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Abstract. Simon is a lightweight block cipher designed by NSA in 2013.
NSA presented the specification and the implementation efficiency, but
they did not provide detailed security analysis nor the design ratio-
nale. The original Simon has rotation constants of (1, 8, 2), and Kölbl
et al. regarded the constants as a parameter (a, b, c), and analyzed the
security of Simon block cipher variants against differential and linear
attacks for all the choices of (a, b, c). This paper complements the result
of Kölbl et al. by considering integral and impossible differential attacks.
First, we search the number of rounds of integral distinguishers by using
a supercomputer. Our search algorithm follows the previous approach by
Wang et al., however, we introduce a new choice of the set of plaintexts
satisfying the integral property. We show that the new choice indeed
extends the number of rounds for several parameters. We also search
the number of rounds of impossible differential characteristics based on
the miss-in-the-middle approach. Finally, we make a comparison of all
parameters from our results and the observations by Kölbl et al. Inter-
esting observations are obtained, for instance we find that the optimal
parameters with respect to the resistance against differential attacks are
not stronger than the original parameter with respect to integral and
impossible differential attacks. We also obtain a parameter that is better
than the original parameter with respect to security against these four
attacks.

Keywords: Simon · Lightweight block cipher · Integral attack · Impos-
sible differential attack · Design rationale · Rotation constant

1 Introduction

Lightweight cryptography has been discussed actively to provide secure commu-
nication for various communication devices with constraint resources, such as
RFID tags and sensor network. In fact, quite a few lightweight ciphers, hash func-
tions, message authentication codes (MACs) etc. have been designed recently.
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Among a large variety of lightweight block ciphers, Simon and Speck [6],
which were designed by NSA in 2013, achieve overwhelming performance and
thus attract a lot of attention. Meanwhile, the designers of Simon and Speck do
not provide any security discussion and design rationale. Thus it is necessary to
carry out security analysis and to study design rationale so that the community
can have more confidence on those designs.

Yang et al. investigated a performance aspect of Simon, and proposed
another block cipher Simeck which optimizes the performance of Simon by
slightly modifying its round function and key schedule [27]. As a drawback,
security of Simeck is known to be weaker than Simon, thus evaluating security
of Simeck is also important.

In general, security of block ciphers is evaluated by deriving lowerbounds
and upperbounds of the cipher’s security against particular cryptanalysis. Here,
lowerbounds are derived by applying cryptanalysis. Regarding Simon, a large
number of attacks have been applied since its proposal including differen-
tial cryptanalysis [2,8,17,22,23,25], linear cryptanalysis [1,4,5,10,11,20,22],
algebraic analysis [3,19], integral attack [24,26], impossible differential attack
[9,12,26], zero-correlation attack [26], known-key attack [13] and so on.

Design rationale of block cipher is often provided by the designers. If it is
not the case, there still exists an approach for the third party to study the
design rationale. For example, an evaluator parameterizes some part of the tar-
get cipher, e.g. rotation constants, and evaluates the security for all parame-
ter choices. If the original parameter shows the highest security, it can be said
that the original parameters have been chosen in good rationale. For example,
Pramstaller et al. evaluated the design rationale of SHA-1 by evaluating all the
rotation constants [18]. Regarding Simon, Kölbl et al. regarded three rotation
constants (1, 8, 2) of Simon as a parameter (a, b, c), and evaluated security of
Simon variants denoted by Simona,b,c against differential and linear cryptanaly-
sis for all choices of (a, b, c) [16]. As a result, it turned out that the original rota-
tion constants in Simon are not one of the strongest. Kölbl et al. concluded that
considering only differential and linear cryptanalysis is not sufficient to explain
the design rationale, and further security evaluation with other cryptanalysis
approach were left open.

Our Contributions. In this paper, we study design rationale of Simon32; a
member of the Simon family whose block size is 32 bits. We extend the analysis
by Kölbl et al. [16] to integral attack and impossible differential attack. Namely,
we apply those attacks to Simona,b,c for all the choices of rotation constants
(a, b, c).

Regarding integral attacks on Simon, Wang et al. experimentally evaluated
the number of rounds covered by integral distinguishers [26]. In more details,
Wang et al. choose 231 plaintexts and encrypt them with several keys to check
if the sum of the corresponding internal states after some rounds is always zero
in some bits. In this paper, we use the same approach to evaluate all the choices
of rotation constants. Here, the difficulty is expensive computational cost of
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this experiment. To overcome this problem, we introduce equivalence classes for
rotation constants and sets of 231 plaintexts, which make the experiment feasible
for a supercomputer. Moreover, we point out that the method of choosing 231

plaintexts by Wang et al. [26] does not cover all the cases, thus may miss an
optimal attack. In this paper, we enlarge the search space so that wider classes
of 231 plaintext sets are examined. The obtained results contain many interesting
features. Several parameters can be distinguished even after 32 rounds, which
is the default number of rounds for Simon32. We show that original rotation
constants in Simon have reasonably good resistance against the integral attack,
while several other choices have stronger resistance.

Regarding impossible differential attacks, we derive the number of rounds
for impossible differential characteristics with the miss-in-the-middle approach.
Many round constant choices lead to impossible differential characteristics of
length between 9 rounds to 17 rounds, while the original Simon parameter allows
11-round distinguishers.

At the last part of this paper, we compare strength of rotation constants by
considering integral attacks and impossible differential attacks from our paper
and differential cryptanalysis and linear cryptanalysis by Kölbl et al. [16]. We
classify strength of each parameter with respect to the number of rounds cov-
ered by distinguishers. This identifies several interesting properties, for example,
any rotation constant having better resistance against integral and impossible
differential attacks than original Simon is not as strong as original Simon with
respect to differential and linear cryptanalysis. It turns out that original rota-
tion constants in Simon are fairly well by taking into account four kinds of
cryptanalysis, yet we find that rotation constant (5, 12, 3) is better than original
Simon, and thus interesting to investigate more details in future.

Paper Outline. The rest of this paper is organized as follows. We describe
notations used in this paper, specification of Simon and basic concepts of inte-
gral and impossible differential attacks in Sect. 2. Integral attacks on Simona,b,c

are shown in Sect. 3. Impossible differential attacks on Simona,b,c are shown in
Sect. 4. We then compare strength of parameters to study the design rationale
of Simon in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

2.1 Notation

The set {0, 1, . . . , n − 1} is written as Zn, and the set {n′ | 1 ≤ n′ ≤
n, gcd(n′, n) = 1} is written as Z∗

n. The d-bit circular rotation of a bit string x
to the left is written as Sd(x).

2.2 Specification of SIMON

Simon is a lightweight block cipher suitable for hardware implementation that
was designed by NSA in 2013 [6]. The Simon block cipher with a 2n-bit block is
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Fig. 1. The (i − 1)-st round function of Simon

denoted Simon2n, where n ∈ {16, 24, 32, 48, 64}. Simon2n with an m-word key
(mn bits) is denoted Simon2n/mn. In this paper, we are only concerned with
the case n = 16 and m = 4.

The round function of Simon is composed of three operations: AND (∧),
rotation (S) and XOR (⊕). Let v denote the n-bit input word of the round
function F , where F is defined as

F (v) = (S1(v) ∧ S8(v)) ⊕ S2(v).

Let (Li−1, Ri−1) denote the 2n-bit input state of the (i − 1)-st round, which is
encrypted into (Li, Ri) as:

Li = F (Li−1) ⊕ Ri−1 ⊕ ki−1,

Ri = Li−1,

where ki−1 is the subkey of the (i − 1)-st round. The plaintext is (L0, R0), and
if the number of rounds is r, then (Lr, Rr) is the ciphertext. We note that the
index of the round starts with 0 and the last round is the (r − 1)-st round.
Figure 1 shows the round function of Simon. The key schedule is irrelevant in
our analysis and we omit the details, which can be found in [6].

2.3 SIMON Block Cipher Variants

In [16], Kölbl et al. introduced Simon block cipher variants by regarding the
three rotation constants (1, 8, 2) of Simon as a parameter (a, b, c). Then they
proved a structural equivalence among the round functions with different para-
meters. Furthermore, they showed the detailed security analysis of Simon block
cipher variants against differential attacks for a large set of parameters.

The round function of Simon block cipher variants is defined as:

Fa,b,c(v) = (Sa(v) ∧ Sb(v)) ⊕ Sc(v),

where a, b, c ∈ Zn. We exclude the case a = b since the encryption algorithm
becomes a linear transformation. We also assume that a < b from the symmetry
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of AND operation. The size of parameter space is
(
16
2

) × 16 = 1920, where
(
16
2

)

is the number of combinations of a and b, and 16 is the number of choices of c.
The structural equivalence is formalized as follows.

Proposition 1 ([16]). Let T be a permutation of the bits of an n-bit word that
corresponds to an affine transformation of the bit-indices. Thus there are s ∈ Zn

and t ∈ Zn such that bit i is translated to s · i + t. Then

T (Fa,b,c(v)) = Fsa,sb,sc(T (v)).

The equivalence relation of Proposition 1 is written with ⇔, and the set of all
distinct equivalence classes is written as SV. In Sects. 3.3 and 4.1, we will point
out that if the round functions are equivalent, attack characteristics we consider
are also equivalent. Therefore we can reduce the size of parameter space that
we must search by computers. The size of parameter space after the reduction
is 509 (= |SV|).

As the results of the analyses by Kölbl et al., the following 20 parameters are
optimal with respect to 10 rounds differential characteristics.

(0, 1, 2) (0, 1, 3) (1, 2, 3) (3, 4, 5) (0, 5, 10)
(0, 5, 15) (4, 5, 3) (0, 7, 14) (6, 7, 5) (1, 8, 3)
(3, 8, 14) (7, 8, 5) (5, 10, 15) (6, 11, 1) (1, 12, 7)
(5, 12, 3) (7, 12, 1) (0, 13, 10) (0, 13, 7) (8, 13, 2)

Among these parameters, (0, 1, 2) and (5, 12, 3) are also optimal with respect to
linear characteristics for 10 rounds. Simeck, a variant of Simon block cipher
proposed by Yang et al. [27], has the equivalent structure as Simon and its
parameter corresponds to (a, b, c) = (0, 5, 1). As a result, Kölbl et al. found that
Simon and Simeck are not optimal with respect to differential characteristics.

2.4 Basic Consepts of Integral and Impossible Differential Attacks

The integral attack [15] is a chosen-plaintext attack against block ciphers. It is
composed of integral distinguishers and the key recovery step. Suppose that a
set of plaintexts is encrypted. An integral distinguisher refers to an event where
certain bits of the XOR of all ciphertexts is always 0. Integral distinguishers are
often constructed by evaluating the propagation characteristic of the integral
property, which is the property for a multiset of the internal state. The integral
property is classified as follows:

– All (A): Every value appears the same number of times in the multiset.
– Balance (B): The XOR of all texts in the multiset is 0.
– Const (C): The value is fixed to a constant for all texts in the multiset.
– Unknown (*): The multiset is indistinguishable from one of random values.

In this paper, we focus on the search of integral distinguishers for all the Simon
block cipher variants.
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Table 1. Computation environment

Computation node Fujitsu PRIMEHPC FX100

- processor - Fujitsu SPARC64 XIfx (2.2 GHz) 32 cores

- the memory capacity - 32GiB

The total number of nodes (cores) 2880 nodes (92160 cores)

The total computing performance 3.2 PFlop/s

The total memory capacity 90 TiB

Programming language C

MPI library Fujitsu MPI

The impossible differential attack [7] is a chosen-plaintext attack against
block ciphers. An adversary attempts to recover the right key by using impossible
differential characteristics, which are the differential characteristics where an
input difference can never result in an output difference. In this paper, we focus
on the search of impossible differential characteristics for all the Simon block
cipher variants.

3 Integral Attacks

In general, the propagation of integral properties cannot be evaluated efficiently
in Simon because of its computational structure in which the round function is
computed without S-box. Wang et al. [26] addressed the issue by experimentally
searching the number of rounds of integral distinguishers of Simon32. The algo-
rithm they used is shown in Sect. 3.1. However, it is computationally difficult to
apply it to all parameters (Sect. 3.2). Therefore we introduce equivalence classes
for rotation constants and sets of 231 plaintexts (Sect. 3.3). The search result is
shown in Sect. 3.4.

In Table 1, we show the computing environment we used to carry out the
experiments in this section.

3.1 Integral Distinguisher Searching Algorithm

We use the following algorithm by Wang et al. [26] to search the number of
rounds of integral distinguishers of a Simon block cipher variant.

1. Generate 2t plaintexts (t ≥ 16) by setting all (16) bits of the right half and
(t − 16) bits of the left half of the input in round 1 to be property A (each
bit is called active), while keeping the remaining bits as constant.

2. (a) Choose the private key randomly. Encrypt 2t plaintexts by r rounds and
check whether certain bits of the output are balanced (i.e., for each of
these bits, the XOR sum of the bit over 2t output states is 0). If yes, keep
this as an integral candidate.
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(b) Repeat (a) for K times and verify if the integral candidate always holds.
If not, discard it. Here, K is the number of random keys.

3. If there is an integral candidate for all the structures with the same pattern
(i.e., with the same t active bits), regard this as an r-round integral distin-
guisher of Simon32.

Straightforward implementation of the above algorithm executes Step 3 after
iterating Steps 2 (a) and (b) for K times. However, we see that Steps 2 (b) and
3 can be merged into a single step by fixing the constant bit of round 1 to an
arbitrary value and randomly choosing the private key, and our implementation
takes this approach. We note that K = 213 was used in [26], and it is argued
that if the 231 plaintexts yield the same balanced bits for all the K random
keys, then with a high probability, we obtain an integral distinguisher. From the
results, we observe that for large t (i.e., if the number of active bits is large), the
number of rounds of integral distinguishers becomes large.

This is also the case for Simon block cipher variants. Therefore we use this
algorithm in which t is fixed to 31 because we are interested in maximizing the
number of rounds of integral distinguishers.

In [14], the same experimental search was performed for Simon48/96 with
K = 96, where the rationale here is that it is sufficient if K is at least the key
length of the block cipher. In this paper, we follow the approach in [14] and use
K = 64. An example of an integral distinguisher against Simon5,12,3 that we
obtain by applying this algorithm with r = 15 is shown in Fig. 2. In Step 1, we
prepare plaintexts that have the integral property of (C,A, . . . ,A) as the input
of round 1, and this means that the number of rounds can be extended by one
round compared to the case where we use (C,A, . . . ,A) as the integral property
of round 0.

3.2 Necessity for Reducing the Search Space

We first estimate the time complexity for the search of all parameters by using
the algorithm in Sect. 3.1. We first observe that even if the round functions Fa,b,c

are equivalent, this may not guarantee that we have the equivalence between the
corresponding integral distinguishers, and we thus need to consider 1920 parame-
ters. From Sect. 3.1, there are 16 choices for the sets of chosen plaintexts. Then
the time complexity of the algorithm is 64×231 r-round Simona,b,c encryptions,
implying that the time complexity for the search of all parameters and plaintext
sets is estimated as 1920×16×64×231 � 251.91 r-round Simona,b,c encryptions.

We implement the algorithm in Sect. 3.1 on a computer system shown in
Table 1, and we estimate the number of necessary cores to search over all para-
meter choices, assuming that one core carries out the algorithm in Sect. 3.1. Then
one node has 32 cores under our environment. Now we observe that we need to
consider 1920 parameters and 16 choices for the sets of chosen plaintexts. Thus
naive implementation requires 1920 × 16 = 30,720 cores, and this corresponds
to 960 nodes.



On the Design Rationale of Simon Block Cipher 525

k0

L0 = XR R0 = F (XR) ⊕ XL

L1 = XL R1 = XR

L15 R15

F5,12,13

(C,A,A,A, A,A,A,A,
A,A,A,A, A,A,A,A)

(A,A,A,A, A,A,A,A,
A,A,A,A, A,A,A,A)

(∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗,
∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗)

(B,B,B,B, B,B,B,B,
B,B,B,B, B,B,B,B)

14 rounds

Fig. 2. 15-round integral distinguisher
of Simon5,12,3

L0 = XR R0 = F (XR) ⊕ XL

(A,A,A,A, A,A,A,A,
A,A,A,A, A,A,A,A)

(X1,A,X2,A, A,A,A,A,
A,A,A,A, A,A,A,A)

Fa,b,c

k 0

L0 = XR R0 = F (XR) ⊕ XL

L1 R1

(A,A,A,A, A,A,A,A,

A,A,A,A, A,A,A,A)
(X1,A,X2,A, A,A,A,A,
A,A,A,A, A,A,A,A)

L1 = XL R1 = XR

Step 1

Step 2 (a)

(X1,X2) ∈ {(x1, x2), (x̄1, x̄2)}

(X1,X2) ∈ {(x1, x2), (x̄1, x̄2)}
or {(x1, x̄2), (x̄1, x2)}

Fa,b,c

Fig. 3. Applying the algorithm in
Sect. 3.1 to the new set with 231 plain-
texts

3.3 Finding Equivalent Parameters

We present the following property regarding the equivalence.

Property 1. Let T be a permutation of the bits of an n-bit word that corresponds
to an affine transformation of the bit-indices. Thus there are s ∈ Zn and t ∈ Zn

such that bit i is translated to s · i + t. Let

(L0,R0) → (Lr,Rr)

be an r-round integral distinguisher against Simona,b,c. Then

(T (L0), T (R0)) → (T (Lr), T (Rr))

is an r-round integral distinguisher against Simonsa,sb,sc.

The proof is not obvious but elementary and omitted. From Property 1, the
number of parameters to consider is reduced to 509. By letting s = 1 in Prop-
erty 1, we observe that we only have to consider an integral distinguisher with
the input of round 1 of the form

(CAAAAAAAAAAAAAAA,AAAAAAAAAAAAAAAA).

This means that we only have to consider one set of plaintexts, and hence the
time complexity is estimated 509 × 1 × 64 × 231 � 245.99 r-round Simona,b,c

encryptions. Then the number of necessary cores in the implementation is 509,
which amounts to 16 nodes.
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3.4 Experiments and Search Results

We searched the number of rounds of integral distinguishers of Simona,b,c for
all (a, b, c) ∈ SV, where we consider two types of the sets of the input of round 1
in the algorithm in Sect. 3.1. In what follows, we show the two types of the sets.
The first type is the set

(CAAAAAAAAAAAAAAA,AAAAAAAAAAAAAAAA), (1)

mentioned in Sect. 3.1, which was searched by Wang et al.
The second type is the new sets we introduce in this paper, which are defined

as 15 sets of the form:

(X1AX2AAAAAAAAAAAAA,AAAAAAAAAAAAAAAA)
(X1AAAX2AAAAAAAAAAA,AAAAAAAAAAAAAAAA)

...
(X1AAAAAAAAAAAAAAA,AAAAAAAAAAAAAAX2A)

(2)

each of which contains 231 states, which will be used as the input of round 1. Here
each set contains one bit X1, one bit X2, and 30 active bits. We first fix the two
bits indicated with X1 and X2 to any value (x1, x2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},
and this yields 230 states from the 30 active bits. We then consider another
set of 230 states by fixing the two bits to (x̄1, x̄2), and the actual set of 231

states consists of the whole above mentioned states. Here, we let x̄ = x ⊕ 1 for
a bit x. In Fig. 3, we show how the algorithm in Sect. 3.1 is applied to (2). In
Step 1, we obtain 231 plaintexts by decrypting the set of the input of round
1 satisfying property (2) without the subkey (or equivalently, by assuming that
the subkey is zero). In Step 2 (a), we encrypt the obtained plaintexts in Step 1.
Here, if the corresponding bits of subkey in round 0 have value (0, 0) or (1, 1),
the corresponding bits of the input of round 1 have values of the form (x1, x2)
and (x̄1, x̄2). If the corresponding bits of subkey in round 0 have value (0, 1) or
(1, 0), they have the value of the form (x1, x̄2) and (x̄1, x2). However, we observe
that both cases still have the property indicated in (2).

Since we consider two types, namely the 16 sets in total with 231 chosen
plaintexts, the time complexity is estimated as 509 × 16 × 64 × 231 � 249.99

r-round Simona,b,c encryptions from Sect. 3.3.
We show the number of rounds of integral distinguishers and the number of

corresponding parameters as the result of the experiment in Table 2 and Fig. 4.
Note that small number of rounds implies the stronger resistance against integral
attack.

In our implementation of this experiments, we set r to rmax which is a suf-
ficiently large number in the algorithm in Sect. 3.1. In Step 2 (a) we check if
certain bits are balanced for rmax rounds, and save all the intermediate states so
that we obtain the number of rounds of integral distinguishers. With respect to
the running time, when the number of cores is 509, rmax = 26, and with (1), it
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Table 2. Search result of integral distinguishers

The number of rounds 14 15 16 18 19 20 22 33 ≥ 53 ∞ Sum

The number of parameters 97 112 62 4 15 18 16 6 15 164 509
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(0, 1, 3), (1, 2, 3), (0, 5, 15), (6, 7, 5), (1, 8, 3), (7, 8, 5), (5, 10, 15), (6, 11, 1), (0, 13, 7)

(3, 4, 5), (4, 5, 3), (1, 8, 2), (1, 12, 7), (5, 12, 3), (7, 12, 1), (0, 5, 1)
Simeck

T
he

nu
m

be
r

of
pa

ra
m

et
er

s

The number of rounds
∞

Fig. 4. Search result of integral distinguishers and comparison with parameter in [16].
The listed parameters are 20 parameters from [16] and the parameters for Simon and
Simeck, and the 20 parameters are optimal with respect to 10 rounds differential
characteristics.

took 18 h 8 m 31 s. When the number of cores is 345 and rmax = 36, each of (2)
took about a day, and for instance the first case of (2) took 25 h 5 m 52 s.

We also note that “≥ 53” means that the maximum value of rmax was set
to 53, as we stopped the program due to the time constraint. Thus parame-
ters in this class have integral distinguishers with the number of rounds that is
larger than 53, but the precise value is unknown at this moment. Moreover, we
observe that when a, b, and c are all odd or all even, then the cipher has integral
distinguisher of infinite number of rounds.

A detailed result shows an interesting fact. Most of the results are obtained by
using (1). However, it turns out that there are cases where (2) outperforms (1). In
more detail, for parameters (1, 6, 4), (1, 14, 12), (2, 3, 12) and (2, 7, 4), we obtain
larger number of rounds with (2) than (1), and this was obtained when both X1

and X2 belong to the left half of the input of round 1.
In Sect. 5, we use the result to make a comparison of the strength of Simon

block cipher variants.
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4 Impossible Differential Attacks

4.1 Impossible Differential Characteristic (IDC) of SIMONa,b,c

In this paper, we use the miss-in-the-middle approach [26] to search impossi-
ble differential characteristics (IDCs) of Simon block cipher variants. First, we
extend two differential paths forward/backward from fixed input/output differ-
ence by using differential propagation through one round repeatedly. Next, we
check if the corresponding bits are different in the outputs of these paths. If this
is the case, we obtain IDC by connecting these paths.

Differential Propagation through One Round. Let Lr[i] and Rr[i] denote
the i-th bit of Lr and Rr, and ΔLr and ΔRr denote the difference of Lr and Rr,
respectively. From the definition of the round function, we obtain the following
bitwise equation.

ΔLr+1[i] =(ΔLr[i + a] ∧ Lr[i + b]) ⊕ (Lr[i + a] ∧ ΔLr[i + b])
⊕ (ΔLr[i + a] ∧ ΔLr[i + b]) ⊕ ΔLr[i + c] ⊕ ΔRr[i] (3)

Therefore the one round differential propagation can be described without any
information of subkeys as follows:

ΔLr+1[i] =

{
ΔLr[i + c] ⊕ ΔRr[i] if (ΔLr[i + a],ΔLr[i + b]) = (0, 0)
? (Unknown) otherwise

ΔRr+1[i] = ΔLr[i]

(4)

We extend the differential path by using (4) along the encryption direction. We
call it a forward differential path.

As to the decryption direction, we use the following equation.

ΔLr−1[i] = ΔRr[i]

ΔRr−1[i] =

{
ΔRr[i + c] ⊕ ΔLr[i] if (ΔRr[i + a],ΔRr[i + b]) = (0, 0)
? (Unknown) otherwise

(5)

We call paths extended by using (5) backward differential paths.
Furthermore, it is obvious that if the round functions have equivalent para-

meters, there is a corresponding equivalent differential path, and hence we also
have the IDC.

IDC Search Algorithm. We use the following algorithm to search the number
of rounds of IDCs of a Simon block cipher variant. We denote a 2n-bit input
difference to the input/output differential paths by Δinput0/Δoutput0. Then,
2n-bit difference after r rounds of input/output differential paths are denoted by
Δinputr/Δoutputr. In the following algorithm, we obtain the number of rounds
of IDCs by updating a temporal variable rmax, which is initialized to 0.
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R Left Right

0 0000, 0000, 0000,0000 1000, 0000, 0000, 0000
1 1000, 0000, 0000, 0000 0000, 0000, 0000, 0000
2 0000, ?000, 000?, 0100 1000, 0000, 0000, 0000
3 1?00, 00?0, ?010, 000? 0000, ?000, 000?, 0100
4 0?0?, ??01, 00??, ?0?0 1?00, 00?0, ?010, 000?
5 ???0, 1???, ??1?, ?0?? 0?0?, ??01, 00??, ?0?0
6 ????, ????, ????, ???? ???0,1???, ??1?, ?0??

5 00?0, ???0, 100?, ??0? ????,01??, ???1, ??0?
4 ?1?0, 000?, 0?01, 0000 00?0, ???0, 100?, ??0?
3 0000, 0?00, 0000, ?010 ?1?0, 000?, 0?01, 0000
2 0100, 0000, 0000, 0000 0000, 0?00, 0000, ?010
1 0000, 0000, 0000, 0000 0100, 0000, 0000, 0000
0 0100, 0000, 0000, 0000 0000, 0000, 0000, 0000

Fig. 5. 11-round IDC of Simon5,12,3 (R is the number of extended rounds)

1. Extend a forward differential path for given Δinput0 by using (4) until all
the bits of the state become unknown. Let rin be the number obtained by
subtracting 1 from the number of extended rounds. The subtraction is to
consider a path whose bits are not all unknown.

2. Extend a backward differential path for given Δoutput0 by using (5) until all
the bits of the state become unknown. Let rout be the number obtained by
subtracting 1 from the number of extended rounds. Let rtmp ← rin + rout.

3. Check if there are different values between the corresponding bits in Δinputr′
in

and Δoutputr′
out

for all (r′
in, r

′
out) satisfying r′

in + r′
out = rtmp. If not, update

rtmp to rtmp − 1 and iterate this step.
4. If rtmp > rmax, update rmax to rtmp.
5. Apply Steps 1 to 4 to all (Δinput0,Δoutput0) = (Sl(0 . . . 01), Sm(0 . . . 01))

satisfying l,m ∈ Z2n.

We then obtain the number of rounds of IDC as rmax. We note the reason why
it is sufficient to consider the differences of the form (Δinput0,Δoutput0) =
(Sl(0 . . . 01), Sm(0 . . . 01)) only. Notice that if we have more bits with 1 or
unknown in a certain state, then we have more bits with unknown in the next
state. Thus the number of extended rounds of each differential path is reduced.
Therefore it is sufficient that we search paths starting with input and output dif-
ferences of low Hamming weight. An example of IDC that we obtain by applying
this algorithm is shown in Fig. 5. Notice that bold bits are always different, which
indicates that the differential propagation is impossible.

4.2 Experiments and Search Results

We searched the number of rounds of IDCs of Simona,b,c for all (a, b, c) ∈ SV. We
show the maximum number of rounds of IDCs and the number of corresponding
parameters in Table 3 and Fig. 6. Smaller number of rounds that corresponds to
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Table 3. IDC search result

The number of rounds 9 10 11 12 13 17 ∞ Sum

The number of parameters 42 85 111 28 48 31 164 509
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Fig. 6. IDC search result

the parameters in the left part of Fig. 6 implies the stronger resistance against
impossible differential attack. We note that the same observation as the integral
distinguisher holds here, that is, when a, b, and c are all odd or all even, then
the cipher has IDC of infinite number of rounds.

In this experiment, we use a computer of which CPU is Core i5-4210M,
capacity of mounted memory (RAM) is 8 GB and OS is Windows 7.

In Sect. 5, we use the result to make a comparison of the strength of Simon
block cipher variants.

5 Discussions

From the results presented in Fig. 4, Table 2, Fig. 6, and Table 3, in Table 4, we
list all 345 parameters that have integral distinguishers and IDCs of finite num-
ber rounds and write in boldface the parameters that are optimal with respect to
differential attacks. We classify the parameters into Groups A,B, . . . ,T accord-
ing to the number of rounds of integral distinguishers and IDCs, and they are
summarized in Fig. 7.
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Fig. 7. Comparison of the strength against impossible differential and integral distin-
guisher among all parameters

We describe some observations and the notable parameters as follows:

– Note that there are many parameters in the lower left of Fig. 7.
– We observe that Group G that contains Simon and Simeck is not placed

in the bottom left part of the figure, implying that the resistance against
integral and impossible differential attacks was not given the highest priority
when defining the rotation constants of these block ciphers.

– The number of parameters equivalent to original Simon and Simeck in resis-
tance against these attacks is larger than any other parameters of which dis-
tinguishers have finite round.

– The default number of rounds of Simon32 is 32, and we see that all Simon
block cipher variants in Groups M, S, and Q are distinguishable with the
integral distinguishers even if they have the default number of rounds. They
are also less resistant against impossible differential attacks.

– Parameters in Groups N and R have the highest resistance against differential
attacks but low resistance against integral and impossible differential attacks.
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Table 4. Comparison of the strength against impossible differential and integral dis-
tinguisher among all parameters

* & parameter (a, b, c)

A 9 14 (1, 2, 6), (1, 2, 11), (1, 2, 12), (1, 4, 2), (1, 4, 3), (1, 4, 5), (1, 4, 13), (1, 5, 4),
(1, 5, 12), (1, 6, 2), (1, 7, 4), (1, 7, 12), (1, 10, 4), (1, 10, 11), (1, 10, 14),
(1, 12, 3), (1, 12, 5), (1, 12, 10), (1, 12, 13), (1, 13, 4), (1, 13, 12), (1, 14, 10),
(2, 3, 6), (2, 5, 4), (2, 5, 6), (2, 5, 7), (2, 7, 6), (2, 9, 3), (2, 9, 6), (2, 9, 12),
(4, 5, 1), (4, 5, 9), (4, 5, 10), (4, 5, 15), (4, 7, 3), (4, 7, 5), (4, 7, 6), (4, 7, 11)

B 9 16 (1, 6, 8), (1, 14, 0), (2, 3, 8), (2, 7, 0)

C 10 14 (0, 2, 5), (1, 2, 5), (1, 3, 6), (1, 3, 14), (1, 4, 6), (1, 4, 10), (1, 5, 2), (1, 5, 6),
(1, 5, 10), (1, 5, 14), (1, 6, 3), (1, 6, 7), (1, 6, 13), (1, 7, 0), (1, 7, 2), (1, 7, 6),
(1, 7, 8), (1, 7, 10), (1, 7, 14), (1, 10, 5), (1, 11, 2), (1, 11, 10), (1, 12, 2),
(1, 12, 14), (1, 13, 2), (1, 13, 6), (1, 13, 10), (1, 13, 14), (1, 14, 3), (1, 14, 7),
(1, 14, 13), (1, 15, 4), (1, 15, 12), (2, 3, 5), (2, 3, 7), (2, 3, 9),(2, 4, 5),
(2, 4, 7), (2, 5, 9), (2, 7, 1), (2, 7, 5), (2, 7, 11), (2, 8, 1), (2, 9, 13), (2, 12, 1),
(2, 12, 3), (4, 5, 2), (4, 5, 14), (4, 6, 1), (4, 6, 3), (4, 7, 2), (4, 7, 14), (4, 10, 1),
(4, 10, 3), (8, 10, 5)

D 10 15 (1, 2, 4), (1, 2, 10), (1, 6, 4), (1, 6, 14), (1, 10, 2), (1, 10, 12), (1, 14, 6),
(1, 14, 12), (2, 3, 10), (2, 3, 12), (2, 4, 3), (2, 5, 10), (2, 5, 12), (2, 7, 4),
(2, 7, 10), (2, 9, 4), (2, 9, 10), (2, 12, 7), (4, 6, 5), (4, 10, 7)

E 10 16 (0, 1, 6), (0, 1, 11), (1, 6, 15), (1, 8, 11), (1, 8, 14), (1, 14, 15), (2, 3, 13),
(2, 7, 9), (8, 9, 3), (8, 9, 14)

F 11 14 (1, 2, 7), (1, 10, 7), (2, 5, 3), (2, 9, 15)

G 11 15 (0, 1, 4), (0, 1, 5), (0, 1, 7), (0, 1, 10), (0, 1, 12), (0, 1, 13)(Simeck),
(0, 4, 1), (0, 4, 3), (1, 2, 8), (1, 2, 9), (1, 2, 13), (1, 2, 14), (1, 3, 4), (1, 3, 12),
(1, 4, 0), (1, 4, 7), (1, 4, 8), (1, 4, 11), (1, 4, 15), (1, 5, 0), (1, 5, 8),
(1, 6, 5), (1, 6, 9), (1, 6, 10), (1, 8, 2), (1, 8, 4), (1, 8, 5), (1, 8, 7), (1, 8, 12),
(1, 8, 13), (1, 10, 0), (1, 10, 6), (1, 10, 9), (1, 10, 13), (1, 11, 4), (1, 11, 12),
(1, 12, 0), (1, 12, 7), (1, 12, 8), (1, 12, 11), (1, 12, 15), (1, 13, 0), (1, 13, 8),
(1, 14, 2), (1, 14, 5), (1, 14, 9), (2, 3, 11), (2, 3, 14), (2, 3, 15), (2, 5, 0),
(2, 5, 1), (2, 5, 13), (2, 5, 14), (2, 7, 3), (2, 7, 14), (2, 7, 15), (2, 9, 1), (2, 9, 5),
(2, 9, 8), (2, 9, 14), (2, 14, 1), (2, 14, 3), (2, 14, 5), (2, 14, 7), (4, 5, 0),
(4, 5, 3), (4, 5, 7), (4, 5, 8), (4, 5, 11), (4, 7, 0), (4, 7, 1), (4, 7, 8), (4, 7, 9),
(4, 7, 13), (4, 8, 1), (4, 8, 3), (8, 9, 2), (8, 9, 4), (8, 9, 5), (8, 9, 12), (8, 9, 13),
(8, 9, 15), (8, 12, 1), (8, 12, 3)

H 11 16 (1, 6, 12), (1, 14, 4), (2, 3, 4), (2, 7, 12)

I 11 18 (1, 4, 9), (1, 12, 9), (4, 5, 13), (4, 7, 15)

J 11 19 (0, 1, 8), (0, 1, 9), (0, 2, 1), (1, 4, 12), (1, 8, 0), (1, 8, 9), (1, 12, 4), (1, 15, 0),
(1, 15, 8), (2, 8, 5), (4, 5, 12), (4, 7, 12), (8, 9, 0), (8, 9, 1), (8, 10, 1)

K 12 15 (2, 4, 1), (2, 6, 1), (2, 6, 3), (2, 6, 5), (2, 6, 7), (2, 12, 5), (4, 6, 7), (4, 10, 5)

L 12 16 (1, 3, 0), (1, 3, 8), (1, 4, 14), (1, 6, 0), (1, 11, 0), (1, 11, 8), (1, 12, 6),
(1, 14, 8), (2, 3, 0), (2, 7, 8), (4, 5, 6), (4, 7, 10)

M 12 53 (1, 9, 2), (1, 9, 6), (1, 9, 10), (1, 9, 14), (2, 10, 1), (2, 10, 3), (2, 10, 5),
(2, 10, 7)

(Continued)
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Table 4. (Continued)

* & parameter (a, b, c)

N 13 16 (0, 1, 3), (0, 1, 14), (0, 2, 3), (0, 2, 7), (1, 2, 3), (1, 2, 15), (1, 3, 2),
(1, 3, 10), (1, 6, 11), (1, 8, 3), (1, 8, 6), (1, 10, 3), (1, 10, 15), (1, 11, 6),
(1, 11, 14), (1, 14, 11), (1, 15, 2), (1, 15, 6), (1, 15, 10), (1, 15, 14), (2, 3, 1),
(2, 5, 11), (2, 5, 15), (2, 7, 13), (2, 8, 3), (2, 8, 7), (2, 9, 7), (2, 9, 11), (8, 9, 6),
(8, 9, 11), (8, 10, 3), (8, 10, 7)

O 13 20 (1, 6, 1), (1, 6, 6), (1, 14, 1), (1, 14, 14), (2, 3, 2), (2, 3, 3), (2, 7, 2), (2, 7, 7)

P 13 22 (1, 4, 1), (1, 4, 4), (1, 12, 1), (1, 12, 12), (4, 5, 4), (4, 5, 5), (4, 7, 4), (4, 7, 7)

Q 17 33 (0, 1, 0), (0, 1, 1), (1, 8, 1), (1, 8, 8), (8, 9, 8), (8, 9, 9)

R 17 20 (0, 1, 2), (0, 1, 15), (1, 2, 0), (1, 8, 10), (1, 8, 15), (1, 10, 8), (2, 5, 8),
(2, 9, 0), (8, 9, 7), (8, 9, 10)

S 17 53 (0, 8, 1), (1, 9, 0), (1, 9, 4), (1, 9, 8), (1, 9, 12), (4, 12, 1), (4, 12, 3)

T 17 22 (1, 2, 1), (1, 2, 2), (1, 10, 1), (1, 10, 10), (2, 5, 2), (2, 5, 5), (2, 9, 2), (2, 9, 9)

*: The number of rounds of impossible differential characteristic
&: The number of rounds of integral distinguisher

Interestingly, we find that two parameters (1, 4, 7) and (5, 12, 3) ⇔ (1, 12, 7)
(both in Group G) are better than original Simon from the following reasons.

– (1, 4, 7) and (5, 12, 3) belong to the 20 parameters with optimal security
against differential attack, while Simon or Simeck are not optimal.

– (1, 4, 7) and (5, 12, 3) have the same level of security against integral and
impossible differential attacks as the original Simon.

Additionally, (5, 12, 3) is optimal with respect to linear attacks, and hence
this can be an alternative parameter to the original one. However, it should be
noted that we only focus on the security aspect against the four attacks only,
and the implementation characteristic is not considered here.

Links Between Impossible Differential and Integral Attacks. In 2015,
Sun et al. [21] showed that impossible differential characteristics lead to integral
distinguishers for any Feistel cipher adopting an SP -round function. Actually,
for all parameters from Fig. 7, we observe that integral distinguishers cover more
rounds than impossible differential characteristics, which agrees with the obser-
vation by Sun et al. Thus we are interested in if we can view our results with
the context of the link.

Sun et al. assumes that the domain and range sizes of the S-layer is a word
size, n. To fit the round function of Simona,b,c into this framework, we have
to regard the entire round function as S and then P is an identity transforma-
tion. Otherwise, concatenation of bit-wise AND is the only possible candidate
as S, leading to 2n-bit to n-bit S-layer which does not match the framework. By
regarding the entire round function as S, we can only examine a set of 2n plain-
texts, in which n = 16 for Simon32. At this level, the link in [21] can be applied
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to Simon. However, we carried out our experiments, considering the details of
Fa,b,c. At this level, any links between integral distinguishers and impossible
differential characteristics has not been discovered.

6 Conclusions

In this paper, we searched the number of rounds of integral distinguishers and
impossible differential characteristic for all parameters (a, b, c) ∈ SV. As a result,
we clarified that original rotation constants (1, 8, 2) are not chosen to optimize
resistance against integral and impossible differential attacks. Furthermore, from
our experiments and investigations by Kölbl et al., we found that (a, b, c) =
(5, 12, 3) is a possible alternative parameter to the original parameter.
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