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Foreword

The 11th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place at the Aquila Atlantis Hotel in Heraklion, Greece, during June
6–9, 2016. It was organized by the Institute of Computer Science of the Foundation for
Research and Technology – Hellas and the University of Ioannina, Greece. The Dis-
CoTec series is one of the major events sponsored by the International Federation for
Information Processing (IFIP). It comprises three conferences:

– COORDINATION, the IFIP WG 6.1 International Conference on Coordination
Models and Languages

– DAIS, the IFIP WG 6.1 International Conference on Distributed Applications and
Interoperable Systems

– FORTE, the IFIP WG 6.1 International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues.

Each day of the federated event began with a plenary speaker nominated by one
of the conferences. The three invited speakers were Tim Harris (Oracle Labs, UK),
Catuscia Palamidessi (Inria, France), and Vijay Saraswat (IBM T.J. Watson Research
Center, USA).

Associated with the federated event were also two satellite workshops, that took
place during June 8–9, 2016:

– The 9th Workshop on Interaction and Concurrency Experience (ICE) with keynote
lectures by Uwe Nestmann (Technische Universität Berlin, Germany) and
Alexandra Silva (University College London, UK)

– The Final Public Workshop from the LeanBigData and CoherentPaaS projects

Sincere thanks go to the chairs and members of the Program and Steering Com-
mittees of the involved conferences and workshops for their highly appreciated efforts.
Organizing DisCoTec 2016 was only possible thanks to the dedicated work of the
Organizing Committee, including George Baryannis (Publicity Chair) and Vincenzo
Gulisano (Workshops Chair), with excellent support from Nikos Antonopoulos and
Alkis Polyrakis of PCO-Convin. Finally, many thanks go to IFIP WG 6.1 for spon-
soring this event, Springer Lecture Notes in Computer Science for their support and
sponsorship, and to EasyChair for providing the refereeing infrastructure.

Kostas Magoutis



Preface

This volume contains the proceedings of COORDINATION 2016: the 18th IFIP WG
6.1 International Conference on Coordination Models and Languages held during June
6–9, 2015, in Heraklion, Crete. The conference was co-located with FORTE and DAIS,
as part of the DisCoTec federated conferences on distributed computing techniques.

COORDINATION is the premier forum for publishing research results and expe-
rience reports on software technologies for collaboration and coordination in concur-
rent, distributed, and complex systems. The key focus of the conference is the quest for
high-level abstractions that can capture interaction patterns and mechanisms occurring
at all levels of the software architecture, up to the end-user domain. COORDINATION
2016 solicited high-quality contributions on the usage, study, formal analysis, design,
and implementation of languages, models, and techniques for coordination in dis-
tributed, concurrent, pervasive, and parallel software-intensive computing systems.
COORDINATION 2016 also solicited contributions aimed at adapting and integrating
traditional COORDINATION techniques in the realm of multi-agent systems (MAS),
which typically involve more coarse-grained (cognitive, intelligent, goal-oriented)
components.

The Program Committee (PC) of COORDINATION 2016 consisted of 32 promi-
nent researchers from 19 different countries. We received 44 submissions out of which
the PC selected 16 full papers for inclusion in the program. All submissions were
reviewed by at least three independent referees; papers were selected based on their
quality, originality, contribution, clarity of presentation, and relevance to the confer-
ence topics. The review process included an in-depth discussion phase, during which
the merits of all papers were discussed by the PC. The selected papers constituted a
program covering a varied range of topics and techniques related to system coordi-
nation, including: programming and communication abstractions; communication
protocols and behavioral types; actors and concurrent objects; tuple spaces; games,
interfaces, and contracts; information flow policies and dissemination techniques; and
probabilistic models and formal verification. The program was further enhanced by an
invited talk by Vijay Saraswat from IBM T.J. Watson Research Lab (USA).

The success of COORDINATION 2016 was due to the dedication of many people.
We would like to thank the Steering Committee for inviting us to chair the conference,
the authors for submitting high-quality papers, the PC and their subreviewers for their
careful reviews and lively discussions during the final selection process, and the invited
speaker for his keynote. We also thank the providers of the EasyChair conference
management system, which was used to run the review process and to generate the
proceedings. Finally, we thank the Organizing Committee from Heraklion, led by
Kostas Magoutis, for its contribution in making the logistic aspects of COORDINA-
TION 2016 a success.

June 2016 Alberto Lluch Lafuente
José Proença
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(Logical and Imperative)
Calculi for Distributed Coordination

(Abstract)

Vijay Saraswat

IBM T.J. Watson, USA

Abstract. We review work over the last thirty years on simple, formal models
capturing the essence of (realistic) views of distributed coordination. We trace a
path through work on concurrent constraint programming, its linear version,
connections with the asynchronous pi-calculus, and, more recently, through the
imperative resilient X10. As always, the virtue of clean and powerful abstrac-
tions is that they can ease design of real systems that address tricky technical
concerns. We illustrate with the calculus for resilient X10, designing which
forced us to a semantic principle, Happens Before Invariance, which is useful in
practice.
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Multilevel Transitive and Intransitive
Non-interference, Causally

Paolo Baldan1(B) and Alessandro Beggiato2

1 Dipartimento di Matematica, Università di Padova, Padova, Italy
baldan@math.unipd.it

2 IMT School for Advanced Studies Lucca, Lucca, Italy
alessandro.beggiato@imtlucca.it

Abstract. We develop a theory of non-interference for multilevel secu-
rity domains based on causality, with Petri nets as a reference model. We
first focus on transitive non-interference, where the relation representing
the admitted flow is transitive. Then we extend the approach to intran-
sitive non-interference, where the transitivity assumption is dismissed,
leading to a framework which is suited to model a controlled disclosure
of information. Efficient verification algorithms based on the unfolding
semantics of Petri nets stem out of the theory.

1 Introduction

Starting with [1], the notion of non-interference has been widely used in the
study of information flow security. In the simplest scenario, entities are classified
according to two levels, a confidential level High and a public level Low . Informa-
tion is allowed to flow from Low to High, but not vice-versa. When dealing with
formalisms describing concurrent components that can interact and synchronize,
like process calculi and Petri nets, a popular formulation of non-interference is
Non-Deducibility on Composition (NDC). It states that a component S is free of
interference whenever S running in isolation, seen from the low level, is behav-
iorally equivalent to S interacting with any parallel high level component [2–9].
Intuitively, the behavior of the High part of the system is required not to cause
any modification in the behavior of the Low part.

This informal reference to causality is made formal in [7] that, relying on some
previous work [5], provides a causal characterization of BNDC (Bisimulation-
based NDC) on Petri nets, in terms of the unfolding semantics [10]. The interest
for a causal characterization is not only of theoretical nature. On the pragmatic
side the use of a true concurrent semantics, like the unfolding, which represents
interleaving only implicitly, is helpful to face the state explosion problem which
affects the verification of concurrent systems.

The approach in [7] works in a two-level setting, possibly with downgrad-
ing [11], while since its infancy (see, e.g., [12]) information flow security has

Supported by MIUR project CINA and the Padua University project ANCORE.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
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2 P. Baldan and A. Beggiato

recognized the usefulness of dealing with multilevel security domains where a
relation between levels, referred as a security policy, specifies the admitted flows.
The transitive nature of information flow – if information flows from level A to
level B and from B to C then it necessarily flows from A to C – naturally leads
to work in domains where the security policy is a partial order, only allowing a
flow of information from lower to higher levels (no read-up, no write-down). The
order can be total, expressing a hierarchy of confidentiality degrees (e.g., top
secret, secret, confidential and unclassified in a military setting). It can also be
partial, typically when various confidentiality criteria are combined into a sin-
gle domain. E.g., an administration could keep public and sensitive citizen data
concerning taxes and civil status. Independent access rights to sensitive tax and
civil status data naturally leads to a lattice of security levels.

As argued, e.g., in [13] it can also be natural to consider intransitive policies,
in a way that a direct flow between two levels, say from A to B, can be forbidden,
while a flow mediated through a third level, say D, is admitted. Intransitive poli-
cies are suited, for instance, for representing downgrading of confidential infor-
mation. This allows for a controlled form of leakage, making such policies more
realistic than pure non-interference policies that require the complete isolation
of confidential levels. More generally, intransitive policies allow one to describe
the (possibly cyclic) paths on which information is allowed to flow in a system.

In this paper the approach of [7], providing a causal characterization of the
BNDC (Bisimulation-based NDC) property for (safe) Petri nets based on the
unfolding semantics, is extended to deal with multilevel transitive policies. Gen-
eralizing [11] we also treat the intransitive case, namely we develop a multilevel
theory for BINI [6], an adaptation of BNDC to intransitive domains. The non-
interference properties of interest are characterized in terms of the absence of
suitable causal dependencies in the unfolding, witnessed by places where illegal
interactions occur. This enables the definition of algorithms that checks the non-
interference properties on a suitably defined complete prefix of the unfolding.

The unfolding-based algorithms are implemented in a tool MultiUBIC [14].
Compared to tools that exploit the reachability graph of the net, like ANICA
(Automated Non-Interference Check Assistant) [15] and PNSC (Petri Net Secu-
rity Checker) [16], thanks to the partial order representation of concurrency,
MultiUBIC - as its predecessor UBIC – leads to a gain of efficiency for highly
concurrent systems where the unfolding prefix can be exponentially smaller than
the complete state space (see e.g. [17]). The verification of multilevel policies can
be also reduced to a number of problems on two-level security domains (enriched
with a downgrading level in the intransitive case). MultiUBIC comes equipped
with facilities for performing the reduction. The experiments suggest that, in
general, a direct multilevel verification is more efficient when the number of
levels increases, but situations are singled out where the reduction is convenient.

Synopsis. In Sect. 2 we define multilevel security domains and we review some
Petri net notions. In Sect. 3 we focus on transitive policies, providing a causal
characterization of the BNDC property and a verification algorithm. In Sect. 4
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we extend the results to intransitive policies. In Sect. 5 we describe the tool
MultiUBIC. In Sect. 6 we draw some conclusions.

2 Multilevel Security Domains and Petri Nets

In this section, after introducing multilevel security domains, we review some basic
notions about Petri nets, with special attention to their unfolding semantics, later
used to provide a causal characterization of the non-interference properties.

2.1 Multilevel Security Domains

Definition 1 (multilevel security domain). A multilevel security domain
(MSD) (L ,�) is a finite set of security levels L , endowed with a reflexive
relation �⊆ L × L called a security policy. When � is transitive we call
(L ,�) a transitive multilevel security domain.

The security policy specifies the legal information flows. It is reflexive because
entities at the same level should be able to freely exchange information. Without
loss of generality, a transitive MSD will be assumed to be a partial order. In fact,
if � is a proper preorder (i.e., not antisymmetric), we can equivalently consider
the partial order obtained as its quotient under the equivalence � ∩ �−1.
Since equivalent levels can communicate in either direction, they can be safely
collapsed. Examples of MSD will be discussed later, after introducing also net
systems. Given S ⊆ L we write S for its complement L \ S.

Definition 2 (upper sets and targets). Let (L ,�) be a MSD. An upper
set is a subset U ⊆ L such that if L ∈ U and L � L′ then L′ ∈ U . Given a
security level L ∈ L its set of targets is ↑L = {L′ ∈ L | L � L′}, while the
strict targets are ↑↑L = ↑L \ {L}.

An entity (user, program, variable, instruction) with associated security level
L has permission to influence, or to write, or to pass information only to entities
with security level in ↑L. Any other information flow is a violation of the policy.
Targets are defined on sets U ⊆ L by letting ↑U =

⋃
L∈U ↑L and ↑↑U = ↑U \U .

2.2 Petri Nets and Net Systems

A (Petri) net is a tuple N = (P, T, F ) where P , T are disjoint sets of places
and transitions, respectively, and F : (P × T ) ∪ (T × P ) → {0, 1} is the flow
function. Graphically places and transitions are drawn as circles and rectan-
gles, respectively, while the flow function is rendered by means of directed
arcs connecting places and transitions. For x ∈ P ∪ T we define its pre-set
•x = {y ∈ P ∪T : F (y, x) = 1} and its post-set x• = {y ∈ P ∪T : F (x, y) = 1}. A
marking of N is a function m : P → N. A transition t ∈ T is enabled at a marking
m, denoted m[t〉, if m(p) ≥ F (p, t) for all p ∈ P . If m[t〉 then t can be fired leading
to a new marking m′, written m[t〉m′, defined by m′(p) = m(p)+F (t, p)−F (p, t)
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for all places p ∈ P . The enabling and firing relations are extended to σ ∈ T ∗

(finite sequences of elements of T ) by defining m[ε〉m (where ε is the empty
sequence) and m[σ〉m′[t〉m′′ imply m[σt〉m′′. Markings are represented as black
dots, called tokens, inside places. A marked net is a pair N = (N,m0) where N
is a net and m0 is a marking of N . A marking m′ is reachable if there exists
σ ∈ T ∗ such that m0[σ〉m′. The set of reachable markings of N is denoted by
[m0〉. When m[t〉m′, the marking m′, uniquely determined by m and t, is denoted
by 〈m[t〉. Analogously, for σ ∈ T ∗, if m[σ〉 we can define the marking 〈m[σ〉. A
net N is safe if for every p ∈ P and every m ∈ [m0〉 we have m(p) ≤ 1.

In order to formalize information flow properties in the setting of Petri nets,
an MSD L is fixed and, as in [5,6], transitions are associated with security
levels.

Definition 3 (net system). A net system is a tuple N = (P, T, F, λ) where
(P, T, F ) is a Petri net and λ : T → L is a function that assigns a security level
to each transition. For S ⊆ L we define TS = {t ∈ T | λ(t) ∈ S}, the set of
transitions whose security level is in S. An S-system is a net system such that
T = TS, i.e. a system only capable of performing actions whose security level
belongs to S.

Consider the net system and security domain in Fig. 1. It represents a device
consisting of two independent sensors getting new measures for a processor,
that, in turn, can poll them to acquire more recent data. Each sensor has a
cyclic behavior. For instance, the left sensor is capable to get a measure (getA).
Such measure can be exposed at its interface (showA) and then removed after a
while (remA), restarting the cycle. Alternatively, the measure can be sent to a
shared cache (sendA) which is thus updated (upd iC). Note that when a place is
both in the pre- and post-set of a transition (like cache for upd iC) instead of an
ingoing and an outgoing arrow, we draw a single double arrow. The presence or

getA

a1

sendA

Free

sendB

b1

getB

a0 lA lB b0

remA showA upd1C upd2C showB remB

¬aa

cache

b¬b

poll1P readP poll2P

R W

processPLA

B

C P

Fig. 1. A non-BNDC net system under the security domain L (top left).
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absence of a datum at the interface is represented by a token in place a or ¬a,
respectively. The access to the cache by the two sensors via transitions upd iC
is mutually exclusive (the cache stores a single measure), as guaranteed by the
use of place Free, consumed by transitions sendX and produced by upd iC . The
processor cyclically gets some value for the measure. If a value is exposed at the
interfaces of the sensors (places a or b marked) then one of such values is taken
(poll iP ), otherwise (places ¬a and ¬b marked) the cached value is read (readP ).

The security level of transitions is given by their subscript (namely, λ(tL) �→
L). Transitions modeling the left and right sensors have security level A and B.
The processor and the cache have security levels P and C, respectively. The intu-
ition is that the two sensors should not interfere with each other, and they can
send information to the processor directly or through the cache. The processor
and the cache should not affect the behavior of the sensors.

In order to formalize the non-interference notions we will need some opera-
tions on net systems, specifically (parallel) composition and restriction [6].

Definition 4 (composition). Let N and N ′ be two net systems such that P ∩
P ′ = ∅ and for all t ∈ T ∩ T ′ it holds λt = λ′t. The composition of N and N ′ is
the net system N|N ′ = (P ∪ P ′, T ∪ T ′, λ ∪ λ′, F ∪ F ′). The composition of N =
(N,m0) and N′ = (N ′,m′

0) is the marked net system N|N′ = (N|N ′,m0 ∪ m′
0).

Definition 5 (restriction). Given a net system N and a subset T1 ⊆ T , the
restriction of N by T1 is the net system N \ T1 = (P, T − T1, λ

′, F ′) where λ′

and F ′ are the obvious restrictions of λ and F . For a marked net system N, the
restriction N \ T1 is (N \ T1,m0).

Intuitively N |N ′ is the parallel composition of N and N ′, synchronized on the
common transitions. Restriction simply removes the restricted transitions.

2.3 Unfolding Semantics and Related Notions

The behavior of a Petri net can be represented by its unfolding U(N) [10], an
acyclic net constructed inductively starting from the initial marking of N and
then adding, at each step, an occurrence of each enabled transition of N. In what
follows we indicate by π1 the projection over the first component of pairs.

Definition 6 (unfolding). Let N = ((P, T, F ),m0) be a marked net. Define
the net U (0) = (P (0), T (0), F (0)) as T (0) = ∅, P (0) = {(p,⊥) : p ∈ m0} and
F (0) = ∅, where ⊥ is an element not belonging to P , T or F . The unfolding is
the least net U(N) = (P (ω), T (ω), F (ω)) containing U (0) and such that

– if t ∈ T and X ⊆ P (ω) with X reachable, and π1(X) = •t, then (t,X) ∈ T (ω);
– for any e = (t,X) ∈ T (ω), the set Z = {(p, e) : p ∈ π1(e)•} ⊆ P (ω); moreover

•e = X and e• = Z.

Places and transitions in the unfolding represent tokens and firing of tran-
sitions, respectively, of the original net. Each place in the unfolding is a tuple
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¬aa
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a upd1C

rem1
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· · · · · ·

· · · · · ·

U(N)
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Fig. 2. A net system and the initial part of its unfolding.

recording the place in the original net and the “history” of the token. For his-
torical reasons transitions and places in the unfolding are also called events and
conditions, respectively. The projection π1 over the first component maps places
and transitions of the unfolding to the corresponding items of the original net
N. The initial marking is implicitly identified as the set of minimal places.

As an example, consider the net system in Fig. 2 (top left), a slightly simpli-
fied version of the subnet of Fig. 1 modeling one of the sensors. A fragment of
its unfolding is provided in Fig. 2(right). Conditions and events are labeled with
the name of the corresponding place and transition in the original net. Different
occurrences of a transition are distinguished using a numeric superscript. The
conditions labeled by a0 and ¬a on the top, according to Definition 6, are (a0,⊥)
and (¬a,⊥), respectively. Event get1A is (getA, {(a0,⊥)}) and the condition a1 in
its post-set is (a1, get1A). Similarly, event show1

A is (showA, {(a1, get1A), (¬a,⊥)}).

Definition 7 (causality, conflict). Causality < is the least transitive binary
relation on P (ω) ∪ T (ω) such that x < y if x ∈ •y. By ≤ we denote the reflexive
closure of <. Conflict is the least symmetric binary relation � on P ∪T such that
if t, t′ ∈ T , t �= t′ and •t ∩ •t′ �= ∅ then t�t′ and if x < x′ and x�y then x′�y.

In the running example, get1A ≤ show1
A and get1A ≤ send1A, while

send1A�show1
A and show1

A�rem1
A.

The runs of N are represented by the configurations of U(N), i.e., subsets
of T (ω) that are causally closed and conflict-free. For a transition t ∈ T (ω) we
define its causes [t] = {t′ ∈ T (ω) : t′ ≤ t} and its strict causes [t) = [t] − {t}.
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Definition 8 (configuration). A configuration of U(N) is a finite subset C ⊆
T (ω) such that (C × C) ∩ � = ∅ and [e] ⊆ C for all e ∈ C. The set of all
configurations of U(N) is denoted by C(U(N)).

The transitions of a configuration C can be fired in any order compatible
with causality, producing a marking called the frontier C◦ = (P (0) ∪ ⋃

t∈C t•) −
(
⋃

t∈C
•t); in turn, this corresponds to a marking of N given by M(C) = π1(C◦).

For instance, in Fig. 2, the set {get1A, show1
A, rem1

A} is a configuration, while
{show1

A, rem1
A} and {get1A, show1

A, rem1
A, show2

A} are not since the first is not
causally closed (get1A < show1

A) and the second has a conflict (show1
A#show2

A).
The unfolding has been shown to be marking complete in the sense that

m ∈ [m0〉 iff there exists C ∈ C(U(N)) such that M(C) = m (see [10,18]).

3 Transitive Multilevel Non-interference

In this section we focus on transitive multilevel security domains and we define
the reference security property in the paper as an instance of (Bisimulation-
based) Non-Deducibility on Composition (BNDC) [5].

3.1 Bisimilarity-Based Non-deducibility on Composition

Let (L ,�) be a transitive MSD, fixed throughout the section. The definition of
BNDC can be obtained by adapting that in [5,7] to the multilevel setting. First,
in order to formalize the idea of variations of the behavior which are visible at
a given security level we introduce a view function (or purge function [19]).

Definition 9 (view function). Given a subset of the domain S ⊆ L and a net
system N , the view function S(·) : T ∗ → T ∗

S , is defined inductively by S(ε) = ε,
S(tσ′) = tS(σ′) if λ(t) ∈ S and S(tσ′) = S(σ′) otherwise.

The view function filters out transitions whose level is not in S. It is used to
define a bisimulation capturing the observation power of a user able to observe
only events with security level in a given set.

Definition 10 (S-view bisimulation). Let N, N′ be marked systems and S ⊆
L . An S-view simulation of N by N′ is a relation R ⊆ [m0〉 × [m′

0〉 such that:

– (m0,m
′
0) ∈ R ;

– if (m,m′) ∈ R and m[σ〉 then there exists σ′ such that S(σ) = S(σ′), m′[σ′〉
and (〈m[σ〉, 〈m′[σ′〉) ∈ R.

An S-view bisimulation between N and N′ is a relation R ⊆ [m0〉×[m′
0〉 such

that R and R−1 are S-view simulations. If there exists an S-view bisimulation
between N and N′, we say that they are S-view bisimilar and write N ≈S N′.
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In a two-level setting, i.e., in the domain {Low � High}, a system is non-
interferent when the low level behavior is not influenced by high level interac-
tions. Formally, a net system N is BNDC when N ≈Low (N|N′) \ (THigh − T ′)
for any {High}-net N′, i.e., the “low level” view of the behavior of N remains
unchanged when the net interacts with any high level net system [6].

The generalization to the multilevel setting considers any partition of the
security domain in an upper set U ⊆ L and its complement U , and requires
that U does not influence the view of U .

Definition 11 (BNDC). Let N be a marked net system. For an upper set
U ⊆ L , we say that N is U -BNDC if N ≈U (N|N′) \ (TU − T ′) for all marked
U -systems N′. The system is BNDC if it is U -BNDC for any upper set U ⊆ L .

The definition can be understood as follows. Given an upper set U , if the
system is not U -BNDC then there is a flow from some level L ∈ U to L′ ∈ U .
This is a security violation since L �� L′ otherwise L′ would be in U . Vice versa,
if there is a security violation, it will consist of a flow from some security level L
to a level L′ which cannot be influenced by L, namely L �� L′. This is captured
by the definition above when considering the upper set U = ↑L, since L′ ∈ U .

Note that the BNDC property for a multilevel domain reduces to the validity
of BNDC in a number of two-level domains, one for each upper set, with U and
its complement U playing the role of the high and low part of the system,
respectively. Actually, as suggested by the considerations above, any security
violation can be detected by analyzing upper sets of the kind U = ↑L for L ∈ L .

Proposition 1. A net system N is BNDC iff N is ↑L-BNDC for every L ∈ L .

3.2 BNDC Through Causal and Conflict Places

The characterization of BNDC based on causal and conflict places for the two-
level case in [5,7], can be generalized to multilevel security domains. Roughly, a
net system is BNDC when transitions with different security levels are never in
conflict and there is no causal flow which is not allowed by the security policy.

Hereafter we focus on safe nets, which admit simpler and more effective
notions of causal and conflict place (a weakening of those for general nets, whence
the qualification “weak”).

Notation. Given a net system N and a transition t ∈ T , we denote by t− = •t\t•

and, dually, t+ = t• \ •t the sets of places where the firing of t decrease and
increase, respectively, the number of tokens.

Definition 12 (weak causal place). A weak causal place in a net system N
is any place p ∈ •l∩h+, for some l, h ∈ T such that λh �� λl, and some marking
m ∈ [m0〉 such that m[hτl〉, with τ ∈ T ∗.

Intuitively, the firing sequence hτl and the place p ∈ •l ∩h+ witness a firing of l
that depends on a token produced by the firing of h, representing an illegal flow
from level λh to level λl. Conflict places are defined along the same lines.
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Definition 13 (weak conflict place). A weak conflict place in a net system
N is any place p ∈ •l ∩ h−, for some l, h ∈ T such that λh �� λl, and some
reachable marking m ∈ [m0〉 such that m[h〉 and m[τ l〉, with τ ∈ T ∗.

The presence of weak causal or conflict places witnesses the failure of BNDC.

Theorem 1 (BNDC through weak causal/conflict places). A safe net
system N is BNDC iff N contains no weak causal nor weak conflict place.

Consider the running example in Fig. 1. The system is not BNDC. In fact
place a0 is causal, as witnessed by the firing sequence getA sendA upd1C getA,
with a0 ∈ upd1C

+ ∩ •getA and λ(upd1C) = C �� A = λ(getA). Analogously,
place b0 is causal and place Free, is both causal and conflict. The interference
seems unavoidable given that the cache is accessed in mutual exclusion and a
value sent to the cache must determine an update. In Sect. 4 we will show how
these occurrences of interference can be amended with the use of intransitive
policies.

3.3 Non-interference in the Unfolding

Occurrences of causal and conflict places in the unfolding of safe net systems
can be given a structural characterization, which, thanks to Theorem1, leads to
a unfolding-based characterization of the BNDC property.

Notation. For a condition b and an event t in the unfolding U(N) we set t+ =
{b ∈ P (ω) : π1(b) ∈ π1(t)+} and t− = {b ∈ P (ω) : π1(b) ∈ π1(t)−}.

Proposition 2 (BNDC in the unfolding). A safe net system N is not BNDC
iff there are events h′, l′ such that λh′ �� λl′ and a condition b in U(N) such
that either

(i) b ∈ •l′ ∩ h′+ or
(ii) b ∈ •l′ ∩ h′− and [h′) ∪ [l′] ∈ C(U(N)).

Note that condition (ii) is harder to check than (i), as it involves an explo-
ration of the history of the interacting transitions. In the verification procedure
it is convenient to look only for causal interference. This can be done, thanks
to the fact that for safe nets all occurrences of interference can be reduced to
causal ones. We omit the details which largely overlap with those for the two-
level case [7]. We only remark that the causal reduction causes an expansion of
the size of the net that is at most quadratic in the number of transitions.

Proposition 3 (BNDC in the causal reduct). Let N be a safe net system.
It is possible to build a safe net γ(N), called causal reduct of N, such that N is
BNDC iff γ(N) has no weak causal places.
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3.4 Unfolding-Based Algorithm for BNDC

The unfolding of a net can be infinite (when it includes a cycle). Starting with [18]
techniques have been developed for efficiently constructing finite prefixes of the
unfolding which are complete with respect to properties of interest [20].

Here, as a first step, we identify a completeness criterion ensuring that an
unfolding prefix includes at least a representative for a causal interference, when
a net system is not BNDC. This is used for developing an algorithm for checking
BNDC for a safe net. Interestingly, while Definition 11 reduces multilevel non-
interference to a number of checks in a two-level setting, here the verification is
performed by constructing a single unfolding prefix.

As discussed in the two-level case [7], a prefix complete for reachability could
omit information relevant for interference. In order to capture all occurrences of
interference, in the two-level case, markings were enriched by recording which
tokens were generated by high transitions. Here we record the level of transitions
generating the tokens, adapting the notion of completeness accordingly.

Definition 14 (c-marking, c-complete prefix). Let N be a safe net system
and let C ∈ C(U(N)). The confidentiality marking (c-marking) of C is M∗(C) =
〈M(C), ΛC〉, where ΛC : M(C) → L is a partial function defined as follows.
For any b ∈ C◦, if •b = {t′} then ΛC(π1(b)) = λt′, otherwise, if •b = ∅
then ΛC(π1(b)) is undefined. A prefix U of U(N) is complete for c-marking
reachability, or simply c-complete, when for any configuration C ∈ C(U(N))
there exists C ′ ∈ C(U) such that M∗(C) = M∗(C ′).

In words, ΛC maps each marked place to the level of the transition that gen-
erated the corresponding token. It is undefined on tokens of the initial marking.

When checking BNDC on a complete prefix U , we need to consider also
events at the “border” of U , i.e., events that are enabled by configurations of U
and which could be could be added by a further unfolding step. In the procedure
for generating the prefix these transitions will be added and marked as cut-offs.
The prefix obtained from U by adding such transitions is denoted U�.

We can now show that a c-complete prefix U of U(N), includes sufficient
information for deciding whether or not N contains a weak causal place.

Theorem 2 (weak causal places in c-complete prefixes). Let N be a safe
net system and let U be a c-complete prefix of U(N). Then p is a weak causal place
in N iff there exists in U� a condition b and events h′, l′ such that π1(b) = p,
b ∈ •l′ ∩ h′+ and λh′ �� λl′.

The above result and Proposition 3 implies that, given a safe net system, one
can check for BNDC on a c-complete prefix of the unfolding of its causal reduct.

Corollary 1 (BNDC on c-complete prefixes). Let N be a safe net system
and let U be a c-complete prefix of U(γ(N)). Then N is not BNDC iff there exist
events h′, l′ ∈ U� such that λh′ �� λl′ and •l′ ∩ h′+ �= ∅.
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Corollary 1 leads to an algorithm for checking BNDC on safe net systems.
Given N first it computes its causal reduct γ(N). Then it builds a c-complete
prefix of the unfolding U(γ(N)) by adding, at each step, a transition occurrence
and checking if its direct causalities satisfy the conditions in Corollary 1.

Corollary 2 (correctness of the algorithm for BNDC). Let N be a safe
net system. The algorithm outlined above always terminates and answers ‘yes’
iff N is BNDC.

4 Intransitive Multilevel Non-interference

In this section we focus on intransitive policies. The idea is that some information
flows between levels that cannot communicate directly become allowed if they
are mediated by a chain of trusted intermediaries.

4.1 Bisimilarity-Based Intransitive Non-interference

Inspired by the idea of separability in [19], in order to check whether there are
illegal flows from a set of levels U , we artificially isolate that set by removing from
the system all of its legal targets in ↑↑U . If, afterwards, the levels in U can still
influence other levels in the rest of the system, the influence is certainly illegal.
In fact, it cannot be mediated by a chain of legal intermediaries since any such
chain has been certainly broken by the construction. This leads to a multilevel
generalization of BINI (Bisimulation-based Intransitive Non-Interference) [6].

Definition 15 (BINI). Given U ⊆ L , a net system N is U -BINI if for all
reachable markings m ∈ [m0〉 the system (N \T↑↑U ,m) is U -BNDC in the domain
L ′ = (L \ ↑↑U,�∗). The system N is BINI if it is U -BINI for all U ⊆ L .

As explained above, for each set of levels U we consider the net N \ T↑↑U ,
obtained by pruning the transitions with level in ↑↑U , to which a flow from U is
admitted. The presence of an illegal flow from U is thus reduced to the presence
of any flow from U in the pruned subsystem. In turn, the presence of a flow
from U is formalized by resorting to the notion of BNDC previously introduced
(Definition 11). It is easy to see that the definition is well-given, i.e., U is an upper
set in L ′ = (L \ ↑↑U,�∗). Note that an illegal flow from U could occur at any
reachable marking m of the original system, but clearly the pruning operation
can make m unreachable. This is the reason why the pruned net N \ T↑↑U is
checked with any marking reachable in the original net system N.

Consider the running example in Fig. 1, which is not BNDC due to an inter-
ference between the cache and the sensors, and between the sensors themselves.
In both cases the interference stem out from the mutually exclusive access to the
cache. If this mode of access is an hardware constraint, it might be the case that
the designer intends to ignore such occurrences of interference, deeming them
inevitable and not problematic. This can be modeled by adding a number of
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Fig. 3. A fix for the sensor net that makes it BINI. Only part of the system is shown,
and as usual λ(xL) = L. The downgrading transitions are highlighted in green. (Color
figure online)

“downgrading” levels to the domain, and modifying the net adding downgrad-
ing transitions. In Fig. 3 we show how this can be done in order to make the old
net BINI (we only show a part of the system: the processor is unchanged and
the second sensor is symmetric to the first one). Note, e.g., that C �� A but
transition upd1C can obviously influence getA, since we can have a causal chain
upd1C d3D getA. However, this is not a violation of BINI because the interfer-
ence occurs through d3D, which is a legitimate intermediary (C � D � A).
More formally, if we take U = {C}, according to Definition 15, we have to con-
sider the net N \ T↑↑U , where legal intermediaries for C, namely transitions with
level in ↑↑{C} = {D,P} are pruned. In particular, the pruned net does not
include transition d3D and thus the interference of upd1C on getA is correctly
hidden. Similarly, transitions d1D and d2D mediate the conflict between sendA

and sendB .
Although not immediate, as a sanity check, it can be proved that BINI and

BNDC coincide on transitive domains.

Proposition 4 (BINI is BNDC on transitive domains). In a transitive
MSD L , a net system N is BINI if and only if N is BNDC.

Additionally, BINI can be characterized by replacing the quantification over
all subsets U ⊆ L of Definition 15 with a quantification over single levels.

Proposition 5 (multilevel BINI on single levels). A net system N is BINI
iff N is {L}-BINI for each L ∈ L .

4.2 BINI Through Causal and Conflict Places

A characterization of BINI amenable of effective verification in the unfolding of
safe nets, relies on intransitive variants of weak causal and conflict places.
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Definition 16 (intransitive weak causal/conflict place). Let N be a safe
net system. An intransitive weak causal place is p ∈ •l ∩ h+, for l, h ∈ T such
that λh �� λl, and there is a reachable m ∈ [m0〉 such that m[hτl〉, with τ ∈ T ∗

↑↑λh
.

An intransitive weak conflict place is p ∈ •l∩h−, for l, h ∈ t such that λh �� λl,
and there is a reachable m ∈ [m0〉 such that m[h〉 and m[τ l〉, with τ ∈ t∗↑↑λh

.

The difference with respect to the notions of weak causal and conflict place in
Sect. 3.2 for transitive policies is that here τ is required not to contain any transi-
tion to which information can could legally flow from h. Intuitively, the reason is
that, otherwise, the flow from h to l would be mediated by such transition, possi-
bly amending the violation represented by p. As an example, in Fig. 3 place Free
is not an intransitive conflict place, despite the fact that Free ∈ •sendA∩sendB

−

and B �� A. The reason is that, in any firing sequence starting from place Free
marked, an occurrence of sendA is necessarily preceded by d1D.

Theorem 3 (BINI through intransitive weak places). A safe net system
N is BINI iff it contains no intransitive weak causal or conflict place.

4.3 BINI in the Unfolding

Occurrences of intransitive weak causal places can be characterized in the unfold-
ing of safe nets.

Theorem 4 (intransitive weak causal places in the unfolding). Let N be
a safe net system. A place p in N is an intransitive weak causal place iff there
exists a condition b in U(N) such that π1(b) = p and there are events h′, l′ such
that (i) b ∈ •l′ ∩ h′+ and (ii) ∀t′ : h′ < t′ ≤ l′ . λh′ �� λt′.

The above, together with the possibility of resorting, as in the intransitive
case, to the causal reduct, leads to the following characterization of BINI.

Proposition 6 (BINI in the causal reduct). Let N be a net system. Then
N is BINI iff the causal reduct γ(N) contains no intransitive causal places.

For building a complete prefix, we still need to enrich the marking associated
with a configuration C with a function ΛC , mapping each token to the security
level of the generating transition. However, due to the intransitivity of the policy,
this is no longer sufficient to detect a violation. In fact, assume that an event l
of level L consumes a token of level H such that H �� L. Apparently this is a
violation of the policy since the presence of a token of level H reveals that an
event, say h, of the same level has been executed before, and this fact is visible
at level L. However, this might not be a problem, since it could be that a token
of a level D such that H � D � L, is also in the pre-set of l, produced by an
event d such that h < d < l. In this case, the flow of information from L to H
is legitimately mediated by D. Roughly, we can think that the token of level D
absorbs the token of level H to its level. We then enrich the markings with an
absorbing relation δ over the conditions in the frontier of a configuration.
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Definition 17 (i-marking, i-complete prefix). Let N be a safe net system
and let C ∈ C(U(N)). The intransitive confidentiality marking (i-marking) of
C is M∗

i (C) = 〈M(C), ΛC , δC〉, where ΛC : P → L is as in Definition 14 and
δC : π1(C◦) × π1(C◦) is the relation:

{(π1(p), π1(q)) | ∃t, t′ ∈ C . q ∈ t′• ∧ λ(t′) � λt ∧ t′ < t ≤ p}

A prefix U of U(N) is complete for i-marking reachability ( i-complete), when for
any configuration C ∈ C(U(N)) there is C ′ ∈ C(U) such that M∗

i (C) = M∗
i (C

′).

Intuitively, whenever δ(p, q) the token in p absorbs the token in q to its level,
if they are used in the same pre-set.

It can be proved that an i-complete prefix U of U(N) includes sufficient
information for deciding whether N contains a weak intransitive causal place.
This fact, with Theorem 4 and Proposition 6, implies that one can check BINI
for a net system on an i-complete prefix of the unfolding of its causal reduct.

Corollary 3 (BINI on i-complete prefixes). Let N be a safe net system
and let U be a i-complete prefix of U(γ(N)). Then N is not BINI iff there exists
in U� a condition b and events h′, l′ such that b ∈ •l′ ∩ h′+, λh′ �� λl′, and
furthermore ∀b′ ∈ •l′ .¬(b′δ[l′)b).

In words, an interference is witnessed by an event l′ that uses a token b of a non
accessible level such that b is not absorbed. As in the transitive case, this result
is used for designing an algorithm that checks BINI on safe net systems.

5 The Tool MultiUBIC

The unfolding-based algorithms outlined in the previous sections are imple-
mented in MultiUBIC [14]. It extends a previous tool UBIC, which was limited
to two level security domains (possibly with downgrading). MultiUBIC inputs a
security policy (transitive or intransitive) and a safe net system, and it checks
whether BNDC (transitive policies) or BINI (intransitive policies) is satisfied.

Compared to PNSC [21] and ANICA [22], “interleaving competitors” based
on the work [5], MultiUBIC inherits the good performance of its ancestor UBIC:
the use of a partial order semantics leads to a gain of efficiency especially for
highly concurrent systems, where the state explosion problem is more serious.

The verification of multi-level security policies can be reduced to a number
of checks in a two-level setting (possibly with downgrading, in the intransitive
case). MultiUBIC comes equipped with facilities for performing such reduction.
The definition of BNDC suggests that such reduction can be expensive, since the
two-levels problems arise from partitions of the security domain whose number
can be exponential in the number of levels. For net systems it can be actually
shown that we can limit to a linear number of two-level checks, one for each level
(see Proposition 1 for the transitive case and Proposition 5 for the intransitive
case). Still, some preliminary experiments reveal that solving directly the original
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multi-level problem, typically provides a linear gain of efficiency at the price
of an increase of memory usage. The performances of MultiUBIC can degrade
for net systems where a relevant number of places have input transitions of
different levels, a fact that potentially causes an exponential blow of the number
of enriched markings. A precise characterization of this pathological situations is
under investigation. Due to space limitations, a presentation of the experimental
results and a more extensive discussion are deferred to the full version.

6 Conclusions

We studied non-interference in a multilevel setting, for transitive and intransi-
tive security domains, focusing on Petri nets. Generalizing [7,11], we showed that
Bisimilarity-based Non-Deducibility on Composition (BNDC) and its intransi-
tive extension BINI [6], admit a causal characterizations in the unfolding of safe
net systems. This led to verification algorithms for BNDC and BINI on safe net
systems with multilevel policies, implemented in the tool MultiUBIC.

Causal semantics have been used in [23] for deducing the occurrence of non-
observable transitions in the diagnosis of discrete event systems. There is a
clear conceptual relation relation between diagnosability properties and non-
interference, despite the fact that the former are trace-based while our non-
interference is bisimulation-based. The work on intransitive non-interference
in [24], that relies on automata models and language theory could be helpful
for establishing a formal relation.

In the setting of Petri nets other classes of information flow properties have
been studied, like opacity properties [25] (which include non-interference) and
selective non-interference [26]. Exploring the use of causal semantics in this gen-
eral setting appears as an interesting and challenging venue of future research.

A huge literature exists on non-interference for various formalisms, including
process calculi and imperative languages (see, e.g., [2,27] for surveys). Fruit-
ful connections could emerge investigating a causal characterizations of non-
interference in these settings, possibly through encodings into Petri nets.

We also plan to consider formalizations of non-interference obtained from
the classical ones, by replacing interleaving observational semantics with true-
concurrent ones [28]. The higher distinguishing power of such semantics could
allow to identify new forms of interference which cannot be captured in an inter-
leaving setting. Interesting reflections in this directions are reported in [29].
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Abstract. In the setting of contract theory, retractable contracts have
been defined to formalize binary session protocols where the partners
can go back to certain particular synchronization points when the ses-
sion gets stuck, looking for a successful state, if any.

In the present paper we propose a three-party game-theoretic inter-
pretation of client/server systems of retractable contracts. In particular,
we show that a client is retractable-compliant with a server if and only if
there exists a winning strategy for a particular player in a game-theoretic
model of contracts. Such a player can be looked at as a mediator, driving
the choices in the retractable points. We show that winning strategies for
the mediator player correspond to orchestrators in a system of orches-
trated client/server sessions, and vice versa.

The notion of contract has been proposed as an abstraction to formally specify
and check the behaviour of software systems, and especially of web services. In
particular, in the setting of service-oriented architectures the concept of agree-
ment, often called compliance, is of paramount importance while searching com-
ponents and ensuring that they will properly collaborate with each other. The
main challenge is that compliance has to meet the contrasting requirements of
guaranteeing correctness of interactions w.r.t. certain safety and liveness con-
ditions, while remaining coarse enough to maximize the possibilities of finding
compliant components in a library or services through the web.

The main conceptual tool to face the issue is that of relaxing the constraint
of a perfect correspondence among contracts through contract refinement, also
called sub-contract [8,9] and sub-behaviour [3] relations, that is pre-order rela-
tions such that processes conforming to more demanding contracts (which are
lower in the pre-order) can be safely substituted in contexts allowing more per-
missive ones. Indeed contract refinement closely resembles subtyping, as it is
apparent in the case of session types [3,10], and it is related to (but doesn’t coin-
cide with) observational pre-orders and must-testing in process algebra [6,11].

However, since the first contributions to the theory of contracts [9], a rather
different approach has been followed, based on the idea of filtering out certain
actions that, although unmatched on both sides of a binary interaction, can be
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neglected or prevented by the action of a mediating process called the orchestra-
tor [13,14], without compromising the reaching of the goals of the participants,
like the satisfaction of all client requests in a client-server architecture.

An alternative route for the same purpose is to change the semantics of
contracts so that interacting processes can adapt each other by means of a roll-
back mechanism: these are the retractable contracts proposed in [4]. Although
compliance can be decided in advance, interaction among processes exposing
retractable contracts undergoes a sequence of failures and backtracks that might
be avoided by extracting information from the compliance check.

The contribution of the present paper is to show that the two approaches
of orchestrated and retractable compliance are indeed equivalent, at least in the
case of session contracts (see [2,3], where they are dubbed “session behaviours”),
which are contracts that limit the non-determinism by constraining both external
and internal choices to a more regular form. More precisely, we consider contracts
that are syntactically the same as retractable ones, but instead of adding rollback
to the usual contract semantics, we abstractly define outputs in an external
choice as affectible actions: their actual sent can be influenced by the partner
in a binary session or by some entity external to the system. Affectible actions
correspond to retractable actions in [4].

The essence of the construction is that (an appropriate restriction of) orches-
trators correspond to winning strategies in certain concurrent games that nat-
urally model retractable contracts. In [5] the theory of contracts has been
grounded on games over event structures among multiple players; applying this
framework to retractable contracts, the interaction among a client and a server
can be seen as a play in a three-party game. Player A moves according to the
unaffectible actions of the client; player B moves according to the unaffectible
actions of the server, whereas moves by player C correspond to affectible actions
on both sides, namely the retractable agreement points of the system. The client
ρ is hence affectible-compliant with the server σ whenever C has a winning strat-
egy in the game with players A and B, where player C wins when she succeeds to
lead the system ρ‖σ to a successful state (the client terminates) or the interaction
proceeds indefinitely without deadlocking.

The payoff of the game theoretic interpretation is that there is a precise cor-
respondence between winning strategies for player C and elements of a class of
orchestrators in the sense of [14]. Such a correspondence is of interest on its own,
since strategies are abstract entities while orchestrators are terms of a process alge-
bra and concrete witnesses of the agreement among participants of a session. More-
over, we can decide whether a client-server pair is reversible-compliant by means
of an algorithm that synthesizes an orchestrator if any, or reports failure.

1 Affectible Contracts and Retractable Compliance

Affectible session contracts (affectible contracts for short) are a variant of
retractable contracts in [4]; they are syntactically the same, but affectible session
contracts have a different, and more abstract semantics. Nonetheless compliance
coincides in both settings as we show in this section.
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Definition 1 (Affectible session contracts). Let N (set of names) be some
countable set of symbols and let N = { a | a ∈ N } (set of conames), with
N ∩N = ∅. The set ASC of affectible session contracts is defined as the set of
the closed (with respect to the binder rec ) expressions generated by the following
grammar,

σ, ρ := | 1 success

| ∑
i∈I ai.σi input

| ∑
i∈I ai.σi affectible output

| ⊕
i∈I ai.σi unaffectible output

| x variable

| recx.σ recursion

where I is non-empty and finite, the names and the conames in choices are
pairwise distinct and σ is not a variable in recx.σ.

Affectible as well as retractable contracts stem from session behaviours of [3]
also called session contracts in [6]. With respect to session behaviors, affectible
contracts add the affectible output construct, which is called retractable output
in [4]. The affectible output represents points where the client-server interaction
can be influenced by the partner process, or can be guided by a third party;
consequently they are represented by the CCS external choice operator as it is the
case of the input branching (which is always affectible). Outputs in an internal
choice are regarded as unaffectible actions and treated as unretractable in the
setting of retractable contracts. The transitions representing an internal choice
have no label; note that any

⊕
i∈I ai.σi just reduces to one of its summands.

In the following we consider recursion up-to unfolding, that is we equate
recx.σ with σ{x/recx.σ}. The symbol α will be used as a variable ranging over
N ∪ N .

Definition 2 (LTS for ASC). Let Act = N ∪ N ∪ { a+ | a ∈ N }.
(+) a.σ + σ′ a−→ σ (+) a.σ + σ′ a+−→ σ

(⊕) a.σ ⊕ σ′ −→ a.σ (α) α.σ
α−→ σ

A client/server system (system for short) is a pair of contracts in ASC that we
denote by ρ ‖σ.

Definition 3 (LTS for systems). Let csAct = {+, τ }.
ρ −→ ρ′

ρ ‖ σ −→ ρ′ ‖ σ

σ −→ σ′

ρ ‖ σ −→ ρ ‖ σ′

ρ
a−→ ρ′ σ

a+−−→ σ′

ρ ‖ σ
+−→ ρ′ ‖ σ′

ρ
a+−−→ ρ′ σ

a−→ σ′

ρ ‖ σ
+−→ ρ′ ‖ σ′

ρ
α−→ ρ′ σ

α−→ σ′

ρ ‖ σ
τ−→ ρ′ ‖ σ′
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We define =⇒ =−→∗ ◦ τ−→ and +=⇒ =−→∗ ◦ +−→ . In the last rule, α is the CCS
involution of names and co-names.

The semantics of ρ ‖σ is reminiscent of CCS parallel composition as used
to define testing preorders in [12], but for the usage of the labels + and τ and
for the absence of a success marker (there is a set of success states instead: see
below). We use labels + and τ to distinguish among affectible and unaffectible
communications respectively, although they are both unobservable as the only
observable facts are termination and the resulting state.

Lemma 1. Let ρ, σ ∈ ASC. ρ ‖σ =⇒ and ρ ‖σ
+=⇒ can never both occur.

The affectible compliance relation can be now coinductively defined as follows.

Definition 4 (Affectible Compliance Relation 
A).

(i) Let H : P(ASC × ASC) → P(ASC × ASC) be such that, for any R ⊆ ASC × ASC,
we get (ρ, σ) ∈ H(R ) if the following conditions hold:

(1) [ ρ ‖σ �=⇒ and ρ ‖σ �+=⇒ ] implies ρ = 1;
(2) ∀ρ′, σ′. [ ρ ‖σ =⇒ ρ′ ‖σ′ implies ρ′ R σ′ ];
(3) ρ ‖σ

+=⇒ implies ∃ρ′, σ′. [ ρ ‖σ
+=⇒ ρ′ ‖σ′ and ρ′ R σ′ ].

(ii) A relation R ⊆ ASC × ASC is an affectible compliance relation if R ⊆ H(R ).

A is the greatest solution of the equation X = H(X), that is 
A = νH.

In words the client ρ is affectible-compliant with the server σ if either ρ and σ
cannot communicate because ρ = 1, namely all client requirements have been
satisfied; or all unaffectible communications of the system ρ ‖σ lead to compli-
ant systems; or there exists an affectible communication leading to a compliant
system. By Lemma 1 the last two conditions cannot be simultaneously satisfied.

Because of conditions (i2) and (i3), the affectible compliance relation is an
abstract concept; but it can be made concrete via the characterization in terms
of retractable computations, provided in Sect. 1.

Let us consider the following example from [4]. A Buyer is looking for a bag
(bag) or a belt (belt); she will decide how to pay, either by credit card (card)
or by cash (cash), after knowing the price from the Seller.

Buyer = bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

The Seller does not accept credit card payments for items of low price, like belts,
but only for more expensive ones, like bags:

Seller = belt.price.cash + bag.price.(card + cash)

From the previous definition it is not difficult to check that Buyer 
A Seller.
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Retractable Contracts. Let us recall the formalism of retractable contracts;
the following definitions and Theorem1 below are from [4]. As said before,
retractable and affectible contracts are syntactically the same, but the opera-
tional semantics of the formers is based on a rollback operation, acting on the
recording of certain discarded branches of an interaction. The notion of contracts
with histories is defined as follows:

Definition 5 (Contracts with histories). Let Histories be the set of expres-
sions (referred to also as stacks) generated by the grammar:

γ ::= [ ] | γ :σ where σ ∈ ASC ∪ {◦}.
Then the set of contracts with histories is defined by:

RCH = {γ ≺ σ | γ ∈ Histories, σ ∈ ASC ∪ {◦} }.
Histories are finite lists of contracts representing the branches which have

been discarded because of a retractable synchronization action. The effect of
retracting such an action is modeled by restoring the last contract on the history
as the actual contract and by trying a different branch, if any. This is formalised
by the operational semantics of contracts with histories that is defined as follows.

Definition 6 (LTS of Contracts with Histories).

(+) γ ≺ α.σ + σ′ α−→ γ :σ′ ≺ σ (⊕) γ ≺ a.σ ⊕ σ′ τ−→ γ ≺ a.σ

(α) γ ≺ α.σ
α−→ γ :◦ ≺ σ (rb) γ :σ′ ≺ σ

rb−→ γ ≺ σ′

When selecting a branch of an external choice, the discarded branches are
memorised on top of the new stack (the last contract of the history) in the right-
hand side of rule (+); on the contrary, when an internal choice occurs, the stack
remains unchanged in rule (⊕). When a single action is executed, the history is
modified by adding a ‘◦’, meaning that the only available branch has been tried
and no alternative is left. Rule (rb) recovers the contract on the top of the stack
(if the stack is different than [ ]) by replacing the current one with it. Note that
the combined effect of rules (⊕) and (α) is that the alternative branches of an
internal choice are unrecoverable.

The interaction of a client with a server is modeled by the reduction of
their parallel composition, that can be either forward, consisting of CCS style
synchronisations and single internal choices, or backward if there is no possible
forward reduction, the client is different than 1 (the fulfilled contract) and rule
(rb) is applicable on both sides.

Definition 7 (TS of Client/Server Pairs). We define the relation −→ over
pairs of retractable contracts with histories by the following rules:
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δ ≺ ρ
α−→ δ′ ≺ ρ′ γ ≺ σ

α−→ γ ′ ≺ σ′
(comm)

δ ≺ ρ ‖ γ ≺ σ −→ δ′ ≺ ρ′ ‖ γ ′ ≺ σ′

δ ≺ ρ
τ−→ δ ≺ ρ′

(τ)
δ ≺ ρ ‖ γ ≺ σ −→ δ ≺ ρ′ ‖ γ ≺ σ

γ ≺ ρ
rb−→ γ ′ ≺ ρ′ δ ≺ σ

rb−→ δ′ ≺ σ′ ρ �= 1
(rbk)

γ ≺ ρ ‖ δ ≺ σ −→ γ ′ ≺ ρ′ ‖ δ′ ≺ σ′

plus the rule symmetric to (τ) w.r.t. ‖. Moreover, rule (rbk) applies only if neither
(comm) nor (τ) do.

Up to the rollback mechanism, compliance in the retractable setting is defined
as usually done with client/server contracts.

Definition 8 (Retractable Compliance, 
rbk).

(i) The relation 
rbk on contracts with histories is defined as follows:
for any δ′, ρ′,γ′, σ′, δ ≺ ρ 
rbk γ ≺ σ holds whenever

δ ≺ ρ ‖γ ≺ σ
∗−→ δ′ ≺ ρ′ ‖γ′ ≺ σ′ �−→ implies ρ′ = 1

(ii) The relation 
rbk on contracts is defined by: ρ 
rbk σ if [ ] ≺ ρ 
rbk [ ] ≺ σ.

In Buyer/Seller example we have that, in case a belt is agreed upon and the
buyer decides to pay using her credit card, the system gets stuck in an unsuc-
cessful state. This causes a rollback enabling a successful state to be reached. So
Buyer 
rbk Seller.

Retractable compliance can be axiomatised in terms of derivability in a for-
mal system whose statements do not mention histories.

Definition 9 (Formal System � for Retractable Compliance).

(Ax) :
Γ � 1 �≺ σ

(Hyp) : Γ, ρ �≺ σ � ρ �≺ σ

(+ · +) :
Γ, α.ρ + ρ′ �≺ α.σ + σ′ � ρ �≺ σ

Γ � α.ρ + ρ′ �≺ α.σ + σ′

(⊕ · +) :
∀i ∈ I. Γ,

⊕
i∈Iai.ρi �≺ ∑

j∈I∪Jaj .σj � ρi �≺ σi

Γ � ⊕i∈Iai.ρi �≺ ∑
j∈I∪Jaj .σj

(+ · ⊕) :
∀i ∈ I. Γ,

∑
j∈I∪Jaj .σj �≺ ⊕

i∈Iai.ρi � ρi �≺ σi

Γ � ∑j∈I∪Jaj .σj �≺ ⊕
i∈Iai.ρi
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Let us formally show that ∅ � Buyer 
≺ Seller

(Ax)
Γ ′′ � 1 �≺ 1

(Ax)
Γ ′′ � 1 �≺ 1

(⊕, +)
Γ ′ � card ⊕ cash �≺

card + cash
(+, +)

Buyer′ �≺ Seller � price.(card ⊕ cash) �≺
price.(card + cash)

(+, +)
� Buyer �≺ Seller

where Γ ′ = Buyer �≺ Seller, price.(card ⊕ cash) �≺ price.(card + cash)

and Γ ′′ = Γ ′, card ⊕ cash �≺ card + cash

The formal system � completely axiomatises retractable compliance:

Theorem 1 (Soundness and Completeness of system � w.r.t 
rbk).

ρ 
rbk σ if and only if � ρ 
≺ σ.

Equivalence of 
A and 
rbk. As previously observed, the judgements of system
� abstract away from histories, which are essential in the definition of rollback.
This is possible because rollback is just a backtracking mechanism, which is
however limited to the exploration of alternative branches of the reduction tree of
a system rooted at retractable communications. Since affectible and retractable
communications are the same, it is natural to look at system � to establish the
equivalence among 
A and 
rbk.

Lemma 2. If ρ 
A σ, then one of the following conditions holds:

1. ρ = 1;
2. ρ =

∑
i∈I αi.ρi, σ =

∑
j∈J αj .σj and ∃h ∈ I ∩ J. ρh 
A σh;

3. ρ =
⊕

i∈I ai.ρi, σ =
∑

j∈J aj .σj, I ⊆ J and ∀h ∈ I. ρh 
A σh;
4. ρ =

∑
i∈I ai.ρi, σ =

⊕
j∈J aj .σj, I ⊇ J and ∀h ∈ J. ρh 
A σh.

In Theorem 1, soundness and completeness of system � has been proved
when the symbol 
≺ is interpreted as the retractable compliance relation 
rbk.
We now show that system � is sound and complete also when the symbol 
≺

is interpreted as the affectible compliance relation 
A. The equivalence of the
relations 
rbk and 
A follows then as an immediate corollary.

Definition 10. (A 
A-semantics for system �). Let Γ be a set of state-
ments of the form ρ 
≺ σ. We define

(i) |=A Γ if ∀(ρ′ 
≺ σ′) ∈ Γ . [ ρ′ 
A σ′ ];
(ii) Γ |=A ρ 
≺ σ if |=A Γ ⇒ ρ 
A σ .

The proof of the following Lemma is inspired to [7].

Lemma 3. (Soundness of � w.r.t 
A). If Γ � ρ 
≺ σ, then Γ |=A ρ 
≺ σ.
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We write D :: Γ � ρ 
≺ σ when D is a derivation in the system � with
conclusion Γ � ρ 
≺ σ. We can easily implement a backward proof search (from
conclusion to premises) in the formal system � by means of a procedure Prove.

Lemma 4. (i) Prove(Γ � ρ 
≺ σ) = D �= fail implies D :: Γ � ρ 
≺ σ;
(ii) Prove(Γ � ρ 
≺ σ) terminates for all judgments Γ � ρ 
≺ σ.

Lemma 5 (Completeness of � w.r.t 
A). If ρ 
A σ, then � ρ 
≺ σ.

Proof (Sketch). If ρ 
A σ then by Lemma 2 there are four possibilities; disregard-
ing the contexts Γ ’s, we see that each of these cases corresponds exactly to one
rule in system �, where Prove is recursively applied to the respective premises,
but for rule (Hyp), that corresponds to an exit clause in Prove. It follows that
Prove(� ρ 
≺ σ) �= fail, so that the thesis follows by Lemma 4, since Prove
always terminates either returning a correct derivation or fail.

Corollary 1. 
rbk = 
A

Proof. By Lemmas 3 and 5 and Theorem 1

2 Game-Theoretic Interpretation of Retractable
Contracts

Following [5] we interpret affectible contracts as certain games over event struc-
tures. This yields a game-theoretic interpretation of affectible contracts, and
hence of retractable contracts by Corollary 1. For the reader’s convenience we
briefly recall the basic notions of event structure and game associated to an LTS.

Definition 11 (Event structure [15]). Let E be a denumerable universe of
events and let A be a universe of action labels. Besides, let # ⊆ E × E be an
irreflexive and symmetric relation (called conflict relation).

(i) The predicate CF on sets X ⊆ E and the set Con of finite conflict-free sets
are defined by CF(X) = ∀e, e′ ∈ X.¬(e#e′) Con = {X ⊆fin E | CF(X) }

(ii) An event structure is a quadruple E = (E,#,�, l) where
– �⊆ Con × E is a relation such that sat(�) = � (i.e. � is saturated),

where sat(�) = { (Y, e) | X � e&X ⊆ Y ∈ Con };
– l : E → A is a labelling function.

Given a set E of events, E∞ denotes the set of sequences (both finite and infinite)
of its elements. We denote by e = 〈e0e1 · · · 〉 a sequence of events1. Given e, we
denote by ê the set of its elements, by |e| its length (either a natural number or
∞) and by e/i for i < |e| the subsequence 〈e0e1 · · · ei−1〉 of its first i elements.
Given a set X we denote by |X| its cardinality. N is the set of natural numbers.

1 Differently than in [5], we use the notation e for sequences instead of σ, which refers
to a contract here.
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Definition 12 (LTS over configurations [5]). Given an event structure
E = (E,#,�, l), we define the LTS (Pfin(E), E,→E) as follows:

C
e−→ C ∪ { e } if C � e, e �∈ C and CF (C ∪ { e })

Given an LTS (S,→) and a state s ∈ S, we denote by (s,→) the restriction of
→ to the transitions starting with the state s, and by Tr(s,→) the set of the
(finite or infinite) traces in (s,→) out of s.

Multi-player Games. All the subsequent definitions and terminology are from
[5], except in the case of games that we call multi-player instead of “contracts”,
which would be confusing in the present setting.

A set of participants (players) to a game will be denoted by P, whereas
the universe of partecipants is denoted by PU. We shall use A, B,. . . as variables
ranging over P or PU. The symbols A, B, . . . will denote particular elements of P
or PU. We assume that each event is associated to a player by means of a function
π : E → PU. Moreover, given A ∈ PU we define EA = { e ∈ E | π(e) = A }.

Definition 13 (Multi-player game).

(i) A game G is a pair (E , Φ) where E = (E,#,�, l) is an event structure and
Φ : PU ⇀ E∞ → {−1, 0, 1 } associates each participant and trace with a
payoff. Moreover, for all X � e in E, Φ(π(e)) is defined. We say that G is a
game with partecipants P whenever ΦA is defined for any player A in P.

(ii) A play of a game G = (E , Φ) is a (finite or infinite) trace of (∅,→E) i.e. an
element of Tr(∅,→E).

Definition 14 (Strategy and conformance). A strategy Σ for a participant
A in a game G is a function which maps each finite play e = 〈e0 · · · en〉 to a
(possibly empty) subset of EA such that: e ∈ Σ(e) ⇒ ee is a play of G.
A play e = 〈e0e1 · · · 〉 conforms to a strategy Σ for a partecipant A in G if, for
all i ≥ 0, ei ∈ EA ⇒ ei ∈ Σ(e/i).

Although events, namely moves, are associated to players via the map π, this
is not injective in general, so that players can share moves. In general there are
neither a turn rule nor alternation of players, similarly to concurrent games in
[1]. A strategy Σ provides “suggestions” to some player on how to legally move
continuing finite plays (also called “positions” in game-theoretic literature). But
Σ may be ambiguous at some places, since Σ(e) may contain more than an
event; in fact it can be viewed as a partial mapping which is undefined when
Σ(e) = ∅.

We refer to [5] for the general definition of winning strategy for multi-player
games (briefly recalled also in Remark 1 below), since it involves the conditions
of fairness and innocence, which will be trivially satisfied in our interpretation of
affectible client/server systems, where the notion of winning strategy corresponds
to the one given in Definition 19.
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Turn-Based Operational Semantics and Compliance. Toward the game
theoretic interpretation of a client/server system ρ ‖σ, we introduce a slightly
different description of the semantics of affectible contracts, making explicit the
idea of a three-player game. We interpret the internal choices and the input
actions of the client as moves of a player A and the internal choices and the
input actions of the server as moves of a player B. The synchronisations due to
affectible choices are instead interpreted as moves of the third player C.

From a technical point of view this is a slight generalization and adaptation
to our scenario of the turn-based semantics of “session types” in [5], Sect. 5.2.
The changes are needed both because we have three players instead of two,
and because session types are just session contracts, that is affectible contracts
without affectible outputs.

Definition 15 (Single-buffered ASC). The set ASC[ ] of single-buffered affectible
contracts is defined by ASC[ ] = ASC ∪ {0 } ∪ { [ak]σk | ⊕i∈Iai.σi ∈ ASC, k ∈ I }

We use the symbols ρ̃, σ̃, ρ̃′, σ̃′ . . . to denote elements of ASC[ ]. A turn-based con-
figuration (configuration for short) is a pair ρ̃ ||| σ̃, where ρ̃, σ̃ ∈ ASC[ ].

As in [5], we have added the “single buffered” contracts [a]σ to represent the
situation in which a is the only output offered after an internal choice. Since the
actual synchronization takes place in a subsequent step, a is “buffered” in front
of the continuation σ.

Definition 16 (Turn-based operational semantics of configurations).
Let tbAct = {A,B,C} × (Act ∪ { ✓ }). In Fig. 1 we define the LTS −→ over
turn-based configurations, with labels in tbAct.

Comparing −→ with the LTS for affectible contracts, we observe that [a]σ
is a duplicate of a.σ, with the only difference that now there is a redundant step
in ⊕i∈Iai.ρi ||| σ̃

A:ak−→ [ak]ρk ||| σ̃ when I is the singleton { k }. Also we have the

new reduction 1 ||| ρ̃
C:✓−→ 0 ||| ρ̃ to signal when player C wins.

Let β = 〈β1 · · · βn〉 ∈ tbAct∗. We shall use the notation
β−→ =

β1−→
◦ · · · ◦ βn−→
Definition 17 (Turn-Based Compliance Relation 
tb).

(i) Let H : P(ASC[ ] × ASC[ ]) → P(ASC[ ] × ASC[ ]) be such that, for any R ⊆
ASC[ ]×ASC[ ], we get (ρ̃, σ̃) ∈ H(R ) if:

(1) ρ̃ ||| σ̃ �−→ implies ρ = 0;

(2) ∀ρ̃′, σ̃′. [ ρ̃ ||| σ̃
β−→ ρ̃′ ||| σ̃′ implies ρ̃′ R σ̃′ ],

where β ∈ {A:a,A:a,B:a,B:a | a ∈ N};
(3) ∃a ∈ N .ρ̃ ||| σ̃

C:a−→ implies ∃ρ̃′, σ̃′, a. [ρ̃ ||| σ̃
C:a−→ ρ̃′ ||| σ̃′ and ρ̃′ R σ̃′];
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Fig. 1. Turn-based operational semantics of turn-based configurations

(ii) A relation R ⊆ ASC[ ] ×ASC[ ] is a turn-based compliance relation if R ⊆ H(R).

tb is the greatest solution of the equation X = H(X), that is 
tb = νH.

(iii) For ρ, σ ∈ ASC, we say that ρ is turn-based compliant with σ if ρ 
tb σ.

Turn-based compliance is equivalent to affectible compliance

Theorem 2. Let ρ, σ ∈ ASC. ρ 
tb σ ⇔ ρ 
A σ.

Three-Player Game Interpretation for ASC Client/Server Systems.
Using the turn-based semantics, we associate to any client/server system an event
structure, and then a three-player game2, extending the treatment of session
types with two-player games in [5]. For our purposes we just consider the LTS
of a given client/server system instead of an arbitrary one.

Definition 18. (ES of affectible-contracts systems). Let ρ ‖σ be a
client/server system of affectible contracts. We define the event structure
[[ρ ‖σ]] = (E,#,�, l), where

– E = { (n, β) | n ∈ N, β ∈ tbAct }
– # = { ((n, β1), (n, β2)) | n ∈ N, β1, β2 ∈ tbAct, β1 �= β2 }
– �= sat�ρ‖σ

where �ρ‖σ= { (X, (n, β)) | ρ ||| σ
snd(X)−→ ρ̃′ ||| σ̃′ β−→ and n = |X| + 1 }

– l(n, β) = β.

where the partial function snd(-) maps any X = { (i, βi) }i=1..n to 〈β1 · · · βn〉,
and it is undefined over sets not of the shape of X.

Events in [[ρ ‖σ]] are actions in tbAct paired with time stamps. Two events
are in conflict if different actions should be performed at the same time, so that
configurations must be linearly ordered w.r.t. time. The relation X �ρ‖σ (n, β)
holds if X is a trace in the LTS of ρ ‖σ of length n − 1; therefore the enabling
2 Such interpretation is called semantic-based in [5] and it applies quite naturally to

our context. Instead the syntax-based approach (which is equivalent to the semantic-
based one in a two-players setting; see [5] Sect. 5.3.2) cannot be straightforwardly
extended to a three-player game.
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Y � (n, β) holds if and only if Y includes a trace of length n − 1 that can be
prolonged by β, possibly including (n, β) itself and any other action that might
occur after β in the LTS.

So, by the above, �Buyer‖Seller in [[Buyer ‖Seller]] corresponds to{ ∅ �Buyer‖Seller (1, (C : belt)), ∅ �Buyer‖Seller (1, (C : bag)),
{(1, (C:belt))} �Buyer‖Seller (2, (B:price)), {(1, (C:bag))} �Buyer‖Seller (2, (B:price)),
{(1, (C:belt)), (2, (Seller:price))} �Buyer‖Seller (3, (A:price)), . . .
. . . X1 �Buyer‖Seller (6, (C, ✓))

}

where X1 = {(1, (C:bag)), (2, (B:price)), (3, (A:price)), (4, (A:cash)), (5, (B:cash)) }
The �ρ‖σ of this simple example is finite. It is not so in general for systems
with recursive contracts.

The following definition is a specialisation of Definitions 4.6 and 4.7 in [5]. We
use MaxTr(s,→) and FinMaxTr(s,→) to denote the set of maximal traces and
finite maximal traces, respectively, of Tr(s,→).

Definition 19. Given ρ, σ ∈ ASC, we define the game Gρ‖σ as ([[ρ ‖σ]], Φ), where
π(n, β) = A if β = A:α, ΦA is defined only if A ∈ {A,B,C } and

ΦAe =
{

1 if P(A,e)
−1 otherwise

where P(A,e) holds whenever

e∈Tr(∅,→[[ρ‖σ]]) & [e∈FinMaxTr(∅,→[[ρ‖σ]]) ⇒ ∃e′,n.e = e′(n,(A:✓))]

A player A wins in the sequence of events e if ΦAe > 0. A strategy Σ for player
A is winning if A wins in all plays conforming to Σ.

Note that, P(A,e) holds for any A and infinite element e of Tr(∅,→[[ρ‖σ]]).
For the game GBuyer ‖ Seller, it is possible to check that, for instance,

ΦCs1 = 1, ΦAs1 = −1, ΦBs2 = −1, ΦCs3 = −1

where
s1=(1, (C:bag))(2, (B:price))(3, (A:price))(4, (A:cash))(5, (B:cash))(6, (C, ✓)),
s2 = (4, (A:bag))(1, (C:price))

s3 = (1, (C:bag))(2, (B:price))(3, (A:price))(4, (A:cash))(5, (B:cash))

Let us define a particular strategy Σ̃ for C in GBuyer ‖ Seller as follows:

Σ̃(s) =

⎧
⎨

⎩

{ (1, (C:bag)) } if s = 〈〉
{ (6, (C, ✓)) } if s = s3

∅ for any other play

The strategy Σ̃ for C in GBuyer ‖ Seller is winning.
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Remark 1. According to [5], A wins in a play if WAe > 0, where WAe = ΦAe
if all players are “innocent” in e, while if A is “culpable”, WAe = −1, and if
A is innocent and someone else culpable, WAe = +1. A strategy Σ of A is
winning if A wins in all fair plays conforming to Σ. A play e is “fair” for a
strategy Σ of a player A if any event in EA which is infinitely often enabled
is eventually performed. Symmetrically A is “innocent” in e if she eventually
plays all persistently enabled moves of her in e, namely if she is fair to the other
players, since the lack of a move by A might obstacle the moves by others; she
is “culpable” otherwise. As said above, Definition 19 is a particularisation of the
general definitions in [5]. In fact in a game Gρ‖σ no move of any player can occur
more than once in a play e because of time stamps. Therefore no move can be
“persistently enabled”, nor it can be prevented since it can be enabled with a
given time stamp only if there exists a legal transition in the LTS with the same
label. Hence any player is innocent in a play e of Gρ‖σ and all plays are fair.
Therefore W coincides with Φ.

It is possible to characterize affectible and retractable compliance in terms
of the existence of a winning strategy for C in Gρ‖σ.

Theorem 3. ρ 
A σ (or, equivalently, ρ 
rbk σ) if and only if player C has a
winning strategy in the three-player game Gρ‖σ.

3 Strategies as Orchestrators

In the present section we show that a client ρ is retractable-compliant with a
server σ if and only if their interactions can be led to a successful state by means
of the mediation of an orchestrator. To do that we show how an orchestrator
can be obtained out of a “univocal” winning strategy (see Definition 24 below)
for player C in the game Gρ‖σ, and vice versa. For a detailed discussion on
orchestrators for contracts and orchestrators for session-contracts, we refer to
[13,14] and [2] respectively. In the present setting, our orchestrators, that we
dub strategy-orchestrators, are defined as a variant of the session-orchestrators
of [2], which in turn are a restriction of orchestrators in [14]. The task of a
strategy orchestrator is to mediate the interactions between two affectible session
contracts by selecting one of the possible affectible choices and constraining non-
affectible ones.

We consider two sorts of orchestration actions, having the following shapes:
〈α, α〉, enabling the unaffectible synchronization ρ ‖σ

τ−→ ρ′ ‖σ′;
〈α, α〉+, enabling the affectible synchronization ρ ‖σ

+−→ ρ′ ‖σ′.

Definition 20 (Strategy Orchestrators).

(i) The set OrchAct of strategy-orchestration actions is defined by

OrchAct = { 〈α, α〉 | α ∈ N ∪ N } ∪ { 〈α, α〉+ | α ∈ N ∪ N }
We let μ, μ′, . . . range over elements of OrchAct with the shape 〈α, α〉, and
μ+, μ′+, . . . range over elements of OrchAct with the shape 〈α, α〉+.
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(ii) We define the set Orch of strategy orchestrators, ranged over by f, g, . . ., as
the closed (with respect to the binder rec ) terms generated by the following
grammar:

f, g ::= 1 idle
| μ+.f prefix
| μ1.f1 ∨ . . . ∨ μn.fn disjunction
| x variable
| recx.f recursion

where the μi in a disjunction are pairwise distinct. Moreover, we impose
strategy orchestrators to be contractive, i.e. the f in recx.f is assumed not
to be a variable.

We write
∨

i∈I μi.fi as short for μ1.f1 ∨ . . . ∨ μn.fn, where I = { 1, . . . , n }.
If not stated otherwise, we consider recursive orchestrators up-to unfolding, that
is we equate recx.f with f{x/recx.f}. We omit trailing 1’s.

Strategy orchestrators are “simple orchestrators” in [14] and “synchronous
orchestrators” in [13], but for the kind of prefixes which are allowed in a single
prefix or in a disjunction. In fact a prefix 〈α, α〉+ cannot occur in disjunctions,
where all the orchestrators must be prefixed by 〈α, α〉 actions.

Definition 21 (Strategy orchestrators LTS). We define the labelled transi-
tion system (Orch, OrchAct, �→) by

μ+.f
μ+

→ f (
∨

i∈I μi.fi)
μk→ fk (k ∈ I)

An orchestrated system, represented by ρ ‖f σ, is client/server system whose
interaction is mediated by an orchestrator.

Definition 22 (LTS for orchestrated-systems). Let ρ, σ ∈ ASC and f ∈
Orch.

ρ −→ ρ′

ρ ‖f σ −→ ρ′ ‖f σ

σ −→ σ′

ρ ‖f σ −→ ρ ‖f σ′

ρ
a−→ ρ′ f

〈a,a〉+→ f ′ σ
a+−−→ σ′

ρ ‖f σ
+−→ ρ′ ‖f ′ σ′

ρ
a+−−→ ρ′ f

〈a,a〉+→ f ′ σ
a−→ σ′

ρ ‖f σ
+−→ ρ′ ‖f ′ σ′

ρ
α−→ ρ′ f

〈α,α〉→ f ′ σ
α−→ σ′

(α ∈ N ∪ N )
ρ ‖f σ

τ−→ ρ′ ‖f σ′

Moreover, we define =⇒ =−→∗ ◦ ( τ−→ ∪ +−→ ).

In both transitions +−→ and τ−→ synchronization may happen only if the
orchestrator has a transition with the appropriate pair of actions. This is because
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in an orchestrated interaction both client and server are committed to the syn-
chronizations allowed by the orchestrator only. It is then clear that an orchestra-
tor always selects one synchronisation of affectible actions on client and server
side, while the disjunction of orchestrators represents the constraint that only
certain synchronisations of unaffectible actions are permitted.

Definition 23 (Strategy-orchestrated Compliance).

(i) f : ρ 

Orch σ if for any ρ′ and σ′, the following holds:

ρ ‖f σ =⇒∗ ρ′ ‖f ′ σ′ �=⇒ implies ρ′ = 1.

(ii) ρ 

Orch σ if ∃f. [ f : ρ 

Orch σ ].

Definition 24 (Univocal strategies). Σ is univocal if ∀e. |Σ(e)| ≤ 1.

The strategy Σ̃ for C in GBuyer ‖ Seller, defined in the previous section, is univocal.
The proof of the following theorem relies on the fact that any orchestrator

f such that f : ρ 

Orch σ corresponds to a univocal winning strategies for
player C in Gρ ‖ σ. Vice versa a univocal winning strategy Σ for C always induces
an orchestrator fΣ . It is not restrictive to look at univocal strategies only, as
established in the next lemma.

We say that Σ refines Σ′, written Σ ≤ Σ′, if and only if Σ(e) ⊆ Σ′(e) for
all e.

Lemma 6. If C has a winning strategy Σ, then C has a univocal winning strategy
Σ′ such that Σ′ ≤ Σ.

Theorem 4.
∃f. [ f : ρ 

Orch σ ] ⇔ there exists a winning strategy for player C in Gρ ‖ σ.
In particular, a winning strategy for player C in Gρ ‖ σ can be obtained out of an
orchestrator f such that f : ρ 

Orch σ, and vice versa.

The orchestrator that can be obtained out of the strategy Σ̃ is

〈bag, bag〉+.〈price, price〉(〈cash, cash〉 ∨ 〈card, card〉).
Remark 2. Univocal strategies correspond to strategy-orchestrators and are
technically easier to work with. On the other hand, we can recover a full cor-
respondence among C strategies and orchestrators by allowing disjunctions of
affectible synchronization actions 〈α, α〉+. In a session-based scenario, however,
we expect any nondeterminism to depend solely on either the client or the server.
By allowing f = 〈a, a〉+.f1 ∨ 〈b, b〉+.f2 in the system a.ρ1 + b.ρ2 ‖f a.σ1 + b.σ2,
the nondeterminism would depend on the orchestrator too.

Based on the formal system of Definition 9, the algorithm Synth in Fig. 2
takes a (initially empty) set of assumptions Γ , and the affectible contracts ρ and
σ, and it returns a set O of orchestrators (and hence a set of strategies by the
above) if any, such that for any f ∈ O we have f : ρ 

Orch σ; the algorithm
returns the empty set otherwise. In the algorithm Synth we consider orchestra-
tors as explicit terms, that is we do not consider recursion up-to unfolding.
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Fig. 2. The algorithm Synth.

Theorem 5 (Soundness and Completeness of Synth). The algorithm
Synth is correct and complete in the following sense:

(i) Synth(Γ, ρ, σ) terminates for any Γ, ρ and σ.
(ii) If f ∈Synth(∅, ρ, σ) �= ∅ then f : ρ 

Orch σ.
(iii) If f : ρ 

Orch σ then there exists g ∈Synth(∅, ρ, σ) �= ∅ such that the

(possibly infinite) unfolding of f and g yields the same regular tree.

It is not difficult to check that by computing Synth(∅,Buyer,Seller) we get a set
just consisting of the orchestrator corresponding to the strategy Σ̃, namely

Synth(∅,Buyer,Seller)=
{〈bag,bag〉+.〈price,price〉(〈cash,cash〉 ∨ 〈card, card〉)}

Using the previous results and Lemma 6 we get the following:

Corollary 2. (i) The relation 

Orch is decidable.
(ii) For any ρ, σ ∈ ASC, it is decidable whether there exists a winning strategy

for player C in Gρ ‖ σ.
Moreover, in case a winning strategy exists, it is possible to effectively com-
pute a univocal winning strategy.

4 Conclusion and Future Work

We have studied two approaches to loosening compliance among a client and
a server in contract theory, based on the concepts of dynamic adaptation and
of mediated interaction respectively. We have seen that these induce equivalent
notions of compliance, which can be shown via the abstract concept of winning
strategy in a suitable class of games.
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The byproduct is that the existence of the agreement among two con-
tracts specifying adaptive behaviours is established by statically synthesizing
the proper orchestrator, hence avoiding any trial and error mechanism at run
time. The study in this paper has been limited to the case of binary sessions
since this is the setting in which both orchestrators and retractable contracts
have been introduced. However strategy based concepts of agreement have been
developed in the more general scenario of multiparty interaction, which seems a
natural direction for future work.
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Abstract. The Internet of Things (IoT) is here: smart objects are
pervading our everyday life. Smart devices automatically collect and
exchange data of various kinds, directly gathered from sensors or gen-
erated by aggregations. Suitable coordination primitives and analysis
mechanisms are in order to design and reason about IoT systems, and
to intercept the implied technology shifts. We address these issues by
defining IoT-LySa, a process calculus endowed with a static analysis
that tracks the provenance and the route of IoT data, and detects how
they affect the behaviour of smart objects.

1 Introduction

This is the era of the Internet ofThings (IoT),where digitally connected devices are
intruding into our everyday life. “Software is eating the world” is the vivid slogan
referring to the smartification of the objects and devices around us. As buzzword,
the IoT is indeed simple and accurate: a global network of things ranging from light
bulbs to cars, equippedwith suitable software allowing things to interact each other
and coordinate their behaviour. For instance, our smart alarm clock can drive our
coffeemaker to prepare us a cup of coffee in the morning, while our smart TV can
suggest us some movies for the evening. Furthermore, smart devices can automat-
ically exchange information of various kinds gathered from different sources (e.g.
sensors) or generated by aggregating several data sets.

More connected smart devices and more applications available on the IoT
mean more software bugs and vulnerabilities to identify and fix. For instance, a
bug can cause you to wake up into a cold house in winter or an attacker can enter
into your smart TV and break your bank account. This is not a big surprise:
every advance in information technology has exposed software to new challenges.

Smart devices exhibit and require open-endedness to achieve full interac-
tive and cooperative behaviour, and thus they generalise the so-called “embed-
ded systems.” These are essentially controllers of machines and are closed sys-
tems. Therefore, we cannot simply rely on standard techniques for supporting
the design and development of IoT, and new software solutions have emerged,
e.g. Amazon AWS for IoT and Google Brillo. We argue that the formal tech-
niques and tools need to be adapted in order to support open-endedness of IoT
applications and the new complex phenomena that arise in this hybrid scenario.

Partially supported by Università di Pisa PRA 2016 64 Project Through the fog.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
A. Lluch Lafuente and J. Proença (Eds.): COORDINATION 2016, LNCS 9686, pp. 35–50, 2016.
DOI: 10.1007/978-3-319-39519-7 3



36 C. Bodei et al.

Here, we contribute to this new line of research by introducing the kernel
of a formal design framework for IoT, which will provide us with the founda-
tions to develop verification techniques and tools for certifying properties of IoT
applications.

Our starting point is the process calculus IoT-LySa, a dialect of LySa [4,6],
within the process calculi approach to IoT [8,15]. It has primitive constructs
to describe the activity of sensors and of actuators, and suitable primitives for
managing the coordination and communication capabilities of smart objects.
More precisely, our calculus is made up from:

1. Systems of nodes, consisting of (a representation of) the physical components,
i.e. sensors and actuators, and of software control processes for specifying the
logic of the node, including the manipulation of data gathered from sen-
sors and from other nodes. Intra-node generative communications are imple-
mented through a shared store à la Linda [7,12]. The adoption of this coordi-
nation model supports a smooth implementation of the cyber-physical control
architecture: physical data are made available to software entities that analyse
them and trigger the relevant actuators to perform the desired behaviour.

2. An asynchronous multi-party communication among nodes, which can be eas-
ily tuned to take care of various constraints, mainly those concerning prox-
imity;

3. Functions to process and aggregate data.

A further contribution of this paper is the definition of an analysis for IoT-LySa
to statically predict the run time behaviour of smart systems. We introduce a
Control Flow Analysis (CFA) that safely approximates the abstract behaviour of
a system of nodes. Essentially, it describes the interactions among nodes, tracks
how data spread from sensors to the network, and how data are manipulated.

Technically, our CFA abstracts from the concrete values and only considers
their provenance and how they are put together. In more detail, it returns for
each node � in the network:

– An abstract store Σ̂� that records for sensors and variables a super-set of the
abstract values that they may denote at run time;

– A set κ(�) that over-approximates the set of the messages received by the
node �, and for each of them its sender;

– A set Θ(�) of possible abstract values computed and used by the node �.

The result of the analysis can be exploited as the basis for checking and certifying
various properties of IoT systems. As it is, the components κ and Θ track how
data may flow in the network and how they influence the outcome of functions.
An example of property that can be statically checked using the component
κ is the detection of redundant communications, thus providing the means for
refactoring the system to avoid message storms. Further, the analysis can be
used to check whether the values produced by a certain classified sensor reaches
an untrusted node. This helps evaluating the security level of the system and
detecting potential vulnerabilities.
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The paper is organised as follows. The next section introduces our approach
with the help of an illustrative example. In Sect. 3 we briefly introduce the process
calculus IoT-LySa, while we present our CFA in Sect. 4. Concluding remarks
and related work are in Sect. 5.

2 A Smart Street Light Control System

The IoT European Research Cluster (IERC) has recently identified smart light-
ing in smart cities [14] as one of most relevant applications for the Internet of
Things. Recent studies, e.g. [10,11], show that smart street light control sys-
tems represent effective solutions to improve energy efficiency. Many proposed
solutions are based on sensors that acquire data about the physical environment
and regulate the level of illumination according to the detected events. In this
section we show how this kind of scenario can be easily modelled in IoT-LySa
and what kind of information our CFA provides to designers.

We consider a simplified system made of two integrated parts, working on
a one-way street. The first consists of smart lamp posts that are battery pow-
ered and can sense their surrounding environment and can communicate with
their neighbours to share their views. If (a sensor of) the lamp post perceives a
pedestrian and there is not enough light in the street it switches on the light and
communicates the presence of the pedestrian to the lamp posts nearby. When
a lamp post detects that the level of battery is low, it informs the supervisor
of the street lights, Ns, that will activate other lamp posts nearby. The second
component of the street light controller uses the electronic access point to the
street. When a car crosses the checkpoint, besides detecting if it is enabled to, a
message is sent to the supervisor of the street accesses, Na, that in turn notifies
the presence of the car to Ns. This supervisor sends a message to the lamp post
closest to the checkpoint that starts a forward chain till the end of the street.
The structure of our control light system is in Fig. 1.

Fig. 1. The organisation of nodes in our street light control system.
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We first define the checkpoint Ncp as an IoT-LySa node that only contains
a visual sensor Scp to take a picture of the car detected in the street, defined as

Scp = μh.(τ.1 := vp).τ. h

where vp is the picture of the car. The sensor communicates the picture to the
node by storing it in the location 1 of the shared store. In our model we assume
that each sensor has a reserved store location in which records its readings. The
action τ denotes internal actions of the sensor, which we are not interested to
model, e.g. reading from the environment; the construct μh. implements the
iterative behaviour of the sensor. Then, the taken picture is enhanced by the
process Pcp and sent to the supervisor Na

Pcp = μh.(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 � {�a}. h

where �a is the label of the node Na (note that 1 is the identifier of the sensor
Scp in the assignment z := 1). Hence, the checkpoint Ncp is defined as

Ncp = �cp : [Pcp ‖ Scp ‖ Bcp]

where �cp is the identifier of Ncp and Bcp abstracts other components we are not
interested in. The node Na (checks if the car is allowed to enter the street and)
communicates its presence to the lamp posts supervisor Ns:

Na = �a : [μh.(; x). 〈〈car, x〉〉 � {�s}. h ‖ Ba]

where �s is the identifier of Ns (see below for the intuition of the general format
of the input (;x)). The supervisor Ns contains the process Ps,1 that receives the
picture from Na and sends a message to the node closest to the checkpoint, call
it N1, labelled with �1:

Ps,1 = μh.(car; x). 〈〈x〉〉 � {�1}. h

The input (car;x) is performed only if the corresponding output matches the
constant car, and the store variable x is bound to the value of the second element
of the output (see below for the full definition of Ns).

In our intelligent street light control system there is a node Np for each lamp
post, each of which has a unique identifier p ∈ [1, k]. The lamp posts have four
sensors to sense (1) the environment light, (2) the solar light, (3) the battery
level and (4) the presence of a pedestrian. Each of them is defined as follows

Sp,i = μh. (i := v). τ. h

where v is the perceived value and i ∈ [1, 4] are the store locations for the sensors.
After some internal actions τ , the sensor Sp,i iterates its behaviour. The actuator
for the lamp post p is defined as

A5 = μh. (|5, {turnon, turnoff}|). h
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It only accepts a message from Nc whose first element is its identifier (here 5)
and whose second element is either command turnon or turnoff and executes it.

The control process of a lamp post node is composed by two parallel
processes. The first process Pp,1 is defined as follow

Pp,1 = μh.(x1 := 1. x2 := 2. x3 := 3. x4 := 4).
(x4 = true) ?

(x1 ≤ th1 ∧ x2 ≤ th2) ?
(x3 ≥ th3) ? 〈5, turnon〉. 〈〈x4〉〉 � Lp. h

: 〈〈err, �p〉〉 � {�s}. h

: h

: 〈5, turnoff〉. h
The process reads the current values from the sensors and stores them into the
local variables xi. The actuator is turned on if (i) a pedestrian is detected in the
street (x4 holds), (ii) the intensity of environment and solar lights are greater
than the given thresholds th1 and th2, and (iii) there is enough battery (at least
th3). In addition, the presence of the pedestrian is communicated to the lamp
posts nearby, whose labels, typically �p−1 and �p+1, are in Lp. Instead, if the
level battery is insufficient, an error message, including its identifier �p, is sent
to the supervisor node, labelled �s. The second process Pp,2 is defined as follows:

Pp,2 = μh.(; x). (x = true ∨ is a car(x)) ? (〈5, turnon〉. 〈〈x〉〉 � Lp).h : 〈5, turnoff〉. h

It waits for messages from its neighbours or from the supervisor node Ns. When
one of them is notified the presence of a pedestrian (x = true) or of a car
(is a car(x) holds), the current lamp post orders the actuator to switch the
light on. Each lamp post p is described as the IoT-LySa node below:

Np = �p : [Σp ‖ Pp,1 ‖ Pp,2 ‖ Sp,1 ‖ Sp,2 ‖ Sp,3 ‖ Sp,4 ‖ Ap,5]

where Σp is the store of the node �p, shared with its components. The supervisor
node Ns of lamp posts is defined as

Ns = �s : [μh. (err; x). 〈〈true〉〉 � Lx. h ‖ Ps,1 ‖ Bs]

where Ps,1 is the process previously defined. As above the input (err;x) is per-
formed only if the corresponding output matches the constant err, and the store
variable x is bound to the value of the second element of the output i.e. the label
of the relevant lamp post. If this is the case, after some internal elaborations Ns

warns the lamp posts nearby x (included in Lx) of the presence of a pedestrian.
Therefore, the whole intelligent controller N of the street lights is described

as the parallel composition of the checkpoint node Ncp, the supervisors nodes
Na and Ns, and the nodes of lamp posts Np, with p ∈ [1, k]:

N = Ncp | Na | Ns | N1 | · · · | Nk
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We would like to statically predict how the system behaves at run time. In
particular, we want to compute: (i) how nodes interact each other; (ii) how data
spread from sensors to the network (tracking); and (iii) which computations
each node performs on the received data. To do that, we define a Control Flow
Analysis (CFA), which abstracts from the concrete values by only considering
their provenance and how they are manipulated. Consider e.g. the picture sent
by the camera of Scp to its control process Ppc. In the analysis we are only
interested in tracking where the picture comes from, and not in its actual value;
so we use the abstract value 1�cp to record the camera that took it. The process
Ppc reduces the noise in the pictures and sends the result to Na. Our analysis
keeps track of this manipulation through the abstract value noiseRed

�cp (1�cp),
meaning that the function noiseRed, computed by the node �cp, is applied to
data coming from the sensor with identifier 1 of �cp.

In more detail, our CFA returns for each node � in the network: an abstract
store Σ̂� that records for each variable a super-set of the abstract values that it
may denote at run time; a set κ(�) that approximates the set of the messages
received by the node �; and the set Θ(�) of possible abstract values computed
and used by the node �.

In our example, for each lamp post labelled �p, the analysis returns in κ(�p)
both the abstract value noiseRed

�cp (1�cp) and the sender of that message, i.e.
�p+1. The result of our analysis can be exploited to perform several verifications.
For instance, since the pictures of cars are sensitive data, one would like to
check whether they are kept secret. By inspecting κ and Θ we discover that
the sensitive data of cars is sent to all lamp posts, so possibly violating privacy.
Another example is detecting whether there are redundant communications, e.g.
since the street is one-way, when a car is present the lamp post at position p
needs not to alert the one at p − 1. From κ it is easy to detect a redundant
communication from the next lamp post.

3 The Calculus IoT-LySa

We adapt the LySa calculus [3,4,6], based on the π- [17] and Spi-calculus [1],
to model IoT applications. For that we introduce: (i) systems of nodes, in turn
consisting of sensors, actuators and control processes, plus a shared store Σ
within each node for internal communications; (ii) primitives for reading from
sensors, and for triggering actuator actions; (iii) an asynchronous multi-party
communication modality among nodes, subject to constraints, mainly concerning
proximity; (iv) functions to process data; (v) explicit conditional statements. For
brevity, we do not include here encryption and decryption primitives as in LySa.

Syntax. Systems have a two-level structure and consist of a fixed number of
labelled nodes, hosting a store, control processes, sensors and actuators. The
label � uniquely identifies the node � : [B] and may represent further character-
ising information (e.g. its location or other contextual information). Finally, the
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operator | describes a node system of nodes obtained by parallel composition.
The syntax of nodes is as follows.

N 	 N ::= systems of nodes
0 inactive node
� : [B] single node (� ∈ L, the set of labels)
N1 | N2 parallel composition of nodes

B 	 B::= node components
Σ� node store
P process
S sensor, with a unique identifier i ∈ I�

A actuator, with a unique identifier i ∈ J�

B ‖ B parallel composition of node components

We impose that in � : [B] there is a single store Σ� : X ∪ I� → V, where
X ,V are the sets of variables and of values, respectively. Our store is essentially
an array of fixed dimension, so intuitively a variable is the index in the array
and an index i ∈ I� corresponds to a single sensor (no need of α-conversions).
We assume that store accesses are atomic, e.g. through CAS instructions [13].
The other node components are obtained by the parallel composition of control
processes P , and of a fixed number of (less than #(I�)) sensors S, and actuators
A (less than #(J�)). The syntax of processes is as follows

P 	 P ::= control processes
0 inactive process
〈〈E1, · · · , Ek〉〉 � L. P asynchronous multi-output L⊆ L
(E1, · · · , Ej ; xj+1, · · · , xk). P input (with matching)
E?P : Q conditional statement
h iteration variable
μh. P tail iteration
x := E.P assignment to x ∈ X
〈j, γ〉. P output of action γ to actuator j

The prefix 〈〈E1, · · · , Ek〉〉�L implements a simple form of multi-party commu-
nication among nodes: the tuple E1, . . . , Ek is asynchronously sent to the nodes
with labels in L and that are “compatible” (according, among other attributes,
to a proximity-based notion). The input prefix (E1,· · ·, Ej ;xj+1,· · ·, xk) is will-
ing to receive a k-tuple, provided that its first j elements match the input ones,
and then binds the remaining store variables (separated by a “;”) to the cor-
responding values (see [2,6] for a more flexible choice). Otherwise, the k-tuple
is not accepted. A process repeats its behaviour, when defined through the tail
iteration construct μh. P , where h is the iteration variable.

A sensor can perform an internal action τ or store the value v, gathered
from the environment, into its store location i. An actuator can perform an
internal action τ or execute one of its action γ, possibly received from its con-
trolling process. Both sensors and actuators can iterate. For simplicity, here we



42 C. Bodei et al.

neither provide an explicit operation to read data from the environment, nor to
describe the impact of actuator actions on the environment. Sensors and actua-
tors (uniquely labelled) have the form:

S 	 S ::=sensors A 	 A ::=actuators
0 inactive sensor 0 inactive actuator
τ.S internal action τ.A internal action
i := v. S store of v ∈ V (|j, Γ |). A command for actuator j

by the ith sensor γ.A triggered action (γ ∈ Γ )
h iteration var. h iteration var.
μh . S tail iteration μh . S tail iteration

The syntax of terms follows.

E 	 E::= terms
v value (v ∈ V)
i sensor location (i ∈ I�)
x variable (x ∈ X )
f(E1, · · · , En) function on data

The term f(E1, · · · , En) is the application of function f to n arguments; we
assume given a set of primitive functions, typically for aggregating or comparing
values, be them computed or representing data in the environment.

Operational Semantics. Our reduction semantics assumes the following struc-
tural congruence ≡ on nodes, processes and sensors. It is standard except for the
last rule that equates a multi-output with no receivers to the inactive process.

− (N/≡, |, 0) and (B/≡, ‖, 0) are commutative monoids
− μh .X ≡ X{μh .X/h} for X ∈ {P,A, S}
− 〈〈E1, · · · , Ek〉〉 : ∅. 0 ≡ 0.

We have a two-level reduction relation defined as the least relation on nodes
and its components, denoted by →, satisfying the set of inference rules in Table 1.
We assume the standard denotational interpretation [[E]]Σ for evaluating terms.

The first two rules implement the (atomic) asynchronous update of shared
variables inside nodes, by using the standard notation Σ{−/−}. According to
(S-store), the ith sensor uploads the value v, gathered from the environment, into
the store location i. According to (Asgm), a control process updates the variable
x with the value of E. The rules (Ev-out) and (Multi-com) drive asynchronous
multi-communications among nodes. In the first a node labelled � willing to send
a tuple of values 〈〈v1, ..., vk〉〉, obtained by the evaluation of 〈〈E1, ..., Ek〉〉, spawns
a new process, running in parallel with the continuation P ; its task is to offer
the evaluated tuple to all its receivers L. In the rule (Multi-com), the message
coming from �1 is received by a node labelled �2. The communication succeeds,
provided that (i) �2 belongs to the set L of possible receivers, (ii) the two nodes
are compatible according to the compatibility function Comp, and (iii) that
the first j values match with the evaluations of the first j terms in the input.



Where Do Your IoT Ingredients Come From? 43

Table 1. Reduction semantics, where X ∈ {S, A} and Y ∈ {N, B}.

(S-store)

Σ ‖ i := v. Si ‖ B → Σ{v/i} ‖ Si ‖ B

(Asgm)
[[E]]Σ = v

Σ ‖ x := E. P ‖ B → Σ{v/x} ‖ P ‖ B

(Ev-out)
k
i=1 vi = [[Ei]]Σ

Σ ‖ 〈〈E1, · · · , Ek〉〉 � L. P ‖ B → Σ ‖ 〈〈v1, · · · , vk〉〉 � L.0 ‖ P ‖ B

(Multi-com)

�2 ∈ L ∧ Comp(�1, �2) ∧ � j
i=1 vi = [[Ei]]Σ2

�1 : [〈〈v1, · · · , vk〉〉 � L. 0 ‖ B1] | �2 : [Σ2 ‖ (E1, · · · , Ej ; xj+1, · · · , xk).Q ‖ B2]
→

�1 : [〈〈v1, · · · , vk〉〉 � L \ {�2}. 0 ‖ B1] | �2 : [Σ2{vj+1/xj+1, · · · , vk/xk} ‖ Q ‖ B2]

(Cond)
[[E]]Σ = bi

Σ ‖ E? P1 : P2 ‖ B → Σ ‖ Pi ‖ B
where b1 = true, b2 = false

(A-com)
γ ∈ Γ

〈j, γ〉. P ‖ (|j, Γ |). A ‖ B → P ‖ γ. A ‖ B

(Act)

γ.A → A

(Int)

τ. X → X

(Node)
B → B′

� : [B] → � : [B′]

(ParN)
N1 → N ′

1

N1|N2 → N ′
1|N2

(ParB)
B1 → B′

1

B1‖B2 → B′
1‖B2

(CongrY)
Y ′
1 ≡ Y1 → Y2 ≡ Y ′

2

Y ′
1 → Y ′

2

Moreover, the label �2 is removed by the set of receivers L of the tuple. The
spawned process terminates when all its receivers have received the message (see
the last congruence rule). The role of the compatibility function Comp is crucial
in modelling real world constraints on communication. A basic requirement is
that inter-node communications are proximity-based, i.e. that only nodes that
are in the same transmission range can directly exchange messages. This is easily
encoded here by defining a predicate (over node labels) yielding true only when
two nodes are in the same transmission range. Of course, this function could
be enriched in order to consider finer notions of compatibility expressing various
policies, e.g. topics for event notification. Note that if Comp varies along time, we
recover a simple way of expressing dynamic network topologies. According to the
evaluation of the expression E, the rule (Cond) says that the process continues
as P1 (if [[E]]Σ is true) or as P2 (otherwise). A process commands the jth actuator
through the rule (A-com), by sending it the pair 〈j, γ〉; γ prefixes the actuator, if
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it is one of its actions. The rule (Act) says that the actuator performs the action
γ. Similarly, for the rules (Int) for internal actions. The last rules propagate
reductions across parallel composition ((ParN) and (ParB)) and nodes (Node),
while the (CongrY) are the standard reduction rules for congruence.

4 Control Flow Analysis

Our CFA aims at safely approximating the abstract behaviour of a system of
nodes N . The analysis follows the same schema of that for LySa [4], and for
the time being we only conjecture that computing its results requires the same
low polynomial time complexity. Here, we track the usage of sensor values inside
the local node where they are gathered and their propagation in the network of
nodes both as raw data or processed via suitable functions. We resort to abstract
values for sensor and functions on abstract values, as follows, where � ∈ L:

V̂ 	 v̂::= abstract terms
�� special abstract value denoting cut
i� sensor abstract value (i ∈ I�)
v� node abstract value
f �(v̂1, · · · , v̂n) function on abstract data

Since the dynamic semantics may introduce function terms with an arbitrar-
ily nesting level, we have new special abstract values �� that denote all those
function terms with a depth greater that a given d. In the clauses defining our
analysis, we will use �−�d to keep the maximal depth of abstract terms less or
equal to d, defined as expected. Note that, once given the set of functions f
occurring in a node N , the abstract values are finitely many.

The result of our CFA is a triple (Σ̂, κ,Θ) (a pair (Σ̂, Θ) for terms E, resp.),
called estimate for N (for E, resp.), that satisfies the judgements defined by the
rules of Tables 3 and 2. For this we introduce the following abstract domains:

– abstract store Σ̂ =
⋃

�∈L Σ̂� : X ∪I� → 2V̂ where each abstract local store Σ̂�

approximates the concrete local store Σ�, by associating with each location
a set of abstract values that represent the possible concrete values that the
location may store at run time.

– abstract network environment κ : L → L × ⋃k
i=1 V̂i (with V̂i+1 = V̂ × V̂i

and k maximum arity of messages), that includes all the messages that may
be received by the node labelled �.

– abstract data collection Θ : L → 2V̂ that, for each node labelled �, approxi-
mates the set of values that the node computes.

For each term E, the judgement (Σ̂, Θ) |=
�

E : ϑ, defined by the rules in Table 2,
expresses that ϑ ∈ V̂ is an acceptable estimate of the set of values that E may
evaluate to in Σ̂�. A sensor identifier and a value evaluate to the set ϑ, provided
that their abstract representations belong to ϑ. Similarly a variable x evaluates
to ϑ, if this includes the set of values bound to x in Σ̂�. The last rule analyses
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Table 2. Analysis of terms (Σ̂, Θ) |=� E : ϑ.

i� ∈ ϑ ⊆ Θ(�)

(Σ̂, Θ) |=� i : ϑ

v� ∈ ϑ ⊆ Θ(�)

(Σ̂, Θ) |=� v : ϑ

Σ̂�(x) ⊆ ϑ ⊆ Θ(�)

(Σ̂, Θ) |=� x : ϑ

k
i=1 (Σ̂, Θ) |=� Ei : ϑi ∧

∀ v̂1, · · · , v̂k : k
i=1 v̂i ∈ ϑi ⇒ f �(v̂1, · · · , v̂k)�d ∈ ϑ ⊆ Θ(�)

(Σ̂, Θ) |=� f(E1, · · · , Ek) : ϑ

the application of a k-ary function f to produce the set ϑ. Recall that the special
abstract value �� will end up in ϑ if the depth of the abstract functional term
exceeds d, and it represents all the functional terms with nesting greater than
d. To do that (i) for each term Ei, it finds the sets ϑi, and (ii) for all k-tuples of
values (v̂1, · · · , v̂k) in ϑ1 ×· · ·×ϑk, it checks if the abstract values f �(v̂1, · · · , v̂k)
belong to ϑ. Moreover, in all the rules for terms, we require that Θ(�) includes
all the abstract values included in ϑ. This guarantees that only those values
actually used are tracked by Θ, in particular those of sensors.

In the analysis of nodes we focus on which values can flow on the net-
work and which can be assigned to variables. The judgements have the form
(Σ̂, κ,Θ) |= N and are defined by the rules in Table 2. The rules for the inactive
node and for parallel composition are standard. Moreover, the rule for a single
node � : [B] requires that its component B is analysed, with the further judgment
(Σ̂, κ,Θ) |=

�
B, where � is the label of the enclosing node. The rule connecting

actual stores Σ with abstract ones Σ̂ requires the locations of sensors to contain
the corresponding abstract values. The rule for sensors is trivial, because we are
only interested in who will use their values, and so is that for actuators. The rules
for processes are in Table 3, and all require that an estimate is also valid for the
immediate sub-processes. The rule for k-ary multi-output (i) finds the sets ϑi,
for each term Ei; and (ii) for all k-tuples of values (v̂1, · · · , v̂k) in ϑ1 × · · · × ϑk,
it checks if they belong to κ(�′ ∈ L), i.e. they can be received by the nodes with
labels in L. In the rule for input the terms E1, · · · , Ej are used for matching
values sent on the network. Thus, this rule checks whether (i) these first j terms
have acceptable estimates ϑi; (ii) the two nodes can communicate (Comp(�′, �));
and whether (iii) for each message (�′, 〈〈v̂1, · · · , v̂j , v̂j+1, . . . , v̂k〉〉) in κ(�) (i.e. in
any message predicted to be receivable by the node with label �) the values
v̂j+1, . . . , v̂k are included in the estimates for the variables xj+1, · · · , xk. The
rule for assignment requires that all the values v̂ in ϑ, the estimate for E, belong
to Σ̂

�
(x). The rule for μh. P reflects our choice of limiting the depth of function

applications: the iterative process is unfolded d times. The remaining rules are
as expected.

To show our analysis at work, consider again the example in Sect. 2 and the
process Pcp = μh.(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 � {�a}. h. Every valid CFA
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Table 3. Analysis of nodes (Σ̂, κ, Θ) |= N , and of node components (Σ̂, κ, Θ) |=� B.

(Σ̂, κ, Θ) |= 0

(Σ̂, κ, Θ) |=� B

(Σ̂, κ, Θ) |= � : [B]

(Σ̂, κ, Θ) |= N1 ∧ (Σ̂, κ, Θ) |= N2

(Σ̂, κ, Θ) |= N1 | N2

∀ i ∈ I�. i� ∈ Σ̂�(i)

(Σ̂, κ, Θ) |=� Σ (Σ̂, κ, Θ) |=� S (Σ̂, κ, Θ) |=� A

k
i=1 (Σ̂, Θ) |=� Ei : ϑi ∧ (Σ̂, κ, Θ) |=� P ∧

∀v̂1, · · · , v̂k : k
i=1 v̂i ∈ ϑi ⇒ ∀�′ ∈ L : (�, 〈〈v̂1, · · · , v̂k〉〉) ∈ κ(�′)

(Σ̂, κ, Θ) |=� 〈〈E1, · · · , Ek〉〉 � L. P

j
i=1 (Σ̂, Θ) |=� Ei : ϑi ∧ Comp(�′, �) ∧

∀(�′, 〈〈v̂1, · · · , v̂k〉〉) ∈ κ(�) : k
i=j+1 v̂i ∈ Σ̂�(xi) ∧

(Σ̂, κ, Θ) |=� P

(Σ̂, κ, Θ) |=� (E1, · · · , Ej ; xj+1, · · · , xk). P

(Σ̂, Θ) |=� E : ϑ ∧
∀ v̂ ∈ ϑ ⇒ v̂ ∈ Σ̂�(x) ∧ (Σ̂, κ, Θ) |=� P

(Σ̂, κ, Θ) |=� x := E. P

(Σ̂, κ, Θ) |=� P

(Σ̂, κ, Θ) |=� 〈j, γ〉. P

(Σ̂, Θ) |=� E : ϑ ∧ (Σ̂, κ, Θ) |=� P1 ∧ (Σ̂, κ, Θ) |=� P2

(Σ̂, κ, Θ) |=� E?P1 : P2

(Σ̂, κ, Θ) |=� 0

(Σ̂, κ, Θ) |=� μh. P �d

(Σ̂, κ, Θ) |=� μh. P (Σ̂, κ, Θ) |=� h

estimate must include at least the following entries (assuming d = 4):

(a) Σ̂�cp
(z) ⊇ {1�cp} (b) Σ̂�cp

(z′) ⊇ {noiseRed
�cp (1�cp), 1�cp}

(c)Θ(�cp) ⊇ {1�cp , noiseRed
�cp (1�cp)} (d)κ(�a) ⊇ {(�cp, 〈〈noiseRed

�cp (1�cp)〉〉)}
Indeed, all the following checks must succeed:

– (Σ̂, κ,Θ) |=
�cp

μh.(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 � {�a}.h because
– (Σ̂, κ,Θ) |=

�cp
(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 � {�a}, that in turn holds

– because (i) 1�cp is in Σ̂�cp
(z) by (a) ((Σ̂, Θ) |=

�
1 : ϑ 	 1�cp); and because (ii)

(Σ̂, κ,Θ) |=
�cp

(z′ := noiseRed(z)).〈〈z′〉〉 � {�a}, that in turn holds
– because (i) noiseRed

�cp (1�cp) is in Σ̂�cp
(z′) by (b) since

(Σ̂, Θ) |=
�cp

noiseRed(z) : ϑ 	 noiseRed�cp(1�cp); and because
(ii) (Σ̂, κ,Θ) |=

�cp
〈〈z′〉〉 � {�a} that holds because (�cp, 〈〈noiseRed

�cp (1�cp)〉〉)
is in κ(�a) by (d).
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Correctness of the Analysis. Our CFA respects the operational semantics. The
proof of this fact benefits from an instrumented denotational semantics for
expressions, the values of which are pairs 〈v, v̂〉. Consequently, the store (Σi

�

with a ⊥ value) and its updates are accordingly extended (the semantics used in
Table 1 is [[v]]i↓1

, the projection on the first component of the instrumented one).
Just to give an intuition, we will have [[v]]i

Σi
�

= (v, v�), and the assignment x :=

E will result in the updated store Σi
�{(v, v�)/x}, where E evaluates to (v, v�).

Clearly, the semantics of Table 1 is [[v]]i↓1
, the projection on the first component

of the instrumented one. In our example, the assignment z′ := noiseRed(z) of
the process Pcp stores the pair (v, noiseRed�cp(1�cp)) made of the actual value v
and of its abstract counterpart.

Since the analysis only considers the second component of the extended store,
it is immediate defining when the concrete and the abstract stores agree: Σi

� � Σ̂�

iff w ∈ X ∪ I� such that Σi
�(w) �= ⊥ implies (Σi

�(w))↓2 ∈ Σ̂�(w).
The following theorems establish the correctness of our CFA and the existence

of a minimal estimate. Their proofs have the usual schema.

Theorem 1 (Subject reduction). If (Σ̂, κ,Θ) |= N and N → N ′ and ∀Σi
�

in N it is Σi
� � Σ̂�, then (Σ̂, κ,Θ) |= N ′ and ∀Σi

�
′ in N ′ it is Σi

�
′
� Σ̂�.

Theorem 2 (Existence of estimates). Given N , its estimates form a Moore
family that has a minimal element.

The following corollary of subject reduction justifies the title of this paper: we
do track the ingredients of IoT data. The first item makes it evident that our
analysis determines whether the value of a term may indeed be used along the
computations of a system, and clarifies the role of the component Θ; the second
item guarantees that κ predicts all the possible inter-node communications.

Corollary 1.
• Let N

E1,...,En−−−−−−→� N ′ denote a reduction in which all Ei are evaluated at node
�. If (Σ̂, κ,Θ) |= N and N

E1,...,En−−−−−−→� N ′ then ∀k ∈ [0, n] it is ([[Ek]]i
Σi

�
)↓2 ∈ Θ(�).

• Let N
〈〈v1,...,vn〉〉−−−−−−−→�1,�2 N ′ denote a reduction in which the message sent by node

�1 is received by node �2. If (Σ̂, κ,Θ) |= N and N
〈〈v1,...,vn〉〉−−−−−−−→�1,�2 N ′ then it holds

(�1, 〈〈v̂1, . . . , v̂n〉〉) ∈ κ(�2), where v̂i = vi↓2 .

Back again to our example, we have that 1�cp ∈ Θ(�cp), where ([[1]]1
Σ1

�cp

)↓2 = 1�cp ,

and where v is the actual value received by the first sensor. Similarly, we have
that (�cp, 〈〈v̂〉〉) ∈ κ(�a), where v̂ = v↓2 .

Extending the Analysis. For simplicity, above we have presented a CFA that
only tracks the ingredients of the data handled by IoT nodes. Now, we sketch a
few possible extensions.

As it is, our analysis tracks the actual usage of sensor data through the
component Θ. It is straightforward to also detect which actions of actuators are
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actually triggered. The result might suggest to use a simpler actuator if some of
its actions are never exercised, or even to remove it if it is never used. Technically,
a new analysis component α suffices, that for every actuator j collects the actions
γ triggered by the control process in the node �. Then, one has only to change
the rule for the command to the actuator, as follows:

γ ∈ α�(j) ∧ (Σ̂, κ, α,Θ) |=
�

P

(Σ̂, κ, α,Θ) |=
�

〈j, γ〉. P
To improve the precision of our CFA, we can refine the abstract store by replac-
ing it with the pair Σ̂in, Σ̂out, similarly to the treatment of side effects in [19].
This extension is more invasive, because it requires modifying the rules for accu-
rately handling the store updates. We can obtain a further improvement of the
precision by making the analysis more context-sensitive. In particular, an addi-
tional component can record the sequence of choices made in conditionals while
traversing the node under analysis. One can thus obtain better approximations
of the store or detect causal dependencies among the data sent by sensors and
the actions carried out by actuators, as well as casuality among nodes.

5 Conclusions

This paper is a first step towards a formal design framework for IoT, which
will support the definition of techniques and tools for certifying properties of
IoT applications. We proposed the process calculus IoT-LySa, with primitive
constructs to describe the activity of sensors and of actuators, and suitable prim-
itives for managing the coordination and communication capabilities of smart
objects. We equipped our calculus with a CFA that statically predicts the inter-
actions among nodes, how data spread from sensors to the network, and how data
are put together. We sketched how the result of the analysis can be exploited as
the basis for checking and certifying various properties of IoT systems.

Besides the extensions mentioned at the end of Sect. 4, we plan to accu-
rately investigate the exact complexity of the analysis and to implement it.
We intend to address with our analysis security and privacy “since IoT deals
not only with huge amount of sensitive data (personal data, business data,
etc.) but also has the power of influencing the physical environment with its
control abilities” [14]. In particular, we can assign specific confidentiality lev-
els to sensors and nodes and by inspecting the result of the analysis, we can
detect if nodes with a lower level can access data of entities with a higher level.
Also, we will enrich our design framework with security policies, e.g. for access
control. By tracking the actions of actuators as suggested in Sect. 4, one can
predict if an actuator is maliciously triggered by an attacker, as happened in
the recent attack performed through a vehicular infotainment network (http://
www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/). For brevity, we
neglected here the cryptographic primitives LySa offers natively, although both
the current operational semantics and the static analysis can easily be extended

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
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to cover them. An analysis that identifies where encryption and decryption are
really needed would be very useful for designers of IoT systems, because cryp-
tography is expensive since many smart devices have limited battery power.
Beneficial to such an analysis may be the preliminary work on an enhanced ver-
sion of IoT-LySa [5] that estimates costs of cryptographic primitives. Finally,
in the IERC words: “there is still a lack of research on how to adapt and tai-
lor existing research on autonomic computing to the specific characteristics of
IoT” [14]. To contribute to these issues, we plan to extend our calculus with
linguistic mechanisms and a verification machinery to deal with adaptivity in
the style of [9].

To the best of our knowledge, only a limited number of papers addressed
the specification and verification of IoT systems from a process calculi perspec-
tive, within the formal methods approach. The IoT-calculus [15] is one of the
first proposals in this setting. It explicitly includes sensors and actuators, and
smart objects are represented as point-to-point communicating nodes of het-
erogeneous networks. Differently from ours, their interconnection topology can
vary at run time. The authors propose two notions of bisimilarity that capture
system behaviour from the point of view of end-users and of the other devices.
The timed process calculus CIoT [8] specifies physical and logical components,
addresses both timing and topology constraints, and allows for node mobility.
Furthermore, communications are either short-range or internet-based. The focus
of this paper is mainly on an extensional semantics that provides a fully abstract
characterisation of the proposed contextual equivalence.

Many design choices of the above-discussed proposals are similar to ours. The
main difference is that our coordination model is based on a shared store à la
Linda instead of a message-based communication à la π-calculus. Furthermore,
differently from [8,15], we are here mainly interested in developing a design
framework that includes a static semantics to support verification techniques
and tools for certifying properties of IoT applications.

The calculi above and ours are built upon those previously introduced for
wireless, sensor and ad hoc networks ([16,18,20] to cite only a few). In particular,
the calculus in [18] is designed to model so-called broadcast networks, with a
dynamically changing topology. It presents some features very similar to ours:
an asynchronous local broadcast modality, while intra-node communication relies
on a local tuple space. Also, the analysis of the behaviour of broadcast networks
is done by resorting to a multi-step static machinery.
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Abstract. Among the paradigms for parallel and distributed comput-
ing, the one popularized with Linda and based on tuple spaces is the
least used one, despite the fact of being intuitive, easy to understand
and to use. A tuple space is a repository of tuples, where process can
add, withdraw or read tuples by means of atomic operations. Tuples may
contain different values, and processes can inspect the content of a tuple
via pattern matching. The lack of a reference implementations for this
paradigm has prevented its widespread. In this paper, first we do an
extensive analysis on what are the state of the art implementations and
summarise their characteristics. Then we select three implementations
of the tuple space paradigm and compare their performances on three
different case studies that aim at stressing different aspects of comput-
ing such as communication, data manipulation, and cpu usage. After
reasoning on strengths and weaknesses of the three implementations, we
conclude with some recommendations for future work towards building
an effective implementation of the tuple space paradigm.

1 Introduction

Distributed computing is getting increasingly pervasive, with demands from var-
ious applications domains and highly diverse underlying architectures from the
multitude of tiny things to the very large cloud-based systems. Several para-
digms for programming parallel and distributed computing have been proposed
so far. Among them we can list: distributed shared memory, message passing,
actors, distributed objects and tuple spaces. Nowadays, the most used paradigm
seems to be message passing, with MPI [2] being its latest incarnation, while the
least popular one seems to be the one based on tuple space that was proposed
by David Gelernter for the Linda coordination model [8].

As the name suggests, message passing provides coordination abstractions
based on the exchange of messages between distributed processes, where mes-
sage delivery is often mediated via brokers and messages consist of a header
and a body. In its simplest incarnation, message-passing provides a rather low-
level programming abstraction for building distributed systems. Linda, instead
provides a higher level of abstraction by defining operations for synchronization
and exchange of values between different programs that can share information
by accessing common repositories named tuple spaces.
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
A. Lluch Lafuente and J. Proença (Eds.): COORDINATION 2016, LNCS 9686, pp. 51–66, 2016.
DOI: 10.1007/978-3-319-39519-7 4
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The key ingredients of Linda are few basic operations which can be embed-
ded into different programming languages. These are atomic operations used for
writing (out), withdrawing (in), reading (rd) tuples into/from a tuple space.
The operations for reading and withdrawing select tuples via pattern-matching.
Another operation eval is used to spawn new processes. The figure above illus-
trates an example of tuples space with different, structured, values. For example
tuple 〈“goofy”,4,10.4〉 is produced by a process via the out(〈“goofy”,4,10.4)〉
operation, and it is read by the operation rd(“goofy”, , ) after pattern-
matching: that is the process reads any tuple of three elements whose first one is
exactly the string “goofy”. Moreover, tuple 〈10, 〈. . .〉〉 is consumed (atomically
retracted) by operation in(10, x) which consumes a tuple whose first element is
10 and binds its second element (whatever it is) to the variable x. Patterns are
sometimes referred as templates.

The simplicity of this coordination model makes it very intuitive and easy to
use. Some synchronization primitives, e.g. semaphores, barrier synchronization,
can be implemented easily in Linda (cf. [6], Chapter 3). Unfortunately Linda’s
implementations of tuple space have turned out to be quite inefficient, and this
has led researchers to opt for different approaches such Open MP or MPI, which
are nowadays offered, as libraries, for many programming languages. When con-
sidering distributed applications, the limited use of Linda coordination model
is also due to the need of keeping tuple spaces consistent. In fact, in this case,
control mechanisms that can affect scalability are needed [7].

In our view, tuple spaces can be effectively exploited as a basis for the broad
range of the distributed applications with different domains (from lightweight
applications to large cloud based systems). However, in order to be effective, we
need to take into account that performances of a tuple space system may vary
depending on the system architecture and the type of interaction between its
components. The aim of this paper is to examine the state of the art implemen-
tations of tuple spaces, and to find out strengths and weaknesses.

We start by cataloguing the existing implementations according to their fea-
tures, and then we focus on the most recent Linda based systems that are
still maintained, while paying specific attention to those featuring decentral-
ized tuples space. For the selected systems, we compare their performances on
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three different case studies that aim at stressing different aspects of computing
such as communication, data manipulation, and cpu usage. After reasoning on
strength and weakness of the three implementations, we conclude with some rec-
ommendation for future work towards building effective implementation of the
tuple space paradigm.

2 Tuple Space Systems

In this Section, first we review several existing tuple space systems by briefly
describing each of them, and single out the main features of their implemen-
tations, then we summarise these features in Table 1. Later, we focus on the
implementations that enjoy the characteristics we consider important for a tuple
space implementation: code mobility, distribution of tuples and flexible tuples
manipulation.

JavaSpaces. JavaSpaces [13] is one of the first implementations of the tuple
space developed by Sun Microsystems. It is based on a number of Java tech-
nologies (Jini, RMI). As a commercial system, JavaSpaces supports transac-
tions and mechanism of tuple leases. A tuple, called entry in JavaSpaces, is an
instance of a Java class and its fields are the public fields of the class. This means
that tuples are restricted to contain only objects but not primitive values. The
tuple space is implemented by using a simple Java collection. Pattern matching
is performed on the byte level, and the byte level comparison of data supports
object-oriented polymorphism.

TSpaces. TSpaces [12] is an implementation of the Linda model at the IBM
Almaden Research Center. It combines asynchronous messaging with database
features. Like JavaSpaces, TSpaces provides transactional support and mech-
anism of tuple leases. Moreover, the embedded mechanism for access control to
tuple spaces is based on access permission. It checks whether a client is able
to perform specific operations in the specific tuples space. Pattern matching is
performed using either standard equals method or compareTo method. Pat-
ter matching uses SQL-like queries, allowing to match tuples regardless of their
structure (e.g. the order in which fields are stored).

GigaSpaces. GigaSpaces [9] is a contemporary commercial implementation of
tuple space. Nowadays, the core of that system is GigaSpaces XAP, a scale-out
application server and any user application should interact with it for creating
and manipulating its own tuple space. The main areas where GigaSpaces can be
applied are concerned with big data analythics. GigaSpaces main features are:
linear scalability, optimization of RAM usage, synchronization with databases
and several database-like operations such as complex queries, transactions and
replication.

Tupleware. Tupleware [1] is specially designed for array-based applications
in which an array is decomposed into several parts each of which can be processed
in parallel. It aims at developing a scalable distributed tuple space with good
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performance on a computing cluster and provides clear and simple programming
facilities for dealing with distributed tuple space as well as with centralized one.
The tuple space is implemented as a hashtable, containing pairs consisting of a
key and a vector of tuples. Due to the nature of Jave hashtable, it is possible to
access concurrently several elements of the hashtable, since synchonisation is at
the level of hashtable element. To speed up the search in the distributed tuple
space, an algorithm based on the history of communication is used. Its main aim
is to minimize the number of communications between nodes for tuples retrieval.
The algorithm uses success factor, a real number between 0 and 1, expressing
the likelihood of the fact that a node can find a tuple in the tuple space of other
nodes. Each instance of Tupleware calculates success factor on the basis of
past attempts to get information from other nodes and tuples are first searched
in nodes with greater success factor.

Grinda. Grinda [5] is a distributed tuple space which was designed for large
scale infrastructures. It combines Linda coordination model with grid architec-
ture aiming at improving performance of distributed tuple space, especially with
a large amount of tuples. To boost the search of tuples, Grinda utilizes spatial
indexing schemes (X-Tree, Pyramid) which are usually used in spatial databases
and Geographical Information Systems. Distribution of tuple spaces is based on
the grid architecture and implemented using structured P2P network (based on
Content Addressable Network and tree based).

Blossom. Blossom [15] is a C++ implementation of Linda which was devel-
oped to achieve high performance and correctness of the programs using Linda
model. In Blossom all tuple spaces are homogeneous with predefined structure,
and this allows spending less time for type comparison during the search. To
improve scalability, Blossom uses distributed tuple spaces and each processor
is assigned a particular tuple space by considering tuple values. The technique of
prefetching allows a process to send a request for some tuples to the tuple space
and to continue its work while the search continues. When the process needs the
requested tuples, it receives them without waiting and spending time for their
search which have been already done.

DTuples. DTuples [10] is designed for peer-to-peer networks and based on
distributed hash table (DHT), a scalable and efficient approach. Key points of
DHT are autonomy and decentralization. There is no central server and each
node of DHT is in charge of storing a part of hash table and of keeping rout-
ing information about other nodes. As the basis of the DTH’s implementation
DTuples uses FreePastry1. DTuples also supports transactions and guaran-
tees fault-tolerance via replication mechanisms. DTuples supports multi tuple
spaces and distinguishes public and subject tuple spaces. Public tuple space is a
space shared among all the processes and all of them can perform any operation
on it. Subject tuple space is a private space accessible only by the processes that
are bound to it. Any subject space can be bound to several processes and can
1 FreePastry is an open-source implementation of Pastry, a substrate for peer-to-peer

applications (http://www.freepastry.org/FreePastry/).

http://www.freepastry.org/FreePastry/
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be removed if no process is bound to it. Due to the two types of tuple spaces,
pattern matching is specific for each of them. Templates in the subject tuple
space can match tuples in the same subject tuple space and in the common
tuple space. However, the templates in the common tuple space cannot match
the tuple in the subject tuple spaces.

LuaTS. LuaTS [11] is a reactive event-driven tuple space system written in Lua.
Its main features are associative mechanism of tuple retrieving, fully asynchro-
nous operations and support of code mobility. LuaTS provides centralized man-
agement of the tuple space which can be logically partitioned into several parts
using indexing. LuaTS combines Linda model with event-driven programming
paradigm. This paradigm was chosen to simplify program development which
allows avoiding the use of synchronization mechanisms for tuple retrieval and
makes more transparent programming and debugging of multi-thread program.
Tuples can contain any data which can be serialized in Lua, including strings
with function code. In order to obtain a more flexible and intelligent search,
function code can be sent to the server and once executed it can returns the
matched tuples. Reactive tuple space is implemented as a hashtable, in which
along with data also information supporting the reactive nature of that tuple
space (templates, client addresses, ids of callback and so on) is stored.

Klaim. Klaim [3] (the Kernel Language for Agents Interaction and Mobility) is
an extension of Linda supporting processes migration. The emphasis of Klaim

is on process mobility, which means that processes as any data can be moved
from one locality to another and they can be executed in any localities. Klava is
a Java implementation of Klaim [4]. Klaim supports multiple tuple spaces and
operates with explicit localities where processes and tuples are allocated. In this
way, several tuples can be grouped and stored in one locality. Moreover, all the
operations on tuple spaces are parametric to localities. Emphasis is put also on
access control which is important for mobile applications. For this reason Klaim

introduces type system which allows checking whether a process can perform an
operation at specific localities.

In order to compare the implementations we have discussed so far, we have
singled out the following criteria:

Distributed Tuple Space. This criterion denotes whether tuple spaces are
stored in one single node of the distributed network or they are spread across
the network.

Decentralized Management. Distributed systems rely on a node that controls
the others or the control is shared among several nodes. Usually, systems with
the centralized control have bottlenecks which limit their performance.

Tuples Clustering. This criterion determines whether some tuples are grouped
by particular parameters that can be used to determine where to store them
in the network.

Domain Specificity. Many of implementations have specific area in which they
can be used. If the implementation is domain specific it can be good because
it is more suitable for it and has an advantage over other ones. On another
side, this feature could be considered a limitation if one aims at generality.
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Table 1. Results of the comparison

JSP TSP GSP TW GR BL DTP LTS KL

Distributed tuple space ? � � � � �
Decentralized management ? � � �
Tuple clustering ? � � �
Domain specificity � �
Scalability � � � �
Security � � �
eval operation � �

JavaSpaces (JSP), TSpaces (TSP), GigaSpaces (GSP), Tupleware

(TW), Grinda (GR), Blossom (BL), DTuples (DTP), LuaTS (LTS),
Klaim (KL)

Scalability. This criterion implies that system based on particular Linda imple-
mentation can cope with the increasing amount of data and nodes while
maintaining acceptable performance.

Security. This criterion specifies whether an implementation has security fea-
tures or not.

eval Operation. This criterion denotes whether the tuple space system has
implemented the eval operation.

Table 1 summarises the result of our comparison: � means that the imple-
mentation enjoys the property and ? means that we were not able to provide an
answer, since the source code was not available.

An extra requirement to be able to compare implementations (especially in
terms of time) is that they have to be written in the same language. We have
chosen Java, since nowadays it is the most used language. Moreover, using a
single programming language allows us to develop case studies as skeletons:
the code remains the same for all the implementations, only the invocations of
different library methods do change. This choice, guarantees also the possibility
of performing better comparisons of the time performances exhibited by the
different tuple systems which could be significantly depend the chosen language.

After considering the results in Table 1, to perform our detailed experiments
we have chosen: Tupleware which enjoys most of the selected features; Klaim

since it offers distribution, clustering of tuple spaces and code mobility. Finally,
we have chosen GigaSpaces because it is the most modern among the com-
mercial systems; it will be used as a yardstick to compare the performance of
Tupleware and Klaim. We would like to add that DTuples has not been
considered for the more detailed comparison because we have not been able to
obtain its libraries or source code, and that Grinda has been dropped because
it seems to be the less maintained one.

In all our implementations of the case studies, we have structured the sys-
tems by assigning each process a local tuple space. Because GigaSpaces is a
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centralized tuple space, in order to satisfy this rule we do not use it as central-
ized one, but as distributed: each process is assigned its own tuple space in the
GigaSpaces server.

3 Experiments

3.1 Case Studies

In order to compare different tuple space systems we have chosen 3 case stud-
ies: Password search, Sorting and Ocean model. The first case study is a com-
munication intensive task where the number of tuples is large and it requires
doing many reading and writing operations. The second case study is compu-
tation intensive, since each node spends more time for sorting elements than
for communicating with the other nodes. This case study has been considered
because it needs structured tuples that contain both basic values (with primitive
type) and complex data structures that impact on the speed of the inter-process
communication. The third case has been taken into account since it introduces
particular dependencies among nodes, which if exploited can improve the appli-
cation performances. This was considered to check whether adapting a tuple
space system to the specific inter-process interaction pattern of a specific class
of the applications could lead to significative performance improvements. All the
case studies are implemented using master-worker paradigm [6]. Now we briefly
describe them.

Password Search. The main aim of the distributed application for password
search is to find a password using its hashed value in the predefined distributed
database. We have generated that database in the form of the files containing
pairs of password and hashed value, for each password. The application creates
a master process and several worker processes: the master keeps asking to the
workers passwords corresponding to a specific hashed values, by issuing tuples
of the form:

〈“search task”, dd157c03313e452ae4a7a5b72407b3a9〉

Each worker first loads its part of the distributed database, and after, it obtains
from the master a task to look for the password corresponding to a hash value.
Once it has found the password, it sends the result back to the master process,
with a tuple of the form:

〈“found password”, dd157c03313e452ae4a7a5b72407b3a9, 7723567〉

For multi tuple spaces implementations it is necessary to start searching in one
local tuple space and then to check the tuple spaces of other workers. The appli-
cation terminates its execution when all the tasks have been processed and the
master has received all results.
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Sorting. This distributed application consists of sorting arrays of integers. The
master is responsible for loading initial data and for collecting the final sorted
data, while workers are directly responsible for the sorting. At the beginning, the
master loads predefined initial data to be sorted and sends them to one worker
to start the sorting process. Afterwards, the master waits for the sorted arrays
from the workers: when any sub-array is sorted the master receives it and builds
the whole sorted sequence when all sub-arrays are collected. The behavior of
workers is different; when they are instantiated, each of them starts searching
for the unsorted data in local and remote tuple spaces. When a worker finds a
tuple with data, it checks whether it is possible to sort these data (the size of the
data is less than particular threshold). If it is possible to sort them, the worker
does the computation, sends the result to the master and starts searching for
other unsorted data. Otherwise, the worker splits the array into two parts: one
part is stored into its local tuple space while the other is processed.

Ocean Model. The ocean model is a simulation of the enclosed body of water.
The core of that case study was given in [1]. The two-dimensional surface of water
in the model is represented as a 2-D grid and each cell of the grid represents one
point. The parameters of the model are current velocity and surface elevation
which are based on a given wind velocity and bathymetry. In order to parallelize
the computation, the whole grid is divided into vertical panels, and each worker
owns one panel in order to compute its parameters. The aim of the case study
is to simulate the body of water during several time-steps. At each time-step,
in order to compute the new panel parameters, each worker has to take into
account its neighbouring panels.

The mission of the master and workers are similar to the previous case studies.
In the application the master instantiates the whole grids, divides it into parts
and sends them to the workers. After all iterations, it receives all parts of the grid.
Each worker receives its share of the grid and at each iteration it communicates
with workers which have adjacent grid parts in order to update and recompute
the parameters of its model; in the end it sends its data to the master.

Implementing Case Studies. Since we have chosen Java-based tuple space sys-
tems, all case studies are implemented in Java. Implementations of the three
case studies require the use of synchronization to avoid conflicts while accessing
to the same tuple space. GigaSpaces and Tupleware have built in synchro-
nization mechanisms, while Klaim does not. To cope with it, for Klaim we
implemented synchronizations, using standard Java synchronized blocks [14], at
the node/process level instead of modifying the source code of the core operation
and applied it to local tuple space.

There is a difference in the implementation of the search among distributed
tuple spaces. Tupleware has a built in operation with notification mechanism:
it searches in local and remote tuple spaces once and then waits for the notifi-
cation that the wanted tuple appears in one of the tuple spaces. The implemen-
tation of this operation for Klaim and GigaSpaces requires to continuously
check each tuple space until the wanted tuple is found.



Tuple Spaces Implementations and Their Efficiency 59

3.2 Methodology

All the conducted experiments are parametric with respect to two parameters.
The first one is the number of workers taken into account with values 1, 5, 10, 15
and it tests how the different implementations scale up with concurrency. The
second parameter is application specific, but its meaning is the same: testing the
implementation when the workload increases. For the case study Password search
we vary the number of the entries in the database (10000, 1000000 and 1 million
passwords) where it is necessary to search the password. This parameter directly
affects the number of local entries each worker has. Moreover, for this case study
the number of password to find was fixed to 100. For the Sorting case, the second
parameter is the number of elements in an array to be sorted (100000, 1 million,
10 million elements). In this case the number of elements does not correspond
to the number of tuples because parts of array are transferred also as arrays of
smaller size. For the case study Ocean model the second parameter is the grid
size (300, 600 and 1200) which is related with computational size of the initial
task.

Remark 1 (Execution Environment). Our test were conducted on a server with
4 processors Intel Xeon E5620 (4 cores, 12 M Cache, 2.40 GHz, Hyper-Threading
Technology) with 32 threads in total, 40 GB RAM and installed Ubuntu 14.04.3.
All applications are programmed in Java 8 (1.8.0).

Measured Metrics. For measurement of metrics Clarkware Profiler2 is used. We
use manual method of profiling and insert methods Profiler.begin(label) and
Profiler.end(label) surrounding parts of the code we are interested into pro-
gram code in order to begin and stop counting time respectively. This sequence
of the actions can be repeated many times and in the end we receive report
which includes the number of calls, overall and average time. For each metrics
the label is different and it is possible to use several of them simultaneously.
Each set of experiments was conducted 10 times with randomly generated input
and average values of each metrics were computed. To extensively compare the
different implementations, we have chosen the following measures:

Local writing time: required time to write one tuple into local tuple space.
Local reading time: required time to read or take one tuple from local tuple

space using template. The parameter checks how fast pattern matching works.
Remote writing time: time of the writing to the tuple space plus the time of

communication with process associated with tuple space.
Remote reading time: similarly to the previous one, this time is a sum of the

time of the search in tuple space and the time of the communication with it.
Search time: when the application has several workers we introduce the time

which is required to find a tuple in a several separated tuple spaces.

2 The profiler was written by Mike Clark; source code is available in GitHub.com:
https://github.com/akatkinson/Tupleware/tree/master/src/com/clarkware/
profiler.

https://github.com/akatkinson/Tupleware/tree/master/src/com/clarkware/profiler
https://github.com/akatkinson/Tupleware/tree/master/src/com/clarkware/profiler
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Total time: total execution time. This time does not include initial creation of
tuple spaces or starting tuple space server as in the case of GigaSpaces.

Number of visited nodes: number of visited before a necessary tuple was
found.

Please notice that, all plots used in the paper report results of our experi-
ments in a logarithmic scale. When describing the outcome, we have only used
those plots which are more relevant to evidence the difference between the three
tuple space systems3.

3.3 Results

Password Search. As shown in Fig. 1 GigaSpaces exhibits better perfor-
mances than the other two tuple space systems.

Figure 2 depicts the local writing time for each implementation, with different
numbers of workers. As we can see, by increasing the number of workers (which
implies reducing the amount of local data to consider), the local writing time
decreases. This is more evident in Tupleware, which really suffers when a big
number of tuples (e.g. 1 million) is stored in a single local tuple space. The
writing time of Klaim is the lowest among other systems and does not change
significantly during any variation in the experiments.

Fig. 1. Password search. Local total time

Local reading time is shown in Fig. 3 and Klaim is the one that exhibits the
worst performance for searching in local space. Indeed, if there is just one worker,
the local reading time is 10 times greater than Tupleware. We conjecture
that the pattern matching mechanism of Klaim is less effective than others.
By increasing the number of workers the difference becomes less evident, even
if it remains four times bigger than Tupleware. Since this case study requires
little synchronization among workers, performance improves when the level of
parallelism (the number of workers) increases.

3 Plots with more detailed (numeric) information are reported as bar charts at http://
sysma.imtlucca.it/coord16 appendix/.

http://sysma.imtlucca.it/coord16_appendix/
http://sysma.imtlucca.it/coord16_appendix/
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Fig. 2. Password search. Local writing time (1 million passwords)

Fig. 3. Password search. Local reading time (1 million passwords)

Fig. 4. Password search. Search time (1 million passwords)

Search time is similar to local reading time, but takes into account searching
in remote tuple spaces. When considering just one worker, the search time is
the same as the reading time in local tuple space, however, when the number of
workers increases the search time of Tupleware and Klaim grows faster than
the time of GigaSpaces. Figure 4 shows that GigaSpaces is more sensitive to
the number of tuples than to the number of accesses to the tuple space.

It is worth to remark that the local tuple spaces of the three systems exhibit
different performances depending on the operation on them: the writing time of
Klaim is always significantly smaller than the others, while the pattern matching
mechanism of Tupleware allows faster local searching.
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Sorting. Figure 5 shows that GigaSpaces exhibits significantly better execu-
tion time when the number of elements to sort is 1 million. When 10 million
elements are considered and several workers are involved, Tupleware exhibits
a more efficient parallelization and thus requires less time.

Fig. 5. Sorting. Total time

This case study is computation intensive but requires also exchange of struc-
tured data and, although in the experiments a considerable part of the time is
spent for sorting, we have that performances do not significantly improve when
the number of workers increases.

Fig. 6. Sorting. Local writing time (10 million elements)

The performance of Klaim is visibly worse than others even for one worker.
In this case, the profiling of the Klaim application showed that a considerable
amount of time was spent to transmit initial data from the master to the worker.
Inefficient implementation of data transmission seems to be the reason the total
time of Klaim differs from the total time of Tupleware.

By comparing Figs. 2 and 6, we see that, when the number of workers
increases, GigaSpaces and Klaim suffer more from synchronization in the cur-
rent case study than in the previous one; there no other operation was performed
in parallel to writing and thus no conflict handling was required.
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Fig. 7. Sorting. Search time (10 million elements)

In addition to experimenting with case studies, we measured the time
required by reading and writing operations on remote tuple space for all three
systems. For Klaim and Tupleware these times were similar and significantly
greater than those of GigaSpaces. Klaim and Tupleware communications
rely on TCP and to handle any remote tuple space one needs to use exact
addresses and ports. GigaSpaces, that has a centralized implementation, most
likely does not use TCP for data exchange but relies on a more efficient memory-
based approach.

As shown in Fig. 7, search time directly depends on the number of the workers
and grows with it. Taking into account that Klaim and Tupleware spend
more time accessing remote tuple space, GigaSpaces suffers more because of
synchronization. Klaim has the same problem, but its inefficiency is hampered
by data transmission cost.

Ocean Model. This case study was chosen to examine behavior of tuple sys-
tems when specific patterns of interactions are used. Out of the three considered
systems, only Tupleware has a method for reducing the number of visited
nodes during search operation which helps in lowering search time. Figure 8
depicts the number of visited nodes for different grid size and different number
of workers. The curve depends only weakly on the size of the grid for all systems,
and much more on the number of workers. Indeed, from Fig. 8 we can appreciate
that Tupleware performs a smaller number of nodes visits, and that when the
number of workers increases the difference is even more evident4.

The difference in the number of visited nodes does not affect significantly
the total time of execution (Fig. 9) mostly because the case study requires many
read operations from remote tuple spaces (Fig. 10). But, as it was mentioned
before, GigaSpaces implements read operation differently from Tupleware

and Klaim and it is more effective when working on a single computer.
Figure 9 provides evidence of the effectiveness of Tupleware when its total

execution time is compared with the Klaim one. Indeed, Klaim visits more

4 Figure 8, the curves for Klaim and GigaSpaces are overlapping and purple wins
over blue.
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Fig. 8. Ocean model. Number of visited nodes (Color figure online)

Fig. 9. Ocean model. Total time

Fig. 10. Ocean model. Remote reading time

nodes and spends more time for each read operation, and the difference increases
when the grid size grows and more data have to be transmitted.

This case study suggests that devising an appropriate mechanism for taking
advantage of the underlying communication pattern can make cooperative work
of distributed tuple spaces more effective.

4 Conclusions

Distributed computing is getting increasingly pervasive, with demands from var-
ious applications domains and highly diverse underlying architectures from the
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multitude of tiny things to the very large cloud-based systems. Tuple spaces cer-
tainly feature valuable characteristics to help develop scalable distributed appli-
cations/systems. This paper has first surveyed and evaluated a number of tuple
space systems, then it has analyzed more closely three different systems. We
considered GigaSpaces, because it is one of the few currently used commercial
products, Klaim, because it guarantees code mobility and flexible manipulation
of tuple spaces, and Tupleware, because it is the one that turned out to be the
best in our initial evaluation. We have then compared the three system by evalu-
ating their performances over three case studies: a communication-intensive one,
a computational-intensive one, and one with a specific communication pattern.

Our work follows the lines of [16] but we have chosen more recent implemen-
tations and conducted more extensive experiments.

The commercial system GigaSpaces differs from the other two systems for
the use of a memory based interprocess communication for data exchange, that
guarantees considerably smaller access time to data. Therefore, using this mecha-
nism in the scope of one machine can increase effectiveness of work when different
tuple spaces are needed. When working with networked machines, it is not possi-
ble to use that mechanism and we need to use approaches to reduce the number
of inter-machine communication (e.g. Tupleware approach) and to make that
communication effective. Another issue to which we need to pay to attention is
related to the implementation of local tuple spaces including pattern matching
algorithms and mechanisms to prevent conflicts when accessing the spaces.

Performances of a tuple space system vary depending on the chosen system
architectures and on the type of interaction between their components. We did
not consider different architectures but we noted problems (data transmission,
synchronization, etc.) which may occur in different systems for different types
of interaction. We plan to use the results of this work as the basis to design an
efficient tuple space system which offers programmer the possibility of selecting
(e.g. via a dashboard) the desired features of the tuple space according to the
specific application. In this way, one could envisage a distributed middleware
with different tuple spaces implementations each of them devised with the best
characteristic, in terms of efficiency, to perform the required tasks.
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Abstract. Typical Collective Adaptive Systems (CAS) consist of a large
number of interacting objects that coordinate their activities in a decen-
tralised and often implicit way. The design of such systems is challenging,
as it requires scalable analysis tools and methods to check properties of
proposed system designs before they are put into operation. A promis-
ing technique is Fast Mean-Field Approximated Model-checking. The
FlyFast model-checker uses an on-the-fly algorithm for bounded PCTL
model-checking of selected individuals in the context of very large popu-
lations whose global behaviour is approximated using deterministic limit
techniques. Recently, specific modelling languages have been proposed
for CAS. A key feature of such languages is the attribute-based interac-
tion paradigm. In this paper we present an attribute-based coordination
language as a front-end for FlyFast. Its formal probabilistic semantics is
provided and a translation to the original FlyFast language is given and
proved correct. Application examples are also provided.

Keywords: Collective Adaptive Systems · Probabilistic on-the-fly
model-checking · Mean-Field Approximation · Discrete time Markov
chains

1 Introduction and Related Work

Collective Adaptive Systems (CAS) consist of a large number of entities with
decentralised control and varying degrees of complex autonomous behaviour.
CAS are at the core of the envisioned smart cities of the future and encompass
systems like smart urban transport and smart grids. The pervasive nature of CAS
and thus their impact on society requires the development of reliable rigorous
design models as well as a priori analysis techniques of such models—covering all
relevant aspects of their behaviour, including quantitative and emergent ones—
before they are put into operation1.

Model-checking has been widely recognised as a powerful approach to the
automatic verification of concurrent and distributed systems. It consists of an

Research partially funded by the EU project QUANTICOL (nr. 600708).
1 See, e.g. www.focas.eu/adaptive-collective-systems and www.quanticol.eu.
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efficient procedure that, given an abstract model of the system, decides whether
the model satisfies a logical formula, typically drawn from a temporal logic.
Unfortunately, traditional model-checking suffers from the so called state-space
explosion problem which hampers scalability of the approach. In particular, its
application to very large models, like those typical of CAS, is infeasible. In [15,17]
Latella et al. presented a scalable mean-field model-checking procedure for veri-
fying bounded PCTL (Probabilistic Computation Tree Logic) [11] properties of
selected individuals in the context of systems consisting of a large number of
similar, but independent, interacting objects; a limited form of global system
properties can be treated as well. The procedure can be used with huge popula-
tion sizes, as typical of analysis techniques based on mean-field approximation;
the average behaviour of the population is approximated using a population
Discrete Time Markov Chain (DTMC) convergence result [21] and is used for
representing the context in which the selected individuals operate (see [15,17,21]
for details). The model-checking procedure is implemented in the tool FlyFast as
an instantiation of a probabilistic on-the-fly model-checker; the latter is para-
metric on (the semantic model of) the modelling language [15,16].

FlyFast comes with simple modelling language. An agent2 is a finite state
process, a generic state C of which is specified by a state defining equation like
C := a1.C1 + . . . + ar.Cr. Intuitively, the above notation defines state C of the
agent and postulates that there are r outgoing transitions from C, with action aj

labelling a transition going from C to Cj . A probability value is assigned to each
action a by means of a probability function definition a :: E, where the actual
probability is given by the value of expression E in the current occupancy measure
vector m. Assume a system is composed of N instances of the agent and that the
states of the agent are C1, . . . CS . The occupancy measure vector at the current
time is the vector (m1, . . . ,mS) s.t. mj yields the fraction of agents currently
in state Cj over the total number N of agents. A system specification is a triple
composed by an agent specification—given as a set of state defining equations—a
set of probability function definitions, and an initial global state. Finally, FlyFast
provides the user with formula declarations which allow for the interpretation of
bounded PCTL atomic propositions in the model at hand. The computational
model is clock-synchronous; at each step each agent must perform an independent
step (which may be an idle self-loop) so that the global state probabilities are
given as the product of agent step probabilities, and a new occupancy measure
vector can be computed. The global system behaviour is thus a DTMC as well
as the stochastic process given by the occupancy measure vector. Notably, for
N sufficiently large, the latter can be approximated deterministically, i.e. by a
function of time. This brings to a dramatic decrease in size of the global state
space: at each step, the total number of potential next states drops from SN to
S, which makes bounded PCTL model-checking of very large population systems
possible (the interested reader is referred to [15,17,21] for details).

Recently, modelling and programming languages have been proposed specif-
ically for autonomic computing systems and CAS [3,9,12]. Typically, in such

2 In the context of FlyFast we use the words agent, process and object as synonyms.
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frameworks, a system is composed of a set of independent components where
a component is a process equipped with a set of attributes describing features
of the component. A classical example of attribute is the component location.
An additional environment is often used for the specification of common or
global features. The attributes of a component can be updated during its exe-
cution so that the association between attribute names and attribute values
is mantained in the dynamic store of the component. Attributes can be used
in predicates appearing in language constructs for component interaction. For
instance a component may broadcast a message to all those components satisfy-
ing a given predicate; similarly a component may wait for a message from any
of those components satisfying a given predicate.

In the present paper, we propose an extension of the FlyFast front-end mod-
elling language for dealing with components and predicate-based interaction. The
extension has been inspired by Carma [3]. Components are expressed as pairs
process-store; actions are predicate based multi-cast output and input primitives3.
Associated to each action there is also an (atomic) probabilistic store-update.
For instance, assume components have an attribute named loc which takes val-
ues in the set of points of a space type. The following action models a multi-cast
via channel α to all components in the same location as the sender, making
it change location randomly: α∗[loc = my.loc]〈〉{loc ← randomLoc(loc)}. Here
randomLoc is assumed to be a random generator of points in the space4. The
computational model is clock-synchronous as well, but at the component level. In
addition, each component is equipped with a local outbox. The effect of an output
action α∗[πr]〈〉σ is to deliver output label α〈〉 to the local outbox, together with
the predicate πr, which receiver components will be required to satisfy, as well
as the current store γ of the component executing the action; the current store
is updated according to update σ. Note that output actions are non-blocking
and that successive output actions of the same component rewrite its outbox.
An input action α∗[πs]()σ by a component will be executed with a probability
which is proportional to the fraction of all those components whose outboxes
currently contain the label α〈〉, a predicate πr which is satisfied by the compo-
nent, and a store γ which satisfies in turn predicate πs. If such a fraction is zero,
then the input action will not take place (input is blocking), otherwise the action
takes place, the store of the component is updated via σ, and its outbox cleared.
Thus, as in the original FlyFast language, component interaction is probabilis-
tic, but now the fraction of the components satisfying the relevant predicates
plays a role in the computation of transition probabilities. We provide the for-
mal probabilistic semantics of the extended language and a translation to the
original FlyFast language which makes the model-checker support the extended
language. The translation is proved correct.

3 For the sake of notational simplicity, in this paper we present a non value-passing
version of the FlyFast front-end; the complete, value-passing, approach is described
in [8].

4 Multi-cast interaction is denoted using the ∗ notation, as in Carma.
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Related Work. As we mentioned before, this work has been inspired by
Carma [3], which in turn shares features with SCEL [9]. There are several
aspects of either languages that are not present in our proposal. The main rea-
son for the absence of most of them is the fact that this work is intended as a
proof of concept rather than the realisation of a ready-to-use tool for reasoning
about CAS. So we aim at keeping the language minimal and focussing only on
attribute-based interaction in the context of stochastic and mean-field seman-
tics and model-checking. A feature of Carma not considered here is the notion
of global environment, since it represents a singularity point that does not fit
well with limit approximation techniques. Finally, we point out that the sto-
chastic semantics of Carma are based on time inhomogeneous CTMCs, due to
the fact that action parameters may be time dependent, while we use DTMCs
as semantic basis. The notion of the outbox is reminiscent of the notion of the
ether in PALOMA [10] in the sense that the collection of all outboxes together
can be though of as a kind of ether; but such a collection is intrinsically dis-
tributed among the components so that it cannot represent a bottleneck in the
execution of the system neither a singularity point in the deterministic approx-
imation. Fluid model-checking for continuous time systems is addressed in [4]
where a global model-checking procedure for the Continuous Stochastic Logic
(CSL, [2]) is given, which is based on continuous limit approximated semantics.
Fluid semantics have proved very useful for reasoning about large coordination
systems (see e.g. [6,18,23]). Predicate-/attribute-based inter-process communi-
cation has been originally proposed in [19] where several variants of predicate-
/attribute-based communication primitives—including blocking / non-blocking,
bounded / unbounded—are discussed in the context of a study on high-level
language constructs for distributed systems with decentralised control (see for
instance [22]). The notion of predicate-/attribute-based interaction is central
in the definition of SCEL [9] where its synchronous-communication variant has
been given formal semantics. Asynchronous-communication variants have been
defined for stochastic versions of SCEL [20]. An attribute-interaction based cal-
culus is proposed in [1] where broadcast communication links among components
are dynamically established on the basis of the interdependences determined by
predicates over attributes. A reduction semantics approach is adopted where each
transition involves the group composed of both sender and receivers. Attribute
π-Calculus has been proposed in [14] and extended to Imperative π-Calculus
in [13]; in both calculi, which inherit the classical point-to-point communica-
tion paradigm of the π-Calculus, as opposed to multi-cast, attributes are related
to messages rather than to processes. None of the above mentioned works on
predicate-/attribute-based languages addresses mean-field approximated model-
checking so, to the best of our knowledge, the present paper is the first proposal
on the subject.

2 Attribute-Based Coordination Language and Logic

In this section we define an attribute-based population description language and
related logic. A system is defined as a population of N identical interacting
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components5 in a clock-synchronous fashion. Each component is equipped with
a finite set of attributes; the current store γ ∈ Γ of the component maps each
attribute name to an attribute value.

2.1 Syntax

A component specification is a pair (Δ,F ) where Δ is a finite set of state-defining
equations, one for each state of the component and F is a set of auxiliary func-
tion definitions6. We let S, ranged over by C,C ′, C1, . . . denote the (denumerable,
non-empty) set of all states which can be used in equations. Each equation defines
the transitions from the state to other states of the component; each transition is
labelled by the action the component performs when the transition takes place.
The general format of a state defining equation is: C := [g1]P1 + . . . + [gr]Pr

where each guard [g] is a predicate π defined according to the following grammar:
π ::= � | ⊥ | e1 �	 e2 | ¬π | π1 ∧ π2.
� (⊥, resp.) stands for the truth value true (false resp.), while �	 ∈ {≥, >,≤, <};
we let �	∈ {>,<}. An expression e can be an attribute name a, or my.a refer-
ring to the value of a in the component where it occurs, or a value v in given
set V. In defining equations as above, we abbreviate [�]Pj with Pj and we omit
summands of the form [⊥]Pj . Each Pj in a state defining equation as above is
of the form pj :: actj .Cj , where pj is a probability expression, i.e. an expres-
sion with value in [0, 1], built from constants v ∈ [0, 1] and the special operator
frcC, combined using standard arithmetic operators; for state C, frcC returns
the fraction of the components that are currently in state C, over the total of N
components. Clearly, the use of the frc operator allows action (and, ultimately,
transition) probability to depend on the global state of the system. Actions actj
can be output actions α∗[π]〈〉σ or input actions α∗[π]()σ. We assume a countable
set of action types A, with α ∈ A. The effect of an output action α∗[π]〈〉σ is a
broadcast to all those components satisfying predicate π and which are willing
to accept the interaction. This is achieved by means of delivering α〈〉, together
with some additional information, to the outbox of the component executing
the action, as we will discuss in detail in Sect. 2.2. In addition, the store of the
component executing the action is updated according to the update σ, which
is a function from Γ to the class of probability distributions over Γ—i.e., in
the general case, the update may be probabilistic. Similarly, an input action
α∗[π]()σ is used to receive an α-message sent by a component satisfying pred-
icate π. More specifically, the probability of executing the input action will be
proportional to the fraction of components which have sent the α-message while
satisfying predicate π and requiring a predicate which is satisfied by the com-
ponent executing the input action. Also input actions are provided with a store

5 In practice, the fact that the components are identical is not a strong limitation
since each component may consist of several different sets of states, with each state
in a given set being unreachable from states of other sets. Each such a set of states
can be seen as a component with a different behaviour.

6 The specific syntax of auxiliary function definitions is irrelevant and left out here.
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update σ whereas the component outbox is cleared as (a side) effect of their
execution. In the sequel, we shall call address predicates the predicates [π] used
for identifying the partners in input/output actions. For updates, we use the
following notation: {a1 ← eγ

1 , . . . , at ← eγ
t } where eγ

j is an expression which
may also include functions—the definition of which are to be provided in F—
which may depend on the component store γ and produce random results, as
we shall see below. Attributes different from a1, . . . , at are left unchanged by the
update. We require that any attribute name a occurring in a guard [g], or in
the expressions eγ

1 , . . . , eγ
t , must appear in the form my.a (thus referring to the

value of the attribute in the local store of the component). An attribute name
a may appear both with and without the my. prefix in the address predicate
π. Intuitively, equation C := [g1]P1 + . . . + [gr]Pr defines state C of the com-
ponent at hand and postulates that there are r potential outgoing transitions
from C, with action actj labelling a transition going from C to Cj . The actual
transitions will be determined by the value of the guards and the action proba-
bilities. Note that it may happen that the current cumulative probability value
of the enabled transitions is less than 1; for this reason, the language provides
the construct rest :: α[π]〈〉σ.C, where rest is defined as the residual probability;
it is required that there is at most one rest-branch (typically the last one) in
every state defining equation. Only output actions are allowed in rest-branches;
this ensures that the residual probability is not affected by the fraction of those
components in the system satisfying the address predicate. Obviously, in a given
component specification there is exactly one defining equation for each state of
the component. We let SΔ denote the finite set of states defined by Δ. Simi-
larly, ΓΔ, AΔ and ΠΔ denote the set of all stores associated to Δ, the action
types and the predicates occurring in (the equations of) Δ. Finally, we let VΔ

denote the set of values which can be taken by the attributes of a component
specified by Δ. Note that we assume VΔ is a finite set—thus also ΓΔ is finite;
model finiteness is a common assumption for modelling languages supported by
automatic analysis and verification tools.

Example 1 (A spatially distributed Computer Epidemic Model). We enrich the
Computer Epidemic Model of [5], SEIR, with infection communication and a
bi-dimen-sional Regular GRID [7] model for space, where for each point � the
following specific operators are defined, with the usual North, South, East, West
meaning: N(�),S(�), E(�),W(�). Each component is equipped with a position
attribute, named loc, which is always yielding the current position (i.e. point) in
space of the component and is the only attribute of the component. Note that,
given the abstract nature of the bi-dimensional Regular GRID, such a “point”
could be a physical point is space, but also a specific region (or patch) in a
patched representation of space. We will implicitly refer to the second inter-
pretation in the sequel. In the model, given in Fig. 1, the purpose of auxiliary
function Jump is twofold: (i) it defines a function from positions to discrete
probability distributions which, given position �, characterizes a probability dis-
tribution which assignes probability pN(�) to N(�), probability pS(�) to S(�),
and so on and (ii) defines a random position generator which, given position �,
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S := h :: inf∗[loc = my.loc](){my.loc ← Jump(my.loc)}.E +

mN :: inf∗[loc = N(my.loc)](){my.loc ← Jump(my.loc)}.E +

mS :: inf∗[loc = S(my.loc)](){my.loc ← Jump(my.loc)}.E +

mE :: inf∗[loc = E(my.loc)](){my.loc ← Jump(my.loc)}.E +

mW :: inf∗[loc = W(my.loc)](){my.loc ← Jump(my.loc)}.E +

ext :: ext∗[⊥]〈〉{my.loc ← Jump(my.loc)}.E +

sr :: rec∗[⊥]〈〉{my.loc ← Jump(my.loc)}.R +

rest :: nsc∗[⊥]〈〉{my.loc ← Jump(my.loc)}.S

E := ei :: act∗[⊥]〈〉{my.loc ← Jump(my.loc)}.I +

er :: rec∗[⊥]〈〉{my.loc ← Jump(my.loc)}.R +

rest :: nsc∗[⊥]〈〉{my.loc ← Jump(my.loc)}.E

I := ii :: inf∗[�]〈〉{my.loc ← Jump(my.loc)}.I +

ir :: rec∗[⊥]〈〉{my.loc ← Jump(my.loc)}.R +

rest :: nsc∗[⊥]〈〉{my.loc ← Jump(my.loc)}.I

R := rs :: loss∗[⊥]〈〉{my.loc ← Jump(my.loc)}.S
rest :: nsc∗[⊥]〈〉{my.loc ← Jump(my.loc)}.R

Fig. 1. A four state model: susceptible (S), exposed (E), infected (I), and recover (R).

randomly returns a new position according to the specified probabilities. Note
that the probabilities are themselves functions of the position and they are
assumed being declared as additional auxiliary functions. In the equation for
S in Fig. 1, probability constants h,mN , . . . ,mW are factors in [0, 1] with cumu-
lative value at most 1, each to be multiplied by the actual probability of the
associated (input) action. The latter will be computed as the fraction of the
local states which satisfy the required predicate. The resulting values, when
taken all together, will characterize a probability sub-distribution; the residual
probability will be associated to a rest-self-loop. Similar considerations apply to
the probability constants in the definition of other states (e.g. i in the figure).
We assume h > mN ≈ mS ≈ mE ≈ mW . In other words, an agent has higher
probability to get the infection from agents in the same place than from agents
in adjacent places; the probability drops to zero in all other cases. •

A system is modelled as a population of N instances of a component, so
a system specification Υ is a triple (Δ,F,Σ0)(N) where (Δ,F ) is a component
specification and Σ0 is the initial (system) global state, which will be discussed
below. In the sequel we will often write Δ instead of (Δ,F ).

2.2 Probabilistic Semantics

In order to model component interactions within a system, each component is
equipped with a local outbox. The idea is that, whenever a component executes
an output action, the related output will be available in the component’s outbox
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only during the next clock tick; in the next state, (other) components will be able
to get the message by means of corresponding input actions. After such a tick, the
outbox will be empty or filled with the information generated by a subsequent
output action of the component. Formally, let ΛO

Δ be the set ΛO
Δ = {α〈〉|α ∈ AΔ}.

An outbox-state O ∈ OΔ = {〈〉} ∪ (ΓΔ × ΠΔ × ΛO
Δ) is either empty or a triple

(γ, π, α〈〉). A component-state Σ is a triple Σ = (C, γ,O) ∈ SΔ×ΓΔ×OΔ = ΩΔ,
where C, γ,O are the current state, store and outbox-state of the compo-
nent, respectively. If the component-state is the target of a transition mod-
elling the execution of an output action, then O = (γ′, π, α〈〉), where γ′ is
the store of the (component-state) source of the transition, π is the predicate
used in the action—actualized with γ′—and α〈〉 the actual message sent by
the action. If, instead, the component-state is the target of a transition for
an input action, then O = 〈〉, i.e. the empty outbox. A global state is a tuple
Σ = ((C1, γ1, O1), . . . , (CN , γN , ON )) ∈ ΩN

Δ where Σ[j] = (Cj , γj , Oj) is the
component-state of the j-th instance in the population for j = 1 . . . N . We say
that N is the population size of the system. In the sequel, we will omit the explicit
indication of the size N in (Δ,F,Σ0)(N), and elements thereof or related func-
tions, writing simply (Δ,F,Σ0), when this cannot cause confusion. In summary,
a system specification can be thought of as process algebraic clock-synchronous
parallel composition of N processes. The probabilistic behaviour of a system can
be derived from its specification (Δ,F,Σ0)(N). We remind that ΩΔ is finite, since
so are sets SΔ, ΓΔ and OΔ. Assume ΩΔ = {Σ1, . . . , ΣS} and let USbe the set
{m ∈ [0, 1]S |∑S

i=1 m[i] =1}; we can assume, w.l.o.g. that there is a total ordering
on ΩΔ so that we can unambiguously associate each component mj of a vector
m = (m1, . . . ,mS) ∈ US with a distinct element Σj of {Σ1, . . . , ΣS}. With each
global state Σ(N) an occupancy measure vector M(N)(Σ(N)) ∈ US is associated
where M(N)(Σ(N)) = (M (N)

1 , . . . ,M
(N)
S ) with M

(N)
i = 1

N

∑N
n=1 1{Σ

(N)
[n] =Σi} for

i = 1, . . . , S and the value of 1{α=β} is 1, if α = β, and 0 otherwise. So, for
Σi = (Ci, γi, Oi), M

(N)
i is the fraction, in the current global state Σ(N), of

the component instances which are in state Ci, have store γi and outbox Oi,
over the total number N . We assume semantic interpretation functions EL[[·]]
and ER[[·]] for the local, remote respectively, interpretation of expressions and
predicates and a function EP[[·]] for the interpretation of probability expres-
sions. EL[[e]] (ER[[e]], respectively) takes a local (remote, respectively) store γ
as an argument, whereas EP[[p]] takes an occupancy measure vector m as an
argument. We note that EL[[a]]γ = a,EL[[my.a]]γ = γ(a), ER[[a]]γ = γ(a), and
EP[[frcC]]m =

∑S
i=1{m[i]|Σi = (C, γi, Oi)}; moreover, ER[[my.a]]γ , EP[[tt]]m,

EP[[ff]]m, EL[[frcC]]γ , and ER[[frcC]]γ are undefined as are, for the sake of sim-
plicity, EP[[a]]m, EP[[my.a]]m. The definition of the above semantic interpreta-
tion functions on composition terms can be given recursively on the structure of
the terms and is left out here. In particular, we assume them extended to tuples.
Similarly, we assume standard techniques and machinery for auxiliary functions
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in store updates; the semantics of update σ in the current store γ will be denoted
by EU[[σ]]γ , that is a probability distribution over stores7.

Let ΛΔ be defined as ΛΔ = ΛO
Δ ∪ ΛI

Δ, with ΛO
Δ as above, and ΛI

Δ =
{α()|α ∈ AΔ}. A component specification (Δ,F ) characterises the (component)
transition probability matrix as a function of occupancy measure vectors m,
K(N): US ×ΩΔ ×ΩΔ → [0, 1] such that K(N)(m)Σ,Σ′ is the probability of a one
step jump from component-state Σ to component-state Σ′, given (that the global
system state induces) occupancy measure vector m. K(N)(m)Σ,Σ′ is computed
by making use of a transition relation (C, γ,O) λ,p−−−→ (C ′, γ′, O′) over the space of
component-states ΩΔ, with transition labels drawn from ΘΔ ⊂ ΛΔ × [0, 1]. More
specifically, the transition relation is the relation −→ ⊆ ΩΔ ×ΘΔ ×ΩΔ such that
(C, γ,O) λ,p−−−→ (C ′, γ′, O′) iff C :=

∑
j∈J [gj ]pj :: actj .Cj is the defining equation

for C and p =
∑

k∈J{p̄k|(C, γ,O) λ,p̄k−−−−→ k(C ′, γ′, O′)}, where λ,p̄k−−−−→ k is the least
relation induced by the rules in Fig. 2. The component transition matrix function
K(N)(m)Σ,Σ′ is defined as follows: K(N)(m)Σ,Σ′ =

∑
(λ,p)∈ΘΔ

{p|Σ λ,p−−−→Σ′}.
Note that all the above summations are finite under our assumption that so is
VΔ. The behaviour of the system is the result of the parallel-synchronous exe-
cution of the N instances of the component. Thus, the probabilistic behaviour
of the system is characterised by the DTMC X(N)(t) with initial probability
distribution δΣ0 and one step probability matrix P(N) defined by the following
product: P(N)

Σ,Σ′ = ΠN
n=1K

(N)(M(N)(Σ))Σ[n],Σ
′
[n]

. Of course, the ‘occupancy
measure’ view of the evolution in time of stochastic process X(N)(t) is again a
DTMC, namely the occupancy measure DTMC, which is defined as expected:
M(N)(t) = M(N)(X(N)(t)).

Fig. 2. Probabilistic Semantics Rules

7 In this paper, for the sake of simplicity, updates do not depend on the current
occupancy measure vector, i.e. the frc operator cannot occur in their specification.
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2.3 Bounded PCTL

We recall that, given a set P of atomic propositions, the syntax of PCTL
state formulas Φ and path formulas ϕ is defined as follows, where ap ∈ P and
k ≥ 0 :Φ ::= ap | ¬Φ | Φ ∧ Φ | P	
p(ϕ) where ϕ ::= X Φ | ΦU≤k Φ. PCTL
formulas are interpreted over state labelled DTMCs, which are pairs (M, L)
where M is a DTMC and L is a mapping from the set of states of M to
2P ; for each state s, L(s) is the set of atomic propositions true in s8. For the
purposes of FlyFast bounded PCTL model-checking, our system specifications
are enriched with the declaration of three different kinds of atomic proposi-
tions. A declaration of the form ap atC associates atomic proposition ap to
state C ∈ SΔ. Thus ap must be included in the set L(Σ) for each global state
Σ = ((C1, γ1, O1), . . . , (CN , γN , ON )) such that C1 = C (recall here that FlyFast
performs model-checking of the first object in the context of the global system).
A declaration of the form ap def (my.a �	 v) associates atomic proposition ap to
all component-states (C, γ,O) s.t. attribute a is �	 v. So, ap must be included
in the set L(Σ) for each global state Σ = ((C1, γ1, O1), . . . , (CN , γN , ON )) such
that EL[[my.a �	 v]]γ1 = tt. Finally, a limited form of global atomic predicate is
provided by means of a declaration of the form ap def (frcC �	 v); in this case,
ap must be included in the set L(Σ) for each global state Σ s.t. the fraction in
Σ of the component states (C, γ,O), for any γ and O, is �	 than v ∈ [0, 1].

3 A Translation to FlyFast

In this section we define a translation I such that, given system specification
Υ = (ΔΥ, FΥ,Σ0)(N), I(Υ) = 〈Δ,A,C0〉(N) is a FlyFast [15,17] system speci-
fication preserving probabilistic semantics. The attribute-based FlyFast front-end
is then completed with a simple translation at the PCTL level, also provided in
this section. We map every component state of Υ to a distinct state of I(Υ) by
means of a total injection IS :ΩΔΥ → S. The mapping of actions is a bit more
delicate because we have to respect FlyFast static constraints and, in particular,
we have to avoid multiple probability function definitions for the same action. To
that purpose, we could distinguish different occurrences of the same action in dif-
ferent transitions, characterized by their source and target states in ΩΔΥ . In prac-
tice, since an action of a component cannot be influenced by the current outbox
of the component, it is sufficient to use a total injection IA of the following type
(SΔΥ × ΓΔΥ) × ΛΔΥ × ΩΔΥ → A for the mapping of actions. In the sequel we
show how to build I(Υ) = 〈Δ,A,C0〉(N) from Υ = (ΔΥ, FΥ,Σ0)(N). The trans-
lation algorithm is given in Fig. 3, where for action act ∈ {α∗[π]〈〉σ, α∗[π]()σ} we
let T (act) = α, P (act) = π, and U(act) = σ. SUM{t|cond(t)} denotes the syntac-
tical term representing the sum of terms t ∈ {t|cond(t) = tt}, i.e. t1 + . . . + tn,
if {t|cond(t) = tt} = {t1, . . . , tn} �= ∅ and 0 if {t|cond(t) = tt} is the empty
set. Finally, by t ∗ t′ we mean the syntactical term representing the product of
8 We refer to [11] for the formal definition of PCTL and to [15,17] for the details of

its instantiation in FlyFast.
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terms t and t′. Output actions are dealt with in step 1. Consider for example action
ext∗[⊥]〈〉{my.loc ← Jump(my.loc)} in the definition of state S in Fig. 1. Sup-
pose the possible values for locations are A,B,C,D, so that stores are functions
in {loc} → {A,B,C,D}. The algorithm generates 12 actions (diagonal jumps are
not contemplated in the example). Let us focus on the action ξ associated to local
position A (i.e. γ = [loc �→ A]) and possible next position B (i.e. γ′ = [loc �→ B]);
the algorithm will generate probability function definition ξ :: pW(A) ∗ ext as well
as a transition leading to (a state which is the encoding, via IS , of) the compo-
nent state with E as (proper) state, store γ′, and outbox (γ,⊥, ext〈〉). Since the
action is not depending on the current outbox, in practice a copy of such a tran-
sition is generated for each component state sharing the same proper state S and
the same store γ. In the general case, in a defining equation for a state C there
might be multiple occurrences of the same action, bringing to the same next state
C ′; the algorithm takes care of this and collects them in order to generate a sin-
gle transition; the appropriate probability is expressed by means of the SUM{. . .}
term. The translation scheme for input actions is defined in case 2 and is similar,
except that for each term pj in the SUM{. . .} expression one has also to consider
the sum Φj of the fractions of the possible partners. The translation of the rest
case is straighforward.

Let K(N)
I(Υ) : US ×IS(ΩΔ)×IS(ΩΔ) → [0, 1] be the step probability function

associated to I(Υ) by the FlyFast language probabilistic semantics definition (see
[15,17] for details) and K(N)

Υ : US × ΩΔ × ΩΔ → [0, 1] be the step probability
function for Υ as defined in Sect. 2.2. It is easy to see that:

Theorem 1. For all N > 0, occupancy measure vector m ∈ US and Σ,Σ′ ∈ ΩΔ

the following holds: K(N)
Υ (m)Σ,Σ′ = K(N)

I(Υ)(m)IS (Σ),IS (Σ′).

Proof (scketch). We first observe that, by definition, K(N)
Υ (m)(C,γ,O),(C′,γ′,O′) =

∑
(λ,p)∈ΘΔ

{p|(C, γ,O) λ,p−−−→ (C ′, γ′, O′)} which, by definition of −→ , is equal to

∑

(λ,p)∈ΘΔ

{p|p =
∑

k∈J
{p̄k|(C, γ,O) λ,p̄k−−−−→ k(C ′, γ′, O′)} ∧

C :=
∑

j∈J
[gj ]pj :: actj .Cj is the def. eq. of C in Υ}.

Consider the outer summation and suppose (α〈〉, p) be the index of a summand.
Without loss of generality, assume there is only one instance of such a summandand
there is only one k ∈ J such that the following transition is derived using the rules
of Fig. 2: (C, γ,O) α〈〉,p̄k−−−−−→ k(C ′, γ′, O′). So, we have K(N)

Υ (m)(C,γ,O),(C′,γ′,O′) =

p̄k such that (C, γ,O) α〈〉,p̄k−−−−−→ k(C ′, γ′, O′), where C :=
∑

j∈J [gj ]pj :: actj .Cj

is the defining equation for C. Suppose [gk]pk �= rest, so that Rule (1) of
Fig. 2 has been used for generating the transition. This implies that EL[[gk]]γ =
tt, p̄k = EU[[σ]]γ(γ′) · EP[[pk]]m, C ′ = Ck, and O′ = (γ,EL[[π]]γ , α〈〉).
Under the above conditions, by definition of the translation algorithm, the action
ξ = IA((C, γ), α〈〉, (C ′, γ′, O′)) and related action probability function definition
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Fig. 3. The translation algorithm

ξ :: EU[[σ]]γ(γ′) ∗ SUM{pk} are included in the FlyFast model. Moreover, the sum-
mand ξ. IS(C ′, γ′, O′) is added in the equation for state IS(C, γ,O) in the FlyFast
model. Using the semantics definition of the FlyFast language [15,17], we get that
the probability assigned to ξ is EU[[σ]]γ(γ′) · EP[[pk]]m, that is, exactly p̄k. Thus
K(N)

Υ (m)Σ,Σ′ = K(N)
I(Υ)(m)IS (Σ),IS (Σ′). The proof for all the other cases is simi-

lar. •
The translation of atomic proposition declarations into FlyFast formula decla-

rations is the obvious one and is shown in Fig. 4 where OR{e|cond(e)} denotes the
syntactical term representing the disjunction of expressions e ∈ {e|cond(e) = tt},
i.e. e1| . . . |en, if {e|cond(e) = tt} = {e1, . . . , en} �= ∅ and ff, if {e|cond(e) = tt} is
the empty set.
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Fig. 4. Translation of atomic proposition declarations. The translation is not defined
whenever OR{t|cond(t)} = ff or SUM{t|cond(t)} = 0.

4 Epidemic Example Revisited

We return to the distributed Epidemic example of Fig. 1 where, for the sake of sim-
plicity, we consider a simple patched space, consisting of the usual four quadrants
A,B,C,D in the Cartesian Plane, as in Fig. 5 (left). We model a ‘flow’ from quad-
rant C to quadrant A by defining the jump probabilities as in the table in Fig. 5
(right)9, where l = 0.6 and s = 1 − l, so that l > s.

We consider a model in which initially there are 10.000 components in state S in
quadrantC and 100 in state S in quadrantA. The non-zero values of the parameters
are the same for each quadrant, defined as follows: h = 0.2, ext = 0.1, ei = 0.4, ii =
0.8, ir = 0.2, rs = 0.1,mN = mS = mE = mW = 0.05.

Figure 6 shows the fast-simulation results10 for the model for each of the four
quadrants. This functionality is built-in in the FlyFast tool. In the figure, the frac-
tions of numbers of the components in each of the four states at each of the four
locations are shown.Note that these fractions correspond to appropriate predicates
on standard atomic propositions; for instance the fraction of components in state
S at quandrant A is captured by s ∧ a, assuming the following declarations: s at
S and a def (my.loc = A). The simulation of single elements, taken as the average
over 10 runs shows a very good correspondence with the fast-simulation results.
The results also show good correspondence to the original SEIR model [5] when
the probability to move between quadrants is set to zero and in the initial state
the total population is in state S and in one specific quadrant in the former model.
Besides fast simulation, that gives an idea of the average global behaviour of the
system, we can also analyse the behaviour of a single component in the context

Fig. 5. The Cartesian quadrants (left) and the jump probabilities (right).

9 We assume: N(A) = N(B) = S(C) = S(D)= E(A) = E(D) = W(B) = W(C)= undefined,
with [loc = undefined] = ⊥ for all loc..

10 Experiments have been performed using the FlyFast on-the-fly mean field model
checker on a PC with an Intel Core i7 1.7 GHz, RAM 8Gb.
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Fig. 6. Fast simulation for each of the four quadrants.

of the overall behaviour. We consider two example properties as illustration. Let
us first consider a component initially in state S and located in A and let atomic
propositions i and c be declared as follows: i at I and c def (my.loc = C). The
following formula (P1) states that the probability is greater than p that the com-
ponent ends up infected in quadrant C by time t: P>p(tt U≤t (i∧c)). FlyFast allows
one to study the dynamics of the actual probability as a function of t, by means of
the notation P=?(tt U≤t (i ∧ c)) and the resulting graph, for the above initial con-
ditions and for the first 70 time units is shown in Fig. 7 (left). For comparison, the
formula for an agent starting in C and ending up in A and being infected is shown
as well in the same figure. The results for a more complicated, nested, formula (P2)
are shown in Fig. 7 (right). P2 expresses the probability, over time, of a component
reaching a situation in which it is neither infected nor exposed, and from which it
can reach a state in which it has a probability higher than 0.15 to be infected and
located in C within the next 10 time units; formula P2 is given below, where i is
assumed defined by i at I: P=?(tt U≤t (¬(i ∨ e) ∧ P>0.15(tt U≤10 (i ∧ c)))). The
formula has been considered for a component which is initially in A and in state S;
the figure shows also a similar formula, where the role of A and C is exchanged and
a probability higher than 0.45 instead of 0.15 is considered.

For both types of properties a considerable difference in the probabilities can
be observed for an agent that is initially located in A or in C, due to the flow of
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Fig. 7. Model checking results for properties P1 (left) and P2 (right).

movement that has been introduced. This illustrates a clear dependence of the
results on the dynamically changing spatial distribution of components. The total
number of states, actions and transitions for the resulting FlyFast object specifica-
tion is 52, 114 and 468 respectively, while the number of states of the global approx-
imated model which have been generated for the analysis of formula P2 is 2.323
(2.185 when A and C are swapped). The model checking time for the more com-
plicated nested formula P2 and for all values of t (70) is 10.343 (9.921 when A and
C are swapped) ms, ≈ 148 (141)ms per checking session, for a model with a total
population of 10.100 objects. A well-known feature of mean-field model checking is
that the model checking time is independent of the size of the population, however,
further experimentation with more extended spatial models and more attributes,
that do effect this time, is planned as future work.

5 Conclusions

The attribute-based interaction paradigm is deemed fundamental for agent inter-
action in the context of Autonomic or Collective Adaptive Systems [1,3,9,12,20].
In this paper we have presented a attribute-based coordination modelling language
as a front-end for FlyFast, an on-the-fly mean-field model-checker for bounded
PCTL. The language extends the original FlyFast modelling language by replac-
ing its actions with input (output, respectively) actions where senders (receivers,
respectively) are specified by means of predicates on dynamic attributes on system
components, where a component is a process/attribute-store pair. A translation to
the standard FlyFast language has been presented, its correctness has been showed
as well as an example of its application to a simple case study. It should be noted
that the introduction of attributes in a process model is an intrinsic source of com-
plexity in terms of component state-space size. Such an increase, in the worst case,
goes with |VΔ||AttΔ| · (|AO

Δ| + 1), where AttΔ is the set of attributes of the com-
ponent, VΔ is the set of values they can take, and AO

Δ is the set of output actions
occurring in the component specification (which may appear in its outbox). The
obvious consequence of this is that one has to carefully ponder the importance and
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necessity of each and every new attribute used in a model, although, it must be kept
in mind that the real source of state-space explosion is the size of the system, and
this issue is addressed by Mean-Field approximation. A first optimisation consists
in considering only reachable component states as well as eliminating actions with
constant zero probability and simplifying boolean combinations of FlyFast atomic
propositions in the translation. A possible additional line of investigation is the
study of techniques for DTMC minimization to Mean-field analysis, so that the
number of difference equations can decrease as a consequence, in a similar way as
for CTMCs and the number of differential equations in fluid flow analysis [24].
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Abstract. A scheduler is an algorithm that assigns at any time a set of
processes to a set of processors. Processes usually interact with each
other, which introduces dependencies amongst them. Typically, such
dependencies induce extra delays that the scheduler needs to avoid. Spe-
cific types of applications, like streaming applications, synthesize a sched-
uler from a formal model that is aware of these interactions. However,
such interaction-specific information is not available for general types of
applications. In this paper, we propose an interaction aware scheduling
framework for generic concurrent applications. We formalize the amount
of work performed by an application as constraints. We use these con-
straints to generate a graph, and view scheduler synthesis as solving a
game on this graph that is played between the scheduler and the applica-
tion. We illustrate that our framework is expressive enough to subsume
an established scheduling framework for streaming programs.

Keywords: Scheduling · Game theory · Synthesis · Constraint
automata

1 Introduction

A scheduler of a concurrent application is an algorithm that assigns at any time
processes of the application to a set of processors to execute them. The processes
in a concurrent application interact with each other, which introduces depen-
dencies amongst them. For example, a consumer process cannot execute if it
requires data not yet provided by a producer process. Typically, such dependen-
cies induce extra delays that the scheduler needs to avoid. For specific types of
applications, like streaming applications [18], formal models exist that are aware
of the interactions among their processes. Such models are then used to syn-
thesize schedulers that optimize the execution of their applications with respect
to a scheduling goal, such as latency or power consumption [4,15]. For general
types of applications, like web servers [10], no a priori detailed information about
the interactions among their constituent processes is available to the scheduler.
In such cases, a general-purpose round-robin scheduler is typically used to exe-
cute the application on the available processors. However, we cannot expect such
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
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schedulers to optimize our scheduling goals, because they cannot anticipate the
dependencies among application processes.

In this paper, we propose an interaction-aware scheduling framework that
enables scheduler synthesis for generic concurrent applications, by explicitly
modelling interactions among processes. In particular, this framework consists
of two elements: a novel formal model of concurrent applications and a scheduler
synthesis approach built on top of this formal model.

We base our formal model of concurrent applications on constraint automata
[3], a general model of concurrency developed by Baier et al. (originally as a
formal semantics for the coordination language Reo [2]). Basically, the idea is to
model a concurrent application as a set of constraint automata, one for every
process in the application. In this approach, every constraint automaton mod-
els the behaviour of a process at the level of its interactions with its environ-
ment (i.e., other processes). Using a special composition operator, we obtain a
interaction-aware model for the entire concurrent application.

The existing theory of constraint automata focuses on processes and their
interactions; it does not yet facilitate modelling the amount of work that
processes need to carry out. However, such information is essential for schedul-
ing. In this paper, we therefore extend transition labels in constraint automata
with a declarative constraint that describes the work that needs to be done as
part of a transition. These job constraints essentially generalize simple weights
as in weighted automata [11], primarily to support true concurrency in composi-
tion. We call the resulting extension of constraint automata work automata, and
we extend the composition operator on constraint automata to work automata
accordingly. Work automata, then, constitute a formal model of concurrent appli-
cations in which both interaction among processes and work inside processes can
be expressed, in a compositional and general manner.

Next, we use work automata in our interaction-aware scheduler synthesis.
Given a formal model of a concurrent application as a set of work automata, our
interaction-aware scheduler synthesis approach consists of two steps. In the first
step, we use our composition operator on work automata to construct a work
automaton for the entire concurrent application. The resulting work automaton
models exactly the work of each process and the dependencies between the work.
In the second step, we model the scheduler synthesis problem as a token game on
a graph played between the scheduler and the application. The scheduler assigns
the processes of the application to a heterogeneous set of processors, and the
application non-deterministically selects a possible execution of the application.
We apply results about the existence and quality of optimal strategies in mean
payoff games [7,12] to find schedules that minimize the use of context-switches.
Finally, we illustrate that our framework is expressive enough to subsume an
established scheduling framework for streaming applications.

The structure of the paper is as follows: In Sect. 2, we introduce job con-
straints and define work automata. In Sect. 3, we define the graph on which
a scheduling game is played. In Sect. 4, we apply our scheduling framework to
streaming applications. In Sect. 5, we conclude and discuss future work.
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2 Concurrent Applications

As a starting point, we use a system of communicating automata to model
interaction among processes in a concurrent application. To define the schedul-
ing problem for this system of automata, we annotate each transition with an
expression that models the workload of that transition. In Sect. 2.1, we recall
the definition of constraint automata. In Sect. 2.2, we introduce job constraints,
which model the work of the processes in a concurrent application. In Sect. 2.3,
we define work automata by adding job constraints to constraint automata. In
Sect. 2.4, we informally discuss the semantics of work automata. In Sect. 2.5, we
extend constraint automata composition to work automata.

2.1 Preliminaries on Constraint Automata

Baier et al. proposed constraint automata to model interaction amongst
processes in a concurrent application [3]. A constraint automaton is a tuple
A = (Q,P,→), where Q is a set of states, P is a set of ports, called the inter-
face, and → ⊆ Q × 2P × Q is a transition relation. Informally, A is a labeled
transition system with labels, called synchronization constraints, consisting of
subsets N ⊆ P. A synchronization constraint N ⊆ P describes the interaction of
A with its environment: ports in N synchronize, while ports outside of N block.
Note that ∅ ⊆ P models an internal action of the automaton. Originally, in addi-
tion to a synchronization constraint, every transition in a constraint automaton
carries also a data constraint. Data constraints are logical assertions that spec-
ify which particular data items may be observed on the ports that participate
in a transition. Because data constraints do not matter in what follows—they
address an orthogonal concern—we omit them from the definition for simplicity
(technically, thus, we consider port automata [16]); the work presented in this
paper straightforwardly extends to constraint automata with data constraints.

The constraint automaton of an entire application can be obtained by par-
allel composition of the constraint automata of its processes. For i ∈ {0, 1},
let Ai = (Qi,Pi,→i) be a constraint automaton. The composition A0 �� A1

is defined by (Q0 × Q1,P0 ∪ P1,→), where → is the smallest relation that
satisfies the following rule: if i ∈ {0, 1}, τi = (qi, Ni, q

′
i) ∈ →i, τ1−i =

(q1−i, N1−i, q
′
1−i) ∈ →1−i ∪ {(q, ∅, q) | q ∈ Q1−i} and N0 ∩ P1 = N1 ∩ P0,

then τ0 | τ1 = ((q0, q1), N0 ∪N1, (q′
0, q

′
1)) ∈ → (cf., Definition 3.2 in [3]). In other

words, a transition τ = ((q0, q1), N, (q′
0, q

′
1)) ∈ → of the composition is possible

if either (1) both restrictions τ |P0 = (q0, N ∩ P0, q
′
0) and τ |P1 = (q1, N ∩ P1, q

′
1)

are transitions in A0 and A1, or (2) for some i ∈ {0, 1}, the restriction τ |Pi
is a

transition in Ai that is independent of A1−i, i.e., N ∩ P1−i = ∅.

2.2 Job Constraints

A system of constraint automata describes only interaction, while the workload
of each process remains unspecified. Therefore, we extend transition labels in



Scheduling Games for Concurrent Systems 87

constraint automata with a work expression that models the amount of work
that needs to be done before a transitions fires.

In the simplest of cases, a transition in a constraint automaton models an
atomic piece of work, belonging to a single process. In that case, we can straight-
forwardly model this amount of work as a natural number n ∈ N0. However,
through (parallel) composition, a transition in a constraint automaton may also
model the synchronous firing of multiple transitions (originating from different
constraint automata for different processes). In that case, a single natural number
fails to express that the work involved by each of these multiple transitions may
actually be done in parallel. For instance, for i ∈ {0, 1}, let Ai = (Qi,Pi,→i) be
a work automaton and τi = (qi, Ni, q

′
i) ∈ →i a transition that requires ni ∈ N0

units of work. Suppose that τ0 and τ1 synchronize, i.e., N0 ∩ P1 = N1 ∩ P0.
Intuitively, τ0 | τ1 then requires n0 +n1 units of work, which may seem to define
the composition of work. However, this composition loses the information that
A0 and A1 may run in parallel and that the n0 and n1 units of work are indepen-
dent of each other. To avoid this loss, we keep the values n0 and n1 separate by
associating τi with a job xi that requires ni units of work. We represent the work
of τi as the job constraint xi = ni, and the work of τ0 | τ1 as x0 = n0 ∧ x1 = n1.

Although job constraints with equalities (as introduced above) enable us
to express parallelism of work between synchronizing transitions, they do not
enable us to express parallelism of work between independent transitions (i.e.,
transitions that do not share any ports). The issue here is that if a transition
τ0 in automaton A0 fires before an independent transition τ1 in automaton A1

fires, A1 is free to already perform (some) work while τ0 fires, in anticipation
of later firing τ1. To model this, we should associate τ0 with a job constraint
that specifies that the work associated with τ1 can be performed partially. We do
this by allowing inequalities in job constraints. For instance, if the job constraint
of τ0 is x0 = n0, while the job constraint of τ1 is x1 = n1, we define the job
constraint of τ0 | ε (i.e., the incarnation of τ0 in the composition of A0 and A1,
where ε denotes an internal action of A1) as x0 = n0 ∧ x1 ≤ n1.

We define the set of job constraints w over a set of jobs J by the grammar

w ::= 
 | x = n | x ≤ n | w0 ∧ w1, (1)

with x ∈ J and n ∈ N0. The need for inequalities in w, precludes using weights
on transitions in weighted automata [11] to represent work.

For notational convenience, we introduce the following terminology regarding
a job constraint w over a set of jobs J . Let F,G ⊆ J and nx,my ∈ N0, for all
x ∈ F and y ∈ G, such that w is equivalent to

∧
x∈F x = nx ∧∧

y∈G y ≤ my. We
call w saturated, whenever F ∪G = J . We call w satisfiable, whenever nx ≤ mx,
for all x ∈ F ∩G. If w is satisfiable and x ∈ J , then we define the available work
wx ∈ N0 ∪ {∞} for job x by wx = nx, if x ∈ F , wx = mx, if x ∈ G \ F , and
wx = ∞ otherwise. Finally, we define the set of required jobs ρw ⊆ J by ρw = F .
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2.3 Work Automata

We now extend the transition labels of constraint automata from Sect. 2.1 with
the job constraints from Sect. 2.2.

Definition 1. A work automaton is a tuple (Q,P,J ,→) that consists of a set
of states Q, a set of ports P, a set of jobs J , and a transition relation → ⊆
Q × 2P × ΩJ × Q, where ΩJ is the set of all satisfiable job constraints over J .

Example 1. One of the simplest non-trivial examples of concurrent systems is
the producer-consumer system, shown in Fig. 1(a). The producer generates data
and puts them into its buffer. The consumer takes these data from the buffer
and processes them. We assume that the buffer has capacity 2. We split the
system into a buffered producer and a consumer. Figure 1(b) and (c) show their
respective work automata. States 0, 1 and 2 in Fig. 1(b) indicate the amount of
data in the buffer. In state 0 or 1, the producer can produce a new datum by
finishing 2 units of work of job x. In state 1 or 2, the consumer can take a datum
from the buffer by synchronizing on port a, which requires no work on job x. In
state 0 in Fig. 1(c), the consumer waits for a datum d at port a. When d arrives,
the consumer takes it from the buffer, requiring 1 unit of work on job y. In state
1, the consumer processes datum d, requiring 3 units on job z.

2.4 Job Execution

Let A = (Q,P,J ,→) be some fixed work automaton. In this section, we infor-
mally introduce the semantics of A. The jobs in a work automaton are executed
by a parallel machine M, which consists of a heterogeneous set of processors
and a map that represents the execution speed of jobs on processors.

Definition 2. A parallel machine is a tuple (M,J , v), where M is a set of
processors, J is a set of jobs and v : J × M → N0 is a map that models the
speeds of jobs on processors.

Producer

Consumer

a

��

(a)

0 1 2

∅, x = 2

{a}, x ≤ 2

∅, x = 2

{a}, x ≤ 2

(b) Buffered producer Aprd.

0 1

{a}, y = 1 ∧ z = 0

∅, y = 0 ∧ z = 3

(c) Consumer Acon.

Fig. 1. Producer-consumer application (a), and its corresponding system of work
automata (b) and (c) with {a} as their interface {x} and {y, z} as their respective
job sets.



Scheduling Games for Concurrent Systems 89

It is the task of a scheduler to assign jobs from a set J to processors in a
parallel machine (M,J , v) over J . We model this assignment of jobs to proces-
sors by an injective partial map s : M ⇀ J that represents the scheduled jobs,
i.e., s(i) = s(j) implies i = j, for all i, j ∈ M . We write S(M,J ) for the set of
all injective partial maps s : M ⇀ J .

We represent the speeds of jobs in J subject to the scheduled jobs s ∈
S(M,J ) by the map vs : J → N0, given by vs(x) = v(x, s−1(x)) if x ∈ im(s)
and vs(x) = 0 otherwise. Here, im(s) = {s(m) ∈ J | m ∈ M} is the image of s.

We represent the current progress of jobs by a map p : J → Q≥0, where Q≥0

is the set of non-negative rational numbers. After executing the scheduled jobs
s ∈ S(M,J ) for t ∈ Q≥0 time, the progress of jobs in J equals p′ = p + vs · t,
where + is pointwise addition and · is multiplication by a scalar, i.e., p′(x) =
p(x) + v(x, s−1(x)) · t if x ∈ im(s) and p′(x) = p(x) otherwise.

Example 2. Let k > 0 be a positive integer and J a set of jobs. Then, Mk =
({1, . . . , k},J , v), with v(x, i) = 1 for all x ∈ J and 1 ≤ i ≤ k, models a parallel
machine that consists of k identical processors. Any two processors are identical
and interchangeable. Therefore, the scheduled jobs s ∈ S(M,J ) depend solely
on the image im(s). If s, s′ ∈ S({1, . . . , k},J ) and im(s) = im(s′), then vs = vs′ .
Hence, we represent scheduled jobs as a subset J ⊆ J .

Let τ = (q,N,w, q′) be a transition in A and p : J → Q≥0 be the current
progress of jobs. Recall the notation regarding job constraints from Sect. 2.2. We
call a job x finished whenever its progress p(x) equals wx ∈ N0∪{∞}. We demand
that all required jobs x ∈ ρw finish their available work wx. The automaton A
may take a transition τ if the progress of jobs p satisfies the job constraint w
(notation: p |= w), i.e., p(x) ≤ wx for all jobs x ∈ J and p(x) = wx for required
jobs x ∈ ρw. Note that for ρw = ∅, transition τ requires no work, and τ then
represents for example the arrival of input data.

Suppose that p |= w and A takes transition τ . Then, the current state of A
becomes q′ and the progress of required jobs resets to zero. Formally, the progress
becomes p′ = ρw(p), where ρw : N

J
0 → N

J
0 is the reset operation associated with

ρw defined as ρw(p)(x) = p(x) if x /∈ ρw and ρw(p)(x) = 0 otherwise.

2.5 Composition

In Sect. 2.3, we extended constraint automata to work automata. We now extend
the composition of constraint automata from Sect. 2.1 to work automata.

Let A0 and A1 be two work automata. We want our composition of work
automata to conservatively extend the composition of constraint automata. This
means that the state space, interface and transition relation (up to job con-
straints) of the composition are already determined. Since a job x in Ai, for
i ∈ {0, 1}, is merely a name for a piece of work inside Ai, we may rename x to
(x, i). This allows us to define the set of jobs of the composition as the disjoint
union J0 + J1 = J0 × {0} ∪ J1 × {1}. For i ∈ {0, 1}, let τi = (qi, Ni, wi, q

′
i) be a

transition in Ai. If N0 ∩ P1 = N1 ∩ P0, then τ0 and τ1 synchronize and give rise
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to a transition τ0 | τ1 = ((q0, q1), N0 ∪N1, w0 ∧w1, (q′
0, q

′
1)). If τ0 and τ1 are inde-

pendent, i.e., N0 ∩ P1 = N1 ∩ P0 = ∅, then τ0 and the relaxation (q1, ∅, w≤
1 , q1)

of τ1, give rise to a transition τ0 | τ≤
1 = ((q0, q1), N0, w0 ∧ w≤

1 , (q′
0, q1)) in the

composition, where w≤
1 is the job constraint derived from w1 by substituting

every = with ≤. This substitution is well-defined, because, according to gram-
mar (1), jobs exclusively appear on the left hand side of an equality. Transition
τ0 | τ≤

1 represents that τ0 is taken, while jobs in τ1 makes arbitrary progress
bounded by w1. We define the a lift τ≤

0 | τ1 of τ1 analogously. Finally, if τ0
is independent of A1 (i.e., N0 ∩ P1 = ∅), then τ0 gives rise to a transition
((q0, q1), N0, w0 ∧ ∧

x∈J1
x = 0, (q′

0, q1)) in the composition, where τ0 executes
independently of A1 and all jobs in A1 block. This blocking means that A1 needs
to wait, unless a transition τ1 in A1 induces a synchronization τ0 | τ1 or τ0 | τ≤

1 .

Definition 3. For i ∈ {0, 1}, let Ai = (Qi,Pi,Ji,→i) be a work automaton. We
define the composition A0 �� A1 of A0 and A1 as the work automaton (Q0 ×
Q1,P0∪P1,J0+J1,→), where → is the smallest relation satisfying the following
rule: if i ∈ {0, 1}, τi = (qi, Ni, wi, q

′
i) ∈ →i, τ1−i = (q1−i, N1−i, w1−i, q

′
1−i) ∈

→1−i ∪ {(q, ∅,
∧

x∈J1−i
x = 0, q) | q ∈ Q1−i} and I := N0 ∩ P1 = N1 ∩ P0, then

1. τ0 | τ1 = ((q0, q1), N0 ∪ N1, w0 ∧ w1, (q′
0, q

′
1)) ∈ →; and

2. I = ∅ implies τ0 | τ≤
1 ∈ → and τ≤

0 | τ1 ∈ →, where τ≤
i = (qi, ∅, w≤

i , qi).

Example 3. Fig. 2 shows the composition of the work automata from Fig. 1(b)
and (c). A state ij indicates that the buffered producer is in state i and the
consumer is in state j. In state 00, the consumer cannot retrieve a datum from
the buffer. Hence, the consumer is not allowed to work on job y. The transition

00 10 20

01 11 21

∅, x = 2 ∧ y = 0 ∧ z = 0 ∅, x = 2 ∧ y = 0 ∧ z = 0

∅, x = 2 ∧ y = 0 ∧ z ≤ 3

∅, x = 2 ∧ y = 0 ∧ z = 0

∅, x = 2 ∧ y = 0 ∧ z ≤ 3

∅, x = 2 ∧ y = 0 ∧ z = 0

∅,
x

≤
2

∧
y

=
0

∧
z

=
3

∅,
x

=
0

∧
y

=
0

∧
z

=
3

∅,
x

≤
2

∧
y

=
0

∧
z

=
3

∅,
x

=
0

∧
y

=
0

∧
z

=
3

∅,
x

=
0

∧
y

=
0

∧
z

=
3

{a}
, y

=
1 ∧ z

=
0

{a}
, y

=
1 ∧ z

=
0

∅, x
=

2 ∧ y
=

0 ∧ z
=

3

∅, x
=

2 ∧ y
=

0 ∧ z
=

3

Fig. 2. Composition Aprd �� Acon of the work automata in Fig. 1(b) and (c).
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from 01 to 11 with job constraint x = 2∧y = 0∧z = 3 is redundant, because the
other transition from 01 to 11 has a weaker job constraint x = 2∧ y = 0∧ z ≤ 3.

3 Scheduling Games

A work automaton can make non-deterministic internal choices, beyond the con-
trol of the scheduler. Therefore, we can view the scheduler synthesis problem over
a work automaton and a parallel machine as a game that is played between the
scheduler and the application modelled by a work automaton. The scheduler
assigns jobs to processors and the application executes the running jobs and,
whenever possible, makes a perhaps non-deterministically selected transition.
We represent this game as a token game played on a graph that we derive from
a work automaton and a parallel machine. Every play of this game (i.e., a path
in this graph) corresponds to a run of the work automaton. Hence, a strategy in
this game corresponds to a schedule of the corresponding concurrent application.
In Sect. 3.1, we recall some basic terminology and known results for games played
on graphs. In Sect. 3.2, we interpret the execution of jobs in a work automaton
as a game played on a graph. In Sect. 3.3, we assign an execution time to every
move in a scheduling game. In Sect. 3.4, we introduce a class of scheduling objec-
tives for both terminating and non-terminating applications. In Sect. 3.5, we find
schedules that minimize the number of context-switches.

3.1 Preliminaries on Games on Graphs

We view scheduler synthesis as a problem of finding optimal strategies in a game
played on a graph. Therefore, we recall the basic definitions about these games.

A game arena is a finite directed bipartite leafless graph A. More formally,
A is a triple (V,E, ϕ) that consists of a finite set of vertices V , a set of edges
→ ⊆ V × V such that for all a ∈ V there exists a b ∈ V with (a, b) ∈ E, and a
2-colouring ϕ : V → {0, 1}, i.e., (a, b) ∈ E implies ϕ(a) �= ϕ(b), for all a, b ∈ V .
Vertices and edges in this graph are called positions and moves. For every a0 ∈ V ,
consider the following token game on A between Player 0 and Player 1. Let a0

be the initial position of the token. Construct an infinite sequence π = (ai)∞
i=0

as follows: for all i ≥ 0, Player ϕ(ai) selects a successor position ai+1 ∈ V , with
(ai, ai+1) ∈ E, and moves the token from ai to ai+1. The sequence π is called a
play of this game, and plays(A) ⊆ V ω is the set of all such plays in A. A game G
is a triple (A, a0, f), where A = (V,E, ϕ) is a game arena, a0 ∈ V is the initial
position, and f : plays(A) → D is a payoff function, where D is some partially
ordered set. The goal of Player 0 is to maximize the value f(π), while Player 1
tries to minimize f(π). A strategy σk for Player k ∈ {0, 1} in a game G is a map
σk : V ∗ × Vk → V1−k, such that (v, σk(u, a)) ∈ E for all u ∈ V ∗ and a ∈ Vk.
Intuitively, a strategy σk determines the successor position σk(u, a) ∈ V1−k of
Player k, based on the history u and the current position a. A strategy σ is
called memoryless if and only if σ(u, a) = σ(u′, a), for all u, u′ ∈ V ∗ and a ∈ V .
A play π = a0a1 · · · is consistent with a strategy σk for Player k if and only if
for all i ≥ 0 we have that ϕ(ai) = k implies ai+1 = σk(a0 · · · ai−1, ai).
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Example 4 (Mean payoff games [12]). Let A = (V,E, ϕ) be an arena, and let
c : E → Z be a weight function. In Sect. 3.3, we use these weights to represent
the execution time of moves. A mean payoff game over A and c is a triple
G = (A, a0,Mc), where a0 ∈ V is the starting position, and

Mc(a0a1a2 · · · ) = lim inf
n→∞

1
n

n−1∑

i=0

c(ai, ai+1).

Intuitively, Mc computes the ‘smallest’ average value of the play a0a1a2 · · · .

3.2 Scheduling Arena

We now formulate the problem of scheduling a concurrent application, repre-
sented as a work automaton A = (Q,P,J ,→), onto a set of heterogeneous
processors, represented as a parallel machine M = (M,J , v). The scheduling
problem consists of finding an optimal strategy in a game on a graph played by
the scheduler (Player 0) and the application (Player 1). Intuitively, the game is
played by alternating moves by the scheduler and the application. A scheduler
move selects a schedule s ∈ S(M,J ). Recall the notation for job constraints from
Sect. 2.2. An application move selects a transition τ = (q,N,w, q′) that allows
scheduled jobs to progress, and then updates the progress p : J → Q≥0 of the
jobs by executing the scheduled jobs s until one of the jobs x ∈ J finishes wx

units of work. If after the execution the job constraint w is satisfied, the applica-
tion makes transition τ . Otherwise, the application makes the ‘fictitious’ idling
transition εq := (q, ∅,
, q), where q ∈ Q is the current state of the automaton.

We now explain the construction of the game arena in more detail. We
want every play of this game to correspond to an run of the associated work
automaton. Therefore, we record, in every position of the game, the progress
of the jobs and the state of the automaton. We define the positions of the
scheduler as pairs (p, τ), where p : J → Q≥0 is the progress of jobs and
τ = (q,N,w, q′) ∈ → ∪ {εq | q ∈ Q} is the transition that is previously taken by
the application (i.e., q′ is the current state of the work automaton). We define the
positions of the application as triples [p, q, s], where p : J → Q≥0 is the progress
of jobs, q ∈ Q is the current state of the work automaton and s ∈ S(M,J ) is
the set of the scheduled jobs that are selected by the scheduler.

In a position (p, τ), the scheduler may select any assignment s ∈ S(M,J ) of
jobs to processors, which corresponds to selecting a successor position [p, q′, s].
For the definition of application moves, we first define enabled transitions. Intu-
itively, a transition is enabled in position [pb, qb, s] if its source state is qb, its
job constraint is potentially satisfiable (i.e., pb(x) ≤ wx, for all x ∈ J ) and all
scheduled jobs s can execute (i.e., vs(x) > 0 implies pb(x) < wx, for all x ∈ J ).

Definition 4. We call a transition τ = (q,N,w, q′) enabled at a position b =
[pb, qb, s] of the application if and only if for all x ∈ J , we have that q = qb,
pb(x) ≤ wx, and vs(x) > 0 implies pb(x) < wx. We write Eb ⊆ → for the set of
all transitions that are enabled at b.
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If there is no enabled transition, then the application selects the successor
position (p, εq). Otherwise, the application selects any enabled transition λ =
(q,N,w, q′) ∈ Eb and executes its scheduled jobs, until one of them finishes.

Definition 5. The time to first completion tb(λ) of an enabled transition λ ∈ Eb

at a position b = [p, q, s] is

tb(λ) =

{
min Tb(λ) if Tb(λ) �= ∅
0 otherwise

,

where Tb(λ) = {t ∈ Q≥0 | ∃x ∈ J : vs(x) > 0 and p(x) + vs(x) · t = wx}.
After executing the jobs for tb(λ) units of time, the progress of the jobs

becomes p+vs · tb(λ), which is defined as (p+vs · tb(λ))(x) = p(x)+vs(x) · tb(λ),
for all x ∈ J . If the job constraint of λ is satisfied (p + vs · tb(λ) |= w), the
application makes transition λ by selecting position (ρw(p+ vs · tb(λ)), λ), where
ρw resets the progress of all finished jobs ρw to zero. If the job constraint of λ is
not satisfied (p+vs ·tb(λ) � |= w), the application selects position (p+vs ·tb(λ), εq).

Definition 6. A scheduling arena A over a work automaton (Q,P,J ,→) and
a parallel machine (M,J , v) is a tuple A = (V,E, ϕ), where V = V0 ∪ V1,

V0 = {(p, τ) | p : J → Q≥0 and τ ∈ → ∪ {εq | q ∈ Q}},
V1 = {[p, q, s] | p : J → Q≥0, q ∈ Q and s ∈ S(M,J )}

are the sets of positions of the scheduler and the application, ϕ(a) = 0 if and
only if a ∈ V0, and E ⊆ V × V is the largest relation that satisfies the following
rule: for all a = (p, τ) ∈ V0 and b = [p, q, s] ∈ V1 we have

1. if τ = (−,−,−, q′
τ ), then (a, [p, q′

τ , s]) ∈ E; and
2. if Eb = ∅, then (b, (p, εq)) ∈ E; and
3. if λ = (q,N,w, q′) ∈ Eb, then

(a) p + vs · ta(λ) |= w implies (b, (ρw(p + vs · ta(λ)), λ)) ∈ E; and
(b) p + vs · ta(λ) � |= w implies (b, (p + vs · ta(λ), εq)) ∈ E.

As a scheduling arena A is infinite, it is not an arena as in Sect. 3.1. The
following lemma provides a sufficient condition ensuring that A is locally finite,
i.e., only finitely many positions in the A are reachable from any given position.

Lemma 1. Let A be a scheduling arena over a work automaton A and a parallel
machine (M,J , v). If A has finitely many transitions, all job constraints in A
are saturated and all speeds v(x, i) are either zero or u, for some u ∈ N0, then
only finitely many positions in A are reachable from any given position a ∈ A.

Proof. For every job x ∈ J , define mx = max {wx | w is a job constraint in A}.
Since all job constraints are saturated, we have that |J | < ∞ and mx < ∞, for
all x ∈ J . Hence, we find α ∈ N0 such that for every job x ∈ J the progress
pa(x) of x at a satisfies αpa(x) ∈ N0. Using Definitions 4, 5 and 6, it follows that
for every job x ∈ J the progress pb(x) of x at a position b ∈ A reachable from
a satisfies pb(x) ∈ {pa(x), 0, 1

α , . . . , αmx−1
α ,mx}, for all x ∈ J . We conclude that

only finitely many positions in A are reachable from any given position a ∈ A.
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Fig. 3. Scheduling arena over a work automaton A from Example 5. Circular positions
belong to the scheduler position and square positions belong to the application.

Example 5. Consider the work automaton A = ({0}, ∅, {x, y}, {λ, τ, μ}) and par-
allel machine M2, where λ = (0, ∅, x = 1 ∧ y ≤ 1, 0), τ = (0, ∅, x = 5 ∧ y = 0, 0)
and μ = (0, ∅, x = 0 ∧ y = 1, 0). Figure 3 shows the scheduling arena over A
and M2 from Example 2 according to Definition 6. A circular position labelled
by kα, with k ∈ {0, 1} and α ∈ {ε0, λ, τ, μ}, corresponds to (p, α) ∈ V0, with
p(x) = 0 and p(y) = k. For k ∈ {0, 1}, a square position labeled by k, kx, ky
or kxy corresponds to a position (p, 0, s) ∈ V1 with p(x) = 0, p(y) = k and
im(s) = ∅, im(s) = {x}, im(s) = {y} or im(s) = {x, y}, respectively.

3.3 Strategies and Classical Schedules

From a given work automaton A and parallel machine M, we constructed in
Sect. 3.2 a scheduling arena A. Suppose that the non-deterministic behaviour
of A is fully controlled by the scheduler, i.e., there is only one move possible
at every position a ∈ V1 of the application. We now argue that strategies in A
naturally correspond to classical schedules of concurrent applications.

Since the application has a unique strategy, every strategy σ0 of the scheduler
induces a play π in A. The following definition assigns an execution time to every
move in π, which allows us to represent π as a Gantt chart [13].

Definition 7. The execution time t(a, b) of a move (a, b) ∈ E in a scheduling
arena A = (V,E, ϕ) is

t(a, b) =

⎧
⎪⎨

⎪⎩

ta(λ) if (a, b) ∈ V1 × V0 comes from λ ∈ Ea

1 if a = [p, q, s] ∈ V1 and E[p,q,s′] �= ∅ = Ea for some s′

0 otherwise
.

The case for t(a, b) = 1 can be seen as a time penalty for selecting s ∈
S(M,J ) that unnecessarily blocks the execution (E[p,q,s] = ∅).
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1 x y y

2 x y

(a) Play π from Example 6

1 x y y

2 x y

(b) Non-semi-anchored schedule

Fig. 4. Play π from Example 6 (a), and a schedule that is not semi-anchored (b).

Example 6. In the scheduling arena in Fig. 3, consider the play π that is given
by 0ε0, 0x, 0τ, 0xy, 1λ, 1, 0μ, 0y, 1μ, 1, 0μ, 0y, 1μ, 1y, 1ε0, 1y, . . .. All zeros on the
move labels are omitted in this arena. Figure 4(a) shows a Gantt chart represen-
tation of π. Note that, since x and y are executed on identical processors M2,
it is not important on which processor x and y are scheduled.

We conclude that every strategy in A naturally induces a classical schedule of
the concurrent application. Conversely, not every classical schedule comes from
a strategy in such an arena A. According to Definition 6, scheduling strategies
induce only semi-anchored schedules, i.e., a job can start at time t + n, with
t ∈ Q≥0 and 1 ≤ n ∈ N, only if t = 0 or t is a time that some job finishes, and
all processors are idle between t and t + n. Figure 4(b) shows a schedule that
cannot be represented by a strategy in A. However, shifting the executions of all
jobs y to the left transforms Fig. 4(b) into an anchored schedule.

We now show that this shifting always produces a valid schedule for A. Let
S be a (non-semi-anchored) classical schedule, and T ⊆ Q≥0 be the set of all
finish times of jobs in S including zero. Let ts be the start time of a job x with
ts /∈ T , and tf = max {t ∈ T | t ≤ ts} the last time a job in S finishes before
ts. Every transition taken by A after tf was already enabled at time tf . Thus,
shifting the execution of job x from ts to tf produces a valid schedule.

We call a scheduling objective regular, whenever this shifting operation pro-
duces a schedule that is at least as good as the initial schedule. For example,
minimizing total execution time is a regular scheduling objective, while schedul-
ing objectives that penalize for jobs that finish ‘too early’ are not regular.

3.4 Scheduling Games

In this section, we define payoff functions for games played on scheduling graphs
that naturally correspond to regular scheduling objectives.

Let π = a0a1 · · · be a play in a scheduling arena A = (V,E, ϕ). Using Defini-
tion 7, we associate with every initial prefix πn = a0 · · · an, n ≥ 0, the total exe-
cution time tn =

∑n−1
i=0 t(ai, ai+1). If our application terminates, then for every

play π = a0a1 · · · , the sequence t0, t1, . . . eventually stabilizes, i.e., tn = tm, for
some n and all m ≥ n. Then, tn represents the total execution time of π. If our
application does not always terminate, then we cannot associate with every play
π its total execution time. An example of such an application is a streaming
application (cf., Sect. 4). A natural scheduling objective in a streaming applica-
tion is latency minimization at some output port o ∈ P. We define the latency
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at a port o as the average time between two successive I/O operations on o. To
keep track of these I/O operations, we use a map θo : E → {0, 1}, such that
θo(a, b) = 1 if and only if b = (p, τ) ∈ V0, where τ = (q,N,w, q′) and o ∈ N . For
a prefix πn = a0 · · · an, n ≥ 0, of π, we define the latency as the ratio between the
total execution time tn and the number of I/O operations 1+

∑n−1
i=0 θo(ai, ai+1).

By varying θ : E → {0, 1}, we define the following class of scheduling games,
called latency games, wherein Player k maximizes the ‘smallest limiting ratio’.
Recall the definition of locally finite scheduling arena’s from Sect. 3.2.

Definition 8. Let A = (V,E, ϕ) be a locally finite scheduling arena, θ : E →
{0, 1} a map, and k ∈ {0, 1}. A latency game G for Player k over A and θ is a
tuple G = (A, a0, T

k
θ ), where a0 is an initial position and

T k
θ (a0a1 · · · ) = lim inf

n→∞
(−1)k

1 +
∑n−1

i=0 θ(ai, ai+1)

n−1∑

i=0

t(ai, ai+1), (2)

where t : E → N0 is the execution time from Definition 7.

Example 7 (Makespan games: T 1
0 ). Let θ be the map 0 : E → {0, 1}, given by

0(a, b) = 0, for all (a, b) ∈ E, and k = 1. The scheduling objective in the latency
game over θ and k is given by T 1

0 = lim infn→∞ −∑n−1
i=0 t(ai, ai+1). Recall from

Sect. 3.1 that Player 0 wants to maximize T 1
0 , which corresponds to minimizing

the total execution time −T 1
0 = lim supn→∞

∑n−1
i=0 t(ai, ai+1).

Example 8 (Context-switches: T 0
1 ). Due to changes in the assignment of jobs to

processors, context-switches may occur. Typically, context-switches inflict sub-
stantial overhead and their occurrences should be avoided. This scheduling objec-
tive can be seen as a latency game, where k = 0 and θ is the map 1 : E → {0, 1},
given by 1(a, b) = 1, for all (a, b) ∈ E. Then, the scheduling objective becomes
T 0
1 = lim infn→∞ 1

n+1

∑n−1
i=0 t(ai, ai+1), which can be interpreted as maximizing

the average time between two consecutive context-switches. Indeed, every move
by the application executes all scheduled jobs until at least one of them finishes.
The job that finishes should subsequently be descheduled (context-switch), to
avoid suboptimal use of compute resources (i.e., idling).

Note that limn→∞ n+1
n = 1 implies that the scheduling objective T 0

1 coincides
with the payoff function of the mean payoff games in Example 4.

Example 9 (Latency at o: T 1
θo

). Let A be a work automaton with a port o ∈ P,
and let A = (V,E, ϕ) be a scheduling arena over A and some parallel machine.
Using Definition 6, we can identify the moves in the scheduling arena that
come from a transition that requires an I/O operation on port o. Thus, let
θo : E → {0, 1} be given by θo(a, b) = 1 if and only if b = (p, τ) ∈ V0, where
τ = (q,N,w, q′) and o ∈ N . The scheduling objective T 1

θo
corresponds to maxi-

mizing the production rate at port o.
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3.5 Optimal Strategies

In Sect. 3.4, we viewed the scheduling problem as a game played on a graph. We
now take advantage of the fact that these games have been extensively studied in
the literature. To do this, we need some terminology about games on graphs. Let
G be a game over an arena A, with initial position a0 ∈ A, and payoff function
f : plays(A) → D, for some partially ordered set D of values. A strategy σk for
Player k ∈ {0, 1} secures a value v ∈ D whenever (−1)kf(π) ≥ (−1)kv, for every
play π ∈ plays(A) consistent with σk. Intuitively, this means that if Player k
uses strategy σk then the value f(π) of any resulting play is not worse than v.
Now, there exists an optimal strategy for Player k, whenever the maximum value
vk(G) = max{(−1)kv | some σk secures v} exists. The game G is determined,
whenever v0(G) and v1(G) exist and are equal.

Theorem 1. The latency game for θ = 1 is memorylessly determined, and a
memoryless optimal strategy can be found for it in O(|V |2 · |E| · log(|V | · T ) · T )
time, with T = max(a,b)∈E u · t(a, b) and u the speed of the processors.

Proof. For θ = 1, a latency game coincides with a mean payoff game (cf., Exam-
ple 8). Ehrenfeucht and Mycielski show that mean payoff games are memory-
lessly determined [12]. Brim et al. provide a pseudopolynomial time algorithm
for finding an optimal memoryless strategy [7].

In view of Example 8, the result of Theorem 1 shows that there exists an
optimal strategy (determinacy) of good quality (memoryless) for maximizing
the average time between two consecutive context-switches. For optimal play,
the scheduler need not remember earlier scheduling decisions. Moreover, such an
optimal strategy can be efficiently computed from the scheduling arena.

4 Cyclo-Static Dataflow

In a streaming application, a network of filters transforms an input stream of
data into an output stream. Examples of such applications range from video
decoding to sorting algorithms. A streaming application can be formally repre-
sented by a cyclo-static dataflow (CSDF) graph. Bamakhrama and Stefanov pro-
posed a framework for scheduling CSDF graphs that are annotated with worst-
case execution times [4]. In this section, we argue that our proposed scheduling
framework of Sect. 3 subsumes this scheduling framework for CSDF graphs.

Consider the CSDF graph in Fig. 5(a), wherein four filter processes A1, A2,
A3 and A4, called actors, are connected by FIFO buffers. The behaviour of
an actor consists of a periodic sequence of execution steps, whose worst-case
execution time is represented the value (μi) at Ai, for i ∈ {1, 2, 3, 4}. In each
step, an actor atomically consumes tokens from its input buffers and produces
tokens for its output buffers. The production and consumption rates of an actor
Ai with period n are determined by vectors [x1, . . . , xn] (Sect. 3.1 in [4]).

Bamakhrama and Stefanov generate from a CSDF graph with worst-case
execution times a strictly periodic task set (Example 3 in [4]), by determining
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A1

A2

A3

A4

[3, 2, 1]

[5, 3, 2]

[2] [2]

[1, 3, 1] [1, 1, 3]

[1, 2]

[4, 1]

(5)

(2)

(3)

(2)
���

���

���

���

(a) CSFD (Figure 1 in [4])

A1

A2

A3

A4

(b) Stricly periodic task set (Figure 6 in [4])

Fig. 5. Cyclo-static dataflow model (a) and strictly periodic task set (b).

for every filter Ai, a starting time Si ∈ N0 and a period Ti ∈ N0 such that all
required input tokens are available for all execution steps of all actors and all
buffers need only a finite capacity throughout the execution. Figure 5(b) shows
the strictly periodic task-set of the CSDF graph in Fig. 5(a). Bamakhrama and
Stefanov then use standard scheduling algorithms for strictly periodic task set
to compute a schedule S for this CSDF graph (cf., Sect. 3.2.2 in [4]).

Every actor Ai, with i ∈ {1, 2, 3, 4}, can be represented as a work automaton
over a single job xi, and every buffer can be represented as a work automaton
without jobs. Using the composition operator from Sect. 2.5, we find a work
automaton A that describes the behaviour of the CSFD graph in Fig. 5(a). The
behaviour of A is fully under the control of the scheduler. Hence, Sect. 3.3 shows
that, for regular scheduling objectives, the schedule S obtained in [4] induces a
strategy in the scheduling arena A over A and M4.

We conclude that, for regular scheduling objectives, a schedule induced by an
optimal scheduling strategy in a scheduling game is not worse than any schedule
found by the scheduling framework proposed by Bamakhrama and Stefanov.

5 Discussion

We extended constraint automata with job constraints to model the work of
processes in a concurrent application. We recognize that scheduling decisions do
not completely determine the execution of a concurrent application, and there-
fore view scheduler synthesis as playing a game on a graph between a scheduler
and the application. We introduced a class of natural scheduling objectives, and
applied game-theoretic results for mean payoff games to find a scheduling strat-
egy that maximizes the time between subsequent context-switches.

Work automata are similar to timed automata [1]. Clock constraints and
clock valuations correspond to job constraints and progress of jobs. Still, there
are two main differences between them. First, we reset only required jobs in work
automata, while in timed automata clocks can reset at any time. Second, we
allow jobs to make progress at different speeds, while clocks in timed automata
increment uniformly. Using this clock-speed relaxation, the scheduler controls the
execution rate of each job by selecting which jobs to schedule. Using our notion
of jobs, it seems possible to represent the execution of a concurrent application
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on a set of processors by means of hybrid automata [14] or hybrid constraint
automata [9]. However, since such a representation convolutes the specification of
the application with the specification of the parallel machine, hybrid (constraint)
automata are unsuitable for our purpose.

Scheduler synthesis for concurrent applications is similar to controller syn-
thesis for real-time systems [5,6,8,17], because the non-deterministic behaviour
of a real-time system, modeled as a timed automaton [1], is not fully determined
by its controller. Therefore, the controller synthesis problem is formulated as
a game on the automaton that is played between the controller and an adver-
sary. However, our problem differs from controller synthesis in that scheduler
synthesis requires a strong relation between processes and processors.

The size of a composed work automaton for a whole application very quickly
becomes too large. Moreover, the size of a scheduling arena is again much larger
than that of the work automaton. Nevertheless, an optimal strategy in such an
immense game may indeed have a very simple form (like balancing production
and consumption rates in buffers). One direction for our future work is to inves-
tigate under what conditions it is possible to bypass these exponential blow-ups.
The existence of efficient solutions for more restricted scheduling problems (e.g.,
CSDF programs [4]) leads us to believe that it is possible to find such conditions.
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Abstract. The ubiquity of multicore computers has forced program-
ming language designers to rethink how languages express paral-
lelism and concurrency. This has resulted in new language constructs
and new combinations or revisions of existing constructs. In this line,
we extended the programming languages Encore (actor-based), and Clo-
jure (functional) with an asynchronous parallel abstraction called ParT,
a data structure that can dually be seen as a collection of asynchronous
values (integrating with futures) or a handle to a parallel computation,
plus a collection of combinators for manipulating the data structure.
The combinators can express parallel pipelines and speculative paral-
lelism. This paper presents a typed calculus capturing the essence of
ParT, abstracting away from details of the Encore and Clojure program-
ming languages. The calculus includes tasks, futures, and combinators
similar to those of Orc but implemented in a non-blocking fashion. Fur-
thermore, the calculus strongly mimics how ParT is implemented, and
it can serve as the basis for adaptation of ParT into different languages
and for further extensions.

1 Introduction

The ubiquity of multicore computers has forced programming language designers
to rethink how languages express parallelism and concurrency. This has resulted
in new language constructs that, for instance, increase the degree of asynchrony
while exploiting parallelism. A promising direction is programming languages
with constructs for tasks and actors, such as Clojure and Scala [8,16], due to
the lightweight overhead of spawning parallel computations. These languages
offer coarse-grained parallelism at the task and actor level, where futures act
as synchronisation points. However, these languages are lacking in high-level
coordination constructs over these asynchronous computations. For instance, it is
not easy to express dependence on the first result returned via a bunch of futures
and to safely terminate the computations associated with the other futures.
The task of terminating speculative parallelism is quite delicate, as the futures
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may have attached parallel computations that depend on other futures, creating
complex dependency patterns that need to be tracked down and terminated.

To address this need, this paper presents the design and implementation
of ParT, a non-blocking abstraction that asynchronously exploits futures and
enables the developer to build complex, data parallel coordination workflows
using high-level constructs. These high-level constructs are derived from the com-
binators of the orchestration language Orc [11,12]. ParT is formally expressed in
terms of a calculus that, rather than being at a high level of abstraction, strongly
mimics how this asynchronous abstraction is implemented and is general enough
to be applied to programming languages with notions of futures.

The contributions of the paper are as follows: the design of an asynchronous
parallel data abstraction to coordinate complex workflows, including pipeline
and speculative parallelism, and a typed, non-blocking calculus modelling this
abstraction, which integrates futures, tasks and Orc-like combinators, supports
the separation of the realisation of parallelism (via tasks) from its specification,
and offers a novel approach to terminating speculative parallelism.

2 Overview

To set the scene for this paper, we begin with a brief overview to asynchro-
nous computations with futures and provide an informal description of the ParT
abstraction and its combinators. A SAT solver example is used as an illustration.

In languages with notions of tasks and active objects [2,8,16], asynchronous
computations are created by spawning tasks or calling methods on active objects.
These computations can exploit parallelism by decoupling the execution of the
caller and the callee [7]. The result of a spawn or method call is immediately
a future, a container that will eventually hold the result of the asynchronous
computation. A future that has received a value is said to be fulfilled. Operations
on futures may be blocking, such as getting the result from a future, or may be
asynchronous, such as attaching a callback to a future. This second operation,
called future chaining and represented by f � callback , immediately returns
a new future, which will contain the result of applying the callback function
callback to the contents of the original future after it has been fulfilled. A future
can also be thought of as a handle to an asynchronous computation that can be
extended via future chaining or even terminated. This is an useful perspective
that we will further develop in this work. In languages with notions of actors,
such as Clojure and Encore [2], asynchrony is the rule and blocking on futures
suffers a large performance penalty. But creating complex coordination patterns
based on a collection of asynchronous computations without blocking threads
(to maintain the throughput of the system) is no easy task.

To address this need, we have designed an abstraction, called ParT, which
can be thought of as a handle to an ongoing parallel computation, allowing
the parallel computation to be manipulated, extended, and terminated. A ParT
is a functional data structure, represented by type Par t, that can be empty
{} :: Par t, contain a single expression {−} :: t → Par t, or futures attached to
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computations producing values, using (−)◦ :: Fut t → Par t, or computations
producing ParTs, embedded using (−)†:: Fut (Par t) → Par t. Multiple ParTs
can be combined using the par constructor, ‖ :: Par t → Par t → Par t. This
constructor does not necessarily create new parallel threads of control, as this
would likely have a negative impact on performance, but rather specifies that
parallelism is available. The scheduler in the ParT implementation can choose
to spawn new tasks as it sees fit — this is modelled in the calculus as a single
rule that nondeterministically spawns a task from a par (rule Red-Schedule).

The combinators can express complex coordination patterns and operate
on them in a non-blocking manner, and safely terminate speculative parallelism
even in the presence of complex workflows. These combinators will be illustrated
using an example, then explained in more detail.

Illustrative Example. Consider a portfolio-based SAT solver (Fig. 1), which cre-
ates numerous strategies, of which each finds an assignment of variables to
Boolean values for a given proposition, runs them in parallel, and accepts the
first solution found. Each strategy tries to find a solution by selecting a variable
and creating two instances of the formula, one where the variable is assigned
true, the other where it is assigned false (called splitting) — strategies differ in
the order they select variables for splitting. These new instances can potentially
be solved in parallel.

The example starts in function process (line 20) which receives an array of
strategies and the formula to solve. Strategies do not interact with each other
and can be lifted to a ParT, creating a parallel pipeline (line 21) using the each

Fig. 1. A SAT solver in Encore.



104 K. Fernandez-Reyes et al.

and bind (�=) combinators. As soon as one strategy finds an assignment, the
remaining computations are terminated via the prune (�) combinator.

For each strategy, a call to the sat function (line 8) is made in parallel using
a call to async, which in this case returns a value of type Fut (Par Assignment).
Function sat takes three arguments: a strategy, a formula and an assignment
object containing the current mapping from variables to values. This function
uses the strategy object to determine which variable to split next, extends the
assignment with new valuations (lines 9–11), recursively solves the formula (by
again calling sat), and returns an assignment object if successful. The evaluation
of the formula, evaluateFormula returns, firstly, an optional Boolean to indicate
whether evaluation has completed, and if it has completed, whether the formula
is satisfiable, and secondly, the current (partial) variable assignment. The two
calls to evaluateFormula are grouped into a new ParT collection (using || )
and, with the use of the �= combinator, a new asynchronous pipeline is created
to either further evaluate the formula by calling sat, to return the assignment
in the case that a formula is satisfiable as a singleton ParT, or {} when the
assignment does not satisfy the formula (lines 14–18).

Finally, returning back to process, the prune combinator (�) (line 21) is
used to select the first result returned by the recursive calls to sat, if there is
one. This result is converted from an option type to an empty or singleton ParT
collection (again asynchronously), which can then be used in a larger parallel
operation, if so desired. The prune combinator will begin poisoning and safely
terminating the no longer needed parallel computations, which in this case will
be an ongoing parallel pipeline of calls to sat and evaluateFormula.

ParT Combinators. The combinators are now described in detail. The combi-
nators manipulate ParT collections and were derived from Orc [11,12], although
in our setting, they are typed and redefined to be completely asynchronous,
never blocking the thread. Primitive combinators express coordination patterns
such as pipeline and speculative parallelism, and more complex patterns can be
expressed based on these primitives.

Pipeline parallelism is expressed in ParT with the sequence and bind combi-
nators. The sequence combinator, � :: Par t → (t → t′) → Par t′, takes a ParT
collection and applies the function to each element in the collection, potentially
in parallel, returning a new ParT collection. The bind combinator (derived from
other combinators) �= :: Par t → (t → Par t′) → Par t′ is similar to the
sequence combinator, except that the function returns a ParT collection and the
resulting nested ParT collection is flattened. (Par is a monad!1) In the presence
of futures inside a ParT collection, these combinators use the future chaining
operation to create independent and asynchronous pipelines of work.

Speculative parallelism is realised by the peek combinator, peek :: Par t →
Fut (Maybe t), which sets up a speculative computation, asynchronously waits
for a single result to be produced, and then safely terminates the speculative
work. To terminate speculative work the ParT abstraction poison these specu-

1 The monad operations on Par are essentially the same as for lists but parallelised.
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lative computations, which may have long parallel pipelines to which the poison
spreads recursively, producing a pandemic infection among futures, tasks and
pipelines of computations. Afterwards, poisoned computations that are no longer
needed can safely be terminated. Metaphorically, this is analogous to a tracing
garbage collector.

The value produced by peek is a future to an option type. The option type
is used to capture whether the parallel collection was empty or not. The empty
collection {} results in Nothing, and a non-empty collection results in a Just v,
where v is the first value produced. The conversion to option type is required
because ParTs cannot be tested for emptiness without blocking. The peek com-
binator is an internal combinator, i.e., it is not available to the developer and is
used by the prune � combinator (explained below).

Built on top of peek is the prune combinator, � :: (Fut (Maybe t) →
Par t′) → Par t → Par t′, which applies a function in parallel to the future
produced by peek, and returns a parallel computation.

Powerful combinators can be derived from the ones mentioned above. An
example of a derived combinator, which is a primitive in Orc, is the otherwise
combinator, >< :: Par t → Par t → Par t (derivation is shown in Sect. 3.1).
Expression e1 >< e2 results in e1 unless it is an empty ParT, in which case it
results in e2.

Other ParT combinators are available. For instance, each :: [t] → Par t and
extract :: Par t → [t] convert between sequential (arrays) and ParTs. The latter
potentially requires a lot of synchronisation, as all the values in the collection
need to be realised. Both have been omitted from the formalism, because neither
presents any real technical challenge — the key properties of the formalism,
namely, deadlock-freedom, type preservation and task safety (Sect. 3.5), still hold
with these extensions in place.

3 A Typed ParT Calculus

This section presents the operational semantics and type system of a task-based
language containing the ParT abstraction. The formal model is roughly based
on the Encore formal semantics [2,5], with many irrelevant details omitted.

3.1 Syntax

The core language (Fig. 2) contains expressions e and values v . Values include
constants c, variables, futures f , lambda abstractions, and ParT collections
of values. Expressions include values v , function application (e e), task cre-
ation, future chaining, and parallel combinators. Tasks are created via the async
expression, which returns a future. The parallel combinators are those covered
in Sect. 2 ( || , �, peek and �), plus some derived combinators, together with
the low-level combinator join that flattens nested ParT collections. Recall that
peek is used under-the-hood in the implementation of �. Status π controls how
peek behaves: when π is � and the result in peek is an empty ParT collection,
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the value is discarded and not written to the corresponding future. This sta-
tus helps to ensure that precisely one speculative computation writes into the
future and that a speculative computation fails to produce a value only when all
relevant tasks fail to produce a value.

Fig. 2. Syntax of the language.

ParT collections are monoids, meaning that the composition operation e || e
is associative and has {} as its unit. As such, ParT collections are sequences,
though no operations such as getting the first element are available to access
them sequentially. As an alternative, adding in commutativity of || would give
multiset semantics to the ParT collections — the operational semantics is oth-
erwise unchanged. Two for one!

A number of the constructs are defined by translation into other constructs.

let x = e in e′ =̂ (λx.e′) e
e1 >< e2 =̂ let x = e1 in

(λy.(y � (λz.match z with Nothing → e2; → x))†) � x
e1 �= e2 =̂ join (e1 � e2)
maybe2par =̂ λx.match x with Nothing → {}; Just y → {y}
The encoding of let is standard. In e1 >< e2, pruning � is used to test

the emptyness of e1. If it is not empty, the result of e1 is returned, otherwise
the result is e2. The definition of �= is a standard definition of monadic bind
in terms of map (�) and join. We assume for convenience a Maybe type and
pattern matching on it.

3.2 Configurations

Running programs are represented by configurations (Fig. 3). Configurations can
refer to the global system or a partial view of the system. A global configura-
tion {config} captures the complete global state, e.g., {(futf ) (taskf e)} shows
a global system containing a single task running expression e. Local configura-
tions, written as config, show a partial view of the state of the program. These are
multisets of tasks, futures, poison and future chains. The empty configuration is
represented by ε. Future configurations, (futf ) and (futf v), represent unful-
filled and fulfilled futures, respectively. Poison is the configuration (poison f)
that will eventually terminate tasks and chains writing to future f and their
dependencies. A running task (taskα

f e) has a body e and will write its result to
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future f. The chain configuration (chainα
f g e) depends on future g that, when

fulfilled, will then run expression e on the value stored in g , and write its value
into future f. Concatenation of configurations, config config′, is associative and
commutative with the empty configuration ε as its unit (Fig. 12).

Fig. 3. Runtime configurations.

Tasks and chains have a flag α that indicates the poisoned state of the com-
putation. Whitespace ‘ ’ indicates that the computation has not been poisoned,
and � indicates that the computation has been poisoned and can be safely ter-
minated, if it is not needed (see Rule Red-Terminate of Fig. 10).

The initial configuration to evaluate expression e is {(taskf e) (futf )}, where
the value written into future f is the result of the expression.

3.3 Reduction Rules

The operational semantics is based on a small-step, reduction-context based rules
for evaluation within tasks, and parallel reduction rules for evaluation across
configurations. Evaluation is captured by expression-level evaluation context E
containing a hole • that marks where the next step of the reduction will occur
(Fig. 4). Plugging an expression e into an evaluation context E, denoted E[e],
represents both the subexpression to be evaluated next and the result of reducing
that subexpression in context, in the standard fashion [21].

Fig. 4. Expression-level evaluation contexts.

Reduction of configurations is denoted config → config′, which states that
config reduces in a single step to config′.

Core Expressions. The core reduction rules (Fig. 5) for functions, tasks and
futures are well-known or derived from earlier work [5]. Together, the rules Red-

Chain and Red-ChainV describe how future chaining works, initially attaching
a closure to a future (via the chain configuration), then evaluating the closure
in a new task after the future has been fulfilled.
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(Red-β-Red)

(taskα
g E[(λx.e) v]) → (taskα

g E[e[v/x]])

(Red-Async)

fresh f

(taskα
g E[async e]) → (futf ) (taskα

f e) (taskα
g E[f ])

(Red-FutV)

(taskα
f v) (futf ) → (futf v)

(Red-Chain)

fresh h

(taskα
g E[f � v]) → (futh) (chainα

h f v) (taskα
g E[h])

(Red-ChainV)

(chainα
g f e) (futf v) → (taskα

g (e v)) (futf v)

Fig. 5. Core reduction rules.

(Red-SeqS)

(taskα
g E[{} � v]) → (taskα

g E[{}])
(Red-SeqV)

(taskα
g E[{v} � v′]) → (taskα

g E[{v′ v}])

(Red-SeqF)

(taskα
g E[f◦ � v]) → (taskα

g E[(f � v)◦])
(Red-SeqFP)

(taskα
g E[f† � v]) → (taskα

g E[(f � (λx.x � v))†])

(Red-SeqP)

(taskα
g E[(v1 || v2) � v]) → (taskα

g E[(v1 � v) || (v2 � v)])

Fig. 6. Reduction rules for the sequence � combinator.

Sequencing. The sequencing combinator � creates pipeline parallelism. Its
semantics are defined inductively on the structure of ParT collections (Fig. 6).
The second argument must be a function (tested in function application, but
guaranteed by the type system). In Red-SeqS, sequencing an empty ParT
results in another empty ParT. A ParT with a value applies the function imme-
diately (Red-SeqV). A lifted future is asynchronously accessed by chaining the
function onto it (Red-SeqF). Rule Red-SeqP recursively applies � v to the
two sub-collections. A future whose content is a ParT collection chains a recur-
sive call to � v onto the future and lifts the result back into a ParT collection
(Red-SeqFP).

Join. The join combinator flattens nested ParT collections of type Par (Par t)
(Fig. 7). Empty collections flatten to empty collections (Red-JoinS). Rule Red-

JoinV extracts the singleton value from a collection. A lifted future that con-
tains a ParT (type Fut (Par t)) is simply lifted to a ParT collection (Red-

JoinF). In Red-JoinFP, a future containing a nested ParT collection (type
Fut (Par (Par t))), chains a call to join to flatten the inner structure. Rule
Red-JoinP applies the join combinator recursively to the values in the ParT
collection.

Prune and Peek. Pruning is the most complicated part of the calculus, though
most of the work is done using the peek combinator (Fig. 8). Firstly, rule Red-

Prune spawns a new task that will peek the collection v′, and passes this new
task’s future to the function v. The essence of the peek rules is to set up a
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(Red-JoinS)

(taskα
g E[join {}]) → (taskα

g E[{}])
(Red-JoinV)

(taskα
g E[join {v}]) → (taskα

g E[v])

(Red-JoinF)

(taskα
g E[join f◦]) → (taskα

g E[f†])
(Red-JoinFP)

(taskα
g E[join f†]) → (taskα

g E[(f � (λx.join x))†])

(Red-JoinP)

(taskα
g E[join (v1 || v2)]) → (taskα

g E[(join v1) || (join v2)])

Fig. 7. Reduction rules for the join combinator.

(Red-Prune)

fresh f

(taskα
g E[v � v′]) → (futf ) (taskα

f (peek v′)) (taskα
g E[v f ])

(Red-PeekS
�
)

(taskα
g E[peek� {}]) → ε

(Red-PeekS)

(taskα
g E[peek {}]) (futg) → (futg Nothing) (poison g)

(Red-PeekV)

(taskα
g E[peekπ

({v} || v
′
) ]) (futg) → (futg (Just v)) (poison g)

h∈deps(v′)
(poison h)

(Red-PeekF)

(taskα
g E[peekπ (f◦ || v)]) → (chainα

g f (λx.peekπ {x})) (taskα
g (peek� v))

(Red-PeekFP)

fresh h

(taskα
g E[peekπ (f† || v)]) →

(chainα
g f (λx.peekπ (x || (h � maybe2par)†)))

(futh) (taskα
h (peek v)) (chainα

g h (λx.peek�(maybe2par x)))

Fig. 8. Reduction rules for pruning. For singleton collections are handled via equality
v = v || {}.

bunch of computations that compete to write into a single future, with the
strict requirement that Nothing is written only when all competing tasks can-
not produce a value—that is, when the ParT being peeked is empty. This is
challenging due to the lifted future ParTs (type Fut (Par t)) within a collection,
because such a future may be empty, but this fact cannot easily be seen in a non-
blocking way. Another challenge is to avoid introducing sequential dependencies
between entities that can potentially run in parallel, to avoid, for instance, a
non-terminating computation blocking one that will produce a result.

A task that produces a ParT containing a value (rule Red-PeekV) writes the
value, wrapped in an option type, into the future and poisons all computations
writing into that future, recursively poisoning direct dependencies. The � status
on peek prevents certain peek invocations from writing a final empty result, as
in rule Red-PeekS

�. Contrast with Red-PeekS, in which a task resulting in
an empty ParT writes Nothing into the future — in this case it is guaranteed
that no other peek exists writing to the future.
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(Red-Schedule)

fresh f

(taskα
g E[e1 || e2]) → (taskα

g E[e1 || f†]) (futf ) (taskα
f e2)

Fig. 9. Spawning of tasks inside a ParT.

A lifted future f is guaranteed to produce a result, though it may not pro-
duce it in a timely fashion. This case is handled (rule Red-PeekF) by chaining
a function onto it that will ultimately write into future g when the value is pro-
duced, if it wins the race. Otherwise, the result of peeking into v is written into
g, unless the value produced is {} (which is controlled by �).

A lifted future to a ParT is not necessarily guaranteed to produce a result,
and neither is any ParT that runs in parallel with it. Thus, extra care needs
to be taken to ensure that Nothing is written if and only if both are actually
empty. This is handled in rule Red-PeekFP. Firstly, a function is chained onto
the lifted future to get access to the eventual ParT collection. This is combined
with future h that is used to peek into v via a new task.

In all cases, computations propagate the poison state α to new configurations.

Scheduling. Rule Red-Schedule (Fig. 9) models the non-deterministic schedul-
ing of parallelism within a task, converting some of the parallelism latent in a
ParT collection into a new task. Apart from this rule, expressions within tasks
are evaluated sequentially.

(Red-Poison)

(poison f) (PCf e) → (poison f) (PC�
f e)

g∈deps((PCf e))
(poison g)

(Red-Terminate)

¬(config 	 needed(f ))

{(PC�
f e) config} → {config}

Fig. 10. Poisoning reduction rules.

Poisoning and Termination. The rules for poisoning and termination (Fig. 10)
are based on a poisoned carrier configuration defined as (PCα

f e):: = (taskα
f e) |

(chainα
f g e); these rules rely on the definition of when a future is needed (Defin-

ition 2), which in turn is defined in terms of the futures on which a task depends
to produce a value (Definition 1).

Definition 1. The dependencies of an expression e, deps(e), is the set of the
futures upon which the computation of e depends in order to produce a value:

deps(f ) = {f}
deps(c) = deps({}) = deps(x ) = ∅
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deps({e}) = deps(λx .e) = deps(async e) = deps(e◦) = deps(e†) =
deps(peekπ e) = deps(join e) = deps(e)

deps(e || e ′) = deps(e e ′) = deps(e � e ′) = deps(e �= e ′) =
deps(e >< e ′) = deps(e � e ′) = deps(e � e ′) = deps(e) ∪ deps(e ′)

deps((taskα
f e)) = deps(e)

deps((chainα
f g e)) = {g} ∪ deps(e).

Definition 2. A future f is needed in configuration config, denoted config �
needed(f), whenever some other element of the configuration depends on it:

config � needed(f) iff (PCα
g e) ∈ config ∧ f ∈ deps((PCα

g e)) ∧ (futf ) ∈ config.

Configurations go through a two step process before being terminated. In
the first step (rule Red-Poison) the poisoning of future f poisons any task
or chain writing to f , marks it with �, and the poison is transmitted to the
direct dependencies of the expression e in the task or chain. In the second step
(Red-Terminate), a poisoned configuration is terminated when there is no
other configuration relying on its result — that is, a poisoned task or chain is
terminated if there is no expression around to keep it alive. This rule is global,
referring to the entire configuration. Termination can be implemented using
tracing garbage collection, though in the semantics a more global specification
of dependency is used.

An example (Fig. 11) illustrates how poisoning and termination work to pre-
vent a task that is still needed from being terminated. Initially, there is a bunch of
tasks (squares) and futures (circles) (Fig. 11A), where one of the tasks completes
and writes a value to future f . This causes all of the other tasks writing to f to
be poisoned, via Rule Red-PeekV (Fig. 11B). After application of rule Red-

Poison, the dependent tasks and futures are recursively poisoned (Fig. 11C).
Finally, the application of rule Red-Terminate terminates tasks that are not
needed (Fig. 11D). Task e1 is not terminated, as future g is required by the task
computing e g.

Configurations. The concatenation operation on configurations is commutative
and associative and has the empty configuration as its unit (Fig. 12). We assume
that these equivalences, along with the monoid axioms for ‖, can be applied at
any time during reduction.

The reduction rules for configurations (Fig. 13) have the individual configu-
ration reduction rules at their heart, along with standard rules for parallel evalu-
ation of non-conflicting sub-configurations, as is standard in rewriting logic [14].

3.4 Type System

The type system (Fig. 14) assigns the following types to terms:

τ :: = K | Fut τ | Par τ | Maybe τ | τ → τ
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A

RED-PEEKV

{v}

e g

ge1

jje2

e3

g

f
writes

hhe5 || e6

{v}

C

e g

ge1 g

f

terminates

jje2

e3

RED-TERMINATE

hhe5 || e6

terminates

terminates

{v}

B

e g

ge1

jje2

e3

g

f

poison

poison
RED-POISON

hhe5 || e6

poison

poison

{v}

D

e g

ge1

f

j

h

Fig. 11. Safely poisoning and terminating a configuration. The letter in the top right
corner indicates the order. Tasks are represented by squares, contain a body and have
an arrow to the future they write to. Futures (circles) have dotted arrows to tasks
that use them. Grey represents poisoned configurations. Terminated configurations are
removed (Color figure online).

ε config ≡ config ε ≡ config config config′ ≡ config′ config

config (config′ config′′) ≡ (config config′) config′′ config ≡ config′

{config} ≡ {config′}

Fig. 12. Configuration equivalence modulo associativity and commutativity.

config → config′

config config′′ → config′ config′′
config0 → config′

0 config1 → config′
1

config0 config1 → config′
0 config′

1

config0 config′′ → config′
0 config′′ config1 config′′ → config′

1 config′′

config0 config1 config′′ → config′
0 config′

1 config′′

config → config′

{config} → {config′}

Fig. 13. Configuration reduction rules

where K represents the basic types, Fut τ is the type of a future containing
a value of type τ , Par τ is the type of a ParT collection of type τ , Maybe τ
represents an option type, and τ → τ represents function types. We also let ρ
range over types.
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(TS-Const)

c is a constant of type τ

Γ 	ρ c : τ

(TS-Fut)

f : Fut τ ∈ Γ

Γ 	ρ f : Fut τ

(TS-X)

x : τ ∈ Γ

Γ 	ρ x : τ

(TS-App)

Γ 	ρ e1 : τ ′ → τ Γ 	ρ e2 : τ ′

Γ 	ρ e1 e2 : τ

(TS-Fun)

Γ, x : τ 	ρ e : τ ′

Γ 	ρ λx.e : τ → τ ′

(TS-Async)

Γ 	ρ e : τ

Γ 	ρ async e : Fut τ

(TS-Chain)

Γ 	ρ e1 : Fut τ ′ Γ 	ρ e2 : τ ′ → τ

Γ 	ρ e1 � e2 : Fut τ

(TS-EmptyPar)

Γ 	ρ {} : Par τ

(TS-SingletonPar)

Γ 	ρ e : τ

Γ 	ρ {e} : Par τ

(TS-LiftF)

Γ 	ρ e : Fut τ

Γ 	ρ e◦ : Par τ

(TS-LiftFP)

Γ 	ρ e : Fut (Par τ)

Γ 	ρ e† : Par τ

(TS-Par)

Γ 	ρ e1 : Par τ Γ 	ρ e2 : Par τ

Γ 	ρ e1 || e2 : Par τ

(TS-Sequence)

Γ 	ρ e1 : Par τ ′ Γ 	ρ e2 : τ ′ → τ

Γ 	ρ e1 � e2 : Par τ

(TS-Join)

Γ 	ρ e : Par (Par τ)

Γ 	ρ join e : Par τ

(TS-Otherwise)

Γ 	ρ e1 : Par τ Γ 	ρ e2 : Par τ

Γ 	ρ e1 >< e2 : Par τ

(TS-Peek)

Γ 	Maybe ρ e : Par ρ

Γ 	Maybe ρ peekπ e : τ

(TS-Prune)

Γ 	ρ e1 : Fut (Maybe τ) → Par τ ′ Γ 	ρ e2 : Par τ

Γ 	ρ e1 � e2 : Par τ ′

(TS-Bind)

Γ 	ρ e1 : Par τ ′ Γ 	ρ e2 : τ ′ → Par τ

Γ 	ρ e1 �= e2 : Par τ

Fig. 14. Expression Typing.

The key judgement in the type system is Γ �ρ e : τ which asserts that, in
typing context Γ , the expression e is a well-formed term with type τ , where
ρ is the expected return type of the task in which this expression appears —
ρ is required to type peek. The typing context contains the types of both free
variables and futures.

Rule TS-Async gives the type for task creation and rule TS-Chain shows
how to operate on such values — future chaining has the type of map for the
Fut constructor. Rules TS-EmptyPar, TS-SingletonPar, TS-LiftF, TS-

LiftFP, and TS-Par give the typings for constructing ParT collections. Rule
TS-Sequence implies that sequencing has the type of map for the Par con-
structor. TS-Bind and TS-Join give �= and join the types of the monadic
bind and join operators for the Par constructor, respectively. Rule TS-Prune

captures the communication between the two parameters via the future passed
as an argument to the first parameter — the future will contain the first value
of the second parameter if there is one, captured by the Maybe type. Rule TS-

Peek captures the conversion of the singleton or empty argument of peek from
Par ρ to Maybe ρ, the expected result type of the surrounding task. Because
peek terminates the task and does not return locally, its return type can be any
type.

Well-formed configurations (Fig. 15) are expressed by the judgement Γ �
config ok, where Γ is the assumptions about the future types in config. Rules
T-Task and T-Chain propagate the eventual expected result type on the turn-
style � when typing the enclosed expression. Rule T-Config depends upon the
following definition, a function that collects all futures defined in a configuration:
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(T-Fut)

f ∈ dom(Γ )

Γ 	 (futf ) ok

(T-FutV)

f : Fut τ ∈ Γ Γ 	τ v : τ

Γ 	 (futf v) ok

(T-Poison)

f : Fut τ ∈ Γ

Γ 	 (poison f) ok

(T-Task)

f : Fut τ ∈ Γ Γ 	τ e : τ

Γ 	 (taskα
f e) ok

(T-Chain)

f1 : Fut τ1 ∈ Γ f2 : Fut τ2 ∈ Γ Γ 	τ2 e : τ1 → τ2

Γ 	 (chainα
f2

f1 e) ok

(T-Config)

Γ 	 config1 ok Γ 	 config2 ok futset(config1) ∩ futset(config2) = ∅

Γ 	 config1 config2 ok

(T-GConfig)

Γ 	 config ok dom(Γ ) = futset(config) TaskSafe(config) AcyclicDep(config)

Γ 	 {config} ok

Fig. 15. Configuration Typing.

Definition 3. Define futset(config) as:

futset((futf )) = futset((futf v)) = {f}
futset((config1 config2)) = futset(config1) ∪ futset(config2)
futset( ) = ∅.

Rule T-GConfig defines the well-formedness of global configurations, judge-
ment Γ � {config} ok. This rule depends on a number of definitions that capture
properties on futures and tasks and on the dependency between futures. The
invariance of these properties is ultimately used to proof type soundness and
other safety properties of the system.

Definition 4. Define the following functions for collecting the different kinds of
tasks and chains of a configuration:

regularf (config) = {(taskf e) ∈ config | e �= peekπ e′}
∪ {(chainf g e) ∈ config | e �= λ . peekπ e′}

peekerf (config) = {(taskf (peek e)) ∈ config}
∪ {(chainf g (λ . peek e)) ∈ config}

peeker�
f (config) = {(taskf (peek� e)) ∈ config}

∪ {((chainf g (λ . peek� e)) ∈ config}

Tasks with no peek expression are called regular tasks, while peeker tasks
have the peek expression — there are both �- and non-�-peeker tasks. These
functions can be used to partition the tasks and chains in a configuration into
these three kinds of tasks and chains. These definitions consider peek expressions
only at the top level of a task, although the syntax allows them to be anywhere.
Based on the reduction rules, one can prove that peek only appears at the top
level of a task or chain, so no task or chain is excluded by these definitions.
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Definition 5. Define predicate TaskSafe(config) as follows:

TaskSafe(config) iff for all f ∈ futset(config)
|regularf (config) ∪ peekerf (config)| ≤ 1

∧ (futf ) ∈ config ∧ (poison f) /∈ config ⇒
|regularf (config) ∪ peekerf (config)| = 1

∧ |regularf (config)| = 1 ⇒ peekerf (config) ∪ peeker�
f (config) = ∅

∧ (taskα
f (peek {})) ∈ config ⇒ (futf ) ∈ config ∧ peeker�

f (config) = ∅

Predicate TaskSafe(config) (Definition 5) describes the structure of the con-
figuration config. It states that:

– there is at most one regular or non-�-peeker task per future;
– if a future has not yet been fulfilled and it is not poisoned, then there exists

exactly one regular task or non-�-peeker task that fulfils it;
– regular tasks and peeker tasks do not write to the same futures; and
– if a peeker task that is about to fulfil a future with Nothing, then the future

is unfulfilled and no �-peeker task fulfilling the same future exists.

The following definition establishes dependencies between futures. Predicate
config � f � g holds for all future g whose eventual value could influence the
result stored in future f .

Definition 6. Define the predicate config � f � g as the least transitive relation
satisfying the following rules:

(taskα
f e) ∈ config g ∈ deps(e)

config � f � g
(chainα

f h e) ∈ config g ∈ deps(e) ∪ {h}
config � f � g

(futf v) ∈ config g ∈ deps(v)
config � f � g

Definition 7. Predicate AcyclicDep(config) holds iff relation � is acyclic,
where � is defined for config in Definition 6.

Rule T-GConfig for well-formed global configurations requires that pre-
cisely the futures that appear in the typing environment Γ appear in the config-
uration, that the configuration is well-formed, and that it satisfies the properties
TaskSafe and AcyclicDep. By including these properties as a part of the well-
formedness rule for global configurations, type preservation (Lemma 1) makes
these invariants. These invariants on the structure of tasks and the dependency
relation together ensure that well-typed configurations are deadlock-free, as we
explore next.



116 K. Fernandez-Reyes et al.

3.5 Formal Properties

The calculus is sound and deadlock-free. These results extend previous work [15]
to address the pruning combinator.

Lemma 1 (Type Preservation). If Γ � {config} ok and {config} → {config′},
then there exists a Γ ′ such that Γ ′ ⊇ Γ and Γ ′ � {config′} ok.

Proof. By induction on derivation {config} → {config′}. In particular, the
invariance of AcyclicDep is shown by considering the changes to the depen-
dencies caused by each reduction rule. The only place where new dependencies
are introduced is when new futures are created. Adding a future to the dependency
relation cannot introduce cycles. ��

The following lemma states that the notion of needed, which determines
whether or not to garbage collect a poisoned task or chain, is anti-monotonic,
meaning that after a future is no longer needed according to the definitions, it
does not subsequently become needed.

Lemma 2 (Safe Task Kill). If Γ � {config} ok and {config} → {config′}, then
¬(config � needed(f )) implies ¬(config′ � needed(f )).

Proof. A future is initially created in a configuration where it is needed. If ever
a future disappears from deps(e), if can never reappear. ��

This lemma rules out the situation where a task is poisoned and garbage
collected, but is subsequently needed. For instance, the application of rule Red-

Terminate in Fig. 11C kills tasks e2, e3, e5 and e6 (shown in Fig. 11D). If the
future into which these tasks were going to write is needed afterwards, there
would be a deadlock as a new task could chain on that future but never be
fulfilled.

Definition 8 (Terminal Configuration). A global configuration {config} is
terminal iff every element of config has one of the following shapes: (futf ),
(futf v) or (poison f).

Lemma 3 (Deadlock-Freedom/Progress). If Γ � {config} ok, then config is
a terminal configuration, or there exists a config′ such that {config} → {config′}.
Proof. By induction on a derivation of {config} → {config′}, relying on the
invariance of AcyclicDep and Lemma 2. ��

Deadlock-freedom guarantees that some reduction rule can be applied to a
well-typed, non terminal, global configuration — this is essentially the progress
property required to prove type safety. It implies further that there are no local
deadlocks, such as a deadlocked configuration like (chainf g e) (chaing f e′).
Such a configuration fails to satisfy the AcyclicDep invariant, thus cannot
exist. If mutable state is added to the calculus, deadlock-freedom is lost.
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Implementations. There are two prototypes of the ParT abstraction. In the
first prototype,2 ParT has been written as an extension to the Encore compiler
(written in Haskell) and runtime (written in C) but, it can be implemented in
well-established languages with notions of tasks and futures. This prototype inte-
grates futures produced by tasks and active objects with the ParT abstraction.
The other prototype has been written in Clojure,3 which is not statically typed.
Both prototypes follow the semantics to guide the implementation. In practice,
this means that the semantic rules are written in such a way that they can be
easily mimicked in a library or in a language runtime.

4 Related Work

Our combinators have been adapted from those of the Orc [11,12] programming
language. In ParT, these combinators are completely asynchronous and are inte-
grated with futures. ParTs are first class citizens and can be nested Par (Par t),
neither of which is possible in Orc, which sits on top of the expression being
coordinated and a flat collection of values.

Meseguer et al. [1] used rewriting logic semantics and Maude to provide a
distributed implementation of Orc. Their focus on the semantic model allows
them to model check Orc programs. In this paper, our semantics is more fine-
grained, and guides the implementation in a multicore setting.

ParT uses a monad to encapsulate asynchronous computations, which is not
a new idea [3,13,20]. For instance, F# expresses asynchronous workflows using a
continuation monad [20] but cannot create more parallelism within the monad,
making the model better suited for event-based programming. In contrast, our
approach can spawn parallel computations and include them within ParTs.

Other work implements Orc combinators in terms of a monad within the pure
functional language Haskell [3,13]. One of these approaches [3] relies on threads
and channels and implements the prune � combinator using sequential compo-
sition, losing potential parallelism. The other approach [13] uses Haskell threads
and continuations to model parallel computations and re-designs the prune �
combinator in terms of a cut combinator thats sparks off parallel computa-
tions, waits until there is a value available and terminates, in bulk, the remain-
ing computations. In contrast, the ParT abstraction relies on more lightweight
tasks instead of threads, has fully asynchronous combinators, which maintain
the throughput of the system, and terminates speculative work by recursively
poisoning dependencies and terminating computations that are not needed.

An approach to increase parallelism is to create parallel versions of existing
collections. For instance, Haskell [10] adds parallel operations to its collections,
and the Scala parallel collections [18] adds new methods to their collection, par
and seq, that return a parallel and a sequential version of the collection. However
these approaches cannot coordinate complex workflows, which is possible with
the ParT abstraction.
2 Encore ParT prototype: http://52.50.101.143/kompile/encore/.
3 Clojure ParT prototype: https://github.com/kikofernandez/ParT.

http://52.50.101.143/kompile/encore/.
https://github.com/kikofernandez/ParT.
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Recent approaches to creating pipeline parallelism are the Flowpool [19] and
FlumeJava [4] abstractions. In the former, functions are attached to Flowpool
and, with the foreach combinator, the attached functions are applied to items
asynchronously added to the Flowpool thereby creating parallel pipelines of com-
putations. The latter, FlumeJava, is a library extending the MapReduce frame-
work; it provides high-level constructs to create efficient data-parallel pipelines
of MapReduce jobs, via an optimisation phase. The ParT abstraction can create
data-parallel pipelines with the sequence � and bind �= combinators (at the
moment there is no optimisation phase) and further can terminate speculative
work.

Existing approaches to safely terminating speculative parallelism [6,9,17] did
not integrate well with the ParT abstraction. For instance, the Cilk program-
ming language provides the abort keyword to terminate all speculative work
generated by a procedure [6]. The termination does not happen immediately,
instead, computations are marked as not-runnable; already running computa-
tions would get marked as non-runnable but do not stop execution until their
work is finished. In other approaches, the developer specifies termination check-
points at which a task may be terminated [9,17]. This solves the previous problem
and improves responsiveness but, adds an extra overhead (for the checking) and
puts the responsibility on the developer, who specifies the location of the check-
points. In our design, the developer does not need to specify these checkpoints
and speculative work is terminated as soon as there are no dependencies. No
other approach considers that the results of tasks may be needed elsewhere.

5 Conclusion and Future Work

This paper presented the ParT asynchronous, parallel collection abstraction,
and a collection of combinators that operate over it. ParT was formalised as a
typed calculus of tasks, futures and Orc-like combinators. A primary character-
istic of the calculus is that it captures the non-blocking implementation of the
combinators, including an algorithm for pruning that tracks down dependencies
and is safe with respect to shared futures. The ParT abstraction has prototypes
in the Encore (statically typed) and Clojure (dynamically typed) programming
languages.

Currently, the calculus does not support side-effects. These are challenging to
deal with, due to potential race conditions and terminated computations leaving
objects in an inconsistent state. We expect that Encore’s capability type sys-
tem [2] can be used to avoid data races, and a run-time, transactional mechanism
can deal with the inconsistent state. At the start of the paper we mentioned that
ParT was integrated into an actor-based language, but the formalism included
no actors. This work abstracted away the actors, replacing them by tasks and
futures—message sends in the Encore programming language return results via
futures—which were crucial for tying together the asynchronous computations
underlying a ParT. Actors can easily be re-added as soon as the issues of shared
mutable state have been addressed. The distribution aspect of actors has not yet
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been considered in Encore or in the ParT abstraction. This would be an inter-
esting topic for future work. Beyond these extensions, we also plan to extend
the range of combinators supporting the ParT abstraction.
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of Orc with formal analysis. In: Ölveczky, P.C., (ed.) Proceedings First Interna-
tional Workshop on Rewriting Techniques for Real-Time Systems, RTRTS 2010,
6–9 April, 2010, vol. 36 of EPTCS, pp. 26–45. Longyearbyen, Norway (2010)

2. Brandauer, S., et al.: Parallel objects for multicores: a glimpse at the parallel lan-
guage encore. In: Bernardo, M., Johnsen, E.B. (eds.) Formal Methods for Multicore
Programming. LNCS, pp. 1–56. Springer, Switzerland (2015)

3. Campos, M.D., Barbosa, L.S.: BarbosaImplementation of an orchestration lan-
guage as a haskell domain specific language. Electr. Notes Theor. Comput. Sci.
255, 45–64 (2009)

4. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R.,
Weizenbaum, N.: Flumejava: Easy, efficient data-parallel pipelines. In: Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2010, pp. 363–375, New York, NY, USA. ACM (2010)

5. Clarke, D., Wrigstad, T.: Vats: a safe, reactive storage abstraction. In: Ábrahám,
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Abstract. Carma is a process-algebra influenced language for the
quantitative modelling of collective adaptive systems which involve col-
laboration and coordination. These systems consist of multiple compo-
nents that interact to achieve certain goals and that adapt to changes
in the environment. As a case study for the application of Carma, this
paper presents an ambulance deployment system where ambulances go
to medical incidents and either treat patients at the scene or transfer
them to hospital. The Eclipse Carma Plug-in is used to simulate the
system, and demonstrate its behaviour in different circumstances.

1 Introduction

Creating formal dynamic models of systems that can be simulated and subjected
to other forms of quantitative analysis is one way in which formal methods can
be used in the development and evaluation of these systems. Frequently, it is not
possible to experiment with the system itself, because of the cost or disruption
involved. Hence development of models that can be used for experimentation
is important. This paper applies a language that has been developed to model
collective adaptive systems (CAS) to an existing ambulance deployment scenario.

CAS feature frequently in modern information systems. Multiple components
interact (and sometimes compete) to achieve various outcomes. The components
can be individual pieces of software or different physical devices, and such sys-
tems are often characterised by local information and local action which there-
fore, requires a notion of space. Coordination and collaboration are features of
these models because of the components communicate to achieve their aims. The
language Carma and its associated software tool the Eclipse Carma Plug-in
have been developed for the quantitative modelling of CAS allowing for an under-
standing of both functional and nonfunctional properties of models [3,5]. Impor-
tant aspects of Carma include attribute-based communication, in the sense that
the possibility of a component taking part in an interaction depends on the cur-
rent values in the store of the component, thus allowing for a rich representation
of state. Both unicast and broadcast modes of communication are supported.
Furthermore, Carma allows the environment within which the model compo-
nents interact to be defined separately from the components. The development
of Carma has been influenced by a number of previous process algebra including
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
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the Markovian process algebra PEPA [12], the location-focussed PALOMA [9]
and SCEL [8] which uses attribute-based communication. Attribute-based com-
munication is explored further in the process calculus AbC [2].

In this paper, the modelling and analysis of a particular system using
Carma is considered. Jagtenberg et al. have proposed a new approach to ambu-
lance deployment [14]. The general goal of such systems is to minimise the time
it takes to respond to medical incidents by ensuring good base locations for
ambulances together with a distribution of ambulances over bases that leads to
fast response. Traditionally, deciding how to deploy ambulances across a region
has been done statically, in the sense that once an ambulance has completed its
current task, it returns to a predefined base, and moreover determining the best
bases is done in advance of deployment. In the dynamic approach, depending
on the locations of the other ambulances, an ambulance that is no longer busy
can be requested to go to a specific location in a set of base locations to wait for
its next task, thus allowing the system to adapt to the current circumstances.
The ambulance system is modelled as a graph of locations with edges represent-
ing roads, annotated with information about how long it takes to traverse the
edge, as shown in Fig. 5. Locations may be cities, towns, road junctions or other
points of interest. Each location has an incident probability, and some locations
have ambulances bases or hospitals. There has been much research into different
aspects of ambulance response time that use a graph to represent the road net-
work. These have considered how many ambulances to use, the best locations
for bases and how to distribute vehicles over bases [1,4,6,10,15,16]. The specific
system modelled here has been chosen because of its time-based performance
evaluation aspects and straightforward heuristic function. The developed model
could be modified to investigate other aspects of ambulance deployment.

This paper presents a Carma model of such an ambulance system. As
Carma is a new modelling language, it is necessary to evaluate it by devel-
oping interesting and complex models, and the ambulance deployment system
fulfils these requirements. First, the ambulance scenario is introduced after which
details of Carma are presented, followed by the ambulance model expressed in
Carma. Finally results of simulation of the model are presented and a discussion
of further research relating to the model discussed.

2 An Ambulance Deployment Scenario

This section describes the mathematical model that Jagtenberg et al. [14] pro-
pose, together with their heuristic for best real-time redeployment of ambulances.
This model considers a scenario where there is a fairly sparse network of roads
between cities and towns (as shown in Fig. 5), and hence is slightly more appro-
priate for a non-urban situation, where there are not many routes between each
point of interest. An urban map can be transformed into a similar sparse network
by focussing on major routes.

Let N = (V,E) be a graph where E ⊆ V × V . Four functions are associated
with this graph.



Modelling Ambulance Deployment with Carma 123

– r : E → R>0 describes the time it takes to traverse an edge (when using sirens
and lights – this figure increases for travel without lights and sirens).

– h : V → {0, 1} defines the presence of a hospital at a vertex.
– b : V → {0, 1} defines whether a vertex is an ambulance base.
– d : V → [0, 1] with

∑
v∈V d(v) = 1, defines the distribution of incidences over

the vertices of the graph.

There is also a set of ambulances A labelled {1, . . . , n} and two functions
l : A → V describing the current location of an ambulance and w : A → {0, 1}
describing whether an ambulance is currently allocated to an incident. Further-
more, a function s : A → V which describes the home station of an ambulance
in the static case. There are three rates that describe how long it takes for an
ambulance to treat a patient at the scene, λp, how long it takes for an ambulance
to load up a patient at the scene for transportation to hospital, λt and how long
it takes to offload a patient at hospital, λd. It is assumed that patients are either
treated at the scene or uploaded to be taken to hospital but not both. Further-
more, there is a probability m that determines whether an incident is severe,
requiring the patient to be transported to hospital, or minor, meaning that the
patient only needs to be treated at the scene. The operation of the system is
now described.

1. An incident occurs at a vertex based on the distribution defined by d and its
level of severity is determined using the probability m.

2. An ambulance is identified to go to the incident location based on distance
from the incident.

3. The ambulance uses the shortest route to get to the scene. Since distances are
deterministic and unchanging, shortest routes can be determined in advance
from the network, and hence are static in the model.

4. The ambulance treats the patient at the scene and then proceeds with item
7, or the ambulance uploads the patient to take them to hospital.

5. The ambulance uses the shortest route to the hospital using sirens and lights.
6. The ambulance drops the patient off at the hospital.
7. The ambulances uses the shortest route to go to a base but taking longer as

it is not using sirens and lights. In the static case, this is the base defined by
s. In the dynamic case, the base is determined by the heuristic.

Once an ambulance has been allocated to an incident, it must complete the
journey to the incident, and to the hospital, if necessary, and cannot be diverted.
However, once an ambulance has started to return to base, it can be immediately
allocated to a new incident. An ambulance that is involved in items 2 to 6 is
considered to be busy, otherwise it is idle. When it is idle, it is associated either
with the base it has reached or the base to which it is travelling.

2.1 Evaluation of Base Heuristic

The reason to model such systems is to investigate the performance of different
deployment approaches. The proportion of ambulances that do not reach the
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incident within a fixed time period (denoted T ) after being allocated to that
incident, is often used [14] and will be used here.

In the case of static deployment where each ambulance has a fixed base, sim-
ulation can be used to assess the best distribution of ambulances, in the planning
stages of a system. Different variants of the maximum expected covering location
problem (MEXCLP) [6] have been used to tackle this task. The disadvantage
of the static approach is that it ignores real-time information that can be used
to provide better coverage [14]. Coverage describes the number of ambulances
that can provide service at a specific location within the time limit. Increasing
coverage means that there is a higher probability that an ambulance will be
available if one is needed.

Dynamic deployment approaches can be divided into two main techniques.
The first, based on lookup tables, requires dispatchers to steer the system to these
optimal configurations. A better approach is based on real-time approximation.
However, even using approximate dynamic programming and post-decision state
is time-consuming and requires an expert to implement and choose base functions
[14]. By contrast, the approach taken in [14] is moderately coarse-grained and
needs little real-time information, and takes a marginal cover approach based on
MEXCLP.

Consider a set of ambulances A with behaviour as described above. Also let
B = {u ∈ V |b(u) = 1} be the set of vertices that are bases. It is assumed that
there is a probability q which is the same for all ambulances and represents the
fraction of time that the ambulance is busy. It can be determined by dividing
the load of the system by the number of ambulances [14]. The expected coverage
at vertex v when v is in the range of k ambulances is Ek(v) = d(v)(1 − qk) and
as shown in [6], the marginal coverage is Ek(v) − Ek−1(v) = d(v)(1 − q)qk−1.
This figure can be used to determine to which base to send an ambulance once
it has completed its task, by finding u ∈ B such that the increase in coverage
is maximised, and hence the maximum coverage overall is obtained. Let ρ(v, w)
be the time taken for the shortest route between vertices v and w, calculated
from the values of individual hops given by the function r. Let nu represent the
number of ambulances at u ∈ B, or moving towards u ∈ B after completing
their allocated task, and let N = {nu | u ∈ B} represent the current number
of idle ambulances for each possible base location. The function p captures the
heuristic for determining ambulance base and is defined by1

p(N) = arg max
w∈B

∑

v∈V

d(v)(1 − q)qk(v,w,N)−1 · 1(ρ(w, v) ≤ T ) where

k(v, w,N) =
∑

u∈B

nu · 1(ρ(u, v) ≤ T ) + 1(ρ(w, v) ≤ T ).

1 This function differs from that in [14] due to the additional term 1(ρ(u, v) ≤ T in
the first part of the definition. It does, however, match the algorithm that was used
in that paper [13].
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Here 1 is the indicator function. This function can also be simplified to

p(N) = arg max
w∈B

∑

v∈V

d(v)(1 − q)qc(v,N) · 1(ρ(w, v) ≤ T ) where

c(v,N) =
∑

u∈B

nu · 1(ρ(u, v) ≤ T )

For each possible base of the ambulance that has just completed its task, the
increased coverage is calculated for every location in the graph whenever addition
of the base would increase coverage at that location, and summed. The function
c counts the number of ambulances that are already in the range of each base
(reachable within the limit of T time units) as defined by the set N . If it is the
case that both |A|, the number of idle ambulances, and |B|, the number of bases,
are small compared to the number of vertices |V |, then the algorithm is linear
in |V | [14].

It is important to note that some aspects of the model are generic such as the
ambulance behaviour but others are specific to the system under consideration
such as the graph of locations, the functions relating to these locations, and the
heuristic function p. This distinction will be used when deciding how to build
the Carma model. The next section introduces Carma, after which the Carma

model of the system is presented.

3 CARMA

Carma is a powerful language, influenced by process algebra, for describing sys-
tems consisting of different interacting components which allows for an explicit
definition of environment. Its semantics are time-inhomogeneous continuous-time
Markov chains [5] thus permitting both simulation and other analysis techniques.
It is embodied in software in the Carma Eclipse Plug-in tool which implements
the basic language and supports features such as function definition, enumer-
ated types, and measures which enable quantitative behaviour of a model to be
calculated and recorded.

A Carma model consists of a number of different elements. At the highest
level, there is a collective that consists of different components that interact,
together with an environment that contains information about the global state,
as well as information about how components interact. Thus Sys is the set of
Carma systems S defined by

S ::= N in E
where N is a collective and E is an environment. The set of collectives Col is
defined by

N ::= C
∣
∣ N ‖ N

A collective N is either a component C or the parallel composition of two col-
lectives (N ‖ N). The syntax of components is

C ::= 0
∣
∣ (P, γ)
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where 0 is the null component, P is a process that describes the behaviour of
the component and γ is the store for the component. Comp is defined to be the
set of components. A store maps from attribute names to basic values where

– Attr is the set of attribute names a, a′, a1,. . . , b, b′, b1,. . . ;
– Val is the set of basic values v, v′, v1,. . . ; and
– Γ is the set of stores γ, γ1, γ

′, . . ., are functions from Attr to Val.

Proc is the set of processes that define the behaviour of components and they
are specified by

P,Q ::= nil
| kill
| act.P
| P + Q
| P | Q
| [π]P

| A (A
�
= P )

act ::= α�[π]〈−→e 〉σ
| α[π]〈−→e 〉σ
| α�[π](−→x )σ
| α[π](−→x )σ

e ::= a | my.a | x | v | now | · · ·
π ::= 	 | ⊥ | e1 	
 e2 | ¬π | π ∧ π | · · ·

In Carma processes can have different prefixes relating to four types of actions
which are broadcast output (α�[π]〈−→e 〉σ), broadcast input (α�[π](−→x )σ), output
(α[π]〈−→e 〉σ), and input (α[π](−→x )σ), where

– α is an action type in the set of action type ActType;
– π is a predicate;
– x is a variable in the set of variables Var;
– e is an expression in the set of expressions Exp;
– −→· indicates a sequence of elements;
– σ is an update, i.e. a function from Γ to Dist(Γ ) in the set of updates Σ; where

Dist(Γ ) is the set of probability distributions over Γ .

A unicast communication involves two components where the sender and receiver
attributes must satisfy any predicates in the prefixes, the expressions in the out-
put prefix are assigned to the variables in the input prefix (and hence successful
communication requires the two sequences are the same length), and updates are
applied to both components to complete the interaction. Furthermore, there can
be a probability describing whether the receiver does actually receive the com-
munication. Unicast is blocking in that a sender cannot proceed until a receiver
takes part in the interaction.

By contrast, broadcast is not blocking and the sender can proceed regard-
less of whether there are many, one or no suitable receivers. Again, the sender
and potential receivers must satisfy the predicates in the prefixes, and addi-
tionally there is a probability that the receiver although suitable to take part
in the interaction, does not receive it. Expressions from the output prefix are
passed to variables in the input prefix and updates are applied to all participants
on completion of their roles, in the same manner as unicast. For both unicast
and broadcast, rates of actions and probabilities of receiving are defined in the
environment part of the model.
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Specific expressions of interest are now for the current simulation time and
my.a which refers to the value of the attribute a in the current component.

Apart from the four different prefix types, there is choice between two
processes, the parallel composition of two processes, a guarded process which
requires satisfaction of its predicate before it can perform an action and defini-
tion of constant processes. There are two distinct operators for termination. The
operator nil represents the process that can perform no further actions and it
can be placed in parallel with other processes. The operator kill, on the other
hand, indicates termination of the whole component so that all processes in the
component stop, and the component is transformed into 0, the null component
which can do nothing and has no store.

Carma collectives interact within an environment E . The environment
describes the rules that regulate the system such as rates of interaction and
probabilities that interaction may occur. It also contains global information.
The environment has two elements: a global store γg, that records the value of
global attributes, and an evolution rule ρ. This is a function which, depending on
the current time (using now), on the global store and on the current state of the
collective returns a tuple of functions ε = 〈μp, μr, μu〉 known as the evaluation
context where Act = ActType ∪ {α�|α ∈ ActType} and

– μp : Γ × Γ × Act → [0, 1], μp(γs, γr, α) determines is the probability that a
component with store γr can receive a message from a component with store
γs when α is executed;

– μr : Γ × Act → R≥0, μr(γ, α) determines the execution rate of action α
executed at a component with store γ;

– μu : Γ × Act → Σ × Col, μu(γ, α) determines the updates on the environ-
ment (global store and collective) induced by the execution of action α at a
component with store γ. The execution of an action can modify the values of
global variables and also add new components to the collective.

In each of the rules, the notation sender.a is used to refer to the value of the
attribute a in the store of the acting or sending component, and receiver.a refers
to the value of the attribute a in the store of the receiving component.

Operational semantics of Carma specifications are defined in three stages
using the following transition relations. For reasons of space, the rules are not
presented here, but can be found in [5].

1. The relation −⇁ describes the behaviour of a single component.
2. The relation −→ builds on the first relation to describe the behaviour of

collectives.
3. The relation −→ describes how Carma systems evolve.

All relations are defined in the FuTS style [7] and are described using a triple
(N, ,N ) where the first element is a component, or a collective, or a system.
The second element is a transition label. The third element is a function asso-
ciating each component, collective, or system with a non-negative number. A
non-zero value represents the rate of the exponential distribution characterising
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the time needed for the execution of the action represented by . The zero value
is associated with unreachable terms. FuTS style semantics are used because
it makes explicit an underlying (time-inhomogeneous) Action Labelled Markov
Chain, which can be simulated with standard algorithms [11].

4 Ambulance Model

The Carma model is presented in Figs. 1, 2, 3 and 4. Each component consists of
the attributes that form its local store, its behaviour defined by processes and its
initial state. Additionally, the attributes of the global store are defined in Fig. 4
together with the evolution rule functions over actions (one function for the
rates, one for the probabilities and one for the updates of global attributes and
additions to the collective). There are four actions with non-negligible rates,
and the remainder are zero or fast (since Carma does not currently support
instantaneous actions). Figure 4 also includes the initial collective definition as
the last item.

Th symbols 	 and ⊥ as used for true and false, respectively. A broadcast
action of the form α�[⊥]〈〉 is an action that cannot be received (because no
component can satisfy the predicate false) and hence is local to the component
that executes it, although it may also update the global store or add components
to the collective.

As mentioned previously, some aspects of the model are generic and some
are specific to the network of roads and places. These two concerns have been
separated in the model. The components are generic, and functions (indicated in
bold in the figures) embody the knowledge of the network2. The Carma Eclipse
Plug-in supports function definitions, hence this separation is both possible and
sensible, and also supports the design of a tool for ambulance modelling, as
discussed in the further work section.

These functions comprise of one to provide the distributions over loca-
tion and type of incidents respectively, IncidentLocation(), IncidentType();
information about routes in the network, RouteLength(., .), NextHop(., ., .)
and MoveTime(., ., .); location of the closest hospital to an incident,
HospitalLocation(.); location of the closest idle ambulances to an incident
location, ClosestIdleLoc(., N); and the base to which an ambulance should go,
GetBase(., ., N) which can be defined statically or dynamically. Note that both
ClosestIdleLoc and GetBase take N , the set of the counts of idle ambulances
at each base or on their way to each base as an argument. For the former, N is
used to find the closest location to the incident where there are idle ambulances,
so that a request can be sent to ambulances in that location. For the latter, the
counts of idle ambulances are required to calculate p.

2 A different approach is to use components to embody the knowledge of the network
and for the generic components to communicate with these components to obtain
this information, but this leads to increase complexity of interaction. Alternatively,
the environment could contain this knowledge.
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Store of Incident Queue component:
inum number of incidents generated
rnum next incident to be dealt with
Behaviour of Incident Queue component:

IG
def= incident�[⊥]〈〉{inum ← inum+1}.IG

RN
def= release[	]〈rnum〉.RN′

RN′ def= confirm�[	](an,al){rnum ← rnum+1}.RN
Initial state of Incident Queue component: IG | RN

Store of Incident Queue Item component:
qnum number of incident
itime time of incident
Behaviour of Incident Queue Item component:
IQI

def= release[my.qnum == n](n).IQI′

IQI′ def= new handler�[⊥]〈〉.kill
Initial state of Incident Queue Item component: IQI

Store of Incident Handler component:
loc location of incident or hospital

anum id of ambulance assigned to incident
aloc current location of ambulance assigned to incident
dest current destination type and incident type
itime time of incident
atime arrival time at incident
Behaviour of Incident Handler component:

IH
def= request ambulance�[	]〈loc〉.IHC

IHC
def= confirm�[an,al]({anum ← an,aloc ← al}).IHI

IHI
def= makeroute�[⊥]〈〉.IHS

IHS
def= arrive�[an == my.anum](an).IHT

IHT
def= timecheck�[⊥]〈〉{atime ← now}.IHP

IHP
def= pickup�[an == my.anum](an){aloc ← my.loc,

loc ← HospitalLocation(my.loc),dest ← ToHosp}.IHH +
treat�[an == my.anum](an){aloc ← my.loc,dest ← ToBase}.IHF

IHH
def= makeroute�[⊥]〈〉.IHD

IHD
def= dropoff�[an == my.anum](an){aloc ← my.loc,dest ← ToBase}.IHF

IHF
def= tobase�[⊥]〈〉.kill

Initial state of Incident Handler component: IH

Fig. 1. Incident queue, incident queue item and incident handler components

There are seven generic components in the model. The Incident Queue gen-
erates Incident Queue Items using the action incident� which has the side-effect
of adding a new Incident Queue Item to the collective (as specified by the func-
tion μu appearing in the environment in Fig. 4). Each item has a unique number,
and in turn generates an Incident Handler using the action new handler�. The
first action of the Incident Handler is to request an ambulance from another



130 V. Galpin

Store of Return Handler component:
anum id of ambulance assigned
aloc current location of ambulance
dest current destination and incident type
loc location of base of ambulance

Behaviour of Return Handler component:
RH

def= tell base[	]〈loc〉.RH′

RH′ def= makeroute�[⊥]〈〉.RH′′ +kill handler�[my.anum == an](an).kill
RH′′ def= atbase�[my.anum == an](an).kill+kill handler�[my.anum == an](an).kill
Initial state of Return Handler component: RH

Store of Closest Idle Ambulance component:
iloc location of incident
dloc location of idle ambulances

t timer variable for timeout
Behaviour of Closest Idle Ambulance component:
CIA

def= request ambulance[	](l){iloc ← l,dloc ← ClosestIdleLoc(iloc,N), t ← now}.CIA′

CIA′ def= request[	]〈dloc〉.CIA′′ +
pause�[⊥]〈〉{dloc ← ClosestIdleLoc(iloc,N), t ← now}.CIA′

CIA′′ def= confirm�[	](an,al).CIA
Initial state of Return Handler component: CIA

Fig. 2. Return handler and idle ambulance components

component Closest Idle Ambulance. This is a separate component for clarity of
structure. On receiving a request for a specific location, it calls the function
to find the location with idle ambulances that is closest to that location, and
take note of the current time. It then tries to communicate (via unicast) with
any ambulance in that location. If that succeeds, then it, the Incident Handler
and the Incident Queue receive a confirm� message from the ambulance that has
responded. If there is no response, which is possible because there may be no
idle ambulances, a timeout occurs. The timeout is defined by the rate for pause�

in the environment in Fig. 4 where if insufficient time has passed the rate is zero
(otherwise, it is λfast). If the timeout happens, it calls the function again and
send out another request to the location that the function returns.

The Incident Queue interacts with each Incident Queue Item and its asso-
ciated Incident Handler to ensure that at most one Incident Handler at a time
is contacting the closest idle ambulance (because two incidents may have the
same closest idle ambulance). The use of queue numbers ensures fairness in the
sense that an Incident Handler cannot be starved of access to an Ambulance
by later incidents and their associated Incident Handlers. A queue item cannot
be released and hence cannot execute new handler�, until the Incident Handler
associated with the previous Incident Queue Item and its interaction with Clos-
est Idle Ambulance has successfully concluded negotiations with the closest idle
ambulance via communication on the confirm� action.
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Store of Ambulance component:
anum ambulance id
aloc current location of ambulance

abase current base of ambulance
idle whether ambulance is idle or not

Behaviour of Ambulance component:
Idle

def= request[al == my.aloc](al){idle ← ⊥}.Respond

Respond
def= confirm�[	]〈anum,aloc〉.Busy

Busy
def= end move[an == my.anum∧now >= t+d](an,al, t,d){aloc ← al}.Busy+

arrive�[an == my.anum](an).AtScene +
drop off�[an == my.anum](an){idle ← 	}.AskBase

AtScene
def= pickup�[an == my.anum](an).Busy +

treat�[an == my.anum](an){idle ← 	}.AskBase

AskBase
def= tell base[an == my.anum](an,ab){abase ← ab}.GoToBase

GoToBase
def= end move[an == my.anum∧now >= t+d](an,al, t,d){aloc ← al}.GoToBase+

atbase�[an == my.anum](an).Idle +
request[an == my.anum](an).CleanUp1

CleanUp1
def= kill handler�[	]〈anum〉.CleanUp2

CleanUp2
def= kill route�[	]〈anum〉.Respond

Initial state of Ambulance component: Idle

Store of Route component:
anum number of ambulance
dest current destination type and incident type
start start of route
end end of route

nexts start of next hop
nexte end of next hop

h number of hops in route
i hop counter
t timer variable for deterministic movement

Behaviour of Route component:
R

def= [i < h]start move�[⊥]〈〉{i ← i+1, t ← now}.RC +
[i = h∧ (my.dest == ToSevere∨my.dest == ToMinor)]

arrive�[	]〈anum〉.RS +
[i = h∧my.dest == ToHosp]dropoff�[	]〈anum〉.kill +
[i = h∧my.dest == ToBase]atbase�[	]〈anum〉.kill +

RS
def= [i = h∧my.dest == ToSevere]pickup�[	]〈anum〉.kill +

[i = h∧my.dest == ToMinor]treat�[	]〈anum〉.kill
RC

def= end move[	]〈anum,nexte, t,MoveTime(nexts,nexte,dest)〉
{nexts ← my.nexte,nexte ← NextHop(i,my.start,my.end)}.R

KR = kill route[my.anum == an](an).kill

Fig. 3. Ambulance and route components
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Constants:
T limit for response time
timeout time to wait for a response for a request
Measures:
N set containing the number of idle ambulances at each possible base
Global store:
ontime number of ontime ambulances
late number of late ambulances
Evolution rule functions:
μp(γs,γr,α) = 1

μr(γs,α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/r α = incident� (where r is the mean time between incidents)

λp α = pickup�

λt α = treat�

λd α = dropoff�

0 α = pause� ∧now < sender.t+ timeout

λfast otherwise

μu(γs,α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ontime ← ontime+1},0 α = timecheck� ∧now <= sender.itime+T

{late ← late+1},0 α = timecheck� ∧now > sender.itime+T

{},(Incident Queue Item,{qnum ← sender.inum, itime ← now})
α = incident�

{},(Incident Handler,{loc ← IncidentLocation(),dest ← IncidentType(),
itime ← sender.itime})

α = new handler�

{},(Return Handler,{anum ← sender.anum,aloc ← sender.aloc,

dest ← sender.dest,

loc ← GetBase(sender.anum,sender.aloc,N)})
α = tobase�

{},(Route,{anum ← sender.anum,dest ← sender.dest,

start ← sender.aloc,end ← sender.loc

nexts ← sender.aloc,nexte ← NextHop(1,sender.aloc,sender.loc),
h ← RouteLength(sender.aloc,sender.loc),})

α = makeroute�

{}, esiwrehto0

Collective:
EMS

def= (Incident Queue,{inum → 0,rnum → 1) ‖
(ClosestIdleAmbulance,{dloc → nullLoc, iloc → nullLoc, t → 0) ‖) ‖
(Ambulance,{anum → 1,aloc → l1,abase → l1, idle }	→ ) ‖ . . . ‖
(Ambulance,{anum → n,aloc → ln,abase → ln, idle }	→ )

Fig. 4. Constants, environment and collective

Each Incident Handler has an assigned ambulance and interacts with the
ambulance and generates Routes to move the ambulance to the location of the
incident and then to the nearest hospital, if required. After this a Return Handler
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is created using tobase�. The two handlers are separate components because an
ambulance cannot be diverted once it has been assigned to an incident but
once it is returning to a base position, it can be called to a new incident, so
Return Handler has behaviour to allow it to remove itself from the collective if
this happens, and it is no longer needed in the collective.

Once an Incident Handler and an Ambulance have been matched, the ambu-
lance number is used in all communication between the Incident Handler, Ambu-
lance and Route components to limit broadcast communication to these three
components. The queue number could also have been used for these purposes
but ambulance number is sufficient. Since broadcast is not blocking, the model
must be constructed so that Incident Handler and Ambulance are in a state to
receive the message from Route.

The Route component works through the route hops. It is initialised with
the start and end of the route, and after obtaining the length of route from
RouteLength, it works through each hop of the route3 using the function
NextHop until the end of the route when the appropriate action occurs depend-
ing on the destination type. For pickup and treatment at the scene, an arrive�

action is required followed by a timecheck� action for the global count of late
and on-time ambulances to be updated, based on the time the timecheck� action
happens and the time the incident was generated.

The Ambulance and Route components assume that travel times are deter-
ministic rather than stochastic (although it is straightforward to modify the
model to use stochastic durations). The Route component performs a local
start move� action and notes the time of the action. The ambulance compo-
nent responds to an end move action once sufficient time has elapsed. Since
Route components can also be generated by Return Handlers, they can remove
themselves from the collective on receipt of a kill command from the associated
Ambulance when it receives an incident request during going to a base location.

After a simulation completes, the performance measure of the proportion of
late ambulances can be calculated from the two global variables ontime and late.
The model describes a system where ambulances behave in the manner described
by the seven points in Sect. 2. The next section considers results of experiments
with this model.

Table 1. Parameters for model

λp 1/12 rate of pickup� action q 0.45 busy fraction

λt 1/12 rate of treat� action m 1 proportion of serious incidents

λd 1/15 rate of dropoff� action r 25 mean time between incidents

λfast 100 rate of fast actions timeout 1 timeout period in minutes

3 For the calculation of the performance measure, this detailed level of movement is
not necessary but if one wanted to create an animation from a simulation then this
detail is required.



134 V. Galpin

0.06 0.16

0.4

0.08 0.3

5.2 4.3

7.6

6.5 5.6 8.5

3.7 4.2 9.2

T1 C1

T2 J1 J2 T3

C2

Fig. 5. Network configuration for experiments

5 Results

To explore the behaviour of the model and the heuristic, the network shown in
Fig. 5 is used (which by contrast with [14] is a compact network rather than
long and narrow). and is somewhat simpler than a real scenario. The number
annotating the edges of the network gives the time in minutes that it takes to
traverse the edge at the faster speed (with sirens and lights on). Locations with
hospitals are indicated by double circles at vertices. The number annotating a
vertex is the proportion of incidents at that location.

The parameters chosen for the model are given in Table 1. The parameter T
which is used as the limit in the calculation of the late rate varies across exper-
iments. The busy fraction q which is used in the calculation of the heuristic
function π is estimated by simulation, for the given network with three ambu-
lances to be 0.65.

The experiments explore how the late rate varies for different values of the
time limit, and furthermore, they consider how the hospital location can affect
the late rate, and are illustrated in Fig. 6. The square nodes indicate the hospital
locations in each case. Each combination of time limit and hospital location was
simulated for 500 runs over 20 h of simulated time. The shaded circles indicate at
which locations the idle ambulances were based, and all locations were considered
as possible base locations. The area of the circle represents the proportion of
simulations that idle ambulances are at a location (or on their way to that
location as a base) at the time point of 1200 min (20 h). Since there are three
ambulances, fewer than three circles indicate that multiple ambulances are idle
at a location.

The results show that the heuristic does not appear to have monotonic behav-
iour since an increased time limit can lead to a different location with a worse
late rate, and this requires further investigation. The heuristic does not use the
hospital location but obviously distance from hospital back to base will impact
availability, and hence late rate. The lowest late rates occur when there are two
hospitals at the two cities, and an ambulance goes to the closest hospital. This
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Hospital at C1 Hospital at C2 Hospital at C1 and C2

T = 7 min lr = 0.53 T = 7 min lr = 0.46 T = 7 min lr = 0.46

T = 9 min lr = 0.42 T = 9 min lr = 0.41 T = 9 min lr = 0.37

T = 10 min lr = 0.30 T = 10 min lr = 0.30 T = 10 min lr = 0.26

T = 11 min lr = 0.35 T = 11 min lr = 0.20 T = 11 min lr = 0.22

T = 13 min lr = 0.44 T = 13 min lr = 0.35 T = 13 min lr = 0.35

Fig. 6. Idle ambulances and proportions of late arrivals for time limits and hospital
locations
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experiment shows how the late rates would be affected if it was necessary to
close one of the hospitals. However, for some time limits, the presence of two
hospitals has little effect on the late rate when compared with just one hospital
at the second city, where for others it makes a significant difference. The fact
that hospital location can affect the proportion of late arrivals suggests a role
for the hospital location in the heuristic function.

6 Conclusions and Further Work

This paper has demonstrated how the language Carma can be successfully used
to model a system involving coordination where communication is often complex
and multiway, and various components interaction to achieve goals. In this case,
this is identification of an ambulance to go to an incident, movement of the
ambulance to the incident using a generic component that draws on functions to
give the specifics of a route, movement to hospital where required, then choice
of a base to return to on completion and movement to that base. Because of
the use of generic functions together with generic components, the model can
be made applicable to any road network simply by substituting the appropriate
functions.

Further research relating to this case study include further exploration of the
parameter state space, in particular to understand the nature of the heuristic
function as mean time between incidents change, as well as modifying the heuris-
tic to take into account the current location of idle ambulances as well as their
bases. Different performance measures could also be investigated that consider
not just a single deadline but how late the ambulance is, in the case of late
arrival at the scence. Clearly, many variations can be made to the ambulance
model, including for example, switching to an ambulance closer to the incident if
one becomes available when another is already on the way; investigating move-
ment between bases as an incident occurs; and the use of different time limits
depending on the severity of the incident. At the modelling level, comparison of
the use of Carma with other formalisms and an assessment of its strengths and
weaknesses is important.

As often is the case in modelling for performance assessment, the users
who are interested in the measure often do not have the skills to work with
the modelling language directly. A ongoing project is to develop a graphical
front-end for general modelling of this ambulance scenario. The final goal is
software which allows a user to graphically create a road network as shown in
Fig. 5 with appropriate annotations, after which it will automatically generate a
Carma model consisting of the seven generic components, the model parameters
and the functions to implement the network. The model can then be simulated
in the Carma Eclipse Plug-in. An additional step would be to take the output
of a single simulation and use it to create an animation over the network, to give
users an insight to what is happening during the simulation. This gives more
information about the model over and above the performance measure.
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Abstract. We study interacting components and their compatibility
with respect to synchronous and asynchronous composition. The behav-
ior of components is formalized by I/O-transition systems. Synchronous
composition is based on simultaneous execution of shared output and
input actions of two components while asynchronous composition uses
unbounded FIFO-buffers for message transfer. In both contexts we study
compatibility notions based on the idea that any output issued by one
component should be accepted as an input by the other. We distinguish
between strong and weak versions of compatibility, the latter allowing
the execution of internal actions before a message is accepted. We con-
sider open systems and study conditions under which (strong/weak) syn-
chronous compatibility is sufficient and necessary to get (strong/weak)
asynchronous compatibility. We show that these conditions characterize
half-duplex systems. Then we focus on the verification of weak asynchro-
nous compatibility for possibly non half-duplex systems and provide a
decidable criterion that ensures weak asynchronous compatibility.

1 Introduction

Structuring software systems by interconnected components is a standard tech-
nique in software engineering. In this work we consider active components with
a well defined behavior which work together by message exchange. Each single
component has a life cycle during which it sends and receives messages and it
can also perform internal actions in between. For the correct functioning of the
overall system it is essential that no communication errors occur during compo-
nent interactions. There are different types of communication errors which are
influenced by the communication style and system architecture. In our study we
focus on bidirectional, peer to peer communication and we discuss synchronous
and asynchronous message exchange. The former is based on a rendezvous mech-
anism such that two components must execute shared output and input actions
together. The latter uses unbounded FIFO-buffers which hold the messages sent
by one component and received by the other. In this context two prominent types
of communication errors can be distinguished. The first one concerns situations,
in which an output of one component is not accepted as an input by the other,
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
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the second one occurs if a component waits for an input which is never deliv-
ered. Inspired by the work of de Alfaro and Henzinger [11] on compatibility of
interface automata, we focus on the former kind of communication error which
itself gives rise to several variations.

De Alfaro and Henzinger deal with open systems and synchronous commu-
nication. They consider two interface automata to be compatible if there exists
a “helpful” environment such that the interacting components can never reach
an error state where “one of the automata may produce an output action that
is in the input alphabet of the other automaton, but is not accepted”. We allow
open systems as well but follow the “pessimistic” approach where components
should be compatible in any environment. For the formalization of component
behaviors we use I/O-transition systems (IOTSes) and call two IOTses strongly
synchronously compatible if the compatibility requirement from above holds. In
many practical examples it turns out that before interacting with the sending
component the receiving component should still be able to perform some internal
actions in between. This leads to our notion of weak synchronous compatibility
(which works well with weak bisimulation and refinement [4]).

In this work we study also asynchronous compatibility of components com-
municating via unbounded message queues. Asynchronous compatibility requires
that whenever a message queue is not empty, the receiver component must be
able to take the next element of the queue; a property called specified reception
in [6]. We distinguish again between strong and weak versions of asynchronous
compatibility. In the asynchronous context the weak compatibility notion is par-
ticularly powerful since it allows a component, before it inputs a message waiting
in the queue, still to put itself messages in its output queue (since we consider
such enqueue actions as internal). We have shown in [3] that also weak asyn-
chronous compatibility works well with weak bisimulation and refinement.

An obvious question is to what extent synchronous and asynchronous com-
patibility notions can be related to each other and, if this is not possible, which
proof techniques can be used to verify asynchronous compatibility. We contribute
to this issues with the following results:

1. We establish a relationship between strong/weak synchronous and asynchro-
nous compatibility of two components (Sects. 4.1 and 4.2) and formulate three
equivalent (and decidable) conditions such that strong/weak synchronous
compatibility is sufficient, and even necessary, for strong/weak asynchronous
compatibility. One of the three conditions is the half-duplex property: at any
time at most one message queue is not empty; see, e.g., [5,9].

2. In the second part of this work (Sect. 5), we consider general, possibly non
half-duplex systems, and study the verification of weak asynchronous com-
patibility in such cases. Due to the unboundedness of the FIFO-buffers the
problem is not decidable [6]. We investigate, however, decidable and powerful
criteria which allow us to prove weak asynchronous compatibility.

Related Work. In our study we focus on asynchronous message exchange via
FIFO-buffers. Of course, other kinds of asynchronous communication using, e.g.,



140 R. Hennicker et al.

event pools for modeling the composition of state machines in UML, or commu-
nication channels storing messages as bags are often considered. For instance,
in [12], we have studied (modal) asynchronous I/O-transition systems and Petri
nets where communication is realized by unbounded, but unordered, channel
places. We have shown that in this case various compatibility problems are
decidable. Systems of finite automata which contain both FIFO-buffers and bag
channels are studied in [10] where topologies are investigated in which the reach-
ability problem is decidable.

Compatibility notions are mostly considered for synchronous systems, since
in this case compatibility checking is easier manageable and even decidable if the
behaviors of local components have finitely many states. Some approaches use
process algebras to study compatibility, like [7] using the π-calculus, others inves-
tigate interface theories with binary compatibility relations preserved by refine-
ment, see, e.g., [14,16] for modal interfaces, or consider n-ary compatibility in
multi-component systems like, e.g., team automata in [8]. A prominent example
of multi-component systems with asynchronous communication via unbounded
FIFO-buffers are CFSMs [6], for which many problems, like unspecified recep-
tion, are undecidable. The situation is different, if half-duplex systems of two
CFSMs are considered. Cécé and Finkel have shown in [9] that then the set of
reachable configurations is recognizable and several problems, including unspec-
ified reception, are decidable. The approach in [5] even suggests to built in the
half-duplex property in the system semantics to facilitate desynchronization.

There is, however, not much work on relationships between synchronous and
asynchronous compatibility. An exception are the approaches of Basu, Bultan,
Ouederni, and Salaün; see [1,2] for language-based and [15] for LTS-based seman-
tics. Their crucial assumption is usually synchronizability which requires, for
LTSes, a branching bisimulation between the synchronous and the asynchro-
nous versions of a system (with message consumption from buffers considered
internal). Under this hypothesis [15] proposes methods to prove compatibility
of asynchronously communicating peers by checking synchronous compatibility.
Their central notion is UR compatibility which is close to our weak compatibility
concept but requires additionally deadlock-freeness. Obvious differences to our
work are that [15] considers multi-component systems while we study binary
compatibility relations. On the other hand, [15] considers closed systems while
we allow open systems which can be incrementally extended to larger ones. Also
our method for checking asynchronous compatibility is very different. In the first
part of our work we rely on half-duplex systems (instead of synchronizability)
and we show that for such systems synchronous and asynchronous compatibility
are even equivalent. In the second part of our work we drop any assumptions
and investigate powerful and decidable criteria for asynchronous compatibility
of systems which are neither half-duplex nor synchronizable.

Quite close to the first part of our work is the study of half-duplex systems
by Cécé and Finkel [9]. Due to their decidability result for unspecified recep-
tion (for two communicating CFSMs) it is not really surprising that we get an
effective characterization of asynchronous compatibility and a way to decide it
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for components with finitely many states. A main difference to [9] is that we
consider also synchronous systems and relate their compatibility properties to
the asynchronous versions. Moreover, we deal with open systems as well and
consider a weak variant of asynchronous compatibility, which we believe adds
much power to the strong version. Finally, as explained above, a significant part
of our work deals also with systems which are not necessarily half-duplex.

2 I/O-Transition Systems and Their Compositions

We start with the definitions of I/O-transition systems and their synchronous
and asynchronous compositions which are the basis of the subsequent study.

Definition 1 (IOTS). An I/O-transition system is a quadruple A =
(statesA, startA, actA,−→A ) consisting of a set of states statesA, an initial state
startA ∈ statesA, a set actA = inA ∪ outA ∪ intA of actions being the disjoint
union of sets inA, outA and intA of input, output and internal actions resp.,
and a transition relation −→A ⊆ statesA × actA × statesA.

We write s
a−→As′ instead of (s, a, s′) ∈ −→A . For X ⊆ actA we write s

X−−→∗
As′

if there exists a (possibly empty) sequence of transitions s
a1−→As1 . . . sn−1

an−→As′

involving only actions of X, i.e. a1, . . . , an ∈ X. A state s ∈ statesA is reachable
if startA

actA−−−→∗
As. The set of reachable states of A is denoted by R(A).

Two IOTSes A and B are (syntactically) composable if their actions only
overlap on complementary types, i.e. actA ∩ actB ⊆ (inA ∩ outB) ∪ (inB ∩
outA). The set of shared actions actA ∩ actB is denoted by shared(A,B). The
synchronous composition of two IOTSes A and B is defined as the product of
transition systems with synchronization on shared actions which become internal
actions in the composition. Shared actions can only be executed together; they
are blocked if the other component is not ready for communication. In contrast,
internal actions and non-shared input and output actions can always be executed
by a single component in the composition. These (non-shared) actions are called
free actions in the following.

Definition 2 (Synchronous composition). Let A and B be two compos-
able IOTSes. The synchronous composition of A and B is the IOTS A ⊗ B =
(statesA × statesB , (startA, startB), actA⊗B,−→A⊗B ) where actA⊗B is the dis-
joint union of the input actions inA⊗B = (inA ∪ inB) � shared(A,B), the out-
put actions outA⊗B = (outA ∪ outB) � shared(A,B), and the internal actions
intA⊗B = intA ∪ intB ∪ shared(A,B). The transition relation of A ⊗ B is the
smallest relation such that

– for all a ∈ actA � shared(A,B), if s
a−→As′, then (s, t) a−→A⊗B (s′, t) for all

t ∈ statesB,
– for all a ∈ actB � shared(A,B), if t

a−→B t′, then (s, t) a−→A⊗B (s, t′) for all
s ∈ statesA, and

– for all a ∈ shared(A,B), if s
a−→As′ and t

a−→B t′, then (s, t) a−→A⊗B (s′, t′).
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The synchronous composition of two IOTSes A and B yields a closed system
if it has no input and output actions, i.e. (inA ∪ inB) � shared(A,B) = ∅ and
(outA ∪ outB) � shared(A,B) = ∅, otherwise the system is open.

In distributed applications, implemented, e.g., with a message-passing mid-
dleware, usually an asynchronous communication pattern is used. In this paper,
we consider asynchronous communication via unbounded message queues. In
Fig. 1 two asynchronously communicating IOTSes A and B are depicted. A sends
a message a to B by putting it, with action a�, into a queue which stores the
outputs of A. Then B can receive a by removing it, with action a, from the queue.
In contrast to synchronous communication, there is a delay between sending and
reception. Similarly, B can send a message b to A by using a second queue which
stores the outputs of B. The system in Fig. 1 is open: A has an open output x
to the environment and an open input y for messages coming from the environ-
ment. Similarly B has an open input u and an open output v. Additionally, A
and B may have some internal actions.

B

b

a

Ω(A)

Ω(B)

= {b,v}Bout

inB
= {a,u}

= {...}Bint

a...

b ...y

x u

v

a

b

= {...}Aint

= {x,a}Aout

ni }b,y{=A

A

Fig. 1. Asynchronous communication

To formalize asynchronous communication, we equip each communicating
IOTS with an “output queue”, which leads to a new IOTS indicated in Fig. 1
by Ω(A) and Ω(B) respectively. For this construction, we represent an output
queue as an (infinite) IOTS and then we compose it with a renamed version of
A where all outputs a of A (to be stored in the queue) are renamed to enqueue
actions of the form a�.

Definition 3 (IOTS with output queue).

1. Let M be a set of names and M� = {a� | a ∈ M} be disjoint from M. The
queue IOTS for M is QM = (M∗, ε, actQM

,−→QM
) where the set of states

is the set M∗ of all words over M , the initial state ε ∈ M∗ is the empty
word, and the set of actions actQM

is the disjoint union of input actions
inQM

= M�, output actions outQM
= M and with no internal action. The

transition relation −→QM
is the smallest relation such that
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– for all a� ∈ M� and states q ∈ M∗ : q
a�
−→QM

qa (enqueue on the right),
– for all a ∈ M and states q ∈ M∗ : aq

a−→QM
q (dequeue on the left).

2. Let A be an IOTS such that M ⊆ outA and M� ∩ actA = ∅. Let A�
M be

the renamed version of A where all a ∈ M are renamed to a�. The IOTS A
equipped with output queue for M is given by the synchronous composition
ΩM (A) = A�

M ⊗ QM . (Note that A�
M and QM are composable.)

The states of ΩM (A) are pairs (s, q) where s is a state of A and q is a
word over M . The initial state is (startA, ε). For the actions we have inΩM (A) =
inA, outΩM (A) = outA, and intΩM (A) = intA ∪ M�. Transitions in ΩM (A) are:

– if a ∈ inA and s
a−→As′ then (s, q) a−→ΩM (A) (s

′, q),

– if a ∈ outA � M and s
a−→As′ then (s, q) a−→ΩM (A) (s

′, q),

– if a ∈ M ⊆ outA then (s, aq) a−→ΩM (A) (s, q),

– if a ∈ intA and s
a−→As′ then (s, q) a−→ΩM (A) (s

′, q),

– if a� ∈ M� and s
a−→As′ (i.e. s a�

−→A�
M

s′) then (s, q) a�
−→ΩM (A) (s

′, qa).

To define the asynchronous composition of two IOTSes A and B, we assume
that A and B are asynchronously composable which means that A and B are
composable (as before) and shared(A,B)�∩(actA∪actB) = ∅. Then, we equip A
with an output queue for those outputs shared with inputs of B, and, similarly,
we equip B with an output queue for those outputs shared with inputs of A.
The IOTSes ΩoutA∩inB

(A) and ΩoutB∩inA
(B) are then synchronously composed

which gives the asynchronous composition of A and B.

Definition 4 (Asynchronous composition). Let A, B be two asynchro-
nously composable IOTSes. The asynchronous composition of A and B is defined
by A ⊗as B = ΩoutA∩inB

(A) ⊗ ΩoutB∩inA
(B).1

In the sequel we will briefly write Ω(A) for ΩoutA∩inB
(A) and Ω(B) for

ΩoutB∩inA
(B). The states of Ω(A) ⊗ Ω(B) are pairs ((sA, qA), (sB , qB)) where

sA is a state of A, the queue qA stores elements of outA ∩ inB , sB is a
state of B, and the queue qB stores elements of outB ∩ inA. The initial state
is ((startA, ε), (startB , ε)). For the actions we have inΩ(A)⊗Ω(B) = inA⊗B,
outΩ(A)⊗Ω(B) = outA⊗B , and intΩ(A)⊗Ω(B) = intA⊗B ∪ shared(A,B)�. For
the transitions in Ω(A) ⊗ Ω(B) we have two main cases:

1. Transitions which can freely occur in A or in B without involving any output
queue. These transitions change just the local state of A or of B. An example
would be a transition sA

a−→As′
A with action a ∈ outA � inB which induces a

transition ((sA, qA), (sB , qB)) a−→Ω(A)⊗Ω(B) ((s′
A, qA), (sB , qB)).

2. Transitions which involve the output queue of A. There are two sub-cases
concerning dequeue and enqueue actions which are internal actions in Ω(A)⊗
Ω(B):

1 Note that ΩoutA∩inB (A) and ΩoutB∩inA(B) are composable.
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(a) a ∈ outA ∩ inB (hence a ∈ outQoutA∩inB
) and sB

a−→B s′
B

then ((sA, aqA), (sB , qB)) a−→Ω(A)⊗Ω(B) ((sA, qA), (s′
B , qB)).

(b) a� ∈ (outA ∩ inB)� (hence a ∈ inQoutA∩inB
) and sA

a−→As′
A

then ((sA, qA), (sB , qB)) a�
−→Ω(A)⊗Ω(B) ((s

′
A, qAa), (sB , qB)).

Transitions which involve the output queue of B are analogous.

3 Compatibility Notions

In this section we review our compatibility notions introduced in [4] for the
synchronous and in [3] for the asynchronous case. For synchronous compatibility
the idea is that whenever a component wants to issue an output a then its
communication partner should be ready to accept a as an input.

Definition 5 (Strong synchronous compatibility). Two IOTSes A and B
are strongly synchronously compatible, denoted by A ←→ B, if they are compos-
able and if for all reachable states (sA, sB) ∈ R(A ⊗ B),

(1) ∀a ∈ outA ∩ inB : sA
a−→As′

A =⇒ ∃ sB
a−→B s′

B,
(2) ∀a ∈ outB ∩ inA : sB

a−→B s′
B =⇒ ∃ sA

a−→As′
A.

This definition requires that IOTSes should work properly together in any
environment, in contrast to the “optimistic” approach of [11] in which the exis-
tence of a “helpful” environment to avoid error states is sufficient. For closed
systems this makes no difference. In [4] we have introduced a weak version of
compatibility such that a component can delay an expected input and perform
some internal actions before. (This works well with weak refinement; see [4].)

Definition 6 (Weak synchronous compatibility). Two IOTSes A and B

are weakly synchronously compatible, denoted by A B, if they are compos-
able and if for all reachable states (sA, sB) ∈ R(A ⊗ B),

(1) ∀a ∈ outA ∩ inB : sA
a−→As′

A =⇒ ∃ sB
intB−−−→∗

B sB
a−→B s′

B,

(2) ∀a ∈ outB ∩ inA : sB
a−→B s′

B =⇒ ∃ sA
intA−−−→∗

A sA
a−→As′

A,

Now we turn to compatibility of asynchronously communicating components.
In this case outputs of a component are stored in a queue from which they can be
consumed by the receiver component. Therefore, in the asynchronous context,
compatibility means that if a queue is not empty, the receiver component must
be ready to take (i.e. input) the next removable element from the queue. This
idea can be easily formalized by requiring synchronous compatibility between
the communicating IOTSes which are enhanced by their output queues. We
distinguish again between strong and weak compatibility versions.
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User:

use

0 1

ready?
fail?

τmake

0 2

ready!

1

fail!

material?

Maker:
τ

Fig. 2. Maker and User

Definition 7 (Strong and weak asynchronous compatibility). Let A
and B be two asynchronously composable I/O-transition systems. A and B

are strongly asynchronously compatible, denoted by A
a←→ B, if Ω(A) ←→

Ω(B). A and B are weakly asynchronously compatible, denoted by A a B,
if Ω(A) Ω(B).

Example 1. Figure 2 shows the behavior of a Maker and a User process. Here
and in the subsequent drawings we use the following notations: Initial states are
denoted by 0, input actions a are indicated by a?, output actions a by a!, and
internal actions a by τa. The maker expects some material from the environ-
ment (input action material), constructs some item (internal action make), and
then it signals either that the item is ready (output action ready) or that the
production did fail (output action fail). Both actions are shared with input
actions of the user. When the user has received the ready signal it uses the item
(internal action use). Maker and User are weakly synchronously compatible
but not strongly synchronously compatible. The critical state in the synchro-
nous product Maker ⊗ User is (2,1) which can be reached with the transitions

(0, 0) material−−−−−−→(1, 0) make−−−−→(2, 0)
ready−−−−→(0, 1) material−−−−−−→(1, 1) make−−−−→(2, 1).

In this state the maker wants to send ready or fail but the user must first
perform its internal use action before it can receive the corresponding input.
The asynchronous composition Maker ⊗as User has infinitely many states since
the maker can be faster then the user. We will see, as an application of the forth-
coming results, that Maker and User are also weakly asynchronously compatible.

4 Relating Synchronous and Asynchronous Compatibility

We are now interested in possible relationships between synchronous and asyn-
chronous compatibility. This is particularly motivated by the fact that for finite
IOTSes reachability, and therefore synchronous (strong and weak) compatibility,
are decidable which is in general not the case for asynchronous communication
with unbounded FIFO-buffers.

4.1 From Synchronous to Asynchronous Compatibility

In this section we study conditions under which it is sufficient to check strong
(weak) synchronous compatibility to ensure strong (weak) asynchronous com-
patibility. In general this implication does not hold. As an example consider the
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two IOTSes A and B in Fig. 3. Obviously, A and B are strongly synchronously com-
patible. They are, however, not strongly asynchronously compatible since A may
first put a in its output queue, then B can output b in its queue and then both
are blocked (A can only accept ack a while B can only accept ack b). In Fig. 3
each IOTS has a state (the initial state) where a choice between an output and
an input action is possible. We will see (Corollary 1) that if such situations are
avoided synchronous compatibility implies asynchronous compatibility, and we
will even get more general criteria (Theorem 1) for which the following property
P is important.

A: 0

a? 1

2

b!

ack_a!

ack_b?

0

a! 1

2

b?

ack_a?

ack_b!

B:

Fig. 3. A ←→ B but not A
a←→ B

Property P: Let A and B be two asynchronously composable IOTSes. The
asynchronous system A ⊗as B satisfies property P if for each reachable state
((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B)) one of the following conditions holds:

(i) qA = qB = ε and (sA, sB) ∈ R(A ⊗ B).
(ii) qA = a1 . . . am = ε and qB = ε and there exists rA ∈ statesA such that:

(rA, sB) ∈ R(A ⊗ B) and rA
a1=⇒A . . .

am=⇒AsA.
(iii) qA = ε and qB = b1 . . . bm = ε and there exists rB ∈ statesB such that:

(sA, rB) ∈ R(A ⊗ B) and rB
b1=⇒B . . .

bm=⇒B sB .

To explain the notation a=⇒A , let a ∈ outA ∩ inB and FA = actA �

shared(A,B) be the set of the free actions of A. Then s
a=⇒As′ stands for

a sequence of transitions s
FA−−→∗

As
a−→As′ FA−−→∗

As′ such that the transition with
a ∈ outA ∩ inB is surrounded by arbitrary transitions in A involving only free
actions of A. The notation b=⇒B is defined analogously.

Property P expresses that (a) in each reachable state of the asynchronous
composition at least one of the two queues is empty and (b) the state of the
component where the output queue is not empty can be reached from a reachable
state in the synchronous product by outputting the actions stored in the queue,
possibly interleaved with free actions. Part (a) specifies half-duplex systems; see,
e.g., [9].

Definition 8. Let A and B be two asynchronously composable IOTSes. The
asynchronous system A ⊗as B is half-duplex, if for all reachable states
((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B)) it holds that qA = ε or qB = ε.
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It turns out that also part (b) explained above holds for half-duplex systems,
i.e. property P characterizes this class of systems as stated in Lemma 1, (1)
and (2). In [9] it is shown that membership is decidable for half-duplex systems.
This corresponds to condition (3) of Lemma 1 which says that in the synchronous
product of A and B there is no reachable state where at the same time an output
from A to B and an output from B to A is enabled. Obviously this is decidable
for finite A and B.

Lemma 1. Let A and B be two asynchronously composable IOTSes. The fol-
lowing conditions are equivalent:

1. The asynchronous system A ⊗as B satisfies property P.
2. The asynchronous system A ⊗as B is half-duplex.
3. For each reachable state (sA, sB) ∈ R(A⊗B) and each transitions sA

a−→As′
A

and sB
b−→B s′

B either a /∈ outA ∩ inB or b /∈ outB ∩ inA.

Proof. (1) ⇒ (2) is trivial. (2) ⇒ (3) is straightforward by contradiction. The
direction (3) ⇒ (1) is non-trivial. It involves a complex case distinction on the
form of the transitions in the asynchronous composition. Interestingly only the
case of transitions with enqueue actions needs the assumption (3). ��
Theorem 1. Let A and B be two asynchronously composable IOTSes such that
one (and hence all) of the conditions in Lemma 1 are satisfied. Then the following
holds:

1. A ←→ B =⇒ A
a←→ B.

2. A B =⇒ A a B.

Proof. The proof uses Lemma 1 for both cases. (1) Assume A ←→ B. We
have to show Ω(A) ←→ Ω(B). We prove condition (1) of Definition 5. Con-
dition (2) is proved analogously. Let ((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B)),
a ∈ outΩ(A) ∩ inΩ(B) and (sA, qA) a−→Ω(A) (s

′
A, q′

A). Then qA has the form
aa2 . . . am. By assumption, Ω(A) ⊗ Ω(B) satisfies the property P. Hence, there
exists rA ∈ statesA such that (rA, sB) ∈ R(A ⊗ B) and rA

a=⇒ArA
a2=⇒...

am=⇒AsA.

Thereby rA
a=⇒ArA is of the form rA

FA−−→∗
As

a−→As′ FA−−→∗
ArA. Since FA involves

only free actions of A (not shared with B), and since (rA, sB) ∈ R(A ⊗ B)
we have that (s, sB) ∈ R(A ⊗ B). Now we can use the assumption A ←→ B

which says that there exists sB
a−→B s′

B . Since a ∈ inB , we get a transition
(sB , qB) a−→Ω(B) (s

′
B , qB) and we are done.

(2) The weak case is a slight generalization of the proof of (1). The first part
of the proof is the same but then we use the assumption A B which says
that there exists sB

intB−−−→∗
B sB

a−→B s′
B consisting of a sequence of internal tran-

sitions of B followed by sB
a−→B s′

B with a ∈ inB . Therefore we get transitions

(sB , qB) intB−−−→ ∗
Ω(B) (sB , qB) a−→Ω(B) (s

′
B , qB) and, since intB ⊆ intΩ(B) we are

done. ��
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We come back to our discussion at the beginning of this section where we
have claimed that for I/O-transition systems which do not show states where
input and output actions are both enabled, synchronous compatibility implies
asynchronous compatibility. We must, however, be careful whether we consider
the strong or the weak case which leads us to two versions of I/O-separation.

Definition 9 (I/O-separated transition systems). Let A be an IOTS.

1. A is called I/O-separated if for all reachable states s ∈ R(A) it holds: If there

exists a transition s
a−→As′ with a ∈ outA then there is no transition s

a′
−→As′

with a′ ∈ inA.
2. A is called observationally I/O-separated if for all reachable states s ∈ R(A)

it holds: If there exists a transition s
a−→As′ with a ∈ outA then there is no

sequence of transitions s
intA−−−→∗

A sA
a′

−→As′ with a′ ∈ inA.

Obviously, observational I/O-separation implies I/O-separation but not the
other way round.

Lemma 2. Let A and B be two asynchronously composable IOTSes.

1. If A and B are I/O-separated and A ←→ B, then one (and hence all) of the
conditions in Lemma 1 are satisfied.

2. If A and B are observationally I/O-separated and A B, then one (and
hence all) of the conditions in Lemma 1 are satisfied.

Proof. The proof of both cases is by contradiction. ��
The notion of I/O-separation appears in a more strict version, called input-

separation, in [13] and similarly as system without local mixed states in [9]. Part
(1) of Lemma 2 can be considered as a generalization of Lemma 4 in [13] which
has shown that input-separated IOTSes which are strongly compatible and form
a closed system are half-duplex. This result was in turn a generalization of The-
orem 35 in [9]. Open systems and weak compatibility were not an issue in these
approaches. With Theorem1 and Lemma 2 we get:

Corollary 1. Let A and B be two asynchronously composable IOTSes.

1. If A and B are I/O-separated and A ←→ B, then A
a←→ B.

2. If A and B are observationally I/O-separated and A B, then A a B.

Let us note that part (2) of Corollary 1 would not hold, if we would only
assume I/O-separation. As an application of Corollary 1 we refer to Example 1.
Maker and User are observationally I/O-separated, they are weakly synchro-
nously compatible and therefore, by Corollary 1(2), they are also weakly asyn-
chronously compatible.
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4.2 From Asynchronous to Synchronous Compatibility

This section studies the other direction, i.e. whether asynchronous compatibility
can imply synchronous compatibility. It turns out that for the strong case this is
indeed true without any further assumptions while for the weak case this holds
under the equivalent conditions of Lemma1. In any case, we need for the proof
the following lemma which shows that all reachable states in the synchronous
product are reachable in the asynchronous product with empty output queues.

Lemma 3. Let A and B be two asynchronously composable IOTSes. For any
state (sA, sB) ∈ R(A⊗B), the state ((sA, ε), (sB , ε)) belongs to R(Ω(A)⊗Ω(B)).

Proof. The proof is straightforward by induction on the length of the derivation
of (sA, sB) ∈ R(A ⊗ B). ��
Theorem 2. For asynchronously composable IOTSes A and B it holds:

1. A
a←→ B =⇒ A ←→ B.

2. If one (and hence all) of the conditions in Lemma1 are satisfied, then
A a B =⇒ A B.

.

Proof. (1) Assume A
a←→ B, i.e. Ω(A) ←→ Ω(B). We have to show A ←→ B. We

prove condition (1) of Definition 5. Condition (2) is analogous.
Let (sA, sB) ∈ R(A ⊗ B), a ∈ outA ∩ inB and sA

a−→As′
A. By Lemma 3,

((sA, ε), (sB , ε))
∈ R(Ω(A)⊗Ω(B)). Since sA

a−→As′
A, we have a transition in Ω(A)⊗Ω(B) with

enqueue action for a: ((sA, ε), (sB , ε)) a�
−→Ω(A)⊗Ω(B) ((s

′
A, a), (sB , ε)) and it holds

((s′
A, a), (sB , ε)) ∈ R(Ω(A) ⊗ Ω(B)). Then, there is a transition (s′

A, a) a−→Ω(A)

(s′
A, ε). Since Ω(A) ←→ Ω(B) there must be a transition (sB , ε) a−→Ω(B) (s

′
B , ε).

This transtion must be caused by a transition sB
a−→B s′

B and we are done.

(2) Assume A a B, i.e. Ω(A) Ω(B) . We have to show A B. We
prove condition (1) of Definition 6. Condition (2) is proved analogously.
Let (sA, sB) ∈ R(A ⊗ B), a ∈ outA ∩ inB and sA

a−→As′
A. With the same rea-

soning as in case (1) we get ((s′
A, a), (sB , ε)) ∈ R(Ω(A) ⊗ Ω(B)) and we get

a transition (s′
A, a) a−→Ω(A) (s′

A, ε). Since Ω(A) Ω(B) there are transitions

(sB , ε)
intΩ(B)−−−−−→ ∗

Ω(B) (sB , qB) a−→Ω(B) (s
′
B , qB). Since internal transitions of Ω(B)

do not involve any steps of Ω(A), we have ((s′
A, a), (sB , qB)) ∈ R(Ω(A)⊗Ω(B)).

Due to the assumption that the conditions in Lemma1 are satisfied, Ω(A)⊗Ω(B)
is half-duplex and therefore qB must be empty and the same holds for all

intermediate queues reached by the transitions in (sB , ε)
intΩ(B)−−−−−→ ∗

Ω(B) (sB , qB).
Therefore no enqueue action can occur in these transitions. Noticing that
intΩ(B) = intB ∪ (outB ∩ inA)�, we get (sB , ε) intB−−−→ ∗

Ω(B) (sB , ε) a−→Ω(B) (s
′
B , ε)

and all these transtions must be induced by transitions sB
intB−−−→∗

B sB
a−→B s′

B,
i.e. we are done. ��
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As a consequence of Theorems 1, 2 we see that under the equivalent conditions
of Lemma 1, in particular when the asynchronous system is half-duplex, (weak)
synchronous compatibility is equivalent to (weak) asynchronous compatibility.

5 Weak Asynchronous Compatibility: The General Case

In this section we are interested in the verification of asynchronous compatibility
in the general case, where at the same time both queues of the communicating
IOTSes may be not empty. We focus here on weak asynchronous compatibility
since non-half duplex systems are often weakly asynchronously compatible but
not weakly synchronously compatible.2 A simple example would be two com-
ponents which both start to send a message to each other and after that each
component takes the message addressed to it from the buffer.

Example 2. Figure 4 shows two IOTSes MA and MB which produce items for each
other. After reception of some material from the environment, MA produces an
item (internal action makeA) followed by either a signal that the item is ready
for use (output readyA) or a signal that the production did fail (output failA).
Whenever MA reaches its initial state it can also accept an input readyB and
then use the item produced by MB (internal action useB) or it can accept a
signal that the production of its partner did fail (input failB). The behavior of
MB is analogous. The asynchronous composition of MA and MB is not half-duplex;
both processes can produce and signal concurrently. Clearly, the system is not
weakly synchronously compatible. For instance, the state (2,2) is reachable in
the synchronous product and in this state each of the two processes wants to
output an action which the other is not able to accept. The system is also not
synchronizable in the sense of [15]. We will prove below that the system is weakly
asynchronously compatible.

useAuseB

τmakeA

2

1

failA!
0 failB?

readyB?materialA?

readyA!

3

MA:

2

1

failB!
0 failA?

readyA?materialB?

readyB!

3

MB:

τmakeB

ττ

Fig. 4. MA a MB but not MA MB .

In general, the problem of weak asynchronous compatibility is undecidable
due to the unbounded message queues. We develop in the following a criterion,
2 For the strong case this is not possible, see Theorem 2(1).
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which is decidable if the underlying IOTSes are finite, which works for non
half-duplex systems, and which ensures weak asynchronous compatibility. The
idea is to use again synchronous products, but not the standard synchronous
composition of two IOTSes A and B but variants of it. First we focus only on one
direction of compatibility concerning the outputs of A which should be received
by B. Due to the weak compatibility notion B can, before it takes an input
message, execute internal actions. In particular, it can put outputs directed to A
in its output queue. (Remember that enqueue actions are internal). To simulate
this in a synchronous product we must artificially hide these outputs of B such
that they become free actions in the synchronous product. Consequently also
the corresponding inputs of A must be hidden. Then we require that outputs
of A directed to B can be received by B possibly after some internal actions
are executed, which now subsumes also the hidden outputs of B. A symmetric
requirement is obtained when we consider compatibility in the direction from B
to A. For the formalization of these ideas we first define hiding of actions.

Definition 10 (Hiding). Let A = (statesA, startA, actA,−→A ) be an IOTS
and H ⊆ inA ∪ outA. The hiding of H in A yields the IOTS A\H =
(statesA, startA, actA\H ,−→A ) where actA\H is the disjoint union of the input
actions inA\H = inA � H, the output actions outA\H = outA � H, and the
internal actions intA\H = intA ∪ intB ∪ H.

Taking the synchronous compositions of IOTSes with hidden actions we can
formulate our requirements explained above by the following (symmetric) con-
ditions (a) and (b). Let A and B be two asynchronously composable IOTSes,
let outBA = outB ∩ inA and outAB = outA ∩ inB .

(a) For all reachable states (sA, sB) ∈ R(A\outBA⊗B\outBA), ∀a ∈ outA∩inB :

sA
a−→As′

A =⇒ ∃ sB

int(B\outBA)−−−−−−−−→∗
B sB

a−→B s′
B.

(b) For all reachable states (sA, sB) ∈ R(A\outAB⊗B\outAB ), ∀b ∈ outB∩inA :

sB
b−→B s′

B =⇒ ∃ sA

int(A\outAB )−−−−−−−−→∗
A sA

b−→As′
A.

Notation: We write A\outBA ��� B\outBA if condition (a) holds and
B\outAB ��� A\outAB if condition (b) holds.

Concerning (a), the essential difference between A ⊗ B and A\outBA ⊗
B\outBA is that shared actions belonging to outBA = outB ∩ inA must syn-
chronize in A ⊗ B while they can occur freely in A\outBA ⊗ B\outBA whenever
A or B can perform one of them. Hence A\outBA ⊗ B\outBA can have signif-
icantly more reachable states than A ⊗ B, in particular the ones reached by
autonomous outputs of B directed to A. These states are often relevant in the
asynchronous composition of A and B since outputs of B directed to A are inter-
nally put in the output queue of B. The same reasoning holds symmetrically for
condition (b).

The following lemma, used for the proof of Theorem3, establishes an impor-
tant relationship between the reachable states considered in the synchronous
products after hiding and those of the asynchronous composition of A and B.
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The properties QA and QB stated in the lemma have a pattern similar to prop-
erty P in Sect. 4.1. In contrast to property P they are generally valid.

Lemma 4. For any two asynchronously composable IOTSes A and B both of
the following two properties QA and QB are satisfied.
Property QA: For each reachable state ((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B))
one of the following two conditions holds:

(i) qA = ε and (sA, sB) ∈ R(A\outBA ⊗ B\outBA),
(ii) qA = a1 . . . am = ε and there exists rA ∈ statesA such that: (rA, sB) ∈

R(A\outBA ⊗ B\outBA) and rA

a1
�

A
. . .

am

�
A

sA.

The notation s
a
�

A
s′ stands for an arbitrary sequence of transitions in A

which contains exactly one transition with an output action in outA ∩ inB

and this output action is a.

Property QB: For each reachable state ((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B))
one of the following two conditions holds:

(i) qB = ε and (sA, sB) ∈ R(A\outAB ⊗ B\outAB ),
(ii) qB = b1 . . . bm = ε and there exists rB ∈ statesB such that: (sA, rB) ∈

R(A\outAB ⊗ B\outAB ) and rB

b1
�

B
. . .

bm

�
B

sB. The notation
b
�

B
is defined

analogously to
a
�

A
.

Proof. The initial state ((startA, ε), (startB , ε)) satisfies QA and QB . Then
we consider transitions ((sA, qA), (sB , qB)) a−→Ω(A)⊗Ω(B) ((s

′
A, q′

A), (s′
B , q′

B)) and
show that if ((sA, qA), (sB , qB)) satisfies QA (QB resp.) then ((s′

A, q′
A), (s′

B , q′
B))

satisfies QA (QB resp.). Then the result follows by induction on the length of
the derivation to reach ((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B)). ��

Property QA(ii) shows that a state of component A where the output queue
is not empty can be reached from a state in the synchronous product of A\outBA

and B\outBA by outputting the actions stored in the queue, possibly interleaved
with arbitrary other actions of A which are not output actions directed to B.
Property QB(ii) is the symmetric property concerning the output queue of B.

Theorem 3. Let A and B be two asynchronously composable IOTSes such that
A\outBA ��� B\outBA and B\outAB ��� A\outAB holds. Then A and B are
weakly asynchronously compatible, i.e. A a B.

Proof. The proof relies on Lemma 4. We prove condition (1) of Definition 6. Con-
dition (2) is proved analogously.
Let ((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B)), a ∈ outΩ(A) ∩ inΩ(B) and
(sA, qA) a−→Ω(A) (s′

A, q′
A). Then qA has the form aa2 . . . am. By Lemma 4, prop-

erty QA(ii) holds. Hence, there exists rA ∈ statesA such that (rA, sB) ∈
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R(A\outBA⊗B\outBA) and rA

a
�

A
rA

a2
�

A
. . .

am

�
A

sA. Thereby rA

a
�

A
rA is of the

form rA
YA−−→∗

As
a−→As′ YA−−→∗

ArA with a ∈ outA ∩ inB and YA involves no action in
outAB = outA ∩ inB . Since outAB are the only shared actions of A\outBA and
B\outBA, the transitions in rA

YA−−→∗
As induce transitions in A\outBA ⊗B\outBA

without involving B. Therefore, since (rA, sB) ∈ R(A\outBA ⊗ B\outBA),
we get (s, sB) ∈ R(A\outBA ⊗ B\outBA). Now we can use the assumption

A\outBA ��� B\outBA which says that there exists sB

int(B\outBA)−−−−−−−−→∗
B sB

a−→B s′
B

consisting of a sequence of internal transitions in B\outBA followed by sB
a−→B s′

B

with a ∈ inB . Now we notice that the internal actions of B\outBA are either
internal in B, and hence in Ω(B), or they are actions b ∈ outBA = outB ∩ inA,
which induce internal enqueue actions b� in Ω(B). Thus we get transitions

(sB , qB)
intΩ(B)−−−−−→ ∗

Ω(B) (sB , qB) a−→Ω(B) (s
′
B , qB) (where qB extends qB according

to the elements that have been enqueued with internal enqueue actions). Thus
Ω(B) accepts a, possibly after some internal actions, and we are done. ��

Example 3. To apply Theorem 3 to Example 2 we have to prove MA
\{readyB,failB} ��� MB\{readyB,failB} and MB\{readyA,failA} ���
MA\{readyA,failA}. For the former case, Fig. 5 shows the IOTS MA after hid-
ing its inputs readyB,failB shared with outputs of MB and the IOTS MB
after hiding its outputs. We will check only this case, the other one is anal-
ogous. We have to consider the reachable states in the synchronous prod-
uct MA\{readyB,failB} ⊗ MB\{readyB,failB} and when an output readyA or
failA is possible in MA\{readyB,failB}. These states are (2,0), (2,1), (2,2)
and also (2,3). In state (2,0) any output readyA or failA is immediately
accepted. In all other states MB\{readyB,failB} can perform some internal
actions first before it accepts readyA or failA. Hence, MA\{readyB,failB} ���
MB\{readyB,failB} holds. We want to point out particularly state (2,2). In this
state MB\{readyB,failB} can perform the internal action τreadyB! before accept-
ing readyA or failA. The internal action τreadyB! has been obtained from hiding
the output action readyB in MB. In this way we have simulated in the synchro-

MB\{readyB,failB}:

useB

τmakeA τreadyB?

τfailB?

τreadyB!

τfailB!

τuseA

2

1

failA!
0

materialA?

readyA!

3 2

1

0 failA?

readyA?materialB?

3

τmakeB

MA\{readyB,failB}:

τ

Fig. 5. Compatibility check: MA\{readyB,failB} ��� MB\{readyB,failB}
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nous product the (internal) enqueue action readyB� that would have happened
by MB in the asynchronous composition.3

6 Conclusion

We have proposed techniques to verify asynchronous compatibility by using cri-
teria that are based on synchronous composition. Our results lead to the follow-
ing verification methodology: Assume given two asynchronously communicating
components, each one having finitely many local states. First we check whether
condition (3) of Lemma 1 holds (in the synchronous product) which is decid-
able. It characterizes half-duplex systems. If the answer is positive, then we can
decide strong and weak asynchronous compatibility using Theorems 1 and 2.
If the answer is negative, then our system is not half-duplex. In this case we
check the decidable conditions formulated in Theorem3. If they are satisfied
then the system is weakly asynchronously compatible. If they are not satisfied
then all examples we have considered so far were in fact not weakly asynchro-
nously compatible; but since the problem is undecidable we cannot expect that
this is always the case. To illustrate this issue we consider a simple example
with two components A and B such that A has one input action a and one
output action b, and B has one input action b and one output action a. A has
three states and the following two transitions startA

a?−→As′
A

b!−→As′′
A. B has only

the initial state startB and no transition. Then it is trivial that A and B are
weakly asynchronously compatible, since in the asynchronous composition A
will never receive a message from B and therefore A will never put b in its out-
put buffer. However, our criterion A\outBA ��� B\outBA is not satisfied since
outBA = {a} is hidden in A\outBA and therefore the state (s′

A, startB) is reach-
able in R(A\outBA ⊗ B\outBA). Then A\outBA ��� B\outBA would require
that B\outBA is able to receive b in its initial state which is not the case. As a
consequence of this discussion our conjecture is that the criterion of Theorem3
may not work only if there are states in which one component has a transition
with an output action which will never be executed in the composition due to
missing input before.

The verification conditions studied in this paper involve only synchronous
compatibility checking. Therefore we can use the MIO Workbench [4], an Eclipse-
based verification tool for modal I/O-transition systems, to verify asynchronous
compatibility.

Theorem 3 relies on Lemma 4 which is generally valid and could be used to
support the verification of other compatibility problems as well, e.g., to prove
that a component waiting for some input will eventually get it. It would also be
interesting to see to what extent our techniques can be applied to the optimistic
compatibility notion used for interface automata [11] if they are put in an asyn-
chronous environment. Concerning larger systems, the current approach suggests

3 Our technique would also work for the non synchronizable system in [15], Fig. 4.
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to add incrementally one component after the other and to verify compatibil-
ity in each step. But we also want to extend our work and study asynchronous
compatibility of multi-component ensembles.

Acknowledgement. We are very grateful to Alexander Knapp for his suggestion to
use output queues (instead of input queues) for the formalization of asynchronous
compatibility.
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Abstract. We propose a process calculus for modelling and reasoning on
systems in the Internet of Things paradigm. Our systems interact both
with the physical environment, via sensors and actuators, and with smart
devices, via short-range and Internet channels. The calculus is equipped
with a standard notion of labelled bisimilarity which represents a fully
abstract characterisation of a well-known contextual equivalence. We use
our semantic proof-methods to prove run-time properties of a non-trivial
case study as well as system equalities.

1 Introduction

In the Internet of Things (IoT) paradigm, smart devices, such as smartphones,
automatically collect information from shared resources (e.g. Internet access or
physical devices) and aggregate them to provide new services to end users [13].
The “things” commonly deployed in IoT systems are: RFID tags, for unique iden-
tification, sensors, to detect physical changes in the environment, and actuators,
to pass information to the environment.

The research on IoT is currently focusing on practical applications such as the
development of enabling technologies, ad hoc architectures, semantic web tech-
nologies, and cloud computing [13]. However, as pointed out by Lanese et al. [16],
there is a lack of research in formal methodologies to model the interactions
among system components, and to verify the correctness of the network deploy-
ment before its implementation.

The main goal of this paper is to propose a process calculus with a clearly-
defined semantic theory, for specifying and reasoning on IoT applications.
Designing a calculus for modelling a new paradigm requires understanding and
distilling, in a clean algebraic setting, the main features of the paradigm. Let us
try to figure out what the main ingredients of IoT are, by means of an example.

Suppose a simple smart home (see Fig. 1) in which the user can use her
smartphone to remotely control the heating boiler of her house, and automati-
cally turn on lights when entering a room. The house consists of an entrance and
a lounge, separated by a patio. Entrance and lounge have their own lights (actu-
ators) which are governed by different light manager processes, LightMng. The
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
A. Lluch Lafuente and J. Proença (Eds.): COORDINATION 2016, LNCS 9686, pp. 157–174, 2016.
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Fig. 1. A simple smart home

boiler is in the patio and is governed by a boiler manager process, BoilerMng.
This process senses the local temperature (via a sensor) and decides whether to
turn on/off the boiler, setting a proper actuator to signal the state of the boiler.

The smartphone executes two concurrent processes: BoilerCtrl and
LightCtr. The first one reads user’s commands, submitted via the phone touch-
screen (a sensor), and forward them to the process BoilerMng, via an Internet
channel. Whereas, the process LightCtrl interacts with the processes LightMng,
via short-range wireless channels (e.g. Bluetooth), to automatically turn on lights
when the smartphone physically enters either the entrance or the lounge.

The whole system is given by the parallel composition of the smartphone (a
mobile device) and the smart home (a stationary entity).

On this kind of systems one may wish to prove interesting run-time proper-
ties. Think of a fairness property saying that the boiler will be eventually turned
on/off whenever specific conditions are satisfied. Or consistency properties, say-
ing the smartphone will never be in two rooms at the same time. Even more, one
may be interested in understanding whether our system has the same observable
behaviour of another system. Let us consider a variant of our smart home, where
lights functionality depends on GPS coordinates of the smartphone (localisation
is a common feature of today smartphones). Intuitively, the smartphone sends
its GPS position to a centralised light manager, CLightMng (possibly placed in
the patio), via an Internet channel. The process CLightMng will then interact
with the two processes LightMng, via short-range channels, to switch on/off
lights, depending on the position of the smartphone. Here comes an interesting
question: Can these two implementations of the smart home, based on different
light management mechanisms, be actually distinguished by an end user?

In the paper at hand we develop a fully abstract semantic theory for a process
calculus of IoT systems, called CaIT. We provide a formal notion of when two
systems in CaIT are indistinguishable, in all possible contexts, from the point of
view of the end user. Formally, we adopt the approach of [15,24], often called
reduction (closed) barbed congruence, which relies on two crucial concepts: a
reduction semantics to describe system computations, and the basic observables
to represent what the environment can directly observe of a system. In CaIT,
there are at least two possible observables: the ability to transmit along channels,
logical observation, and the capability to diffuse messages via actuators, phys-
ical observation. We have adopted the second form as our contextual equality
remains invariant when adding logical observation. However, the right definition
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of physical observation is far from obvious as it involves some technical challenges
in the definition of the reduction semantics (see the discussion in Sect. 2.3).

Our calculus is equipped with two labelled transition semantics (LTS) in the
SOS style of Plotkin: an intensional semantics and an extensional semantics.
The adjective intensional is used to stress the fact that the actions here corre-
spond to activities which can be performed by a system in isolation, without
any interaction with the external environment. While, the extensional seman-
tics focuses on those activities which require a contribution of the environment.
We prove that the reduction semantics coincides with the intensional semantics
(Harmony Theorem), and that they satisfy some desirable time properties such
as time determinism, patience, maximal progress and well-timedness [14].

However, the main result of the paper is that weak bisimilarity in the exten-
sional LTS is sound and complete with respect to our contextual equivalence,
reduction barbed congruence. This required a non-standard proof of the con-
gruence theorem (Theorem 2). Finally, in order to show the effectiveness of our
bisimulation proof method, we prove a number of non-trivial system equalities.

In this extended abstract proofs are omitted; full details can be found in [7].

Outline. Section 2 contains the calculus together with the reduction semantics,
the contextual equivalence, and a discussion on design choices. Section 3 gives the
details of our smart home example, and proves desirable run-time properties for
it. Section 4 defines both the intensional and the extensional LTS. In Sect. 5 we
define bisimilarity for IoT-systems, and prove the full abstraction result together
with a number of non-trivial system equalities. Section 6 discusses related work.

2 The Calculus

The syntax of our Calculus of the Internet of Things, shortly CaIT, is given in a
two-level structure: a lower one for processes and an upper one for networks of
smart devices.

M,N ::= 0
∣
∣ n[I��P ]μl

∣
∣ M | N

∣
∣ (νc)M

P,Q ::= nil
∣
∣ ρ.P

∣
∣ P | Q

∣
∣ �π.P �Q ∣

∣ [b]P ;Q
∣
∣ X

∣
∣ fix X.P

We use letters n,m to denote nodes/devices, c, g for channels, l, h, k for (physical)
locations, s, s′ for sensors, a, a′ for actuators and x, y, z for variables. Our values,
ranged over by v and w, are constituted by basic values, such as booleans and
integers, sensor and actuator values, and coordinates of physical locations.

A network M is a pool of distinct nodes running in parallel and living in
physical locations. We assume a discrete notion of distance between two locations
h and k, i.e. d(h, k) ∈ N. We write 0 to denote the empty network, while M |N
represents the parallel composition of two networks M and N . In (νc)M channel
c is private to the nodes of M . Each node is a term of the form n[I��P ]μl , where n
is the device ID; I is the physical interface of n, represented as a partial mapping
from sensor and actuator names to physical values; P is the process modelling
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the logics of n; l is the physical location of the device; μ ∈ {s, m} is a tag to
distinguish between stationary and mobile nodes.

For security reasons, sensors in I can be read only by its controller process P .
Similarly, actuators in I can be modified only by P . No other devices can access
the physical interface of n. P is a timed concurrent processes which manages both
the interaction with the physical interface I and channel communication. The
communication paradigm is point-to-point via channels that may have different
transmission ranges. We assume a global function rng() from channel names to
N ∪ {−1,∞}. A channel c can be used for: (i) intra-node communications, if
rng(c) = −1; (ii) short-range inter-node communications (such as Bluetooth,
infrared, etc.) if 0 ≤ rng(c) < ∞; (iii) Internet communications, if rng(c) = ∞.

Technically, our processes build on CCS with discrete time [14]. We write
ρ.P , with ρ ∈ {σ,@(x), s?(x), a!v}, to denote intra-node actions. The process
σ.P sleeps for one time unit. The process @(x).P gets the current location of
the enclosing node. Process s?(x).P reads a value v from sensor s. Process a!v.P
writes the value v on the actuator a. We write �π.P �Q, with π ∈ {c〈v〉, c(x)},
to denote channel communication with timeout. This process can communicate
in the current time interval and then continues as P ; otherwise, after one time
unit, it evolves into Q. We write [b]P ;Q for conditional (here guard �b� is always
decidable). In processes of the form σ.Q and �π.P �Q the occurrence of Q is said
to be time-guarded. The process fix X.P denotes time-guarded recursion, as all
occurrences of the process variable X may only occur time-guarded in P . In
processes �c(x).P �Q, s?(x).P and @(x).P the variable x is said to be bound.
Similarly, in process fix X.P the process variable X is bound. In the term (νc)M
the channel c is bound. This gives rise to the standard notions of free/bound
(process) variables, free/bound channels, and α-conversion. A term is said to be
closed if it does not contain free (process) variables, although it may contain free
channels. We always work with closed networks: the absence of free variables is
preserved at run-time. We write T{v/x} for the substitution of the variable x
with the value v in any expression T of our language. Similarly, T{P/X} is the
substitution of the process variable X with the process P in T .

Actuator names are metavariables for actuators like display@n or alarm@n.
As node names are unique so are actuator names: different nodes have differ-
ent actuators. The sensors embedded in a node can be of two kinds: location-
dependent and node-dependent. The first ones sense data at the current location
of the node, whereas the second ones sense data within the node, independently
on the node’s location. Thus, node-dependent sensor names are metavariables for
sensors like touchscreen@n or button@n; whereas a sensor temp@h, for temper-
ature, is a typical example of location-dependent sensor. Node-dependent sensor
names are unique. This is not the case of location-dependent sensor names which
may appear in different nodes. For simplicity, we use the same metavariables for
both kind of sensors. When necessary we will specify the type of sensor in use.

We rule out ill-formed networks by means of the following definition.

Definition 1. A network M is said to be well-formed if: (i) it does not contain
two nodes with the same name; (ii) different nodes have different actuators and
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different node-dependent sensors; (iii) for each n[I��P ]μh in M , with a prefix
s?(x) (resp. a!v) in P , I(s) (resp. I(a)) is defined; (iv) for each n[I��P ]μh in M
with I(s) defined for some location-dependent sensor s, it holds that μ = s.

Last condition says that location-dependent sensors may be used only in sta-
tionary nodes (see discussion in Sect. 2.3). Hereafter, we will always work with
well-formed networks. It is easy to show that well-formedness is preserved at
runtime.

We adopt the following notational conventions.
∏

i∈I Mi denotes the parallel
composition of all Mi, for i∈I.

∏
i∈I Mi = 0 and

∏
i∈I Pi = nil, for I = ∅. We

write
∏

i Mi when I is not relevant. We write π.P instead of fix X.�π.P �X. We
use (ν c̃)M as an abbreviation for (νc1) . . . (νck)M , with c̃ = c1, . . . , ck.

2.1 Reduction Semantics

The dynamics of the calculus is specified in terms of reduction relations over
networks (see Table 1). As usual in process calculi, a reduction semantics [22]
relies on an auxiliary standard relation, ≡, called structural congruence, which
brings the participants of a potential interaction into contiguous positions. For
lack of space, we omit the formal definition of ≡, as it is quite standard.

As CaIT is a timed calculus, with a discrete notion of time, it will be neces-
sary to distinguish between instantaneous reductions, M�iN , and timed reduc-
tions, M�σN . Relation �i denotes activities which take place within one time
interval, whereas �σ represents the passage of one time unit. Instantaneous
reductions are of two kinds: those which involve the change of the values asso-
ciated to some actuator a, written �a, and the others, written �τ . Intuitively,
reductions of the form M �a N denote watchpoints which cannot be ignored
by the physical environment (in Example 2, and more extensively at the end
of Sect. 2.3, we explain why this is important). Thus, we define the instanta-
neous reduction relation �i = �τ ∪ �a, for any actuator a. We also define the
reduction � = �τ ∪ �σ.

The first seven rules in Table 1 model intra-node activities. Rule (pos) serves
to compute the current position of a node. Rule (sensread) represents the read-
ing of the current data detected at some sensor s. Rules (actunchg) and (actchg)

implement the writing of some data v on an actuator a, distinguishing whether
the value of the actuator changes or not. Rule (loccom) models intra-node com-
munications on a local channel c (rng(c) = −1). Rule (timestat) models the
passage of time within a stationary node. Notice that all untimed intra-node
actions are considered urgent actions as they must occur before the next timed
action. Rule (timemob) models the passage of time for mobile nodes. This rule
also serves to model node mobility. Mobile nodes can nondeterministically move
from one physical location h to a (possibly different) location k, at the end of a
time interval. Node mobility respects the following time discipline: in one time
unit a node can move from h to k provided that d(h, k) ≤ δ, for some fixed δ ∈ N

(if h = k then d(h, k) = 0). For the sake of simplicity, we fix the same constant
δ for all nodes of our systems. Rule (glbcom) models inter-node communication
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Table 1. Reduction semantics

along a global channel c (rng(c) ≥ 0). Intuitively, two nodes can communi-
cate via a channel c only if they are within the transmission range of c. Rules
(parp) and (parn) serve to propagate instantaneous reductions through parallel
processes, and parallel networks, respectively. Rule (timepar) is for inter-node
time synchronisation. The remaining rules are standard.

We write �k
i to denote k consecutive reductions �i; �∗

i is the reflexive and
transitive closure of �i. We use the same notation for the reduction relation �.

Below we report a few standard time properties which hold in our calculus:
time determinism, maximal progress, patience and well-timedness.

Proposition 1 (Time Properties).

– If M �σ M ′ and M �σ M ′′, then M ′ ≡ ∏
i∈I ni[Ii��Pi]

μi

hi
and M ′′ ≡

∏
i∈I ni[Ii��Pi]

μi

ki
, with d(hi, ki) ≤ 2δ, for all i ∈ I.

– If M �i M ′, then there is no M ′′ such that M �σ M ′′.
– If M �i M

′ for no M ′, then there is N such that M �σ N .
– For any M there is a z ∈ N such that if M �u

i N then u ≤ z.
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In its standard formulation, time determinism says that a system reaches at most
one new state by executing a reduction step �σ. However, by an application of
Rule (timemob), our mobile nodes may change location when executing a reduc-
tion�σ.Well-timedness ensures the absence of infinite instantaneous traceswhich
would prevent the passage of time.

2.2 Behavioural Equivalence

Our contextual equivalence is reduction barbed congruence [15,24], a standard
contextually defined process equivalence that crucially relies on the definition of
basic observables to represent what the environment can directly observe of a
system1. As already said in the Introduction, we choose to observe the capability
to publish messages via actuators (physical observation).

Definition 2 (Barbs). We write M ↓a@h!v if M ≡ (νg̃)
(
n[I��P ]μh |M ′), with

I(a) = v. We write M ⇓a@h!v if M �∗ M ′ ↓a@h!v.

The reader may wonder why our barb reports the location and not the node of the
actuator. We also recall that actuator names are unique, so they somehow codify
the name of their node. The location is then necessary because the environment
is potentially aware of its position when observing an actuator: if every day at
6.00 AM your smartphone rings to wake you up, then you may react differently
depending whether you are at home or on holidays in the Bahamas!

Definition 3. A binary relation R over networks is barb preserving if MRN
and M ↓a@h!v implies N ⇓a@h!v.

Definition 4. A binary relation R over networks is reduction closed if when-
ever M R N the following conditions are satisfied:

– M � M ′ implies N �∗ N ′ and M ′ R N ′

– M �a M ′ implies N �∗�a�∗ N ′ and M ′ R N ′.

Here, we require reduction closure of both � and �a, for any a. This is a crucial
design decision in CaIT (see Example 2 and Sect. 2.3 for details).

In order to model sensor updates made by the physical environment on a
sensor s, in a given location h, we define the operator [s@h �→ v] on networks.

Definition 5. Given a location h, a sensor s, and a value v, we define:
n[I��P ]μh[s@h �→ v] def= n[I[s �→ v]��P ]μh, if I(s) defined
n[I��P ]μk [s@h �→ v] def= n[I��P ]μk , if I(s) undef. or h �= k

(M |N)[s@h �→ v] def= M [s@h �→ v] |N [s@h �→ v]
(
(νc)M

)
[s@h �→ v] def= (νc)

(
M [s@h �→ v]

)

0[s@h �→ v] def= 0.

1 See [24] for a comparison between this approach and the original barbed congruence.
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Notice that when updating a sensor we use its location, also for node-dependent
sensors. This is because when changing a node-dependent sensor (e.g. touching a
touchscreen of a smartphone) the environment is in general aware of its position.

Definition 6. A binary relation R is contextual if M R N implies that

– for all networks O, M | O R N | O
– for all channels c, (νc)M R (νc)N
– for all s, h, and v in the domain of s, M [s@h �→ v] R N [s@h �→ v].

The first two clauses requires closure under logical contexts (parallel systems),
while the last clause involves physical contexts, which can nondeterministically
update sensor values.

Finally, everything is in place to define our touchstone behavioural equality.

Definition 7. Reduction barbed congruence, ∼=, is the largest symmetric rela-
tion over networks which is reduction closed, barb preserving and contextual.

Remark 1. Obviously, if M ∼= N then M and N will be still equivalent in any
setting where sensor updates are governed by specific physical laws.

We recall that the reduction relation � ignores the passage of time, and there-
fore the reader might suspect that our reduction barbed congruence is impervious
to the precise timing of activities. We show that this is not the case.

Example 1. Let M = n[∅��σ.�c〈〉�nil]sh and N = n[∅���c〈〉�nil]sh, with rng(c) =
∞. Then, M �σ N . As � does not distinguish instantaneous from timed reduc-
tions, one may suspect that M ∼= N , and that a prompt transmission along
channel c is equivalent to the same transmission delayed of one time unit.
However, the test T = test[J ��σ.a!1.�c().a!0�nil]sl , with J (a) = 0, for some
actuator a, can distinguish the two networks. In fact, if M | T ��a O =
n[∅���c〈〉�nil]sh | test[J ′

���c().a!0�nil]sl , with J ′(a) = 1, then there is no O′ such
that N | T �∗�a�∗ O′ with O ∼= O′. This is because O can perform a reduc-
tion sequence ��a that cannot be matched by any O′.

Behind this example there is the general principle that reduction barbed con-
gruence is sensitive to the passage of time.

Proposition 2. If M ∼= N and M�σM ′ then there is N ′ such that
N �∗

τ�σ�∗
τ N ′ and M ′ ∼= N ′.

Now, we provide some insights into the design decision of having two different
instantaneous reductions �τ and �a.

Example 2. Let M=n[I��a!1 | a!0.a!1]μh and N=n[I��a!1.a!0.a!1]μh, with I(a)=0
and undefined otherwise. Then, within one time unit, M may display on the
actuator a either the sequence of values 01 or the sequence 0101, while N can
only display the sequence 0101. As a consequence, for a physical observer, the
behaviours of M and N are clearly different. Now, if M�τ �a M ′ = n[J ��a!1]μh,
with J (a) = 1, the only possible reply of N respecting reduction closure is
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N �∗�a N ′ = n[J ��a!0.a!1]μh. However, it is evident that M ′ �∼= N ′ because N ′

can turn the actuator a to 0 while M ′ cannot. Thus, M �∼= N .
Had we merged �a with �τ then we would have M ∼= N because the

capability to observe messages on actuators, given by the barb, would not be
enough to observe changes on actuators within one time interval.

2.3 Design Choices

CaIT is a value-passing process calculus, à la CCS, which can be easily adapted
to deal with the transmission of channel names, à la π-calculus [24].

The time model we adopt is known as the fictitious clock approach (see [14]):
a global clock is supposed to be updated whenever all nodes agree on this, by
globally synchronising on a special timing action σ. Thus, time synchronisation
relies on some clock synchronisation protocol for mobile wireless systems [27].

In cyber-physical systems [25], sensor changes are usually modelled either using
continuous models (differential equations) or through discrete models (difference
equations)2. However, in this paper we aim at providing a behavioural semantics
for IoT applications from the point of the view of the end user. And the end user
cannot directly observe changes on the sensors of an IoT application: she can only
observe the effects of those changes via actuators and communication channels.
Thus, in CaITwe do not represent sensor changes via specific models, but we rather
abstract on them by supporting nondeterministic sensor updates (see Definitions 5
and 6). Actually, as said in Remark 1, behavioural equalities derived in our setting
remains valid when adopting any specific model for sensor updates.

In CaIT the value associated to sensors and actuators can change more than
once within the same time interval. At first sight this choice may appear weird
as certain actuators may require some time to turn on. On the other hand,
other actuators may have a very quick reaction. A similar argument applies to
sensors. In this respect CaIT does not enforce a synchronisation of physical events
as it happens for logical signals in synchronous languages [5]. In fact, actuator
changes are under nodes’ control: if an actuator is a slow device then it is under
the responsibility of its controller to update the actuator with a proper delay.
Similarly, a sensor should be read only when its value makes sense.

Unlike mobile computations [6], smart devices do not decide where to move to:
an external agent moves them. Furthermore, Definition 1 imposes that location-
dependent sensors can only occur in stationary nodes. This allows us a local,
rather than a global, representation of those sensors. The representation of
mobile location-dependent sensors would have the same technical challenges of
mobile wireless sensor networks [27].

Finally, we would like to explain our choice of barb. As said in the Intro-
duction there are other possible definitions. For instance, one could observe
the capability to transmit along a channel c, by defining M ↓c@h if M ≡
(νg̃)

(
n[I���c〈v〉.P �Q |R]μk | N

)
with c �∈ g̃ and d(h, k) ≤ rng(c). However, if

2 Difference equations relate to differential equations as discrete math relate to contin-
uous math.
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Table 2. A smart home in CaIT

you consider the system S = (νc)(M | m[J ���c(x).a!1�nil]μh), with J (a) = 0,
then it is easy to show that M ↓c@h if and only if S ��a S′ ↓a@h!1. Thus,
the barb on channels can always be reformulated in terms of our barb. The vice
versa is not possible. The reader may also wonder whether it is possible to turn
the reduction �a into �τ by introducing some special barb which would be
capable to observe actuators changes. For instance, something like M ↓a@h!v.w if
M ≡ (νg̃)

(
n[I��a!w.P | Q]μh | M ′), with I(a) = v and v �= w. It should be easy

to see that this extra barb would not help in distinguishing the terms proposed
in Example 2. Actually, here there is something deeper that needs to be spelled
out. In process calculi, the term β of a barb ↓β is a concise encoding of a context
Cβ expressible in the calculus and capable to observe the barb ↓β . However, our
barb ↓a@h!v does not have such a corresponding physical context in our language.
Said with an example, in CaIT we do not represent the “eyes of a person” looking
at the values appearing to some display. Technically speaking, in our calculus we
don’t have terms of the form a?(x).P to read values on the actuator a, simply
because such terms would not be part of an IoT system. The lack of this physical
context, together with the persistent nature of actuators’ state, explains why our
barb ↓a@h!v must work together with the reduction relation �a to provide the
desired distinguishing power of ∼=. Further discussions can be found in [7].

3 Case Study: A Smart Home

In Table 2, we model the smart home discussed in the Introduction, and repre-
sented in Fig. 1. Our house spans over 4 contiguous physical locations loci, for
i = [1..4], such that d(loci, locj) = |i−j|. The entrance is in loc1, the patio spans
from loc2 to loc3 and the lounge is at loc4. The house can only be accessed via
its entrance.
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Our system Sys consists of the parallel composition of the smartphone,
Phone, and the smart home, Home. The smartphone is represented as a mobile
node, with δ = 1, initially placed outside the house: out �= locj , for j ∈ [1..4].
As the phone can only access the house from its entrance, and δ = 1, we have
d(l, loci) ≥ i, for any l �∈ {loc1, loc2, loc3, loc4} and i ∈ [1..4]. Its interface IP

contains only one sensor, called mode, representing the touchscreen to control
the boiler. This is a node-dependent sensor. The process BoilerCtrl reads sensor
mode and forwards its value to the boiler manager in the patio, BoilerMng, via
the Internet channel b (rng(b) = ∞). The domain of mode is {man, auto}, where
man stands for manual and auto for automatic; initially, IP (mode) = auto.

In Phone there is a second process, called LightCtrl, which allows the
smartphone to switch on lights only when getting in touch with the light
managers installed in the rooms. Here, channels c1 and c2 serve to control
the lights of entrance and lounge, respectively; these are short-range channels:
rng(c1) = rng(c2) = 0.

The smart home Home consists of three stationary nodes: LM1, BM , and
LM2. The light managers processes LightMng1, LightMng2, are placed in LM1

and LM2, respectively. They manage the corresponding lights via the actua-
tors lightj , for j ∈ {1, 2}. The domain of these actuators is {on, off}; initially,
Ij(lightj) = off, for j ∈ {1, 2}.

The boiler manager process BoilerMng is placed in BM (node nB). Here,
the physical interface IB contains a sensor named temp and an actuator called
boiler; temp is a location-dependent temperature sensor, whose domain is N, and
boiler is an actuator to display boiler functionality, whose domain is {on, off}.
The boiler manager can work either in automatic or in manual mode. In auto-
matic mode, sensor temp is periodically checked: if the temperature is under a
threshold Θ then the boiler will be switched on, otherwise it will be switched
off. Conversely, in manual mode, the boiler is always switched on. Initially, the
boiler is in automatic mode, IB(temp) = Θ, and IB(boiler) = off.

Our system Sys enjoys a number of desirable run-time properties. For
instance, if the boiler is in manual mode or its temperature is under the thresh-
old Θ then the boiler will get switched on, within one time unit. Conversely, if
the boiler is in automatic mode and its temperature is higher than or equal to
the threshold Θ, then the boiler will get switched off within one time unit. These
three fairness properties can be easily proved because our calculus is well-timed.
In general, similar properties cannot be expressed in untimed calculi. Finally, our
last property states the phone cannot act on the lights of the two rooms at the
same time, manifesting a kind of “ubiquity”. For the sake of simplicity, in the fol-
lowing proposition we omit location names both in barbs and in sensor updates,
writing ↓a!v instead of ↓a@h!v, and [s �→ v] instead of [s@h �→ v]. The system
Sys′ denotes an arbitrary (stable) derivative of Sys.

Proposition 3 (Run-time Properties). Let Sys (�∗
i �σ)∗ Sys′.

– If Sys′[mode�→man]�∗
i Sys′′�σ then Sys′′ ↓boiler!on

– If Sys′[temp �→ t]�∗
i Sys′′�σ, with t < Θ, then Sys′′ ↓boiler!on
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Table 3. Smart home: a position based light management

– If Sys′[temp �→ t]�∗
i Sys′′�σ, with t ≥ Θ, then Sys′′ ↓boiler!off

– If Sys′�∗
i Sys′′ ↓light1!on then Sys′′ ↓light2!off , and vice versa.

Finally, we propose a variant of our system, where lights functionality
depends on the position of the smartphone. Intuitively, the smartphone detects is
current GPS position, via the process @(x).P , and then sends it to a centralised
light manager process, CLightMng, via an Internet channel g. This process will
interact with the local light managers to switch on/off lights, depending on the
position of the smartphone. In Table 3, new components have been overlined.
Channels c1 and c2 have different range now, as they serve to communicate with
the centralised light manager: rng(c1) = 2 and rng(c2) = 1.

Proposition 3 holds for Sys as well. Actually, the two systems are closely
related.

Proposition 4. For δ = 1, (ν c̃)Sys ∼= (ν c̃)(νg)Sys.

The bisimulation proof technique developed in the remainder of the paper will
be very useful to prove equalities between systems of such size.

We end this section with a comment. While reading this case study the
reader should have noticed that our reduction semantics does not model sensor
updates. This is because sensor changes depend on the physical environment, and
a reduction semantics models the evolution of a system in isolation. Interactions
with the external environment will be treated in our extensional semantics.

4 Labelled Transition Semantics

In this section we provide two labelled semantic models in the SOS style of
Plotkin: the intensional semantics and the extensional semantics.

Intensional Semantics. Since our syntax distinguishes between networks and
processes, we have two different kinds of transitions:

– P
λ−→ Q, with λ ∈ {σ, τ, cv, cv,@h, s?v, a!v}, for process transitions

– M
ν−→ N , with ν ∈ {σ, τ, a, cv@h, cv@h}, for network transitions.
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Table 4. Intensional semantics for processes

(SndP)
−

�c〈v〉.P �Q cv−−−→ P
(RcvP)

−
�c(x).P �Q cv−−−→ P{v/x}

(PosP)
−

@(x).P
@h−−−→ P{h/x}

(Com)
P

cv−−−→ P ′ Q
cv−−−→ Q′ rng(c) = −1

P | Q
τ−−→ P ′ | Q′

(Sensor)
−

s?(x).P
s?v−−−→ P{v/x}

(Actuator)
−

a!v.P
a!v−−−→ P

(ParP)
P

λ−−→ P ′ λ �= σ

P | Q
λ−−→ P ′ | Q

(Fix)
P{fix X.P/X} λ−−→ Q

fixX.P
λ−−→ Q

(TimeNil)
−

nil
σ−−→ nil

(Delay)
−

σ.P
σ−−→ P

(Timeout)
−

�π.P �Q σ−−→ Q
(TimeParP)

P
σ−−→ P ′ Q

σ−−→ Q′ P | Q � τ−−→
P | Q

σ−−→ P ′ | Q′

In Table 4 we report transition rules for processes, very much in the style
of [14]. As in CCS, we assume [b]P ;Q = P if �b� = true, and [b]P ;Q = Q
if �b� = false. Rules (SndP), (RcvP) and (Com) model communications along a
channel c. Rule (PosP) is for extracting the physical position of the embedding
node. Rules (Sensor) and (Actuator) serve to read sensors, and to write on actu-
ators, respectively. Rules (ParP) and (Fix) are straightforward. The remaining
rules allow us the derive the timed action σ. In Rule (Delay) a timed prefix is
consumed. Rule (Timeout) models timeouts when channel communications are
not possible in the current time interval. Rule (TimeParP) is for time synchro-
nisation of parallel processes. The symmetric counterparts of Rules (ParP) and
(Com) are omitted.

In Table 5 we report the rules for networks. Rule (Pos) extracts the position
of a node. Rule (SensRead) models the reading of a sensor of the enclosing node.
Rules (ActUnChg) and (ActChg) describes the writing of a value v on an actuator
a of the node, distinguishing whether the value of the actuator is changed or not.
Rule (LocCom) models intra-node communications. Rule (TimeStat) models the
passage of time for a stationary node. Rule (TimeMob) models both time passing
and node mobility at the end of a time interval. Rules (Snd) and (Rcv) model
transmission and reception along an global channel. Rule (GlbCom) models inter-
node communications. The remaining rules are straightforward. The symmetric
counterparts of Rules (ParN) and (GlobCom) are omitted.

The reduction semantics and the labelled intensional semantics coincide.



170 R. Lanotte and M. Merro

Table 5. Intensional semantics for networks

Theorem 1 (Harmony Theorem). Let ω ∈ {τ, a, σ}:
– M

ω−→ M ′ implies M �ω M ′

– M �ω M ′ implies M
ω−→ M ′′, for some M ′′ such that M ′ ≡ M ′′.

Extensional Semantics. Here we redesign our LTS to focus on the interactions
of our systems with the external environment. As the environment has a logical
part (the parallel nodes) and a physical part (the physical world) our extensional
semantics distinguishes two different kinds of transitions:

– M
α−→ N , logical transitions, for α ∈ {τ, σ, a, cv  k, cv  k}, to denote the

interaction with the logical environment ; here, actuator changes, τ - and σ-
actions are inherited from the intensional semantics, so we don’t provide
inference rules for them;

– M
α−→ N , physical transitions, for α ∈ {s@h?v, a@h!v}, to denote the inter-

action with the physical world.

In Table 6 the extensional actions deriving from rules (SndObs) and (RcvObs)

mention the location k of the logical environment which can observe the com-
munication occurring at channel c. Rules (SensEnv) and (ActEnv) model the
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Table 6. Extensional semantics: additional rules

(SndObs)
M

cv@h−−−−−→ M ′ d(h, k)≤ rng(c)

M
cv�k−−−−→ M ′

(RcvObs)
M

cv@h−−−−−→ M ′ d(k, h)≤ rng(c)

M
cv�k−−−−→ M ′

(SensEnv)
v in the domain of s

M
s@h?v→−−−−−− M [s@h 	→ v]

(ActEnv)
M ↓a@h!v

M
a@h!v−−−−−→ M

interaction of a system M with the physical environment. The environment can
nondeterministically update the current value of (location-dependent or node-
dependent) sensors, and can read the information exposed on actuators.

Note that our LTSs are image finite. They are also finitely branching, and
hence mechanisable, under the obvious assumption of finiteness of all domains
of admissible values, and the set of physical locations.

5 Full Abstraction

Based on our extensional semantics, we are ready to define a notion of bisimilar-
ity. We adopt a standard notation for weak transitions. We denote with =⇒ the
reflexive and transitive closure of τ -actions, namely ( τ−→)∗, whereas α=⇒ means
=⇒ α−→=⇒, and finally α̂=⇒ denotes =⇒ if α = τ and α=⇒ otherwise.

Definition 8 (Bisimulation). A binary symmetric relation R over networks
is a bisimulation if M R N and M

α−→ M ′ imply there exists N ′ such that
N

α̂=⇒ N ′ and M ′ R N ′. We say that M and N are bisimilar, written M ≈ N ,
if M R N for some bisimulation R.

Later on, we will take into account the number of τ -actions performed by
a process. The expansion relation [1], written �, is a well-known asymmetric
variant of ≈ such that P � Q holds if P ≈ Q and Q has at least as many
τ -moves as P .

A main result is that our bisimilarity is a congruence.

Theorem 2 (Congruence Theorem). The relation ≈ is contextual.

The proof that ≈ is preserved by the sensor update operator [s@h �→ v] is
non-standard and technically challenging. It required a well-founded induction.

Theorem 2 is crucial to prove that our bisimilarity is sound with respect
to reduction barbed congruence. Actually, our bisimilarity is both sound and
complete.

Theorem 3 (Full abstraction). M ≈ N iff M ∼= N .

Soundness follows from Theorems 1, 2, and the capability of extensional actions
to capture barbs. As to completeness, for any extensional action α we exhibit
an observing context Cα.
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Remark 2. A consequence of Theorem 3 and Remark 1 is that our bisimulation
proof-technique remains sound in a setting with more restricted contexts, where
nondeterministic sensor updates are replaced by some specific model for sensors.

As testbed for our notion of bisimilarity, we prove a number of algebraic laws
on well-formed networks.

Theorem 4 (Some Algebraic Laws).

1. n[I��a!v.P | R]μh � n[I��P | R]μh, if I(a) = v and a does not occur in R

2. n[I��@(x).P | R]μh � n[I��{h/x}P | R]
μ

h

3. n[I���c〈v〉.P �S | �c(x).Q�T | R]µh � n[I��P | Q{v/x} | R]µh, c not in R and
rng(c)=−1

4. (νc)(n[I���c〈v〉.P �S | R]μh | m[J ���c(x).Q�T | U ]μ
′

k )
� (νc)(n[I��P | R]μh | m[J ��Q{v/x} | U ]μ

′

k ), if rng(c) = ∞ and c does not
occur in R and U

5. n[I��P ]μh � n[I��nil]μh, if subterms �π.P1�P2 or a!v.P1 do not occur in P
6. n[I��nil]μh ≈ 0, if I(a) is undefined for any actuator a
7. n[∅��P ]mh ≈ m[∅��P ]sk, if P does not contain terms of the form @(x).Q, and

for any channel c in P either rng(c) = ∞ or rng(c) = −1.

Laws 1–4 are a sort of tau-laws. Laws 5 and 6 models garbage collection of
processes and nodes, respectively. Law 7 gives a sufficient condition for node
anonymity as well as for non-observable node mobility.

Finally, we show that our labelled bisimilarity can be used to deal with more
complicated systems. Let us prove that the two variants of the smart home
mentioned in Proposition 4 are actually bisimilar.

Proposition 5. If δ = 1 then (ν c̃)Sys ≈ (ν c̃)(νg)Sys.

Due to the size of the systems involved, the proof of the proposition above is quite
challenging. In this respect, the first four laws of Theorem4 are fundamentals to
apply non-trivial up-to expansion proof-techniques [24].

6 Related Work

To our knowledge, the IoT-calculus [16] is the first (and only) process calculus
for IoT systems. We report here the main differences between CaIT and the
IoT-calculus. In CaIT, we can express desirable time and runtime properties (see
Propositions 1 and 3). The nondeterministic link entailment of the IoT-calculus
makes communication simpler than ours; on the other hand it does not allow
to enforce that a smart device cannot be in two places at the same time. In
CaIT, both sensors and actuators are under the control of a single entity, i.e.
the process of the node where they were deployed. This was a security issue.
CaIT has a finer control of inter-node communication: it takes into account both
distance among nodes and transmission range of channels. Node mobility in CaIT
is timed constrained: in one time unit at most a fixed distance δ may be covered.
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Finally, Lanese et al. equip the IoT-calculus with an end-user bisimilarity
which shares the same motivations of our bisimilarity. In the IoT-calculus, end
users provide values to sensors and check actuators. Unlike us, they can also
observe node mobility but they cannot observe channel communication. End-
user bisimilarity is not preserved by parallel composition. Compositionality is
recovered by strengthening its discriminating power.

Our calculus takes inspiration from algebraic models for wireless systems [3,
4,8,10–12,17–21,23,26]. Most of these models adopt broadcast communication,
while we consider point-to-point communication, as in [10,16,21]. We model
network topology as in [17,19]. Property 2 was inspired by [8]. Fully abstract
observational theories for calculi of wireless systems appear in [8,12,19].

Vigo et al. [28] proposed a calculus for wireless-based cyber-physical systems
endowed with a theory to model and reasoning on cryptographic primitives,
together with explicit notions of communication failure and unwanted commu-
nication. However, as pointed out in [29], the calculus does not provide a notion
of network topology, local broadcast and behavioural equivalence. It also lacks
a clear distinction between physical components (sensor and actuators) and log-
ical ones (processes). Compared to [28], paper [29] introduces a static network
topology and enrich the theory with an harmony theorem.

CaIT shares some similarities with the synchronous languages of the Esterel
family [5]. In synchronous languages, computations proceed in phases called
instants, which have some similarity with our time intervals. For instance, our
timed reduction semantics has some points in common with that of CRL [2].

Finally, CaIT is somehow reminiscent of the SCEL language [9]. A framework
to model behaviour, knowledge, and data aggregation of Autonomic Systems.

Acknowledgements. We thank Ilaria Castellani and Matthew Hennessy for their
precious comments, and Valentina Castiglioni for an early proof of the harmony theo-
rem. The anonymous referees provided useful comments.
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Abstract. The Global Sequence Protocol (GSP) is an operational
model for replicated data stores, in which updates propagate asynchro-
nously. We introduce the GSP-calculus as a formal model for GSP. We
give a formal account for its proposed implementation, which addresses
communication failures and compact representation of data, and use
simulation to prove that the implementation is correct. Then, we use
the GSP-calculus to reason about execution histories and prove order-
ing guarantees, such as read my writes, monotonic reads, causality and
consistent prefix. We also prove that GSP extended with synchronous
updates provides strong consistency guarantees.

1 Introduction

Cloud infrastructures provide data storages that are virtually unlimited, elas-
tic (i.e., scalable at run-time), highly available and partition tolerant. This is
achieved by replicating data over multiple servers. A client may perform update
and read operations over any of these replicas and the store is responsible for
keeping them synchronised. However, it is known (CAP theorem [7]) that any
system cannot simultaneously provide availability, partition tolerance, and con-
sistency. Thus, one of these properties has to be discarded. Today’s popular
data storages, such as Dynamo [6] and Cassandra [9], ensure availability and
offer weaker notions of consistency, called eventual consistency. Roughly, even-
tual consistency guarantees that all updates will be delivered to the different
replicas, which will eventually converge to the same state [1]. The storages adopt
different strategies to achieve eventual consistency, which impact on the guaran-
tees provided by the system, i.e., on the kind of inconsistencies or anomalies that
are allowed to happen. For instance, a storage may resolve automatically con-
flicts introduced be concurrent updates (e.g., by using timestamps or causality)
or may leave the problem to applications that read the database (like in Cas-
sandra). In this way, the consistency model supported by a data store becomes
crucial when writing applications.
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Consequently, there has been a growing interest on establishing program-
ming abstractions to help developers to deal with eventual consistent stores. For
instance, commutative replicated data types [10] and cloud types [3] provide pro-
grammers with suitable data type abstractions that encapsulate issues related to
eventual consistency. Recent proposals advocate declarative approaches for pro-
gramming with eventual consistency, e.g., to automatically select the consistency
level required from a store provided with a consistency contract for the applica-
tion [11] or to prove that a given consistency level is adequate for preserving some
data invariant [8]. With similar aims, the Global Sequence Protocol (gsp) [5] pro-
poses an operational model to reason about applications running on top of repli-
cated stores. Basically, the state of a store is represented as the sequence of updates
that have led to it.Clients have their own copy of the statewhich they operate upon:
each read and write operation has immediate effect over the local state and the sys-
tem propagates changes to make all replicas consistent using a reliable total order
broadcast protocol (rtob). The rtob protocol guarantees that all messages are
delivered in the same total order to all clients. Replicas rely on the order generated
by rtob to converge to the same state. In the very basic model, called core gsp,
each client interacts with its local state by performing read and write operations.
Albeit simple, this model introduces some subtleties when programming because
it does not ensure read stability (i.e., two successive reads may return different val-
ues) nor atomicity of several updates (i.e., another client may partially observe the
effects of a sequence of updates). To overcome these limitations, three synchronisa-
tion primitives, namely pull, push and confirmed, allow programmers to control
the propagation of changes. It has been shown that this model can be implemented
so to handle communication failures and to represent updates efficiently by using
two type of objects: states and deltas. Both models, i.e. the idealised one and its
implementation, have been defined in terms of a reference implementation.

In this paper, we propose a formal account for each model: the gsp and igsp

calculi (Sects. 2 and 3). We prove that the behaviour of a program running over
igsp can be observed over the idealised model. Technically, we show that each
igsp system can be simulated by the corresponding gsp system (Sect. 4). Then,
we study and prove the consistency guarantees ensured by gsp. We rely on the
characterisation of consistency guarantees in terms of abstract histories proposed
in [2]. Abstract histories capture the visibility relation between actions and the
arbitration order of updates in the system. Then, a wide-spectrum of consistency
models can be characterised in terms of these two relations. In Sect. 5, we show
how to operationally associate abstract histories to concrete computations and
prove that gsp enjoys properties such as Monotonic Read, Causal Visibility and
Consistent prefix, among others. Finally, in Sect. 6 we study the extension of gsp
with synchronous write operations, which ensures strong consistency.

2 Global Sequence Protocol Calculus

2.1 Syntax

Clients interact with a store by performing operations in U ∪ R: an element
in U denotes an update operation, while one in R stands for a read operation.
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No operation can simultaneously read and update a store, therefore we assume
U ∩ R = ∅. We write u, u′, u′′, . . . for updates and r, r′, r′′, . . . for reads.

The state of a store is represented by a sequence of updates. For technical
convenience (particularly in Sect. 5), we distinguish different executions of the
same operation. Formally, stores associate each update with a fresh event iden-
tifier. We assume a set V of event identifiers �, �0, . . . , �′, . . . and write u� for
the update u associated with the event �.

We use u to denote sequences of decorated updates and �u� for an atomic
block of updates. We write b for a sequence of blocks. We denote the empty
sequence with ε and use the usual operations on sequences such as b[i] to denote
the i-th element of b, b[i..j] for the subsequence of b from position i to j, |b| for
its length and b\b′ for the relative complement of b in b′. Additionally, b stands
for the plain sequence of updates in b (i.e., without any separation in blocks).

We rely on the countable sets X of program variables x, x′, . . . and I of client
identifiers i, i′, . . . , i1, . . ..

Definition 2.1 (GSP Language). The set of gsp terms is given by the gram-
mar in Fig. 1.

A gsp system N consists of a store and zero or more clients. The global store
S is completely defined by its state, which consists of a sequence of blocks. The
term 〈P, uT, bS, bp, k, j〉i stands for a client identified by i and engaged on the
execution of the program P . The remaining elements are used to describe the
state of the local replica: uT contains the updates that have been made locally
and are part of an unfinished block; bS models the communication buffer, which
keeps all blocks completed by the client but not received by the global store; bP

is the pending buffer, which contains all completed blocks that are unconfirmed
by the global store. For simplicity, we do not have an explicit replica of the global
store in each client; we use instead a natural number k to indicate the portion
of the global state that is known to the client. Specifically, the client i knows
the sequence S[0..k − 1]. Similarly, j indicates the number of updates received
by the client that have not been added to the local replica, i.e., the client has
received the updates contained in the segment S[k..k + j − 1].

A program P is built as a sequence of operations that interacts with the
store: read(r), update(u), pull, push, confirmed (we postpone their description

Fig. 1. Syntax of the gsp calculus
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until Sect. 2.2). A program let x = . . . in P introduces a bound variable whose
scope is P . The definition of free variables of a program is standard. We say
that a process P is closed when it does not contain free variables. We keep the
language for programs simple. We remark that this choice does not affect the
results presented in this paper. Actually, we could just have characterised the
behaviour of programs as a labelled transition system, but we prefer to have a
syntax throughout the presentation.

Definition 2.2 (Well-formedness). A gsp system N = C0|| . . . ||Cm||S where
Cl = 〈Pl, uTl, bSl, bpl, kl, jl〉il for all l ∈ {0, . . . , m} is well-formed if the following
conditions hold

1. il �= il′ for all l �= l′;
2. kl + jl ≤ |S| for all l;
3. bPl = �u1� · · · �up� · bSl and for all 1 ≤ x < y ≤ p there exists x′, y′ s.t.

S[x′] = �ux�, S[y′] = �uy� and kl ≤ x′ < y′; and
4. u = S · bS0 · · · bSm · uT0 · · · uTm, if u[x] = u�, u[y] = u�

′
and x �= y then

� �= �
′.

We require identifiers to univocally identify clients (1) and every local state to
be consistent with the global store, i.e., a client can see at most every message
in the store (2), all unconfirmed blocks in bPl are either in the communication
buffer bSl or in the unseen part of the global store �u1� · · · �up� (3). Moreover, an
event identifier is associated with a unique update in the system (4). Hereafter,
we assume every gsp system to be well-formed.

2.2 Operational Semantics

The operational semantics of gsp is given by a labelled transition system over
well-formed terms, quotiented by the structural equivalence ≡ defined as the
least equivalence such that || is associative, commutative and has 0 as neutral
element. The set of actions is given by the following grammar:

λ ::= τ | rd(r) | wr(u�) | pull | push | cfm

As usual, τ stands for an internal, unobservable action, while the remaining ones
correspond to the interaction of a client with the store. A label (λ, i) indicates

that the client i performs the action λ. We write λ−→i instead of
(λ,i)−−−→.

We now comment on the inference rules in Fig. 2. When a client performs an
update (rule update), the change has only local effects: the sequence of local
updates uT is extended with the operation u decorated with a globally fresh
identifier �. We remark that decorations are used for technical reasons but they
are operationally irrelevant (see Sect. 5).

A client propagates its local changes to the global store by executing push
(rule push): all local changes in uT will be transmitted as a block �uT�, i.e., as
an atomic unit. Nevertheless, these changes are not made available immediately
at the global store because of the asynchronous communication model. In fact,
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Fig. 2. Operational semantics for gsp

the new block �uT� is added to the communication buffer bS , which contains
all blocks that have not reached the global store. Also, �uT� is added to the
pending messages bP . Rule send stands for a block that finally reaches the
global store. Conversely, rule receive models the reception of a new update.
The received update is not immediately added to the local replica. Actually, each
client explicitly refreshes its local view by executing pull (rule pull). At this
time, all previously received updates j are incorporated to the local copy (i.e.,
k is changed to k + j). Additionally, all pending updates in the new fragment
S[k..k + j − 1] are remove from bP .

The semantics of operations is defined abstractly by the interpretation func-
tion rvalue : R × U∗ → V, i.e., a function that takes a read operation and a
sequence of updates and returns a value in some domain V. A read operation r
is evaluated over the local state of the client (rule read), i.e., the known prefix
of the global store S[0..k − 1] and the local updates in bP and uT. The value v is
bound to the variable x, and hence all free occurrences of x in the continuation
P are substituted by v. A client may perform confirmed to check whether its
executed updates are already in the global store: this operation returns true only
when the local buffers bP and uT are both empty (rule confirm).

We remark that the operational semantics preserves well-formedness.

Lemma 2.1. If N is well-formed and N
λ−→i N ′, then N ′ is well-formed.
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3 Implementation of GSP

The gsp model describes an idealised system that abstracts away from several
implementation details, such as non-optimised representation of the state and
unreliable communication. This section presents a formal model for the imple-
mentation proposed in [5].

3.1 Syntax

The implementation of gsp relies on a compact representation for states and
updates. Their precise definition highly depends on the datatype of the values
handled by the store, but they are characterised in terms of two abstract types:
State and Delta, which provides the following operations [5]:

δ∅ : Delta
append : Delta × U → Delta
reduce : Delta∗ → Delta

∅ : State
apply : State × Delta∗ → State
read : R × State → V

Constants δ∅ and ∅ denote the empty elements in their respective types. An
object δ ∈ Delta describes the effects of a sequence of updates and is built by
either appending an update to an existing delta (append) or combining together
several deltas (reduce). Operation read is the interpretation function for opera-
tions (i.e., the implementation counterpart of function rvalue( , ) used by the
idealised model) and apply corresponds to state transformations.

Clients and the global store exchange δ objects to communicate changes. As
each single δ may correspond to several update operations, clients send each δ
accompanied by its own identifier and a sequence number n. Precisely, clients
send rounds, i.e. triples r = 〈i, n, δ〉. Differently, the global store sends segments
seg = 〈δ, f〉, in which δ is accompanied by a function f ∈ I → N. In this way,
the global store confirms all changes from client i until round f(i). To deal with
crashes and recovery, the server may send segments of the form 〈s, f〉, which
communicates a complete state instead of a delta object.

Definition 3.1 (GSP Language). The set of igsp terms is given by the gram-
mar in Fig. 3.

As for gsp, a system is composed by a global store S and possibly many
clients C. A global store is modelled by a tuple 〈s, f, ins, outs〉 containing a

Fig. 3. Syntax of the igsp calculus
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state s, a function f to keep track of processed rounds and the communication
buffers ins and outs. There are two dedicated buffers for each client i: ins(i)
contains the rounds received from i, and outs(i) the segments that have been
sent to i.

A client is represented by a term 〈P, s, δT, δP, n, r, inc〉i. As for gsp, i is its
identity and P is its program. Note that the language for programs remains
unaltered. The component δT is analogous to uT in the gsp model, i.e., it keeps
all local updates until the client performs push. Differently, δP keeps all finished
blocks that have not been sent. The number n identifies the current round. Buffer
r keeps all sent rounds that have not been confirmed by the global store (similar
to bP in gsp), while inc keeps all received segments (analogous to j).

We also impose the following well-formedness condition on systems.

Definition 3.2 (igsp well-formedness). A igsp system N = C0|| . . . ||Cm||S
with S = 〈s, f, ins, outs〉 and Cl = 〈Pl, sl, δTl, δPl, nl, rl, incl〉il for l ∈ {0, . . . , m}
is well-formed if the following conditions hold

1. il �= il′ for all l �= l′.
2. dom(ins) = dom(outs) ⊆ {0, . . . , m}.
3. il �∈ dom(outs) implies incl = ε.
4. if il ∈ dom(outs) and incl · outs(il) �= ε then either

(i) incl · outs(il) = 〈δ0, f0〉 · · · 〈δh, fh〉; or
(ii) incl · outs(il) = 〈s, f0〉 · 〈δ1, f1〉 · · · 〈δh, fh〉
and fj(il) ≤ fk(il) for all j < k ∈ {0..h} and fh = f.

5. rl = 〈i0, n0, δ0〉 · · · 〈ir, nr, δr〉, nj < nk for all j < k ∈ {0..r} and either
(i) δPl = δ∅, nr ≤ nl and f(il) ≤ nl; or
(ii) δPl �= δ∅, nr < nl and f(il) < nl.

6. either
(i) rl = ε, f(il) ≤ nl and if il ∈ dom(ins) then ins(il) = ε;
(ii) rl = ins(il) = 〈il, nfst , δfst〉 · rl

′ and nfst > f(il);
(iii) rl = rl

′′ · 〈il, nlst , δlst〉 · ins(il) and incl · outs(il) = 〈δ0, f0〉 · · · 〈δ′
lst, flst〉

with flst(il) = nlst; or
(iv) ins(il) = ε, rl = rl

′′ · 〈il, nlst, δlst〉 and either incl · outs(il) = 〈s, f′〉 · seg
with f′(il) ≤ nlst or incl · outs(il) = ε and f(il) ≤ nlst.

We require all clients to have different identifiers (1). Communication chan-
nels in the implementation are bidirectional, hence il ∈ dom(ins) iff il ∈
dom(outs) (2). Moreover, the input buffer of a disconnected client is empty (3).
Condition (4) states that 〈s, f′〉 can appear only as the first message in the flow
from the store and that the store confirms processed rounds in a non-decreasing
order. Similarly, clients send rounds with increasing round number (5). The last
condition (6) states a coherence requirement between pending rounds and the
segments sent by the store, which can only confirm rounds that are pending.
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Fig. 4. Operational semantics of igsp
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3.2 Operational Semantics

As for the idealised model, the operational semantics is given by a labelled tran-
sition system over well-formed terms, up-to structural equivalence. We consider a
new label τ without any client annotation for transitions associated with changes
in the global store and communication failures. The inference rules are in Fig. 4.

Rule (i-update), which is analogous to rule (update), adds the operation u
to the temporary block δT. The decoration � is irrelevant in this model, hence
we do not impose any freshness requirement. A client terminates a block by
executing push (i-push). At this time, the block δT is appended to the already
terminated blocks in δP, which will be sent on the next round. Additionally, the
block counter n is incremented by 1. By rule (i-send), a client sends changes
to the global store. This transition takes place whenever the client is connected
(i.e., i ∈ dom(ins)), there are finished blocks in δP (i.e., δP �= δ∅) and there is
no need for resynchronisation (i.e., inc · outs(i) �= 〈s′, f〉 · seg)1. The available
blocks are sent within the same round r = 〈i, n, δP〉, which contains the number
n corresponding to the last finished block. The new round r is added to the
corresponding input buffer in the store, i.e., ins(i) is updated to ins(i) · r (where
[ → ] is the update operator for functions). Additionally, r is added to the

sequence of pending rounds r and the buffer δP is reset to δ∅.
Symmetrically, the client i may receive an available segment at any time (i-

receive). The new segment seg is removed from the buffer outs(i) of the global
store and added to the input buffer of the client. As for the idealised model,
all received changes are applied to the local replica when i performs pull. Rule
(i-pull1) handles the case in which the connection with the global store has not
been previously reset. In such case, all received segments are of the form 〈δ, f〉.
Therefore, the changes δ1 · · · δk are applied to the local state s and all rounds
confirmed by the received segments are removed from the pending list r. By
well-formedness (Definition 3.2, 5), it suffices to consider the confirmation fk,
which has the greatest confirmation. Hence, all rounds up-to fk(i) are removed
from r. This is done by the auxiliary function filter( , ), defined as follows

filter(n, r) = 〈i, nj , δj〉 · · · 〈i, nk, δk〉 if r = 〈i, n0, δ0〉 · · · 〈i, nj , δj〉 · · · 〈i, nk, δk,
nj−1 ≤ n and nj > n

Rules (i-read) and (i-confirm) are analogous the ones in the gsp calculus. We
use Δ( ) for the function that projects a sequence of rounds into the sequence
that contains the corresponding δs. The global store changes its state as pre-
scribed by rule (i-batch): it collects all received rounds in ins by using the
auxiliary function rnds( ), which builds a unique object δ by appending all
available rounds, and a function f that associates each client with the number
of the last received round. Let ins be such that dom(ins) = {i0, . . . , im} and

1 For simplicity we check re-synchronisation by inspecting buffers instead of explicitly
adding the condition channel established used in the implementation.
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∀il ∈ dom(ins).ins(il) = rl · 〈il, nkl

l , δkl

l 〉. Then, rnds( ) is defined as follows

rnds(ins) = 〈δ, f′〉 with δ = reduce(Δ(ins(i0)) · · · Δ(ins(im))),
dom(f′) = {i | i ∈ dom(ins) and ins(i) �= ε} and

∀il ∈ dom(ins).f′(il) = nkl

l

The obtained δ is applied to the current state s and f is updated with f′. In
addition, the new segment 〈δ, f[f′]〉 is sent to every connected client, i.e., it is
added at the end of every buffer outs(i). The input buffers ins(il) are emptied
because all received rounds have been processed.

The remaining rules deal with connectivity issues: rule (i-drop-cxn) mod-
els a disconnection: the buffers outs(i) and ins(i) are removed from the global
store and also the input buffer of i is set to ε. When the client i (re-)establishes
its connection (i-accept-cxn), the store creates the buffers for i and sends a
segment containing the current state of the store. Rule (i-pull2) is analogous
to (i-pull1), but handles the first pull after a reconnection. The first received
segment 〈s′′′, f0〉 contains a state instead of a delta object. The client uses s′′′

instead of its local state to resynchronise. The application of successive segments
is analogous to rule (i-pull1). Moreover, the client resends a round r′ containing
all pending segments lost by the server during the disconnection.

The proposed implementation allows for a server to crash, i.e., to close all
communication buffers, but we do not model explicitly this behaviour because
it can be obtained by applying rule (i-drop-cxn) several times.

Lemma 3.1. Let N be a well-formed igsp system. If N
λ−→i N′, then N′ is well-

formed.

4 Correctness of the Implementation

We now prove that igsp is a correct implementation of gsp. We recall in Fig. 5
the requirements stated in [5] for the operations provided by the data types
State and Delta. Formally, the relation � associates delta and state objects
with sequences of updates: δ � u (similarly, s � u) means that δ (correspondingly,
s) is a compact representation of u. Then, it is also assumed that s � u implies
read(r, s) = rvalue(r, u) for any r. Building on the above relation, we define
under which conditions a igsp system is an implementation of a gsp system.

Definition 4.1. Let N = C0 || . . . || Cm || S be a gsp system such that Cl =
〈Pl, uTl, bSl, bPl, kl, jl〉il for all l ∈ {0, . . . ,m}, and N = C0 || . . . || Cm || S a igsp

system such that S = 〈s, fs, ins, outs〉 and Cl = 〈Pl, sl, δTl, δPl, nl, rl, incl〉il. We
say N implements N if the following conditions hold:

1. s � S;
2. sl � S[0..kl − 1];
3. δTl � uTl;
4. reduce(Δ(rl) · δPl) � bPl;
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Fig. 5. Coherence requirements for Delta and State operators

5. if il ∈ dom(ins) and inc · outs(il) �= 〈s′, f〉 · seg then
reduce(Δ(ins(il)) · δPl) � bSl;

6. if il ∈ dom(outs) then either
i. incl · outs(il) = ε, kl = |S|;
ii. incl = 〈δ′, f〉 · seg, reduce(Δ(incl)) � S[kl..kl + jl − 1], and

reduce(Δ(outs(il))) � S[kl + jl..|S| − 1];
iii. incl = 〈s′, f0〉 · seg, there exists t s.t. kl ≤ t ≤ kl + jl s.t. s′ � S[0..t − 1],

reduce(Δ(seg)) � S[t..kl + jl − 1] and
reduce(Δ(outs(il))) � S[kl + jl..|S| − 1]; or

iv. incl = ε, outs(il) = 〈s′, f〉 · seg there exists t ≥ kl + jl s.t. s′ � S[0..t − 1]
reduce(Δ(seg)) � S[t..|S| − 1];

7. for all f s.t f = fs or 〈δ, f〉 ∈ incl · outs(il), for all 〈i, n, δ′〉 ∈ rl if n ≤ f(il)
then δ � S[x..x′] and δ′ � S[y..y′] with y′ ≤ x′.

The first three conditions are self-explanatory. Condition (4) states that the
pending blocks in bPl correspond either to rounds in the pending list rl or to
blocks ready to be sent, i.e., in δPl. By condition (5), if a client is synchronised
with the store (i.e., il ∈ dom(ins) and inc · outs(il) �= 〈s′, f〉 · seg) then all
blocks in the sending list bSl are either rounds that have been sent, i.e., in
ins(il), or ready blocks in δPl. Condition (6) establishes the relation between the
received messages in both models. Basically, the local replica is complete when
there are no segments for the client (i). When the first received segment is a
delta object (ii), the content in the input buffer incl corresponds to the received
messages in S[kl..kl + jl −1] and the output buffer outs(il) contains the updates
in the sequence S[kl + jl..|S| − 1]. In the remaining two cases, the first segment
contains a state. When the segment is in the input buffer of the client (iii), the
received state s′ corresponds to a prefix of the sequence S whose length lies in
between of the updates already received by the client in the idealised model, i.e.,
S[0..t − 1] with k ≤ t ≤ kl + jl, while the remaining conditions are analogous to
the previous case. Differently, when the first segment is still on the output buffer
of the store (iv), s′ corresponds to a prefix that contains at least all updates in
S already known to the client, i.e., t ≥ kl + jl because the store confirmations
are monotonic.

Condition (7) states that in any segment 〈δ, f〉 sent by the store, δ corresponds
to a contiguous sequence of updates in S, i.e., S[x..x′]. Moreover, all confirmed
rounds are also within the prefix S[0..x′].
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We now show that igsp is a correct implementation of gsp by proving that
N weakly simulates N when N implements N . We use standard simulation but
technically we take into account the fact that gsp associates a fresh event identi-
fier to each update while igsp does not. Take →= τ−→ ⋃

i∈I
τ−→i, ⇒ as the reflexive

and transitive closure of →, i.e.⇒=→∗, and λ=⇒i = ⇒; λ−→i;⇒.

Definition 4.2. (Simulation). R is an implementation simulation if for all
(N, N) ∈ R we have:

1. If N
wr(u�)u−−−−−→i N′ then ∃N ′,� s.t. N

wr(u�)
====⇒i N ′ and (N′, N ′) ∈ R;

2. If N λ−→i N′ and λ �= wr(u�)u, τ then ∃N ′ s.t. N
λ=⇒i N ′ and (N′, N ′) ∈ R;

3. If N −→ N′ then ∃N ′ s.t. N ⇒ N ′ and (N′, N ′) ∈ R;

As usual, we write N � N if there exists a simulation R s.t. (N, N) ∈ R.

Theorem 4.1. If N implements N , then N � N .

Proof. We show that R = {(N, N) | N implements N} is a simulation.

We remark that R−1 is not a simulation because the implementation cannot
mimic the behaviour in which a client have completed two consecutive blocks
(i.e., two push commands) without sending the first block. In gsp it is still pos-
sible to interleave the two blocks with blocks sent by other clients but in igsp

they are treated as atomic because they will be sent as a unique δ object.

5 Consistency Guarantees

In this section we study the consistency properties offered by gsp. We rely on
the characterisation of properties in terms of abstract executions [4], execution
histories enriched with information about visibility and arbitration of actions.

Definition 5.1. Let N be a well-formed gsp system, an abstract history for N
is a tuple � = 〈N,OP, SS, SO,VIS,AR〉 where:

– OP : V → R ∪ U maps events to operations;
– SS : I → V associates events with a session (i.e., a client);
– SO ⊆ V × V describes the order of operations within a session;
– VIS ⊆ V × V indicates whether the effects of an update are visible to a read;
– AR ⊆ V × V resolves concurrent update conflicts.

We write ↓ for function/relation restriction. For a given abstract history
�, we write � (similarly, �) for the codomain restriction of OP to U (correspond-
ingly, R), i.e., � = {� | � ∈ OP,OP(�) ∈ U} (� = {� | � ∈ OP,OP(�) ∈ R}).

Definition 5.2 (Well-formed history). Let N = C0|| . . . ||Cm||S be a gsp sys-
tem where Cl = 〈Pl, uTl, bSl, bPl, kl, jl〉il . A history � = 〈N,OP, SS, SO,VIS,AR〉 is
well-formed if the following conditions hold:
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1. for all i ∈ dom(SS), SS(i) ⊆ dom(OP);
2. (�,�) ∈ SO then exist i ∈ dom(SS) s.t. {�,�} ∈ SS(i).
3. for all i ∈ dom(SS), SO ↓SS(i) is a total order;
4. VIS ⊆ �× �;
5. AR ⊆ �×� is a prefix order.
6. (�,�) ∈ AR iff

– S[i] = u� and S[j] = u� and i < j; or
– u� ∈ S and u� ∈ bSl · uTl;

7. if bSl · uTl[i] = u� and bSl · uTl[j] = u� and i < j, then (�,�) ∈ SO and
{�,�} ∈ SS(il).

The above conditions ensure that events in SS are associated with an opera-
tion by OP (1). Besides, SO only relates events belonging to the same session (2),
which are totally ordered within each session (3). Differently from the definition
in [2], we restrict visibility to keep track of dependencies between updates and
read events(4). We do not require AR to be a total order but instead to be a
prefix order (5). In this way the updates in different replicas are arbitrated when
they reach the global store. The remaining two conditions require the abstract
history to be consistent with the state of the system.

Rules in Fig. 6 provides an operational way to associate abstract executions
with gsp computations. Rules (a-update) and (a-read) add new events to
the history and corresponds to the execution of a read or update operation by a
client. In both cases OP is extended with a new event � (i.e., � /∈ dom(OP)), which
is associated with the corresponding operation (either r or u). The new event �
is added to the corresponding session i, and SO is updated to make � the maximal
event for the session i. Rule (a-update) amends AR by capturing the fact that
all updates that are already in the global state took place before the new event.
Rule (a-read) instead augments VIS with the pairs associating the new event
with all events that are seen by the read action, namely, the local view of the
global state S[0..ki − 1] and the local buffers bP i and uTi. Rule (a-arb) handles
the changes in the state of the global store (due to a send transition in one client)
and amends AR by arbitrating (i) the new events by respecting the relative order
in which they are added to the store (i.e., {(�i,�j) | i, j ∈ {0, . . . , n}, i < j})
and (ii) all updates in the local state of the clients after the new ones (i.e.,
({�0, . . . ,�n} × {� | � ∈ � ∀u.u� �∈ S · u}). The remaining transitions of the

system are considered as internal changes that do not affect the history and are
handled by rule (a-int).

Lemma 5.1. Let � be a well-formed history. If � λ−→i �
′, then �′ is well-formed.

We use histories to analyse the ordering guarantees offered by the gsp model.
(Due to space limitation, we refer the interested reader to see the characterisa-
tions provided in [2, Ch.5]).

Theorem 5.1. If 〈N, ∅, ∅, ∅, ∅, ∅〉 −→∗
i 〈N ′,OP, SS, SO,VIS,AR〉 then

(1) Read My Writes: SO↓�×�⊆ VIS
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Fig. 6. Computation of abstract executions

(2) Monotonic Read: VIS; SO↓�×�⊆ VIS.
(3) No Circular Causality: (SO ∪ VIS)+ is acyclic.
(4) Causal Visibility: (SO ∪ VIS)+↓�×�⊆ VIS.
(5) Causal Arbitration: ((SO ∪ VIS)+ \ SO)↓�×� ⊆ AR.
(6) Consistent prefix: AR; (VIS \ SS) ⊆ VIS.

The following example shows that the gsp model exhibits the Dekker anom-
aly, hence it does not enjoy sequential consistency [2].

Example 5.1 (Dekker anomaly). Consider the following system consisting of two
clients and the empty store N = ε || C1 || C2 where

C1 = 〈update(u1); let y = read(r1) in P, ε, ε, ε, 0, 0〉i1
C2 = 〈update(u2); let y = read(r2) in Q, ε, ε, ε, 0, 0〉i2

Since the updates are made locally, none of the clients see the update performed
by the other and this is the essence of the Dekker anomaly which is ruled out
by strong consistency models like sequential consistency or linearizability.

6 GSP with atomic updates

In this section we study the atomic updates proposed in [5]. We extend the
language of programs as follows:

(program) P ::= . . . | syncUpd(u);P
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The execution of a program syncUpd(u);P remains blocked until the update
u is performed over the global store. This is achieved by continuously pulling
(i.e., a busy-waiting) until the updates are confirmed by global store. In order to
provide the formal semantics of the language, we consider the following runtime
syntax for programs.

(run-time-program) P ::= . . . | wait;P | e � (P );P

The operational semantics for the new primitives is given by the rules in
Fig. 7. Rule (sync-upd) rewrites each synchronous update as the sequence con-
sisting of an asynchronous update followed by pull and wait. Processes wait
continuously checks whether local changes have been confirmed by the global
store. As described by rule (wait), it is implemented as a busy-waiting loop
that first checks the local buffers by executing confirmed and then performs the
conditional jump x � (pull; wait);P . If the condition x is true, then it follows
as P otherwise it continues as pull; wait, as described by rules (guard-true)
and (guard-false).

Single order is characterised, essentially, by imposing arbitration and visibil-
ity to coincide [2]. Since our definition for AR and VIS makes them disjoint, we use
an alternative characterisation of single order guarantee, which disregards the
arbitration order of updates that are not observed. Hence, we use the following
characterisation for single order:

AR;VIS ⊆ VIS and AR
−1;¬VIS ⊆ ¬VIS

The following result shows that any well-formed gsp system, whose programs
are free from asynchronous updates enjoy the single order guarantee.

Theorem 6.1 (Single Order). Let N be a well-formed system s.t. update(u)
does not appear in N . If 〈N, ∅, ∅, ∅, ∅, ∅〉 −→∗

i 〈N ′,OP, SS, SO,VIS,AR〉 then
AR;VIS ⊆ VIS and AR

−1;¬VIS ⊆ ¬VIS.

Fig. 7. Semantics of gsp with atomic updates
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7 Conclusions

We have proposed a formal model for the Global Sequence Protocol and its pro-
posed implementation. We use our formal model to provide a simplified proof
(that relies on standard simulation) that the proposed implementation is cor-
rect. We remark that our proof does not require to exhibit an auxiliary state
for the simulation and that several invariants are trivially ensured by the defini-
tion of the model (e.g., the fact that clients have a consistent view of the global
sequence) and the well-formed conditions imposed over systems. We have for-
mally studied the consistency guarantees ensured by the model by relying on the
operational semantics of the calculus to incrementally compute (a relaxed ver-
sion of) abstract histories. We have also shown how gsp can be used to formally
study programming patterns, like synchronous update operations, that provide
stronger consistency guarantees at the expenses of efficiency and availability.
We plan to use the gsp calculus as a formal basis for developing programming
techniques to enable the fine-tuning of consistency levels in applications.
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Abstract. Gossip protocols are a fast and effective strategy for com-
puting a wide class of aggregate functions involving coordination of
large sets of nodes. The monotonic nature of gossip protocols, however,
mean that they can typically only adjust their estimate in one direction
unless restarted, which disrupts the values being returned. We propose
to improve the dynamical performance of gossip by running multiple
replicates of a gossip algorithm, overlapping in time. We find that this
approach can significantly reduce the error of aggregate function esti-
mates compared to both typical gossip implementations and tree-based
estimation functions.

1 Introduction

Gossip protocols are a coordination approach based on estimating a collective
state by repeated propagation and aggregation of state estimates between neigh-
boring devices [5,21]. They are widely used in the development of networked and
distributed systems, as they can often provide a fast and effective means of enact-
ing strategies for collective adaptation of large numbers of computing devices.
This can be particularly important for emerging scenarios and the “internet of
things,” with the continued rapid increase in both the number of deployed mobile
or embedded devices and the networking technologies for connecting them oppor-
tunistically. In theory, virtually any collective mechanism—sensing the environ-
ment, planning actions, information storage, physical actuation—can be realized
by the resilient coordination of large sets of devices deployed in a given region
of space [24], and gossip can play an important role as a composable “building
block” algorithm for effective programming of such environments [3,22].

Unlike many scenarios where gossip has been deployed and studied, how-
ever, in pervasive and embedded environments network connections are typically
strongly affected by physical proximity and the effective network diameter may
be quite large. Overlay networks, which are often used to ensure that gossip
estimates can be rapidly adapted to new circumstances (e.g., [11–13,23]), are
often no longer applicable in these circumstances, and we need to find alternate
strategies that can enable gossip estimates to adapt rapidly and smoothly to
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changes in the values being aggregated. We address this challenge by defining
a higher-order “time replication” coordination strategy that maintains a set of
isolated replicas of a distributed process with staggered start times: applying
this strategy to replicate gossip provides a significant improvement over prior
approaches as well as an adjustable tradeoff between speed of adaptation and
cost of replication.

Design, prototype implementation, and experiments, have been realized by
exploiting the toolchain of aggregate programming [3], an approach aimed at
simplifying the sound engineering of collective adaptive systems by shifting the
programming focus from single devices to whole aggregates. This allowed us to
smoothly express a formalized version of the proposed approach in terms of the
Protelis programing language [20].

Following a brief review of gossip protocols in Sect. 2, we specify the proposed
replication strategy in Sect. 3 and analyze the predicted performance of time-
replicated gossip in Sect. 4. We then validate these predictions and compare
performance against other methods for collective state estimation in Sect. 5,
before summarizing contributions and future work in Sect. 6

2 Gossip Protocols

The term gossip protocol is used to cover a range of related algorithms and
concepts [5,21]. For purposes of this paper, we will formalize gossip with the
following generic algorithm, executed periodically on every participating device
in unsynchronized rounds:

def gossip(f,x) {
// Declare state variable v, initialized to current value of x
rep(v <- x) {

// Every round, merge v with neighbors’ values of v and current value of x
f.apply(x,hood((a,b) -> {f.apply(a,b)},x,nbr(v)));

} }

This algorithm begins with an input xδ,τ (the input x, potentially varying with
device δ and time τ) and a fixed merging function f that takes two values of
the type of x and returns another of the same type. The function f must be
idempotent, meaning that f(a, f(a, b)) = f(a, b), and commutative, meaning
that f(a, b) = f(b, a). This means that any number of copies of various values of
xδ,τ can be combined in any order and yet always be guaranteed to eventually
produce the same output value vδ′,τ ′ .

In particular, this algorithm realizes computation of vδ,τ by declaring v as a
state variable (construct rep) initialized to xδ,τ . In every round τ , vδ,τ is then
updated by using f to combine it with the current value of xδ,τ (which may
have changed), and with the latest values of vδ′,τ ′ that have been shared by
the device’s current set of neighbors in the network (construct nbr, which also
implies reciprocally sharing this device’s value of vδ,τ ).
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For all functions f that are both idempotent and commutative, repeated
execution of this gossip algorithm on any connected network with stable inputs
(xδ,τ = xδ,τ ′) leads to all devices converging to the same value within diameter
rounds. This algorithm can be optimized in various ways by optimizing the
implementation of rep, hood, and nbr (e.g., sharing and computing only on
differences), but the essence remains the same.

Gossip is thus a valuable tool for fast, distributed computation of aggregate
functions of a network, for any function that can be mapped onto an appropriate
f : examples include minimum value, union of sets, and mean value (the last being
somewhat more subtle: see [16,21]). By contrast, other approaches to computing
a consensus aggregate value are either slow (e.g., Laplacian averaging [9,17]),
fragile (e.g., various exact consensus algorithms [10,15], PLD-consensus [1]), or
both (e.g., Paxos [6,14]).

The idempotence property of gossip, however, also carries its own significant
cost: it is asymmetric and information-destroying. Because a value can be merged
in multiple times without affecting the value of the aggregate, it is not possible
to know how many times this has actually taken place, and as such there is no
inverse function that can be used to remove from the aggregate an input xδ,τ

that is no longer valid. For example, with f = min(a, b) values can go down, but
they cannot go up again. This means that removing obsolete values from the
aggregate function can be difficult and costly. The two main strategies are:

– Values of xδ,τ may be in some way time-stamped and/or identified with their
source, such that they can be superseded by new information from the same
source or discarded if they are not periodically refreshed. Some form of this
approach is often used for gossip algorithms that build indexing or routing
data structures, such as in peer-to-peer systems (e.g., [11,23]), but has the
drawback that either most devices know only a fragment of vδ,τ or else that the
size of vδ,τ and of the updates that need to be shared between neighbors may
become very large, since each value of xδ,τ needs to be tracked individually.

– The gossip algorithm can be periodically restarted, thus resetting v and effec-
tively discarding all old values of xδ,τ . This has the advantage of being very
lightweight but can have significant lags before changes in xδ,τ are acknowl-
edged and large transients in vδ,τ during the restart. Furthermore, care must
be taken to ensure that no values of vδ,τ from the old algorithm instance
can ever be shared with the new algorithm instance, or else the benefit of
restarting will be lost.

In this paper, we focus on the periodic restart strategy, improving its dynam-
ics through a refinement in which multiple overlapping replicates of gossip are
run in parallel.

3 Time-Replicated Gossip

The approach we are investigating for improving gossip performance is a simple
generalization of the periodic restart strategy for removing obsolete information
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Fig. 1. Time-replicated gossip launches a new gossip process every p seconds, dropping
the oldest replicate whenever there are more than k replicates.

from gossip. Rather than maintaining only a single instance of a gossip algorithm,
each device will maintain up to k replicates with staggered launch times (Fig. 1).
At a period of once every p seconds, a new replicate is launched, and if the full
complement of replicates is already running then the oldest replicate will be
dropped. This approach provides a compromise solution, avoiding the severe
drawbacks of either of the prior methods: the amount of state communicated or
stored cannot grow large as there are only k replicates, and large transients in
v can be avoided by keeping the current replicate running while new replicates
are still stabilizing.

We have implemented this strategy by means of a general time-replication
algorithm, coded in Protelis [20] in order to take advantage of the mechanisms of
its underlying computational model (the field calculus [7,8]) for succinct encap-
sulation and manipulation of distributed higher-order functions [3,8]:

def timeReplicated(process, default, p, k) {
rep(state <- [[], 0]) { // [tuples of [replicate, value], oldest replicate ID]

// Check whether p has elapsed without a new replicate beginning elsewhere
let newRep = sharedTimer(p,state.get(0));

// If so, create a new replicate and add it to the collection
let newProc = if(newRep>0) { [[newRep, default]] } else { [] };
let procs = state.get(0).mergeAfter(newProc);

// Execute all processes from self and neighbors, aligning on ID using
// alignedMap(argument, filter, function to run, default value)
procs = alignedMap(nbr(processes),

(replicate, value) -> { replicate >= state.get(1) }, // Ignore old
(replicate, value) -> { process.apply() }, // Execute process
default);

// Prune to keep only the newest k and update the state
procs = procs.subTupleEnd(max(0, procs.size() - k));

[procs, procs.map((x) -> {x.get(0)}).fold(min)]
}.get(0); // Return tuple of [replicate numbers, state] tuples

}

In essence, this maintains two pieces of state: the first is a set of running process
replicates, each identified by its replicate number, i.e., the first is replicate 1,
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Fig. 2. Example of process replicates created by timeReplicated: here four replicates
(purple boxes) are running on various subsets of a linear network of five devices (A-E)
with k = 3, with communication between instances aligned by replicate number via
alignedMap (purple arrows). Devices A and C have independently started replicate #6,
and its instances are spreading new instances to other devices (greyed boxes), merging
together as they go. Since k = 3, the arrival of replicate #6 also deletes replicate #3
and blocks its spread (red Xs). (Color figure online)

the second replicate 2, etc. The second piece of state is the oldest allowed repli-
cate number, which rises over time as new replicates are created and old ones
are discarded.

Every round, each device consults a “shared timer” function to determine
whether it should locally launch a new replicate, and if the answer is yes (which
happens somewhere in the network at least once every p seconds) then it appends
the new replicate with its new, higher identifier, to the end of the current set of
processes. This set of replicates are run across the network, using the alignedMap
primitive to safely encapsulate each replicate, as well as to spread replicates to
any other device where such replicates have not already been deemed too old
and to merge replicates with other independently launched instances with the
same replicate number (Fig. 2).

The sharedTimer function is implemented to coordinate with processes
spreading via alignedMap as follows:

def sharedTimer(p,procs) {
let newReplicate = 0;

rep(state <- [0,0]) { // [top rep #, time remaining], start rep 1 immediately
// Compare state replicate to maximum replicate number from elsewhere
let maxID = max(state.get(0), procs.map((x)->{x.get(0)}).fold(max));
// When advanced by extension of a process from elsewhere, reset timer.
if(maxID > state.get(0)) { [maxID, p]

// When timer expires, signal, advance replicate number, and reset timer.
} else { if(state.get(1) <= 0) { newReplicate = maxID+1; [maxID+1, p]

// Otherwise, count down toward timer expiring
} else { [state.get(0), state.get(1) - self.dt()] }}

};
newReplicate // Return zero if nothing changes, otherwise new replicate number

}



Improving Gossip Dynamics Through Overlapping Replicates 197

In essence, this tracks the highest replicate number currently known and the
time remaining until a new replicate should be launched. If a spreading process
introduces a new replicate, then the replicate number is updated1 and the timer
is reset since a local launch has been pre-empted by an external launch. If, on
the other hand, the timer runs out, then this device will launch a new replicate,
possibly in parallel with other devices elsewhere.

Thus, a set of distributed timed replicates can be executed without any
requirement for synchronization, effectively being launched in either one or many
places at the same time, with faster-running devices pulling slower-running
devices along after them, i.e., new replicates will tend to be initiated by the
device(s) with the fastest clocks. It does not matter where or how many devices
launch replicates, since all independent launches with the same number will end
up merging in the alignedMap.

Whenever the addition of new processes (either locally or by spreading from
neighbors) results in there being more than k processes, the oldest are discarded
to reduce the number back down to k, and the oldest allowed replicate number
updated accordingly. This prevents “old” processes from spreading back into
devices where they have already been discarded and ratches the overlapping set
of replicates forward incrementally over time.

Ultimately, the replication function returns a tuple of the replicate numbers
and values of all currently running replicates. The time-replication algorithm
may thus simply be applied to instantiate time-replicated gossip as follows:

timeReplicated(() -> gossip(f, x), x, p, k)

In other words, it replicates the distributed process gossip(f, x) with process
default values taken from x, launch period p and number of replicates k.

In order to apply this approach to improving the dynamics of gossip algo-
rithms, the following questions remain: what are the optimal values for p and k,
and how should the values of v returned by each of the different replicates be
combined in order to produce the best possible estimate of the true aggregate
value v? In the next section, we will address these questions through analysis of
the dynamics of gossip.

4 Analysis

The replication approach that we have proposed begins with the intuitive notion
that we can avoid large transients and also bound algorithm state by keeping
some replicates running while new replicates are started and come to stabilize.
Now, let us analyze the process by which replicates launch and stabilize to new
values in order to determine how many replicates to create, how frequently to
1 Note that the algorithm is defined in terms of an unbounded integer; in implementa-

tions where there is a desired to use integers with few enough bits to make overflow a
realistic possibility, strategies such as lollipop numbering [18] can be used to maintain
ordering.
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launch new replicates, and how to best make use of the values across multiple
replicates.

For this analysis, let us consider an unchanging set of stationary devices,
which thus form a fixed network graph of diameter d. Devices execute at the
same rate but without any synchronization in phase, sending state updates of
all of the values in nbr statements to one another once every t seconds. Given
the simplicity of the algorithm, we will assume that there is no delay between
the time when a device begins to execute a round and the time when its updated
values arrive at its neighbors.2

Fig. 3. Illustration of a case in which a new gossip replicate takes the maximum of
4td seconds for error from the initial transient to resolve, on a linear network of four
devices. Here, gossip is computing the maximum value with f = max(a, b), input x
is shown as the left number in each device, and v the right number, which is only
instantiated where the replicate is running (blue devices), and not where it has not
yet launched (grey devices), and change in each round is indicated in red. The delay is
caused by the new replicate launching only at the opposite end of the network from the
highest value, and thus the value at this device cannot be correct until the replicate has
had time to propagate its launch all the way to the right and for the maximum value to
work its way back all the way to the left with, if devices are maximally desynchronized,
a delay of 2t per hop. (Color figure online)

If devices are perfectly out of synchrony with one another, then it may take
up to 2t seconds for a message from one device to affect the state of its neighbors.
With the right arrangement of states, it may thus take up to 2td seconds for
gossip replicates to be launched on all devices in the network, with the replicate
starting at a single device and spreading to each other device just as its own
launch timer expires.
2 Our analysis may be generalized to devices with drifting clocks and non-trivial exe-

cution and transmission time by taking t to be the round length plus execution and
transmission delay at the slowest device.
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Likewise, the value of a gossip algorithm may have an unboundedly high error
at any given device until there has been time enough for information to arrive at
that device from every other device, another delay of 2td seconds. Consider, for
example, gossiping f = max(a, b) when one device has an input of x = 1000 and
all other devices have value x = 0: every device would stay at v = 0 until the
information from the one x = 1000 device reached it, at which point it would
instantly leap to v = 1000.

Thus, for the first 4td seconds after a new gossip replicate begins (i.e., the
maximum round-trip time for information to propagate across the network, as
Fig. 3 points out), the value of v at any given device may have an unboundedly
large “transient” error with respect to its converged value and should not be
used.

This gives us a lower bound on when the value computed by a gossip repli-
cate should be used; let us turn now to the opposite side, and consider when
the information of a gossip replicate becomes redundant and can be discarded.
Consider two sequential replicates of gossip, replicate i and replicate j, where
j = i + 1. If xτ ′,δ′ is the value of x at time τ ′ and device δ′, then for any given
device δ at time τ , we can partition the set of all values of xτ ′,δ′ into three
subsets:

– xIJ are those values used by both replicate i and replicate j.
– xI are those values used by replicate i but not by replicate j, i.e., those that

appeared before replicate j launched.3

– x0 are those values used by neither replicate.

Because the gossip function f is idempotent and commutative, we can thus
reorganize the computation of the output values of the two replicates as:

vτ,δ,i = f(f(xI), f(xIJ )) (1)
vτ,δ,j = f(xIJ ) (2)

abusing notation to consider f(X) as f applied in arbitrary order to combine all
members of set X. By the idempotence and property of f , it must be the case
that vτ,δ,i = vτ,δ,j unless there are values in xI that are not in xIJ .

Thus, we have that, once replicate j is past its initial transient (i.e., every
device has been affected by the value of every other device) the outputs of
replicate i and replicate j must be identical, except in the case where the value
of replicate i is being affected by input values of xτ ′,δ′ from before the launch
of replicate j at δ′. Since ignoring such “obsolete” values is the entire point of
replication, we thus see that as soon as a replicate has passed its initial transient,
there is no reason to consider the output of any older replicate: the older replicate
must be either identical or obsolete.

From these deductions, we now have answers to two of our questions about
replication. First, only the output value v of the oldest replicate should be used.

3 Note that no values can be used by replicate j but not replicate i, because replicate
j cannot be launched on any device before replicate i is also launched at that device.
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Second, replicates should be retained only until the next replicate has stabilized,
at which point they are obsolete and may be discarded. More precisely, we may
state this relationship in the form of an equation:

p =
4dt

(k − 1)
(3)

In other words, with one replicate providing the current “safe” estimate for v
and k −1 later replicates maturing, with each replicate taking up to 4dt seconds
to mature, replicated gossip can sustain a steady state in which one replicate
matures every 4dt

(k−1) seconds.
What remains is the question of the size of k, or conversely of p. Unlike

the other relations that we have considered, however, there is no optimal choice
here, but rather a tradeoff between the speed with which obsolete information
can be removed from a gossip and the number of replicates being maintained
(with accompanying requirements for communication, computing, and memory
resources). Thus, once a choice has been made for either k or p, the optimal
value for the other parameter can be determined with the aid of any conservative
estimate of the diameter of the network. Prioritizing the number of replicates, as
diameter may often change dynamically over time, we can implement replicated
gossip in Protelis as follows:

def tr_gossip(f, x, k, d) {
// Compute p by Eq. 3
let p = 4 * d * self.dt() / (k - 1);

// Run replicated gossip and return the value from the oldest replicate (first tuple)
timeReplicated(() -> gossip(f, x), x, p, k).get(0).get(1).

}

In terms of managing the tradeoff between number of replicates and speed
of adaptation, from Eq. 3, we can see that the duration a replicate will persist
(and thus potentially obsolete gossip inputs as well) will be k+1

k · 4dt. Thus, if
the minimum of two replicates is used, then obsolete information can persist for
up to 8dt seconds, while if the number of replicates is allowed to grow without
bound, the minimum time for obsolete information to persist is 4dt. In between,
a small handful of replicates is likely all that is necessary to get to a point where
the diminishing returns on adaptation speed are not worth the additional cost
in communication.

In practice, the better the estimate of diameter, the closer to optimal the
tradeoff between adaptation speed and size can be made. Likewise, improvements
in synchronization guarantees between devices may reduce the conservative 4dt
closer toward the theoretical minimum of dt.

5 Experimental Validation of Performance

We now validate the performance of time-replicated gossip in simulation, com-
paring the performance for three representative gossip functions against several
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(a) τ = 0 (b) τ = 20

Fig. 4. Simulations are run on a unit disc graph over devices moving via Lévy walks
from a random initial distribution: (a) shows a typical initial network and (b) the
modified network after 20 rounds of simulation.

prior methods. All experiments have been performed using the Alchemist simu-
lator [19] and Protelis algorithm implementations4.

5.1 Experimental Setup

For our experiments, we compare the computation of three gossip functions,
chosen as representative typical applications of gossip: The three gossip func-
tions are minimum (f = min(a, b)), logical AND (f = and(a, b)), and estimated
mean (using the method presented in [16]5). We compared the execution of
time-replicated gossip (defaulting to k = 5) on these gossip functions with four
representative prior methods for estimating aggregate functions, two gossip and
two non-gossip:

1. Gossip: the baseline algorithm, as defined in Sect. 2, and never restarted.
2. R-Gossip: gossip restarted periodically, as discussed in Sect. 2, implemented

by time-replicated gossip with k = 1.
3. C+G: estimate is computed over a spanning tree, then broadcast from the

root; the name is taken from the particular implementation we use, which
combines the C and G “aggregate building blocks” from [4].

4. Laplacian-based consensus (mean only): incrementally estimates mean
xδ,τ by in each round adding to the current estimate α times the difference
with the neighbor’s estimates and the current xδ,τ (using α = 0.04, which is
expected to be fast yet stable per [17]).

All algorithms are executed in parallel on a simulated network of n devices
distributed within a circular arena, each device uniquely identified by numbers
4 Full code at: https://bitbucket.org/danysk/experiment-2016-coordination.
5 Note that this method uses random numbers, so in order to ensure that replicates are

identical except when given different inputs, we seed the pseudorandom generators
identically for all replicates on a given device.

https://bitbucket.org/danysk/experiment-2016-coordination
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0 to n− 1. Devices execute unsynchronized, with random phase but at the same
rate t = 1. Devices communicate with all other devices within 1 unit distance,
and the radius of the arena is chosen as

√
n
m , such that every device will have

an expected m neighbors. In particular, we use m = 15 neighbors, a value that
ensures the network is mostly well-connected and that d = 2

√
n
m is a reasonable

estimate of its diameter. Initial positions are selected uniformly randomly, and
thereafter devices move randomly within the circular arena following a speed s
reactive Lévy walk [2]. Figure 4 shows snapshots of an initial deployment and
its evolution. Except where otherwise noted, simulations use n = 100, giving an
estimated diameter of just over 5 hops and s = 0.05, meaning that a device is
expected to move a length equal to the diameter of the arena in a little over 100
rounds, and for each condition use 40 simulation runs of 300 rounds each.

Our experiments challenge adaptation dynamics by using a set of input values
xδ,τ that are spatially correlated and have two large discontinuous changes across
both space and time. For the mean and minimum functions xδ,τ is defined as:

– τ < 100: Devices on the left half of the arena at τ = 0 have xδ,τ = 2, while
those on the right have xδ,τ = 4, except device 1 has xδ,τ = 1

– 100 ≤ τ < 200: Devices on the left half of the arena at τ = 100 have xδ,τ = 6,
while those on the right have xδ,τ = 3, except device 1 has xδ,τ = 50

– 200 ≤ τ : Devices on the left half of the arena at τ = 200 have xδ,τ = 2, while
those on the right have xδ,τ = 4, except device 1 has xδ,τ = 1

For logical AND, all devices have xδ,τ = true except that device 0 is false for
the first 100 rounds and device 1 is false for the final 100 rounds.

5.2 Convergence Dynamics

First, we examine a single simulation run in order to compare in detail the
dynamics by which time-replicated gossip converges to a correct value against the
convergence dynamics of the alternative algorithms. Figure 5 shows the evolution
of mean value and mean root mean squared error (RMSE) across all devices for
each function. As predicted, time-replicated gossip is safe from any unexpected
transients, tracking to the correct value after a short delay. When the new value
follows the monotonic direction of the function this is very fast (as in the second
transition for minimum and logical AND); otherwise is must wait the full pk
delay for all affected replicates to be discarded.

Non-restarted gossip, by contrast, can never discard old information, and thus
cannot adapt during the 100–200 time interval, while non-replicated restarting
gossip adapts quickly but experiences periodic sharp error transients at every
restart. Laplacian consensus exhibits a smooth but very slow convergence, since
values are not homogeneously distributed [9], and error never reaches zero, indi-
cating that the apparently good mean value actually represents not correct val-
ues but balanced distribution of overestimates and underestimates. Finally, C+G
continuously tries to converge to the correct value, but its tree structure contin-
ually gets disrupted by changes in the network structure, and therefore it shows
a strong and variable error throughout the whole experiment.
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(a) Value for estimated mean (b) RMSE for estimated mean

(c) Value for minimum (d) RMSE for minimum

(e) Value for logical AND (f) RMSE for logical AND

Fig. 5. Evolution of mean value across devices (a,c,e) and root mean squared error
(RMSE) (b,d,f) for the three functions under test: estimated mean (a,b), minimum
(c,d), and logical AND (e,f).

5.3 Effect of Varying of k and p

Our analysis in Sect. 4 identified an optimal conservative relationship between
number of replicates k and replicate period p given a particular network diameter
d. In practice, however, network diameter may frequently change and can be
costly or difficult to estimate precisely, so it is important that estimation not be
badly effected by the use of suboptimal parameters.

As the analysis was quite conservative, we should expect that as the duration
covered by replicates is reduced (e.g., by reducing either k or p while holding the
other fixed), error should gradually decrease as the delay to adapt is reduced. At
some point, however, the transients of new replicates will not have had time to
resolve and error will increase. Complementarily, increasing the duration covered



204 D. Pianini et al.

(a) Varying k for estimated mean (b) Varying p for estimated mean

(c) Varying k for minimum (d) Varying p for minimum

(e) Varying k for logical AND (f) Varying p for logical AND

Fig. 6. Effect of varying number of replicates k (a,c,e) and replication period p (b,d,f)
on mean RMSE. The red vertical line marks the value (for k and p respectively) that
is suggested by our analysis. Non-restarted gossip and single-replicate restarting gossip
(with restart time equal to p) are plotted for comparison. Error bars indicate the
standard deviation of the average RMSE across the 40 simulation runs. (Color figure
online)

by replicates will not expose transients but will increase error incrementally as
the delay to adapt increases.

Figure 6 shows the results of testing these hypotheses against k varying from
1 to 20 and p varying geometrically from 1 to 100. As predicted our analysis is
shown to be quite conservative: error in fact decreases with decreasing k and p
until the very smallest values. Likewise, it increases smoothly with increasing k
or p until it is so high that it saturates the experimental conditions and in some
cases actually begins to decrease due to aliasing. As such, it appears that in
practice the values for p can indeed be set significantly more aggressively than
the bound computed in Sect. 4.
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(a) Varying n for estimated mean (b) Varying s for estimated mean

(c) Varying n for minimum (d) Varying s for minimum

(e) Varying n for logical AND (f) Varying s for logical AND

Fig. 7. Resilience of time-replicated gossip to changes in network size and volatility:
its mean RMSE over time is not significantly degraded by varying number of devices n
(a,c,e) or speed s (b,d,f), while other algorithms perform worse except under extreme
conditions. Error bars indicate the standard deviation of the average RMSE across the
40 simulation runs.

Paradoxically, restarting gossip actually improves its performance as p
increases, but due to the fact that less frequent restarts mean that its values
are less often disrupted by transients. Thus, when the values of k and p are far
from optimal, the mean error of replicated gossip is worse than restarting gossip
and occasional transients may actually be less disruptive than overly long delays
waiting for adaptation, depending on application.

5.4 Resilience to Network Size and Volatility

Finally, we tested how well time-replicated gossip scales to larger networks and
adapts to differences in network volatility by changing the number of devices n
and speed s. For each parameter, we evaluated a geometric distribution of nine
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values across two orders of magnitude, ranging n from 10 to 1000 and s from
0.05 to 0.5, respectively. Results are shown in Fig. 7.

Since increasing the number of devices increases the diameter in our exper-
iments, the time-replicated gossip should degrade incrementally due to the
increased time before old replicates can be safely discarded, and indeed this
is what is observed. In larger networks, therefore, the mean advantage of time-
replicated gossip over other approaches decreases, and in fact in the conditions
we evaluate it is slightly outperformed by the faster but more volatile methods
for estimated mean. In some circumstances, however, delay may still be prefer-
able to unpredictable transients.

Higher speed of devices is expected to affect the network by decreasing its
effective diameter but increasing the frequency of topology changes. Neither of
these should affect time-replicated gossip, given its conservative diameter esti-
mate, and indeed speed appears to have no significant effect on its performance.
Single-replicate restarted gossip and Laplacian averaging, on the other hand,
benefit greatly from a reduced effective diameter that decreases the transients
they suffer, while C+G performs worse as the amount of topological disruption
increases.

6 Contributions and Future Work

In this paper, we have introduced a time-replication method that significantly
improves the dynamical performance of gossip-based distributed state estima-
tion. Analysis bounds the time to maintain replicates by the round-trip time
of information across the network and identifies an adjustable tradeoff between
improved performance and number of replicates, and these conclusions are vali-
dated by experiments in simulation.

Future work can further improve performance by enabling tighter self-
adjustment of parameters. In particular, a network diameter estimation algo-
rithm, improved synchronization, and monitoring of transient length can all be
employed to decrease the required replication interval, thereby allowing faster
adaptation. Second, time-replicated gossip can be applied to any number of
systems in which gossip is being used, in order to improve their performance.
Finally, the generic nature of the time-replication algorithm we have introduced
makes it a candidate for future studies to evaluate if and how time-replication
can be used to improve other classes of distributed algorithms.
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Abstract. In the context of the expansion of actors and active objects,
we are still facing a gap between the safety guaranteed by modelling
and verification languages and the efficiency of distributed middlewares.
In this paper, we reconcile two active object-based languages, ABS and
ProActive, that respectively target the aforementioned goals. We com-
pile ABS programs into ProActive, making possible to benefit from
the strengths of both languages, while requiring no modification on the
source code. After introducing the translational semantics, we establish
the properties and the correctness of the translation. Overall, this paper
presents an approach to running different active object models in dis-
tributed environments, and more generally studies the implementation
of programming languages based on active objects.

1 Introduction

Writing distributed and concurrent applications is a challenging task. In dis-
tributed environments, the absence of shared memory makes information shar-
ing more difficult. In concurrent environments, data sharing is easy but shared
data must be manipulated with caution. Several languages and tools have been
developed to handle those two programming challenges and make distributed
and concurrent systems safe by construction. Among them, the active object
programming model [18] helps building safe multi-core applications in object-
oriented programming languages. The active object model derives from the actor
model [1] that is particularly regaining popularity with Scala [11] and Akka1.
Such models are natively adapted to distribution because entities do not share
memory and behave independently from each other.

There exist now several programming languages implementing and enhanc-
ing in various ways the active object and actor models. In particular, emerging
active object languages, like the Abstract Behavioral Specification language [15]
(hereafter ABS), provide various programming abstractions or static guarantees
that help the developer designing and implementing robust distributed systems.

1 http://akka.io.
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Among existing implementations of active objects, ProActive2 is a Java middle-
ware implementing multi-threaded active objects that provides a holistic support
for deployment and execution of active objects on distributed infrastructures.
This paper reconciles cooperative active object languages by translating their
main concurrent paradigms into ProActive, thus benefiting from its support for
deployment. We illustrate our approach on ABS, which has a wide support for
modelling and verification. We translate all the concurrent object layer of ABS
into ProActive. We also introduce in this paper Multiasp, a formal language
that models ProActive, in order to verify the translation.

Beyond the generic high-level approach to cross-translating active object lan-
guages, the practical contribution of this paper is a ProActive backend for ABS,
that automatically translates an ABS application into a distributed ProActive
application. As a result, the programmer can design and verify his program using
the powerful toolset of ABS, and then generate efficient distributed Java code
that runs with ProActive. The proof of correctness of the translation ensures the
equivalence of execution in terms of the operational semantics. Consequently, it
guarantees that the verified properties dealing with the program behaviour (e.g.
absence of deadlocks, typing properties) will still be valid. Our approach requires
no change in the ABS code except the minimal (required) deployment informa-
tion. Overall, our contribution can be summarised in four points:

– We analyse existing active object programming paradigms in Sect. 2.
– We provide Multiasp, a class-based semantics of the multi-threaded active

objects featured in ProActive in Sect. 3.
– We present a systematic strategy to translate active objects with coopera-

tive scheduling into ProActive, and present more specifically the ProActive
backend for ABS in Sect. 4. The translation is formalised in Sect. 5.

– We prove translation equivalence in Sect. 6 and highlight similarities and dif-
ferences between active object models. In particular the proof of equivalence
reveals intrinsic differences between explicitly typed futures and transparent
first-class futures.

2 Background and Related Works

The actor model was one of the first to schematically consider concurrent entities
evolving independently and communicating via asynchronous messages. Later
on, active objects have been designed as the object-oriented counterpart of the
actor model. The principle of active objects is to have a thread associated to
them. We call this notion activity : a thread together with the objects man-
aged by this thread. Objects from different activities communicate with remote
method invocations: when a method is invoked on a remote active object, this
creates a request in the remote activity; the invoker continues its execution while
the invoked active object serves the request asynchronously. Requests wait in a
request queue until they are executed. In order to allow the invoker to continue
2 http://proactive.inria.fr/.

http://proactive.inria.fr/
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execution, a placeholder for the expected result is created, known as future [9]:
an empty object that will later be filled by the result of the request. When the
value of a future is known, we say that it is resolved.

2.1 Design Choices for Active Object-Based Languages

Implementing active objects raises the three following questions:

How are Objects Associated to Activities? In uniform active object models, all
objects are active and have their own execution thread (e.g. Creol [16]). This
model is distinguished from non uniform active object models which feature
active and passive objects (e.g. ASP [6]). Each passive object is a normal object
not equipped with any thread nor request queue; there is no race condition on
the access to passive object because each of them is accessible by a single active
object. In practice, non uniform active object models are more scalable, but they
are trickier to formalise than uniform active object models. A trade-off between
those two models appeared with JCoBox [20] that introduced the active object
group model, where all objects are accessible from any object, but where objects
of the same group share the same execution thread.

How are Requests Scheduled? The way requests are executed in active objects
depends on the threading model used. In the original programming model, active
objects are mono-threaded. With cooperative scheduling like in Creol, requests
in execution can be paused on some condition (e.g. awaiting on the resolution
of a future), letting another request progress in the meantime. In all coopera-
tive active object languages, while no data race is possible, interleaving of the
different request services (triggered by the different release points) makes the
behaviour more difficult to predict than for the mono-threaded model. Still, the
previous models are inefficient on multi-cores and can lead to deadlocks due to
reentrant calls and/or inadequately placed release points. Newest active object
models like multiactive objects [12] and Encore [5] feature controlled multi-
threading. Such active object models succeed in maximising local parallelism
while avoiding communication overhead, thanks to shared memory between the
different threads [12]. Also, controlled multi-threading prevents many deadlocks
in active object executions.

Is the Programmer Aware of Distributed Aspects? Existing implementations of
active objects either choose to hide asynchrony and distribution or, on the con-
trary to use an explicit syntax for handling asynchronous method calls and to
use an explicit type for handling futures. This makes the programmer aware
of where synchronisation occurs, but consequently requires more expertise. The
choice of transparency also impacts the language possibilities, like future refer-
ence transmission: it is easier to transmit futures between active objects when
no specific future type is used, and the programmer does not have to know how
many future indirections have to be unfolded to get the final value.
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g b x? g g guard
s skip x z suspend await g statement

return e if e s else s s ; s
z e e.m e e!m e new cog C e x.get expression with side effect
e v x this arithmetic-bool-exp expression
v null primitive-val value

Fig. 1. Class-based syntax of the concurrent object layer of ABS. Field access is
restricted to current object (this).

2.2 Overview of Active Object-Based Languages

Creol [16] is a uniform active object language that features cooperative schedul-
ing based on await operations that can release the execution thread. In this
language, asynchronous invocations and futures are explicit, and futures are not
transmitted between activities. De Boer et al. formalised such futures based on
Creol in [4]. Overall, explicit future access, explicit release points, and explicit
asynchronous calls make Creol rich and precise but also more difficult to program
than the languages featuring more transparency.

JCoBox [20] is an active object programming model implemented in a lan-
guage based on Java. It has an object group model, called CoBox, and also fea-
tures cooperative scheduling. In each CoBox, a single thread is active at a time;
it can be released using await(). JCoBox better addresses practical aspects than
Creol: it is integrated with Java and the object group model improves thread scal-
ability, however JCoBox does not support distributed execution. Thread inter-
leaving is similar and has the same advantages and drawbacks as in Creol.

AmbientTalk [7] is an object-oriented distributed programming language that
can execute on the JVM. One original aspect of AmbientTalk is that a future
access is a non-blocking operation: it is an asynchronous call that returns another
future; the call will be performed when the invoked future is resolved. The Ambi-
entTalk future model forces two activities to coordinate only through callbacks.
This inversion of control has the advantage to avoid deadlocks but also breaks
the program into independent procedures where sequences of instructions are
difficult to enforce.

ABS [15] is an active object-based language that targets modelling of dis-
tributed applications. The fragment of the ABS syntax regarding the concurrent
object layer is shown on Fig. 1. ABS has an object group model, like JCoBox,
based on the notion of concurrent object group (hereafter cog). Asynchronous
method calls and futures are explicit:

1 Fut<V> future = object!method();

Figure 2 pictures an ABS configuration with a request sending between cogs.
Requests are scheduled in a cooperative manner thanks to the await keyword,
inspired from Creol and JCoBox and used as follows:

1 await future?; await a > 2 && b < 3;
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Fig. 2. An example of ABS program execution

In those examples, the execution thread is released if the future is not resolved
or if the condition is not fulfilled. ABS also features a get accessor to retrieve a
future’s value; it blocks the execution thread until the future is resolved:

1 V v = future.get;

The ABS tool suite3 provides a wide variety of static verification engines
that help designing safe distributed and concurrent applications. Those engines
include a deadlock analyser [10], resource, cost, and deployment analysers for
cloud environments [2,17], and general program properties verification with the
ABS-Key tool [8]. The ABS tool suite also includes a frontend compiler and sev-
eral backend translators into various programming languages. The Java backend
for ABS translates ABS programs into concurrent Java code that runs on a
single machine. The Haskell backend for ABS [3] performs the translation into
distributed Haskell code. The ABS semantics is preserved thanks to the thread
continuation support of Haskell, which is not supported on the JVM.

ASP and ProActive. Asynchronous Sequential Processes (ASP) [6] is a mono-
threaded active object programming language that has a non-uniform object
model. In ASP, active objects are transparent to the programmer and futures are
created and manipulated implicitly. A wait-by-necessity is triggered upon access
to an unresolved future. Futures are first class: they are transparently passed and
updated across activities. ProActive is the Java library that implements ASP.
ProActive is a middleware that supports application deployment on distributed
infrastructures such as clusters, grids and clouds. The program below creates
explicitly an active object using newActive instead of new. The variable v stores
an implicit future that is the result of a (transparent) asynchronous call.
1 T t = PAActiveObject.newActive(T.class, parameters, node);
2 V v = t.bar();
3 o.foo(v); // does not block even if v is unresolved (o is any active or passive object)
4 v.foobar(); // blocks if v is unresolved

Recently, ProActive integrated multiactive objects [12] to enable multi-threaded
request processing. Multiasp, presented in the next section, is an update of ASP
and thus formalises the new version of ProActive. In practice, a programmer
declares which requests of an active object can safely be executed in parallel,
namely which requests are compatible, as shown in the following example:

3 http://abs-models.org/.

http://abs-models.org/


From Modelling to Systematic Deployment of Distributed Active Objects 213

1 @Group(name="group1", selfCompatible=true)
2 @Group(name="group2", selfCompatible=false)
3 @Compatible({"group1", "group2"})
4 public class MyClass {
5 @MemberOf("group1") public ... method1(...) { ... }
6 @MemberOf("group2") public ... method2(...) { ... }
7 }

In this example, a request for method1 can be executed at the same time as a
request for method2, but two requests for method2 cannot be executed at the
same time. With similar annotations, it is also possible to set a limit on the
number of threads running in parallel [13]. The limit can be applied in two
ways: a hard limit restrains the overall number of threads whereas a soft limit
only counts threads that are not in wait-by-necessity.

Encore. Encore [5] is an active object-based parallel language currently in devel-
opment. Encore features active and passive objects but even if passive objects are
private by default, they can be shared at different scales depending on qualify-
ing keywords. Asynchronous calls are transparent for active objects (by default)
but futures are explicit, using a dedicated type. Finally, an active object has a
single thread of execution by default, but parallelism is automatically created
by attaching callbacks to future updates and using parallel combinators.

2.3 Positioning of This Work

The reason why there are many different implementations of the active object
programming model is to better fit particular objectives, from reasoning about
programs to optimised program execution. Implementations that focus on the
deployment of real-world systems comply to constraints related to existing execu-
tion platforms and languages. They are mostly used by programmers interested
in the performance of the application. ProActive and Encore typically fit in this
category. On the other side, some active object languages target verification and
proof of programs, but have not been originally designed for efficient execu-
tion, like typically ABS and Creol. They are massively used and developed by
academics and less constrained by existing execution platforms.

We give a proven translation of ABS programs into ProActive code in order
to reconcile both domains: verified applications also have the right to be run effi-
ciently. We also study the generalisation of our approach to other active object
languages. Overall, our objective is to show that generic active object abstrac-
tions can be correctly encoded with different active object implementations.

3 Class-Based Semantics of MultiASP

We start by introducing the semantics of Multiasp4, the calculus represent-
ing ProActive and multiactive objects. Unlike the preliminary formalisation of
multiactive objects in [12], we present here a class-based formalisation and the
formalisation of threading policies. Multiasp is an imperative programming lan-
guage and its syntax is close to the one of ABS.
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P C x ; s program
S m x method signature

C class C x x M class
M S x s method definition
s skip x z return e s ; s statement
z e e.m e new C e newActive C e expression with side effects
e v x this arithmetic-bool-exp expression
v null primitive-val value

Fig. 3. Class-based static syntax of Multiasp

v o α . . .
elem fut f, v, σ fut f, act α, o, σ, p,Rq

cn elem
E � s
F E E F

p q F

Storable x v v f

σ o Storable
q f,m, v

Rq q Rq
� this v, x v
s x . . .

Fig. 4. Runtime syntax of Multiasp

Syntax of Multiasp. Fig. 3 shows the static syntax of Multiasp. A program
is made of classes and a main method. x denotes local variables in method
bodies and object fields in class declarations. There are two ways to create an
object: new creates a new object in the current activity, and newActive creates a
new active object. e.m(e) is the generic method invocation, there is no syntactic
distinction between local and remote (asynchronous) invocations. Similarly, as
synchronisation on futures is transparent and handled with wait-by-necessity,
there is no particular syntax for interacting with a future. A special variable
this exists for accessing the current object.

Semantics of Multiasp. Multiasp semantics is defined as a transition relation
between configurations, noted cn, and for which the runtime syntax is displayed
in Fig. 4. At runtime, the dynamic configuration of a Multiasp program consists
of a set of activities and a set of futures. The transition relation uses three
infinite sets: object locations in the local store, ranged over by o, o′, ⋯; active
objects names, ranged over by α, β, ⋯; and future names, ranged over by f ,
f ′, ⋯. Activities are of the form act(α, o, σ, p,Rq) where α is an activity name;
o is the location of the active object in σ; σ is a local store mapping object
locations to storable values; p is a set of requests currently served (a mapping
from requests to their thread F); and Rq is a FIFO request queue of requests
awaiting to be served. A thread is a stack of methods being executed, and each
method execution E consists of local variables � and statement s to execute. The
first method of the stack is the one that is executing, the others have been put
in the stack due to local synchronous method calls. � is a mapping from local
variables (including this) to runtime values. A configuration also contains future
4 Formalised in Isabelle/HOL: www-sop.inria.fr/members/Ludovic.Henrio/misc.html.

www-sop.inria.fr/members/Ludovic.Henrio/misc.html
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binders. They are of two forms: fut(f,�), meaning that the value for the future
has not been computed yet, and fut(f, v, σ), when the reply value is known; if it
is an object (and not a static value), then v will be its location in the store σ.

An object o is fresh if it does not exist in the store in which it is added.
Similarly, a future or an activity name is fresh if it does not exist in the current
configuration. Runtime values (v, ⋯) can be either static values, object locations,
or active object names. An object is a mapping from field names to their values,
denoted [���⇀x↦ v]. We denote mappings by ��⇀↦ , and use union ∪ (resp. disjoint
union ⊎) over mappings. Mapping updates are of the form σ[x↦ v]. dom returns
the domain of a mapping. Storable values are objects, futures, or runtime values.

The following auxiliary functions are used in the semantic rules: [[e]]
(σ+�)

returns the value of e by computing the arithmetic and boolean expressions and
by retrieving the values stored in σ or �; the evaluation function is displayed
in Fig. 6. If the value of e is a reference to a location in the store, it follows
references recursively; it only returns a location if the location points to an
object or a future. [[e]]

(σ+�) returns the tuple of values of e. fields(C) returns
fields as defined in the class declaration C. bind initialises method execution:
bind(o,m, v′) = {

���⇀
y ↦ v′,

�����⇀
z ↦ null,this ↦ o ∣ s}, where the arguments of method

m, typed in the class of o, are y, and where the method body is {z; s}. ready is
a predicate deciding whether a request q in the queue Rq is ready to be served:
ready(q, p,Rq) is true if q is compatible with all requests in p (requests currently
served by the activity) and with older requests in Rq. Serialisation reflects the
communication style happening in Java RMI; it ensures that each activity has
a single entry point: the active object. Consequently, all references to passive
objects are serialised when communicated between activities, so that they are
always handled locally. serialise(o, σ) marks and copies the objects referenced
from o to deeply serialise, recursively; it returns a new store made of all the
objects that are referenced by o. serialise is defined as the mapping verifying
the constraints of Fig. 5. renameσ(v, σ′) renames the object locations appearing
in v and σ′, making them disjoint from the object locations of σ; it returns a
renamed set of values v′ and a store σ′′.

serialise o, σ
o σ o serialise σ o , σ

serialise x v , σ

v v serialise v , σ
serialise f, σ

serialise α,σ
serialise null, σ

serialise primitive-val, σ

Fig. 5. Serialisation

primitive-val σ � primitive-val

f σ �

α σ � α
null σ � null

x σ � � x σ � if x dom �
x σ � � this x σ � if x dom �
o σ � o if σ o f or σ o x v
o σ � σ o σ � else

Fig. 6. Evaluation function
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Assign-Local

x dom � v e σ �

act α, oα, σ, q � x e; s F p,Rq
act α, oα, σ, q � x v s F p,Rq

Serve

ready q, p,Rq q f,m, v bind oα,m, v � s

act α, oα, σ, p,Rq q Rq’ act α, oα, σ, q � s p,Rq Rq’

New-Active

fields C x o, γ fresh σ o x v serialise v, σ e σ � v

act α, oα, σ, q � x newActive C e ; s F p,Rq
act α, oα, σ, q � x γ; s F p,Rq act γ, o, σ , ,

Invk-Active

e σ � β e σ � v
f, o fresh σ1 σ o f vr, σr renameσ v, serialise v, σ σ σ σr

act α, oα, σ, q � x e.m e ; s F p,Rq act β, oβ , σ , p ,Rq
act α, oα, σ1, q � x o; s F p,Rq
act β, oβ , σ , p ,Rq f,m, vr fut f,

Update

σ o f vr, σr renameσ v, σ σ σ o vr σr

act α, oα, σ, p,Rq fut f, v, σ act α, oα, σ , p,Rq fut f, v, σ

Return

v e σ �

act α, oα, σ, f,m, v � e; sr p,Rq fut f,
act α, oα, σ, p,Rq fut f, v, serialise v, σ

Fig. 7. Semantics of Multiasp

Figure 7 shows the part of Multiasp semantics that regards active object
execution. Rules involving classical objects, namely object creation, field assign-
ment, passive invocation, and local return of method call have been removed due
to space limitation. The full Multiasp semantics can be found in the extended
version of this paper in [14]. In all cases, rules only show activities and futures
involved in the current reduction. Serve picks the first request that is ready in
the queue (compatible with executing requests and with older requests in the
queue) and allocates a new thread to serve it. It fetches the method body and
creates the execution context. Assign-Local assigns a value to a local vari-
able. If the statement to be executed is an assignment of an expression that can
be reduced to a value, then the mapping of local variables is updated accord-
ingly. New-Active creates a new activity that contains a new active object.
It picks a fresh activity name, and assigns serialised object parameters: the
initial local store of the activity is the piece of store referenced by the parame-
ters. Invk-Active performs an asynchronous remote method invocation on an
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active object. It creates a fresh future with undefined value. The arguments of
the invocation are serialised and put in the store of the invoked activity, possi-
bly renaming locations to avoid clashes. The special case α = β requires a trivial
adaptation of this rule (not shown here). Return is triggered when a request fin-
ishes. It stores the value computed by the request as a future value. Serialisation
is necessary to pack the objects referenced by the future value. Update updates
a future reference with a resolved value. This is performed at any time when a
future is referenced and the future value is resolved. Finally, the main effect of
the missing rules is to modify the local store (New-Object and Assign-Field)
and to affect the execution context (Invk-Passive and Return-Local).

Threading Policies. We extend the above semantics to specify the threading
policies featured in multiactive objects (see Sect. 2.2). First, we extend the syntax
of Multiasp so that the threading policy can be programmatically changed from
a soft limit, i.e. a thread blocked in a wait-by-necessity is not counted in the
limit, to a hard limit, i.e. all threads are counted in the limit:

s ∶∶= ... ∣ setLimitSoft ∣ setLimitHard

Each request q belongs to a group group(q). The filter p∣
g

gives, among the
active threads p, only requests of group g. There is a thread limit Lg defined
for each group. We tag each of the currently served request as either active or
passive. p contains then two kinds of served requests: active ones, noted qA ↦ F,
and passive ones, noted qP ↦ F. Active(p) returns the number of active requests
in p. Finally, each activity is either in a soft limit state written act(. . .)S (by
default at activity creation), or in a hard limit state written act(. . .)H . sh is a
variable ranging over S and H. Multiasp semantics is modified as follows:

– Each rule allowing a thread to progress requires now that the thread is active,
i.e. q is replaced by qA in all rules except Serve and Update.

– The rule Serve is only triggered if the thread limit is not reached, i.e. if
Active(p∣

group(q)
) < Lg. Similarly, a rule for activating a thread is added:

Activate-Thread

Group(q) = g Active(p∣
g
) < Lg

act(α, oα, σ,{qP ↦ F} ⊎ p,Rq)sh → act(α, oα, σ,{qA ↦ F} ⊎ p,Rq)sh

– There are two additional rules for switching the kind of limit, we show one
hereafter (Set-Soft-Limit is the reverse):

Set-Hard-Limit

act(α, oα, σ,{qA ↦ {� ∣ setLimitHard; s} ∶∶F} ⊎ p,Rq)sh

→ act(α, oα, σ,{qA ↦ {� ∣ s} ∶∶F} ⊎ p,Rq)H
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– If the kind of limit is a soft limit, a wait-by-necessity passivates the current
thread5; a rule for method invocation on a future is added:

Invk-Future

[[e]](σ+�) = o σ(o) = f

act(α, oα, σ,{qA ↦ {� ∣ x = e.m(e); s} ∶∶F} ⊎ p,Rq)S

→ act(α, oα, σ,{qP ↦ {� ∣ x = e.m(e); s} ∶∶F} ⊎ p,Rq)S

4 Example-Driven Translation Principles

In this section, we informally present the ProActive backend for ABS, that trans-
lates ABS programs into ProActive code. Basically, this section shows how the
formal translation that will be defined in Sect. 5 is instantiated in practice in
ProActive. This backend is based on the existing Java backend for ABS. We
keep the translation of the functional layer unchanged and provide a translation
of the object and concurrency layers.

Object Addressing and Invocation. To handle the differences between two active
object languages, one needs first to define what happens when a new object
(active or not) is created. As translating each ABS object into a ProActive
active object is not a viable solution (because it is not scalable and because it
requires a complex synchronisation of processes), we put several objects under
the control of one active object, which fits the active object group model of
ABS. To this end, in the translation, we introduce a class COG for representing
ABS cogs; only objects of the COG class are active objects in the ProActive
translation. We translate the ABS new statement that creates a new object in a
new cog:

1 Server server = new Server();

This instruction is translated into ProActive by the ProActive backend:
1 Server server = new Server();
2 COG cog = PAActiveObject.newActive(COG.class, new Object[]{Server.class}, node);
3 server.setCog(cog);
4 cog.registerObject(server);

Line 1 creates a regular server object. Lines 2 uses the newActive ProActive
primitive to create a new cog active object. Additionally to the constructor
parameters, ProActive allows the specification of the node onto which the active
object is deployed. Line 3 makes the local server aware of its cog. Finally in line
4, due to the ProActive by-copy parameter passing, the server object is copied
in the local memory space of the newly created remote cog, and is thus locally
accessible there. For objects created with new local in ABS, the ProActive
backend simply registers them locally in the current cog. To enable the same
object invocation model as in ABS, we use a two-level reference system in the

5 Wait-by-necessity occurs only in case of method invocation on a future since field
access is only allowed on the current object.
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ProActive translation: each cog is accessible by a global reference and each
translated ABS object is accessible inside its cog through a local identifier.
The pair (cog, identifier) is a unique reference for each object and allows the
runtime to retrieve any object. When objects are transmitted between cog (e.g.
as parameter of method invocations), a lightweight copy is transmitted by the
ProActive middleware; it can be used to reach the original object by using its
cog and identifier. As only the cog and the identifier are needed to reference an
ABS object, we tune the object serialisation mechanism so that only those fields
are transmitted between active objects, thus saving memory and bandwidth. The
same strategy can be applied to translate any language featuring active object
groups into non uniform active objects. For uniform active objects, creating one
active object per translated object handles straightforwardly the translation but
limits scalability; grouping several objects behind a same active object (proxy)
would produce a more efficient program.

In order to explain now how we translate ABS asynchronous method calls in
ProActive, consider the following ABS asynchronous method call:

1 server!start(param1, param2);

In ProActive such a call becomes a remote method invocation. In order to handle
it with our object translation model, we perform a generic method call (implicitly
asynchronous) named execute, on the cog of the translated server object:
1 server.getCog().execute(server.getId(), "start", new Object[]{param1, param2});

When run, the execute method of the COG class retrieves the target object
through its identifier and runs the start method on it by reflection with the given
parameters. Upon execute remote call, objects param1 and param2 are copied to
the memory space of the retrieved cog. Consequently, two copies of param1 and
param2 exist in the translation whereas only one of them exists in ABS. However,
if method calls occurs on them, the requests for those objects always go to the
cog that manages those objects. This callback ensures that only one copy of a
translated object is manipulated, like in ABS. Consequently, the behaviour by
reference of ABS-like languages can be simulated with the behaviour by copy of
ProActive. This mechanism is also applied for future updates.

Cooperative Scheduling. Active object languages often support special threading
models and have constructs to impact on the scheduling of requests. Those con-
structs can be translated into adequate request scheduling of multiactive objects.
For demonstration, we consider here the translation that the ProActive backend
gives for ABS await statements (representative of cooperative scheduling), and
for ABS get statements (representative of explicit futures).

- await statements on futures. An await statement on an unresolved futures
releases the execution thread, for example:

1 await startedFut?;

In order to have the same behavior in the ProActive translation, we force a
wait-by-necessity. We use the getFutureValue ProActive primitive to do that:
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1 PAFuture.getFutureValue(startedFut);

As in ProActive a wait-by-necessity blocks the thread, we need to configure the
ProActive cog class with multiactive object annotations (see Sect. 2.2) in order
to qualify the execute method and to specify a soft thread limit:
1 @Group(name="scheduling", selfCompatible=true)
2 @DefineThreadConfig(threadPoolSize=1, hardLimit=false)
3 public class COG {
4 ...
5 @MemberOf("scheduling")
6 public ABSValue execute(UUID objectID, String methodName, Object[] args) {...}
7 }

This configuration allows a thread to process an execute request while a current
thread that processes another execute request is waiting for a future. Indeed,
the hardLimit=false parameter ensures that the threads counted in the limit
(of 1 thread) are only active threads. In the example, the thread can be handed
over to another execute request if startedFut is not resolved, just like in ABS.

- get statements. The ABS get statement blocks the execution thread to retrieve
a future’s value, as for example on the previous future variable:

1 Bool started = startedFut.get;

The ProActive backend translates this ABS instruction into the following code:
1 getCog().switchHardLimit(true); // the retrieved COG is local: the call is synchronous
2 PAFuture.getFutureValue(startedFut);
3 getCog().switchHardLimit(false);

This temporarily hardens the threading policy (i.e. all threads are counted in
the thread limit) so that no other thread can start while the future is awaited.

- Other synchronisation constructs. We also tackled the translation of ABS
suspend statements and of await statements on conditions. In this paper, we
only provide the formal definition of their translation in Sect. 5. The details of
their translation into ProActive code can be found in [19].

Wrap Up and Applicability. In order to finalise the ProActive backend for ABS,
we add deployment information in the translation; for that we use the deploy-
ment descriptor embedded in ProActive: configuration files binding virtual nodes
to physical machines. On the ABS side, new cog is followed by the name of a
node for deployment. This is the only modification that ABS programs must
incur to be executed in a distributed way. An experimental evaluation (detailed
in the extended version of this paper in [14]) shows that a significant speedup
can be achieved by a distributed execution of an ABS program thanks to the
ProActive backend. It also shows that the program obtained with the ProActive
backend incurs an overhead of less than 10 % compared to a native ProActive
application.

We have presented in details the ProActive backend for ABS and discussed
the translation of common active object constructs. The concepts applied in the
case of ABS are generic and can systematically turn various active object lan-
guages into deployable active objects. As an example, JCoBox is similar enough
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to ABS so that the approach presented here is straightforwardly applicable.
The most challenging aspect is that JCoBox features a globally accessible and
immutable memory, which could be translated into one active object, or which
could rely on copies since the immutable property holds. Regarding Creol, in
which all objects are active, the best approach is to group several objects behind
a same proxy for performance reasons. Then, preserving the semantics of Creol
relies on a precise interleaving of local threads. The transposition to AmbientTalk
is trickier on the scheduling aspect, due to the existence of callbacks. However,
we found that a callback on a future can be translated as a request that is ready
to run but that starts by a wait-by-necessity on the adequate future.

5 Translational Semantics

This section formalises the translation given by the ProActive backend by intro-
ducing the translational semantics from ABS to Multiasp. We refer to Fig. 1
for the concurrent object layer of ABS. Runtime syntax and semantics of ABS
can be found in [14]. Most of the translation from ABS to Multiasp impacts
statements. The rest of the source structure (classes, interfaces, methods) is
unchanged except the two following:

(1) We define a new class COG. It has methods to store and retrieve local objects,
and to execute a method on a local object; UUID is the type of object identifiers:

Class COG {
UUID freshID()
UUID register(Object x, UUID id)
Object retrieve(UUID id)
Object execute(UUID id, MethodName m, params) { \\

w=this.retrieve(id); x=w.m(params); return x}
}

(2) All translated ABS classes are extended with two parameters: a cog parame-
ter, storing the cog to which the object belongs, and an id parameter, storing
the object’s identifier in that cog; methods cog() and myId() return those two
parameters; a dummy method get() that returns null is added to each object.

The translation of statements and expressions is shown in Fig. 8. Each of
them is explained below. Object instantiation first gets a fresh identifier from
the current cog. Then, the new object is created with the current cog and
the identifier6. It is stored in a reserved temporary local variable no. Finally,
the object is referenced in the current cog and stored in x. Object instantia-
tion in a new cog is similar to object instantiation in the current cog but
method invocations on newcog variable are asynchronous remote method calls.
The new object is thus copied to the memory space of the remote new cog

via the register invocation, before being assigned to x. Await future uses the
dummy get() method, that all translated objects have, in order to trigger the
wait-by-necessity mechanism and potentially block the thread if the future is not
6 The step in which the cog of the new object is set in ProActive is directly encoded

in the object constructor in Multiasp.
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resolved. Get future sets a hard limit on the current activity, so that no other
thread starts, and then restores the soft limit after having waited for the future.
Await on conditions performs sequential get() within an activity in soft limit.
Conditional guards are detailed later in this section. Asynchronous method call
retrieves the cog of the object and relies on the execute asynchronous method
call as described in Sect. 4. Synchronous local method call distinguishes two cases,
like in ABS. Either the call is local and an execution context is pushed in the
stack, or the call is remote and, like in ABS, we perform an asynchronous remote
method invocation and immediately wait the associated future within an activ-
ity in hard limit. Finally, instructions that do not deal with method invocation,
future manipulation, or object creation, are kept unchanged.

In the translation, there exist different multiactive object groups and each
group has its own thread limit. Group g1 encapsulates freshId requests; those
requests cannot execute in parallel safely, so g1 is not self compatible and can
only use one thread at a time. Group g2 gathers execute requests. It is limited to
one thread to comply with the threading model of ABS, and the requests are self
compatible to enable interleaving. Group g3 contains register requests that are
self compatible and that have an infinite thread limit. Concerning compatibility
between groups, they are all compatible except g3 and g2: their compatibility
is defined dynamically such that an execute request and a register request are
compatible only if they do not affect the same identifier. In summary:

group(freshId) = g1 group(execute) = g2 group(register) = g3
Lg1 = 1 Lg2 = 1 Lg3 = ∞

∀q, q′. (q ≠ q′ ≠ freshId() ∧ (∄id.q = register(x, id) ∧ q′ = execute(id,m, e))) ⇒
compatible(q, q′)

In order to support ABS conditional guards, for each guard g, we generate a
method condition g that takes as parameters the needed local variables x. The
method body can normally access the fields of the object this. A condition eval-
uation g is defined as follows: condition g(x) = while(¬g) skip;return null.
We encode the suspend statement the same way with a True condition. We define
an execute condition method in the COG class; it executes generated condition
methods. The execute condition method has its own group with an infinite thread
limit because any number of conditions can evaluate in parallel. More formally,
we have:

group(execute condition) = g4 Lg4 = ∞

6 Translation Equivalence and Active Object Insights

Proving that Multiasp executions exactly simulate ABS semantics is not possible
by direct bisimulation of the two semantics. Instead, we prove two different
theorems stating under which conditions each semantics simulates the other. We
present all technical details on the equivalence and the proof in the research
report associated to this paper [14]. We summarise below the highlights of the
proof, the principles of the underlying equivalence between Multiasp and ABS
terms, the differences between the languages and the restrictions of the proof.
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Fig. 8. Translational semantics from ABS to Multiasp

Communication and Request Serving Ordering. The semantics of ABS relies on a
completely asynchronous communication scheme while Multiasp ensures causal
ordering of requests. The equivalence can only be valid for the ABS reductions
that preserve causal ordering of requests. Also, Multiasp serves requests in FIFO
order, so similarly we execute a FIFO service of ABS requests, like in the existing
Java backend for ABS. Note that those differences are more related to scheduling
and communication patterns than to the nature of the two languages.

Shallow Translation. ABS requests, cogs and futures respectively match one-
to-one Multiasp requests, active objects and futures. Likewise, except for cog

objects, for each ABS object there exist several copies of this object in Multiasp,
all with the same cog and the same identifier, but only one of those copies (the
one hosted in the right cog) is equivalent to the ABS object.

Futures. Because of the difference between the future update mechanisms of
ABS and Multiasp, the equivalence relation can follow as many local future
indirections in the store as necessary. A variable holding a pointer to a future
object in Multiasp is equivalent to the same variable holding directly the future
reference in ABS. But also, the equivalence can follow future references in ABS:
a future might have been updated transparently in Multiasp while in ABS, the
explicit future read has not been performed yet.

Equating Multiasp and ABS Configurations. A crucial part of the correctness
proof consists in stating whether an ABS and a Multiasp configuration are
considered equivalent. The principles of this equivalence are the following:
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– Equivalence can “follow futures”: A Multiasp value v is equivalent to an ABS
future provided the future’s value is equivalent to v; indeed in Multiasp a
future can be automatically updated earlier than in the ABS case.

– Objects are identified by their identifier and their cog name: the value of
the object fields are meaningless except in the cog that initially created the
object. It is in this cog that we check that fields are equivalent.

– Equivalence between requests distinguishes two cases. (1) active tasks: there
is a single active task per cog in ABS and it must correspond to the single
active thread serving an execute request in Multiasp. The second element
in the call stack corresponds to the invoked request. (2) inactive tasks in
ABS correspond either to passive requests being currently interrupted or to
not-yet-served requests in Multiasp. For each task, equivalence of executed
statements, of local variables, and of corresponding future is checked.

Observational Equivalence. The precise formulation of our theorems proves
that the ABS behaviour is faithfully simulated by our translation and con-
versely. This is proven by adequately choosing the observable and not observ-
able actions in the weak simulation. For example remote method invocation,
object creation, and field assignment can be observed and faithfully simulated.
The most striking observable reduction in ABS that is not always observable in
Multiasp is the future value update. For example, in ABS the configurations (a)
fut(f, f ′) fut(f ′,�) and the configuration (b) fut(f,�) are observationally different,
whereas in Multiasp they are not. Indeed, in Multiasp, there is no process able
to detect whether the first future has been updated or not. However, this exam-
ple is artificial as no information is stored in the first future of configuration (a);
any access to the future’s value will have to follow indirections and eventually
access the value that is not a future. Thus, transparency of futures and of future
updates create an intrinsic difference between the two languages. This is why, in
the theorem, we exclude the possibility to have a future’s value being a future in
the configuration. Eliminating syntactically such programs is not possible, thus
we reason on reductions for which the value of a future is not a future; this is
not a major restriction on expressiveness because it is still possible to have a
future value that is an object containing a future (as future wrappers).

In the other direction, namely from Multiasp to ABS, the translation adds
several steps in the reduction. However, the added sequences of actions never
introduce concurrency so equivalence still holds because we can ignore additional
local actions such as assignments and method calls that are not in the ABS
program source (e.g. myId()).

Theorem 1 (ABS to Multiasp). The translation simulates all ABS executions
with FIFO policy and rendez-vous communications provided that no future value
is a future reference.

Theorem 2 (Multiasp to ABS). Any reduction of the Multiasp translation
corresponds to a valid ABS execution.
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Globally, our translational semantics fully respects the ABS semantics and
simulates exactly all executions complying to the aforementioned restrictions,
which either are already existing restrictions of the Java backend for ABS, or
for which we have given relevant alternatives.

7 Conclusion

This paper tackled the question of providing active object languages, aimed at
modelling and verification, with systematic deployment for distributed comput-
ing. For that, we have identified the necessary design choices for active object
models and languages, involving: object referencing, language transparency, and
request scheduling. These design choices have to be considered when implement-
ing any active object language. We have introduced Multiasp, a multi-threaded
active object language that has showed to be expressive enough to embody
the main paradigms of ABS, featuring in particular cooperative scheduling. We
demonstrated how to translate the constructs of an easy to program and ver-
ify active object language into the executable code of an efficient and scalable
active object middleware. We have instantiated our approach by translating ABS
into the ProActive middleware, that implements Multiasp in Java. The imme-
diate outcome of this work is a ProActive backend for ABS. Our approach could
be quite easily ported other active object languages since we reason more on
active object abstractions than on language specifics. Typically, our work can be
straightforwardly adapted to any active object language featuring cooperative
scheduling, like Creol and JCoBox. Porting our results on AmbientTalk only
requires minor adaptations. A comparison of the ProActive backend against
a currently developed Java 8 backend for ABS [21] is ongoing. This analysis
focuses on the different implementation approaches for efficiently encoding the
ABS semantics. More generally, the provided proof of correctness highlighted
the intrinsic differences between active object languages and models. This work
will help active object users to choose the language that is the most adapted for
their needs, and also help active object designers to identify the implication of
specific language constructs and abstractions.
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Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: static analyzer for concur-
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Abstract. Network objects are a simple and natural abstraction for dis-
tributed object-oriented programming. Languages that support network
objects, however, often leave synchronization to the user, along with its
associated pitfalls, such as data races and the possibility of failure. In
this paper, we present D-Scoop, a distributed programming model that
allows for interference-free and transaction-like reasoning on (potentially
multiple) network objects, with synchronization handled automatically,
and network failures managed by a compensation mechanism. We achieve
this by leveraging the runtime semantics of a multi-threaded object-
oriented concurrency model, directly generalizing it with a message-based
protocol for efficiently coordinating remote objects. We present our path-
way to fusing these contrasting but complementary ideas, and evaluate
the performance overhead of the automatic synchronization in D-Scoop,
finding that it comes close to—or outperforms—explicit locking-based
synchronization in Java RMI.

1 Introduction

Inter-device communication is becoming ubiquitous, and the number of con-
nected devices is growing everyday. With this ubiquity comes an increasing
demand for programmers to be able to write reliable distributed software, yet
this is no simple task. Challenging errors such as data races and deadlocks can
arise from subtle mistakes in synchronization code; and the failure of individual
devices can block whole systems in the absence of appropriate recovery protocols.

Various language abstractions have been proposed to make it easier to write
distributed programs. One such abstraction, natural for the object-oriented par-
adigm, is that of network objects [2]: objects whose methods can be invoked over
a network. By handling communication in method calls, network objects allow for
local and remote objects to be treated uniformly, without regard to where they are
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physically located. In principle an elegant generalization; in practice, languages
supporting them are often lightweight on synchronization, leaving the user to man-
age it explicitly, and potentially exposing them to the aforementioned errors.

Many of these pitfalls of synchronization are not unique to distribution: they
occur in multi-threaded concurrent programming too. Several languages and
libraries attempt to make it easier and safer to write concurrent programs,
providing their users with high-level abstractions as diverse as transactional
memory [23], block-dispatching [10], actors [1], and active objects [14]. Given
the many shared synchronization challenges, a number of these abstractions
have been successfully applied across novel distributed programming approaches,
exemplified by languages such as Creol [12], JCoBox [21], and AmbientTalk [6].

A family of concurrency abstractions that (until the present paper) had not
been generalized to distributed programming were those provided by Scoop [25],
despite their potential to naturally complement the network objects abstrac-
tion and to address some of its shortcomings. Scoop is an object-oriented con-
currency model that provides data-race freedom by construction, and strong
guarantees about the order in which requests are executed by concurrently
running processes. The synchronization provided by its runtime automatically
excludes interfering calls, making it possible to reason independently about dif-
ferent blocks of code over multiple concurrent objects, almost as if each block is
“sequential”. The ethos of the Scoop approach—stick to the mental models pro-
grammers already know well (in this case sequential programming)—is aligned
with that of the network objects abstraction, and challenged us to explore how
they could complement the strengths of each other.

Our Contributions. The main outcome of this paper is D-Scoop, a distrib-
uted programming model resulting from the fusion of the network objects abstrac-
tion with the runtime of the Scoop concurrency model. The strong reasoning
guarantees of the latter are directly generalized to provide interference-free and
transaction-like reasoning on (potentially multiple) network objects, without the
programmer having to worry about how to achieve it. The basis of this fusion
is a message-based protocol for coordinating remote objects, which includes an
efficient and novel two-phase locking algorithm for establishing the Scoop order
guarantees without prolonged periods of blocking. Furthermore, we adapt from
transactional memory the recovery technique of compensations, in order for D-
Scoop to be able to restore consistency when clients fail mid-computation. This
paper presents our pathway to fusing these independent, but complementary ideas.
We furthermore evaluate a prototype implementation of D-Scoop to investigate
the performance overhead of its automatic synchronization mechanisms, finding
that they come close to—and in some circumstances outperform—explicit locking-
based synchronization in the Java RMI realization of network objects.

For the distributed programming community, this paper presents a program-
ming model with interference-free and transaction-like reasoning for distributed
objects, and a runtime that effectively handles the synchronization. For the
Scoop community, it presents a generalization of the classical Scoop concur-
rency model to distribution in a way that maintains the guarantees of the core
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abstractions. For language designers, it presents a simple yet effective distributed
programming abstraction (and descriptions of how we realized it) that could be
transferred to other object-oriented languages.

Plan of the Paper. After introducing the necessary technical background of net-
work objects andScoop (Sect. 2),we showhowthey fuse together inD-Scoop, our
distributed programming model (Sect. 3). We go into more depth on how objects
are controlled to avoid interference (Sect. 4) and how compensation helps in man-
aging failure (Sect. 5). Our prototype is then evaluated against Java RMI (Sect. 6),
before we review some related work (Sect. 7) and conclude (Sect. 8).

2 Background: Network Objects and Scoop

Our work combines networks objects—a distributed programming abstraction—
with Scoop, a concurrency model that handles synchronization in its runtime
and provides strong reasoning guarantees. We present the necessary technical
background of these concepts in the context of a running example.

Network Objects. A network object is an object whose methods can be invoked
over a network. The abstraction is a simple but natural generalization of stan-
dard objects to distributed contexts: the programmer interacts with their inter-
faces in the sameway as before, andwithout regard towhere the object is physically
located. Communication is handled in the method calls, and is typically synchro-
nous tomimic regularmethod calls.Network objects first appeared inModula-3 [2],
and have since strongly influenced Java’s Remote Method Invocation (RMI) API
as well as the Common Object Request Broker Architecture (CORBA) standard.

While implementations of network objects vary, the abstraction is typically
light-weight on synchronization, leaving this difficulty to the user, to the point
that multiple clients can concurrently execute the same method (introducing the
possibility of data races). Simple mechanics such as synchronized in Java are
not always sufficient to ensure atomicity. Consider for example the simple bank
account transfer method in Listing 1, which allows some client to transfer an
amount (am) of money from a source (s) account to a target (t) account. If the
system is single-threaded and the accounts are local, then the method is correct.
If the accounts can be accessed concurrently, then locks or other measures are
required to ensure the atomicity of transfer. If however the accounts are remote
and can be accessed concurrently as network objects, then we must adapt again.
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One solution is to use locks and expose them as network objects, but this
poses risk, e.g. if a client loses its connection before having a chance to release its
locks. Another solution is to hide the synchronization within additional methods
in the account class, but this is still challenging to implement without introduc-
ing concurrency errors such as races or deadlocks. Either way, the simplicity
of the network object abstraction suffers with the complexity of synchronizing
correctly; hence our aim to elegantly integrate it with a concurrency model that
can manage such complexity in its runtime.

SCOOP. Scoop [25] is a concurrent object-oriented programming model that
aims to preserve the well-understood modes of reasoning enjoyed by sequential
programs, such as pre- and postcondition reasoning over blocks of code. Program-
mers are provided with simple abstractions for expressing concurrency, with the
runtime itself responsible for correctly handling synchronization. We describe
Scoop in the context of its principal implementation for Eiffel [8], but remark
that the ideas generalize to other object-oriented languages (e.g. Java [24]).

In Scoop, every object is associated with a process (which we call its han-
dler), a concurrent thread of execution with the exclusive right to call methods
on the objects it handles. In this context, object references may point to objects
with the same handler (non-separate objects) or to objects with distinct handlers
(separate objects). Method calls on non-separate objects are executed immedi-
ately by the shared process. To make a call on a separate object, however, a
request must be sent to the handler of that object to process it: if the method
is a command (i.e. it does not return a result) then it is executed asynchro-
nously, leading to concurrency; if it is a query (i.e. a result is returned and must
be waited for) then it is executed synchronously. Note that processes cannot
synchronize via shared memory: only by exchanging requests.

The possibility for objects to have different handlers is captured in the type
system by the keyword separate. To request method calls on objects of separate
type, programmers simply make the calls within separate blocks: these are the
bodies of any methods that have separate objects as formal parameters. Scoop
provides guarantees about the order in which calls in these blocks are executed, so
as to help programmers avoid concurrency errors. In particular, method calls on
separate objects will be logged as requests by their handlers in the order that they
are given in the program text; furthermore, there will be no intervening requests
logged from other handlers. These guarantees exclude data races by construction,
and allow programmers to apply sequential reasoning within separate blocks
independently of the rest of the program.

Consider the concurrent version of transfer in Listing 1, in which bank
account objects have concurrently running handlers. Suppose that a process
calls the method transfer (acc1, acc2, 100) on separate accounts acc1
and acc2. The body of the method contains two commands on these separate
objects—thus, two asynchronously executed requests—that transfer the stated
amount from the first account to the second. It also contains balance queries
which are executed synchronously. The Scoop guarantees ensure that while the
process is inside the body of transfer, no other process can log intervening
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requests on acc1 or acc2. As a result, it would not be possible for another
process to observe the balances of the two accounts in an intermediate state,
i.e. when the money has been withdrawn from the former but not credited to
the latter. The body of transfer can thus be reasoned about sequentially and
independently of the rest of the program. This additional control over the order
in which requests are logged (i.e. that requests cannot be interrupted) is the
key distinction Scoop has over other message-passing-based models such as the
actor model, or active objects.

Scoop provides some more advanced concurrency mechanisms beyond the
focus of this paper. Most notable are its generalization of method preconditions
to support condition synchronization on separate objects, and its support for effi-
cient data sharing between processes sharing memory via “passive” data objects
that can be accessed directly (i.e. without the overhead of message-passing). We
refer to [18,20] respectively for more detailed discussions of these concepts.

SCOOP Runtime. The concurrent programming abstractions presented rely
on the existence of a runtime that can correctly and efficiently realize them. At
the core of Scoop’s runtime is a simple execution model for managing requests
that are sent between processes. Each process is associated with a “queue of
queues” [25], that is, a fifo queue itself containing (possibly several) fifo sub-
queues for storing incoming requests. Each of these subqueues represents a “pri-
vate area” for some other process to log requests, in program text order, and
without interference from other processes (since they have their own subqueues).
Figure 1 visualizes three processes (p1, p2, p3) simultaneously logging requests
(green blocks) on another process (p0). The process p0 is handling the sub-
queues one-by-one in the order that they were created, and handles the requests
within them in the order that they were logged there, hence ensuring the Scoop
reasoning guarantees.

Consider again the process that calls transfer (acc1, acc2, 100) on two
separate accounts, acc1 and acc2. Under the current runtime, the handlers of
acc1 and acc2 both generate a private subqueue on which the calling process
can log requests (i.e. the balance queries and set balance commands) without
interruption for the duration of the block. Should another process also need to
log requests on an account, then a new private subqueue is generated for it and
its requests can be logged without waiting.

We remark that earlier versions of the Scoop runtime additionally pro-
vided timing guarantees by not allowing processes to enqueue requests concur-
rently [17]. A formal comparison with the current semantics is given in [5].

Fig. 1. Three processes (p1, p2, p3) logging requests on another (p0)
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3 Overview of Distributed Scoop

In this section we present D-Scoop (for Distributed Scoop), which combines
network objects and the Scoop synchronization semantics into a single, distrib-
uted programming model that maintains the simplicity of the original abstrac-
tions. We present an overview of its architecture and communication protocol,
and explain how separate calls are generalized to potentially remote objects
(Sects. 4 and 5 describe in more detail how control of remote objects is achieved
in D-Scoop, and how the system compensates for unresponsive clients).

A prototype implementation of the D-Scoop model is available online [7].
Our prototype builds upon the Scoop support for Eiffel in EiffelStudio [8], which
implements the model using threads and shared memory. D-Scoop generalizes
the implementation, allowing for multiple instances of potentially remote Scoop
programs to communicate, under-the-hood, by asynchronous message passing.

Architecture. In D-Scoop, an instance of a Scoop program is called a node.
A node can open a connection to another node through a network socket, which
is then shared by all of its processes. A node can request the index object of
another node, which is a user-defined object that typically provides the API of
the node, or some form of registry. It is valid for a node to not supply an index
object, typically if it is a client in a client-server style setup. To be able to accept
incoming connections from other nodes, a node must start a server and provide
its own index object (or a factory that generates them). Every node in a D-
Scoop network has a unique identifier (ID), which is independent of any other
IDs such as IP addresses. Object references in D-Scoop include this node ID,
along with their object and process identifiers (as in classical Scoop), with the
latter important for determining the number of processes involved in a separate
block.

The nodes in D-Scoop networks communicate, via their connections, using
an asynchronous message-passing scheme. Messages conform to a protocol and
can be one of two types: a request1 or a reply. Requests are sent from a client
node to a supplier, defining work for the supplier to do. Replies are sent back
from the supplier to the client indicating the outcome.

Within nodes, we rely on existing mechanisms of Scoop for garbage collect-
ing local objects and processes. D-Scoop however must also account for objects
used by multiple nodes. To achieve this, we use a distributed garbage collection
algorithm similar to that of Birrell et al. [3].

Requests and Replies. Messages in the D-Scoop communication protocol
have subjects which convey their intended semantics. Messages that are requests
can have one of many different subjects which we outline in the following. Replies
however only indicate success (

�

�

�

�

OK ) or failure (
�

�

�

�

FAIL ), sometimes with addi-
tional arguments, such as the result of a query call.

The simplest request subjects are
�

�

�

�

HELLO ,
�

�

�

�

PING and
�

�

�

�

INDEX , which respec-
tively initialize a connection between nodes, test whether an existing one is still
1 Note that these are distinct from the requests used for inter-process communication

in Scoop.
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alive, and request the index object of the supplier node (which typically provides
an API of methods for retrieving more objects).

A number of requests are required to realize a separate block involving remote
objects. A

�

�

�

�

PRELOCK request announces that a process in a client node wishes
to log calls on one or more processes in a supplier node. When a supplier is
ready, the client can issue a

�

�

�

�

LOCK request to announce it is now entering the
separate block. Following this, it can issue requests corresponding to asynchro-
nous method calls (

�

�

�

�

CALL ), synchronous calls (
�

�

�

�

SCALL ), and queries (
�

�

�

�

QCALL ).
To announce leaving the separate block, the client sends an

�

�

�

�

UNLOCK request.
(We describe in more detail how these requests establish control in Sect. 4.)

Requests with the subjects
�

�

�

�

SHARE and
�

�

�

�

RELEASE are respectively used for
obtaining and revoking permission for given object references to be shared with
third party nodes. They are used by D-Scoop for garbage collecting.

Finally,
�

�

�

�

AWAIT and
�

�

�

�

READY requests are used to implement condition syn-
chronization on remote objects. In short: if the condition does not hold, the client
process issues an

�

�

�

�

AWAIT request before going to sleep. This instructs the sup-
plier to wake it up with a

�

�

�

�

READY request once the state of the remote objects
changes, so that the condition can be checked again.

Message Handling. Incoming messages are handled by the request handlers of
D-Scoop nodes in multiple stages, depending on their subjects. If an incoming
message has the subject

�

�

�

�

HELLO ,
�

�

�

�

PING ,
�

�

�

�

SHARE , or
�

�

�

�

RELEASE , then it is han-
dled directly. If a message is a reply, then it is relayed to the appropriate process
within the node. Messages addressed to other nodes are relayed.

For messages concerning separate blocks and condition synchronization, a
more careful treatment is required. In D-Scoop, every node has a special des-
ignated proxy process for handling incoming lock and call requests. Associated
with these proxy processes are proxy objects, which are surrogates (or placehold-
ers) for actual remote objects, holding references to them. This additional layer
is used to catch special contexts in which calls are treated differently. For lack of
space we do not go into detail, but mention two of the most important: callbacks
(see [20]), and a Scoop extension for passive data objects (see [18]).

To minimize the overhead of proxy processes and objects, they are created
only when needed and removed when they are not. For example, if not existing
already, receiving a

�

�

�

�

LOCK request with some given object identifiers will trigger
the creation of a proxy process on that node and proxies for those objects. And
when no longer in use by local processes, they can be collected by the local
Scoop garbage collector.

Remote Calls in Separate Blocks. The communication protocol presented
is ultimately the glue that allows for network objects to be used within the
Scoop framework. Our aim was to make the fusion of these concepts as seamless
as possible: programmers should not need to be aware of the communication
protocol for network objects, and the core abstractions of Scoop should not
need to be fundamentally reinvented to accommodate the extension.

In D-Scoop we were able to maintain the original abstractions provided by
separate blocks, while also providing a natural generalization to support objects
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residing on other nodes. When a process needs to make a call on a separate
object, there are now three possible cases to distinguish. If the target object
shares the same process (and thus, obviously, the same node), the call is executed
immediately—as in Scoop. If the target object has a distinct process but on the
same node, the process logs a request in a private subqueue for the caller (see
Sect. 2)—as in Scoop. If the target object has a distinct process on a remote
node, however, the D-Scoop communication protocol comes into play, and a
�

�

�

�

CALL message is sent to the remote node.

4 Controlling Remote Objects

We have presented an overview of the D-Scoop architecture, its messaging
protocol, and its generalization of separate blocks to support calls on remote
objects. In this section, we describe how control of remote objects and thus
distributed separate blocks are achieved.

In D-Scoop, separate blocks are handled in three phases: (i) the prelock
phase, for ensuring a correct ordering; (ii) the issuing phase, for enqueuing calls;
and (iii) the execution phase, for executing calls. The issuing phase happens
strictly after the prelock phase. While the execution phase cannot start before
the issuing phase, the two can otherwise overlap due to asynchronicity.

Prelock Phase. In standard Scoop, if a process enters a separate block, the
processes handling the separate objects generate private subqueues for logging
calls (see Sect. 2 and Fig. 1). In D-Scoop however, if a process enters a separate
block involving separate objects on remote nodes, messages must be sent to
trigger the generation of subqueues in a way that preserves the usual reasoning
guarantees. We refer to this messaging phase as the prelock phase.

A client node seeking to enter a separate block involving remote objects
must first announce its intention by sending

�

�

�

�

PRELOCK requests to the nodes
they reside on. This is done in a fixed order (a global order based on node IDs)
to avoid deadlocks, and one-at-a-time; an

�

�

�

�

OK reply must be received before the
next

�

�

�

�

PRELOCK is sent. Once the last such request is successful, the client node
announces that it is entering the separate block and will start issuing calls. This
announcement is made via

�

�

�

�

LOCK requests, which can be sent asynchronously in
any order. By replying with

�

�

�

�

OK , the supplier nodes are acknowledging that the
involved processes have created private subqueues and are ready to enqueue calls
from the client. Figure 2 exemplifies this phase for a client node C that wishes
to enter a separate block involving remote objects on supplier nodes N1, . . . Nn.
Here, an arrow denotes the transmission of a message, with its subject given at
the end (additional parameters are not visualized).

When multiple nodes are entering prelock phases involving common supplier
nodes, blocking must occur in order to maintain the separate block order guar-
antees. In particular, if a

�

�

�

�

PRELOCK message is sent but the supplier is already
involved in the prelock phase of a competing node, then the system blocks on
that message. Instead of blocking for the whole of the competing node’s separate
block, D-Scoop permits a more fine-grained and efficient solution. In particular,



An Interference-Free Programming Model for Network Objects 235
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Fig. 2. Prelock phase: a process on node C is entering a separate block involving
separate objects on remote nodes N1, . . . Nn

it only blocks until the competing node leaves its prelock phase and starts issuing
calls. That is to say, D-Scoop only blocks while “setting up” the subqueues in
a correct order; competing issuing phases can otherwise safely run concurrently.

Issuing and Execution Phases. The prelock phase ends and the issuing phase
begins when the final

�

�

�

�

LOCK request is successful. At this point, the processes han-
dling all the involved remote objects are ready to enqueue calls. In most circum-
stances, commands on remote objects are requested via asynchronous

�

�

�

�

CALL mes-
sages, and queries are requested via synchronous

�

�

�

�

QCALL messages. The supplier
nodes enqueue commands and immediately reply with an

�

�

�

�

OK . When a query is
received however, the supplier node enqueues it, but only replies once it has been
executed (passing the result in an additional parameter of the

�

�

�

�

OK message).
The execution phase begins with the execution of the first logged call. If all

the calls are asynchronous, it can take place strictly after the issuing phase. The
issuing phase ends on sending the

�

�

�

�

UNLOCK message; the execution phase ends
on processing it.

Example Communication. We return to our running bank account example,
which we extend with a simple method withdraw (Listing 2) for withdrawing a
given amount from a given account that we assume to be remote. The method
first synchronously queries the remote object to check that the balance is suffi-
cient, before asynchronously decreasing the balance.

Suppose we have a running D-Scoop system with two bank accounts on dif-
ferent nodes (A1, A2). Suppose now that a client node (C1) is trying to transfer
an amount from A1 to A2, while another client node (C2) is trying to withdraw
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Fig. 3. All three phases: a process on C1 calls transfer on A1 and A2; a process on
C2 concurrently calls withdraw on A1

an amount from A1. Recall that the bodies of both methods are separate blocks
(involving, respectively, separate accounts on A1, A2 and A1). Figure 3 visualizes
the messages exchanged in one possible behavior.

Observe that both clients initially send a
�

�

�

�

PRELOCK request to A1. The
request from C2 is received first and is therefore answered immediately; mean-
while, C1 blocks. Since C2 only seeks control over a process on A1, it proceeds to
send a

�

�

�

�

LOCK request, thus completing its prelock phase and generating its pri-
vate subqueue on A1. This allows C1 to unblock and its first

�

�

�

�

PRELOCK request
finally succeeds.

Since the prelock phase of one client can take place in parallel to the issu-
ing and execution phases of another, C2 already starts issuing calls before C1

concludes its prelock phase. In particular, it requests the balance query (via
�

�

�

�

QCALL ) which is executed synchronously (and the balance amount returned).
Following this, C1 requests a

�

�

�

�

PRELOCK on A2 (which is uncontended), before
completing its prelock phase by sending

�

�

�

�

LOCK requests to A1 and A2.
At this point, both C1 and C2 issue balance queries (

�

�

�

�

QCALL )—the former is
evaluating its conditional guard, and the latter is evaluating the expression in the
input of s.set balance (s.balance - am). SinceC2 completed its prelock first, its
private subqueue on A1 is ahead of the subqueue for C1, and so its call is executed
first. Following this,C2 requests an asynchronous command (

�

�

�

�

CALL ) to update the
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balance, and then exits its separate block via an
�

�

�

�

UNLOCK request. Once acknowl-
edged,C2 knows that the whole transaction (balance and then set balance) was
successful, and its effects become visible to other clients. Once the

�

�

�

�

OK correspond-
ing to its earlier

�

�

�

�

QCALL arrives, C1 can resume issuing the remaining calls in its
separate block before exiting via

�

�

�

�

UNLOCK requests to A1 and A2.
Note that the reasoning guarantees of the separate blocks have been main-

tained. The calls are executed in program text order and without interven-
ing calls from other nodes: within a separate block, multiple balance calls in
sequence thus always return the same result. The combination of the prelock
phase and the underlying queue of queues semantics prevents the possibility of
interleavings that break this.

5 Compensating for Failure

Our presentation of D-Scoop has thus far focused on the challenge and intri-
cacies of combining the network objects abstraction with a concurrency model
and runtime. In this section, we turn our attention to a topic that cannot be
ignored in the setting of distributed computing: coping with failure.

While failure can often be managed simply—a fixed timeout is used, for
example, to manage it in prelock phases—failure in the middle of a separate
block, when only some of the side-effecting commands have been issued, needs
a more elaborate solution. We introduce compensation, D-Scoop’s mechanism
for reacting to such failure, and demonstrate its use on our running example.

Compensation. In D-Scoop, upon failure of a supplier, the client is informed
using exceptions, and can react to it appropriately in a rescue-clause. However,
the suppliers in separate blocks are in general oblivious to the status of the
client. Our solution is to introduce compensation, a supplier-side mechanism for
reacting to client nodes that become unresponsive or disconnect prematurely.
The technique registers user-provided closures on suppliers that, before releasing
objects controlled by disconnected clients, are executed to restore consistency.

The basic technique is adapted from well-established usage in transactions,
in particular, for recovering from long-running transactions or transactions with
side effects. It fits naturally with the D-Scoop model, given that separate blocks
are transaction-like in the sense that other clients cannot observe the separate
objects in intermediate states. One can think of a

�

�

�

�

LOCK and
�

�

�

�

UNLOCK pair as
being the beginning and end of a transaction; after

�

�

�

�

UNLOCK is acknowledged,
all changes become visible.

The scope of compensation is the issuing phase, and encompasses all executed
calls on processes that have been acquired during the prelock phase (and only
those processes). In the case of nested separate blocks, the outer block has to take
into account that the effects of the inner block are already visible if an

�

�

�

�

UNLOCK

was issued. This is different to most definitions of nested transactions, in which
the inner transaction always finishes together with the outer transaction.

Defining Compensation. Compensation closures are provided by the user as
the input of special methods for registering compensation. (We remark that
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closures are given with the Eiffel keyword agent, and can refer to existing meth-
ods.) It is possible to define them in the client or the supplier. A client-defined
compensation closure is registered before the call to the method to be compen-
sated (and is ignored by the supplier if no request follows). A supplier-defined
compensation closure is provided within the called method. The latter comes
with the advantage that compensation is defined together with the method, but
the former allows for more flexibility: different compensations can be defined
depending on where the call is made, which is particularly useful for methods
that do not always need compensation.

Consider the simple method set balance for bank account objects (Listing 3)
which sets the balance of an account to some provided input. The listing also
includes examples of how to make it compensable. On the left is a snippet of the
body of transfer, now annotated with client-defined compensation before the
call. On the right is supplier-defined compensation, provided at the beginning of
the method body. In both cases, the balance argument to the closure (agent)
is evaluated to the original balance, so it will restore the old balance if called.

Implementing Compensation. Upon receiving a
�

�

�

�

LOCK request, a supplier
node stores the IDs of the newly requested processes in a stack. This stack is
mainly used to identify which processes need to be released upon

�

�

�

�

UNLOCK . Each
of the process entries also contains a reference to a set of compensation closures,
extracted from the program text. These closures are accompanied by relative
timestamps, so that within all the sets for this client each number is unique and
a later registration has a strictly higher number than an earlier one. Whenever
a process is unlocked normally (i.e. not due to premature disconnection) the
respective set is cleared. However, if a client node disconnects prematurely, all
sets associated with the client are merged and then ordered by the timestamps.
The execution of the compensation closures is done in reverse order.

Figure 4 shows the call stack caused by a remote client calling the method a
and then h. The targets of a, b, c, d and h are owned by process P1, while the
targets of the calls e, f, and g are owned by process P2. During the execution
of c, P1 acquires control over P2 to execute. After a is finished, the client sends
another request to execute h before releasing P1.

We now take a look at three failure scenarios, all of them due to a premature
disconnect by the client. If the client disconnects before a is executed, nothing
happens. The client’s control over P1 is simply lifted. The second case is more
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Fig. 4. Example call stack

complex: if the client disconnects while a is executing, the calls a, b, . . . g are
all executed as requested. Since P1 is issuing the

�

�

�

�

UNLOCK request to P2 before
finishing itself, the changes done by e, f, g are visible. The disconnect then
causes the compensation closures of d, c, b, a to be executed before control over
P1 is released. Consequently, the compensation of c has to deal with the fact
that the changes due to e, f, g are already visible.

If the client issued the call to h but got lost before sending the
�

�

�

�

UNLOCK

request, the situation is similar, with the one difference being that the compen-
sation of h is executed before the others.

6 Evaluation

We evaluated D-Scoop against Java RMI to gauge its performance against a
well-established and widely used approach based on network objects. We sought
to collect evidence towards answering two questions. First, is there a performance
overhead associated with the automatic synchronization in D-Scoop, and does
it become incommensurate with the effort to manually write synchronization
code? Second, do the language abstractions of D-Scoop facilitate simpler code?

Example Selection. D-Scoop and Java RMI have many differences: not only
in the model, but also in terms of the underlying programming languages (Eif-
fel and Java) which have many points of variation regarding performance and
compilers. In this context, we devised a set of four microbenchmarks isolated to
comparing the performance of calls: (i) command call, in which a single client
sends a series of command calls to the supplier; (ii) query call, analogous, but
with query calls; (iii) locking and command call, in which a few clients compete
to control a supplier object and send a single command call; and (iv) locking and
query call, analogous, but with a single query call.

In addition to microbenchmarks, we also evaluated D-Scoop against Java
RMI on three larger examples. First, dining philosophers, a classical example
where multiple objects (forks) are repeatedly controlled. For this benchmark,
all philosophers and forks reside on different nodes, and we assume that eating,
using the fork, and thinking take no time. Second, a more practical example:
a log server, in which various events are logged. Here, there are multiple log
servers for redundancy, meaning that copies of logs can still be retrieved if one
fails. To ensure a consistent ordering across servers, a client must control all
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of them before adding the entries. In our benchmark, three clients repeatedly
generate a simple log message, gain control across the servers, and then place
it. Third, a pipeline representing distributed services. Each stage waits until the
previous stages are ready before retrieving data and processing it. Each stage
provides one operation of the well known formula

√
a2 + b2. We measured the

time the final stage needed for a specific number of calculations.
For Java RMI, explicit locking was used to establish a comparable flexibility

in the clients. Furthermore, the Java code explicitly orders the locks so as to
avoid deadlocks. The source code of the examples and of D-Scoop itself can be
found on our supplementary material webpage [7].

Performance. Overall, we found that despite the potential overhead of auto-
matic synchronization, D-Scoop’s performance is competitive with—and can
be superior to—explicit locking-based synchronization in Java RMI. The results
of the performance evaluation are listed in Fig. 5 and are the averages of 30
runs; we used two off-the-shelf laptops connected by an ethernet cable. The
microbenchmarks show that the performance of both D-Scoop and Java RMI
is similar when just issuing commands or queries. D-Scoop commands are a
bit quicker than D-Scoop queries due to them being asynchronous, whereas in
RMI both are synchronous. When it comes to the control microbenchmarks, the
built-in synchronization in D-Scoop allows for a more significant improvement
in speed, both for synchronous and asynchronous calls. However, the synchro-
nization overhead prevents the asynchronous advantage of Control/Command
translating into faster performance than Control/Query.

For both the dining philosophers and the logging example, the fact that
the prelock phase can be done in parallel with the issuing and execution phase
of another client proves to be a significant advantage in comparison to RMI.
In addition, the logging example shows the advantage of asynchronous calls in
D-Scoop. The underlying semantics make it possible to ensure control over
multiple nodes and have multiple clients issuing asynchronous calls at the same

0 20 40 60 80 100 120 140
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D-SCOOP
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Fig. 5. Benchmark results: each run involved several thousand iterations (see [7])
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Table 1. Code complexity

Classes Features Instructions

RMI D-Scoop RMI D-Scoop RMI D-Scoop

Microbenchmarks 3 2 8 6 19 13

Dining philosophers 3 2 6 3 18 10

Logging 6 3 16 9 23 10

Pipelines 2 1 10 16 62 42

time. The pipeline example has less congestion around the protected objects;
here, the advantage of D-Scoop lies solely in slightly fewer messages sent due
to more powerful synchronization mechanics.

Simplicity. Our second question asked whether the language abstractions also
yield simpler code. For our seven benchmarks, we recorded: (i) the number of
classes involved, excluding primitive types, classes, and strings, and ignoring the
RMI remote interface; (ii) the number of features (i.e. attributes and methods),
ignoring the Java “getters” in RMI since they just return an otherwise counted
attribute; and (iii) the number of written instructions, excluding boilerplate
code. This ensures that the differences are only due to synchronization. Table 1
lists the results.

As can be seen, the solutions in D-Scoop are much more compact across
the three measurements. In the case of advanced techniques such as condition
synchronization—an in-depth discussion is omitted for brevity—the complexity
of RMI increases further still. Note that not included in the RMI examples are
compensation and the automatic releasing of locks, since they are difficult to
achieve in that framework. Also, although the usage of a lock or semaphore is
counted as a class, its features are not counted in the feature column since they
are already provided by the library. We remark that these numbers only indicate
that D-Scoop programs are more compact than their RMI counterparts. What
we leave to future work is a study of users themselves to determine whether the
D-Scoop abstractions are easier to read and program with, regardless of their
compactness. (An existing Scoop study is encouraging [19].)

7 Related Work

There is a wide selection of work addressing concurrency and distribution in
the object-oriented paradigm. Here, we highlight some work that is closest to
our own.

The active object [14] design pattern (which inherits from the actor
model [1]), like Scoop, decouples method calls from method executions. Such
objects are associated with their own processes, which can send messages to
each other asynchronously, introducing concurrency. Despite the similarity to
Scoop, active objects lack the guarantee of interference-freedom when multiple
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objects are involved. Furthermore, non-active objects have to be protected man-
ually, and there is no built-in support for condition synchronization (although
it is possible to use the observer pattern to actively notify waiting processes).
Scoop can be seen as an advanced form of active objects: objects are by default
active, but multiple objects can share the same process. In addition, the Scoop
synchronization mechanisms ensure the absence of intervening calls and also
protect non-active objects [18]. Condition synchronization is simple (via method
preconditions) and does not require signaling.

There have been some successful attempts to generalize ideas from active
objects and the actor model to distributed programming frameworks, with some
prominent examples including Creol [12], AmbientTalk [6], and JCoBox [21]. The
latter partitions the object space into “coboxes”, each with a common thread of
control to improve safety; an approach similar to the processes of Scoop and
D-Scoop. Caromel et al. [4] consider a way of unifying threads and objects
to support simpler reasoning about distributed computing, and provide a for-
mal calculus. An important distinction of D-Scoop in comparison to other
frameworks is the impossibility of interrupting requests sent to multiple (poten-
tially distributed) objects controlled by different threads, giving the model its
transaction-like semantics.

Network objects [2] share some similarities with active objects, although
calls to them are traditionally synchronous to mimic standard method calls, and
calls to local network objects are usually handled by the calling process. Creol
exemplifies different synchronization approaches possible with active objects,
and their natural extension to network objects. Some languages, such as E [16],
avoid blocking entirely to ensure deadlock-freedom. This, in our view, can lead
to complex behavior that is difficult to understand from the point of view of
classical sequential programming. By making synchronization simpler to use,
D-Scoop potentially reduces (but does not eliminate) the risk of deadlocks.

For dealing with failures, the programming language Argus [15] supports
“atomic objects” that can be used in a transaction. In contrast, our compensation
approach is not limited to pure data-objects.

8 Conclusion

This paper made a case for combining network objects with synchronization
models. We presented D-Scoop, a distributed programming model obtained by
combining the network objects abstraction with the runtime semantics of the
object-oriented concurrency model Scoop. We presented an efficient two-phase
locking protocol that generalized the strong reasoning guarantees of Scoop to
network objects, allowing for interference-free and transaction-like reasoning on
(potentially multiple) remotely located objects, without the programmer having
to explicitly manage their synchronization. Furthermore, we proposed a com-
pensation mechanism by which D-Scoop programs can recover from failure.
The evaluation of our prototype implementation [7] suggested that D-Scoop
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remains competitive against—and can outperform—explicit locking-based syn-
chronization in Java RMI, a well-established realization of network objects, with
the automatic synchronization mechanisms also allowing for more compact code.

In future work, we plan to improve the efficiency of D-Scoop with respect
to intra-object parallelism [11,13]. We will investigate concepts such as slic-
ing [22], and the possible integration of software transactional memory [9]. We
will also investigate whether performance can be improved, by (safely) relaxing
the requirement that one node communicates with another via a single con-
nection. Finally, we want to formalize the D-Scoop semantics using [5] to test
extensions, and provide a formal proof that the protocol and algorithms correctly
generalize the Scoop guarantees.
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Abstract. We investigate some subtle issues that arise when programming dis-
tributed computations over infinite data structures. To do this, we formalise a
calculus that combines a call-by-name functional core with session-based com-
munication primitives and that allows session operations to be performed “on
demand”. We develop a typing discipline that guarantees both normalisation of
expressions and progress of processes and that uncovers an unexpected interplay
between evaluation and communication.

1 Introduction

Infinite computations have long lost their negative connotation. Two paradigmatic con-
texts in which they appear naturally are reactive systems [17] and lazy functional pro-
gramming. The former contemplate the use of infinite computations in order to capture
non-transformational computations, that is computations that cannot be expressed in
terms of transformations from inputs to outputs; rather, computations of reactive sys-
tems are naturally modelled in terms of ongoing interactions with the environment. Lazy
functional programming is acknowledged as a paradigm that fosters software modular-
ity [13] and enables programmers to specify computations over possibly infinite data
structures in elegant and concise ways. Nowadays, the synergy between these two con-
texts has a wide range of potential applications, including stream-processing networks,
real-time sensor monitoring, and internet-based media services.

Nonetheless, not all diverging programs – those engaged in an infinite sequence of
possibly intertwined computations and communications – are necessarily useful. There
exist degenerate forms of divergence where programs do not produce results, in terms of
observable data or performed communications. In this paper we investigate the issue by
proposing a calculus for expressing computations over possibly infinite data types and
involving message passing. The calculus – called SID after Sessions with Infinite Data
– combines a call-by-name functional core (inspired by Haskell) with multi-threading
and session-based communication primitives.

In the remainder of this section we provide an informal introduction to SID and its
key features by means of a few examples. The formal definition of the calculus, of the

Paula Severi has been supported by a Daphne Jackson fellowship sponsored by EPSRC and her
department. All authors have been supported by the ICT COST European project called Behav-
ioural Types for Reliable Large-Scale Software Systems (BETTY, COST Action IC1201).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
A. Lluch Lafuente and J. Proença (Eds.): COORDINATION 2016, LNCS 9686, pp. 245–261, 2016.
DOI: 10.1007/978-3-319-39519-7 15



246 P. Severi et al.

type system, and its properties are given in the remaining sections. A simple instance
of computation producing an infinite data structure is given by

from x = 〈x,from (x+1)〉
where the function from applied to a number n produces the stream (infinite list)
〈n,〈n+1,〈n+2, · · · 〉〉〉 of integers starting from n. We can think of this list as abstract-
ing the frames of a video stream, or the samples taken from a sensor.

The key issue we want to address is how infinite data can be exchanged between
communicating threads. The most straightforward way of doing this in SID is to take
advantage of lazy evaluation. For instance, the SID process

x ⇐ (
send c+ (from 0)

)
>>= f | y ⇐ recv c− >>= g

represents two threads x and y running in parallel and connected by a session c, of which
thread x owns one endpoint c+ and thread y the corresponding peer c−. Thread x sends
a stream of natural numbers on c+ and continues as f c+, where f is left unspecified.
Thread y receives the stream from c− and continues as (g 〈from 0,c−〉). The bind
operator _ >>= _ models sequential composition and has the exact same semantics as in
Haskell. In particular, it applies the rhs to the result of the action on its lhs. The result of
sending a message on the endpoint a+ is the endpoint itself, while the result of receiving
a message from the endpoint a− is a pair consisting of the message and the endpoint.
In this example, the whole stream is sent at once in a single interaction between x and
y. This behaviour is made possible by the fact that SID evaluates expressions lazily: the
message (from 0) is not evaluated until it is used by the receiver.

In principle, exchanging “infinite” messages such as (from 0) between different
threads is no big deal. In the real world, though, this interaction poses non-trivial chal-
lenges: the message consists in fact of a mixture of data (the parts of the messages
that have already been evaluated, like the constant 0) and code (which lazily computes
the remaining parts when necessary, like from). This observation suggests an alterna-
tive, more viable modelling of this interaction whereby the sender unpacks the stream
element-wise, sends each element of the stream as a separate message, and the receiver
gradually reconstructs the stream as each element arrives at destination. This modelling
is intuitively simpler to realise (especially in a distributed setting) because the messages
exchanged at each communication are ground values rather than a mixture of data and
code. In SID we can model this as a process

prod ⇐ stream c+ (from 0) | cons ⇐ display0 c
−

where the functions stream and display0 are defined as:

stream y 〈x,xs〉 = send y x >>= λy′.stream y′ xs
display0 y = recv y >>= λ 〈z,y′〉.display0 y′ >>= λ zs.g 〈z,zs〉 (1.1)

The syntax λ 〈_,_〉.e is just syntactic sugar for a function that performs pattern
matching on the argument, which must be a pair, in order to access its components.
In stream, pattern matching is used for accessing and sending each element of the
stream separately. In display0, the pair 〈z,y′〉 contains the received head z of the
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stream along with the continuation y′ of the session endpoint from which the element
has been received. The recursive call display0 y′ retrieves the tail of the stream zs,
which is then combined with the head z and passed as an argument to g.

The code of display0 looks reasonable at first, but conceals a subtle and
catastrophic pitfall: the recursive call display0 y′ is in charge of receiving the whole
tail zs, which is an infinite stream itself, and therefore it involves an infinite num-
ber of synchronisations with the producing thread! This means that display0 will
hopelessly diverge striving to receive the whole stream before releasing control to g.
This is a known problem which has led to the development of primitives (such as
unsafeInterleaveIO in Haskell or delayIO in [23]) that allow the execution of
I/O actions to interleave with their continuation. In this paper, we call such primitive
future, since its semantics is also akin to that of future variables [25]. Intuitively, an
expression future e >>= λx(g x) allows g to reduce even if e, which typically involves
I/O, has not been completely performed. The variable x acts as a placeholder for the
result of e; if g needs to inspect the structure of x, its evaluation is suspended until e
produces enough data. Using future we can amend the definition of display0 thus

display y= recv y >>= λ 〈z,y′〉.future (display y′) >>= λ zs.g 〈z,zs〉 (1.2)

and obtain one that allows g to start processing the stream as its elements come through
the connection with the producer thread. The type system that we develop in this paper
allows us to reason on sessions involving the exchange of infinite data and when such
exchanges can be done “productively”. In particular, our type system flags display0
in (1.1) as ill typed, while it accepts display in (1.2) as well typed. To do so, the type
system uses a modal operator • related to the normalisability of expressions. As hinted
by the examples (1.1) and (1.2), this operator plays a major role in the type of future.

Related Work. To the best of our knowledge, SID is the first calculus that com-
bines session-based communication primitives [12,29] with a call-by-need operational
semantics [1,18,30] guaranteeing progress of processes exchanging infinite data. The
operational semantics of related session calculi that appear in the literature is call-by-
value, e.g. [9,11,28] making them unsuitable for handling potentially infinite data, such
as streams. In the context of communication-centric calculi, SSCC [7] offers an explicit
primitive to deal with streams. Our language enables the modelling of more intri-
cate interactions between infinite data structures and infinite communications. Besides,
the type system of SSCC considers only finite sessions types and does not guarantee
progress of processes.

Following [19], we use a modal operator • to restrict the application of the fixed
point operator and exclude degenerate forms of divergence. This paper is an improve-
ment over past typed lambda calculi with a temporal modal operator in two respects.
Firstly, we do not need any subtyping relation as in [19] and secondly SID programs are
not cluttered with constructs for the introduction and elimination of individuals of type
• as in [3,14,14,15,26]. A weak criterion to ensure productivity of infinite data is the
guardedness condition [5]. We do not need such condition because we can type more
normalising expressions (such as display in (1.2)) using the modal operator •.
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Futures originated in functional programming and related paradigms for parallelis-
ing a program [10]. The call-by-need λ -calculus with futures in [25] is used for studying
contextual equivalence and has no type system.

In the session calculi literature, the word “progress” has two different meanings.
Sometimes it is synonym of deadlock freedom [2], at other times it means lock freedom,
i.e. that each offered communication in an open session eventually happens [4,8,20].
Typed SID processes cannot be stuck, and if they do not terminate they communicate
and/or generate new threads infinitely often. This means that the property of progress
satisfied by our calculus is stronger than that of [2] and weaker than that of [4,8,20].

Contributions and Outline. The SID calculus, defined in Sect. 2, combines in an orig-
inal way standard constructs from the λ -calculus and process algebras in the spirit
of [11,12]. The type system, given in Sect. 3, has the novelty of using the modal oper-
ator • to control the recursion of programs that perform communications. To the best
of our knowledge, the interplay between • and the type of future is investigated here
for the first time. The properties of our framework, presented in Sect. 4, include subject
reduction (Theorem 1), normalisation of expressions (Theorem 2), progress and conflu-
ence of processes (Theorems 4, 5). Additional examples, definitions, and proofs can be
found in the technical report [27].

2 The SID Calculus

We use an infinite set of channels a, b, c and a disjoint, infinite set of variables x,
y. We distinguish between two kinds of channels: shared channels are public service
identifiers that can only be used to initiate sessions; session channels represent private
sessions on which the actual communications take place. We distinguish the two end-
points of a session channel c by means of a polarity p ∈ {+,−} and write them as c+

and c−. We write p for the dual polarity of p, where+=− and −=+, and we say that
cp is the peer endpoint of cp. A bindable name X is either a channel or a variable and a
name u is either a bindable name or an endpoint.

The syntax of expressions and processes is given in Table 1. In addition to the
usual constructs of the λ -calculus, expressions include constants, ranged over by k,
and pair splitting. Constant are the unitary value unit, the pair constructor pair, the

Table 1. Syntax of expressions and processes.
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primitives for session initiation and communication open, send, and recv [11,12],
the monadic operations return and bind [23], and a primitive future to defer com-
putations [21,22]. We do not need a primitive constant for the fixed point operator
because it can be expressed and typed inside the language. For simplicity, we do not
include primitives for branching and selection typically found in session calculi. They
are straightforward to add and do not invalidate any of the results. Expressions are sub-
ject to the usual conventions of the λ -calculus. In particular, we assume that the bodies
of abstractions extend as much as possible to the right, that applications associate to
the left, and we use parentheses to disambiguate the notation when necessary. Follow-
ing established notation, we write 〈e, f 〉 in place of pair e f , λ 〈x1,x2〉.e in place of
λx.split x as x1,x2 in e, and e >>= f in place of bind e f .

A process can be either the idle process 0 that performs no action, a thread x ⇐ e
with name x and body e that evaluates the body and binds the result to x in the rest
of the system, a server a e that waits for session initiations on the shared channel a
and spawns a new thread computing e at each connection, the parallel composition of
processes, and the restriction of a bindable name. In processes, restrictions bind tighter
than parallel composition and we may abbreviate (νX1) · · ·(νXn)P with (νX1 · · ·Xn)P.

We have that split f as x,y in e binds both x and y in e and (νa)P binds a+

and a− within P in addition to a. The definitions of free and bound names follow as
expected. We identify expressions and processes up to renaming of bound names.

The operational semantics of expressions is defined in the upper half of Table 2.
Expressions reduce according to a standard call-by-name semantics, for which we
define the evaluation contexts for expressions below:

E ::= [ ] | E e | split E as x,y in e | open E | send E | recv E | bind E

Note that evaluation contexts do not allow to reduce pair components or an expression
e in bind f e,return e,future e,send ap e. We say that e is in normal form if there
is no f such that e −→ f .

The operational semantics of processes is given by a structural congruence relation
≡, which we leave undetailed since it is essentially the same as that of the π-calculus,
and a reduction relation, defined in the bottom half of Table 2. The evaluation contexts
for processes are defined as

C ::= [ ] | C >>= e

and force the left-to-right execution of monadic actions, as usual.
Rules [R-OPEN] and [R-COMM] model session initiation and communication, respectively.

According to [R-OPEN], a client thread opens a connection with a server a. In the reduct,
a fresh session channel c is created, the open in the client reduces to the return of c+

and a copy of the server is spawned into a new thread that has a fresh name y and a
body obtained from that of the server applied to c−. According to [R-COMM], two threads
communicate if one is ready to send some message e on a session endpoint ap and the
other is waiting for a message from the peer endpoint ap. As in [11], the communication
primitives return the session endpoint being used, with the difference that in our case the
results are monadic actions. In particular, the result for the sender is the same session
endpoint and the result for the receiver is a pair consisting of the received message and
the session endpoint.
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Table 2. Reduction semantics of expressions and processes.

Rules [R-FUTURE] and [R-RETURN] deal with futures. The former spawns an I/O action e
in a separate thread y, so that the spawner is able to reduce (using [R-BIND]) even if e has
not been executed yet. The name y of the spawned thread can be used as a placeholder
for the value yielded by e. Rule [R-RETURN] deals with a future variable x that has been
evaluated to return e. In this case, x is replaced by e everywhere within its scope.

Rule [R-THREAD] lifts reduction of expressions to reduction of threads. The remaining
rules close reduction under restrictions, parallel compositions, and structural congru-
ence, as expected.

3 Typing SID

We now develop a typing discipline for SID. The challenge comes from the fact that the
calculus allows a mixture of pure computations (handling data) and impure computa-
tions (doing I/O). In particular, SID programs can manipulate potentially infinite data
while performing I/O operations that produce/consume pieces of such data as shown
by the examples of Sect. 1. Some ingredients of the type system are easily identified
from the syntax of the calculus. We have a core type language with unit, products,
and arrows. As in [11], we distinguish between unlimited and linear arrows for there
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sometimes is the need to specify that certain functions must be applied exactly once.
As in Haskell [21,23], we use the IO type constructor to denote monadic I/O actions.
For shared and session channels we respectively introduce channel types and session
types [12]. Finally, following [19], we introduce the delay type constructor •, so that an
expression of type •t denotes a value of type t that is available “at the next moment in
time”. This constructor is key to control recursion and attain normalisation of expres-
sions. Moreover, the type constructors • and IO interact in non-trivial ways as shown
later by the type of future.

3.1 Types

The syntax of pseudo-types and pseudo-session types is given by the grammar in
Table 3, whose productions are meant to be interpreted coinductively. A pseudo (ses-
sion) type is a possibly infinite tree, where each internal node is labelled by a type
constructor and has as many children as the arity of the constructor. The leaves of the
tree (if any) are labelled by either basic types or end. We use a coinductive syntax to
describe infinite data structures (such as streams) and arbitrarily long protocols, such as
the one betwen sender and receiver in Sect. 1.

We distinguish between unlimited pseudo-types (those denoting expressions that
can be used any number of times) from linear pseudo-types (those denoting expressions
that must be used exactly once). Let lin be the smallest predicate defined by

lin(?t.T ) lin(!t.T ) lin(t � s) lin(IO t)
lin(t)

lin(t× s)
lin(s)

lin(t× s)
lin(t)
lin(•t)

The word “smallest” in the above definition is crucial. For example lin does not hold for
the type •∞, because •∞ does not belong to the smallest set satisfying the above clauses.
We say that t is linear if lin(t) holds and that t is unlimited, written un(t), otherwise.
Note that all I/O actions are linear, since they may involve communications on session
channels which are linear resources.

Table 3. Syntax of Pseudo-types and Pseudo-session types.
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Definition 1 (Types). A pseudo (session) type t is a (session) type if:

1. For each sub-term t1 → t2 of t such that un(t2) we have un(t1).
2. For each sub-term t1 � t2 of t we have lin(t2).
3. The tree representation of t is regular, namely it has finitely many distinct sub-trees.
4. Every infinite path in the tree representation of t has infinitely many •’s.

All conditions except possibly 4 are natural. Condition 1 essentially says that unlim-
ited functions are pure, namely they do not have side effects. Indeed, an unlimited func-
tion (one that does not contain linear names) that accepts a linear argument should
return a linear result. Condition 2 states that a linear function (one that may contain
linear names) always yields a linear result. This is necessary to keep track of the pres-
ence of linear names in the function, even when the function is applied and its linear
arrow type eliminated. For example, consider z of type Nat � Nat and both y and
w of type Nat, then without Condition 2 we could type (λx.y)(z w) with Nat. This
would be incorrect, because it discharges the expression (z w) involving the linear
name z. Condition 3 implies that we only consider types admitting a finite represen-
tation, for example using the well-known “μ notation” for expressing recursive types
(for the relation between regular trees and recursive types we refer to [24, Chap. 20]).
We define infinite types as trees satisfying a given recursive equation, for which the
existence and uniqueness of a solution follow from known results [6]. For example,
there are unique pseudo-types S′

Nat, SNat, and •∞ that respectively satisfy the equations
S′
Nat = Nat×S′

Nat,SNat = Nat×•SNat, and •∞ = ••∞. En passant, note that linearity is
decidable on types due to Condition 3.

Condition 4 intuitively means that not all parts of an infinite data structure can
be available at once: those whose type is prefixed by a • are necessarily “delayed”
in the sense that recursive calls on them must be deeper. For example, SNat is a type
that denotes streams of natural numbers where each subsequent element of the stream
is delayed by one • compared to its predecessor. Instead S′

Nat is not a type: it would
denote an infinite stream of natural numbers, whose elements are all available right
away. Similarly, OutNat and InNat defined by OutNat = !Nat. • OutNat and InNat =
?Nat.•InNat are session types, while O′

Nat and I
′
Nat defined by O

′
Nat = !Nat.OutNat and

I′
Nat = ?Nat.I′

Nat are not. The type •∞ is somehow degenerate in that it contains no
actual data constructors. Unsurprisingly, we will see that non-normalising terms such
as Ω = (λx.x x)(λx.x x) can only be typed with •∞. Without Condition 4, Ω could be
given any type.

We adopt the usual conventions regarding arrow types (which associate to the right)
and assume the following precedence among constructors: →, �, ×, IO, • with IO
and • having the highest precedence. We also need a notion of duality to relate the
session types associated with peer endpoints. Our definition extends the one of [12] in
the obvious way to delayed types. More precisely, the dual of a session type T is the
session type T coinductively defined by the equations:

end= end ?t.T = !t.T !t.T = ?t.T •T = •T

Sometimes we will write •nt in place of • · · · •︸ ︷︷ ︸
n-times

t.
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3.2 Typing Rules

We show the typing of expressions and processes. First we assign types to constants:

unit : Unit
return : t → IO t
open : 〈T 〉 → IO T

send : !t.T → t � IO T
recv : ?t.T → IO (t×T )
future : •n(IO t) → IO • nt

pair : t → s � t× s if lin(t)
pair : t → s → t× s if un(t)
bind : IO t → (t � IO s) � IO s

Each constant k 	= unit is polymorphic and we use types(k) to denote the set of types
assigned to k, e.g. types(return) = ∪t{t → IO t}.

The types of unit and return are as expected. The type schema of bind is similar
to the type it has in Haskell, except for the two linear arrows. The leftmost linear arrow
allows linear functions as the second argument of bind. The rightmost linear arrow is
needed to satisfy Condition 1 of Definition 1, being IO t linear. The type of pair is
also familiar, except that the second arrow is linear or unlimited depending on the first
element of the pair. If the first element of the pair is a linear expression, then it can
(and actually must) be used for creating exactly one pair. The types of send and recv
are almost the same as in [11], except that these primitives return I/O actions instead of
performing them as side effects. The type of open is standard and obviously justified by
its operational semantics. The most interesting type is that of future, which commutes
delays and the IO type constructor. Intuitively, future applied to a delayed I/O action
returns an immediate I/O that yields a delayed expression. This fits with the semantics
of future, since its argument is evaluated in a separate thread and the one invoking
future can proceed immediately with a placeholder for the delayed expression. If the
body of the new thread reduces to return e, then e substitutes the placeholder.

The typing judgements for expressions have the shape Γ � e : t, where typing envi-
ronments (for used resources) Γ are mappings from variables to types, from shared
channels to shared channel types, and from endpoints to session types:

Γ ::= /0 | Γ ,x : t | Γ ,a : 〈T 〉 | Γ ,ap : T

A typing environment Γ is linear, notation lin(Γ), if there is u : t ∈ Γ such that lin(t);
otherwise Γ is unlimited, notation un(Γ). As in [11], we use a (partial) combination
operator + for environments, that prevents names with linear types from being dupli-
cated. Formally the environment Γ + Γ ′ is defined inductively on Γ ′ by

Γ + /0 = Γ

Γ +(Γ ′,u : t) = (Γ + Γ ′)+u : t
where Γ+u : t =

⎧
⎪⎨

⎪⎩

Γ ,u : t if u 	∈ dom(Γ),
Γ if u : t ∈ Γ and un(t),
undefined otherwise.

The typing axioms and rules for expressions are given in Table 4. They are essen-
tially the same as those found in [11], except for two crucial details. First of all, each
rule allows for an arbitrary delay in front of the types of the entities involved. Intuitively,
the number of •’s represents the delay at which a value becomes available. So for exam-
ple, rule [→I] says that a function which accepts an argument x of type t delayed by n
and produces a result of type s delayed by the same n has type •n(t → s), that is a func-
tion delayed by n that maps elements of t into elements of s. The second difference with
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Table 4. Typing rules for expressions.

respect to the type system in [11] is the presence of rule [•I], which allows to further
delay a value of type t. Crucially, it is not possible to anticipate a delayed value: if it
is known that a value will only be available with delay n, then it will also be available
with any delay m ≥ n, but not earlier. Using rule [•I], we can derive that the fixed point
combinator fix = λy.(λx.y (x x))(λx.y (x x)) has type (•t → t) → t, by assigning to
the variable x the type s such that s= •s → t [19]. The side condition un(Γ) in [CONST],
[AXIOM], and [→I] is standard [11].

It is possible to derive the following types for the functions in Sect. 1:

from : Nat → SNat stream : OutNat → SNat → IO •∞ display : InNat → IO SNat

where, in the derivation for display, we assume type SNat → IO SNat for g. We show
the most interesting parts of this derivation. We use the following rules, which are easily
derived from those in Table 4 and the types of the constants.

[FIX]

Γ ,x : •t � e : t

Γ � fix λx.e : t
un(Γ)

[BIND]

Γ1 � e1 : •n(IO t) Γ2 � e2 : •n(t � IO s)
Γ1+ Γ2 � e1 >>= e2 : •nIO s

[FUTURE]

Γ � e : •n+mIO t

Γ � future e : •nIO •mt

[× → I]

Γ ,x1 : •nt1,x2 : •nt2 � e : •ns
Γ � λ 〈x1,x2〉.e : •n(t1 × t2 → s)

un(Γ)

In order to derive the type of display we desugar its recursive definition in Sect. 1
as display= fix (λx.λy.e), where

e = e1 >>= e2
e1 = recv y
e2 = λ 〈z,y′〉.e3 >>= e4

e3 = future
(
x y′)

e4 = λ zs.g〈z,zs〉
Now we derive

...
Γ1 � e1 : IO (Nat×•InNat)

∇
Γ ,Γ2,Γ3 � e3 >>= e4 : IO SNat

[× → I]
Γ � e2 : (Nat×•InNat) → IO SNat

[BIND]
Γ ,y : InNat � e : IO SNat

[→ I]
Γ � λy.e : InNat → IO SNat

[FIX] � display : InNat → IO SNat
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where Γ = x : •(InNat → IO SNat), Γ1 = y : InNat, Γ2 = y′ : •InNat and Γ3 = z : Nat,g :
SNat → IO SNat. The derivation ∇ is as follows.

Γ � x : •(InNat → IO SNat) Γ2 � y′ : •InNat
[→E]

Γ ,Γ2 � x y′ : •IO SNat
[FUTURE]

Γ ,Γ2 � e3 : IO •SNat
...

Γ3 � e4 : •SNat → IO SNat
[BIND]

Γ ,Γ2,Γ3 � e3 >>= e4 : IO SNat

Note that the types of the premises of [→E] in the above derivation have a • constructor
in front. Moreover, future has a type that pushes the • inside the IO; this is crucial
for typing e4 with (•SNat → IO SNat). We can assign the type •SNat → IO SNat to e4 by
guarding the argument z of type •SNat under the constructor pair. Without future, the
expression e3 >>= e4 would have type •(IO SNat) and display would be untypeable.

The typing judgements for processes have the shape Γ � P � Δ, where Γ is a typ-
ing environment as before, while Δ is a resource environment, keeping track of the
resources defined in P. In particular, Δ maps the names of threads and servers in P to
their types and it is defined by

Δ ::= /0 | Δ,x : t | Δ,a : 〈T 〉

Table 5 gives the typing rules for processes. A thread is well typed if so is its body,
which must be an I/O action. The type of a thread is that of the result of its body, where
the delay moves from the I/O action to the result. The side condition makes sure that
the thread is unable to use the very value that it is supposed to produce. The resulting
environment for defined resources associates the name of the thread with the type of the
action of its body. A server is well typed if so is its body e, which must be a function
from the dual of T to an I/O action. This agrees with the reduction rule of the server,
where the application of e to an endpoint becomes the body of a new thread each time
the server is invoked. It is natural to forbid occurrences of free variables and shared
channels in server bodies. This is assured by the condition shared(Γ), which requires Γ

to contain only shared channels. Clearly shared(Γ) implies un(Γ), and then we can type
the body e with a non linear arrow. The type of the new thread (which will be t if e has
type T → IO t) must be unlimited, since a server can be invoked an arbitrary number
of times. The environment Γ +a : 〈T 〉 in the conclusion of the rule makes sure that the
type of the server as seen by its clients is consistent with its definition.

Table 5. Typing rules for processes.
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The remaining rules are conventional. In a parallel composition we require that the
sets of entities (threads and servers) defined by P1 and P2 are disjoint. This is enforced
by the fact that the respective resource environments Δ1 and Δ2 are combined using
the operator , which (as usual) implicitly requires that dom(Δ1)∩dom(Δ2) = /0. The
restriction of a session channel a introduces associations for both its endpoints a+ and
a− in the typing environment with dual session types, as usual. Finally, the restriction
of a bindable name X introduces associations in both the typing and the resource envi-
ronment with the same type t. This makes sure that in P there is exactly one definition
for X , which can be either a variable which names a thread or a shared channel which
names a server, and that every usage of X is consistent with its definition.

4 Main Results

In this section we state the main properties enjoyed by typed SID programs. The first
expected property is that reduction of expressions preserves their types.

Theorem 1 (Subject Reduction for Expressions). If Γ � e : t and e −→ e′, then Γ �
e′ : t.

Besides the usual substitution lemma, the proof of the above theorem needs the
delay lemma, which states that if an expression e has type t from Γ , then it has type •t
from •Γ . This property reflects the fact that we can only move forward in time.

As informally motivated in Sect. 3, the type constructor • controls recursion and
guarantees normalisation of any expression that has a type different from •∞.

Theorem 2 (Normalisation of Typeable Expressions). If Γ � e : t and t 	= •∞, then e
reduces (in zero or more steps) to a normal form.

The proof of Theorem 2 makes use of a type interpretation indexed on the set of nat-
ural numbers, similar to the one given in [19]. Note that, since SID is lazy, expressions
such as return e and 〈e, f 〉 are in normal form for all e and f .

An initial process models the beginning of a computation and it is formally defined
as a closed, well-typed process P such that

P ≡ (νxa1 · · ·am)(x ⇐ e|server a1 e1 | · · ·|server am em)

By definition, an initial process does not contain undefined names (hence it is typeable
from the empty environment) and consists of only one thread x – usually called “main”
in most programming languages – and an arbitrary number of servers. In particular,
typeability guarantees that all bodies normalise and all open’s refer to existing servers.

We say that a process is reachable if it is the reduct of an initial process. Unlike
an initial process, a reachable process may have several threads running in parallel,
resulting from either service invocation or future.

Theorem 3 (Subject Reduction for Processes). All reachable processes are typeable.
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The most original and critical aspect of the proof is to check that reachable processes
do not have circular dependencies on session channels and variables. The absence of
circularities can be properly formalized by means of a judgement that characterises
the sharing of names among threads, inspired by the typing of the parallel composition
given in [16]. Intuitively, it captures the following properties of reachable processes and
makes them suitable for proving both subject reduction and progress:

1. two threads can share at most one session channel;
2. distinct endpoints of a session channel always occur in different threads;
3. if the name of one thread occurs in the body of another thread, then these threads

cannot share session channels nor can the first thread mention the second.

Next, we show several examples of processes that are irrelevant to us because, in spite
of being typeable, they are not reachable. Examples (4.1) and (4.2) violate condition (3),
(4.3) violates condition (1), and (4.4) violates condition (2).

The first example is given by the process

(νxy)(x ⇐ return y| y ⇐ return x) (4.1)

which is well typed by assigning both x and y any unlimited type, whereas (νx)(x ⇐
return x), which is its reduct, is ill typed, because the thread name x occurs free in its
body (cf. the side condition of [THREAD]). Another paradigmatic example is

x ⇐ send a+y| y ⇐ recv a− (4.2)

which is well typed in the environment a+ : !t.end,a− : ?t.end, y : t, where t = •(t ×
end), and which reduces to x ⇐ return a+ |y ⇐ return 〈y,a−〉. Again, the reduct is
ill typed because the name y of the thread occurs free in its body.

Another source of problems that usually requires specific handling [2,4] is that there
exist well-typed processes that are (or reduce to) configurations where mutual depen-
dencies between sessions and/or thread names prevent progress. For instance, both

(νxyab)(x ⇐ send a+ 4 >>= λx.recv b− | y ⇐ send b+ 2 >>= λx.recv a−)(4.3)

(νxa)(x ⇐ recv a− >>= λ 〈y,z〉.send a+ y) (4.4)

are well typed but also deadlocked. Again, processes like this one are not reachable
hence they are not a concern in our case.

We now turn our attention to the progress property. A computation stops when there
are no threads left. Recall that the reduction rule [R-RETURN] (cf. Table 2) erases threads.
Since servers are permanent we say that a process P is final if

P ≡ (νa1 . . .am)(server a1 e1 | . . .|server am em)

In particular, the idle process is final, since m can be 0.
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We can state the progress property as follows:

Theorem 4 (Progress of Reachable Processes). A reachable process either reduces
or it is final. Moreover a non-terminating reachable process reduces in a finite number
of steps to a process to which one of the rules [R-OPEN], [R-COMM] or [R-FUTURE] can be
applied.

In other words, every infinite reduction of a reachable process performs infinitely
many communications and/or spawns infinitely many threads. The proof of Theorem 4
requires to define a precedence between threads and prove that this relation is acyclic.

As an example, let

Q = (νprodconsac)(P|server a λy.display y)

where
P = prod ⇐ stream c+ (from 0)| cons ⇐ display c−

is the process discussed in the Introduction. It is easy to verify that

P0 = (ν proda)(prod⇐ open a >>= λy.stream y (from 0)|server a λy.display y)

reduces to process Q. Note that P0 is typeable, and indeed an initial process. Hence, by
Theorems 3 and 4, process Q is typeable and has progress. The last property of SID we
discuss is the diamond property [24, Sect. 30.3].

Theorem 5 (Confluence of Reachable Processes). Let P be a reachable process. If
P −→ P1 and P −→ P2, then there is P3 such that P1 −→ P3 and P2 −→ P3.

The proof is trivial for expressions, since there is only one redex at each reduction step.
However, for processes we may have several redexes to contract at a time and the proof
requires to analyse these possibilities. The fact that we can mix pure evaluations and
communications and still preserve determinism is of practical interest.

We conclude this section discussing two initial processes whose progress is some-
what degenerate. The first one realises an infinite sequence of delegations (the act of
sending an endpoint as a message), thereby postponing the use of the endpoint forever:

badserver
def= (νxab)(x ⇐ open a >>= loop1|

server a λy.open b >>= loop2 y|server b recv)

where

loop1
def= fix λ f .λx.recv x >>= λy.split y as y1,y2 in send y2 y1 >>=

λ z.future ( f z)
loop2

def= fix λg.λyx.send x y >>= λ z.recv z >>=
λu.split u as u1,u2 in future (gu1u2)

We have that loop1 : RSt → IO •∞ and loop2 : t → SRt � IO •∞ where RSt = ?t.!t.•
RSt and SRt = !t.?t. • SRt . Since no communication ever takes place on the session
created with server b, badserver violates the progress property as defined in [8].

The second example is the initial process (νx)(x ⇐ Ωfuture), where Ωfuture =
fix future. This process only creates new threads.
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5 Conclusions

This work addresses the problem of studying the interaction between communications
and infinite data structures by means of a calculus that combines sessions with lazy
evaluation. A distinguished feature of SID is the possibility of modelling computations
in which infinite communications interleave with the production and consumption of
infinite data (cf. the examples in Sect. 1). Our examples considered infinite streams for
simplicity. However, more general infinite data structures can be handled in SID. An
evaluation of the expressiveness of SID in dealing with (distributed) algorithms based
on such structures is scope for future investigations.

The typing discipline we have developed for SID guarantees normalisation of
expressions with a type other than •∞ and progress of (reachable) processes, besides
the standard properties of sessions (communication safety, protocol fidelity, determin-
ism). The type system crucially relies on a modal operator • which has been used in
a number of previous works [3,14,19,26] to ensure productivity of well-typed expres-
sions. In this paper, we have uncovered for the first time some intriguing interactions
between this operator and the typing of impure expressions with the monadic IO type
constructor. Conventionally, the type of future primitive is simply IO t → IO t and
says nothing about the semantics of the primitive itself. In our type system, the type of
future reveals its effect as an operator that turns a delayed computation into another
that can be performed immediately, but which produces a delayed result.

As observed at the end of Sect. 1 and formalised in Theorem 4, our notion of
progress sits somehow in between deadlock and lock freedom. It would be desirable
to strengthen the type system so as to guarantee the (eventual) execution of all pending
communications and exclude, for instance, the degenerate examples discussed at the
end of Sect. 4. This is relatively easy to achieve in conventional process calculi, where
expressions only consist of names or ground values [2,4,20], but it is far more challeng-
ing in the case of SID, where expressions embed the λ -calculus. We conjecture that one
critical condition to be imposed is to forbid postponing linear computations, namely
restricting the application of [•I] to non-linear types. Investigations in this direction are
left for future work.

Another obvious development, which is key to the practical applicability of our
theory, is the definition of a type inference algorithm for our type system. In this respect,
the modal operator • is challenging to deal with because it is intrinsically non-structural,
not corresponding to any expression form in the calculus.

Acknowledgements. The authors thank the reviewers for their valuable comments.
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Abstract. In order to support, for example, a quantitative analysis of
various algorithms, protocols etc. probabilistic features have been intro-
duced into a number of programming languages and calculi. It is by now
quite standard to define the formal semantics of (various) probabilis-
tic languages, for example, in terms of Discrete Time Markov Chains
(DTMCs). In most cases however the probabilities involved are repre-
sented by constants, i.e. one deals with static probabilities. In this paper
we investigate a semantical framework which allows for changing, i.e.
dynamic probabilities which is still based on time-homogenous DTMCs,
i.e. the transition matrix representing the semantics of a program does
not change over time.

1 Introduction

Over the last 20 years or so probabilistic programming languages, model check-
ing, programming, semantics etc. have become more and more popular. It
appears now to be rather straight forward to add probabilities to any language,
formalism, calculus, etc. one might be interested in. Most “probabilistic” pro-
gramming languages, etc. however use constant probabilities [10,11] etc., as
we also did in our own work [4,7], especially when anything beyond a simple
operational semantics is considered.

One of the motivations for introducing probabilities, as a form of quantified
non-determinism, into a programming language is to allow for the formulation
and analysis of so-called “randomised algorithms” [13], i.e. algorithms where
chance is exploited in order to obtain a certain result, may it be probabilistic
primality tests, Monte Carlo integration, etc.

However, there is a large class of randomised algorithms in the area of sto-
chastic programming which have dynamic probabilities at their core, such a stim-
ulated annealing, the Metropolis algorithm, Boltzmann machines, etc. [1,17]. All
of these try to find global optimal solutions and in order to avoid getting trapped
into a local minima (as might, for example, be the effect of a steepest gradi-
ent method) there are random perturbations. The effect of these perturbations
is decreasing over time, i.e. during optimisation the chances of a perturbation
changes slowly to become zero. Without going into the details of such “cooling”
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schemes or schedules we are in this paper interested in how to formalise dynam-
ically changing probabilities in an appropriate semantical model.

Probabilistic features, e.g. choices, introduce also a subtle, nevertheless
extremely important form of coordination. Probabilities have to be normalised,
not as a formal requirement but quasi because of the fundamental laws of nature:
Something must happen, so the probabilities of all possibilities at any moment
must add up to one. Thus, whatever model we employ in order to describe
probabilistic choices, assignments, etc. the different options or possibilities are
“communicating” in some form via their probabilities: if one option becomes
more likely, another one must give up its chances to be executed/realised.

2 A Probabilistic Language

In the following we will denote by Var = {x1, . . . , xv} the set of all variables of
a program P and by Value(x) the range of possible values of a variable x.

Technical restriction: In this paper we assume that Value(x) is finite for all
x ∈ Var. We will allow below for variables as probabilities which thus also will
have to come from a finite set of (possible) values. From a computational point
of view probabilities should in any case perhaps be modeled as rational numbers
in [0, 1]. Using real numbers can, as always, create a number of fundamental
problems related to computability etc., e.g. [19].

To simplify the presentation we will go even a step further and only consider
positive integers in Z

+ as “weights”1: Given several options with “weights” wi

these correspond to probabilities pi = wi/
∑

j wj . As we have to (re)normalise
probabilities in any case (even for static probabilities as constants, unless we
can trust the programmer that all probabilities in a choice or a probability
distribution always add up to one) this does not imply any restriction. It only
means that in effect we consider proportions or ratios rather than rational values.

Conceptual restriction: We do not allow for any kind of pure “non-determinism”
as part of the actual execution of the program. The reasons for this are: (i) From
a conceptual point of view it seems to be a contradiction to the notions like that
of a Turing machine as an unambiguous procedure (”Entscheidungsproblem”) to
allow for (e.g. angelic) “non-determinism”; (ii) we also do not believe that any
physical implementation of a purely “non-deterministic” choice exists (e.g. one
could use quantum devices to realise probabilistic but never “non-deterministic”
choices); and (iii) there are several mathematical (pseudo-)problems which disap-
pear when one eliminates “ non-determinism” during the execution of a program
(e.g. related to boundedness, etc. [7]).

However, our semantical model still accommodates “non-determinism” in
several aspects such as “non-determinism” as “under-specification” and “open-
ness”. Concretely, the semantical model provides for our language (pure) “non-
determinism” in two ways: (i) We leave it open which initial configuration will
1 Weights however have to be distinguished from priorities in other contexts.
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be used, as we have no further interaction with the environment this can also be
seen as allowing for an “open” system; and (ii) we also allow for parameters as
probabilities, i.e. our semantics allows for “under-specification” in the sense that
the concrete probabilities are only determined in a concrete implementation.

2.1 Syntax

The syntax of statements in our language pWhile is given in Table 1. We also
provide a labelled version of this syntax (cf. [14]) in order to be able to refer to
certain program points in a program analysis context, see also Table 1. We will
denote by Label the set of all labels of a program. For details on expressions
f(x1, . . . , xn) (also sometimes denoted simply by e) etc. we refer to e.g. [5,14].

Table 1. The syntax of pWhile

S ::= skip

| x := f(x1, . . . , xn)

| S1; S2

| choose p1 : S1 or p2 : S2 ro

| if b then S1 else S2 fi

| while b do S od

S ::= [skip]�

| [x := f(x1, . . . , xn)]
�

| S1; S2

| [choose]� p1 : S1 or p2 : S2 ro

| if [b]� then S1 else S2 fi

| while [b]� do S od

For this language we have the usual intuitive semantics: We have an “empty”
skip statement, assignment to variables, sequential composition as well as if
statements and while loops. The only probabilistic construct is the choose
statement which executes S1 or S2 according to the probabilities p1 and p2 (which
we assume to be normalised, i.e. p1 + p2 = 1, or which will be (re)normalised as
part of the execution of the program, mor below). The choose statement can
also be extended from its binary version to an n-ary one. We will not consider
in this core language random assignments – as in some of our other papers or,
e.g., [11] – but just note that obviously one can implement a random assignment
(involving finite values) using the choose construct.

2.2 Operational Semantics

The SOS semantics for pWhile is given in Table 2. We use the (additional)
statement stop to indicate successful termination and (re)normalise probabilities
in R7, otherwise these are the usual SOS rules for procedural languages. The
operational (SOS) semantics of pWhile is defined in terms of a probabilistic
transition system on configurations. A configuration is a pair 〈S, s〉 ∈ Conf
with S a statement in pWhile and s ∈ State a (classical) state, i.e. a function
Var → Value. The SOS semantics is essentially also the same for the labelled
version of the language, in this case we can however simplify the presentation
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Table 2. The rules of the SOS semantics of pWhile (static)

R1 〈stop, s〉−→1〈stop, s〉
R2 〈skip, s〉−→1〈stop, s〉
R3 〈v := e, s〉−→1〈stop, s[v E→� (e)s]〉

R41
〈S1, s〉−→p〈S′

1, s
′〉

〈S1;S2, s〉−→p〈S′
1;S2, s

′〉
R42

〈S1, s〉−→p〈stop, s′〉
〈S1;S2, s〉−→p〈S2, s

′〉
R51 〈if b then S1 else S2 fi, s〉−→1〈S1, s〉 if E(b)s = true

R52 〈if b then S1 else S2 fi, s〉−→1〈S2, s〉 if E(b)s = false

R61 〈while b do S od, s〉−→1〈S; while b do S od, s〉 if E(b)s = true

R62 〈while b do S od, s〉−→1〈stop, s〉 if E(b)s = false

R71 〈choose p1 : S1 or p2 : S2 ro, s〉−→p̃1〈S1, s〉 with p̃1 = p1[p1,p2]

R72 〈choose p1 : S1 or p2 : S2 ro, s〉−→p̃2〈S2, s〉 with p̃2 = p2[p1,p2]

by identifying each statement S with the label of the initial block of S, i.e. a
configuration 〈S, s〉 is identified with the pair 〈s, init(S)〉 ∈ State × Label (for
a formal definition of init see e.g. [5]). Most transitions are in fact deterministic
(i.e. the associated probability is 1) just for choices, i.e. rules R7 do we use the
normalised probabilities p̃i (more on the actual normalisation procedure below).

The probabilistic transition system defined in Table 2 describes a Discrete
Time Markov Chain (DTMC) (cf. e.g. [15,18]) as we obviously have a memo-
ryless process: the transitions in Rules R1 to R7 depend only on the current
configuration and not on the sequence of the configurations that preceded it. One
can also easy to show that the probabilities of out-going transitions from each
state sum up to one. It is well-known that the matrix of transition probabilities
of a DTMC on a countable state space is a stochastic matrix, i.e. a square (pos-
sibly infinite) matrix P = (pij) whose elements are real numbers in the closed
interval [0, 1], for which

∑
j pij = 1 for all i [18,20]. We can therefore represent

the SOS semantics for a pWhile program P by the stochastic matrix on the
vector space over the set Conf of all configurations of a program P defined by
the rules in Table 2.

2.3 States and Observables

For our language we also allow for the specification of the range of possible values
of variables, i.e. Value(x), via declarations. Without going into the details of the
formal syntax, we distinguish between parameters, indicated by para, and proper
variables for which we specify their Value as a subset of the integers.

This allows us (also because Value(x) are assumed to be finite) to describe
the space of probabilistic states σ (of a program) as (probability) distributions
over classical states, i.e. σ ∈ D(State). We can also see σ simply as a vector in
the so-called free vector space V(State) over State (distributions correspond to
positive vectors with 1-norm 1) cf. [5,7].

For a single variable x we have (the isomorphism) State = Value(x) and
when we consider several variables we can identify a classical state s with an
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element in the Cartesian product Value(xi) × . . . × Value(xv). When we con-
sider probabilistic states of a single variable x then we have σ ∈ D(State) ⊆
V(Value(x)). But for more than one variable we have σ ∈ ⊗v

i=1 V(Value(xi)),
i.e. the so-called tensor product, rather than the Cartesian product of V(Value).
This unfortunately leads to a form of combinatorial explosion but is needed
accommodate all possible joint probability distributions as we have (the isomor-
phism) V(X1 × . . . × Xv) = V(X1) ⊗ . . . ⊗ V(Xv).

Concretely, the tensor product – more precisely, the Kronecker product, i.e.
the coordinate based version of the abstract concept of a tensor product – of two
vectors (x1, . . . , xn) and (y1, . . . , ym) is (x1y1, . . . , x1ym, . . . , xny1, . . . , xnym) i.e.
an nm dimensional vector. For an n × m matrix A = (Aij) and an n′ × m′

matrix B = (Bkl) we construct similarly an nn′ ×mm′ matrix A⊗B = (AijB),
i.e. each entry Aij in A is multiplied with a copy of the matrix or block B, for
further details we refer e.g. to [16, Chapter 14].

In the following we also will use the notion of an observable which describes
properties a program or system might have (for further details see [7]). Formally,
an observable is a linear functional on the probabilistic state space, i.e. an ele-
ment of its dual space. For finite dimensional spaces, as we have them here, we
can identify state and observable space. States and observables are related to
each other by the notion of expected value, E(x, σ), which gives the probabil-
ity that we will observe a certain property x when the state of the system is
described by σ. In our finite setting (and by Riesz’s representation theorem) we
can utilise an inner product 〈., .〉 in order to to obtain E(x, σ) = 〈x, σ〉.

3 Static Probabilities

If the probabilities in the choose statement are required to be constants (or
parameters) then we can us a simple (re)normalisation procedure (at compile
time) in order to obtain the effective probabilities that a certain alternative is
executed, i.e. we (re) normalise probabilities in the SOS in Table 2 via:

p̃ = p[p1...pn] =
p

p1 + . . . + pn
.

Not least because we will allow later also variable values pi we have to
address the issue whether p[p1...pn] is always well-defined. We will exclude nega-
tive weights (if the nevertheless appear we could consider the absolute values).
However, one problem remains, namely whether or not we allow for pi = 0. One
argument – which we will adopt – would be to allow this to indicate “blocked”
alternatives, especially when we consider (below) dynamical probabilities. This
implies another issue we need to consider, namely the case where all pi = 0. In
this case, normalisation would imply a division by zero. To overcome this we set
p̃ = p[p1...pn] = 0 if we have for all pi = 0.

3.1 Linear Operator Semantics (LOS)

The Linear Operator Semantics (LOS) in [4,7] constructs the generator of the
DTMC which represents the dymanics of a program (executions) in a syntax
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directed fashion. Like Kozen’s semantics [11] we can represent the LOS as an
operator on the vector space of probabilistic states, i.e. in the finite case as a
matrix.

The LOS, [[P ]]LOS , of a program P is constructed by means of a set, {{P}}LOS

which associated to a program P is a set of linear operators which describe
local changes (at individual labels). From {{P}}LOS we can construct the DTMC
generator [[P ]]LOS then as a linear operator on V(Conf)

[[P ]]LOS : V(Valuen) ⊗ V(Label) → V(Valuen) ⊗ V(Label)

or simply [[P ]]LOS ∈ L(V(Conf)). We obtain it by combining all the individual
effects which are described in {{P}}LOS :

[[P ]]LOS =
∑

{{P}}LOS =
∑

{G | G ∈ {{P}}LOS}.

The {{S}}LOS associated to a statement S is given by a set of global and local
operators, i.e. {{.}}LOS : Stmt → P(Γ ∪Λ), cf Table 3. Global operators are linear
operators on V(Conf) i.e. Γ = L(V(Valuen) ⊗ V(Label)) = L(V(Conf)), and
local operators are pairs of operators on V(State) and labels � ∈ Label, i.e.
Λ = L(V(Valuen)) × Label.

Global operators are providing information about how the computational
state changes at a label as well as the control flow, i.e. what is the label of the
next statement to be executed. Local operators are representing statements for
which the “continuation” is not yet known. In order to transform local operators
into global ones (once the “continuation” is known) we define a “continuation”
operation 〈F, �〉 � �′ = F ⊗ E(�, �′) which we extend in the obvious way to sets
of operators as {〈Fi, �i〉}} � �′ = {Fi ⊗ E(�i, �

′)} (for global operators we have
G� �′ = G). We denote by E(i, j) matrix units: (E(i, j))ij = 1 and 0 otherwise.

Table 3. The LOS semantics of pWhile (static)

{{[skip]�}}LOS = {〈I, �〉}
{{[x := e]�}}LOS = {〈U(x ← e), �〉}

{{S1; S2}}LOS = ([[S1]] � init(S2)) ∪ [[S2]]

{{[choose]� p1 : S1 or p2 : S2 ro}}LOS = {p1[p1,p2] · I ⊗ E(�, init(S1))} ∪ {{S1}}LOS ∪
{p2[p1,p2] · I ⊗ E(�, init(S2))} ∪ {{S2}}LOS

{{if [b]� then S1 else S2 fi}}LOS = {〈P(b), �〉} � init(S1)} ∪ {{S1}}LOS ∪
{〈P(b)⊥, �〉} � init(S2)} ∪ {{S2}}LOS

{{while [b]� do S od}}LOS = {〈P(b), �〉} � init(S)} ∪ {{S}}LOS � �

∪{〈P(b)⊥, �〉}

We use elementary update and test operators U and P (and its complement
P⊥ = I − P) as in Kozen’s semantics. However, the tensor product structure
allows us to define these operators in a different (but equivalent) way.
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For a single variable the assignment to a constant value v ∈ Value is repre-
sented by the operator on V(Value) given by U(v) = 1 if v = i and 0 otherwise.
Testing if a single variable satisfies a boolean test b is achieved by a (diagonal)
projection operator on V(Value) with (P(b))ii = 1 if b(i) holds and 0 otherwise.
We extend these to the multivariable case, i.e. for |Var| = n > 1. For testing if
we are in a classical state s ∈ Valuen or if an expression e evaluates to a constant
v (assuming an appropriate evaluation function E : Expr → State → Value)
we have operators on V(Value)⊗n:

P(s) =
n⊗

i=1

P(xi = s(xi)) P(e = v) =
∑

E(e)s=v

P(s).

We also have operators on V(Value)⊗n for updating a variable xk in the context
of other variables to a constant v or to the value of an expression e:

U(xk ← v) =
k−1⊗

i=1

I⊗U(v)⊗
n⊗

i=k+1

I U(xk ← e) =
∑

v

P(e = v)U(xk ← v)

As we model the semantics of a program as DTMCs we are also adding a final
loop �∗ (for �∗ a fresh label not appearing already in P ) when we consider
a complete program (DTMC never terminate and thus we have to simulate
termination by an infinite repetition of the final state), i.e. we actually have to
use ({{P}}LOS � �∗) ∪ {I⊗E(�∗, �∗)} when we construct [[P ]]LOS . In this way we
also resolve all open or dangling control flow steps, i.e. we deal ultimately with
a set containing only global operators.

As said, the operator [[P ]]LOS is the generator of a DTMC which implements
the dynamic behaviour or executions of the program P . In particular, we can take
any (initial) configuration c0, represented by a (point) distribution in V(Conf)
and compute the distribution over all configurations we will have after n steps
as cn = c0 · [[P ]]nLOS (using post-multiplication as our convention).

3.2 A Small Example

The LOS semantics specifies the semantics of a program as the generator of a
DTMC. We use a simple experimental tool – pwc – which “compiles” a pWhile
program into an octave [8] script which defines the different matrices/operators.
To illustrate this let us look at a simple example involving a probabilistic choice.

Example 1. The concrete program P we consider, for which we also provide the
labelling (which is in fact produced by the pwc tool) is given by:

var
p :para; x :{0,1};

begin
[choose]^1 1: [x:=0]^2 or 1: [x:=1]^3 or p: [skip]^4 ro;
[stop]^5

end
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Here we deal with one parameter p, the value of this can be set to any (integer)
value before the program is actually executed, and one variable x which can take
two values in {0, 1}. The state space is thus given just by V({0, 1}) = R

2 (as the
parameter p does not change we do not record its value as part of the state). The
program is made up from 5 blocks: [choose]1, [x := 0]2, [x := 1]3, [skip]4, [skip]5.
We thus have as the (probabilistic) space of configurations on which the LOS
operator acts V({0, 1} × V({�1, �2, �3, �4, �5}) = R

2 ⊗ R
5 = R

10, i.e. [[P ]]LOS is
a 10 × 10 matrix which represents the generator of a DTMC on a space of 10
elements. Each dimension corresponds to a possible configuration, i.e. a tuple
〈si, �j〉 with s a (classical) state s : {x} → {0, 1} and a statement or block
identified by its label � ∈ {�1, �2, �3, �4, �5}. Concretely we have the following
base vectors ei in R

10 for the state spaces of the DTMC: e1 = 〈x 
→ 0, �1〉, e2 =
〈x 
→ 0, �2〉, . . . , e5 = 〈x 
→ 0, �5〉, e6 = 〈x 
→ 1, �1〉, . . . , e10 = 〈x 
→ 1, �5〉.

For each of the 5 blocks we have a local transfer operator F1, . . .F5 which
are (stochastic) 2 × 2 matrices, i.e. linear operators on our state space R

2. For
blocks 4 and 5 these Fi are trivial, i.e. the identity 2× 2 matrix, for label �2 and
�3 the transfer operators are slightly more interesting:

F1 = F4 = F5 =
(

1 0
0 1

)

, F2 =
(

1 0
1 0

)

, F3 =
(

0 1
0 1

)

.

This allows us to specify the local LOS operators for each basic block:

{{[x := 0]2}}LOS = {〈F1, 2〉}, {{[x := 1]3}}LOS = {〈F1, 3〉},
{{[skip]4}}LOS = {〈F4, 4〉}, {{[skip]5}}LOS = {〈F5, 5〉}.

We could also consider explicitely {{[choose]1}}LOS = {〈F1, 1〉}, however this
will be covered when we consider the global operators.

The control flow of P is made up from 7 control-flow step triples 〈i, p, j〉,
where i is the initial label, p the transition probability and j the final label:

1 − 〈1, 1, 2〉, 2 − 〈1, 1, 3〉, 3 − 〈1, p, 4〉,
4 − 〈2, 1, 5〉, 5 − 〈3, 1, 5〉, 6 − 〈4, 1, 5〉, 7 − 〈5, 1, 5〉.

For each of these control-flow steps we construct a global operator, typically the
tensor product of the local transfer operator Fi at the initial label i and a control-
flow step given by the matrix unit E(i, j), eventually weighted by a probability.
Here we have to consider the (global) operators: T1 = F1 ⊗ E(1, 2),T2 = F1 ⊗
E(1, 3),T3 = F1 ⊗ E(1, 4),T4 = F2 ⊗ E(2, 5),T5 = F3 ⊗ E(3, 5),T5 = F4 ⊗
E(4, 5),T7 = F5 ⊗ E(5, 5). The first three operators allow us to define the LOS
of the choices statement. For this we have to specify a particular value for the
parameter p. For example, for p = 0 we get after renormalisation:

{{[choose]1 . . . ro}}LOS = {1
2
T1,

1
2
T2} ∪ {{[x := 0]2}}LOS ∪ {{[x := 1]3}}LOS .

If we instead take p = 1 we get after renormalisation:

= {1
3
T1,

1
3
T2,

1
3
T3, } ∪ {{[x := 0]2}}LOS ∪ {{[x := 1]3}}LOS ∪ {{[skip]4}}LOS .
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The LOS {{[choose]1 . . . ro}}LOS contains global as well as local operators: The
global ones represent control-flow steps where the destination is already known,
while the local ones (here for the labels �2, �3 and �4 are still unresolved. How-
ever, when we consider the whole program then the operation � resolves the
destinations of local operators and turns them into global ones, e.g.

{{[x := 0]2}}LOS � �5 = {T4} = {F2 ⊗ E(2, 5)}
{{[x := 1]3}}LOS � �5 = {T5} = {F3 ⊗ E(3, 5)}
{{[skip]4}}LOS � �5 = {T6} = {F4 ⊗ E(4, 5)}

Resolving the self-loop for label 5 using T7 we get the semantics for p = 0 as:

{{P}}LOS = {1
2
T1,

1
2
T2,T4,T5,T6,T7}

and for p = 1 we have (similarly also for other values of p):

{{P}}LOS = {1
3
T1,

1
3
T2,

1
3
T3,T4,T5,T6,T7}

The DTMC generator in both case is [[P ]]LOS =
∑ {T | T ∈ {{P}}LOS} .

4 Dynamical Probabilities

The main purpose of this work is to allow for “dynamical” probabilities in pro-
grams. That is we would like to allow for variables in choice constructs which
allow a change of their values in the course of a computation. Given that our LOS
semantics constructs a single operator [[P ]]LOS for every program P which does
not change during the execution, i.e. represents a (time) homogenous DTMC,
this seems to be a hopeless task. On the other hand, the state of the system does
obviously contain all the information which could influence how the execution
of a program should continue, so if it encodes the values of variables in choices,
then this information should somehow be exploitable.

For the SOS semantics it is still relatively easy to extend it towards variable
probabilities: We have to replace the normalisation condition in rules R7 in
Table 2 by reference to the current state s, i.e. p̃i = s(pi)/s(p1)+s(p2) rather than
constant values of pi. The way to introduce dynamical or variable probabilities
into the LOS semantics of the choice construct is to test or check whether we
are in a certain state where variables have certain concrete values, if this is the
case then the corresponding normalisation is applied.

4.1 Linear Operator Semantics (LOS)

In order to extend the LOS semantics as to allow for variable probabilities we
have to consider the way we construct the LOS operator for the choice statement
with static, i.e. constant, probabilities: {{[choose]� p1 : S1 or p2 : S2 ro}}LOS =
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{p̃1 ·I⊗E(�, init(S1))}∪{{S1}}LOS ∪{p̃2 ·I⊗E(�, init(S2))}∪{{S2}}LOS , or more
general for n alternatives in a choice statement:

{{[choose]� p1 : S1 or . . . or pn : Sn ro}}LOS =

=
n⋃

i=1

{p̃i · I ⊗ E(�, init(Si))} ∪ {{Si}}LOS .

In these rules all pi are known, either because they are constants or because
they are constant parameters. We thus can compute the normalised probabilities
p̃i or, when we need to explicitely record the context in which we normalise,
p̃i = pi[p1...pn] in exactly the same way as in the operational semantics.

When it comes to dynamical probabilities then we need to consider all pos-
sible contexts, i.e. all possible values p1, . . . , pn could take, in which we might
need to normalise a probability. Formally we define a context for probabilities
p1, . . . , pn where each pi can be a constant value (incl. a parameter) or a variable
(name) as a set of sequences i1, . . . , in of integers:

C[p1, p2, . . . , pn] =

⎧
⎪⎪⎨

⎪⎪⎩

∅ if n = 0
{[p1]} if n = 1 and pi constant
{[c] | c ∈ Value(p1)} if n = 1 and pi a variable⋃

[i]∈C[p1]
{[i] · C[p2, . . . , pn]} otherwise, i.e. n > 1.

where “·” denotes the concatenation of integer sequences [i1, . . . , im] defined and
extended to sets of sequences in the obvious way.

Example 2. Assume we have a variable x with Value(x) = {0, 1} and a para-
meter p = 0 or p = 1 then contexts are given by:

C[x, 1, p] = {[0, 1, 0], [1, 1, 0]} and C[x, 1, p] = {[0, 1, 1], [1, 1, 1]}
With this we can now define an extended version of the LOS which also

allows for variables as choice probabilities:

{{[choose]� p1 : S1 or . . . or pn : Sn ro}}LOS =

=
n⋃

i=1

⎧
⎨

⎩

∑

cj∈pi

∑

[d1,...,dn]∈C[p1...pn]

cj [d1...dn]
· Ppi[p1...pn]

cj [d1...dn]
⊗ E(�, init(Si))

⎫
⎬

⎭
∪ {{Si}}LOS .

To explain this construction: The LOS of the choices is given – as in the static
case – as the union of all (global) operators which implement the control-flow
step from label � to one of the alternatives i = 1 . . . n together with the LOS
semantics of each of these alternatives defined by {{Si}}LOS . However, in the case
of static probabilities we have to weight the operator E(�, init(Si)) not just with
a normalised probability but instead we test if the values of the probabilities
(which can be variables, after all) are described by a particular context and
then apply the corresponding normalised weight cj [d1...dn]

. This test operator

Ppi[p1...pn]
cj [d1...dn]

is very similar to the test we apply in order to identify a particular
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state, i.e. P(σ), except that in a context the same variable can appear several
times:

Ppi[p1...pn]
cj [d1...dn]

= P(pi = cj) ·
⎛

⎝
∏

k=1,...,n

P(pk = dk)

⎞

⎠ .

The first sum is over all possible values of the guard probability pi, where we
use the short-hand notation cj ∈ pi for cj ∈ Value(pi) which for constants and
parameters reduces to a single term cj = pi. The second sum is over all possible
values of all probabilities in all possible contexts. It might be interesting to note
that if a variable appears twice it has to have the same value (as diag(ei) ⊗
diag(ej) = diag(ei) if and only if i = j and the zero matrix otherwise). For
constant values we can also omit the tests (as eiT = eidiag(ei)T for all T).

It is simple to show that the LOS semantics for choice with variable prob-
abilities is equivalent to the SOS semantics, for the other construct things are
unchanged [7].

4.2 A Small Example

In order to illustrate the LOS for dynamical variables let us again first consider
a very simple example, similar to Example 1.

Example 3. The program Q we consider is given by:

var
p :para; x :{0,1};

begin
[choose]^1 x: [x:=0]^2 or 1:[x:=1]^3 or p:[skip]^4 ro;
[stop]^5

end

As we have the same declarations, we have exactly the same state spaces as
in Example 1. Furthermore, we also have the same 5 blocks as in the previous
example and therefore the DTMC state space of configurations is again R

10. We
also have the same transfer operators Fi (and local LOS operators for the basic
blocks). However, though the control flow has again 7 control-flow steps and it
is nearly identical, except for the step from �1 to �2 which here is guarded by a
variable probability x:

1 − 〈1, x, 2〉, 2 − 〈1, 1, 3〉, 3 − 〈1, p, 4〉,
4 − 〈2, 1, 5〉, 5 − 〈3, 1, 5〉, 6 − 〈4, 1, 5〉, 7 − 〈5, 1, 5〉.

We can still use the same operators Ti from Example 1 but the complete LOS
semantics now looks slightly different. For p = 0 or p = 1 we need to work with
the contexts given in Example 2. For p = 0 we have C[x, 1, p] = {[0, 1, 0], [1, 1, 0]}
and thus get

{{Q}}LOS = { (P(x = 0) + 1
2P(x = 1)) ⊗ E(1, 3),

( 1
2P(x = 1)) ⊗ E(1, 4),T4,T5,T6,T7}.
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and for the parameter value p = 1 we have C[x, 1, p] = {[0, 1, 1], [1, 1, 1]} and:

{{Q}}LOS = { ( 1
3P(x = 1)) ⊗ E(1, 2),

( 12P(x = 0) + 1
3P(x = 1)) ⊗ E(1, 3),

( 12P(x = 0) + 1
3P(x = 1)) ⊗ E(1, 4),T4,T5,T6,T7}.

Note that test operators like P(x = 1) should actually be expressed as, for
example: P(x = 1)P(x = 1)P(1 = 1)P(p = 1). However, as said before, in the
case of constants (and parameters) these tests are redundant and as projections
are always idempotents we also have: P(x = 1) = P(x = 1)P(x = 1).

5 Example: Duel at High Noon

We illustrate the generation of the LOS semantics – i.e. the DTMC generator of
a probabilistic program – by considering an example given in [9,10], see also [12,
p. 211], which concerns the kind of “duel” between two “cowboys” A and B. We
first reproduce essentially the results of [9,10] regarding the chances that A (or
B) will win/survive the “duel” with static probabilities. We then also consider
the case where one the two duellists (here A) improves his hitting chances during
the contest. This situation obviously requires dynamical/changing probabilities.

5.1 Static Probabilities

The idea is that two “cowboys”, A (Adam) and B (Boris), have a duel. At each
turn one of them is allowed to shoot at the other, if he misses the other one
can try, if he also misses it is the first ones turn again until one is “successful”.
That is, at the beginning one of the two – either Adam or Boris – is allowed to
shoot at the other one. Which of the two starts is left open, i.e. decided non-
deterministically. We assume that there is a probability a for A hitting B and a
probability b that B manages to shoot A. More precisely, we have a = ak

ak+am for
a “killing” and a “missing” weight ak and bk, respectively (and similar for b).
In the original version it is non-deterministically decided whether A or B starts,
but in order to get simple numerical results we will flip a fair coin to determine
who has the first attempt. The concrete pWhile program is given on the left
hand side in Table 4.

The variable c determines whether the duel should be continued, if c = 1
the duel continues, otherwise it is over. This is essentially to simulate a until
statement using the while construct. The variable t determines which of the two
duellists is allowed to try to shoot, for t = 0 it is A’s turn, otherwise it is B’s
turn. As long as the duel is continued (i.e. c = 1) it is either A which gets a try
(if t = 0) or B (for t = 1). If it is A’s turn he will hit B with probability a – in
this case the duel is over and c is set to 0; and with probability 1 − a it might
be a miss – in this case the next round it will be B’s turn. Similarly, for t = 1
the duellist B gets his chance.

At the end of the duel the value of t determines who has lost/won – i.e. whose
turn it was when the loop terminated, i.e. c was set to zero. In order to extract
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Table 4. pWhile programs for the Duel at High Noon

var

ak: para; # A kills

am: para; # A misses

bk: para; # B kills

bm: para; # B misses

t: {0,1}; # turn 0=A, 1=B

c: {0,1}; # continue 0=no, 1=yes

begin

# who’s first turn

choose 1:{t:=0} or 1:{t:=1} ro;

# continue until ...

c := 1;

while c == 1 do

if (t==0) then

choose ak: c:=0] or am: t:=1 ro

else

choose bk: c:=0 or bm: t:=0 ro

fi;

od;

stop; # terminal loop

end

var

ak: para; # A kills (initially)

am: para; # A misses (initially)

bk: para; # B kills

bm: para; # B misses

t: {0,1}; # turn 0=A, 1=B

c: {0,1}; # continue 0=no, 1=yes

akl: {0..10}; # A kills (learned)

aml: {0..10}; # A misses (learned)

begin

# initialise skills of A

akl := ak; aml := am;

# who’s first

choose 1:{t:=0} or 1:{t:=1} ro;

# continue until ...

c := 1;

while c == 1 do

if (t==0) then

choose akl: c:=0 or aml: t:=1 ro

else

choose bk: c:=0 or bm: t:=0 ro

fi;

akl:=@inc(akl); aml:=@dec(aml);

od;

stop; # terminal loop

end

information about the probability distribution describing a particular variable –
in our case t – at a given label �, i.e. program point �, we can use an abstraction
operator A�. This operator/matrix leaves the first variable (i.e. t) unchanged
and “forgets” about all other variables in a particular label �:

A� = I ⊗ Af ⊗ . . . ⊗ Af ⊗ (e�)t

with I the identity matrix for the first variable (for t it is a 2 × 2 matrix),
Af a so-called “forgetfull abstraction” for the remaining variables and et

� the
transposed (column) base vector in V(Label) which selects or projects the state
at label �. The operators Af are given by column vectors (or n × 1 matrices)
which only contain 1s, i.e. Af = (1, 1, 1, . . . , 1)t with n = dim(V(Value(x)) =
|Value(x)|. This is an instance of a more general framework of Probabilistic
Abstract Interpretation (PAI), cf. e.g. [5–7].

With this abstraction A� we can extract the probabilities that t is 0 or 1, i.e.
who has won the duel, if we take � = �∗, i.e. the final label �8 of the program
once the program has “terminated”. For this we have to consider the (long-run)
input/output behaviour for an initial configuration c0 = s0 ⊗ e0, i.e. an initial
state s0 which determines the initial values of all variables at the initial label
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�0. We then have to apply the LOS operator [[P ]]LOS until we reach a limit
limn→∞(s0 ⊗ e0)[[P ]]nLOS . This essentially gives Kozen’s input/output semantics
[11] of the program, cf. [7].

To obtain numerical results we can stop this iteration for a finite value of n,
in our case n = 100 is sufficient. Finally, we have to extract the state of t using
A�∗ and the observable w = (1, 0) which gives the probability that t = 0, i.e.
that the winner is A. In other words, the aim of the analysis is to determine:

ω = lim
n→∞ 〈w, (s0 ⊗ e0) · [[P ]]nLOS · A�∗〉 .

or a numerical approximation (for n = 100). In our case t and c are both
initialised, so ω is idependent of the initial state s0. If we consider the “non-
deterministic” version, i.e. dropping ‘choose 1: t:=0 or 1: t:=1 ro’, the
value of ω would depend on s0.

We use our tool pwc to construct [[P ]]LOS . The program has 13 labels or
elementary blocks (with �∗ = 13). The dimension of the DTMC is then 2 × 2 ×
13 = 52 as t and c take two possible values. With this we can compute ω for
different values of the parameters ak, am, etc. The top left diagram in Fig. 1
depicts the chances of A surviving the duel depending on a = ak/(ak +am) and
b = bk/(bk + bm).
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Fig. 1. Survival probabilities ω for A with learning rates 0, 1, 2 and 4
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5.2 Dynamic Probabilities

If we assume that probabilities (of hitting) are not constant, but that for example
one of the duellists is getting better during the shoot-out we have to consider a
different model as in the following pWhile program as on the right in Table 4.

Here we use the same parameters ak, etc. as in the static case. However for
A these are only the initial values. During the duel A will improve his shooting
skills (while B’s abilities do not change). The (learned) chances of A hitting is
given by akl and the chances of missing aml. These are changed using “external”
functions @inc and @dec which depend on a learning rate r defined directly in
octave as min(max(x+r,0),10) and min(max(x-r,0),10), respectively.

For different values of the parameters ak, am, etc. we can again construct the
LOS operator [[P ]]LOS . In this case we have 17 lables/blocks and two additional
variables akl and akm which each can have 11 possible values, thus we have to
consider a DTMC on 2 × 2 × 11 × 11 × 17 = 8228 states.

The survival chances for A can be computed in the same way as in the
static case, using the corresponding abstraction A17, the same w and based on
a numeric approximation based on n = 100 iterations of [[P ]]LOS . For different
learning rates r we depict the survival rate for A in Fig. 1. For r = 0 we get
exactly the same as in the static case – after all, A is stuck with his initial
shooting abilities and does not improve at all.

6 Conclusions

We presented a model for probabilistic programs which essentially encodes the
semantics of a program in terms of time homogenous DTMCs, i.e. the operator
representing the semantics is given by a time invariant, “eternal” stochastic
operator/matrix. Nevertheless, within this static model it is possible to also
realise changing probabilities.

The language we based this on is a simple procedural language. Nevertheless,
it is obvious that this model also applies to (proper) coordination languages like
pKLAIM [2,3]. This concerns in particular concurrency aspects: The rules of
the duel in the cowboy example essentially implement an explicit round robin
scheduler and the extension to more general schedulers seems not to be difficult.
Surviving the duel itself can also be seen as an ultimate coordination problem
in which the role of probability normalisation is essential: Ones survival depends
not only on ones own (shooting) abilities but also on the one of the opponent.
A hit rate of 50 % for A means almost sure survival for A if B is a bad shooter
with a 2 % hit rate, but if B a perfect duelist with 100 % hit rate then this will
give the same A no chance of survival if B begins the duel.

It seems also feasible to extend this “probability testing” approach to continu-
ous time models, continuous probabilities and hybrid systems, although this will
require more careful considerations of the underlying measure theoretic struc-
ture (Borel structure, σ-algebras, measures instead of distributions, integrals in
place of sums, etc.).
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