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Abstract. Typical Collective Adaptive Systems (CAS) consist of a large
number of interacting objects that coordinate their activities in a decen-
tralised and often implicit way. The design of such systems is challenging,
as it requires scalable analysis tools and methods to check properties of
proposed system designs before they are put into operation. A promis-
ing technique is Fast Mean-Field Approximated Model-checking. The
FlyFast model-checker uses an on-the-fly algorithm for bounded PCTL
model-checking of selected individuals in the context of very large popu-
lations whose global behaviour is approximated using deterministic limit
techniques. Recently, specific modelling languages have been proposed
for CAS. A key feature of such languages is the attribute-based interac-
tion paradigm. In this paper we present an attribute-based coordination
language as a front-end for FlyFast. Its formal probabilistic semantics is
provided and a translation to the original FlyFast language is given and
proved correct. Application examples are also provided.
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1 Introduction and Related Work

Collective Adaptive Systems (CAS) consist of a large number of entities with
decentralised control and varying degrees of complex autonomous behaviour.
CAS are at the core of the envisioned smart cities of the future and encompass
systems like smart urban transport and smart grids. The pervasive nature of CAS
and thus their impact on society requires the development of reliable rigorous
design models as well as a priori analysis techniques of such models—covering all
relevant aspects of their behaviour, including quantitative and emergent ones—
before they are put into operation1.

Model-checking has been widely recognised as a powerful approach to the
automatic verification of concurrent and distributed systems. It consists of an
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efficient procedure that, given an abstract model of the system, decides whether
the model satisfies a logical formula, typically drawn from a temporal logic.
Unfortunately, traditional model-checking suffers from the so called state-space
explosion problem which hampers scalability of the approach. In particular, its
application to very large models, like those typical of CAS, is infeasible. In [15,17]
Latella et al. presented a scalable mean-field model-checking procedure for veri-
fying bounded PCTL (Probabilistic Computation Tree Logic) [11] properties of
selected individuals in the context of systems consisting of a large number of
similar, but independent, interacting objects; a limited form of global system
properties can be treated as well. The procedure can be used with huge popula-
tion sizes, as typical of analysis techniques based on mean-field approximation;
the average behaviour of the population is approximated using a population
Discrete Time Markov Chain (DTMC) convergence result [21] and is used for
representing the context in which the selected individuals operate (see [15,17,21]
for details). The model-checking procedure is implemented in the tool FlyFast as
an instantiation of a probabilistic on-the-fly model-checker; the latter is para-
metric on (the semantic model of) the modelling language [15,16].

FlyFast comes with simple modelling language. An agent2 is a finite state
process, a generic state C of which is specified by a state defining equation like
C := a1.C1 + . . . + ar.Cr. Intuitively, the above notation defines state C of the
agent and postulates that there are r outgoing transitions from C, with action aj

labelling a transition going from C to Cj . A probability value is assigned to each
action a by means of a probability function definition a :: E, where the actual
probability is given by the value of expression E in the current occupancy measure
vector m. Assume a system is composed of N instances of the agent and that the
states of the agent are C1, . . . CS . The occupancy measure vector at the current
time is the vector (m1, . . . ,mS) s.t. mj yields the fraction of agents currently
in state Cj over the total number N of agents. A system specification is a triple
composed by an agent specification—given as a set of state defining equations—a
set of probability function definitions, and an initial global state. Finally, FlyFast
provides the user with formula declarations which allow for the interpretation of
bounded PCTL atomic propositions in the model at hand. The computational
model is clock-synchronous; at each step each agent must perform an independent
step (which may be an idle self-loop) so that the global state probabilities are
given as the product of agent step probabilities, and a new occupancy measure
vector can be computed. The global system behaviour is thus a DTMC as well
as the stochastic process given by the occupancy measure vector. Notably, for
N sufficiently large, the latter can be approximated deterministically, i.e. by a
function of time. This brings to a dramatic decrease in size of the global state
space: at each step, the total number of potential next states drops from SN to
S, which makes bounded PCTL model-checking of very large population systems
possible (the interested reader is referred to [15,17,21] for details).

Recently, modelling and programming languages have been proposed specif-
ically for autonomic computing systems and CAS [3,9,12]. Typically, in such

2 In the context of FlyFast we use the words agent, process and object as synonyms.
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frameworks, a system is composed of a set of independent components where
a component is a process equipped with a set of attributes describing features
of the component. A classical example of attribute is the component location.
An additional environment is often used for the specification of common or
global features. The attributes of a component can be updated during its exe-
cution so that the association between attribute names and attribute values
is mantained in the dynamic store of the component. Attributes can be used
in predicates appearing in language constructs for component interaction. For
instance a component may broadcast a message to all those components satisfy-
ing a given predicate; similarly a component may wait for a message from any
of those components satisfying a given predicate.

In the present paper, we propose an extension of the FlyFast front-end mod-
elling language for dealing with components and predicate-based interaction. The
extension has been inspired by Carma [3]. Components are expressed as pairs
process-store; actions are predicate based multi-cast output and input primitives3.
Associated to each action there is also an (atomic) probabilistic store-update.
For instance, assume components have an attribute named loc which takes val-
ues in the set of points of a space type. The following action models a multi-cast
via channel α to all components in the same location as the sender, making
it change location randomly: α∗[loc = my.loc]〈〉{loc ← randomLoc(loc)}. Here
randomLoc is assumed to be a random generator of points in the space4. The
computational model is clock-synchronous as well, but at the component level. In
addition, each component is equipped with a local outbox. The effect of an output
action α∗[πr]〈〉σ is to deliver output label α〈〉 to the local outbox, together with
the predicate πr, which receiver components will be required to satisfy, as well
as the current store γ of the component executing the action; the current store
is updated according to update σ. Note that output actions are non-blocking
and that successive output actions of the same component rewrite its outbox.
An input action α∗[πs]()σ by a component will be executed with a probability
which is proportional to the fraction of all those components whose outboxes
currently contain the label α〈〉, a predicate πr which is satisfied by the compo-
nent, and a store γ which satisfies in turn predicate πs. If such a fraction is zero,
then the input action will not take place (input is blocking), otherwise the action
takes place, the store of the component is updated via σ, and its outbox cleared.
Thus, as in the original FlyFast language, component interaction is probabilis-
tic, but now the fraction of the components satisfying the relevant predicates
plays a role in the computation of transition probabilities. We provide the for-
mal probabilistic semantics of the extended language and a translation to the
original FlyFast language which makes the model-checker support the extended
language. The translation is proved correct.

3 For the sake of notational simplicity, in this paper we present a non value-passing
version of the FlyFast front-end; the complete, value-passing, approach is described
in [8].

4 Multi-cast interaction is denoted using the ∗ notation, as in Carma.



70 V. Ciancia et al.

Related Work. As we mentioned before, this work has been inspired by
Carma [3], which in turn shares features with SCEL [9]. There are several
aspects of either languages that are not present in our proposal. The main rea-
son for the absence of most of them is the fact that this work is intended as a
proof of concept rather than the realisation of a ready-to-use tool for reasoning
about CAS. So we aim at keeping the language minimal and focussing only on
attribute-based interaction in the context of stochastic and mean-field seman-
tics and model-checking. A feature of Carma not considered here is the notion
of global environment, since it represents a singularity point that does not fit
well with limit approximation techniques. Finally, we point out that the sto-
chastic semantics of Carma are based on time inhomogeneous CTMCs, due to
the fact that action parameters may be time dependent, while we use DTMCs
as semantic basis. The notion of the outbox is reminiscent of the notion of the
ether in PALOMA [10] in the sense that the collection of all outboxes together
can be though of as a kind of ether; but such a collection is intrinsically dis-
tributed among the components so that it cannot represent a bottleneck in the
execution of the system neither a singularity point in the deterministic approx-
imation. Fluid model-checking for continuous time systems is addressed in [4]
where a global model-checking procedure for the Continuous Stochastic Logic
(CSL, [2]) is given, which is based on continuous limit approximated semantics.
Fluid semantics have proved very useful for reasoning about large coordination
systems (see e.g. [6,18,23]). Predicate-/attribute-based inter-process communi-
cation has been originally proposed in [19] where several variants of predicate-
/attribute-based communication primitives—including blocking / non-blocking,
bounded / unbounded—are discussed in the context of a study on high-level
language constructs for distributed systems with decentralised control (see for
instance [22]). The notion of predicate-/attribute-based interaction is central
in the definition of SCEL [9] where its synchronous-communication variant has
been given formal semantics. Asynchronous-communication variants have been
defined for stochastic versions of SCEL [20]. An attribute-interaction based cal-
culus is proposed in [1] where broadcast communication links among components
are dynamically established on the basis of the interdependences determined by
predicates over attributes. A reduction semantics approach is adopted where each
transition involves the group composed of both sender and receivers. Attribute
π-Calculus has been proposed in [14] and extended to Imperative π-Calculus
in [13]; in both calculi, which inherit the classical point-to-point communica-
tion paradigm of the π-Calculus, as opposed to multi-cast, attributes are related
to messages rather than to processes. None of the above mentioned works on
predicate-/attribute-based languages addresses mean-field approximated model-
checking so, to the best of our knowledge, the present paper is the first proposal
on the subject.

2 Attribute-Based Coordination Language and Logic

In this section we define an attribute-based population description language and
related logic. A system is defined as a population of N identical interacting
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components5 in a clock-synchronous fashion. Each component is equipped with
a finite set of attributes; the current store γ ∈ Γ of the component maps each
attribute name to an attribute value.

2.1 Syntax

A component specification is a pair (Δ,F ) where Δ is a finite set of state-defining
equations, one for each state of the component and F is a set of auxiliary func-
tion definitions6. We let S, ranged over by C,C ′, C1, . . . denote the (denumerable,
non-empty) set of all states which can be used in equations. Each equation defines
the transitions from the state to other states of the component; each transition is
labelled by the action the component performs when the transition takes place.
The general format of a state defining equation is: C := [g1]P1 + . . . + [gr]Pr

where each guard [g] is a predicate π defined according to the following grammar:
π ::= � | ⊥ | e1 �	 e2 | ¬π | π1 ∧ π2.
� (⊥, resp.) stands for the truth value true (false resp.), while �	 ∈ {≥, >,≤, <};
we let �	∈ {>,<}. An expression e can be an attribute name a, or my.a refer-
ring to the value of a in the component where it occurs, or a value v in given
set V. In defining equations as above, we abbreviate [�]Pj with Pj and we omit
summands of the form [⊥]Pj . Each Pj in a state defining equation as above is
of the form pj :: actj .Cj , where pj is a probability expression, i.e. an expres-
sion with value in [0, 1], built from constants v ∈ [0, 1] and the special operator
frcC, combined using standard arithmetic operators; for state C, frcC returns
the fraction of the components that are currently in state C, over the total of N
components. Clearly, the use of the frc operator allows action (and, ultimately,
transition) probability to depend on the global state of the system. Actions actj
can be output actions α∗[π]〈〉σ or input actions α∗[π]()σ. We assume a countable
set of action types A, with α ∈ A. The effect of an output action α∗[π]〈〉σ is a
broadcast to all those components satisfying predicate π and which are willing
to accept the interaction. This is achieved by means of delivering α〈〉, together
with some additional information, to the outbox of the component executing
the action, as we will discuss in detail in Sect. 2.2. In addition, the store of the
component executing the action is updated according to the update σ, which
is a function from Γ to the class of probability distributions over Γ—i.e., in
the general case, the update may be probabilistic. Similarly, an input action
α∗[π]()σ is used to receive an α-message sent by a component satisfying pred-
icate π. More specifically, the probability of executing the input action will be
proportional to the fraction of components which have sent the α-message while
satisfying predicate π and requiring a predicate which is satisfied by the com-
ponent executing the input action. Also input actions are provided with a store

5 In practice, the fact that the components are identical is not a strong limitation
since each component may consist of several different sets of states, with each state
in a given set being unreachable from states of other sets. Each such a set of states
can be seen as a component with a different behaviour.

6 The specific syntax of auxiliary function definitions is irrelevant and left out here.
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update σ whereas the component outbox is cleared as (a side) effect of their
execution. In the sequel, we shall call address predicates the predicates [π] used
for identifying the partners in input/output actions. For updates, we use the
following notation: {a1 ← eγ

1 , . . . , at ← eγ
t } where eγ

j is an expression which
may also include functions—the definition of which are to be provided in F—
which may depend on the component store γ and produce random results, as
we shall see below. Attributes different from a1, . . . , at are left unchanged by the
update. We require that any attribute name a occurring in a guard [g], or in
the expressions eγ

1 , . . . , eγ
t , must appear in the form my.a (thus referring to the

value of the attribute in the local store of the component). An attribute name
a may appear both with and without the my. prefix in the address predicate
π. Intuitively, equation C := [g1]P1 + . . . + [gr]Pr defines state C of the com-
ponent at hand and postulates that there are r potential outgoing transitions
from C, with action actj labelling a transition going from C to Cj . The actual
transitions will be determined by the value of the guards and the action proba-
bilities. Note that it may happen that the current cumulative probability value
of the enabled transitions is less than 1; for this reason, the language provides
the construct rest :: α[π]〈〉σ.C, where rest is defined as the residual probability;
it is required that there is at most one rest-branch (typically the last one) in
every state defining equation. Only output actions are allowed in rest-branches;
this ensures that the residual probability is not affected by the fraction of those
components in the system satisfying the address predicate. Obviously, in a given
component specification there is exactly one defining equation for each state of
the component. We let SΔ denote the finite set of states defined by Δ. Simi-
larly, ΓΔ, AΔ and ΠΔ denote the set of all stores associated to Δ, the action
types and the predicates occurring in (the equations of) Δ. Finally, we let VΔ

denote the set of values which can be taken by the attributes of a component
specified by Δ. Note that we assume VΔ is a finite set—thus also ΓΔ is finite;
model finiteness is a common assumption for modelling languages supported by
automatic analysis and verification tools.

Example 1 (A spatially distributed Computer Epidemic Model). We enrich the
Computer Epidemic Model of [5], SEIR, with infection communication and a
bi-dimen-sional Regular GRID [7] model for space, where for each point � the
following specific operators are defined, with the usual North, South, East, West
meaning: N(�),S(�), E(�),W(�). Each component is equipped with a position
attribute, named loc, which is always yielding the current position (i.e. point) in
space of the component and is the only attribute of the component. Note that,
given the abstract nature of the bi-dimensional Regular GRID, such a “point”
could be a physical point is space, but also a specific region (or patch) in a
patched representation of space. We will implicitly refer to the second inter-
pretation in the sequel. In the model, given in Fig. 1, the purpose of auxiliary
function Jump is twofold: (i) it defines a function from positions to discrete
probability distributions which, given position �, characterizes a probability dis-
tribution which assignes probability pN(�) to N(�), probability pS(�) to S(�),
and so on and (ii) defines a random position generator which, given position �,
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S := h :: inf∗[loc = my.loc](){my.loc ← Jump(my.loc)}.E +

mN :: inf∗[loc = N(my.loc)](){my.loc ← Jump(my.loc)}.E +

mS :: inf∗[loc = S(my.loc)](){my.loc ← Jump(my.loc)}.E +

mE :: inf∗[loc = E(my.loc)](){my.loc ← Jump(my.loc)}.E +

mW :: inf∗[loc = W(my.loc)](){my.loc ← Jump(my.loc)}.E +

ext :: ext∗[⊥]〈〉{my.loc ← Jump(my.loc)}.E +

sr :: rec∗[⊥]〈〉{my.loc ← Jump(my.loc)}.R +

rest :: nsc∗[⊥]〈〉{my.loc ← Jump(my.loc)}.S

E := ei :: act∗[⊥]〈〉{my.loc ← Jump(my.loc)}.I +

er :: rec∗[⊥]〈〉{my.loc ← Jump(my.loc)}.R +

rest :: nsc∗[⊥]〈〉{my.loc ← Jump(my.loc)}.E

I := ii :: inf∗[�]〈〉{my.loc ← Jump(my.loc)}.I +

ir :: rec∗[⊥]〈〉{my.loc ← Jump(my.loc)}.R +

rest :: nsc∗[⊥]〈〉{my.loc ← Jump(my.loc)}.I

R := rs :: loss∗[⊥]〈〉{my.loc ← Jump(my.loc)}.S
rest :: nsc∗[⊥]〈〉{my.loc ← Jump(my.loc)}.R

Fig. 1. A four state model: susceptible (S), exposed (E), infected (I), and recover (R).

randomly returns a new position according to the specified probabilities. Note
that the probabilities are themselves functions of the position and they are
assumed being declared as additional auxiliary functions. In the equation for
S in Fig. 1, probability constants h,mN , . . . ,mW are factors in [0, 1] with cumu-
lative value at most 1, each to be multiplied by the actual probability of the
associated (input) action. The latter will be computed as the fraction of the
local states which satisfy the required predicate. The resulting values, when
taken all together, will characterize a probability sub-distribution; the residual
probability will be associated to a rest-self-loop. Similar considerations apply to
the probability constants in the definition of other states (e.g. i in the figure).
We assume h > mN ≈ mS ≈ mE ≈ mW . In other words, an agent has higher
probability to get the infection from agents in the same place than from agents
in adjacent places; the probability drops to zero in all other cases. •

A system is modelled as a population of N instances of a component, so
a system specification Υ is a triple (Δ,F,Σ0)(N) where (Δ,F ) is a component
specification and Σ0 is the initial (system) global state, which will be discussed
below. In the sequel we will often write Δ instead of (Δ,F ).

2.2 Probabilistic Semantics

In order to model component interactions within a system, each component is
equipped with a local outbox. The idea is that, whenever a component executes
an output action, the related output will be available in the component’s outbox
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only during the next clock tick; in the next state, (other) components will be able
to get the message by means of corresponding input actions. After such a tick, the
outbox will be empty or filled with the information generated by a subsequent
output action of the component. Formally, let ΛO

Δ be the set ΛO
Δ = {α〈〉|α ∈ AΔ}.

An outbox-state O ∈ OΔ = {〈〉} ∪ (ΓΔ × ΠΔ × ΛO
Δ) is either empty or a triple

(γ, π, α〈〉). A component-state Σ is a triple Σ = (C, γ,O) ∈ SΔ×ΓΔ×OΔ = ΩΔ,
where C, γ,O are the current state, store and outbox-state of the compo-
nent, respectively. If the component-state is the target of a transition mod-
elling the execution of an output action, then O = (γ′, π, α〈〉), where γ′ is
the store of the (component-state) source of the transition, π is the predicate
used in the action—actualized with γ′—and α〈〉 the actual message sent by
the action. If, instead, the component-state is the target of a transition for
an input action, then O = 〈〉, i.e. the empty outbox. A global state is a tuple
Σ = ((C1, γ1, O1), . . . , (CN , γN , ON )) ∈ ΩN

Δ where Σ[j] = (Cj , γj , Oj) is the
component-state of the j-th instance in the population for j = 1 . . . N . We say
that N is the population size of the system. In the sequel, we will omit the explicit
indication of the size N in (Δ,F,Σ0)(N), and elements thereof or related func-
tions, writing simply (Δ,F,Σ0), when this cannot cause confusion. In summary,
a system specification can be thought of as process algebraic clock-synchronous
parallel composition of N processes. The probabilistic behaviour of a system can
be derived from its specification (Δ,F,Σ0)(N). We remind that ΩΔ is finite, since
so are sets SΔ, ΓΔ and OΔ. Assume ΩΔ = {Σ1, . . . , ΣS} and let USbe the set
{m ∈ [0, 1]S |∑S

i=1 m[i] =1}; we can assume, w.l.o.g. that there is a total ordering
on ΩΔ so that we can unambiguously associate each component mj of a vector
m = (m1, . . . ,mS) ∈ US with a distinct element Σj of {Σ1, . . . , ΣS}. With each
global state Σ(N) an occupancy measure vector M(N)(Σ(N)) ∈ US is associated
where M(N)(Σ(N)) = (M (N)

1 , . . . ,M
(N)
S ) with M

(N)
i = 1

N

∑N
n=1 1{Σ

(N)
[n] =Σi} for

i = 1, . . . , S and the value of 1{α=β} is 1, if α = β, and 0 otherwise. So, for
Σi = (Ci, γi, Oi), M

(N)
i is the fraction, in the current global state Σ(N), of

the component instances which are in state Ci, have store γi and outbox Oi,
over the total number N . We assume semantic interpretation functions EL[[·]]
and ER[[·]] for the local, remote respectively, interpretation of expressions and
predicates and a function EP[[·]] for the interpretation of probability expres-
sions. EL[[e]] (ER[[e]], respectively) takes a local (remote, respectively) store γ
as an argument, whereas EP[[p]] takes an occupancy measure vector m as an
argument. We note that EL[[a]]γ = a,EL[[my.a]]γ = γ(a), ER[[a]]γ = γ(a), and
EP[[frcC]]m =

∑S
i=1{m[i]|Σi = (C, γi, Oi)}; moreover, ER[[my.a]]γ , EP[[tt]]m,

EP[[ff]]m, EL[[frcC]]γ , and ER[[frcC]]γ are undefined as are, for the sake of sim-
plicity, EP[[a]]m, EP[[my.a]]m. The definition of the above semantic interpreta-
tion functions on composition terms can be given recursively on the structure of
the terms and is left out here. In particular, we assume them extended to tuples.
Similarly, we assume standard techniques and machinery for auxiliary functions
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in store updates; the semantics of update σ in the current store γ will be denoted
by EU[[σ]]γ , that is a probability distribution over stores7.

Let ΛΔ be defined as ΛΔ = ΛO
Δ ∪ ΛI

Δ, with ΛO
Δ as above, and ΛI

Δ =
{α()|α ∈ AΔ}. A component specification (Δ,F ) characterises the (component)
transition probability matrix as a function of occupancy measure vectors m,
K(N): US ×ΩΔ ×ΩΔ → [0, 1] such that K(N)(m)Σ,Σ′ is the probability of a one
step jump from component-state Σ to component-state Σ′, given (that the global
system state induces) occupancy measure vector m. K(N)(m)Σ,Σ′ is computed
by making use of a transition relation (C, γ,O) λ,p−−−→ (C ′, γ′, O′) over the space of
component-states ΩΔ, with transition labels drawn from ΘΔ ⊂ ΛΔ × [0, 1]. More
specifically, the transition relation is the relation −→ ⊆ ΩΔ ×ΘΔ ×ΩΔ such that
(C, γ,O) λ,p−−−→ (C ′, γ′, O′) iff C :=

∑
j∈J [gj ]pj :: actj .Cj is the defining equation

for C and p =
∑

k∈J{p̄k|(C, γ,O) λ,p̄k−−−−→ k(C ′, γ′, O′)}, where λ,p̄k−−−−→ k is the least
relation induced by the rules in Fig. 2. The component transition matrix function
K(N)(m)Σ,Σ′ is defined as follows: K(N)(m)Σ,Σ′ =

∑
(λ,p)∈ΘΔ

{p|Σ λ,p−−−→Σ′}.
Note that all the above summations are finite under our assumption that so is
VΔ. The behaviour of the system is the result of the parallel-synchronous exe-
cution of the N instances of the component. Thus, the probabilistic behaviour
of the system is characterised by the DTMC X(N)(t) with initial probability
distribution δΣ0 and one step probability matrix P(N) defined by the following
product: P(N)

Σ,Σ′ = ΠN
n=1K

(N)(M(N)(Σ))Σ[n],Σ
′
[n]

. Of course, the ‘occupancy
measure’ view of the evolution in time of stochastic process X(N)(t) is again a
DTMC, namely the occupancy measure DTMC, which is defined as expected:
M(N)(t) = M(N)(X(N)(t)).

Fig. 2. Probabilistic Semantics Rules

7 In this paper, for the sake of simplicity, updates do not depend on the current
occupancy measure vector, i.e. the frc operator cannot occur in their specification.
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2.3 Bounded PCTL

We recall that, given a set P of atomic propositions, the syntax of PCTL
state formulas Φ and path formulas ϕ is defined as follows, where ap ∈ P and
k ≥ 0 :Φ ::= ap | ¬Φ | Φ ∧ Φ | P	
p(ϕ) where ϕ ::= X Φ | ΦU≤k Φ. PCTL
formulas are interpreted over state labelled DTMCs, which are pairs (M, L)
where M is a DTMC and L is a mapping from the set of states of M to
2P ; for each state s, L(s) is the set of atomic propositions true in s8. For the
purposes of FlyFast bounded PCTL model-checking, our system specifications
are enriched with the declaration of three different kinds of atomic proposi-
tions. A declaration of the form ap atC associates atomic proposition ap to
state C ∈ SΔ. Thus ap must be included in the set L(Σ) for each global state
Σ = ((C1, γ1, O1), . . . , (CN , γN , ON )) such that C1 = C (recall here that FlyFast
performs model-checking of the first object in the context of the global system).
A declaration of the form ap def (my.a �	 v) associates atomic proposition ap to
all component-states (C, γ,O) s.t. attribute a is �	 v. So, ap must be included
in the set L(Σ) for each global state Σ = ((C1, γ1, O1), . . . , (CN , γN , ON )) such
that EL[[my.a �	 v]]γ1 = tt. Finally, a limited form of global atomic predicate is
provided by means of a declaration of the form ap def (frcC �	 v); in this case,
ap must be included in the set L(Σ) for each global state Σ s.t. the fraction in
Σ of the component states (C, γ,O), for any γ and O, is �	 than v ∈ [0, 1].

3 A Translation to FlyFast

In this section we define a translation I such that, given system specification
Υ = (ΔΥ, FΥ,Σ0)(N), I(Υ) = 〈Δ,A,C0〉(N) is a FlyFast [15,17] system speci-
fication preserving probabilistic semantics. The attribute-based FlyFast front-end
is then completed with a simple translation at the PCTL level, also provided in
this section. We map every component state of Υ to a distinct state of I(Υ) by
means of a total injection IS :ΩΔΥ → S. The mapping of actions is a bit more
delicate because we have to respect FlyFast static constraints and, in particular,
we have to avoid multiple probability function definitions for the same action. To
that purpose, we could distinguish different occurrences of the same action in dif-
ferent transitions, characterized by their source and target states in ΩΔΥ . In prac-
tice, since an action of a component cannot be influenced by the current outbox
of the component, it is sufficient to use a total injection IA of the following type
(SΔΥ × ΓΔΥ) × ΛΔΥ × ΩΔΥ → A for the mapping of actions. In the sequel we
show how to build I(Υ) = 〈Δ,A,C0〉(N) from Υ = (ΔΥ, FΥ,Σ0)(N). The trans-
lation algorithm is given in Fig. 3, where for action act ∈ {α∗[π]〈〉σ, α∗[π]()σ} we
let T (act) = α, P (act) = π, and U(act) = σ. SUM{t|cond(t)} denotes the syntac-
tical term representing the sum of terms t ∈ {t|cond(t) = tt}, i.e. t1 + . . . + tn,
if {t|cond(t) = tt} = {t1, . . . , tn} �= ∅ and 0 if {t|cond(t) = tt} is the empty
set. Finally, by t ∗ t′ we mean the syntactical term representing the product of
8 We refer to [11] for the formal definition of PCTL and to [15,17] for the details of

its instantiation in FlyFast.



On-the-Fly Mean-Field Model-Checking for Attribute-Based Coordination 77

terms t and t′. Output actions are dealt with in step 1. Consider for example action
ext∗[⊥]〈〉{my.loc ← Jump(my.loc)} in the definition of state S in Fig. 1. Sup-
pose the possible values for locations are A,B,C,D, so that stores are functions
in {loc} → {A,B,C,D}. The algorithm generates 12 actions (diagonal jumps are
not contemplated in the example). Let us focus on the action ξ associated to local
position A (i.e. γ = [loc �→ A]) and possible next position B (i.e. γ′ = [loc �→ B]);
the algorithm will generate probability function definition ξ :: pW(A) ∗ ext as well
as a transition leading to (a state which is the encoding, via IS , of) the compo-
nent state with E as (proper) state, store γ′, and outbox (γ,⊥, ext〈〉). Since the
action is not depending on the current outbox, in practice a copy of such a tran-
sition is generated for each component state sharing the same proper state S and
the same store γ. In the general case, in a defining equation for a state C there
might be multiple occurrences of the same action, bringing to the same next state
C ′; the algorithm takes care of this and collects them in order to generate a sin-
gle transition; the appropriate probability is expressed by means of the SUM{. . .}
term. The translation scheme for input actions is defined in case 2 and is similar,
except that for each term pj in the SUM{. . .} expression one has also to consider
the sum Φj of the fractions of the possible partners. The translation of the rest
case is straighforward.

Let K(N)
I(Υ) : US ×IS(ΩΔ)×IS(ΩΔ) → [0, 1] be the step probability function

associated to I(Υ) by the FlyFast language probabilistic semantics definition (see
[15,17] for details) and K(N)

Υ : US × ΩΔ × ΩΔ → [0, 1] be the step probability
function for Υ as defined in Sect. 2.2. It is easy to see that:

Theorem 1. For all N > 0, occupancy measure vector m ∈ US and Σ,Σ′ ∈ ΩΔ

the following holds: K(N)
Υ (m)Σ,Σ′ = K(N)

I(Υ)(m)IS (Σ),IS (Σ′).

Proof (scketch). We first observe that, by definition, K(N)
Υ (m)(C,γ,O),(C′,γ′,O′) =

∑
(λ,p)∈ΘΔ

{p|(C, γ,O) λ,p−−−→ (C ′, γ′, O′)} which, by definition of −→ , is equal to

∑

(λ,p)∈ΘΔ

{p|p =
∑

k∈J
{p̄k|(C, γ,O) λ,p̄k−−−−→ k(C ′, γ′, O′)} ∧

C :=
∑

j∈J
[gj ]pj :: actj .Cj is the def. eq. of C in Υ}.

Consider the outer summation and suppose (α〈〉, p) be the index of a summand.
Without loss of generality, assume there is only one instance of such a summandand
there is only one k ∈ J such that the following transition is derived using the rules
of Fig. 2: (C, γ,O) α〈〉,p̄k−−−−−→ k(C ′, γ′, O′). So, we have K(N)

Υ (m)(C,γ,O),(C′,γ′,O′) =

p̄k such that (C, γ,O) α〈〉,p̄k−−−−−→ k(C ′, γ′, O′), where C :=
∑

j∈J [gj ]pj :: actj .Cj

is the defining equation for C. Suppose [gk]pk �= rest, so that Rule (1) of
Fig. 2 has been used for generating the transition. This implies that EL[[gk]]γ =
tt, p̄k = EU[[σ]]γ(γ′) · EP[[pk]]m, C ′ = Ck, and O′ = (γ,EL[[π]]γ , α〈〉).
Under the above conditions, by definition of the translation algorithm, the action
ξ = IA((C, γ), α〈〉, (C ′, γ′, O′)) and related action probability function definition
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Fig. 3. The translation algorithm

ξ :: EU[[σ]]γ(γ′) ∗ SUM{pk} are included in the FlyFast model. Moreover, the sum-
mand ξ. IS(C ′, γ′, O′) is added in the equation for state IS(C, γ,O) in the FlyFast
model. Using the semantics definition of the FlyFast language [15,17], we get that
the probability assigned to ξ is EU[[σ]]γ(γ′) · EP[[pk]]m, that is, exactly p̄k. Thus
K(N)

Υ (m)Σ,Σ′ = K(N)
I(Υ)(m)IS (Σ),IS (Σ′). The proof for all the other cases is simi-

lar. •
The translation of atomic proposition declarations into FlyFast formula decla-

rations is the obvious one and is shown in Fig. 4 where OR{e|cond(e)} denotes the
syntactical term representing the disjunction of expressions e ∈ {e|cond(e) = tt},
i.e. e1| . . . |en, if {e|cond(e) = tt} = {e1, . . . , en} �= ∅ and ff, if {e|cond(e) = tt} is
the empty set.
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Fig. 4. Translation of atomic proposition declarations. The translation is not defined
whenever OR{t|cond(t)} = ff or SUM{t|cond(t)} = 0.

4 Epidemic Example Revisited

We return to the distributed Epidemic example of Fig. 1 where, for the sake of sim-
plicity, we consider a simple patched space, consisting of the usual four quadrants
A,B,C,D in the Cartesian Plane, as in Fig. 5 (left). We model a ‘flow’ from quad-
rant C to quadrant A by defining the jump probabilities as in the table in Fig. 5
(right)9, where l = 0.6 and s = 1 − l, so that l > s.

We consider a model in which initially there are 10.000 components in state S in
quadrantC and 100 in state S in quadrantA. The non-zero values of the parameters
are the same for each quadrant, defined as follows: h = 0.2, ext = 0.1, ei = 0.4, ii =
0.8, ir = 0.2, rs = 0.1,mN = mS = mE = mW = 0.05.

Figure 6 shows the fast-simulation results10 for the model for each of the four
quadrants. This functionality is built-in in the FlyFast tool. In the figure, the frac-
tions of numbers of the components in each of the four states at each of the four
locations are shown.Note that these fractions correspond to appropriate predicates
on standard atomic propositions; for instance the fraction of components in state
S at quandrant A is captured by s ∧ a, assuming the following declarations: s at
S and a def (my.loc = A). The simulation of single elements, taken as the average
over 10 runs shows a very good correspondence with the fast-simulation results.
The results also show good correspondence to the original SEIR model [5] when
the probability to move between quadrants is set to zero and in the initial state
the total population is in state S and in one specific quadrant in the former model.
Besides fast simulation, that gives an idea of the average global behaviour of the
system, we can also analyse the behaviour of a single component in the context

Fig. 5. The Cartesian quadrants (left) and the jump probabilities (right).

9 We assume: N(A) = N(B) = S(C) = S(D)= E(A) = E(D) = W(B) = W(C)= undefined,
with [loc = undefined] = ⊥ for all loc..

10 Experiments have been performed using the FlyFast on-the-fly mean field model
checker on a PC with an Intel Core i7 1.7 GHz, RAM 8Gb.
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Fig. 6. Fast simulation for each of the four quadrants.

of the overall behaviour. We consider two example properties as illustration. Let
us first consider a component initially in state S and located in A and let atomic
propositions i and c be declared as follows: i at I and c def (my.loc = C). The
following formula (P1) states that the probability is greater than p that the com-
ponent ends up infected in quadrant C by time t: P>p(tt U≤t (i∧c)). FlyFast allows
one to study the dynamics of the actual probability as a function of t, by means of
the notation P=?(tt U≤t (i ∧ c)) and the resulting graph, for the above initial con-
ditions and for the first 70 time units is shown in Fig. 7 (left). For comparison, the
formula for an agent starting in C and ending up in A and being infected is shown
as well in the same figure. The results for a more complicated, nested, formula (P2)
are shown in Fig. 7 (right). P2 expresses the probability, over time, of a component
reaching a situation in which it is neither infected nor exposed, and from which it
can reach a state in which it has a probability higher than 0.15 to be infected and
located in C within the next 10 time units; formula P2 is given below, where i is
assumed defined by i at I: P=?(tt U≤t (¬(i ∨ e) ∧ P>0.15(tt U≤10 (i ∧ c)))). The
formula has been considered for a component which is initially in A and in state S;
the figure shows also a similar formula, where the role of A and C is exchanged and
a probability higher than 0.45 instead of 0.15 is considered.

For both types of properties a considerable difference in the probabilities can
be observed for an agent that is initially located in A or in C, due to the flow of



On-the-Fly Mean-Field Model-Checking for Attribute-Based Coordination 81

Fig. 7. Model checking results for properties P1 (left) and P2 (right).

movement that has been introduced. This illustrates a clear dependence of the
results on the dynamically changing spatial distribution of components. The total
number of states, actions and transitions for the resulting FlyFast object specifica-
tion is 52, 114 and 468 respectively, while the number of states of the global approx-
imated model which have been generated for the analysis of formula P2 is 2.323
(2.185 when A and C are swapped). The model checking time for the more com-
plicated nested formula P2 and for all values of t (70) is 10.343 (9.921 when A and
C are swapped) ms, ≈ 148 (141)ms per checking session, for a model with a total
population of 10.100 objects. A well-known feature of mean-field model checking is
that the model checking time is independent of the size of the population, however,
further experimentation with more extended spatial models and more attributes,
that do effect this time, is planned as future work.

5 Conclusions

The attribute-based interaction paradigm is deemed fundamental for agent inter-
action in the context of Autonomic or Collective Adaptive Systems [1,3,9,12,20].
In this paper we have presented a attribute-based coordination modelling language
as a front-end for FlyFast, an on-the-fly mean-field model-checker for bounded
PCTL. The language extends the original FlyFast modelling language by replac-
ing its actions with input (output, respectively) actions where senders (receivers,
respectively) are specified by means of predicates on dynamic attributes on system
components, where a component is a process/attribute-store pair. A translation to
the standard FlyFast language has been presented, its correctness has been showed
as well as an example of its application to a simple case study. It should be noted
that the introduction of attributes in a process model is an intrinsic source of com-
plexity in terms of component state-space size. Such an increase, in the worst case,
goes with |VΔ||AttΔ| · (|AO

Δ| + 1), where AttΔ is the set of attributes of the com-
ponent, VΔ is the set of values they can take, and AO

Δ is the set of output actions
occurring in the component specification (which may appear in its outbox). The
obvious consequence of this is that one has to carefully ponder the importance and
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necessity of each and every new attribute used in a model, although, it must be kept
in mind that the real source of state-space explosion is the size of the system, and
this issue is addressed by Mean-Field approximation. A first optimisation consists
in considering only reachable component states as well as eliminating actions with
constant zero probability and simplifying boolean combinations of FlyFast atomic
propositions in the translation. A possible additional line of investigation is the
study of techniques for DTMC minimization to Mean-field analysis, so that the
number of difference equations can decrease as a consequence, in a similar way as
for CTMCs and the number of differential equations in fluid flow analysis [24].
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