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Abstract. To fully embrace the challenge of developing more robust
software, potential defects must be considered at the earliest stages of
software development. Studies have shown that this reduces the time,
cost and effort required to integrate corrective features into software
during development. In this paper we describe a technique for uncov-
ering potential software vulnerabilities through an analysis of software
requirements and describe its use using small, motivating examples.
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1 Introduction

Security requirements are seldom explicitly stated at the outset of a project [8].
Typical security considerations at the requirements development stage are: con-
fidentiality of sensitive information [6]; potential system threats and exploits
[8,14,15]; privacy and trust concerns [20,21]; and profiles of potential attackers
[13,15]. Requirements engineers and security experts attempt to address security
issues by using techniques such as misuse cases [14], abuse cases [15], UMLSec
[13], the SQUARE method [10], KAOS [18] and security patterns [7]. Many of
the current techniques, however, rely heavily on the expertise and subjective
judgement of security professionals [1–4]. As an example of the subjectivity that
comes into play when using these techniques, consider the use of misuse cases.
A misuse case is a special kind of use case that is a description of behavior that
should not occur in a system. Misuse cases are described alongside use cases.
The development and analysis of misuse cases may proceed as follows:

1. Describe the services that the users want, regardless of any security consid-
erations. Use cases are used for this purpose

2. Introduce the major misuse cases and mis-actors. Misuse cases are initiated
by mis-actors.

3. Investigate the potential relations between misuse cases and use cases, and
describe as use-case includes-relations. Many threats to a system can be
realised by using the system’s normal functionality.
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4. Introduce new use cases that detect or prevent misuse cases.

Steps two and three are key to the process, but they are subjective and the
results of their application are completely dependent upon a security expert’s
judgement. Although a requirements engineer has the task of specifying what an
intended software system should do, a requirements engineer is not expected to
be a security expert. Security is usually grouped with, and considered as, a non-
functional requirement [18,19]. Non-functional requirements have traditionally
only been considered in the later stages of software development, for example
during architecture development [1,5] and coding [12].

In this paper we present a technique that provides a means by which
the knowledge of domain experts including security experts can be captured,
retained, used, refined and shared among requirements engineers and other soft-
ware engineering practitioners, thus assisting them in their task of considering
potential software defects at the earliest stages of software development. The
expertise is captured in the form of dependencies between domain-specific terms
that are included when writing requirements. The captured expertise is used
in the technique to analyse functional requirements to uncover potential vul-
nerabilities. The technique does not replace human expertise, rather it exploits
shareable knowledge and skill and augments available human know-how. The
technique can be summarised as follows:

Given a set of use case scenarios, each scenario is represented as a flow
graph. Each scenario step is represented as a node in a graph and tran-
sitions from one scenario step to another as an edge. The analysis is per-
formed by forming the transitive closure of the forest and identifying any
interactions that violate stated security or other policies.

The proposed technique, called Loophole Analysis, addresses the problem of
functional fixation in the context of requirements analysis. Functional fixation
is the inability to see uses for something beyond what is presented [11]. In other
words, it is the belief that something can only be used for its stated purpose.
In the context of software systems we can and do use functionality provided by
software in unintended ways.

For example, a Windows XP user with no administrator privileges can acquire
them by creating a shortcut to IE6, enable the ‘Run with different credentials’
option, and open a shell as a local administrator. From a security standpoint,
each step involved in accomplishing the task is allowed, but this particular
usage leads to undesirable situations. Another example is provided by Linux,
Android and other UNIX-based operating systems where automatic file comple-
tion is a very useful feature but, it also helps intruders to find target files more
quickly [14]. Everyday objects, including software, may fulfill their stated goals
and yet, may allow undesirable behaviour.

2 Background and Related Work

The loophole analysis seeks to identify interactions that are allowed but may
result in undesirable situations when using software. The analysis is performed
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during the process of specifying requirements. Uncovering and mitigating poten-
tial vulnerabilities during requirements analysis, reduces the time, effort and
cost of fixing these problems, when compared to addressing them later in the
development process [10,13]. Other approaches exist that attempt to address
security during the early stages of development. A relatively current trend is the
use of models [1,2,4]. Loophole Analysis seeks to identify use case scenario inter-
actions that are allowed but may result in undesirable situations if the scenarios
are implemented as specified.

The input to our technique is a requirements specification document consist-
ing of a set of use case scenarios. The steps of the technique are,

1. Develop a domain meta-model to represent the vocabulary and key concepts
of a problem domain

2. Develop a set of meta-use case scenarios from the domain model
3. Create a class model of the specific application/system to be built, using the

domain meta-model developed during step 1
4. Create a set of application-specific use case scenarios using the meta-scenarios

developed during step 2
5. Using unique identifiers for each use-case step described in all scenarios, create

a flow graph that simulates transitions within the application being modeled
6. Apply the loophole analysis to the forest to identify any undocumented use

case scenarios
7. Document any newly discovered scenarios and either expressly permit or pre-

vent them. The newly discovered scenarios can be documented as misuse
cases

8. Repeat, beginning at step 6, until no new scenarios are discovered

Steps one and two are project independent and can be completed by domain
experts. Steps three to eight are project specific and are completed by require-
ments engineers. The use case scenarios that our technique supports describe
a system from a user’s perspective, and thus focus on user-system interactions.
Specifically, a scenario is an ordered set of interactions between a system and a
set of actors external to the system.

Scenarios are typically written in a natural language to facilitate understand-
ing by as many stakeholders as is possible. A natural language however, does not
readily lend itself to analysis and its use often leads to imprecise statements. For
this reason, use case scenario templates are incorporated in our technique. The
numbered steps and unique identification of each scenario enables the straight-
forward representation of each step as a node in a flow graph, and inter-scenario
and intra-scenario step transitions as directed edges.

Although there are existing approaches and techniques that are based on
security knowledge that is represented in various forms [3–5,7,10,18], our app-
roach seeks to improve a requirements document by revealing undocumented
requirements, and attempting to make implicit security requirements explicit. In
particular, implicit security requirements are attempted to be made explicit by a
process that uses an Imposed Security Dependence (ISD) [17]. A domain model
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Fig. 1. Requirements terms domain model

captures domain and security expertise, and contains dependencies between
domain-specific requirements terms (see Fig. 1).

For any two requirements terms (RT) α and β, we define an ISD as,

RT α has an ISD on RT β when the use of α in a requirement dictates
the use of β in a separate requirement.

Two requirements therefore have an ISD relation when an ISD exists between
requirements terms contained in each. In this paper we represent an ISD between
two terms using the symbol /- placed between them and the terms and symbol
enclosed in parentheses. ISD relations have the following properties where t refers
to a requirement term,

¬(t1/- t1), (1)
(t1/- t2) /⇒(t2/- t1), (2)
(t1/- t2) and (t2/- t3)⇒(t1/- t3) (3)

Commonly used requirements terms and their imposed security dependencies
are created by a requirements engineer/domain expert and a security expert.
These experts use their knowledge and experience to create a domain model of
requirements terms that is independent of any specific project. The model is
then used to develop a table of ISDs. The domain specific ISD table is stored
for subsequent use in individual, domain specific projects. Once such a table of
terms and ISDs has been created, the knowledge and expertise of the domain
and security experts will be captured and retained in the table. Through its
use in various software development projects, the table and its content can be
shared, refined and improved upon by other practitioners.

3 Discovering Undocumented Scenarios

To uncover the types of undesirable interactions previously discussed in Sect. 2
we use the notion of a path. A path is a sequence of use case scenario steps, where
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the sequence can cut across many use cases. Use case scenarios typically describe
a system from a user’s perspective, and thus focus on user-system interactions.

A scenario is an ordered set of interactions between partners, usually between
a system and a set of actors external to the system. We define path fixation as
the belief that the simple paths described in a specification document are the
only ones that will exist in the implemented system. The discovery of paths
that overturn such beliefs is the basis of our loophole analysis. Piessens defines a
vulnerability as any aspect of a computer system that allows for breaches in its
security policy [16]. In the context of requirements analysis, loopholes are paths
that lead to violations in security or other policies that govern system behaviour.

3.1 Modeling a Domain

A plan has been formulated whereby a movie will be viewed at a movie theatre.
The plan involves hiring a taxi from home to the train station, catch a train
into the city, walk to the movie theatre and (hopefully) enjoy the movie, have
a meal at a restaurant and then return home. All of the activities in the plan,
except walking to the theatre, involve the utilisation of a service, for which
payment is expected. In the plan, services include the taxi, train, viewing the
movie and having a meal. Depending on the available technology, payment for
the services could be made using cash or a card. The domain meta-model for the
payment for the provision of a service, including the aforementioned services,
can be represented as shown in Fig. 2.

The Account template depicted in Fig. 2 is optional, it may or may not be
included in a class model derived from the domain model. Optional templates
are denoted with a multiplicity written in the top left corner of the name com-
partment of the template box. Similarly, the associations between Customer and

Fig. 2. Payment for service domain model
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Payment, Customer and Account, and Account and Voucher may or may not
exist in a particular system. These optional associations in the domain model
are indicated by the enclosed association label 0..1. When included in a class
model, an optional association’s multiplicities may be specialised.

An application that can be developed within this domain may require a
customer to enter some information and typically exchange data with other
applications. The security considerations for such interactions can vary but fun-
damentally, the use of strings must be included in such considerations, where a
string is a sequence of symbols/characters. There are different types of strings
that are used when developing applications: command, input, sql, and query for
example.

From a security standpoint, all strings must be verified when presented to
an application to ensure that they conform to the application’s expected data
format. We therefore say that in this domain, the term string has an imposed
security dependence on the term verify. Whenever a requirement specifies the
use of a string, there must be another requirement that specifies how the string
is to be verified. String verification remains one of the top sources of software
vulnerabilities and programming flaws. We represent the ISD relationship among
these terms as shown in Fig. 1.

The relationships among the terms that are captured in the model in Fig. 1
can then be stored in an ISD table and used during our analysis. In this model,
the terms command, input, sql and query are used to clarify the type of string
being used.

Using the templates in our domain model, we can now define payment systems
for many (similar) types of services: taxi, train, movie theatre and restaurant. In
this domain, a customer pays for a service and receives a voucher as evidence of
payment. A voucher can therefore be a train or movie ticket, or a receipt from a
taxi or restaurant. From the domain meta-model we can also develop meta-use
case scenarios. The names of the templates taken from the domain meta-model
become parameters in the meta-use case scenario. When a class model is devel-
oped from the domain meta-model, these parameters are substituted with the
class names.

Using the domain meta-model and associated meta-use case scenarios, we
can now model a particular system that provides a service that falls within the
domain by creating a specialisation of the domain meta-model and providing
arguments to the meta-use case scenarios. For example, a train ticketing service
can be modeled as shown in Fig. 3. Service, Voucher and Customer have been
specialised to Train, Ticket and Passenger respectively. Because the optional
Account class has been included in this model, every account must be associated
with at least one passenger; the multiplicity at the Passenger association end has
thus been specialised from * in the domain meta-model to 1..* in the class model.

We can now utilise the meta-use case scenario to create a specific use case
scenario for the train ticketing system. The names of the templates of the domain
meta-model that were used to develop the meta-use case scenario are substituted
with the names of the classes in the train ticketing model to create the use case
for the train ticketing system.
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Fig. 3. Project specific model

3.2 Analysing the Model

From the use case scenario, we can now develop a flow graph that “simulates” the
operation transitions within the particular system. Each step in the use case is
represented as a node and transitioning from one step to the next is represented
as a directed edge. To illustrate the types of undocumented scenarios we are
looking for in our analysis we must include another use case scenario.

Consider another typical scenario where a customer wishes to debit her
account associated with the train service. This account can be used to purchase
tickets or pay for other affiliated services that may be available. The use case
scenario for replenishing such an account and its flow graph are shown in Fig. 4.
The steps involved in replenishing an account include the selection of a pay-
ment method i.e. cash or card, and therefore the steps involved in the replenish
passenger account can be extended by those in the make payment scenario.

In this trivial example we note that it is therefore possible for a passenger,
although intent on depositing money into her account could instead, pay for
a ticket. In the flow graph this is depicted with a broken line from step 4 to
step *4 where *4 represents step 4 from the Make Payment use case scenario.
This is an unintended sequence of operations. In our system, this scenario must
therefore be expressly prevented as the two operations should be discrete. This
potential, unintended operation could have been possible because while modeling
the system, we became fixated on the scenario steps (paths) for purchasing a
ticket and replenishing an account.

Further, when processing a card as in step 2 of the main success scenario of
the make payment use case, a passenger could be required to enter card infor-
mation such as the name on the card, the card number and expiry date. These
input strings should be verified when entered before being processed. The ISD
table ensures that requirements are included in the application’s specification
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Fig. 4. Replenish account use case scenario and graph

document that address the verification procedures. This step attempts to make
implicit security requirements, explicit and helps a requirements engineer create
a more complete specification document.

3.3 The Loophole Algorithm

In Sect. 3.2 we developed a more complete set of requirements by making implicit
requirements explicit and discovered an undocumented and unintended scenario.
This was accomplished by incorporating ISD relationships among requirements
terms to generate skeletal requirements and finding undocumented paths i.e.
loopholes. In practice however, models and requirements are not so trivial.

The Loophole Algorithm is used to systematically and formally analyse a
requirements specification for loopholes. We examine a set of requirements by
choosing a relation R. Let N be the set of nodes that are in a forest representation
of a requirements specification document, and R be a relation that maps a distinct
node n1 ∈ N to another distinct node n2 ∈ N where n2 is directly reachable
from n1.

We chose R with the following properties,

R : N × N (4)
∀r : N • (r, r) /∈ R (5)
∀r, q : N • (r, q) ∈ R ⇒ (q, r) /∈ R (6)
∀r, q, s : N • (r, q) ∈ R ∧ (q, s) ∈ R ⇒ (r, s) ∈ R (7)

Because we are representing intended interactions in a system under devel-
opment, intuitively, R is anti-reflexive, transitive (expressions 5 and 7) and must
therefore also be anti-symmetric (expression 6). We want to identify undocu-
mented paths in N using R. For this purpose, however, R is not sufficient as we
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have demonstrated that some of the possible paths are typically not explicitly
included in a requirements document. These are the paths we are interested
in. We therefore include the set of all reachable paths by finding the transitive
closure of R.

From a security standpoint, a policy is described by the allowed interactions
of the intended system’s users and objects i.e. the members of N. To identify
potential breaches, the discovery of undocumented paths can also identify poten-
tial vulnerabilities such as those described earlier (see the last paragraph in the
Introduction).

The steps of the Loophole Analysis are as follows:

1. Represent the relation R as a binary matrix M.
2. Find the transitive closure of R, using the Floyd-Warshall algorithm [9]. Call

this new relation R*.
3. Represent R* as a binary matrix M′.
4. Perform the bit-wise XOR of corresponding elements of M and M′. This will

identify maplets created as a result of step 2 i.e. the indirect relationships
that are not included in the original.

5. A maplet that exists in M′ but not M represents an undocumented transition
and the sequence of scenario steps that occur before and after it must be
investigated.

6. A loophole (i.e. a vulnerability) exists when an undocumented scenario vio-
lates a stated policy.

4 Conclusion and Future Work

Although preliminary, we believe the results are promising. Loopholes are
unknown, reachable paths that would exist if a system were to be developed
in accordance with the specification document in the form prior to the loop-
hole analysis. The analysis did not include nor require the motives, resources
and skills of an attacker, or possible threats to the system to be postulated. Its
foundation is based on the statement of policy and on path fixation. The algo-
rithm includes completing the transitive closure on the forest, but other traversal
methods such as a depth first search are being investigated.

We have been developing a tool to assist in the specification of requirements,
and their analysis using the Loophole Algorithm. An engineer can: document a
problem statement/description, permit stakeholders to enter user stories, enter
data on concepts that are elicited from the user stories, create use cases and
misuse cases using a Cockburn style template. The tool then takes this data and
draws: a requirements model (we are in the process of allowing an engineer to
include object constraint language (OCL) statements with the model), unified
modeling language (UML) use case diagrams, UML sequence diagrams and a
system operation simulation (flow graph). It is at this stage that the Loophole
Analysis is performed and any undocumented scenarios are depicted in a flow
graph, and misuse cases are generated by the tool that capture the undocu-
mented scenarios. The engineer can then either accept these captured scenarios
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as valid, or leave them as misuse cases, and create new use cases that will serve
as countermeasures.

We are in the process of conducting initial tests and implementing bug fixes.
It will be tested both with documents that will provide empirical validation of
its capabilities and in our software engineering courses during the forthcoming
academic year 2016–2017 for its useability. We will then begin development that
will include the ability to create domain meta-models and meta-use case sce-
narios. We are mindful that in the tool’s continued development, consideration
must be given to the issues involved in using informal use case descriptions, in
particular the possibility of information loss and the introduction of errors.

References

1. Roudier, Y., Apvrille, L.: SysML-Sec-a model driven approach for designing safe
and secure systems. In: International Special Session on Security and Privacy
in Model Based Engineering: Proceedings of the 3rd International Conference
on Model Driven Engineering and Software Development. MODELSWARD 2015,
Angers, Loire Valley, France. IEEE Computer Society Press (2015)

2. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Transforming graph-
ical system models to graphical attack models. In: Mauw, S., et al. (eds.) GraM-
Sec 2015. LNCS, vol. 9390, pp. 82–96. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29968-6 6

3. Apvrille, L., Roudier, Y.: SysML-Sec attack graphs: compact representations for
complex attacks. In: Mauw, S., et al. (eds.) GraMSec 2015. LNCS, vol. 9390, pp.
35–49. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29968-6 3

4. Schilling, A., Werners, B.: Optimizing information systems security design based
on existing security knowledge. In: Persson, A., Stirna, J. (eds.) CAiSE 2015 Work-
shops. LNBIP, vol. 215, pp. 447–458. Springer, Heidelberg (2015)
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