue and brightness in preattentive field
segregation. Percept. Psychophys. 36(1), 25–34 (1984)

116 J. Stark

27. Healey, C.G., Enns, J.T.: Large datasets at a glance: combining textures and colors in
scientific visualization. IEEE Trans. Vis. Comput. Graph. 5(2), 145–167 (1999)

28. Zugal, S., Pinggera, J., Weber, B.: Assessing process models with cognitive psychology. In:
EMISA 2011, vol. 190, pp. 177–182 (2011)

29. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychol. Rev. 63(2), 81 (1956)

30. Cowan, N.: The magical mystery four how is working memory capacity limited, and why?
Curr. Dir. Psychol. Sci. 19(1), 51–57 (2010)

31. Natschläger, C.: Deontic BPMN. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X.
(eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 264–278. Springer, Heidelberg (2011)

32. Zur Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use
of the business process modeling notation. In: Advanced Information Systems Engineerin,
pp. 465–479 (2008)

33. Collins, A.M., Quillian, M.R.: Experiments on semantic memory and language comprehension.
In: Gregg, L.W. (ed.) Cognition in Learning and Memory. Wiley, New York (1972)

34. Anderson, J.R., Pirolli, P.L.: Spread of activation. J. Exp. Psychol. Learn. Mem. Cogn. 10
(4), 791 (1984)

35. Weber, R.: Are attributes entities? A study of database designers’ memory structures. Inf.
Syst. Res. 7(2), 137–162 (1996)

36. Krippendorff, K.: Content Analysis: An Introduction to its Methodology. Sage, Thousand
Oaks (2012)

37. Lowry, P.B., Moody, D., Gaskin, J., Galletta, D.F., Humphreys, S., Barlow, J.B., Wilson,
D.: Evaluating journal quality and the association for information systems (AIS) senior
scholars’ journal basket via bibliometric measures: do expert journal assessments add value?
MIS Q. 37(4), 993–1012 (2013)

38. Gemino, A., Wand, Y.: Complexity and clarity in conceptual modeling: comparison of
mandatory and optional properties. Data Knowl. Eng. 55(3), 301–326 (2005)

39. Genero, M., Poels, G., Piattini, M.: Defining and validating metrics for assessing the
understandability of entity–relationship diagrams. Data Knowl. Eng. 64(3), 534–557 (2008)

40. Khatri, V., Vessey, I., Ramesh, V., Clay, P., Park, J.-S.: Understanding conceptual schemas:
exploring the role of application and IS domain knowledge. Inf. Syst. Res. 17(1), 81–99
(2006)

41. Bodart, R., Patel, A., Sim, M., Weber, R.: Should optional properties be used in conceptual
modelling? A theory and three empirical tests. Inf. Syst. Res. 12(4), 384–405 (2001)

42. Masri, K., Parker, D., Gemino, A.: Using iconic graphics in entity-relationship diagrams: the
impact on understanding. J. Database Manag. 19(3), 22 (2008)

43. Parsons, J.: Effects of local versus global schema diagrams on verification and
communication in conceptual data modeling. J. Manag. Inf. Syst. 19(3), 155–183 (2002)

Perceptual Discriminability in Conceptual Modeling 117

From the Essence of an Enterprise Towards
Enterprise Ontology Patterns

Tanja Poletaeva1(&), Habib Abdulrab1, and Eduard Babkin2

1 INSA de Rouen, LITIS Lab, Rouen, France
ta.poletaeva@gmail.com, abdulrab@insa-rouen.fr

2 National Research University Higher School of Economics,
Nizhny Novgorod, Russia
eababkin@hse.ru

Abstract. In this paper we partially present an initial version of a Formal
Enterprise Ontology Pattern Language, which has been developed to support
conceptual enterprise modeling and a subsequent construction of different
design and implementation artifacts. The proposed enterprise ontology patterns
address problems related to the correlated modeling of both the intersubjective
world and the production world of an enterprise, as well as the effective con-
junction of the domain knowledge and the operational knowledge of an enter-
prise. The proposed language builds on a synthesis of the Unified Foundational
Ontology (UFO) and the DEMO Enterprise Ontology. We also demonstrate how
the pattern language was applied to the domain-specific enterprise modeling.

Keywords: Conceptual modeling � Enterprise ontology � Foundational
ontology � Ontology pattern � Ontology pattern language

1 Introduction

In recent years, ontologies have been recognized as a powerful instrument for an
explicit and formal representation of conceptualizations of reality, providing theoretical
foundations for conceptual modeling languages [1]. Particularly, an enterprise ontology
is essential for a deep understanding of the construction and operation of an enterprise
via its coherent, comprehensive, consistent, and concise conceptual models [2].
However, while being provided with the proper expressive modeling language pre-
serving the enterprise-world semantics, one can experience ambiguous choices when
expressing knowledge additional to the modeled enterprise essence [3–5] or when
constructing design and implementation artifacts upon the created conceptual models
[4, 6]. There is a lack of languages that have enough expressivity for enterprise
knowledge, while preserving a formal semantics.

In [7], the authors proposed the Enterprise Ontology Pattern Language (E-OPL)
aimed at facilitating enterprise conceptual modeling. According to [8], “an ontology
pattern describes a particular recurring modeling problem that arises in specific
ontology development context and presents a well-proven solution for the problem”.
The patterns of E-OPL were extracted from different enterprise ontologies addressing
five aspects: Organization Arrangement, Team Definition, Institutional Roles,

© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 118–131, 2016.
DOI: 10.1007/978-3-319-39567-8_8

Institutional Goals, and Human Resource Management. Moreover, the E-OPL patterns
in [7] are represented in OntoUML [1], a UML profile that preserves the ontological
distinctions put forth by the Unified Foundational Ontology (UFO) [1].

In this paper, we propose an initial version of alternative enterprise ontology pat-
terns which comprise the elements and the axiomatization derived from a synthesis of
(i) the Unified Foundational Ontology (UFO) [1] and (ii) the enterprise ontology
DEMO – the Design and Engineering Methodology for Organizations [2]. We have
obtained our synthesis by (i) applying UFO and its well-founded conceptual modeling
language OntoUML to articulate the theory of enterprise ontology in a system of
general categories; (ii) and adding some additional ontological categories based on their
relevance for the theory of enterprise ontology.

The most important property of the DEMO modeling language is that conceptual
models represented in this language are essential, i.e., they show the core enterprise
knowledge. In contrast, the ontology patterns presented in this work are aimed at
expressing the core knowledge in the form that facilitates its extension and integration.
Particularly, the authors focus on the correlated modeling of both the intersubjective
world and the production world of an enterprise. The patterns founded on both the
upper level ontology and the enterprise ontology preserve a formal semantics together
with a real-world semantics in a broad sense. Therefore, this work would hopefully
contribute to the integration of the domain knowledge and the operational knowledge
of an enterprise.

The outline of this paper is organized as follows. First, the theoretical background
of our work is summarized in Sect. 2. In Sect. 3, we elaborate on the proposed
enterprise ontology patterns. Then, Sect. 4 illustrates the application of the enterprise
ontology patterns for a domain-specific enterprise conceptual modeling. Finally,
Sect. 5 presents the final considerations and directions for further research.

2 Ontological Foundations of Enterprise Ontology Patterns

In this section, we focus on some important aspects of the underlying ontologies UFO
[1] and DEMO [2] of the proposed enterprise ontology patterns.

2.1 The Unified Foundational Ontology (UFO)

The philosophically, linguistically and cognitively well-founded foundational ontology
UFO was first proposed by Guizzardi in [1] and has been developed in many works
afterwards [9–15]. UFO consists of four main parts: an ontology of endurants (objects,
continuants) – UFO-A [1], an ontology of perdurants (events, occurrents) – UFO-B
[11], an ontology of social entities – UFO-C [12], and an ontology of services – UFO-S
[13]. Hereafter, we briefly summarize the formal and ontological meta-properties of
some types elaborated in the first three parts of UFO. These types are represented by
stereotypes in the OntoUML metamodel.

UFO-A explains a number of distinctions among object types. Whilst all types
carry a principle of application, only sortal types either provide or carry a uniform

From the Essence of an Enterprise Towards Enterprise Ontology Patterns 119

principle of identity for their instances. In this research, we exploit the following sortal
types: Kind, Subkind, Role, Phase. While Kinds provide a principle of identity for their
instances, Subkinds carry the principle of identity supplied by Kinds. Moreover, Kinds
and Subkinds carry out a meta-property of rigidity being necessarily applied to their
instances in every possible world. In contrast, anti-rigidity characterizes a type whose
instance(s) can cease to be an instance of that type without ceasing to exist and without
altering its identity. For example, a particular individual, which is an instance of type
Student in one world, can cease to instantiate this type in another world without ceasing
to exist as the same individual of type Person [1]. Thus, Roles and Phases are dis-
tinguished as anti-rigid sortals. A Phase is a relationally independent type whose
instantiation is characterized by a change of an intrinsic property of an individual.
A Role is a relationally dependent type whose instantiation is obligatory related to other
entities.

Non-sortals represent an abstraction of properties that are common to multiple
disjoint kinds and, therefore, do not carry a unique principle of identity for their
instances. Category represents a rigid and relationally-independent non-sortal type that
aggregates essential properties common to different kinds. Role Mixin, in turn, repre-
sents an anti-rigid and relationally dependent non-sortal type that aggregates properties
common to different roles.

Another important distinction in the UFO ontology is within the categories of
relations. It recognizes two broad categories of relations, namely, formal relations and
material relations. Formal relations hold between two or more entities because of very
nature of these entities, without any further intervening individual. Conversely,
material relations have a material structure of their own, which mediates the connected
entities and inheres in the mereological sum of them [14]. Such mediating entities
constitute the extension of Relators. For example, a medical treatment connects a
patient with a medical unit; a marriage connects a wife and a husband [1]. The formal
relation of mediation between a relator and the entities it connects is a sort of inherence
and, hence, a special type of existential dependence relation. Relators can only exist
while connecting the relata, i.e. they exhibit mutual dependency patterns involving all
arguments, as well as dependencies on external entities besides the arguments [14].

Axiomatization of situations, events, and dispositions was summarized in UFO-B.
Situations are special type of endurants. They are complex entities that are constituted
by possibly many endurants (including other situations). In other words, situation is a
portion of reality that can be comprehended as a whole. A relation of “being present at”
is defined between endurants and the situations they constitute [12]. Situations can be
factual or counterfactual. Factual situations (or Facts) are said to obtain at particular
time points.

Events are perdurants composed by temporal parts and happened in time in the
sense that they extend in time accumulating temporal parts. Events are considered as
possible transformations from one portion of reality to another, i.e. they may change
reality by changing the state of affairs from one situation to another [11].

Moreover, in the ontology design patterns of the UFO-B ontology, temporal
properties of objects and spatial properties of events are derived from the existential
dependence of events on the objects that participate in them. Properties that are only
manifested in particular situations on the occurrence of certain triggering events are

120 T. Poletaeva et al.

called dispositions. Dispositions are manifested through the occurrence of resulting
events and state changes [15].

UFO-C incorporates intentionality to the basic core provided by UFO-A and
UFO-B. In this context, UFO distinguishes between Agentive and Non-agentive sub-
stantial individuals, termed agents and objects, respectively. As opposed to objects,
agents are capable of bearing special kind of intrinsic properties named intentional
moments. Intentionality of agents should be understood as the capacity of their prop-
erties to refer to possible situations of reality. Every intentional moment has a type
(e.g., belief, desire, intention) and a propositional content represented by a proposition.
The latter being an abstract representation of a class of situations referred by that
intentional moment.

Intentions are desired state of affairs for which the agent commits at pursuing (an
intention is an internal commitment). For this reason, intentions cause the agent to
perform actions. Actions are intentional events, i.e., events with the specific purpose of
satisfying the propositional content of some intention of an agent. The propositional
content of an intention is termed a goal. UFO contemplates a relation between situa-
tions and goals such that a situation may satisfy a goal.

Communicative acts (special kinds of actions) can be used to create social moments
(commitments and claims). Thus, social moments are types of intentional moments that
are created by the exchange of communicative acts between parties and the conse-
quences of these exchanges. In this view, language not only represents the reality but
also creates a part of reality. The later ontological claim tightly correlates with the LAP
foundations of DEMO (ref. Sect. 2.2).

2.2 The DEMO Theory and Methodology of Enterprise Ontology

In the presented work, we employ the OntoUML [1] conceptual modeling language to
extend real-world semantics of the modeling constructs of the DEMO Theory and
Methodology of Enterprise Ontology [2]. Based on the strong theoretical basis, the
DEMO methodology facilitates creation of ontological models that are essential,
complete, free from logical contradictions, compact and succinct, independent of their
realization and implementation issues [2].

The interpretive and intersubjective world view of the methodology results in
considering an enterprise as a discrete dynamic system, of which the elements are
social individuals or actors, capable to negotiate by performing coordination acts and
to contribute to bringing about the goods or services by performing production acts. By
performing coordination acts, actors express their intensions and comply with com-
mitments towards each other regarding the performance of production acts [2]. By
performing both kinds of acts, actors transfer the world into the new states charac-
terized by resulted coordination facts and (if any) production facts.

The core concept in DEMO is the notion of the uniform communication patterns
between autonomic actors involved in a business deal. These patterns, also called
transaction patterns, always involve two actor roles (the initiator and the executor) and
consist of certain coordination acts related to one production fact of a particular type.
Transaction is a sequence of acts that is a path through the complete transaction

From the Essence of an Enterprise Towards Enterprise Ontology Patterns 121

pattern [2]. It goes off in three consecutive phases: the order phase, the execution
phase, and the result phase [2].

The DEMO transaction concept distinguishes between the intersubjective (social)
and the objective worlds. Thus, coordination acts and their results (coordination facts)
relate to the intersubjective world. By performing production acts actors change the
states of products or services related to the objective world. The distinction of these two
worlds at the conceptual level gives an opportunity for a coherent modeling of both the
information and the process worldviews on an enterprise.

Finally, the methodology builds a comprehensive view on the interaction and
management processes of an enterprise in four Aspect Models [2]. Through these
conceptual models expressed in an enterprise-specific modeling language, it is possible
to achieve a solid understanding of business agent roles, their potential communica-
tions and fulfilled changes in the production world, the types of transactions taking
place in an organization and relations between them, as well as the information pro-
cessed and created in the course of transactions execution.

3 A Formal Enterprise Ontology Pattern Language

In this section, we elaborate on a set of enterprise ontology patterns built on a synthesis
of UFO and DEMO. Due to lack of space, we left the description of the synthesis out of
the scope of this paper. The patterns described in the following subsections are tightly
interrelated with each other through their elements.

3.1 Participation in a Transaction

Enterprises are social systems whose elements (or social individuals) are human beings
able to enter and comply with commitments [2]. Granted authority to perform particular
acts in a responsible way, a social individual of an enterprise fulfills an actor role [2].
In his fulfillment of an actor role, a social individual becomes an actor. Obviously, a
social individual may cease to be an actor without ceasing to exist. Moreover, an actor
role can be instantiated by agents of different kinds, e.g. persons, organizations or
organizational units. Thereby, Actor Role is a Role Mixin stereotyped by
<<roleMixin>> in OntoUML model depicted in Fig. 1.

The notion of transaction discussed in DEMO [2] is articulated in the UFO cate-
gories as follows. At each time the business relation between two actors holds, the
transaction is constituted by a mereological sum of all mutual commitments made by
actors in their negotiation about a particular change in the production world (i.e., a
production result). Thus, each transaction is a relator mediating two actors (Fig. 1).
The actor that initiates a transaction is of the type Initiator. The actor that carries out a
production act is of the type Executor. Initiator and Executor are subtypes of the type
Actor Role.

In the broader sense, transactions are mereological sums of all their constituent
relational qualities [14] inhering in one interacting actor and directly or indirectly
existentially dependent on another one. These qualities and their changes can be

122 T. Poletaeva et al.

specified in conceptual models by attributes of transactions. For example, a yearly
membership registration (Transaction) of a customer (Initiator) in a company
(Executor) can have a particular cost (an attribute), which changes over time.

Moreover, being an endurant, each transaction is an instance of a kind that can be
specialized in various ways along the distinctions proposed by OntoUML (see
Sect. 2.1). Hence, for each instance of Transaction, the phases Transaction-Order,
Transaction-Execution, or Transaction-Result can be specified according to the coor-
dination facts constituting this transaction.

Distinction of actor roles in an organization by means of the method described in
[2] together with the Organization Arrangement patterns developed in [7, 16] could
help the ontology engineer to treat problems related to the definition of Kinds for
selected actor roles (see also Sect. 4).

3.2 Coordination Acts and Facts

Each coordination act performed by an actor towards his addressee contains an
intention and a proposition [2]. With the intention, an actor proclaims his ‘social
attitude’ with respect to the proposition. The standard transaction may contain coor-
dination acts with the following intentions: request, promise, state, accept, decline, quit,
reject, and stop [2]. With the proposition, an actor proclaims an abstract representation
of a class of desired situations [1]. In accordance with many standards, the portion of
reality which is subject to changes, can be abstracted by the category Work Product.

The foregoing definition of coordination acts was formalized by the Coordination
Act pattern. This pattern comprises the types: Actor Role, C-act, C-act Intention, C-act
Proposition, Work Product Disposition, Work Product, as well as their interrelations
depicted in Fig. 2.

We propose to model instances of the Proposition type as specializations (subtypes)
of Work Product Disposition, where the extension of the latter is a class of desired
situations such as creation or termination of an object, a relation between objects, or a
qualitative property of an object. For example, the proposition of C-acts and C-facts

<<roleMixin>>
Initiator

<<roleMixin>>
Executor

<<relator>>
Transaction

<<mediation>>
involves >

<<mediation>>
< involves

<<material>>

<<roleMixin>>
ActorRole

{disjoint, complete}

1..*

1 1

1..*<<mediation>>
< involves 1..*

1

<<phase>>
Transaction-Order

<<phase>>
Transaction-Execution

<<phase>>
Transaction-Result

Fig. 1. The pattern of participation in a transaction

From the Essence of an Enterprise Towards Enterprise Ontology Patterns 123

appeared in a transaction of type Membership Registration can be formulated as ‘(new)
membership has been started’ or simply, ‘Membership Started’, where the latter is a
possible specialization of Work Product Disposition. Thus, the Proposition type is a
high-order universal (a powertype), i.e. a rigid sortal whose instances are types [17].
Following [7], we extended the OntoUML metamodel by introducing the stereo-
type <<hou>> to represent high-order universals.

A coordination act brings about a situation, which triggers a (social) commitment
of one agent towards another regarding the proclaimed intention and the proposition.
This commitment is a coordination fact (C-fact) [2]. Examples of coordination facts
are: “membership has been started is requested asap”, “membership has been started is
promised asap”, where “membership has been started” is the propositional content of
both C-acts and their resulted C-facts, and “membership” is an identifiable instance of
kind Membership, where Membership is a specialization of the category Work Product.
For the sake of simplicity, in this version of patterns, we omit from consideration the
time part of propositions.

As a social commitment, a C-fact inheres in one of the negotiating actors per-
forming a C-act, and is externally dependent on the target actor. Hereby we consider a
C-fact being a relational quality (a mode) that contributes to constitute the relationship
between two actors, i.e., each C-fact is always a part of some transaction. Moreover,
we assume that each C-fact inherits the (fact part of) C-act proposition from its acti-
vating C-act.

C-acts with particular intention define a partition of the generalization set of C-fact
types (C-factType powertype). In other words, all C-facts brought about by C-acts with
particular intention, are instances of particular specialization of the C-fact type. For
instance, Work Product Disposition Requested comprises instances of C-fact that result

<<roleMixin>>
ActorRole

<<roleMixin>>
ActorRole’

<<relator>>
Transaction

<<mediation>>
involves >

<<mediation>>
< involves

1..*1 11..*

<<mode>>
C-fact

< partO
f1..*

1

< inheresIn 0..*

1

externallyDependentOn >0..*

1

<<event>>
C-act

< brings-about

1

1

< performedBy
0..*

1

1
<<mode>>

C-actIntention
causedBy >

0..*

<<hou>>
C-act Proposition

< propositionalContentOf

< propositionalContentOf
1..*

1

1..*

1

<<category>>
WorkProduct

<<disposition>>
WorkProductDispositon

inheresIn >

< satisfies1

1

<<hou>>
C-factType 1

< defines
1..*

< instanceOf

< inheresIn

1

0..*

Fig. 2. The pattern of coordination acts and facts

124 T. Poletaeva et al.

C-acts with the intention ‘request’, or Work Product Disposition Promised comprises
instances resulted C-acts with the intention ‘promise’.

The foregoing definition of coordination facts was formalized by the Coordination
Fact pattern. This pattern comprises the types: Actor Role, Transaction, C-fact, C-fact
Type, C-act Proposition, Work Product Disposition, Work Product as well as their
interrelations depicted in Fig. 2.

3.3 Production Acts

By performing material or immaterial production act (P-act), the executor of a trans-
action contributes to bringing about goods and/or services [2]. Thus, a production act
may bring about a work product disposition (Fig. 3), which is a change of a qualitative
property of an object, creation/termination of an object, or creation/termination of a
relation between objects. A work product disposition inheres in a work product. The
relator Work Product Participation establishes the participation of work products in a
P-act [18]. This relator is modeled with its specializations for creation and change
participation.

When the ontology engineer wants to represent the structure of work products, the
Work Product Composition and the Work Product Nature patterns developed in [18]
facilitate modeling of work product mereological decomposition and the types of work
products respectively. Moreover, since the patterns in [18] are constructed using
OntoUML, they can be easily merged with the pattern depicted in Fig. 3.

3.4 Production Facts

As pointed out in DEMO [2], all changes of a work product that have not been traced
properly in a social world of an enterprise are not considered of being effective or

<<roleMixin>>
Executor

<<roleMixin>>
Initiator

<<relator>>
Transaction

<<mediation>><<mediation>>

1

0..*
<<category>>
WorkProduct

<<disposition>>
WorkProductDispositon

inheresIn >

<<action>>
P-act

pe
rfo

rm
ed

By
 >

brings-about >

1

0..1

0..*<<relator>>
WorkProductParticipation <<mediation>>

participationOf >

0..*

1

11 1..*1..*

<<mediation>>
actsUpon >

1

0..*

<<material>>
changes >

< partO
f

1

0..*

1

<<material>>
creates >

Fig. 3. The pattern of production acts

From the Essence of an Enterprise Towards Enterprise Ontology Patterns 125

usable in this world. Thus, only a work product change, which is stated and accepted
by coordination acts of a particular transaction, becomes a production fact (P-fact) of
an enterprise [2].

To put it more precisely, an individual p is a P-factum iff there is a work product
disposition p which satisfies both the propositional content of the statement of this
disposition by a C-fact, and the propositional content of the acceptance of this dis-
position by a C-fact. C-facts stating and accepting the disposition, are parts of the same
transaction and instances of the types (or their specializations) Work Product Dispo-
sition Stated and Work Product Disposition Accepted respectively (Fig. 4).

Since the conceptual model in Fig. 4 does not precisely express the given defini-
tion, hereafter we specify it more formally in first order logic. In the definition that
follows, we use the notation x::U to represent the relation of instantiation between an
individual x and a universal U.

P-fact pð Þ ¼def WorkProductDisposition pð ÞK9x ðsatisfies x; pð ÞKx::C-actPropositionÞ
K9!y ðpropositionalContentOf x; yð ÞKy::WorkProductDispositionStatedÞK9!z

ðpropositionalContentOf x; zð ÞKz::WorkProductDispositionAcceptedÞ 1ð Þ

It is important to highlight that unambiguous articulation of types C-act Proposition
and Work Product Disposition as well as their interrelations with the types of the
coordination world and the types of the production world of an enterprise serves to
provide a basis for the coherent modeling of states in both worlds.

4 Applying the Enterprise Ontology Patterns: A Case Study

Enterprise ontology patterns are modeling fragments to be used during enterprise
conceptual modeling, and focus only on conceptual aspects, without any concern with
the technology or language [8]. In this section, we shortly present a case study,
applying the enterprise ontology patterns for the conceptual modeling of pizzas
delivery.

One can imagine a simple Pizzeria where only pizzas are made on receiving a new
order. Customers can have their pizzas delivered home. To realize this service, the
owner of the company hired students, who deliver pizzas on bicycles. However,

<<disposition>>
WorkProductDispositon

<<hou>>
C-act Proposition

<<mode>>
C-fact

< propositionalContentOf < satisfies

<<mode>>
WorkProductDispositionStated

<<mode>>
WorkProductDispositionAccepted

Fig. 4. The pattern of production facts

126 T. Poletaeva et al.

the students deliver pizzas only in the city region nearby the Pizzeria. For the delivery
of orders to remote locations, the Pizzeria uses the transportation service of a
third-party company. The owner of the Pizzeria decided to control the delivery process
by means of ICT (Information and Communication Technology). He started from the
conceptual modeling stage preliminary to the data modeling. In addition, we suppose
that the owner have already analyzed his business by means of the DEMO method-
ology [2]. Thus, he analyzed the transactions, the actor roles, and the business pro-
cesses of his company.

Figure 5 presents the conceptual model, which was constructed by applying the
Participation in a Transaction pattern together with the Organization Arrangement
patterns from [7] to a conceptualization of the Delivery transaction in the Pizzeria. In
this domain-specific pattern, the roles Initiator and Executor are specified by Order
Manager and Deliverer respectively. While Order Manager is a role that can be played
by organizational units of the Pizzeria (instances of Pizzeria Organizational Unit), two
kinds of actors can play a role of Deliverer, to wit: the Pizzeria’s delivery unit and
third-party delivery companies (instances of Third-party Delivery Co). Moreover, the
domain-specific facts ‘order id of [Delivery] is [ID]’, ‘start date of [Delivery] is
[Date]’, ‘end date of [Delivery] is [Date]’ were represented respectively by the
attributes OrderId, startDate, and endDate of the Delivery relator.

The ontology engineer (the Pizzeria’s owner) might need to track coordination facts
appeared in the Delivery transactions by means of ICT. The pattern of Coordination
Facts (Fig. 2) can be applied at the initial conceptual modeling stage. This pattern leads
to the definition of a work product type, a type of inhered dispositions (Work Product
Disposition), and the instances of C-act Proposition that allow making commitments
about the desired disposition(s) before it comes to exist.

<<role>>
OrderManager

<<relator>>
Delivery

<<roleMixin>>
Deliverer

<<mediation>><<mediation>>

<<material>>
deliveredBy >

<<datatype>>
ID

/orderId
1

1

1..*1..*

11

<<role>>
PizzeriaDeliveryUnit

<<role>>
Third-partyDeliveryCo

<<kind>>
PizzeriaOrganizationalUnit

<<kind>>
Organization

<<datatype>>
Date

/startDate
1

*

<<datatype>>
Date

/endDate

1*

<<kind>>
OrganizationalUnit

Fig. 5. Extended conceptual model of the Delivery transaction

From the Essence of an Enterprise Towards Enterprise Ontology Patterns 127

For the sake of simplicity, we suppose that a work product of the Delivery trans-
actions is of the type Pizza, and the dispositions are instances of Pizza Delivered with
the attribute address (Fig. 6). In Fig. 6, only one instance of C-act Proposition is
depicted. According to the proposition made in Sect. 3.2, this instance is a type of
dispositions (Pizza Delivered) constituting the fact part of delivery requests. However,
in Fig. 6, the instance of C-act Proposition is depicted separately from the type Pizza
Delivered. This example illustrates that a number of delivered pizza states (the
instances of Pizza Delivered) may satisfy ‘PizzaDelivered’ instance of C-act
Proposition.

C-facts resulted C-acts with different intentions constitute different phases of a
transaction. Thus, the P-fact type Delivery Requested (Fig. 6) is a part of the order
phase of Delivery.

We should highlight that consideration of different subtypes of Deliverer can
require the specialization of Pizza Delivered as well as new instances of C-act
Proposition, e.g. the proposition Pizza Delivered Locally for all requests to the
Pizzeria’s delivery unit responsible for deliveries.

The specification of the Production Acts pattern can be extended by the standard
delivery metadata modeled by the attributes of a work product (Fig. 7). Further
specification of the elements of the domain-specific pattern in Fig. 7 may be required to
model special conditions of production acts.

In Fig. 8, the specification of the Production Fact pattern is depicted together with
one exemplifying instance. For this particular case, the instances of the P-fact com-
ponents were given names reflected their datalogical representations. If the
domain-specific pattern is used for creation of meta-data in Pizzeria’s database, then
these instances illustrate possible data elements.

<<datatype>>
AddressDomain /address

*

<<role>>
OrderManager

<<roleMixin>>
Deliverer

<<phase>>
Delivery-Order

<<mediation>>
involves >

<<mediation>>
< involves

1..*1 11..*

<<mode>>
DeliveryRequested

< partO
f1

1

< inheresIn
0..*

1

externallyDependentOn >
0..*

1

<<hou>>
C-act Proposition< propositionalContentOf

1..*

1

<<kind>>
Pizza

<<disposition>>
PizzaDelivered

< inheresIn

< satisfies

1

1

PizzaDelivered

1

<<relator>>
Delivery

<<category>>
WorkProduct

Fig. 6. Conceptual model of the coordination facts of delivery requests

128 T. Poletaeva et al.

5 Final Considerations

Enterprise conceptual modeling is not an easy task. In this work, we proposed an initial
version of the Formal Enterprise Ontology Pattern Language aimed at facilitating
enterprise conceptual modeling. Since the patterns constituting this language are
expressed in OntoUML, they carry out the ontological and formal semantics of
OntoUML’s modeling constructs inherited from the foundational ontology UFO [1].
On the other hand, since the proposed patterns were built in accordance with the
DEMO theory of enterprise ontology [2], they inherit the real-world semantics of the
enterprise domain.

We argue that the proposed enterprise ontology patterns tend to bring the following
benefits for enterprise conceptual modeling: (i) the coherent models of the coordination

<<roleMixin>>
Deliverer

<<role>>
OrderManager

<<relator>>
Delivery

<<mediation>><<mediation>>

1

0..*
<<kind>>

Pizza

<<disposition>>
PizzaDelivered

inheresIn >

<<action>>
Delivery-act

pe
rfo

rm
ed

By
 >

brings-about >

1

0..1

0..*<<relator>>
PizzaInDelivery <<mediation>>

participationOf >

0..*

1

11 1..*1..*

<<mediation>>
actsUpon >

1
0..*

<<material>>
changes >

< partO
f

1

0..*

1

<<datatype>>
Mass

/mass<<datatype>>
Date

/creationDate

Fig. 7. Extended conceptual model of the Delivery production acts

SignatureOfCarrierX

SignatureOfConsigneeY

ConsignmentNoteNo

<<disposition>>
PizzaDelivered

<<hou>>
C-act Proposition

<<mode>>
C-fact

< propositionalContentOf < satisfies

<<mode>>
DeliveryStated

<<mode>>
DeliveryAccepted

Specified pattern of Production Facts

PizzaDelivered DeliveredAt10h50
< satisfies

< propositionalContentOf

< propositionalContentOf

Fig. 8. Conceptual model of the Delivery production facts and one exemplifying instance of this
model

From the Essence of an Enterprise Towards Enterprise Ontology Patterns 129

and the production world of an enterprise; (ii) the conceptual modeling process of
particular enterprises tends to be accelerated by reuse of these patterns; (iii) an easy
integration with the domain-specific ontological patterns expressed in OntoUML.

Following the directives on how to map conceptual models in OntoUML to their
implementation and less-expressive computationally-oriented codification languages
[19], our future research direction is the mapping of the proposed ontology patterns to
the constructs of the Web Ontology Language (OWL) and to the rules expressed in the
Semantic Web Rule Language1 (SWRL). Codification of the proposed patterns will
result in a core enterprise data metamodel.

Acknowledgments. The reported study was funded by RFBR according to the research project
№ 16-06-00300 a. This research was also partly funded by the CLASSE (“Les Corridors
Logistiques: Application a la Vallee de la Seine et son Environnement”) project of the Grand
Research Network of in Upper Normandy (Grand Réseaux de Recherche de Haute-Normandie).
The authors would like to express their gratitude to Dr. Giancarlo Guizzardi for his invaluable
advice and inspiring discussions.

References

1. Guizzardi, G.: Ontological foundations for structural conceptual models. Telematics Instituut
Fundamental Research Series, No. 015, The Netherlands (2005). ISSN 1388-1795

2. Dietz, J.L.G.: Enterprise Ontology – Theory and Methodology. Springer, Heidelberg (2006)
3. Barjis, J., Dietz, J.L.G., Liu, K.: Combining the DEMO methodology with semiotic methods

in business process modeling. In: Liu, K., Clarke, R.J., Andersen, P.B., Stamper, R.K. (eds.)
Information, Organisation and Technology: Studies in Organisational Semiotics.
Information and Organization Design Series, vol. 1, pp. 213–246 (2001)

4. de Jong, J.: Designing the Information Organization from Ontological Perspective. In:
Albani, A., Dietz, J.L., Verelst, J. (eds.) EEWC 2011. LNBIP, vol. 79, pp. 1–15. Springer,
Heidelberg (2011)

5. de Kinderen, S., Gaaloul, K., Proper, H.A.: Transforming Transaction Models into
ArchiMate. In: CAiSE 2012 Forum at the 24th International Conference on Advanced
Information Systems Engineering (CAiSE). CEUR-WS, vol. 855, pp. 114–121 (2012)

6. Krouwel, M.R., Op 't Land, M.: Combining DEMO and Normalized Systems for
Developing Agile Enterprise Information Systems. In: Albani, A., Dietz, J.L., Verelst,
J. (eds.) EEWC 2011. LNBIP, vol. 79, pp. 31–45. Springer, Heidelberg (2011)

7. Falbo, R.A., Ruy, F.B., Guizzardi, G., Barcellos, M.P., Almeida, J.P.A.: Towards an
enterprise ontology pattern language. In: 29th Annual ACM Symposium on Applied
Computing, pp. 323–330. ACM (2014)

8. de Almeida Falbo, R., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns:
clarifying concepts and terminology. In: 4th Workshop on Ontology and Semantic Web
Patterns. Sydney, Australia (2013)

1 The Web Ontology Language (OWL) and the Semantic Web Rule Language (SWRL) are Semantic
Web languages recommended by the W3C for knowledge representation.

130 T. Poletaeva et al.

9. Guizzardi, G.: Logical, ontological and cognitive aspects of object types and cross-world
identity with applications to the theory of conceptual spaces. In: Zenker, F., Gärdenfors, P.
(eds.) Applications of Conceptual Spaces: The Case for Geometric Knowledge
Representation, Part III. Synthese Library, vol. 359, pp. 165–186. Springer, Switzerland
(2015)

10. Guizzardi, G., Wagner, G.: Using the Unified Foundational Ontology (UFO) as a foundation
for general conceptual modeling languages. In: Poli, R., Healy, M., Kameas, A. (eds.)
Theory and Applications of Ontology: Computer Applications, pp. 175–196. Springer,
Netherlands (2010)

11. Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S., Almeida, J.P.A.: Towards
ontological foundations for the conceptual modeling of events. In: Ng, W., Storey, V.C.,
Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg (2013)

12. Guizzardi, G., Falbo, R.A., Guizzardi, R.S.S.: Grounding software domain ontologies in the
Unified Foundational Ontology (UFO): the case of the ODE software process ontology. In:
XI Iberoamerican Workshop on Requirements Engineering and Software Environments,
pp. 244–251 (2008)

13. Nardi, J.C., De Almeida Falbo, R., Almeida, J.P.A., Guizzardi, G., Ferreira Pires, L., Van
Sinderen, M.J., Guarino, N., Fonseca, C.M.: A Commitment-based Reference Ontology for
Services. Information Systems, vol. 54, pp. 263–288. Elsevier Ltd. (2015)

14. Guarino, N., Guizzardi, G.: “We need to discuss the relationship”: revisiting relationships as
modeling constructs. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015.
LNCS, vol. 9097, pp. 279–294. Springer, Heidelberg (2015)

15. Guizzardi, G., Wagner, G.: Dispositions and causal laws as the ontological foundation of
transition rules in simulation models. In: 2013 Winter Simulation Conference, pp. 1335–
1346. IEEE (2013)

16. Quirino, G.K., et al.: Towards a service ontology pattern language. In: Johannesson, P., Lee,
M.L., Liddle, S.W., Opdahl, A.L., Pastor López, Ó. (eds.) ER 2015. LNCS, vol. 9381,
pp. 187–195. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25264-3_14

17. Guizzardi, G., Almeida, J.P.A., Guarino, N., Carvalho, V.A.: Towards an ontological
analysis of powertypes. In: International Workshop on Formal Ontologies for Artificial
Intelligence (FOFAI 2015), 24th International Joint Conference on Artificial Intelligence
(IJCAI 2015). CEUR-WS, vol. 1517 (2015)

18. Ruy, F.B., Falbo, R.A., Barcellos, M.P., Guizzardi, G.: Towards an ontology pattern
language for harmonizing software process related ISO standards. In: 29th Annual ACM
Symposium on Applied Computing, pp. 388–395 (2015)

19. Guizzardi, G., Zamborlini, V.: Using a trope-based foundational ontology for bridging
different areas of concern in ontology-driven conceptual modeling. In: Science of Computer
Programming, vol. 96, Part 4, pp. 417–443. Elsevier B.V. (2014)

From the Essence of an Enterprise Towards Enterprise Ontology Patterns 131

http://dx.doi.org/10.1007/978-3-319-25264-3_14

Extended Viable System Model

Alexey Sergeev1,2(&) and José Tribolet3,4

1 Department of Information Systems and Technologies,
National Research University – Higher School of Economics,

Bol. Pecherskaya 25, 603155 Nizhny Novgorod, Russia
aisergeev@yahoo.com

2 Department of Engineering and Management, Instituto Superior Técnico,
University of Lisbon, Lisbon, Portugal

3 Department of Computer Science and Engineering, Instituto Superior Técnico,
University of Lisbon, Lisbon, Portugal

4 Instituto de Engenharia de Sistemas e Computadores,
Investigação e Desenvolvimento em Lisboa (INESC-ID), Lisbon, Portugal

Jose.Tribolet@inesc.pt

Abstract. Viable System Model (VSM) is a well-known and widely used
concept when working with enterprise as a viable system. However, research
shows that VSM does not include all the required elements to correctly model
enterprise as a viable system. This paper proposes extensions to VSM which
help to model enterprise in a more complete way. The proposal is illustrated
using case study of a real company. Authors propose to tie extended VSM to the
notion of Enterprise Operating System in future research.

Keywords: Viable system model � Enterprise operating system � Enterprise
architecture � Enterprise engineering

1 Introduction

In this work we follow view of Tribolet [1] on the enterprise as “a semantic web” of
active servers (agents), either silicon based or carbon based, running “internally” their
own apps and interacting “externally” through such “web”, in real-time. Silicon based
servers are represented by actual computing devices such as laptops, PCs, servers.
Carbon based servers are human beings, which are performing certain roles within the
organization and interacting with each other and silicon based servers. Certainly carbon
based servers and silicon based servers are not equal – human beings exclusively have
cognitive abilities, authority and competence to make decisions which they are
responsible for. Notions of authority, competence and responsibility are not applicable
to silicon based servers. Since both types of servers are interacting with each other,
exchange information and share tasks, they represent certain type of network, or web of
servers.

Continuing the metaphor, as long as an enterprise is a web of servers, and servers
are interconnected and communicating with each other, and running their own oper-
ating systems, we can consider that such enterprise has its own operating system, which
we call the Enterprise Operating System (EOS).

© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 132–147, 2016.
DOI: 10.1007/978-3-319-39567-8_9

We propose the following definition of Enterprise Operating System, which is the
adaptation of the definition of computer OS applied to the enterprise:

Enterprise operating system is the essential component of enterprise system that
supports system’s basic functions, controls the way a system works, manages system
resources and their allocation among actors to make it possible for them to function
and work together, adapt to changes and recover after critical situations.

Since EOS includes parts of interconnected stand-alone operating systems, EOS is
not a stand-alone OS by itself, it is a distributed OS. The notion of EOS is not new in
the literature, however, notion of EOS is typically tied to the software implementation.
For example, Guerreiro, van Kervel and Babkin define EOS as an Enterprise Infor-
mation System, which controls the business transactions operation in an organization
[3, 4]. In contrary to such focused and narrow view of an EOS, our understanding of
EOS is considerably wider. We view EOS not as a software system with certain
functions, but as the set of different processes and mechanisms which are essential for
the enterprise existence, adaptation and overall viability. While EOS might include
certain processes implemented in software, in general it has nothing to do with software
or computer operating systems – the term is used only as a metaphor of the artefact
within the enterprise with the functions which OS plays for computer. The relevant
(albeit not exactly the same) understanding of EOS can be found in this work [33],
where authors call the similar concept “Organizational Operating System”.

As the enterprise is a dynamic real time network of actor-servers interacting in real
time, all the time, a key question is: what are the key dynamic interactions among the
enterprise servers, and what is the most adequate control architectural model to rep-
resent them. The most usual control architectures used in classical engineering systems
seem to not have enough capabilities to capture and control the complex and diverse
interactions among enterprise servers. A more appealing approach is the one of
Maturana and Varela [5] using the biological systems paradigms with “autopoiesis”
capabilities to capture the nature of reflexive feedback mechanisms in living systems,
and concepts such as structural determinism and structure coupling, and one of Beer [2]
introducing the notion of viable system.

As soon as we compare enterprise to a living system, we must more broadly
consider enterprise to be a viable system. By definition, a viable system is any system
organized in such a way as to meet the demands of surviving in the changing envi-
ronment [2]. It is obvious then that enterprise by its nature is a viable system, therefore,
existence and viability (i.e. maintaining existence) are the essential characteristics of
any enterprise, and hence enterprise structure can be represented by a viable system
model (VSM), which by definition is a model of the organizational structure of any
viable or autonomous system [6]. Many works starting with the founding book of Beer
[2] also view the enterprise as a viable system [6–20]. However, research shows that
often VSM is not applicable to real world enterprises (see Sect. 3 for the literature
review), so the main goal of this paper is to analyze drawbacks of classical viable
system model and propose its extended version which is able to better describe real
world enterprises. This paper works as a basis for future research which will include
further exploration of EOS concept based on extended VSM construction and
mechanisms.

Extended Viable System Model 133

This paper is organized as follows: Sect. 2 provides description of VSM and its
parts, Sect. 3 includes literature review on VSM criticism and introduces our proposal
for VSM extension, Sect. 4 describes case study whose purpose was to find examples
of VSM drawbacks and practical illustration of the extended VSM applicability.
Section 5 concludes the paper and provides plans for future research.

2 VSM Description

Enterprise structure can be represented by a viable system model (VSM), which by
definition is a model of the organizational structure of any viable or autonomous
system.

VSM considers an enterprise interacting with its environment [6, 20, 31] in two
ways:

• Operation – the primary functions where all basic works are being done (like
production, distribution, etc.);

• Metasystem - the secondary functions which support all units working together in
an integrated way (accounting, scheduling, strategic planning, etc.)

Figure 1 illustrates the basic VSM [20, 31]:

VSM has five key systems, one at the Operation and four at the Metasystem
(adopted from [2, 6, 20, 31]).

We can find at the Operation:
System 1 – Implementation/Operational Units

Fig. 1. VSM basic model.

134 A. Sergeev and J. Tribolet

Operational units where primary activities are done. The Operational units are
responsible for producing the products or services.

We can find at the Metasystem:
System 2 - Co-ordination/Conflict solver
The system responsible for stability/resolving conflict between Operational units

and to co-ordinate the interfaces of its value-adding functions and the operations of its
primary sub-units.

Examples of the services in a complex organization that may come under
System 2 [7]:

– Computer/ICT services
– Documentation
– Purchasing
– Scheduling of common facilities
– Safety and Security
– Tax compliance
– Training in existing practices

System 3 – Control/Optimizer
The system responsible for optimization/generating synergy between Operational

units via a two-way communication between the Operation and the Metasystem.
Management accounting, budgeting and production control are typical of functions

provided by System 3 [7].
System 3* – Auditing
This systems fulfills the need for an audit channel that can delve into detail without

taking over and micromanaging. The financial audit is the most obvious example, but
there could be an energy audit, a security audit, an IT compatibility audit, a study of
customer complaints and others. Sporadic employee satisfaction surveys and needs
analyses are other examples [7].

Taken together, the management functions of Systems 1, 2, 3 and 3* account for
the as-is run time operations of the organization. Note that the only direct connection to
the environment exists in the linkage between it and the System 1 operations. Note also
that these are functions, not names on an organization chart. It is possible, even likely,
that an individual could play a role in delivering a product or a service to a customer
and in managing that operation. System 3 often includes representatives from man-
agement at System 1 and almost everyone enacts roles in System 2, at least by
observing the protocols [7].

System 4 – Intelligence, Planning, Strategy and Adaptation
The system responsible for the future plans and strategies and adaptation to a

changing environment, it implements the two-way link between the Viable System and
its external environment getting continuous feedback from the exterior and projecting
the organization identity to the exterior.

Recruitment, staff development, benchmarking, participation in trade shows and
conferences, market research and lobbying are concerned with learning about and
affecting the outside and future. Research and development, strategic planning, bor-
rowing policies and marketing use that knowledge to make internal modifications to be
ready for coming changes [7].

Extended Viable System Model 135

System 5 - Policy
The system responsible to guarantee that the organization works as a whole making

the policies and providing clarity about the overall direction, values and purpose of the
unit.

VSM scheme can be redrawn in the following way (Fig. 2):

Arrows mean information gathering flows, they are purposefully unidirectional
since we are interested only on gathering information from the environment in order to
understand how environment affects enterprise operation. Information gathering flow
from System 1 to environment is important for System 1 only, while flow from System
4 is crucial for the whole enterprise.

Since System 5 defines policy for the whole enterprise, it is positioned vertically to
touch every other System of VSM.

3 VSM Extension

While plenty works show that standard VSM is applicable to real life enterprises [2, 7–17],
there are many which point out the drawbacks of standard VSM and its inapplicability for
real world enterprises.

Contemporary applications of VSM show that an enterprise has to have good envi-
ronment scanning capabilities [8, 10, 11, 18].

Espejo and Reyes in [10, Chap. 2] discuss the notion of homeostat – a special case
of a feedback system which helps to maintain a set of variables among expected values
regardless of the nature of perturbations that may affect them. It means that organi-
zation must have capability to monitor certain variables (“sensors”) and have mecha-
nisms to react to changes beyond normal value range (“triggers” which causing
organization to react). The similar concept of feedback system which requires sensors
and triggers is described in [32].

In [10, Chap. 2], Espejo and Reyes also highlight the crucial importance of com-
munication. They state that it is not possible to separate control from communication,
therefore communication problems may cost much for any organization. Shannon’s
model of communication discussed by authors highlights that in order to transmit
message, there should be efficient and secure communication channel, and decodifier

Fig. 2. VSM basic model - adaptation.

136 A. Sergeev and J. Tribolet

on receiver’s side should be able to decode messages from sender, codified by codifier.
It brings the first possible problem of communication – transmitting the message
through the noisy channel, and the requirement for codifier and decodifier to under-
stand each other. Second possible problem of communication is that receiver must not
only receive, but also understand the message. In order to do this, both sender and
receiver must share the same vocabulary. Third problem of communication, as
highlighted by authors, is that receiver must understand the intention of the sender –
therefore, both sender and receiver must share the same context of their communica-
tion. It all brings the idea that communication channel, shared vocabulary and context
must be explicitly modelled in VSM, while standard VSM assumes these parts as
existing in implicit manner.

Perez Rıos in [11, Chap. 1] states that organization must have information at the
precise moment when one must decide and take appropriate measures, which means
that organization must be getting real time information and react upon it. It again brings
the idea of explicit specification of “sensors” and “triggers” in VSM. He also stresses
attention on the fact that communication is an essential part of VSM, which means that
all those elements affecting communication processes among individuals (the sending
and receiving of information) should be explicitly taken into consideration.

Following Espejo and Reyes [10], Perez Rios in [11, Chap. 1] describes the same
model of communication and highlights the same communication problem. Author
explicitly defines the main communication channels that should exist and be dealt with
in the design and/or diagnosis of the organization which intends to be viable. It is stated
that the number of channels linking functions in the VSM is very large, since every
connection between two elements is in fact a channel of communication. Consequently,
author limits his comments to the six essential “vertical” channels, whose function is to
jointly absorb all the variety (complexity) facing the system in focus. These channels
are the following (Hildbrand and Bodhanya follow the same explicit definition of
channels in [15]):

• Channel 1 (C1). Channel connecting and absorbing variety between the environ-
ments of each elementary operational unit.

• Channel 2 (C2). Channel connecting the various elemental operations (operational
units making up System 1).

• Channel 3 (C3). Corporate intervention channel (System 3–System 1).
• Channel 4 (C4). Resources bargaining channel (System 3–System 1).
• Channel 5 (C5). Anti-oscillatory channel (Co-ordination) (System 2).
• Channel 6 (C6). Monitor channel (Auditor).

Another channel that also deserves special consideration is the Algedonic Channel.
All this describes the same attempt to explicitly specify communication part in

VSM, hence extending standard VSM structure. To add to this, in [11, Chap. 2] Perez
Rios puts a lot of stress on specification of “sensors” and how to process information
from them, which correlates to our intention for VSM extension proposed in this paper.
It is further justified in [11, Chap. 3], where author describes pathologies of organi-
zations which include pathologies caused by underdeveloped communication channels
and sensors (hence lack of explicit specification of them).

Extended Viable System Model 137

Nechansky in [19] highlights that VSM’s Systems are specified as interrelated
black boxes without any functional and structural details, i.e. without explicit speci-
fication of many crucial parts of VSM. Author argues that standard VSM is not
applicable for some real world examples of enterprises – e.g. that larger systems like
large companies or societies, seem not to be unequivocally determined and may deviate
from VSM, while nevertheless being viable. Author finds empirical evidence for viable
systems with organizational structures which are more complex than standard VSM
scheme. He states that it is needed to explicitly define the system for top-down control
independent from S5. Example of such system – department conducting Six Sigma
project for the whole organization, reporting directly to S5 while not being part of other
hierarchical organizational structure. Author also states that there should be bottom-up
system for correction of performance problems, which he calls “immune system”.
Continuing Beer’s metaphor of VSM being analogous to the human brain, immune
system is a widely independent system, which cannot be directly steered from the brain.
The immune system detects lower level problems, which cannot even be recognized by
the nervous system and the brain, initiates and carries out actions to correct them, and
may even make the highest level system redistribute resources to fight severe problems.
The immune system is a stand by subsystem with no direct input from the top level of
the whole system. It has the ability to observe and intervene on lower levels, and has a
bottom-up channel to initiate corrections on the top level, if necessary. It can react
quickly and pass by all middle hierarchical levels to overcome delays or even resis-
tance, which might occur there. Examples of such immune system, as author points out,
are Kaizen and other forms of continuous improvement, company shareholders’
meetings, as well as works councils which are coordinating hierarchies to unite the
interests of employees – they discuss them, aside the corporate hierarchy, directly with
top managers, board members or even shareholders, and, if necessary, pursue them
even against them. Examples from broader society are antimonopoly committees and
free press, which step in when something is wrong with the market or society at large.

Authors of [20] review other works with some specific criticisms of VSM [21]. One
of these criticisms asserts that the VSM underplays the purposeful role of individuals in
organizations [22], which results in the failure to consider the social and political
dimensions of organizations [21]. It is an essential fact that the component parts of
organizations are human beings, “who can attribute meaning to their situations and can
therefore see in organizations whatever purposes they wish and make of organizations
whatever they will” [23]. The role of people and politics is crucial in EA [20], but the
VSM has been shown to be weak in dealing with this issue.

Summarizing this literature review on VSM inefficiencies, we propose the fol-
lowing extended VSM (Fig. 3).

The proposal is to explicitly specify Immune System, Language, Competence,
Tools and Sensors/triggers.

1. Immune System
The set of deep crucial mechanisms which can intervene into any System’s oper-
ation and make changes to Systems in the situation of crisis. On one hand, such
mechanisms are created by S3, S4 or S5, but on the other hand they can change
parent System.

138 A. Sergeev and J. Tribolet

Examples within enterprise:

– Board of Directors of a company
– Shareholder meeting
– Legal attorney can veto any activity if it contradicts with the law

2. Language
Everything which helps enterprise members (including VSM Systems) to com-
municate and understand each other. Based on the literature review, it is needed to
explicitly specify:
(a) Communication channels – ways, format and media for communication.

Examples of defined communication channels may be:

– Meeting minutes should be sent via email
– Interview with job applicant should be done either face to face or via phone

(b) Shared vocabulary – enterprise (and departments within enterprise) may have
certain specific terms for certain specific things. It is highly important that
communicating subjects are sharing the same vocabulary.
Examples:

– Specific terms for yearly performance review sessions with managers
– Specific terms for the level of employee on the career ladder (e.g. junior

engineer – engineer – senior engineer – principal engineer)

(c) Context – understanding of the meaning of the message is dependent on the
context. It is important to explicitly define context for certain communication
channels and information flows.
Examples of the importance of context:

– Term “BMC” may mean “Baseboard Management Controller” for hardware
engineer, while for manager it may mean “Business Model Canvas”

Fig. 3. Extended VSM.

Extended Viable System Model 139

3. Tools
It is important to explicitly specify hardware and software tools which enhance
communication by making it faster, more efficient, and/or secure.
Examples:

– Access to corporate email from mobile devices (faster communication)
– VPN connection to corporate network assets (more secure communication)

4. Competence
Literature review shows that individuals are not taken into account when using
standard VSM, while people are the essential part of every enterprise. One of the main
attribute of employees from employer’s perspective is their competences [24–28].
Review in [29] shows that competences are not explicitly considered in enterprise
engineering field of research as well. The proposal is to add explicit specification of
competences to the extended VSM. Using terms from the Four Stages of Competency
model [16], the goal is to make enterprise consciously competent about its employees
and about itself.

5. Sensors/triggers
We want to replace and extend the notion of homeostat by explicit specification of:

Sensors – mechanisms for information gathering and state monitoring.
Triggers – thresholds for sensor values and reactive actions for thresholds
violation.

Importance of sensors is highlighted in [32], where authors state that sensors are
crucial for the system to be observable. In order to be controllable, system must be
observable and have mechanisms which react on certain sensor outputs – i.e. triggers
are necessary. Having sensors and triggers is a mandatory condition to steer the
organization.

Example:
Sensor: regular monitoring of governmental legislation for changes which may

affect enterprise operation.
Trigger: if there is a new legislation which may affect enterprise operation, legal

department must review it and propose respective changes to comply with new
legislation.

It may sound obvious, but there are real world examples of lack of such simple
mechanisms within enterprises which lead to significant issues.

4 Case Study

In order to illustrate that extension for VSM is viable, case study is being conducted. It
is based on real life example, while some details were changed to comply with con-
fidentiality requirements. We must note that the brief description of case study is
provided for two reasons: firstly, case study is not finished yet – its completion is
planned as the next step in this research, secondly, the goal of including this case study
into this paper is only to illustrate that proposed VSM extensions can be found in real
organization.

140 A. Sergeev and J. Tribolet

Case describes European customer support department of a multinational company.
Customer support is outsourced to 3rd-party vendor providing technical and warranty
support services to company’s customers in the region. The goal of the case study was
not to build VSM for this department (which is impossible since the department is not a
separate viable system by itself), but to review employees’ roles and processes within
this department in order to find those which cannot be categorized according to stan-
dard VSM.

Vendor support center includes:

– Technical support agents – responsible for first-line technical support for customers
– Technical support experts - responsible for second-line technical support for

customers
– Technical support team leaders – responsible for technical teams management
– Warranty support agents - responsible for first-line warranty support for customers
– Warranty support team leaders - responsible for warranty teams management
– Reporting specialist – responsible for all reporting activities both internally within

vendor support center and externally to company customer support department
– Support center manager – responsible for support center operation from vendor

side.

Customer support department includes company employees:

– Regional customer support manager – responsible for all customer support activities
in the region

– Escalations handling manager – responsible for handling all non-technical and
non-IT escalations from vendor support center (including warranty exceptions
approval, dealing with angry customers, etc.) and for all exceptional situations in
the region (e.g. lawsuits, customer escalations directly to company executive office,
etc.)

– Product support engineers – responsible for handling all technical escalations from
vendor support center, technical trainings to technical agents and are involved into
new products support planning; playing the role of interface between vendor sup-
port center and product developers within the company.

It appeared that some processes in this department cannot be categorized as
belonging to some System of standard VSM. However, preliminary results of the case
study show that they are fitting into extended VSM structure, as proposed in this paper.

Examples of processes and artefacts, which are categorized in accordance to
extended VSM:

1. Language:
(a) Communication channels

– Meeting minutes should be sent via email
– Job offer must be sent via email
– Job interview must be conducted either via phone or as a face-to-face

meeting
– Contract termination notice must be sent via paper mail

Extended Viable System Model 141

All these rules for communication channels are not explicitly included into VSM,
while it was argued that explicit definition of communication channels is needed. In
particular, aforementioned rules have direct influence on Tools part of extended VSM,
also if they are violated, it may lead to communication problems within the organi-
zation (e.g. when meeting minutes are not distributed at all, which may lead to
misunderstanding between different actors or even VSM Systems) or may have impact
on organization viability as a whole (e.g. if job offer is not sent via email, it might have
legal actions in certain countries). The list is not exhaustive and provided only as an
example of extended VSM application.

(b) Shared vocabulary

– “AR” means “Action Required”
– “Grade” means level of professionalism of employee
– “Focal” means yearly employee performance review process

As well as with communication channels, the lack of explicit definition of shared
vocabulary may lead to issues within the organization. It is especially critical for
communication between Systems of VSM. E.g. during Focal process, both employees
of business units (System 1) and managers (System 3) must have common under-
standing of the term and the process to avoid potential issues such as managers are not
ready to rate employee’s performance which leads to lack of salary increase and hence
employee dissatisfaction up to leaving the company. Standard VSM does not explicitly
specify shared vocabulary, while literature review in Sect. 3 shows it is necessary.

c) Context

– Company is going to acquire company X – knowing this fact is changing
context of certain conversations and decision making processes.

– Term “BMC” means “Baseboard Management Controller” for product support
engineer, while for higher management it may also mean “Business Model
Canvas”

Similar to the communication channels and shared vocabulary, lack of explicit
definition of context of communication can lead to misunderstanding issues. E.g. if
someone within the company does not know that company is in the process of com-
pany X acquisition, this someone may inadvertently tell something wrong to the
journalists during press conference.

2. Tools:

– Email being the basic tool of communication with email on mobile devices,
secure email and access to email from outside of corporate VPN being enhanced
versions of this tool.

– Phone being basic tool of communication while phone with the highest quality
connection and ability to do conferencing and voice mails being enhanced
versions and IP-phone being cheaper and more flexible version.

– CRM – enhanced communication tool, since it is more secure, approved by legal
department and faster way of communication with customers for difficult
projects.

142 A. Sergeev and J. Tribolet

Explicit definition of tools helps to enable and enhance communication channels.
For example, knowledge that CRM is an approved tool removes the necessity to check
with legal department every time someone wants to share certain confidential document
with customer via email. Standard VSM lacks capability to define tools explicitly as
they are not part of any VSM System.

3. Immune System:

– Legal department can stop any activity at any time
– Crisis team can stop production lines at factories
– Board of Directors and Shareholders’ meeting can change company course and

replace CEO (and whole S5)

Understanding of parts of immune system across the whole organization is crucial.
E.g. if someone within business unit is not aware that legal department can stop
business unit operation in the crisis situation, they may disobey, which potentially may
lead to the end of existence of this particular organization, hence breaks its viability.
Examples provided here are not fitting to any other System of VSM, so can be
explicitly specified only as part of extended VSM.

4. Competence:

– Competence to be an interface between product developers and business
managers

– Product competence to train technical agents

If product competence is not specified explicitly as a requirement for business unit
employees, System 1 may fail to conduct its functions. Lack of competence to be an
interface between product developers and business managers may lead to broken
communication between System 1 and 3. It explains why explicit definition of com-
petence is needed on particular example (after it was argued by literature review in
Sect. 3).

5. Sensors/triggers:

– Sensor: monitoring social networks for negative posts; trigger: if number of
negative posts grew > 100 % vs yesterday, need to report to regional marketing
immediately.

– Sensor: monitoring warranty returns; trigger: if number of warranty returns
grew > 30 % vs last week, need to review associated support tickets and report
to respective business unit.

Without explicit definition of sensors and triggers these mechanisms may be
lacking. E.g. if process of monitoring of social networks is not explicitly specified in
enough detail, company may fail to recognize severe PR issues which may have direct
impact on company’s brand and stock price.

These are just some examples from the case study which is not finished yet, but
already provide some insight into the viability of the proposed VSM extensions. The
completion of the case study is planned as the next step of this research.

Extended Viable System Model 143

5 Conclusion

In this paper we provided description of viable system model as a method of viable
system representation. We also provided literature review which highlighted that while
plenty works show that standard VSM is applicable to real life enterprises, there are
many which point out the drawbacks of standard VSM and its inapplicability for real
world enterprises. Hence, based on this literature review and case study in progress, we
proposed extended version of VSM with Immune System, Language, Tools, Compe-
tence and Sensors/triggers added. Case study also illustrated that extended VSM is
applicable for real world enterprise representation.

We must admit that proposed extensions to VSM were designed to be applied to the
enterprise only (following the original purpose of viable system definition as per Beer
[2]), and illustrated using case study centered on the enterprise. Usage of VSM in other
areas such as biology, social sciences, and so on may prove extended VSM to be
inapplicable, however, those fields of study are beyond the scope of this paper.

Similar effort was done in the past by Aveiro et al. in [34]. In that paper authors
applied the Design and Engineering Methodology for Organizations (DEMO) [35] to
specify an ontological model for the generic Control Organization that they argue that
exists in every organization. With their proposal, DEMO was extended so that they
claim to specify critical properties of an organization – which they call measures –

whose value must respect certain restrictions imposed by other properties of the
organization – which they call viability norms. Aveiro et al. stated that they precisely
specified defined resilience strategies that control and eliminate dysfunctions – viola-
tions of viability norms caused by exceptions. The notion of measures as defined by
authors has similar purpose as our notion of sensors, but applied only inside the
organization. As measures are “critical properties of an organization”, they do not
allow to monitor the environment, which is the crucial part to support organization
viability. Hence, our definition of sensors is wider than the notion of measures as
proposed by Aveiro et al., since sensors are designed for events and changes both
inside and outside the organization. The notion of viability norms which is paired with
notion of measures and the concept of resilience strategies are combined in our notion
of triggers. As long as applied only inside the organization, the term “resilience” may
not be fully appropriate since does not tie the concept to the adaptation to external
changes. Word “trigger” was chosen as widely used in environmental studies, biology
and medicine (e.g. in collocation “environmental trigger”), as well as in computer
science, and tied to the notion of sensor. Our notion of triggers is wider than combined
notions of viability norms and resilience strategies since applied both inside and outside
the organization. Our notion of immune system utilizes sensors and triggers (therefore
is somewhat related to resilience strategies as defined by Aveiro et al.), but works on
top and beyond Systems 1 through 5, being able to control them, hence separately
defined in explicit way (therefore wider than the concept of resilience strategies as
understood by Aveiro et al.). Authors of [34] claim that their proposal of the Control
Organization seems to fit in part of Beer’s System 3 (also named control) of the VSM.
As was mentioned in Sect. 2 of our paper, System 3 accounts only for the as-is run time
operations of the organization, and does not directly communicate to the environment.

144 A. Sergeev and J. Tribolet

In contrast, our proposal relates to the organization as a whole (across all systems of the
VSM) and enables organization not only monitor and control the as-is run time
operations using internal measures and viability norms, but also monitor the envi-
ronment and react to its changes.

Future research plans include three stages.
The first one is to finish the case study and publish its full description in the net

paper.
The second one is to find similarities between viable systems in general and dis-

tributed systems. Some authors [30] provide opinion that autonomy and adaptation are
essential for distributed systems, which makes them viable systems, so VSM should be
applicable to them as well. Some authors show that enterprises are similar to distributed
systems [19]. The theory of distributed systems, especially distributed computing
systems and distributed operating systems, is very well developed, and distributed
systems have their own mechanisms to support viability. The idea is to apply these
mechanisms to VSM and possibly find more room for VSM extension and improve-
ment. The hypothesis is that distributed systems (especially distributed operating
systems) have explicit specifications of certain mechanisms which are implicitly
included or not at all included into VSM. This research will also help to validate
extensions to VSM proposed in this paper.

The third one is to explicitly define parts of EOS – currently EOS is only a high
level concept, whose existence is indirectly confirmed by our literature review.
Hypothesis is that EOS includes parts of extended VSM plus some other mechanisms.
The idea is to merge extended VSM with model of distributed operating system and so
create reference model of Enterprise Operating System.

References

1. Tribolet, J.: An Engineering Approach to Natural Enterprise Dynamics - From Top-down
Purposeful Systemic Steering to Bottom-up Adaptive Guidance Control/J. Tribolet - ICEIS
2014 keynote. http://www.iceis.org/KeynoteSpeakers.aspx?y=2014#4

2. Beer, S.: Brain of the Firm/S. Beer - Allen Lane, The Penguin Press, London, Herder and
Herder, USA (1972)

3. Guerreiro, S., van Kervel, S., Babkin, E.: Towards devising an architectural framework for
enterprise operating systems. In: Proceedings of the 8th International Joint Conference on
Software Technologies, pp. 578–585

4. van Kervel, S.: Ontology driven Enterprise Information Systems Engineering. SIKS
Dissertation series nr. 2012-50. ISBN: 978-90-9027133-0

5. Maturana, H.R., Varela, F.J.: The cognitive process. Autopoiesis and cognition: The
realization of the living. Springer Science & Business Media. p. 13. (1980). ISBN
978-9-027-71016-1

6. Walker, J.: The VSM Guide/J. Walker (2006). http://www.esrad.org.uk/resources/vsmg_3/
screen.php?page=1qguide [available online on the 25th of September 2014]

7. Leonard, A.: The viable system model and its application to complex organizations. Syst.
Pract. Action Res. 22, 223–233 (2009)

Extended Viable System Model 145

http://www.iceis.org/KeynoteSpeakers.aspx?y=2014#4
http://www.esrad.org.uk/resources/vsmg_3/screen.php?page=1qguide
http://www.esrad.org.uk/resources/vsmg_3/screen.php?page=1qguide

8. Hoverstadt, P.: The fractal organization: creating sustainable organizations with the Viable
System Model. Wiley (2008)

9. Pfiffner, M.: Five experiences with the viable system model. Kybernetes 39(9/10),
1615–1626 (2010)

10. Espejo, R., Reyes, A.: Organizational Systems: Managing Complexity with the Viable
System Model. Springer, Heidelberg (2011). ISBN: 978-3-642-19108-4

11. Perez Rios, J.: Design and Diagnosis for Sustainable Organizations: The Viable System
Method. Springer, Heidelberg (2012). ISBN: 978-3-642-22317-4

12. Alqurashi, E., Wills, G., Gilbert, L.: A viable system model for information security
governance: establishing a baseline of the current information security operations system. In:
Janczewski, L.J., Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IFIP AICT, vol. 405, pp. 245–
256. Springer, Heidelberg (2013)

13. Herrmann, C., Bergmann, L., Halubek, P., Thiede, S.: Lean production system design from
the perspective of the viable system model. In: The 41st CIRP Conference on Manufacturing
Systems (2008)

14. Julio, C.P.R.: Extending the viable system model scope on ICT-sector software projects in
Castilla y León. Kybernetes 43(2), 192–209 (2014)

15. Hildbrand, S., Bodhanya, S.: The potential value of the Viable System Model as a
managerial tool. Manage. Dyn. 22(2) (2013)

16. Stephens, J., Haslett, T.: A set of conventions, a model: an application of stafford beer’s
viable systems model to the strategic planning process. Syst. Pract. Action. Res. 24, 429–452
(2011)

17. Burgess, N., Wake, N.: The applicability of the Viable Systems Model as a diagnostic for
small to medium sized enterprises. Int. J. Prod. Performance Manage. 62(1), 29–46 (2013)

18. Kirikova, M.: Work systems paradigm and frames for fractal architecture of information
systems. In: Nurcan, S., Pimenidis, E. (eds.) CAiSE Forum 2014. LNBIP, vol. 204, pp. 165–
180. Springer, Heidelberg (2015)

19. Nechansky, H.: Issues of organizational cybernetics and viability beyond Beer’s viable
systems model. Int. J. Gen Syst 42(8), 838–859 (2013)

20. Zadeh, M.E., Lewis, E., Millar, G., Yang, Y., Thorne, C.: The use of viable system model to
develop guidelines for generating enterprise architecture principles. In: 2014 IEEE
International Conference on Systems, Man, and Cybernetics, 5–8 October 2014,
San Diego, CA, USA

21. Checkland, P.: Are organisations machines? Futures 12, 421–424 (1980)
22. Ulrich, W.: A critique of pure cybernetic reason: the Chilean experience with cybernetics.

J. Appl. Syst. Anal. 8, 33–59 (1981)
23. Flood, R.L., Carson, E.R.: Dealing with complexity: an introduction to the theory and

application of systems science, 2nd edn. Plenum Press, New York (1993)
24. Munkvold, B.E., Hustad, E.: IT-supported competence management: a case study at

ericsson. Inf. Syst. Manage. 22, 78–88 (2005)
25. Nordhaug, O.: Human Capital in Organizations. Scandinavian University Press, Oslo (1993)
26. Hachicha, R.M., Dafaoui, E.M., Mhamedi, A.E.: Competence evaluation approach based on

2-tuple linguistic representation model. 978-1-4244-3672-9/09/$25.00 ©2009 IEEE
27. Czelusniak, J., Abreu, A., Dergint, D., Hatakeyama, K.: Proposal of agent’s software for

support competence management process. In: PICMET 2010 Conference (2010)
28. Sanghi, S.: The Handbook of Competence Mapping: Understanding Designing and

Implementing Competency Models in Organizations. Sage Publications, London (2004)
29. Sergeev, A., Babkin, E.: Towards competence-based enterprise restructuring using

ontologies. In: Aveiro, D., Pergl, R., Valenta, M. (eds.) EEWC 2015. LNBIP, vol. 211,
pp. 34–46. Springer, Heidelberg (2015)

146 A. Sergeev and J. Tribolet

30. Herring, C., Kaplan, S.: The viable system architecture. In: Proceedings of the 34th Hawaii
International Conference on System Sciences – 2001 (2001)

31. Millar, G.: The Viable Governance Model: a Theoretical Model of IT Governance within a
Corporate Setting. DIT Unpublished doctoral dissertation, University of New South Wales,
Canberra (2009)

32. Abraham, R., Tribolet, J., Winter, R.: Transformation of multi-level systems – theoretical
grounding and consequences for enterprise architecture management. In: Proper, H.A.,
Aveiro, D., Gaaloul, K. (eds.) EEWC 2013. LNBIP, vol. 146, pp. 73–87. Springer,
Heidelberg (2013)

33. Páscoa, C., Tribolet, J.: Organizational Operating Systems, an Approach. In: CENTERIS
2015 - Conference on ENTERprise Information Systems, 7–9 October 2015, pp. 521–528,
Elsevier (2015)

34. Aveiro, D., Silva, A.R., Tribolet, J.: Control organization: A DEMO based specification and
extension. In: Albani, A., Dietz, J.L., Verelst, J. (eds.) EEWC 2011. LNBIP, vol. 79, pp. 16–
30. Springer, Heidelberg (2011)

35. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg (2006).
ISBN: 3-540-29169-5

Extended Viable System Model 147

Foundations of Enterprise Engineering

Towards the Ontological Foundations
for the Software Executable DEMO Action

and Fact Models

Marek Skotnica1(B), Steven J.H. van Kervel2, and Robert Pergl1

1 Czech Technical University, Prague, Czech Republic
skotnicam@gmail.com, robert.pergl@fit.cvut.cz

2 Formetis, Boxtel, The Netherlands
steven.van.kervel@formetis.nl

Abstract. The discipline of enterprise engineering and the DEMO
methodology enable a model-driven approach to enterprise software sys-
tems development.

Apart from the graphical notation, the DEMO models may be fully
specified in the DEMOSL language, which may become a basis for an
workflow software system implementation. However, the current specifi-
cation of DEMOSL has been designed mostly for the reasoning between
human stakeholders.

In this paper a formal calculation construct called a DEMO Machine
is proposed and basic ontological foundations of this machine are elabo-
rated based on the alignment with the theories of enterprise engineering,
various ontological and formal quality criteria and the application of the
Generic Systems Development Process for Model Driven Engineering
(GSDP-MDE methodology).

Keywords: Enterprise engineering · DEMO · DEMO machine ·
Enterprise operation system · Ontological foundations

1 Introduction

The domain of this paper encompasses enterprises, ontological foundations and
enterprise information systems. Enterprises, as defined in [1], are social systems
composed of human actors communicating about their productions to serve some
external entity, typically called the “customer”. An enterprise is an engineering
artefact, designed and implemented for a specific purpose. An enterprise infor-
mation system [2] is an information system (IS) that provides (i) some valuable
descriptive perspective on the operation of an enterprise, for example: financial,
personnel, inventory, production monitoring systems; or (ii) executes a prescrip-
tive role, a control system that steers the operation of an enterprise, driven by
the execution of a model of that enterprise. An example of such a prescriptive
control system is a workflow system.

c© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 151–165, 2016.
DOI: 10.1007/978-3-319-39567-8 10

152 M. Skotnica et al.

For the engineering of enterprises and the supporting information systems
(ISs), appropriate scientific foundations are provided by the DoEE [1] and other
theories, as described in Sect. 2. A promising approach is to derive IS directly
from conceptual models of enterprises, eliminating manual programming, i.e. a
manual translation of software specifications into propositions of a computer
programme expressed in a programming language. This approach is proposed
and generally elaborated by the Model-Driven Engineering [3].

The relevance of the MDE approach to derive ISs is very high, given that the
majority of IT projects in the professional world fails or are “challenged” [4,5].
There is no evidence available that MDE is a panacea to this situation, however
the MDE approach based on the DEMO methodology is scientifically interesting
due to its strong theoretical foundations (Sect. 2) and a good empirical degree
of appropriateness [6–8].

DEMO models are engineering specifications with the C4-ness qualities (mod-
els are Concise, Coherent, Consistent and Comprehensive [9]). The approach to
implementation of ISs directly derived from DEMO models [10] is a novel topic.
However, published professional results [7] document feasibility of this approach
that addresses several serious problems:

(i) The elimination of programming due to the fact that the DEMO model is
the source code for a native DEMO model executing software engine.

(ii) A substantially better business-IT alignment, enabled by automatic model
verification, early model validation, followed by incremental model improve-
ments, eliminating most of the human errors induced by manual program-
ming.

(iii) Reduction of complexity due to highly expressive specifications and abstrac-
tion layers.

The paper is organized as follows: In Sect. 2, the underlying scientific foun-
dations are briefly discussed. In Sect. 3, the research question is more precisely
defined. In Sect. 4, the axioms of the theory are proposed, investigated and rep-
resented in a formal notation. In Sect. 6, the related work is discussed. In Sect. 7,
the current results are summarised and further research is mentioned.

2 Scientific Theories and Methodologies Applied

We understand the notion of ontology as a “formal, explicit specification of a
conceptualization shared between stakeholders” [11]. The most important crite-
ria regarding the quality of any ontology [12] are (i) ontological truthfulness, an
ontology providing a truthful representation of the real world; (ii) ontological
completeness, completeness of expression for any phenomenon that may exist in
our domain of the real world; and (iii) ontological appropriateness, good sup-
port for shared reasoning between stakeholders. The mentioned C4-ness quality
criteria must be also met.

Other important concepts regarding ontologies, conceptual languages and
models are formulated by Guizzardi in [13].

Ontological Foundations for DEMO Action and Fact Models 153

Enterprise Ontology [9] is a theory for enterprises, composed of human
actors that communicate and cooperate about some production fact, to meet
the requirements of some external entity, typically called a “customer”.

The DEMO methodology [9] is an engineering methodology, based on the
theory of enterprise ontology, to devise conceptual models of enterprises.

The notion of the model quality is represented by the already mentioned
C4-ness criteria, as well as three cardinality laws [10,13,14].

MDE essentially means using ontologies for designing artefacts, which is the
domain of The Design Science Paradigm described by [15], who provides a frame-
work to devise engineering artefacts.

The Normalised Systems Theory formulates rules that software systems1

must adhere to, to be evolvable and maintainable over time [16].
The Generic Systems Development Process for Model Driven Engineering

(GSDP-MDE) [10,14] provides a methodology to devise a conceptual language
and a model-executing software system based on a domain ontology. The GSDP-
MDE is a special case of the Generic System Development Methodology, which
is based on the General Systems Theory [17]. GSDP-MDE provides a model-
instance driven approach where for each phenomenon instance in the real world,
there is one unique instance of a model that is a precise descriptive representa-
tion of the specific phenomenon instance in the real world. At the same time,
the model instance provides a prescriptive representation of the allowed state
transitions of this real world phenomenon instance. The model-instance driven
approach is the foundation for the descriptive and prescriptive ISs.

3 Formulation of the Research Question

3.1 The DEMO Machine Concept

The currently latest version of the DEMO 3 specifications of models and repre-
sentations [18] is based on DEMOSL, an acronym of DEMO Specification Lan-
guage. DEMOSL is specified using EBNF (extended Backus-Naur Form) [19].
This language is derived from reasoning on rules and facts from a modeller’s
perspective, primarily used for shared reasoning between stakeholders. The main
research question is: How should a DEMO Machine be designed that can
be used to interpret DEMOSL? Such a machine should take as its input a
specification based on DEMOSL and enhanced by necessary execution seman-
tics. As this is a very broad topic, we will limit ourselves here to discussing just
a fragment of this machine, as specified further. Moreover, the DEMO Machine
is meant as a formal computation model (similar to the e.g. Turing Machine),
i.e. we do not elaborate on software implementation.

3.2 Appropriateness of the DEMOSL for DEMO Machine
Implementation

The DEMO Machine needs to take into account the following challenges that
are induced by the execution level and thus not addressed in DEMOSL:
1 But not limited to.

154 M. Skotnica et al.

1. Integration. DEMOSL concepts are either new (to be carried out) or existing
concepts already present in the enterprise. DEMOSL does not deal with this
separation.

2. Facts duplication. The facts representation must be physically present in one
place to assure the consistency of enterprise systems [20]. This point is related
to Integration, but it is also valid on its own.

3. Lack of expressiveness. At the execution level, there are many domains, where
DEMOSL is not expressive enough to describe it, like scientific computations.

4. Modularity. DEMOSL does not specify, how the solution is modularised,
which is at the same time a crucial execution concern.

5. Lack of version transparency. DEMOSL does not deal with evolvability of the
models with the respect to the running instances.

6. Execution semantics of DEMOSL. Currently, the execution semantics of
DEMOSL is not fully specified. Let us demonstrate this on a simple example:

when T01(M) is requested with member(new M) = P
if age(P) < minimal_age then decline T01(M)
else promise T01(M)

The following semantics is not defined:

– How with should be executed?
– What does age(P) mean, where and how should it be calculated?
– What does minimal age mean, where and how should it be stored?

This list of topics is probably not complete, however it names the key chal-
lenges that definitely need addressing.

3.3 Formulation of Ontology for DEMO Machine

Based on these observations, we narrow our research question to: How to formu-
late a domain ontology for Facts, Agenda and Rules (FAR)? We started building
the DEMO Machine ontology from this topic, because facts, agenda and rules are
the “heart” of a DEMOSL execution. This ontology should address the points
listed above and it should exhibit the necessary qualities:

(i) To be based on and compliant with the FI, TAO and PSI theories of EE.
(ii) Truthfulness and good appropriateness qualities and compliance with the

three cardinality laws [13].
(iii) Maintaining the strict C4-ness criteria.

As for the notions of “Way of thinking” and “Way of working” distinguished
in the DEMO method and theories, the FAR ontology is rather a way of working,
as we come from the existing way of thinking (the PSI theory) and formulate
how to enhance it for the execution.

Ontological Foundations for DEMO Action and Fact Models 155

3.4 Verification and Validation Questions of the Research Question

The FAR domain ontology is proposed below that enables the construction of
executable Fact and Rule expressions that operate on Agenda. As for the model
verification, we must make sure that it is free of anomalies that may enable a con-
struction of rules and expressions that cannot exist in the world of phenomena.

4 Axiomatic Specifications of the Fact, Agenda and Rule
Ontology

4.1 Addressing the DEMOSL-DEMO Machine Deficiencies

Let us elaborate, how the FAR Ontology (as well as the whole DEMO Machine)
may address the challenges stated above.

1. Integration and Facts duplication. Based on the Separation of Concerns Prin-
ciple from the Normalised Systems Theory [16], the DEMO Machine should
not supply the functionality of the already-existing enterprise systems, such as
a database. Also, the DEMO Machine should not specify scales, dimensions,
sorts, units such as time, money and others.

2. Lack of expressiveness. For areas, where there are already established solu-
tions (like mathematical libraries), these should not be represented in a
DEMO Machine, to maintain the separation of concerns and the C4-ness
criteria.

3. Modularity and Version transparency are complex topics that cannot be easily
commented. They are a subject for future work that should be based on the
studies of Normalised Systems Theory mentioned above.

4. Execution semantics of DEMOSL. The execution semantics should be spec-
ified by the DEMO Machine. The FAR Ontology focuses on the subset of
execution, namely the facts, agenda and rules concepts.

Let us now dive into the specific part of the DEMO Machine, the FAR Ontol-
ogy, which will be specified as a set of axiomatic definitions.

4.2 Fact Axioms

The DEMO theory builds on the Φ theory. The letter Φ stands for “FI”, an
acronym for Fact and Information about a “world”, being a specific part of the
universe we are interested in, and of which we require factual information or
knowledge [9]. Our world of interest is “the world of enterprises”. A world of
interest is assumed to be composed of Acta, Facta and Stata. Stata are things
or phenomena that existed before the beginning of our observation. A Fact is
a proposition about something that exists in the real world and provides us
with factual knowledge about the world. Facts can be about either concrete or
abstract things or phenomena. They are the results of Acta, being actions or
acts, undertaken by an entity. Facts come to being by carrying out acts. Once
they originate, they cannot disappear; they can be only ignored.

156 M. Skotnica et al.

During the design time, we deal with facts as propositions about the real
world. They exist just as a symbolic structure and we cannot decide its truthful-
ness. Then, once the DEMO Machine executes (i.e. the fact “happens”), we may
valuate it as true, false or undefined. Undefined means that the subjects of
the proposition does not exist, yet, or we do not know the valuation, as a result
of e.g. a technical failure. The valuation may (and typically does) change during
the execution. Any calculations based on facts should take this into account.
Stata also represent factual knowledge about our world of interest that exist
since the beginning of time. Obviously any facts about Stata are always either
true or false.

Let us present the definitions here using the standard mathematical con-
structs.

Definition 1. Fact A fact is an ordered tuple:

Fact := (Identifier, Type, Proposition) (1)

Identifier – A unique identifier of the fact.
Type ∈ {Internal, External, Composed}
Proposition – A specification2 of the statement about the real world.

Definition 2. Value of a fact is a valuation function:

FactV alue : (TransactionInstance, Fact) → {True, False, Undefined} (2)

Definition 3. Transaction Instance Linking (TIL) is a ternary relation
that relates certain transaction instances to each other. This relation is defined
outside of the DEMO Machine, which requests this relation for the evaluation of
the rules.

TransactionInstanceLinking(TIL) :=
TransactionInstance × TransactionInstance × LinkingIdentifier

(3)

TransactionInstance – A transaction instance unique identifier.
LinkingIdentifier – A name of the relation that holds between the transaction
instances.

Example 1. Two transaction instances are sharing the same membership:
(“T01 1”,“T02 2”,“Membership”)

Definition 4. Internal Fact is a factual statement about a DEMO model
instance.

InternalFact := (Fact, InternalFactExpression) (4)

2 FAR does not specify the language, it may be a natural language or any other
language.

Ontological Foundations for DEMO Action and Fact Models 157

Definition 5.

InternalFactExpression :=
(singleTransactionComparison)|(multiTransactionComparison) (5)

singleTransactionComparison = (transaction).state (operator)
((transaction).state | (state))
multiTransactionComparison = (transactionSelector).(selectorFunction)
(t => (singleTransactionComparison))
transaction = this | this.parent
state = perfect tense intention” as defined in DEMOSL
operator = == | ! =
variable = (transaction).(attribute)
selectorFunction = all | any
transactionSelector = transactionType < (linkingIdentifier) > |
this.children < transactionType >
transactionType = existing transaction type defined in the model
linkingIdentifier = identifier of the relation between transactions

This grammar is using the Extended Backus-Naur Form (EBNF). Round
brackets denote non-terminals. Note that the presented grammar is very basic
and it is not able to capture all facts about the DEMO model instance or its
history. Complete grammar is a subject for further research.

Example 2. Let us show an example by formalising the fact F02 “Are invoices
paid?”, which is the situation when all instances of T03 that are linked to the
current transaction are in the same state as the current transaction.

F02 = ((“F02”,“Are invoices paid?”), T03< “Invoice” >.all(t => t.state
== this.state))

Definition 6. External Fact is a Fact about the world outside the DEMO
Machine

ExternalFact := (Fact, CalculationEngine) (6)

CalculationEngine – Identifier of the external system function evaluating the
fact.

Data in external data banks are represented as external facts, for instance.
External facts represent knowledge of phenomena in the environment that may
change over time and have no (known) calculation specification. We operate just
with a further unspecified reference to external system function that is able to
valuate the fact, thus carrying out the separation of concerns principle.

Example 3. A fact that evaluates that the person attached to the transaction
instance is older than 18 years

F01 = ((“F01”,“Is person older than 18 years?”), CalculationEngine)
CalculationEngine may be implemented in any computer technology such as

a web service (SOAP or REST), or locally as a system library. In the following
code, we implement it as a class in a standard programming language. The
calculation of a F01 would be realized as its method:

158 M. Skotnica et al.

public class CalculationEngine {
[DEMOEngineExternalFact(FactId="F01")]
public FactValue IsPersonEligible (TransactionInstance t) {
var person = DAL.GetPersonByTransactionInstanceId(t.Id);
if(person == null) return FactValue.Undefined;
else return person.Age > 18 ? FactValue.True : FactValue.False;
}}

Definition 7. Composed Fact is a fact composed from internal and external
facts.

ComposedFact := (Fact, ComposedFactExpression) (7)

Definition 8. Composed Fact Expression

1. InternalFactIdentifier and ExternalFactIdentifier are composed fact expres-
sions.

2. If x and y are composed fact expressions, then following expressions are also
composed fact expressions:
(a) (x and y)
(b) (x or y)
(c) not (x)

For valuation of composed facts, the Kleene and Priest three-valued logics is
used.

Example 4. A person is older than 18 years and he is accepted as a applicant in
a membership approval process of the Volley tennis club:

F01 = (("F01","Is person older than 18 years?"),
VolleyCalculationEngine)

F02 = (("F02","Is person accepted in the approval process?"),
VoleyCalculationEngine)

F03 = (("F03","Is person eligible for membership?"),
("F01 and F02"))

The resulting truth table is then:

F01 F02 F03 Result
True True True
True False False
True Undefined Undefined
False True False
False False False
False Undefined False
Undefined True Undefined
Undefined False False
Undefined Undefined Undefined

Ontological Foundations for DEMO Action and Fact Models 159

4.3 Agenda Axioms

An agenda is set of possible coordination acts (agendum) that is presented to
the actor. These are well-defined concepts in the PSI theory. An actor involved
in a transaction is offered, according to the transaction axiom, to choose one of
the valid options to perform coordination acts, which happens in asynchronous
time. Example: After a Request from the initiator, the executor may issue either
a Promise or a Decline, but other coordination acts such as a Reject are now
forbidden, to comply with the Transaction Axiom.

An agenda for an actor must be (re)calculated completely at run time by
the DEMO Machine of the model instance, after each state change of the model
instance. It will be shown that the allowed options for coordination acts are
restricted by causal and conditional dependencies and rules. It means that appli-
cation of rules is present to guarantee the compliance with the PSI theory. Any
extension, enlargement, of the transaction transition space or the state space is
impossible since this would violate the PSI theory axioms.

Definition 9. Coordination Act (cAct) is a proposed or intended action for
an actor.

cAct := (Transaction, TransactionInstance,

ActorInstance, Intention, SettlementType)
(8)

Transaction = Transaction kind as defined in DEMOSL.3

TransactionInstance = Associated transaction instance. May be empty.
ActorInstance = Associated actor instance.
Intention ∈ {Create(T, n), Promise, Decline, Request, Quit, Accept, Reject,
State, Stop, RevokeRequest, AllowRevokeRequest, RefuseRevokeRequest, Revoke-
Promise, AllowRevokePromise, RefuseRevokePromise, RevokeState, AllowRe-
voke State, RefuseRevokeState, RevokeAccept, AllowRevokeAccept, RefuseRe-
vokeAccept}
SettlementType ∈ { Allow, Enforce, Restrict }

There are two additions to the definition given by the DEMO theory. One is
the possibility to create a new transaction (generated by the composition axiom)
which will be used by the rules. Create(T, n) means “Create n transactions of
type T”, where n is a positive whole number. The second is the settlement type
which says how the cAct should be dealt with. Allow means that an actor is
allowed to perform the intention. Enforce cAct says that the given intention
should be actually performed, unless there is a Restrict cAct with the same
intention for the same transaction instance. Practically, the Restrict cAct also
informs the actor, why such an intention cannot be performed. In the DEMO
theory, an actor is allowed to perform an act even when it is restricted. How-
ever, in the enterprise practice, legal and other compliance is a crucial aspect of
execution. Thus, we enable this feature in the DEMO Machine.

3 Transaction is also defined by the TransactionInstance if present.

160 M. Skotnica et al.

Please note that in Definition 9 we do not take into account any additional
information from inside or outside of the organization. This is due to the sep-
aration of concerns principle addressing the Facts duplication (Sect. 4.1). All
external information (facts) are handled outside of the DEMO Machine.

Definition 10. Agenda is a function that calculates a set of actor’s possible
actions based on the current state of the model taking into account the composi-
tion axiom and the respective rules.

Agenda : (ModelInstance,ActorInstance) → {cAct} (9)

Definition 11. Perform cAct

PerformCAct : (ModelInstance,ActorInstance, CActToEnforce) → Agenda
(10)

To perform a cAct means that the actor makes a selection of an allowed cAct
from its agenda and it enforces it.

4.4 Rules and Dependencies Axioms

Rules and dependencies are specifications of either a prescriptive execution of a
coordination act, or a conditional prohibition of a coordination act for an actor,
depending on the evaluation of a fact.

A rule and a dependency restrict the available freedom of an actor to issue
coordination acts at the execution time. The evaluation, if the rule or dependency
applies, takes place at runtime, depending on the state of that model instance.
The transaction instance state space and the state transition space of a model
instance is further restricted (made smaller). It is impossible to add new options
for coordination acts since that would violate the axiomatic specifications derived
from the PSI theory.

Definition 12. Causal Rule and Dependency are defined as the application
of a rule that results in a transaction state change.

CausalRule = (Transaction, TransactionState, Fact, cActTrue, cActFalse)
(11)

Definition 13. Evaluation of Causal Rule and Dependency

if TransactionInstance.State == TransactionState
and FactValue(TransactionInstance, Fact) == True

then anAgenda.Add(cAct(cActTrue, Enforce))
else if False then anAgenda.Add(cAct(cActFalse, Enforce))

Definition 14. Conditional Rule and Dependency are defined as the appli-
cation of a rule that results in a restriction of an agendum, in such a way that
one of the allowed coordination acts is prohibited while the rule applies.

ConditionalRule = (Transaction, Fact, cActToRestrict) (12)

Ontological Foundations for DEMO Action and Fact Models 161

Since facts may change over time during execution, a condition that inhibits
a specific cAct can be met, and the specific cAct is permitted. If one of two
cActs is prohibited in the agenda, then the opposite cAct can be performed in
asynchronous time by the actor. As long as the fact in the conditional rule holds,
it is not possible for the actor to perform the cAct.

Definition 15. Evaluation of Conditional Rule and Dependency

if anAgenda(TransactionInstance).Contains(cActToRestrict(Allow))
and FactValue(TransactionInstance, Fact) != True

then anAgenda.Add(cActToRestrict(Restrict))

Prohibition or Prescription of an Agenda. From the above follows that
rules and dependencies operate on an agenda by prohibition or prescription.
They reduce the model instance state space and the model instance transition
space, which causes a desired limitation of complexity. It is impossible to increase
the state and transition spaces by “adding” new options for coordination acts
which would be violation of the PSI theory. Rules and dependencies are calcu-
lated immediately during the calculation of the agenda.

5 Discussion and Evaluation of the FAR Ontology

The relation between the FAR Ontology and the DEMO models is as follows.
The DEMO models provide a formal specification of the rules and facts, cre-
ated and accepted by stakeholders, that represent the enterprise interaction with
its environment. The DEMO Machine specifies the construction of an artefact
(a software system) that must fulfil the requirements of the created DEMO mod-
els. The FAR Ontology is a crucial part of the DEMO Machine.

The following reasoning is provided to assure:

(i) A compliance with the PSI theory, the causal and conditional dependencies,
and the application of explicitly specified causal and conditional AM rules.

(ii) A reduction of complexity while maintaining guaranteed ontological concise-
ness and comprehensiveness.

Assume a model composed of actors and transactions. The application of
the Transaction Axiom reduces the number of states of each transaction and
the number of states in the model state space, which results in a reduction of
complexity.

The application of the Composition Axiom demands that before any produc-
tion fact can be performed, all child production facts must have been produced,
i.e. Stated and Accepted. This further reduces the number of states in the model
state space. The ontological conciseness and comprehensiveness of the PSI theory
has been shown in [2].

The application of the causal dependencies reduce the state transition space
of the model instance, since a specific option of an agenda must be chosen, while
the other agenda options are forbidden.

162 M. Skotnica et al.

Conditional dependencies disable specific agenda options, until a specific con-
dition has been met. In this way, the state transition space is reduced further
and the state space is also reduced, without a loss of ontological conciseness and
comprehensiveness.

The DEMO Action Model conditional and causal rules modify the agenda
similarly to causal and conditional dependencies and they reduce the state space
and the state transition space further, without any loss of ontological conciseness
and comprehensiveness.

For a DEMO Machine based solely but precisely on the PSI theory, it has
been argued and shown that there is minimized expression, or zero entropy in
expression quality [14]. Any enterprise that may possibly exist in the real world
can then be represented by one and only one model. In addition, anything that is
not an enterprise cannot be represented. Based on this reasoning, it is argued that
such DEMO Machine based on a proper implementation of the FAR Ontology
will keep these qualities.

5.1 Falsifiable Proposition of the FAR Ontology

As any domain ontology is a hypothesis that provides falsifiable propositions
about the world of phenomena [21]. The following hypothetical assumptions
have been made:

1. “The PSI theory is a domain ontology, a falsifiable hypothesis about the world
of coordination between actors”. There is much empirical evidence for a good
degree of confidence in the ontological truthfulness and appropriateness of
the PSI theory. The C4-ness qualities have been proven. The construction of
the DEMO engine using the GSDP-MDE has been proven.

2. “Any business rule that may exist in the real world can be expressed in
restriction(s) of actor agenda, by conditional or causal rules”. This proposition
is directly derived from the PSI theory, hence with a good confidence.

3. “Any fact that can be defined in the real world may be used in a rule to
express any business rule in an enterprise”. As the facts are either Internal or
External, which is a complete list of fact types in the world, we may assume
that any given rule may be expressed using a Composed Fact.

4. The hypothesis that any imaginable fact represented using the DEMOSL rep-
resentation can be expressed in an appropriate way using the FAR Ontology,
needs further theoretical research and empirical validation.

6 Related Work

6.1 Model-Driven Development

Model-Driven Development (MDD) is a very popular approach in the recent
years realising the ideas of Model-Driven Engineering for implementing software
systems. It is a software development approach based on modelling and trans-
formations [22]. The product to be developed is described using various types

Ontological Foundations for DEMO Action and Fact Models 163

of models specifying the requirements, functions, structure and deployment of
the product. These models are used to construct the product using transfor-
mations between models and code generation. MDD was originally based on
Model-Driven Architecture (MDA) developed by the Object Management Group
(OMG) [23] defining these types of models: Computation Independent Model
(CIM), Platform Independent Model (PIM), Platform Specific Model (PSM),
Implementation Specific Model (ISM).

The most usual part of the MDD approach is the process of forward engineer-
ing to represent the transformations of more abstract models into more specific
ones. The most common use-case of such a process is the development of concep-
tual data models and their transformation into source codes or database scripts.

Our approach shares the idea of driving the development by models.
DEMOSL models represent CIM, DEMO Machine and the FAR Ontology brings
in execution semantics, which may be related to PIM. However, our approach is
to directly interpret the PIM model. In this respect, our approach is similar to
the following effort.

6.2 XModel

The solution of devising a workflow software system based on model presented
by Johanndeiter et al. in [24] is based on the OrgML modelling language, a part
of the MEMO framework, and the XMF metaprogramming platform. The idea
is also based on applying the MDE approach, while avoiding the error-prone
manual coding stage. The idea is based on applying multiple levels of meta-
modelling and utilising XMF’s unique features to support multiple dynamic lev-
els of abstraction. The approach seems very interesting, however it seems to lack
a proper evaluation in enterprise. Our approach also differs in a careful selection
of ontologically well-founded methodologies that exhibit necessary qualities and
benefits, as discussed in Sects. 2 and 5.

6.3 The DEMO Engine and the Enterprise Operating System

DEMO Engine of the ForMetis Consultants company is a software system for
designing DEMO models with the ability to simulate DEMO models for vali-
dation and to provide model execution in full production [7]. Construction of
DEMO models is done using the graphical representation of the DEMO ATD
in a graphical environment. In the current implementation, the DEMO Process
Model is primarily calculated from the ATD. Response links and waiting links
(causal and conditional dependencies) can be then specified using the graphical
representation of the PSD. There is a limited and not well-engineered support
for even simple Action Model rules, which is the aim of our FAR Ontology.

The Enterprise Operating System [10] is software system composed of a set
of DEMO models and a DEMO model executing software engine, the DEMO
Engine. The EOS captures and controls all phenomena that occur in operation
of the organizational business transactions. This is very similar to an operating
system of a computer that reads from and writes to binary registers of a CPU

164 M. Skotnica et al.

and peripheral controllers and supports many tasks. Using a computer without
an operating system is extremely difficult and error-prone. This seems to apply
also to controlling and monitoring enterprises without an appropriate enterprise
operating system. Many of the engineering challenges of this effort are directly
related to the DEMO Machine and open questions described in Sect. 3.

7 Conclusions and Further Research

We proposed the concept of a DEMO Machine as a theoretical construct for
DEMO models execution. We then proposed the FAR Ontology as a key part
of the DEMO Machine. The proposed further research topics are present in the
respective parts of the paper.

The FAR Ontology using the GSDP-MDE approach for model-driven infor-
mation systems provides an approach for enterprise information systems imple-
mentation with considerable benefits (Sect. 3). Some of the concepts have been
already implemented in DEMO Engine described in Sect. 6.3.

As for future work, the remaining parts of the DEMO Machine need to be
formulated, so that every DEMOSL model may be executed. This comprises an
exact formulation how the Transaction and Composition Axioms are applied for
the model execution. The work should address the concerns named in Sect. 3.
As for the FAR Ontology itself, algorithms with proper qualities implementing
the proposed functions need to be elaborated and a broader empirical research
on the appropriateness in the professional world is suitable. A single empirical
business case with inappropriate expressiveness would invalidate our hypothesis
and provide valuable clues for improvement of the FAR Ontology.

References

1. Dietz, J.L.G., Hoogervorst, J.A.P.: The discipline of enterprise engineering. Int. J.
Organ. Des. Eng. 3(1) (2013)

2. Guerreiro, S., Kervel, S., Babkin, E.: Towards devising an architectural framework
for enterprise operating systems. In: Proceedings of ICsoft 2013 8th International
Conference on Software Paradigm Trends. SciTePress (2013)

3. Bzivin, J., Gerb, O.: Towards a precise definition of the OMG/MDA framework.
In: IEEE International Conference on Automated Software Engineering (2001)

4. Sauer, C., Cuthbertson, C.: The State of IT Project Management in the UK.
Templeton College, Oxford University, Oxford (2003)

5. Budzier, A., Flyvbjerg, B.: Double Whammy, How ICT projects are fooled by
randomness and screwed by political intend. In: CRASHH Conference, University
of Oxford (2011). Draft v5

6. Mulder, J.B.F.: Rapid enterprise design. Ph.D. thesis, Delft University of Technol-
ogy (2006)

7. Hintzen, J., van Kervel, S.J.H., van Meeuwen, T., Vermolen, J.A.J., Zijlstra, B.:
A professional case management system in production, modeled and implemented
using DEMO. In: Proceedings of 16th IEEE Conference on Business Informatics
(CBI) (2014)

Ontological Foundations for DEMO Action and Fact Models 165

8. Op ’t Land, M.: Applying architecture and ontology to the splitting and allying of
enterprises. Ph.D. thesis, University of Technology Delft (2008)

9. Dietz, J.: Enterprise Ontology Theory and Methodology. Springer, New York
(2006). ISBN: 3-540-29169-5

10. van Kervel, S.J.H., Dietz, J.L.G., Hintzen, J., van Meeuwen, T., Zijlstra, B.: Enter-
prise ontology driven software engineering. In: Proceedings of ICsoft 2012 7th Inter-
national Conference on Software Paradigm Trends. SciTePress (2012)

11. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993). Knowledge Systems Laboratorium, Computer Sci-
ence Department, Stanford University

12. Guizzardi, G., Ferreira Pires, L., van Sinderen, M.: An ontology-based approach
for evaluating the domain appropriateness and comprehensibility appropriateness
of modeling languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,
vol. 3713, pp. 691–705. Springer, Heidelberg (2005)

13. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D.
thesis, University of Twente (2005)

14. van Kervel, S.J.H.: Ontology driven enterprise information systems engineering:
Ph.D. thesis, University of Technology Delft (2012)

15. Hevner, A.: A three cycle view of design science research. Scand. J. Inf. Syst.
19(2), 87–92 (2007). Information systems and Decision Sciences, University of
South Floria, USA

16. Mannaert, H., Verelst, J.: Normalized Systems Re-creating Information Technology
Based on Laws for Software Evolvability. Koppa, Belgium (2009)

17. von Bertalanffy, L.: General System Theory: Foundations, Development, Applica-
tions. George Braziller, New York (1968)

18. Dietz, J.: DEMOSL-specification: version 3.4, CIAO! enterprise engineering. Net-
work (2016). doi:10.5281/zenodo.47471

19. ISO, Geneva: ISO 14977. Information technology Syntactic metalanguage
Extended BNF, Norm (1996)

20. Coronel, C., Morris, S.: Database Systems: Design, Implementation, & Manage-
ment, 11th edn. Course Technology, Cambridge (2014)

21. Popper, K.R.: Zwei Bedeutungen von Falsifizierbarkeit [Two meanings of falsifia-
bility]. In: Seiffert, H., Radnitzky, G. (eds.) Handlexikon der Wissenschaftstheorie
(in German), pp. 82–85. Deutscher Taschenbuch Verlag, Mnchen (1994). ISBN:
3-423-04586-8

22. Mellor, S.J., Clark, A., Futagami, T.: Model-driven development. IEEE Softw.
20(5), 14–18 (2003)

23. OMG: Model driven architecture (MDA): The MDA guide rev 2.0. online. http://
www.omg.org/cgi-bin/doc?ormsc/14-06-01

24. Johanndeiter, T., Goldstein, A., Frank, U.: Towards Business Process Models at
Runtime, pp. 13–25. MoDELS@ Run. time 1079 (2013)

http://dx.doi.org/10.5281/zenodo.47471
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01

Cross Channel Communication Design Critical
Literature Review

M.A.T. Mulder(B)

M.A.T. Mulder, Leusden, The Netherlands
mark@mulderrr.nl

Abstract. Literature on cross channel communication design shows
that customer interaction is too often implemented from a technology
viewpoint which keeps us from a fundamental design of the problem and
solution. Implementations that have started from a technical or business
case point of view have not been very successful.

Customer interaction is using processes, Customer Relationship Man-
agement (CRM) or portals from a functional viewpoint but is not con-
structed from a Performance in Social Interaction theory (Ψ -theory) In
literature we have found channel characteristics and a maturity model
that can help us reach the cross communication goal. With these findings
in mind, we have defined our channel and service concepts. We summed
up the usable concepts we need, to change the perception of multichan-
nel and introduce a design that starts from communication and realises
a cost effective way of integration existing and emerging channels.

1 Introduction

In recent years communication channels between companies and customers have
evolved from spoken language to magazines, phone, text, chat and social media.
Each channel has its superb properties that were supposed to conquer the world.
However, in the end it seems that we need multiple channels to accommodate the
customers [15]. Although several single, multi and omnichannel solutions have
been built, none has been completely successful. Therefore, we will emphasize
the importance of a theoretical approach to solve problems with the customer
changing channels in social communication and transactions.

Research on customer experience has observed the importance of engaging
the customer and following the right process [21]. In addition, communicating
with the customer using preferred channels with desired properties or character-
istics is important [26]. Regrettably, current designs are technology or business
case oriented and multichannel strategies are built from existing ways we do
business. We will study communication from a transaction point of view as sug-
gested by the Ψ -theory [8]. This theory defines communication in 20 steps with
clear responsibilities for both actors but does not guide implementation.

In order to study the cross channel communication issues as found in practice,
we need a sound theory. The trend, as shortly presented above, is based on
literature on omnichannel, multichannel and CRM.
c© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 166–180, 2016.
DOI: 10.1007/978-3-319-39567-8 11

Cross Channel Communication Design Critical Literature Review 167

Omnichannel has become a sales buzzword over the past years. Unfortunately,
little technical and theoretical foundation is present in the implementations.
We need to create a solid foundation. We suggest that by adopting the cross
channel communication idea, which states that the transaction is the central
point in customer communication, we can design the cross communication model
according to the Ψ -theory and implement this model.

In Sect. 2 we evaluate the literature on communication from a customer and
a company centric view. We continue in Sect. 3 with an evaluation of channel
characteristics, issues, notions and implementations. Section 4 addresses trans-
actions, whereas the last Sect. 5 focusses on strategies and implementation. We
end this paper with the conclusions in Sect. 6.

2 Communication Viewpoints

In this section we will evaluate two different viewpoints on cross channel com-
munication. The customer centric viewpoint takes as a starting point customer
experience and behaviour and quality of service. The company centric viewpoint
starts from customer value management, customer analysis, CRM standpoint,
processes and customer portals.

2.1 Customer Centric Viewpoint

The service-centred paradigm [21] postulates that value is created by customers
through product usage. The service-centred paradigm defines a service interface
and service experience that can be used to create a service design to facilitate
service operations. This suggested approach focusses on interaction implemen-
tation but before this interaction implementation can be constructed, it has to
be further defined. [8] suggests that starting from an implementation free com-
munication concept as defined in Ψ -theory, can add desired customer experience
aspects.

Customer engagement behaviours may be defined as “a customer’s behav-
ioural manifestations that have a brand or company focus, beyond purchase,
resulting from motivational drivers” [34, p. 248]. Missing this behaviour may
give the company a wrong valuation of customers. The proposed conceptual
model also considers some barriers to customer engagement: CRM and customer
intelligence strategies, channel strategies, and media strategies. Actually, these
components may influence customer engagement or sober the effects of customer
engagement [34].

Understanding the communication part of customer experience is a start for
better understanding requirements to improve customer interaction. Most cus-
tomer experience improvements are dealing with understanding the sent mes-
sage, for instance, by reordering fields or processes or reformulating sentences.
Therefore, aside from the message, the Ψ -theory teaches us to understand the
communication steps building the complete transaction. When the transaction
is completely implemented, recognition of the communication will increase, thus,
improving customer experience.

168 M.A.T. Mulder

Another framework [27] tries to capture the multichannel services quality
using at least one virtual component delivered through a virtual channel. Actu-
ally, capturing the quality of a service is subjective. Nevertheless, we agree that
customer experience is formed through all channels.

Some other issues should be taken into consideration when taking the cus-
tomer viewpoint. Trust is the most important decisive antecedent for buying on
the internet [31]. In addition, the rise of social media has to be taken seriously
because companies can learn from their customers [18]. Aside from companies,
governments should also take into account the right channels through which
their services are delivered. The barriers found for accepting services are inter-
net usage, channel penetration and user readiness, lack of appropriate know-how
and channel appropriateness for specific services [33]. The issues on trust and
social media customers are important and should be taken seriously by compa-
nies. Readiness for new channels is underestimated by government and overes-
timated by companies. Therefore, a sound look at this aspect using a business
case should be considered. The more integrated the channels, the more commu-
nication with the same potential customers will cost. Nevertheless, new channels
are likely to improve the customer experience when customers are not satisfied
with the channels on offer.

2.2 Company Centric Viewpoint

In customer value management, customers are valued for their transactions with
a company. In customer engagement customers are valued for their positive
behaviour towards a company [2] (e.g. buying, advertising). The channel cost
can be used to decide to target specific customers. High end customers can be
targeted with expensive programs, whereas the rest is targeted with a low cost
channel [15]. Nevertheless, loyalty programs are not able to deliver a return
on investment. Customers do not buy more [35]. When focussing on customer
value, the way companies communicate with customers becomes important. The
completion of transactions can improve the customer value.

For the sake of customer analysis, several models are used to anticipate
customer behaviour, based on past experiences and assumptions. Models exist
for customer engagement, development and retention [2]. Predicting customer
behaviour has become more difficult because of incomplete and incorrect data
collection and analytics, or inappropriate marketing actions [35]. Therefore, a
correct handling of customers is important to reduce customer churn [2]. With
a high data volume, data interpretation and measuring a model is difficult [35].
From [8] we know that there are universal transaction patterns in a systematic
way which means that the information about steps and context in communica-
tion can be measured.

The multichannel strategy can also be an iterative process with many stake-
holders resulting in a compromise [15]. This is often implemented using CRM.
The implementation of CRM is something that can easily fail. Multichannel
communication can improve customer profitability by offering a variety of trans-
action options [35]. From a customer point of view, CRM is often considered the

Cross Channel Communication Design Critical Literature Review 169

starting point of communication with the customer and of customer knowledge.
However, communication is something that comes ahead of and on top of CRM.

The Service Experience Blueprint (SEB) [21] method allows for a flexible
and modular process design across the different interfaces compared to the sin-
gle mapping of service blueprinting (SB). It first focusses on different service
activities followed by service design at the multi-interface level and subsequently
at the concrete interface level. Although this method focusses on multiple inter-
faces, it starts at an implementation level blocking the use of this method for
changing interfaces.

A company customer experience requirement (CER) [21] is not always equiv-
alent to the customer requirements. Therefore, service interfaces act as activity
substitutes but complement each other in providing an overall experience. The
SEB method enables a design of the service experience. Through SEB, each
channel is designed using service links to contribute to the overall service expe-
rience. This technical approach to multichannel communication contributes to
the solution of combining channels for customer experience. Nevertheless, it does
not take into account the state of the transaction and, therefore, does not know
the next possible action. Without a transactional model, the customer experi-
ence is solely dependent on the companies’ practical communication abilities.
Worse still, companies mitigate this problem by allocating the most skilled peo-
ple which, with more channels to operate, could finally fail.

The nexus of mobile, social, cloud and information forces is compelling orga-
nizations to rethink their portal initiatives, designs and products. Portal technol-
ogy and methodologies [19] must change radically to address the exponentially
expanding demands. A portal is a personalized point of access to relevant infor-
mation, processes and people. Portals have value when multiple sources have
to be delivered to multiple channels to access the right information or appli-
cation. Single point of access no longer means single means of access and all
access will be people oriented [19]. The portal concept does not interfere with
the cross channel design. Cross channel communication needs a way to authen-
ticate the customer and especially portals have implemented a usable solution
to that problem.

Self-service technologys (SSTs) [7] can help companies to reduce labour costs
while providing more channel options. A convenient SST can provide more flex-
ibility in the transaction process along with a reduction in the amount of effort
needed to initiate and complete a transaction. When using a portal or other
SST, we must be sure that the customer understands the steps he can take. The
transactions that can be done on the portal and the state the transaction is in
should be clear to the customer.

3 Channels

In this section we will evaluate the channel characteristics, channel issues and
channel organization, and we will conclude with channel implementation.

170 M.A.T. Mulder

3.1 Channel Characteristics

Channel characteristics are those properties that influence the effectiveness and
possibilities of channel communication. We will highlight a few characteristics.

An interesting topic of channel management is the customer context. Without
a loyalty program it is difficult, although crucial, to know the customer context
(e.g. situation, location, identity) [35]. The way in which the context is handled is
dependent on the interaction style, e.g. Web, SMS, mobile app [15]. This topic is
subject to change as the technology advances. Also, the target devices are very
much subject to change, leaving us with only the customer context as usable
characteristic.

Due to the explosion of channels, the variations in customer preferences
towards channels have increased. Together with other changes, marketing com-
munication has changed significantly [16]. We cannot manage every channel indi-
vidually because this would result in a combinatorial explosion of effort. We
need a conceptual design that handles every channel as an interchangeable and
expandable element in the design.

From a variety of channel characteristics one set of characteristics is selected
using service delivered, business goals, customer context, paradigm (interaction
style) and target devices [15]. Assuming that the channels characteristics are well
chosen, the business goal in combination with the service delivered are usable
characteristics as the other characteristics are implementation characteristics
which we do not need in this phase.

Aside from characteristics, channel maturity is important. A maturity model
of channels has been proposed showing five maturity levels [36].

– Creating presence (channel is up and running);
– Aligning fundamentals (basic value propositions are coordinated);
– Achieving proficiency (capable of function integration of customer processes)
– Leveraging across channels (exploiting channel-capabilities and collaboration)
– Optimizing operating mode (achieving repeatable cross-channel processes).

We conjecture that a theoretically founded, transaction model based communi-
cation design, which has a cross channel start and perspective will end up in the
highest maturity level. In this highest maturity level, we can add more channels
whenever they become available.

The existing literature offers little help in how to develop a multichannel
strategy. Nevertheless, channel chain analysis is a good candidate. The term
used most frequently to develop this strategy is CRM. In our context CRM is a
management approach that wants to establish relationships with customers to
maximise customer value [22]. Another strategy is service delivery systems (SDS)
[27]. When a communication failure occurs, the key challenge for the SDS is to
be able to detect customer mistakes and to offer support in a timely manner.
Unfortunately, neither CRM nor SDS contributes directly to cross communica-
tion channel design.

Technological advancements have altered the pattern of commercial com-
munication. The number of players in any media category has increased and

Cross Channel Communication Design Critical Literature Review 171

is expected to increase even more in the coming years [16]. For commercial
communication one should consider changing business processes. However, no
information on integration of channels is mentioned in existing literature. Busi-
ness processes should be created from within communication theory instead of
integrating new, incompatible channels into existing processes.

The greater the perceived integration of online and in-store operations, the
smaller the impact of availability on channel selection with regard to those options.
Given an availability failure, it is less likely customers will seek out channel options
provided by competing companies (e.g. When a form is not available on the web,
the customer can send an email.) [1]. In short, when a customer has started a trans-
action with a company, it is likely that he will complete the transaction when it
is possible.

Channels can be categorized. An older categorization list categorizes channels
in sales force, outlets, telephony, direct marketing, e-commerce and m-commerce.
Which channel the customer uses depends on the implemented channels in the
categorization. This categorization is easily overtaken by time.

3.2 Channel Issues

The iPhone started a new era in which a mix of communication media is intro-
duced [6]. As multiple channels become available, companies need to develop
channel strategies. The responsiveness of channels also influences the products
involved [34]. Unfortunately, using multiple channels generates issues and these
increase when channels are integrated. For example, channels are not isolated
but are used in overlap (channel multiplicity) causing maturity differences prob-
lems. Where some devices can be used for one channel, other devices can be
used for multiple channels; thus, channels and devices become indirectly inte-
grated as well. A strategy can be to use a specific channel to target specific
customers to reduce cost. When cost per channel reduces, the strategy may have
to change resulting in an iterative multichannel strategy with many stakehold-
ers. These strategy changes can be a technical challenge [15]. Therefore, the
implementation of multichannel communication can be a huge problem when
the implementation is done from a technical perspective (without a theory).

Not all channels are efficient. An experiment showed that the telephone is
not performing at any dimension [21, p. 322]. Measurements should be possi-
ble within the cross channel communication design, thus allowing for efficiency
measurement during use.

Multitasking is switching between tasks in a sequential way and involves
a performance penalty unless done on different types of channels (written, spo-
ken, seen) [28]. Currently, chat channels within organisations have a low message
rate and, therefore, multitasking looks like an efficient solution. When customers
move to a channel in cross channel communication, multitasking gives a different
customer experience. For example, two customers talking to the same employee,
switching to a video channel means that multi-communication becomes impos-
sible for the company.

172 M.A.T. Mulder

3.3 Channel Organization

Every 50 years sales undergoes a major change, also known as a paradigm shift
[23]. First the department stores were introduced, next was mass production,
and then speciality retailers in the suburbs. Therefore, customer expectation
changed every time beyond recognition [23]. Companies are now expected to
have a full 360 degrees view of their customer and all data present at all times
[3]. All changes that are happening using many channels make this the road to
omnichannel.

The biggest challenge in omnichannel is channel conflicts where new channels
threaten traditional channels. For example, as a reaction to the lower price in
competing channels, stores feel compelled to lower cost and cut service. This
makes the problem worse because the store does not have any benefits for cus-
tomers anymore [23]. Moreover, the change from single to multi and omnichan-
nel models requires a stronger link between business and technology capabilities.
These capabilities can be used to change business models [30]. From an academic
view, the focus has been on either customers as assets and assigning resources to
customers or on how to embed CRM in the organisation [34]. The solution lies
within the focus on communication with the customers in addition to embedding
a customer centric approach in the CRM.

Product-centric strategies are no longer capable of dealing with advanced
communication requirements, resulting in customer-centric strategies. However,
the new scenario requires a formidable communication design that can integrate
these changing business dimensions to develop multichannel, multimedia com-
munication [16]. MultiChannel Customer Management (MCCM) is “the design,
deployment, coordination, and evaluation of channels for enhancing customer
value through effective customer management” [20]. This is a customer-centric
viewpoint and not a channel-centric viewpoint [16]. Actually, the customer-
centric viewpoint is good from a business point-of-view. When we think about
communication, a transaction-centric viewpoint becomes necessary. One side of
the channel is customer-centric, the other side is the company, resulting in a
transaction or communication centric approach.

Finally, the organisation forms the biggest challenge in becoming omnichan-
nel. Moreover, current organizational structures are aimed at silos. An organisa-
tion has to be built around change to survive [3]. Therefore, when organisations
are built around change, there must be a constant factor to build the change
upon. An organisation construction model as included in Design and Engineering
Method for Organisations (DEMO) can provide the essential transactions that
are the base for the change of products, implementation, channels and organi-
zational form.

3.4 The Notion of Channel

In order to understand channels better, we need notions to categorize and organ-
ise channels. One can distinguish, for example, between the virtual and physical
nature of channels [27]. This research differentiates between a virtual channel

Cross Channel Communication Design Critical Literature Review 173

and a physical channel on the physical infrastructure. Furthermore, they dif-
ferentiate between Complementary channels and Parallel channels on the
customer’s ability to choose channel. These definitions give a scope to the notion
of channel. Although these definition is ambiguous because, for example, virtual
and physical are not that different. Therefore, we use these definitions to define
our own, higher level definitions.

Definition 1. A Channel is a protocol description used for communication
over a medium during the execution of a transaction.

Though the definition does not cover all previous examples we choose to start
the notion of channel from the Ψ -theory in order to rebuild the structure. We
realise that the notion of protocol and communication need to be further defined
whereas a transaction is defined in the Ψ -theory [8]. Furthermore, we intention-
ally abstract from the physical channel and will limit the notion of implemen-
tation to the conceptual design of the channel at this moment because these
definitions need further research. Examples of channel implementations are: Chat
which is a protocol of alternated exchanges of short messages over the internet;
Phone which is a protocol of alternated exchange of spoken text over fixed lines,
mobile or VoIP; e-mail is a protocol of asynchronous sent messages over the
internet.

Aside from the implementation medium, channels can be seen from a ser-
vice point of view [27]. This research uses Virtual service when no human
intervenes as opposed to a Physical service. Additionally it defines a Multi-
channel service when multiple channels are used. Subsequently, we combine
the definition of a transaction from DEMO as discussed in [12]: A Transac-
tion “is a generic pattern of coordination and production, carried out by two
distinct actor roles that create an original result... [12]” We will use this defin-
ition in the abstract (e.g. the theoretical foundation of communication design)
and implementation (e.g. applied communication design) cases. The definition
mentions the results (e.g. information, paid order, transported book) that are
created during a transaction. In addition, a definition of service within the con-
text of DEMO is given for service oriented systems [32]: A Service “is a pattern
of coordination and production acts, performed by the executor of a transaction
for the benefit of its initiator, in the order as stated in the complete, universal
pattern of a transaction”. When implemented it has the ability (1) to get to know
the coordination facts produced by the initiator and (2) to make available to the
initiator the coordination facts produced by itself. Actually, this definition limits
the service to the process steps involved during a transaction, only for the execu-
tion part of the transaction. It does not include information exchange within the
transaction other than required for the process itself. Therefore, this definition
does not fully suit our concept of service where we want to see customer-centric
behaviour. When we combine the definitions to emphasis on the information and
customer centric part in the service we define:

Definition 2. A Service is the experienced behaviour of information and
process components of a carried out transaction.

174 M.A.T. Mulder

This definition allow us to evaluate the experienced service in later research.
Examples of service implementations (behaviour, information and process) are:
Getting a product (b) under terms and conditions (i), and the products that are
delivered(p) during a transaction; The feeling (b) about the amount that is to
be paid (i) and the payment itself (p) in the payment transaction.

3.5 Channel Implementation

There are many pros and cons reasons for retailers to go multichannel [36]. In
addition, consumers are seeking new media and are willing to pay for the right
content on these media. Therefore, content management systems that support
multichannel output are required for new business models that support paid
subscriptions [11]. This business case driven implementation of multichannel
output is often regarded as omnichannel implementation. In our opinion, the
omnichannel implementation involves the complete communication and not only
the information output or increased sale.

Customers have increasing interest in mobile applications and from 2018 on,
multichannel Application Developments (AD) will become common and a consis-
tent set of tools will be available for mobile AD [5]. In this context multichannel
application development is defined as a means to use multiple interaction par-
adigms over multiple platforms over multiple delivery methods. User interfaces
will become more human centric and will need no training [6]. Implementing new
channels within the customer communication is pointless without taking these
developments into account.

Characteristics of one channel may be disruptive to other channels. Using
the right combination of channels is crucial [35]. At any rate, companies may
want to use multiple different and comparable channels to retain customers when
channel availability fails [1]. Factors that affect the customer’s choice of channel
[26] include economic goals, quest for affirmation and social interaction. More-
over, research has also shown that the positive customer’s experience needs to
be promoted [1]. Therefore, in determining whether a service should be delivered
through multiple channels (and which these channels are), a six-step method-
ology has been created [10] that provides a global guidance to enhance the
probability to multichannel strategy success. In short, all these implementation
factors need to be considered when implementing channels and services. Even
then, the concept of cross channel communications does not say anything about
the applicability of channels in the context of a company.

One factor in channel implementation is the degree to which customers can
choose alternative channels for a given service (parallel-channels mode) and the
degree to which customers can accomplish preferred tasks through each avail-
able channel (complementary channels mode) [27]. A framework [16] classifies
customer tasks into six types: new product/service information, product/service
assistance, product/service purchase, upgrade request, complaints/feedback,
product returns. Even though this list sums up all tasks, we suggest that some
of them are not essential. Using Dietz [8] we might reduce this list to: new
product/service information, assistance and feedback, product/service purchase

Cross Channel Communication Design Critical Literature Review 175

and upgrade request (transaction). Reducing process steps to transactions must
result in essentially the same as the implemented processes from the framework
mentioned above [16]. Moreover, transactions contain the return and cancella-
tion requests by default. Focus is on the processes that require a transaction
because the information and assistance is enclosed within a transaction.

4 Transactions

In this section we will evaluate channel switching during transactions, the trans-
actions aspect trust and human interaction and close with transaction results.

Studies suggest that customers buy more when using more channels. More-
over, if consumers have a positive experience on an online channel, they are less
likely to go to another company [4]. Therefore, providing the right information on
a channel might not be enough to let the customer do a transaction. Being able
to provide the customer with an alternative channel that takes away the obstacle
to complete a transaction can be the positive factor in customer interaction.

The customer centric multichannel framework suggested in [16] proposes a
comprehensive communication loop and is novel in two aspects: the framework
uses customer-centric company responses and they can use this information to
adapt their products and services. Even though it is a business oriented frame-
work, this model does help us to implement the cross channel communication into
customer-centric thinking. The closed loop communication matches the transac-
tion idea for communication. In both systems we follow all communication steps
and know every response to every request in the multichannel environment.

A conceptual model has been developed [29] to explain why customers choose
a specific channel. A pragmatic shopper will more often buy online instead of in
the store. Unfortunately, the impact on companies when customers change chan-
nel, is not clear. Thus, when we use a cross channel communication design for
this type of online customers, the customers are able to continue their shopping
on a different channel to complete the transaction. In traditional implementa-
tions the customer will loose the transaction on the other channel and must
restart the transaction which might be a show stopper.

The need for human interaction is a construct defined as the desire for human
contact by the customer during a service experience. Furthermore, in any trans-
action where the customer is using some technology, the idea of accuracy is
imperative to a successful transaction [7]. Subsequently, according to Dietz [8],
using the Ψ -theory, we can build a transaction concept that closely resembles
the human way of communicating. The experience should feel natural when we
use all normal steps of communication.

To evaluate the effectiveness of a communication system, we must analyse
the results [2]. To measure the process, the Transaction Costs Economics (TCE)
model [25] can be used to value each channel for their contribution to the trans-
action result. When reasoning from the essential model of an organisation [8], in
relation to the communication, we need to measure the implementation of each
step.

176 M.A.T. Mulder

5 Design and Implementation

In this section we will evaluate multichannel strategies, design properties and
multichannel implementation issues.

5.1 Multichannel Strategies

The maturity of channel strategies can be ordered by the number and integra-
tion of channels [22]: Single channel, segmented, graduated, migrator (moving
customers to other channels), activity based (channel per type of activity), inte-
grated. In the last, highest, order the customer can use any channel. Unfortu-
nately, the maturity model does not provide information whether you can change
channels and whether that change is disruptive to a transaction. Nevertheless,
the list provides a clear insight into the maturity steps a company can use to
implement cross channel communication.

The advantage of multichannel is better reach, improved customer service,
and higher customer satisfaction. There are six stages in the presented frame-
work: coverage, profitability, number of channels, decision rules, strategic chan-
nels and optimal channel strategy. Firms need to determine the profits on various
properties from each channel member [26]. Therefore, the multichannel strategy
is only concerned with the profitability of the customer. In contrast with the
customer-centric strategy, this will rule out the use of more channels.

5.2 Design Challenges

Although companies tend to all-in-one solutions, the best-of-breed are still rele-
vant for specific solutions or compliance [14]. Thus, from an integration perspec-
tive, every design should be modular in such a way that specialized parts can be
exchanged. This is a prerequisite for integrating cross communication modules.

To correctly analyse customer behaviour, we need enough data of good qual-
ity with clear ownership [2] which is a problem in current operational automated
system. Contrarily, when modelling transactions using DEMO, the ownership is
clear. The executor owns the created data. In this way, precisely data ownership
can be defined and used for analysis.

The component model in [13] focusses on building information systems
by combining components. The main characteristics of these components
are: unique functionality, matching logical and software components, request-
response interfaces, encapsulation and reusability. These findings suggest that
the more components are used the more difficult it will be to maintain the sys-
tem. This requires a high level overview of the whole system where the knowledge
is structured in the same way as the system itself, reducing the knowledge needed
to the part that needs to be changed.

5.3 Multichannel Implementation Issues

Retailers have four issues in multichannel strategies [36]: organizational struc-
ture, data integration, consumer analytics and evaluation and performance met-
rics. These challenges show that the cross channel communication design not

Cross Channel Communication Design Critical Literature Review 177

only has to focus on the technical side of communication but also on the busi-
ness side. Therefore, DEMO can help modelling the business part of the cross
channel communication. We expect the DELTA (δ-theory) [9] to cover the trans-
lation from the social to technical transaction systems.

Several companies in the business to business (B2B) sector use multiple chan-
nels that are needed by the company to serve its customers. Integrating all
channels to create the complete customer experience is the ideal situation. In
practice, however, we need a way to mitigate cross channel conflicts [24]. Yet, a
sound model of transactions can help us address the cross channel conflicts and
solve or mitigate these issues.

Multi-Channel Management (MCM) [25] addresses the coordination and
management of the channel (coordination) mix for business to consumer (B2C)
communication. Even though this approach focusses on the marketing and rev-
enue part of multichannel, the customer is not even mentioned. Therefore, this
management model is not usable for our transaction viewpoint.

Interaction is, as suggested in [16], about a sales transaction, instead of com-
munication. In this context, multichannel is “the variety of channels that cus-
tomers use to interact and transact with the company” [16]. Therefore, changing
channels is necessary for a multichannel framework. Although in this study only
multichannel retailing is considered, we agree on the transactional focus.

A knowledge-based approach [33] is defined for automatically creating deliv-
ery channel specific services. Nevertheless, solving the transaction from a tech-
nical point of view almost always results in an approach that emphasises one
of the existing techniques without the possibility to expand on all issues. The
service content issues are relevant though.

As each channel has it own characteristics, organisations struggle with chan-
nel synchronisation because it is a technical and also an organizational problem.
Furthermore, the problem with multichannel is in the multiplicity of channels. In
[17] a functional pattern based architecture is presented for the found structures,
patterns and characteristics. Actually, when we model channel synchronisation
from the transactional view, we can focus on the similarities of the channels
instead of the different characteristics. This allows us to focus on the services
on completing the transaction. Therefore, the channel properties can then be
optimised around the transactions.

6 Conclusions

The customer and company centric viewpoint, which research often approaches
from the customer value viewpoint [2], teaches us that we need an implemen-
tation free communication concept [8] that has also to be based on trust [31].
Also, understanding communication [34] will improve interaction and customer
experience [27] through all channels. This customer experience can be designed
[21] upon the customer understanding [7] of the interface. In this design of cross
channel communication, we need customer authentication and authorization [19]
to have a usable solution from a customer and company viewpoint.

178 M.A.T. Mulder

Channel characteristics that seem usable are customer context [35], the deliv-
ered service [15] and multitasking properties [28]. Multichannel communication
can be arranged in maturity levels [36] and the used channel communication
should be seen as transaction centric [16]. When implementing channels, the
focus must be on the communication within the channels [30] in addition to
a customer centric approach [34]. But first of all, organisations implementing
multichannel should have a solid base to support the change [3]. From existing
channel definitions [27], we derived our definition of channel and service.

The interaction experience should feel natural [7] to customers when they
use all normal steps of communication [8] and should have a partial implemen-
tation in closed loop communication [16]. Moreover, the outcome [25] should be
measurable.

From a strategy point of view, maturity [22] is looked upon as a whole. The
cross channel communication design should take into account modularity [14],
ownership and maintenance when the system becomes more complex [13]. Here,
future research should focus on technical as well as organisational aspects [36].
When we model channel synchronisation [17] from the transactional view, we
can focus on the similarities of the channels.

All relevant papers report on the current state of affairs regarding multi-
channel. When we want to change this state we need to change the perception of
multichannel and introduce a design that starts from communication and cov-
ers the customer and company point of view and realises a cost effective way
of integration existing and emerging channels. Case studies with this Ψ -theory
theory in mind have to be performed where Ψ -theory is set as a base and the
communication implementation is performed from that starting point.

Enterprise Engineering is about communication, organisation and informa-
tion. Current multichannel designs and implementations focus too much on infor-
mation. We will continue research to show that the integration of the aforemen-
tioned aspects in multichannel communication can lead to the proper design of
cross channel communication.

References

1. Bendoly, E., Blocher, J.D., Bretthauer, K.M., Krishnan, S., Venkataramanan,
M.A.: Online/in-store integration and customer retention. J. Serv. Res. 7(4),
313–327 (2005)

2. Bijmolt, T.H.A., Leeflang, P.S.H., Block, F., Eisenbeiss, M., Hardie, B.G.S., Lem-
mens, A., Saffert, P.: Analytics for customer engagement. J. Serv. Res. 13(3),
341–356 (2010)

3. Chan, J.P.: The promise of digital technology in brick and mortar retail (2013)
4. Chiu, H.-C., Hsieh, Y.-C., Roan, J., Tseng, K.-J., Hsieh, J.-K.: The challenge for

multichannel services: cross-channel free-riding behavior. Electron. Commer. Res.
Appl. 10(2), 268–277 (2011)

5. Clark, W.: New directions for mobile enterprise application platforms: convergence
2012, multichannel 2018. Gartner (2012)

6. Clark, W., Cearley, D.W.: Mobile applications and interfaces: new approaches for
a multichannel future. Gartner (2012)

Cross Channel Communication Design Critical Literature Review 179

7. Collier, J.E., Kimes, S.E.: Only if it is convenient understanding how convenience
influences self-service technology evaluation. J. Serv. Res. 16(1), 39–51 (2013)

8. Dietz, J.L.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg
(2006)

9. Dietz, J.L.: Delta. Technical report TR-FIT-15-05, Czech Technical University
(2015)

10. Enterprise, D.G.: Multi-channel delivery of egovernment services. IDA (2004)
11. Frank, A., Weiner, A., McGuire, M.: Agenda overview for media, 2013. Gartner

(2013)
12. Guerreiro, S., van Kervel, S.J.H., Vasconcelos, A., Tribolet, J.: Executing enter-

prise dynamic systems control with the demo processor: the business transactions
transition space validation. In: Rahman, H., Mesquita, A., Ramos, I., Pernici, B.
(eds.) MCIS 2012. LNBIP, vol. 129, pp. 97–112. Springer, Heidelberg (2012)

13. Janssen, M., Wagenaar, R., Beerens, J.: Towards a flexible ICT-architecture for
multi-channel e-government service provisioning. In: 2003 Proceedings of the 36th
Annual Hawaii International Conference on System Sciences, 10 p. IEEE (2003)

14. Johnson, G., Kraus, D., Boold, S.: Critical capabilities for contact center infrastruc-
ture. Gartner (2012)

15. Jones, N.: Fit mobility into a multichannel and multiplatform strategy. Gartner
(2012)

16. Kumar, V.: A customer lifetime value-based approach to marketing in the multi-
channel, multimedia retailing environment. J. Interact. Mark. 24(2), 71–85 (2010)

17. Lankhorst, M.M., Oude Luttighuis, P.H.: Enterprise architecture patterns for
multichannel management. In: Patterns in Enterprise Architecture Management
(PEAM2009) Workshop. Presented at the Patterns in Enterprise Architecture
Management (PEAM2009) Workshop, Kaiserslautern, Germany (2009)

18. Meredith, M.J.: Strategic communication and social media an mba course from a
business communication perspective. Bus. Commun. Quart. 75(1), 89–95 (2012)

19. Murphy, J.: Portals unbound: how the nexus of forces is reshaping enterprise por-
tals. Gartner (2012)

20. Neslin, S.A., Grewal, D., Leghorn, R., Shankar, V., Teerling, M.L., Thomas, J.S.,
Verhoef, P.C.: Challenges and opportunities in multichannel customer manage-
ment. J. Serv. Res. 9(2), 95–112 (2006)

21. Patŕıcio, L., Fisk, R.P., Falcão e Cunha, J.: Designing multi-interface service expe-
riences the service experience blueprint. J. Serv. Res. 10(4), 318–334 (2008)

22. Payne, A., Frow, P.: The role of multichannel integration in customer relationship
management. Ind. Mark. Manage. 33(6), 527–538 (2004)

23. Rigby, D.: The future of shopping. Harvard Bus. Rev. 89(12), 65–76 (2011)
24. Rosenbloom, B.: Multi-channel strategy in business-to-business markets: prospects

and problems. Ind. Mark. Manage. 36(1), 4–9 (2007)
25. Schierholz, R., Glissmann, S., Kolbe, L.M., Brenner, W., Ostrowski, A.: Don’t call

us, we’ll call you-performance measurement in multi-channel environments. J. Inf.
Sci. Technol. 3(2), 44–61 (2006)

26. Sharma, A., Mehrotra, A.: Choosing an optimal channel mix in multichannel envi-
ronments. Ind. Mark. Manage. 36(1), 21–28 (2007)

27. Sousa, R., Voss, C.A.: Service quality in multichannel services employing virtual
channels. J. Serv. Res. 8(4), 356–371 (2006)

28. Stephens, K.K.: Multiple conversations during organizational meetings develop-
ment of the multicommunicating scale. Manage. Commun. Quart. 26(2), 195–223
(2012)

180 M.A.T. Mulder

29. McIver, P., Luxton, S., Sands, S.: Multichannel shopping: the relationship between
search and purchase channel choice. In: ANZMAC (2009)

30. Sullivan, P.J.: Hype cycle for application services, 2012. Gartner (2012)
31. Teltzrow, M., Meyer, B., Lenz, H.-J.: Multi-channel consumer perceptions. J. Elec-

tron. Commer. Res. 8(1), 18–31 (2007)
32. Terlouw, L.: Modularization and specification of service-oriented systems. Ph.D.

thesis, Delft Technical University, Delft, The Netherlands (2011)
33. Vassilakis, C., Lepouras, G., Halatsis, C.: A knowledge-based approach for devel-

oping multi-channel e-government services. Electron. Commer. Res. Appl. 6(1),
113–124 (2007)

34. Verhoef, P.C., Reinartz, W.J., Krafft, M.: Customer engagement as a new perspec-
tive in customer management. J. Serv. Res. 13(3), 247–252 (2010)

35. Verhoef, P.C., Venkatesan, R., McAlister, L., Malthouse, E.C., Krafft, M., Gane-
san, S.: Crm in data-rich multichannel retailing environments: a review and future
research directions. J. Interact. Mark. 24(2), 121–137 (2010)

36. Zhang, J., Farris, P.W., Irvin, J.W., Kushwaha, T., Steenburgh, T.J., Weitz, B.A.:
Crafting integrated multichannel retailing strategies. J. Interact. Mark. 24(2),
168–180 (2010)

Things, References, Connectors, Types,
Variables, Relations and Attributes –

A Contribution to the FI and MU Theories

Duarte Gouveia(&) and David Aveiro

University of Madeira and Madeira Interactive Technologies Institute,
Caminho da Penteada, 9020-105 Funchal, Portugal

duarte.gouveia@m-iti.org, daveiro@uma.pt

Abstract. This work builds upon the FI [1] and MU [2] theories, that belong to
the 2015 ensemble of theories from the discipline of enterprise engineering [3].
We critique several aspects of those theories and build upon them proposing a
modelling ontology to represent the world, having an asynchronous network of
actors, as a requirement. This modelling ontology has seven building blocks to
enable modelling data and structures of the world (Things, References, Connec-
tors, Types, Variables, Relations and Attributes). Things address the problem of
identity. References introduce the notion of Pointer, extending the FI Theory [1]
and clarifying concepts. Connectors address the problem of linking mutable and
immutable Things in a network environment. The most innovative contribution is
the usage of Types as a dynamic expression of constraints over attributes. Vari-
ables and Relations are defined using the revised Relational Theory [4, 5].
Variables are mutable structures that hold values using temporal logic. Relations
can be assigned to Variables that also follow the temporal logic. Attributes are
Variables within the closure context of a Thing. Together these seven building
blocks allow for better modeling in line with the FI and MU theory.

Keywords: Enterprise engineering � Organizational engineering � Model
theory � Asynchronous networks � Temporal relational theory

1 Introduction

Society can be modelled as a network of asynchronous actors [6], that share infor-
mation and establish agreements to provide the supporting infrastructure for the cre-
ation and distribution of goods and services. We use the preliminary assumption that
such an asynchronous network of actors is the correct way to model the world [7].

In 2015, the enterprise engineering community published an ensemble of theories
to model organisations in their structural and functional perspectives. This work focus
on two of those theories: The FI theory [1], which is a philosophical theory that
addresses knowledge, in general, and facts and information, in particular. The MU
theory [2], which is a technological theory, that addresses modeling in general, and
modeling theory in particular.

This work has a very simple structure. In Sect. 2 we critique some aspects of the FI
and MU theories, as the problem statement.

© Springer International Publishing Switzerland 2016
D. Aveiro et al. (Eds.): EEWC 2016, LNBIP 252, pp. 181–195, 2016.
DOI: 10.1007/978-3-319-39567-8_12

In Sect. 3 we contribute with a proposed modeling ontology with seven building
blocks. Our aim is to solve stated problems and others stated in previous work [7],
devising a model ontology that is more powerful, concise and coherent. Not all of the
implications of the chosen options could be addressed in this gestalt presentation due to
lack of space. Some implications were mentioned and referenced to future work in
Sect. 5. The conclusion is presented in Sect. 4.

2 Problems Identified in FI and MU Theories

In the MU Theory [2]:

1. In the extended adapted model triangle, the concrete complex can be material (like
cars) or immaterial (like contracts). This can be a quite confusing as “concrete
immaterial things” is a very strange concept.

2. “Conceptual complexes are aggregates of thoughts, more specifically of facts.” I
believe that thoughts are not just mere aggregates, they have an inherent structure.
Besides, there is more than mere facts in conceptual complexes.

3. Not all things that exist in conceptual complexes are models of things that exist in
the concrete world. We can conceive things that do not exist. “The precondition for
the creation of any (conceptual) fact in the mind is that the form of a thing (…)
conforms to the prescription of form of some type.”

4. I don’t agree that a thing cannot exist without a type. An unknown thing can be
perceived as existing and we might not understand what it is, what is for, why is it
there, etc. A thing can also exist simultaneously complying with several types at the
same time (see Sect. 3.4.1 for an example). A type should not be a single prescription
of form as many concepts can be expressed in multiple forms with the same meaning.

5. The chosen paradigm for the general modelling language is not the only one that
exists and I argue for the benefits of two different ones in this work.

In FI Theory [1]:

6. Not all information is perceived and stored with the purpose of being transmitted to
others. Some information is for internal use only. Therefore, although information
that is transmitted between human minds needs to be converted into symbols, that is
a practical need that does not affect the ontological nature of information. There-
fore I do not agree that information has a dyadic notion: content and form.

7. The extended adapted model triangle lacks the notion of pointers, that is, a way to
express references in the conceptual world to other things, either physical (concrete
complex) or conceptual (conceptual complex).

8. “The basic assumption in world ontology is that a world consists of distinguishable
concrete things.” There are many examples that contradict this assumption. This is
discussed in Sect. 3.1.

9. Regarding the creation of type, it is stated that we can have types created by dec-
laration and by construction. I agree with this, but then, there is a huge step stating
that the way to do those constructions is either by specialization, generalization or
aggregation. There are many other ways to create types, namely by adding, removing
or updating constraints as presented in Sect. 3.4.

182 D. Gouveia and D. Aveiro

3 The Building Blocks to Model the World

This model ontology has seven building blocks: Things, References, Connectors,
Types, Variables, Relations and Attributes. Each has its own sub-section, as follows.

3.1 Things

A Thing is something that has an identity. We believe that an identity is what gets in
our minds when a Thing is perceived, either because of its identifiable attributes or by
its unique relations with other identifiable Things over structure, space or time
(provenance). Identity is a hidden Attribute of Things that in an Information System
would be represented by a unique identifier. Therefore we adhere to the notion of “bare
individual”, as proposed by Bunge [8] for the problem of “sameness” and “change”.
This means a Thing has a persistent identity, even with changing properties, Some
examples of Things:

• The red apple in the fruit basket
To be a proper identifier, there should be only one red apple in the fruit basket. We
use features (color, shape) to describe the apple; space relations - object inside
another identifiable object, the basket, as well as object near to others of a special
type - fruits.

• The next element in a sequence
A sequence is a data structure with an implicit order in elements. Knowing the
current element, the next relation operator gives a clear result when applied to a
specific structure.

• That specific grain of sand in my thumb
Unlike the red apple in the fruit basket, a grain of sand does not have unique
features that enable unique identification by the naked eye. We may be able to
identify in relation to other identifiable things if they are concrete enough to the
example at hand.

• The glass with water that was on this Table 5 min ago
We are able to give identity to things even if they don’t exist in reality at present.
The glass of water that was on the table acquired an identity and a way to be
referenced for those who were in that context.

• The ship that belonged to Theseus [1, 9]
The ship of Theseus is a well-known paradox from ancient Greece that addresses the
fundamental issue of identity. If all parts of the ship are replaced, one by one, is it still
the ship of Theseus? When is it no longer the ship of Theseus? In this way to model
the world, we address this issue by using as identifiable property to the Thing “ship
of Theseus” using an ownership binary relationship. As long as social conventions
assume ownership, the identity is kept, independently of the number of replacements
in its components. The identity of a thing is more than the sum of its component
parts – is has its usage history, location over time, and all other relations established
with other identifiable Things or Types of Things (which are also Things in this
modelling).

Things, References, Connectors, Types, Variables, Relations and Attributes 183

A Thing starts to exist, and gains an internal unique identifier, by simple declaration
as in predicate logic, not requiring any justification about the features that made it
identifiable or its relations with other Things. This simplification is required in order to
bound the world being represented into a workable model. The internal unique iden-
tifier will be presented in Sect. 3.3.

A Thing can exist without a name, as long as it has an identity, that is, an unique
internal identifier given by the system. On the contrary, there can be several distinct
names referring to the same Thing.

Although we can have a Thing with no Attributes, we choose to always have one
Attribute to allow the distinction between “concrete” (something that exists in the real
world) or “conceptual” (something that exists in our minds and in the social world), due
to its structural importance. We will name this attribute “nature”, as can be seen in
Fig. 1, but other names could be used to reference this property or use no identifier at all.

In Fig. 1, 4 kinds of elements are shown: Attributes (“nature”), Relations (“is a”),
Connectors (!) and Constraints (“restrictions”), which will be presented respectively
in Sects. 3.7, 3.6, 3.3 and 3.4.

Many times we refer to Things in the world and in our minds indistinguishably,
therefore, the “nature” attribute will be of type OR (where both values can be true),
instead of the more common type XOR (exclusive or - where only one of the alter-
natives can be true). This is easy to implement as we store the values assigned to an
attribute in a Relation, according to the revised Relation Theory [5]. This way we are
able to use an aggregated concrete/conceptual Thing, or use them separetely as needed.

By distinguishing things that exist in the concrete real world, those that exist in our
individual minds and those that emerge from social agreements, we move away from
the current FI theory that joins concrete things and social things in concrete complexes,
as described in the problem statement in Sect. 2.

In order to better present each core construction element we introduce a novel
graphical representation syntax, as can be seen in Fig. 1.

At the core of the graphical syntax are the Attributes, represented with green boxes.
As previously described, a Thing is something with an identity, which is a hidden
attribute, and that may have zero or many visible attributes. Each attribute is either an
identifiable feature or a relation with other Things.

There is no implicit order in the attributes, although they must have one when we
present then in graphical form.

The green box with an ellipsis (“…”) indicates that a Thing can always have
additional attributes added over time.

re
st

ric
tio

ns

re
st

ric
tio

ns

Is
 a

Is
 a

Concrete → Boolean

Conceptual → Boolean

OR

na
tu

re

THING CONCRETE THING

→ THING

nature.Concrete == TRUE

nature.Conceptual == FALSE

CONCEPTUAL THING

→ THING

nature.Concrete == FALSE

nature.Conceptual == TRUE...

... ...

Fig. 1. Core construction elements: thing, concrete thing and conceptual thing (Color figure
online)

184 D. Gouveia and D. Aveiro

We need to distinguish names of Things and names of Attributes from Things and
Attributes. Names are not Things, nor Attributes. Names are references. References are
fully described in Sect. 3.2. They aren’t strongly attached to the Thing. Over time a
reference can be changed or removed, and additional references can be added without
interfering with the Thing’s identity.

The blue boxes depicted in Fig. 1 are references (or names), presented as extrusions
from the individual attributes – to the left to name the attributes, or to the top of the
Thing itself – to name the Thing.

By convention, we use capital letters to distinguish Thing references, from Attri-
bute references, although references work the same in both cases.

There can be more than one reference that targets the same Thing or the same
Attribute. In that case, they will be added to the left or to the top of existing ones as an
additional extrusion box.

All Things can be compared with other Things through the equal operator (==).
Two things are equal iff they have the same unique internal identifier number. Having
the same values in Attributes is not enough to answer True to the equality operator
between two Things. Therefore, the equal operator is reflexive, as it only returns True if
both operands are (or refer to) the same Thing. This is very important property as a
Thing, in a distributed environment may be copied between several local execution
environments and therefore exist in many locations at the same time. What gives a
unique identity to Things is it’s internal identifier number, that is not visible to users,
and that will be presented further in Sect. 3.3.

The alternative option, Things that have equal values in their attributes are equal
Things although appealing, can be a source of many logical problems. Since the unique
internal identifiers are not visible to users, i.e., that property cannot be perceived, we
are not able to distinguish two different Things that appear the same. Like two grains of
sand or two molecules of water.

3.2 References

A Reference is a Thing that points to/refers to a Thing, other than itself. The attribute
for this is “referer”. Both the Reference Thing and the referred Thing can be either a
concrete thing or a conceptual thing, as depicted in Fig. 2.

These two kinds of Reference “inherit” the Attribute “nature” from Thing. If a
specific Reference is a concrete thing, then it can be called a Sign Reference. If it is a
conceptual thing, then it can be called a Pointer Reference.

Just like Things can be concrete or conceptual, there are two kinds of references:
Concrete References and Conceptual References.

In Fig. 2, the Conceptual and the Concrete Things are within the Thing graphic
element just to illustrate the idea that they are derived through “inheritance” from Thing.

The Meaning Triangle [10], presented in Ogden and Richards in 1923, and adapted
in Fig. 3 using the options presented in [1], defines three kinds of elements: the
physical “Sign”, the physical “Referent”, and the conceptual “Thought”.

Things, References, Connectors, Types, Variables, Relations and Attributes 185

The elements shown in Fig. 2 map the one in Fig. 1 in the following way: The
“Thought” is a “Conceptual Thing”; The “Referent” is a “Concrete Thing”; The “Sign”
is a “Sign” (Concrete Reference).

We extend this definition by including the notion
of Pointer (Conceptual Reference), as presented in
Fig. 2, which is a Conceptual Thing that can refer to a
Thing (either Conceptual or Concrete).

Let’s see an example of a Pointer – Conceptual
Reference, applied to a sequence of a few physical
elements. Imagine that there is a reference in your
mind that refers to the current element in that
sequence, which initially is the one in the first posi-
tion. That Thing that tracks the current position in
your mind is a Pointer. You can change the element
being pointed to without changing the identity of the
sequence, nor the identity of the Pointer. Now imagine
a similar sequence of Things in your head. You can

still have a Pointer to a Conceptual Thing, in this case, one elements of a mental
sequence.

Is
 a

re
st

ric
tio

ns

CONCRETE THING

CONCEPTUAL THING

SIGN
(Concrete Reference)

POINTER
(Conceptual Reference)

→ THING

nature.Concrete == false
nature.Conceptual == true

Conceptual

Concrete

re
fe

re
r

re
fe

re
r

Concrete → BOOLEAN

Conceptual → BOOLEAN

OR

na
tu

re

THING

Is
 a

re
st

ric
tio

ns
re

st
ric

tio
ns

Is
 a

nature.Concrete == false
nature.Conceptual == true

→ THING

nature.Concrete == true
nature.Conceptual == false

→ THINGIs
 a

re
st

ric
tio

ns

→ THING

nature.Concrete == true
nature.Conceptual == false

...

...

...

...

Fig. 2. Core construction elements: Pointer and sign

refers
tosi

gn
ifi

es

denotes

THOUGHT

REFERENSIGN

Fig. 3. The meaning triangle [1]

186 D. Gouveia and D. Aveiro

You can even name that Pointer that only exists in your mind as “next in line”, and
that naming would be a Pointer referring the Pointer that holds the current position. We
can rename the label “next in line” without changing the current position pointer
identity. This is another example as why names are not an inherent part of the Thing
nor Attributes. Naming will be fully explained in Sect. 3.2.

Unlike all other kinds of Things, when an equality action is being performed with
References, what is compared is not the identifier of the Reference Thing, but the
identifier of the referer. This is a design option for this work. This allows using
indirection with References. If we have a Reference R1 that points to a Reference R2,
that points to a Thing T, then evaluating R1==R2, R1==T, R2==T will result in True in
all of them.

3.3 Connectors

When we draw an arrow to connect different Things in a diagram, like the one in
Fig. 2, we are using the topological features of the boxes and arrows on a plane to
establish a connection between Things. In an information system we do not have such
concrete material links to establish similar connections. All Things need an identifier to
enable the system to map that unique identifier to concrete Things expressed as blocks
of memory stored somewhere, in cache, in memory or in disk, locally or remotely.

Since our goal is an asynchronous network model based on the Actor Model [11],
where there is no guarantee of permanent network connection between local executing
environments in the network. The same Thing may exist in several copies (caches) over
the network. There is an absolute need of global unique identifiers, but the description
of how these might be implemented, through which mechanisms and in which format
will be a matter for future work.

There are actually three kinds of Connectors: connector-origin, connector-destination
and connector-relation. Connections can be directed, when origin and destination are
different roles, or undirected, when both connected parts are of the same kind.

Connectors can have one of four cardinality options: one-to-one (1-1), one-to-many
(1-N), many-to-one (N-1) and many to many (N-M).

While one-to-one relations could be implemented without connector-relation, we
actually believe that we should always use the four kinds of connectors to make evo-
lution easier [4]. Upgrading a 1-1 cardinality option to a higher cardinality is a quite
common change.

Connector-origin and connector-destination can be implemented as views over
connector-relations as prescribed in relational theory [4]. Additionally, another common
change is qualifying relations, that is, giving attributes to the relation itself. Therefore we
choose to always consider the connections between Things to be Things in order to
simplify the way we handle connections between things and to be prepared to possible
future evolutions, according to the good practices of Normalized Systems [12].

Another very important function of connections is keeping track of references.
Being able to reference Things from both sides is useful, as it allows to know when a
Thing is no longer connected to anything else, and therefore the connector can evoke
the apoptosis. Like in programmed cell death, apoptosis allows freeing the identifier

Things, References, Connectors, Types, Variables, Relations and Attributes 187

and the elimination of any memory space reserved to that Thing. This option makes
garbage collection useless, as all connections (to mutable) elements are always directly
managed.

The fundamental question in keeping consistency across distinct local execution
environments is if Things are mutable or immutable.

Immutable Things can be freely shared with multiple copies, for example with a
Gossip protocol [13], because the only challenge that needs to be addressed is how
many Things are referencing it, so that when none exists apoptosis can be called.

Having immutable Things can greatly improve memory storage space, as well as
communication, as repeated equal Things can be reduced to a single one. Finding
duplicated tuples can be a time-consuming task, but when they are found, the system
should gradually reduce them.

On the other hand, mutable things have to keep read/write privilege control which
is a very significant overhead in communication, and a big source of problems.

The ideal situation would be that, over time, the information system would be able
to grow on the amount of data it holds without growing more than loglinear way
(N*log N) in the size needed to store it, taking advantage of the inherent redundancy of
data. Therefore, immutable Things cannot be changed by the users of the IS, but they
can be optimized by the IS by using mathematically equivalent Things. This might be a
relief for Big Data problems, as more things can be described using immutable things.

Notice that the amount of information that needs to be transferred between exe-
cuting environments greatly depends on the amount of information they already agreed
upon. For example, if instead of characters we used syllables to represent strings we
would greatly reduce strings as the possible combinations of characters are much less
than the existing syllables. If words are made of syllables and sentences are made of
words, then a big natural compression can occur in strings just by using the appropriate
grouping of elements.

Another example, Google announced in 2008 [14] that they had indexed over 1
trillion images’ URL. If two execution environments could agree on a specific ordering
for those images, and therefore on a sequential number for each of them, then only 40 bits
would be enough to identify any image already stored, as 240 is bigger than 1 trillion.

For Things that are mutable, that is, can change value over time, the amount of
necessary control significantly increases as they need to authorize read/write operations.
This problem has already been solved in computer architectures to share memory
between different cores, but we will not address this issue here. It is an implementation
issue that will be addressed in future work.

As a general rule we should try to use the least possible amount of shared Things,
and within shared Things, use immutable Things as much as possible, to decrease the
amount of control and promote reusability.

3.4 Types

3.4.1 What Types Should Not Be
In our opinion, one of the most conceptually constraining issues in programming
languages is the today’s notion of Type. Types are usually presented, as in MU Theory
[2], as a prescription of form. We believe this is the wrong option for two reasons.

188 D. Gouveia and D. Aveiro

First, some concepts like numbers or date/time exist in a scalar dimension inde-
pendently of the form they are represented. For example, numbers, can be expressed in
Roman literals, decimal format, hexadecimal format, binary format, unsigned long
integers, short signed integers, floating point format, product of primes, and several
others. We can perform operations over numbers independently of the way they are
represented. Limiting results to specific representations generates overflow exceptions
that could be avoided through a conceptual number model. The same can happen with
date/time, as multiple formats can be used, although the same scalar phenomenon is
lying underneath representation. Both these representation issues will be addressed in
future work.

Second, Types are used in Object Oriented languages as a constraint that limits
instances to a very unpleasant straight jacket, keeping the definitions established to its
class along the life cycle. Some programming languages, like C++, allow objects to
have multiple inheritance from several classes at the same time (allowing solutions for
duplicate names in attributes), but others, like in Java, tighten the straight jacket further
by only allowing a Thing to be an instance of a single Type.

This option creates several problems. First, it creates, for the full life cycle of the
instance, a dependency to its class, which is contrary to the good principle of inde-
pendence of concerns stated by Normalized Systems, by limiting evolvability. Second,
it does not conform to reality, as Things can be of several Types at the same time. For
example, a horse can be an instance of “Means of transportation”, an instance of
“Athlete” and an instance of “Animal”. All three of these classes have different attri-
butes and operations available. Having to choose just one class creates problems ahead.

In the case of Java programming language, in order to solve those problem several
concepts were added, and instead of making things easier, made it worst. Mixins
aggregate two (or more) instances of specific class into a single object, and allow a
single point of access to both instances. Interfaces aggregate functions without any
attributes. Interfaces don’t have instances, but objects/classes can comply with inter-
faces without establishing the inheritance relationship. Generic types for data structures
try to alleviate the burden of strong typing by establishing the content values at creation
time, which creates all sorts on unnecessary complexities for programmers.

The strongest constraint for Types was introduced in 2003 by [15], by stating that
all structures must follow three a fixed four level of type constraints: instance level
(M0), class level (M1), MOF constructs (M2) and MOF metamodel (M4). This type
theory paradigm is still the dominant paradigm, and is the proposed type model in the
MU theory [2].

Aristoteles said that there are two kinds of problems: the ones that emerge from the
complex nature of things, and the ones we make more complex by the way we choose
to handle them.

An alternative Type Theory paradigm is the one proposed in xModeler [16]. Instead
of distinguishing classes and instances, we can have clabjects that assume both roles at
the same time. You can always create a new clabject from another one, through copy of
their current properties and methods. Inheritance is therefore a once in a time assign-
ment operation that does now create the dependencies that make evolvability harder.

Although this approach is refreshing, regarding types, it is still not flexible enough,
as it limits inheritance operations to the moment of the creation of new objects. We

Things, References, Connectors, Types, Variables, Relations and Attributes 189

believe that the Type of a Thing should be able to change over execution time, not as a
generic type, but as an adaptive type that constrains or broadens the possible values
according to programmer needs.

Most programming languages assume the existence of some primitive data types,
typically: Boolean, Integer, Float and String. We believe this modelling ontology
shouldn’t have any primitive data types. Booleans can be modeled as nominal cate-
gories (sets of value Things). Strings can be modeled as sequences – a quite basic data
structure. Integers and Floats, as well as all other types of scalars can be modeled as
numbers. Everything else can be modeled using the principles of universal algebra [17,
18], and can be represented in a consistent way. Advanced data structures represen-
tation will be addressed in future work.

3.4.2 What Types Should Be
We wish to generalize Types into a reusable concept, so that we can use it whenever
needed in an easy way. In our novel definition, a Type is a logical expression of
Restrictions that when evaluated for a specific Thing results in True or False. Evalu-
ations shall be performed before assignments either to variables or to parameters in
function calls.

Types may be named (using References) to simplify referencing to complex and
very long logical expressions. As logical expressions we include the option of first
order logic, allowing qualifiers (for all, exist), or even higher order logic.

A Restriction can establish constrains over names, values, relationships with other
Things, cardinality of relation attributes, representation and eventually others.

• Constraints over names

A Restriction might specify that: “A Thing should have an attribute named X”. Or,
on a negative perspective, “A Thing cannot have an attribute named X”. Notice that
attributes can hold values or references to other Things or functions. Functions are
first-class citizens in this modelling ontology, but will only be addressed in future
work.

• Constraints over values

A Restriction might specify: “The attribute X of the Thing in question can only take
values Y and Z of the nominal category W”. For a numeric attribute it can also establish
ranges of valid values, either with inclusive or exclusive border values.

• Constraints over relationships

A Restriction might specify that: “There is an attribute named X that is a relation Y,
that conforms to type Z.” With first-order logic a Type can combine several constraints
to express.

• Constraints over representation form

A Restriction might specify: “There is an attribute X that conforms to type Y using
hexadecimals as representation form.”

For advanced data structures we could express constraints over its typical properties
of each data structure like “Sequences of size two”, “Trees with depth between 2 and

190 D. Gouveia and D. Aveiro

3”, “Graphs with average in-degree of 2”, “Bag with 10 Integer numbers, with average
7.2 and standard deviation of 2.8”.

All these constraints have to be able to be expressed with a formal language (or
model representation). This shall be addressed in future work.

These restrictions may appear to be even more restrictive that usual programming
languages if used all at the same time. But actually there is no required minimal number
of restrictions. It is perfectly valid to establish as a type “Attribute X may hold all
natural numbers that have a 3 in the least significant digit.”

We should distinguish the definition of a Type and the ability of easily discovering
all possible instances that can be valid. Natural numbers are infinite, but even so we are
able to use them in a general way even without managing all instances of possible
natural numbers.

Being able to deduce all possible valid evaluations of a Type is very useful because
it enables reasoning by exclusion using the “Closed World Assumption”.

We argue in favor of dynamic modelling where each variable can, over its life
cycle, change, not only the value it holds, but also its type expressed through con-
straints. Current programming languages use a fixed model for variables, only allowing
for changing the value within the possible values in the domain of the Type established
at creation time.

Unlike common programming languages where variables, parameters and all other
containers use a fixed model, in this modelling ontology, Things are not forced to have
Types, but they may adhere simultaneously to multiple types, in a double bind relation
between Types, and change the Type restrictions over time, either by adding additional
constraints, or by removing or updating existing ones.

The idea of named type is just a set of constraints we may wish to impose on
Things.

Constrains are always applied to the Attributes of Things, not to the Thing itself.
The constraints limit the possible assignment operations to an Attribute, that is,
checking if a concrete value is acceptable at that time.

A Thing can comply with several sets of constraints, and apply each of them to
several of their Attributes. In that sense, this modelling ontology is multi-type by nature.

The idea of inheritance is quite disconnected from the idea of constraints. One
Thing can choose to inherit an Attribute and not inherit the constraints that are asso-
ciated with that Attribute.

This modelling ontology is dynamically typed in the sense that the applicable
constraints applied to an Attribute can change over execution time.

As a consequence of this novel definition of Type we can program in novel ways

(a) Even if we don’t know all Things that can be evaluated as true for a Type, we may
use stochastic problem solving techniques by trying to discover known Things
that fulfill the type constrains and discover possible solutions

(b) We may have a variable X with undefined value, but with a type definition
restricting its possible values, for example, to natural numbers between 1 and 6.
The assignment expression Y = X + X, even without having a value assigned to
X, should establish the possible values of Y between 2 and 12 on its Type, and
even better, could establish a likelihood of each of its possible values, since the

Things, References, Connectors, Types, Variables, Relations and Attributes 191

likelihood of getting 7 is far greater than the likelihood of getting 12. We are of
course modelling 2 dices…

Type reasoning can improve programming models as they might enable opti-
mizations in function calls by knowing in advance that certain values are more likely
than others. In current programming models we just evaluate what the parameter is at
call time. The implications of these options have a far reach that cannot be fully
addressed with the space constraints on this introductory gestalt presentation. They will
be addressed in future work.

3.5 Variables

For most programing languages, there is little difference between a Variable and a
Reference, except on the format of their value content. That is not the case in this
modelling ontology. There is a substantial qualitative difference between a Pointer and
a Variable. Although they are both mutable, a Pointer only holds the value of the last
assignment, while a Variable is a much more powerful conceptual construction that
keeps track of all the values assigned to it over time with a valid time/date, either from
the past or to the future using temporal logic.

Due to space limitations, we shall refer further explanations about Variables to
future work, that will synthesize the full revised temporal relational theory [4, 5].

3.6 Relations

A Relation is the complex data structure that supports the revised Relation Theory [4].
Each relation has a head and a body. The head is a set of attributes, each combining a name
and a type. The body is a set of tuples adhering to the type in the corresponding attribute.

We can get a relational algebra [4] if we combining a Relation with typical oper-
ations over relations like: rename, restrict, project, union, intersect, minus, join, extend,
group and ungroup.

Due to space limitations we shall refer further explanations about Relations to
previous work [20], that synthesizes the full revised temporal relational theory [4, 5].

3.7 Attributes

An attribute is a Variable withing the context of a Thing. An attribute is not a Thing and
therefore it does not stand on its own – it needs the Thing as a support for its full identity.

Attributes don’t need types. In their more generic form, they can store a sequence of
symbols in a format that the system might not even understand. That is actually what
happens when strings are stored. Only the users really understand what those symbols
mean. Other times, the symbols that attributes hold follow a very specific grammar or
representation form. Attributes can also just point to other Things.

Attributes don’t need names. Changing the name of the attribute does not change
it’s nature, or the value held. It can change only the perception of its use. Naming

192 D. Gouveia and D. Aveiro

attributes can be a very troubling, as can been seen in the discussion of the FI theory
[1]. This happens because names are used in a functional perspective, and therefore
they are subjective, and there is no correct way to name attributes. Sometimes the best
way is to name them based on the format, sometimes on the use case, sometimes we
need very long names in order for them to make sense to the user. As names are
references, we can have multiple names to the same attribute without any problem,
namely, translating the attributes to different languages.

4 Conclusion

Choosing the foundation building blocks for modelling is a difficult job because of the
infinite amount of alternative definitions, that all seem to fit due to our innate brain
plasticity. With this work we aimed at critiquing some concept definitions, presenting
alternative ones and therefore hoping to promote discussion regarding these founda-
tions concepts.

We believe our major contributions are: A novel definition for Type as a dynamic
expression of constraints; The clarification of the concept of identity in things; The
introduction of the common concept of Pointer in the FI theory [1]; the discussion of
practical but inevitable implementation problems regarding Connectors; The combi-
nation of the novel notions brought by the revised Temporal Relational Theory [4, 5]
regarding Variables and Relations. And finally, we clarified the notion of Attribute as a
clustering concept – a dependent concept of Thing, that relates Variables, Relations,
References, Types and Connectors.

5 Future Work

During this work several references were made about future work. We summarize then
in the following six topics:

• Handling global unique identifiers – which entity assigns them, what structure shall
they have (single or dual identifier parts), which transactions are needed to operate
them and share them for immutable and mutable data.

• When a mutable Thing is shared across several local execution environments on a
asynchronous network, how can the ownership, read/write permissions and state
control can be established, assuming that a permanent connection to the network is
not guaranteed.

• Numbers and Time/Date are scalar phenomenons that, for historical reasons, have
very complex representation forms. We should have a consistent ontology to model
these concepts at an abstract level, and then be able to use distinct representation
formats, as long as we are able to have equal and order efficient functions between
different representation formats.

• Complex data structures are actually quite regular when you use a universal algebra
approach to describe their components. We believe that all data structures are quite
the same, and can be described in a simple canonical way.

Things, References, Connectors, Types, Variables, Relations and Attributes 193

• Functions are a very old construction for abstracting sections of code. They have a
set of limitations that should not still be constraining programmers. Namely, they
have only one result, mixing error codes and responses, or worse, throwing
exceptions that diverge the execution in hard to control and recover ways. They
only have one response value or, even worse, they require the construction of a new
class to return several results combined. Functions are typically called in syn-
chronous ways – the caller will block until an answer is given. Some programming
languages, like Node.js, allow calling functions in asynchronous ways using the
call-back paradigm. We think we should go a step further and define functions as a
social interaction following the PSI grammar. This would allow to provide partial
results as they are found, provide less accurate results sooner when possible, allow
cancellation from the requester releasing resources sooner. We also think that
functions could keep an internal state and continue execution from last result
yielded, like in Python and Ruby. Functions could be defined in such a way to
execute calls in lazy, eager or smart way, evaluating the parameters and providing
the result in a just-in-time way. Finally, functions should be able to join the Logical
Programming, Declarative Programming, Imperative Programming, Stochastic
Programming, Linear Programming and other programming paradigms into a
coherent solution.

• The implications of Type Theory hereby presented are far greater that it was pos-
sible to present. We need a formal language and a deductive procedure to extract the
full potential of having Types established as boolean expressions of constraints,
instead of life-cycle fixed inherited constraints.

Acknowledgement. This work was developed with finan-
cial support from ARDITI (Agência Regional para o
Desenvolvimento da Investigação, Tecnologia e Inovação),
in the context of program Madeira 14-20 –FSE.

References

1. Dietz, J.L.G.: The FI Theory – Understanding Information and Factual Knowledge (2015)
2. Dietz, J.L.G.: The MU Theory – Understanding Models and Modelling (2015)
3. Dietz, J.L.G.: Enterprise Engineering Theories Overview – version 2.3 (2015)
4. Date, C.J., Darwen, H., Lorentzos, N.: Time and Relational Theory: Temporal Databases in

the Relational Model and SQL. Morgan Kaufmann, Waltham (2014)
5. Date, C.J.: Time and Relational Theory (video). O’Reilly Media, Inc. (2015). http://my.

safaribooksonline.com/video/databases/9781491917763 (last visited 8 March 2016)
6. Neto, A.B., Gouveia, D., Silva, M.J.: ACE: um agente de compras na Internet (1998)
7. Gouveia, D.P.B.: Organizations Redesign and Building of Information Systems (2014)
8. Bunge, M.: Treatise on Basic Philosophy: Volume 3: Ontology 1: The Furniture of the

World. Reidel, Boston (1977)
9. https://en.wikipedia.org/wiki/Ship_of_Theseus (last visited 13 March 2016)

194 D. Gouveia and D. Aveiro

http://my.safaribooksonline.com/video/databases/9781491917763
http://my.safaribooksonline.com/video/databases/9781491917763
https://en.wikipedia.org/wiki/Ship_of_Theseus

10. Ogden, C.K., Richards, I.A.: The Meaning of Meaning: A Study of the Influence Od
Language Upon Thought and of the Science of Symbolism. Routledge & Kegan Paul
Limited, London (1949)

11. Hewitt, C.: The Actor Model. Massachusetts Inst of Tech, Cambridge (1993)
12. Mannaert, H., Verelst, J.: Normalized Systems: Re-Creating Information Technology Based

on Laws for Software Evolvability (2009)
13. Jenkins, K., Hopkinson, K., Birman, K.: A gossip protocol for subgroup multicast. In: 2001

International Conference on Distributed Computing Systems Workshop, pp. 25–30. IEEE,
April 2001

14. https://googleblog.blogspot.pt/2008/07/we-knew-web-was-big.html (last visited 13 March
2016)

15. David, F.S.: Model Driven Architecture: Applying MDA to Enterprise Computing (2003)
16. Clark, T., Willans, J.: Software language engineering with XMF and XModeler. In: Formal

and Practical Aspects of Domain Specific Languages: Recent Developments. IGI Global,
USA (2012)

17. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, vol. 78. Springer-Verlag,
New York (1981)

18. Goguen, J., Malcolm, G.: A hidden agenda. Theoret. Comput. Sci. 245(1), 55–101 (2000)

Things, References, Connectors, Types, Variables, Relations and Attributes 195

https://googleblog.blogspot.pt/2008/07/we-knew-web-was-big.html

Author Index

Abdulrab, Habib 118
Aerts, Walter 71
Aveiro, David 181

Babkin, Eduard 118

De Bruyn, Peter 71, 86
de Laat, Lotte 19

Fragoso, Bruno 37
Franquet, Ilke 86

Gouveia, Duarte 181

Hunka, Frantisek 54

Krouwel, Marien R. 3, 19

Mannaert, Herwig 86
Matula, Jiri 54

Mendes, Carlos 37
Mulder, M.A.T. 166

Offerman, Tyron 3
Oorts, Gilles 86
Op ’t Land, Martin 3, 19

Pergl, Robert 151
Poletaeva, Tanja 118
Pombinho, João 37

Santos, Ricardo 37
Sergeev, Alexey 132
Silva, Nuno 37
Sixpence, Elton 37
Skotnica, Marek 151
Stark, Jeannette 103

Tribolet, José 37, 132

van Kervel, Steven J.H. 54, 151
Vanhoof, Els 71
Verelst, Jan 71

	Preface
	Organization
	Contents
	Organization Implementation
	Formalizing Organization Implementation
	1 Introduction
	2 Way of Thinking
	3 Way of Working
	4 Result
	4.1 Goals and Requirements
	4.2 Use of Existing Theories
	4.3 Concepts
	4.4 Construction and Evaluation Process
	4.5 Additions to Knowledge Base and Practice
	4.6 Examples

	5 Conclusions and Future Research
	References

	Supporting Goal-Oriented Organizational Implementation - Combining DEMO and Process Simulation in a Practice-Tested Method
	1 Introduction
	2 Research Design
	2.1 Problem Statement
	2.2 Proposed Way of Thinking
	2.3 Proposed Way of Working

	3 The Approach in Practice
	4 Results in Practice
	5 Conclusions and Future Research
	References

	Value and Co-creation
	Objectifying Value Co-creation – An Exploratory Study
	Abstract
	1 Introduction
	2 Related Work
	2.1 Service Science
	2.2 The Discipline of Enterprise Engineering (EE)
	2.3 Value Modelling
	2.4 Value-Oriented System Development Process

	3 Objectifying Value Co-creation: Modelling Co-design and Co-production
	3.1 Flower Shop Case Description
	3.2 Modelling the Case with DEMO and e3Value
	3.3 (Re)defining Co-creation: Co-design and Co-production

	4 Conclusion
	4.1 Limitations
	4.2 Future Work

	References

	Towards Co-creation and Co-production in Production Chains Modeled in DEMO with REA Support
	Abstract
	1 Introduction
	1.1 Objectives of this Paper
	1.2 Practical Objectives of the Approach

	2 Introduction to REA, DEMO and Software Technologies
	2.1 REA Ontology
	2.2 DEMO Ontology
	2.3 Enterprise Operating System
	2.4 The Four Technologies of the Enterprise Operating System
	2.5 REA Ontology Support

	3 Ontological DEMO Model for Co-creation and Co-production
	3.1 The World of Co-creation and Co-production
	3.2 Proposed Ontological Co-creation and Co-production Model
	3.3 Discussion of the Model Duality
	3.4 Avoiding the Notion of Value in DEMO Models

	4 Future Research Topics
	4.1 Extensive Ontological CC-CP Model Validation
	4.2 Extension of the CC-CP Model with Implementation Specific Transactions
	4.3 Conceptual Mapping of DEMO to REA
	4.4 REA Value Chain Analysis

	Acknowledgements
	References

	Evolvability
	Building an Evolvable Prototype for a Multiple GAAP Accounting Information System
	1 Introduction
	2 Design Science Methodology
	3 Problem Statement and Earlier Research
	3.1 Problem Statement
	3.2 Earlier Research

	4 Normalized Systems Theory
	5 Prototype
	5.1 Creating Prototypes
	5.2 Building an Initial Data Model and Prototype
	5.3 A Second Version of the Prototype
	5.4 Adding Posting Functionality to the Prototype

	6 Evaluation
	6.1 Evaluation Regarding the Design Principles
	6.2 Configuration of Prototype
	6.3 Evaluating the Impact of Change 1
	6.4 Evaluating the Impact of Change 2

	7 Conclusion
	References

	On the Evolvable and Traceable Design of (Under)graduate Education Programs
	1 Introduction
	2 Normalized System Theory
	3 Study Program Design as a Modular System
	3.1 Modularity
	3.2 Cohesion
	3.3 Coupling

	4 Evolvability and Traceability of a Study Program Design
	4.1 Evolvability
	4.2 Traceability

	5 Study Program Cases
	5.1 Study Program Design at a Faculty of Applied Economics
	5.2 Study Program Design at a NGO

	6 Conclusion and Future Research
	References

	Modelling, Patterns and Viability
	Perceptual Discriminability in Conceptual Modeling
	Abstract
	1 Introduction
	2 Perceptual Discriminability
	3 Visual Attention
	3.1 Similarity Theory
	3.2 Boolean Map Theory
	3.3 Feature Hierarchy
	3.4 Implications for Conceptual Modeling

	4 Central Constructs of Modeling Grammars
	5 Applying (Extended) Perceptual Discriminability to ERD
	6 Discussion

	From the Essence of an Enterprise Towards Enterprise Ontology Patterns
	Abstract
	1 Introduction
	2 Ontological Foundations of Enterprise Ontology Patterns
	2.1 The Unified Foundational Ontology (UFO)
	2.2 The DEMO Theory and Methodology of Enterprise Ontology

	3 A Formal Enterprise Ontology Pattern Language
	3.1 Participation in a Transaction
	3.2 Coordination Acts and Facts
	3.3 Production Acts
	3.4 Production Facts

	4 Applying the Enterprise Ontology Patterns: A Case Study
	5 Final Considerations
	Acknowledgments
	References

	Extended Viable System Model
	Abstract
	1 Introduction
	2 VSM Description
	3 VSM Extension
	4 Case Study
	5 Conclusion

	Foundations of Enterprise Engineering
	Towards the Ontological Foundations for the Software Executable DEMO Action and Fact Models
	1 Introduction
	2 Scientific Theories and Methodologies Applied
	3 Formulation of the Research Question
	3.1 The DEMO Machine Concept
	3.2 Appropriateness of the DEMOSL for DEMO Machine Implementation
	3.3 Formulation of Ontology for DEMO Machine
	3.4 Verification and Validation Questions of the Research Question

	4 Axiomatic Specifications of the Fact, Agenda and Rule Ontology
	4.1 Addressing the DEMOSL-DEMO Machine Deficiencies
	4.2 Fact Axioms
	4.3 Agenda Axioms
	4.4 Rules and Dependencies Axioms

	5 Discussion and Evaluation of the FAR Ontology
	5.1 Falsifiable Proposition of the FAR Ontology

	6 Related Work
	6.1 Model-Driven Development
	6.2 XModel
	6.3 The DEMO Engine and the Enterprise Operating System

	7 Conclusions and Further Research
	References

	Cross Channel Communication Design Critical Literature Review
	1 Introduction
	2 Communication Viewpoints
	2.1 Customer Centric Viewpoint
	2.2 Company Centric Viewpoint

	3 Channels
	3.1 Channel Characteristics
	3.2 Channel Issues
	3.3 Channel Organization
	3.4 The Notion of Channel
	3.5 Channel Implementation

	4 Transactions
	5 Design and Implementation
	5.1 Multichannel Strategies
	5.2 Design Challenges
	5.3 Multichannel Implementation Issues

	6 Conclusions
	References

	Things, References, Connectors, Types, Variables, Relations and Attributes – A Contribution to the FI and MU Theories
	Abstract
	1 Introduction
	2 Problems Identified in FI and MU Theories
	3 The Building Blocks to Model the World
	3.1 Things
	3.2 References
	3.3 Connectors
	3.4 Types
	3.4.1 What Types Should Not Be
	3.4.2 What Types Should Be

	3.5 Variables
	3.6 Relations
	3.7 Attributes

	4 Conclusion
	5 Future Work
	Acknowledgement
	References

	Author Index

