
Chapter 7
Loop Quantum Gravity

7.1 Introduction

LQG is, along with string theory, one of the best-established quantum gravity pro-
grams. Proponents ofLQGhold that themost important lessonofGR is the diffeomor-
phism invariance of the gravitational field, and thus seek to preserve diffeomorphism
invariance at the high-energy level of quantum gravity. Like the discrete approaches
to quantum gravity discussed in the previous chapter, LQG is non-perturbative and
researchers in LQG suggest that the problems with perturbative approaches (i.e. the
problems associatedwith the non-renormalisability of gravity)may be a consequence
of the failure of perturbation theorywhen applied at the scales being considered. And,
like the discrete approaches, LQG describes the small-scale structure of spacetime
as being discrete. The difference, though, is that some proponents of LQG claim that
the discrete nature of spacetime is not postulated from the outset, as it is in the dis-
crete approaches, but rather follows from the theory itself, as a prediction. However,
it is not clear that this is indeed the case, since, as they stand, the discrete operators
described by LQG are not physical observables.

This chapter is concernedwith the conceptionof spacetimedescribedbyLQG.The
mostwell-developed formulation of the theory is based on canonical quantumgravity
and uses the Hamiltonian formalism, which (as described in Sect. 1.5) means that
4-dimensional spacetime is split into (3+1)-dimensions; the kinematics of the theory
concerns primarily the microstructure of space, which is introduced in this section,
and discussed in Sect. 7.2.1. The microstructure of spacetime will be discussed in
Sect. 7.2.3. In Sect. 7.2.2, I consider the semiclassical limit and the recovery of (large-
scale) spacetime. Finally, the idea of emergent spacetime in LQG is discussed in
Sect. 7.3.

The birth of LQG is generally acknowledged as having occurred in 1987, and
began when Ted Jacobson and Lee Smolin rewrote the Wheeler de-Witt equation
(1.5) using Ashtekar variables, which Abhay Ashtekar (Ashtekar 1986, 1987) had
used to construct a novel formulation ofGR the year before, building upon thework of
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Amitabha Sen.1 Ashtekar variables are connection variables rather than metric ones
and allow GR to be cast in a form similar to a Yang–Mills theory, and thus in a way
that more closely resembles the standard model than it does otherwise.2 Jacobson
and Smolin (1988) discovered that, when rewritten using the Ashketar variables, the
Wheeler–DeWitt equation has solutions that seem to describe loop excitations of the
gravitational field.

As Carlo Rovelli (2004, pp. 15–16) points out, there is a natural old idea that a
Yang–Mills theory is really a theory of loops: recalling Faraday’s intuition that there
are “lines of force” that connect two electric charges and which form closed loops
in the absence of charges (the direction of the electric field at any point along such
a line is given by the tangent vector at that point). More technically: the relevant
mathematical quantity is the holonomy of the gauge potential along the line, and in
LQG the holonomy is a quantum operator that creates “loop states”. A loop state
is one in which the field vanishes everywhere except along a single Faraday line.3

In 1987, Rovelli and Smolin defined a theory of (canonical) quantum gravity in
terms of loop variables. Doing so, they discovered that not only did the formerly
intractable Wheeler–DeWitt equation become manageable and admit a large class of
exact solutions, but that there were solutions to all the quantum constraint equations
in terms of knot states (loop functionals that depend only on the knotting of the loops).
In other words, knot states were proven to be exact physical states of quantum gravity
(Rovelli and Smolin 1988, 1990).

Although the idea that loops are the appropriate variables for describing Yang–
Mills fields may be a natural one, Rovelli (Rovelli 2004, 2008) explains that it was
never able to be properly implemented except within lattice theories (QFT on a
lattice).4 One of the problems with using loops in a continuum theory is that loop
states on a continuous background are over-abundant; a loop situated at one position
on the background spacetime must be considered a different loop state from one
that is positioned only an infinitesimal distance away, and so there are an infinite
number of loop states on the continuum. Thus, the space spanned by the loop states
is non-separable and therefore unsuitable for providing a basis of the Hilbert space
of a QFT.5

Although it is not an obvious matter, Fairbairn and Rovelli (2004) argue that this
problem does not arise for a background independent (diffeomorphism invariant)
theory, such as GR. The argument is that, if we treat spacetime itself as made up of
loops, then the position of a loop state of a QFT is relevant only with respect to other

1This discussion draws upon Ashtekar and Lewandowski (2004), Carlip (2001), Nicolai and Peeters
(2007), Rovelli (2003, 2004, 2008, 2011), Wüthrich (Forthcoming).
2Since the standard model is a quantum Yang–Mills theory, meaning it has local (non-Abelian)
gauge symmetry.
3The idea of loops and loop states will be discussed again below, and will hopefully become clearer
by the end of this section.
4For example, Wilson loops, as a gauge-invariant observables obtained from the holonomy of the
gauge connection around a given loop, were developed in the 1970s to study the strong interaction
in QCD (after Wilson 1974). They now play an important role in lattice QCD.
5This will be discussed in more detail in Sect. 7.2.1.
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loops, rather than the continuum background, and so there is no sense in saying that
two loops are separated in spacetime. The idea is that an infinitesimal (coordinate)
displacement will not produce a distinct physical state, but only a gauge equivalent
representation of the same physical state. Therefore, the size of the state space is dra-
matically reduced by diffeomorphism invariance; only a finite displacement, which
involves a loop being moved across another loop, will represent a physically differ-
ent state. In the context of GR, the, loop states are thus (arguably) able to provide a
basis of the Hilbert space, and the state space of LQG is a separable Hilbert space,
HK , spanned by loop states (Rovelli 2004, p. 18).6 Quantum states are represented
in terms of their expansion on the loop basis, that is: as functions on a space of loops.

In a quantum theory, the discrete values of a physical quantity can be found by
calculating the eigenvalues of its corresponding operator. In a theory of quantum
gravity (where the gravitational field is identified with the geometry of spacetime),
any quantity that depends on themetric becomes andoperator, and it is by studying the
spectral properties of these operators that we can learn about the quantum structure
of spacetime. Most significant in LQG is the operator, Â, associated with the area,
A, of a given surface, S, and the operator, V̂, associated with the volume, V, of a
given spatial region, R.

The area operator Â can be calculated by taking the standard expression for
the area of a surface, replacing the metric with the appropriate function of the loop
variables, and then promoting these loop variables to operators. An essentially similar
procedure can be followed in order to construct V̂.7 Both Â and V̂ aremathematically
well defined self-adjoint operators in the kinematical Hilbert spaceHK ; their spectra,
first derived in 1994, were found to be discrete (Rovelli and Smolin 1995a). For
instance, the spectrum for Â is given by:

A = 8πγ�G
∑

i

√
ji ( ji + 1) (7.1)

Where i = 1, . . . , n, so that j is an n-tuplet of half-integers, labelling the eigenvalues,
and γ is the Immirzi parameter, which is a free dimensionless constant (i.e. not
determined by the theory).

The discrete spectra of the area and volume operators implies that the gravitational
field is quantised. These quanta of space may be thought of as “chunks” of space,
of definite volume given by the eigenvalues of V̂. Each chunk (or region,R) can be
thought of as bounded by a surface: if two chunks are adjacent to one another (i.e.
direct neighbours), then the part of the surface that separates them (i.e. the fence that
lies between the two neighbours) is S, of area given by the eigenvalues of Â. This
idea is illustrated in Fig. 7.1, where the grey blobs represent the chunks of space.

6The subscript K is used in order to signal that this is the kinematical Hilbert space of the theory.
7More precisely: the construction of the area operator first requires the classical expression be
regularised, then the limit of a sequence of operators, in a suitable operator topology, be taken. Both
Â and V̂ have been derived several times using different regularisation techniques (e.g. Ashtekar
and Lewandowski 1997a, b; Frittelli et al. 1996; Loll 1995, 1996; Rovelli and Smolin 1995a).
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Fig. 7.1 Quanta of volume
(grey blobs). Adjacent
chunks are separated by a
surface S of quantised area.
The corresponding spin
network graph is overlaid.
Each link “cuts” one
quantised surface S

Fig. 7.2 Spin network:
Nodes represent quanta of
volume, which are adjacent
if there is a link between
them. Connected links form
loops, like the one
highlighted in red/grey

In LQG, this intuitive picture takes the form of abstract graphs called spin net-
works, in which each volume chunk is represented by a node (the black dots in each
grey blob in Fig. 7.1), and each S separating two adjacent chunks is represented by a
link (the lines joining the nodes). The spin network without the heuristic background
illustration is shown in Fig. 7.2. This diagram also enables us to visualise the loops
of LQG: they are the links that meet up to enclose white space, for instance the red
loop highlighted.

An spin network graph, � with N nodes represents a quantum state of space,
|s〉 formed by N quanta of space. The graph has each node n labelled in , which is
the quantum number of the volume (i.e. the volume of the corresponding quanta, or
chunk, of space), and each link l labelled jl , which is the quantum number of the
area (i.e. the quantised value of the area of S separating the two adjacent chunks of
space being represented by those nodes being linked). The choice of labels is called
the colouring of the graph. The area of a surface cutting n links of the spin network
with labels ji (i = 1, . . . , n) is given by the spectrum (7.1). The spin network s
may thus be designated s = (�, in, jl) as shown in Fig. 7.3: these quantum numbers
completely characterise and uniquely identify an spin network state. It isworth briefly
mentioning (because it will be important in Sect. 7.2.1) that the labels jl attached to
the links are called spins, while the labels in are intertwiners associated to the nodes.8

8The meaning of these terms will not be discussed here, except to say that these quantum numbers
are determined by the representation theory of the local gauge group, SU (2). See Rovelli (2004,
pp. 234–236).
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Fig. 7.3 A simple spin network with colouring. Labels in indicate the quantised volume of the
corresponding node, and jl give the quantised area represented by the corresponding link (Rovelli
2004, p. 19)

The spin network states |s〉 provide a basis for H, and represent the general
(unmeasured) quantum states of the gravitational field. Since (a region of) physical
space is a state inHK , it is a quantum superposition of abstract spin network states. A
loop state is a spin network state in which the graph � has no nodes, i.e. it is a single
loop, and in such a state, the gravitational field has support only on the loop itself,
with the direction of the field at any point along the loop given by the tangent vector
at that point (again, recalling Faraday’s intuition mentioned above). It is important
to emphasise that spin networks are abstract graphs: spin network states are not
quantum states of a physical system in space, rather they are the quantum states of
physical space itself; only abstract combinatorial relations defining the graph are
(physically) significant, not its shape or position in space.9

The significance of the spin network states as providing a basis for the Hilbert
space of LQG was only realised in 1995 (Rovelli and Smolin 1995b). However,
it turns out that spin networks were only “rediscovered” rather than invented in the
context of LQG: the spin networks themselves had been created independently many
years earlier, by Roger Penrose, based simply on what he imagined quantum space
could look like (e.g. Penrose 1971). It was Penrose who named these graphs “spin
networks”, since their quantum numbers and their algebra resembled the spin angular
momentum quantum numbers of elementary particles.

7.2 Spacetime in LQG

Recall that the canonical quantisation program (on which LQG is based) begins with
canonical GR, which casts GR as a Hamiltonian systemwith constraints. The goal of
the quantisation procedure is to find the Hilbert space corresponding to the physical

9When referring to “spin networks” I mean only the abstract graphs. Embedded (i.e. non-abstract)
spin networks are of significance, and will be discussed in Sect. 7.2.1, where they will be explicitly
referred to as embedded spin networks. The abstract spin network states |s〉 are equivalence classes
under diffeomorphism invariance of the embedded spin networks, and are also known as s-knots.
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state space of theory, and to define operators on the Hilbert space that represent the
relevant physical quantities. In LQG, the procedure begins with a classical phase
space coordinatised by the “holonomy” and its conjugate “flux” variable, which are
constructed from the Ashtekar connection Ai

a and its conjugate, E
a
i a densitised triad

“electric field”.10

The geometrical structure of the classical phase space is encoded by the canonical
algebra given by the Poisson brackets among these basic variables; in the quantisa-
tion, an initial functional Hilbert space of quantum states is defined, and the basic
canonical variables are turned into operators whose algebra is determined by their
commutation relations, which come from the classical Poisson brackets. These are
then used in the construction of the constraints, which, in turn, serve to select a subset
of states that correspond to the physical states of the theory.

In LQG, there are three types of constraint: the SU (2) Gauss gauge constraints,
which come about from expressing GR as an SU (2) Yang–Mills theory, and are
comparatively easy to solve; the spatial diffeomorphism constraints, which stem from
diffeomorphism invariance and are hard to solve; and the Hamiltonian constraint (the
general form of which is theWheeler–DeWitt equation (1.5)), which has not yet been
solved. In fact, there are many different forms of the Wheeler–DeWitt equation in
LQG, and it is not clear which—if any—is correct. Solving the Gauss constraints
and the diffeomorphism constraints gives us the kinematical Hilbert space HK (i.e.
this is the Hilbert space we obtain from the states which get annihilated by the Gauss
and diffeomorphism constraints). The Hamiltonian constraint (its general form being
like the Schrödinger equation), represents the dynamics of the theory.

Because of the technical and conceptual difficulties with the Hamiltonian con-
straint equation, proponents of LQG have sought alternative ways of understanding
the dynamics of LQG. Here, I will focus on the idea of treating spin networks as
“initial” and “final” states, and the dynamics of the theory being determined by the
transition probability amplitudes, W (s), between them, i.e. by taking the sum-over-
histories approach. This represents a covariant formulation of LQG as opposed to
the canonical one (although, I should point out that the covariant representation can
be approached from different starting points, and the one presented here stems from
the canonical formulation).

The covariant formulation of LQG (also called “spin foam theory”) is a relatively
new area of research and is less-developed than the canonical formulation of LQG.
The aimof the formalism is to provide ameans of calculating the transition amplitudes
in LQG: it does this as a sum-over-histories, where the “histories” being summed-
over are known as spin foams. A spin foam can be thought of as a world-history of a
spin network, and represents a “spacetime” in the way that a spin network represents
a “space”. These ideas will be discussed in Sect. 7.2.3.

10Where i = 1, 2, 3 are “internal” indices that label the three axes of a local triad, and a = 1, 2, 3
are spatial indices. A densitised electric field has ρ(E) = 1.

http://dx.doi.org/10.1007/978-3-319-39508-1_1
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Fig. 7.4 A spin network
embedded on the spatial
hypersurface � (adapted
from Nicolai and Peeters
2007, p. 156)

7.2.1 Micro-structure of Space: Spin Networks

Spin networks do not start out as abstract graphs: rather, LQG begins with a three-
dimensional spatial manifold, �, on which the holonomies and spin networks are
defined. The manifold is used to label the positions of the vertices and edges with
coordinates; embedded spin network states are designated |S〉 (i.e. with a capital S
rather than the lowercase s of the abstract spin network states). An embedded spin
network is shown in Fig. 7.4.

The spin network wave functions only “probe” the geometry on one-dimensional
sub-manifolds (i.e. along the one-dimensional edges), and are insensitive to the geom-
etry elsewhere on �. For any two embedded spin network states, the scalar product
is defined as,

〈��, jl ,in |� ′
�′, j ′l ,i ′n

〉 =
{
0, if � �= �′
∫ ∏

jl∈�dh jl ψ̄�, jl ,inψ
′
�′, j ′l ,i ′n

, if � = �′ (7.2)

where � are the spin network wave functions, � the spin network graphs, jl are the
spins attached to the edges (links) and in the intertwiners associated to the nodes of
the graph.

The pre-kinematical Hilbert space,HK ∗ is defined using the scalar product (7.2),
which induces a peculiar discretisation (one entirely different from the discreteness
of a lattice or the naive discretisation of space).11 The resulting topology is similar
to the discrete topology of the real line with countable unions of points as the open
sets. Because the only notion of “closeness” between two points in this topology
is whether or not they are coincident, any function is continuous in it.12 Thus, it is
already difficult to see how it would be possible to recover any conventional notion of
continuity in LQG. The effect of the scalar product (7.2) means that non-coincident
states are orthogonal, and the expectation values of operators that depend on some

11The full kinematical Hilbert space, HK (which is separable) is defined once the diffeomorphism
constraint has been implemented, as will be explained below.
12 Nicolai and Peeters (2007), p. 156.
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parameter do not vary continuously as the parameters upon which they depend are
continuously varied.

This leads to the traditional problem mentioned above, of the spin network basis
being “too large”: any operation which moves the graphs around continuously cor-
responds to an uncountable sequence of mutually orthogonal states in HK ∗ . The
Hilbert space does not admit a countable basis and so is non-separable. No matter
how “small” the deformation of the graph in �, the associated elements of HK ∗

always remain a finite distance apart—this means that continuous motion in “real”
space gets mapped to highly discontinuous motion in HK ∗ .

The separable kinematical state space, HK , of the theory comes about once the
diffeomorphism constraint has been implemented. This involves factoring out the
gauge equivalent loop representations according to diffeomorphism invariance (i.e.
any two graphs can be deformed into one another): the uncountable, “too large” basis
is reducedoncegauge redundancy is taken into account, and thenon-separableHilbert
space becomes separable (Rovelli 2008). As mentioned in the introduction to this
chapter, the loop representation of GR (as a Yang–Mills field theory) is only of value
because of the theory’s diffeomorphism invariance. Implementing diffeomorphism
invariance removes the significance of the manifold �, and the natural basis states
are abstract spin network states (also called s-knots), which are equivalence classes
(under diffeomorphism invariance) of the embedded spin networks. Construction of
the constraints makes use of the operators corresponding to the relevant physical
observables.

The important operators are Â, which measures the area of a two-dimensional
surface, S ⊂ �, and V̂, which measures the volume of a three-dimensional subset
of �. These operators, however, cannot be classed as physical observables, since
they do not commute with the constraints. In particular, being defined for surfaces
and regions on �, the area and volume operators are not invariant under the trans-
formations generated by the diffeomorphism constraint. Because Â and V̂ are not
diffeomorphism invariant, Rickles (2005, p. 423) argues that these quantities are
not measurable unless they are gauge fixed and taken to correspond to the area and
volume of some physically defined surface or region. Nicolai and Peeters (2007, p.
157) make a similar point, though emphasising the failure of the operators to com-
mute with the Hamiltonian, and the necessity of the inclusion of matter in defining
a physical surface or region.

Dittrich and Thiemann (2009) argue that if the discrete spectra of the area and
volume operators are to be taken as representing physical discreteness of geome-
try, then we need to investigate whether the kinematical discreteness of the spectra
survives at the gauge-invariant level once the operators have been “turned into”
gauge-invariant quantities. This process depends on the mechanism used in order
to turn the gauge-dependent operators into gauge-invariant ones, as well as on the
interpretation of generally covariant quantum theory—a point that Rovelli (2007)
emphasises. In standard quantum theory, a quantity is predicted to have discrete val-
ues if the corresponding quantum operator has a discrete spectrum. Whether this
idea carries over to generally-covariant quantum field theory—a framework that is
not fully developed or understood, but which LQG is modelled on—is equivocal
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because the distinction between the kinematics and the dynamics of such a theory is
not clear cut (Rovelli 2007, p. 1).

The debate between Dittrich and Thiemann (2009) and Rovelli (2007) demon-
strates that the discrete spectra of Â and V̂ do not necessarily represent physical
discreteness of Planck-scale geometry. Dittrich and Thiemann (2009) present a sim-
plified, non-LQG (not quantum gravitational) case-study in which the discreteness
of the kinematical operators’ spectra does not survive once the operators have been
turned into gauge-invariant ones. Rovelli (2007) argues that not only is this example
not analogous to the case in LQG, but that Dittrich and Thiemann utilise a partic-
ular interpretation of generally covariant quantum theory—one that Rovelli does
not endorse.

On this interpretation, it is possible in principle for a “partial observable”, f̂ ,
representing the area of a coordinate surface, to have a discrete spectrum, while
the corresponding “complete observable”, F̂, representing the area of a physically
defined surface, have continuous spectrum. Thus, on this interpretation, there is no
“guarantee” that the discrete spectra of the operators of LQG, understood as partial
observables, indicates physical discreteness of spacetime. On a different interpre-
tation (the one that Rovelli recommends), the physical quantisation depends on the
spectra of the kinematical operators in HK ∗ , and so it “follows immediately” that
a physical measurement of the area or volume operators of LQG would yield a
discrete value.

What is needed now, if we follow Rovelli’s line of reasoning, is an examination
of the motivations for preferring one interpretation over the other. Unfortunately,
I cannot undertake this here. It is enough to say that it is at least plausible that
the discrete spectra of the operators represent physical predictions of LQG.13 If the
spectra of V̂ and Â are physical predictions, then, according to LQG, space itself is
discrete and combinatorial, and, because the theory has a natural cutoff at the Planck
scale, there are no ultraviolet divergences. On the other hand, if the discrete spectra of
the kinematical operators is not physical, then they might be understood in a similar
way to the discrete elements in CDT: part of the formalism of the theory, but not
themselves evidence of spacetime discreteness. In any case, the structures described
by LQG are very different from our familiar conception of space.

Additionally, there is another, perhaps even stronger, way in which the spin net-
works differ from the emergent spacetime they are supposed to underlie: the fun-
damental relation of adjacency which is meant to correspond to the notion of two

13Even granting this, though, we should consider themeaning of a prediction that cannot be tested—
if the discrete spectra are physical predictions, then LQG states that if we were able to probe
extremely high energy scales and had a means of detecting the discrete structure of spacetime itself
at these energies, then we would find spacetime to be discrete. Needless to say, this is a long shot.
Also, we must remember that, because LQG is not based on any physical data, the prediction is
a consequence of a particular combination of principles and assumptions (Crowther and Rickles
2014). Because of this, the distinction between postulated versus predicted discreteness is perhaps
not an interesting one to push (as we might be tempted to do in comparing LQG with the “discrete”
approaches, where discreteness is explicitly acknowledged as an assumption or principle of the
theory).
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objects being “nearby” to one another in LQG does not, typically, translate into this
notion in the emergent spacetime. Recall that two nodes being linked by an edge in
a graph represents two adjacent quanta of space. The idea of spacetime emerging
from the more basic spin networks means that there is a “mapping” of spin network
nodes onto events in the emergent spacetime.

However, two nodes that are adjacent in the basic (high-energy) description can
be arbitrarily large distances away from one another as measured in the emergent
metric—in other words, they will, in general, not be mapped to “nearby points” in
the emergent spacetime.14 The fact that the adjacency relations described by the
fundamental spin networks do not typically feature in the emergent spacetime (i.e.
are not “translated” into the corresponding spatiotemporal relations at low-energy)
means that many of them (i.e. all those adjacencies which do not get translated into
Planck-sized neighbourhoods in the spacetime) are suppressed at low-energy.

7.2.2 Semiclassical Limit: Weaves

Finding the low-energy limit of LQG has proven very difficult, and all attempts
to recover GR from LQG have so far been unsuccessful. One obvious handicap is
the fact that all such attempts have been confined to working with the kinematical
Hilbert space HK , rather than the physical Hilbert space of the theory. Thus, there
are questions regarding both the viability and the meaningfulness of relating the
kinematical states to corresponding classical spacetimes (or spaces).

The most prominent of the attempts to construct semiclassical states (i.e. states
in which the quantum fluctuations are minimal and the gravitational field behaves
almost classically) is based onweave states, which were first introduced by Ashtekar
et al. (1992).15 The intuitive idea is captured by analogy: at familiar scales, the fabric
of a t-shirt is a smooth, two-dimensional curved surface, but when we examine it
more closely, we see that the fabric is composed of one-dimensional threads woven
together.16 The suggestion is that LQG presents a similar picture: while spacetime
at large-scales has a continuous geometry, at high-energy it is revealed to be a spin
network with an enormous number of nodes and links.17

14Huggett and Wüthrich (2013), Wüthrich (Forthcoming) both emphasise this point and the asso-
ciated problems for our understanding of locality.
15Alternative methods aiming to overcome the shortcomings of weave states have, and are still,
being explored; for a discussion, see Thiemann (2001, Sect. II.3) or Thiemann (2007, Sect. 11).
16The analogy comes from Ashtekar et al. (1992).
17Sometimes, the spin network is described as a very large “lattice” of Planck-sized spacing. This
is misleading for a couple of reasons; firstly, it implies that the Planck-scale structure has more
regularity than it actually does (it does not resemble a regularly-spaced grid, for instance). Secondly,
the spin network in LQG is different to lattice QFT, or to causal set theory, where the continuum
is replaced by a lattice structure. The manifold is not modified in LQG; rather, the diffeomorphism
invariance of the theory is supposed tomean that the continuumstructure is not physically significant.
Thanks to Joshua Norton for emphasising this point.
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Consider a classical three-dimensional gravitational field e, which determines
a three-dimensional metric gab(	x) = eia(	x)eib(	x), and a macroscopic three-
dimensional regionR of spacetimewith thismetric, bounded by the two-dimensional
surfaceS (the values of area and volume being large compared to the Planck scale). It
is possible to construct an (embedded) spin network state |S〉 that approximates this
metric at a length scale � 
 lP , where lP is the Planck length. To do this involves
selecting spin network states that are eigenstates of the volume and area operators for
the regionR and the surface S with eigenvalues that approximate the corresponding
classical values for the volume ofR and area of S as given by e. The classical value
for the area A of a surface S ⊂ M and the classical value for the volume of a region
R ⊂ M with respect to a fiducial gravitational field cia are given by,18

A[e,S] =
∫

|d2S| (7.3)

V[e,R] =
∫

|d3R| (7.4)

where the relevant measures for the integrals are determined by cia .
Now, we require that |S〉 is an eigenstate of Â and V̂, with eigenvalues given by

(7.3) and (7.4), respectively, up to small corrections of the of lP/�,

Â(S)|S〉 = (A[e,S] + O(l2P/�2))|S〉 (7.5)

V̂(R)|S〉 = (V[e,S] + O(l3P/�3))|S〉 (7.6)

If an embedded spin network state |S〉 satisfies (7.5) and (7.6), then it is a weave
state of the metric gab.19 At length scales of order � or larger, the weave state is a
good approximation to the corresponding classical geometry, as |S〉 determines the
same volumes and areas as gab. At length scales much smaller than �, however,
the quantum fluctuations become relevant, and the weave state can no longer be
considered a valid semiclassical approximation.

Finally, it is worth pointing out that (7.5) and (7.6) do not determine the state
|S〉 uniquely for a given three-metric gab. This is because (7.5) and (7.6) involve
quantities that are averaged over the macroscopic surface S and region R. There
are many different spin network states that can represent these averaged values,
whereas there is only one classical metric that corresponds to these values. In this

18This presentation is based on Wüthrich (Forthcoming, p. 26).
19Although embedded, rather than abstract, spin network graphs are used, this definition of weave
states is able to be carried over to the diffeomorphism-invariant level of abstract spin network states
(s-knots) without issue. If we introduce a map PDi f f : H(K ∗) → HK , which projects states in
the pre-kinematical Hilbert space into the same elements of the kinematical Hilbert space, then the
state |s〉 = PDi f f |S〉 is a weave state of the classical three-geometry [gab], i.e. the equivalence class
of three-metrics gab, just in case |S〉 is a weave state of the classical three-metric gab (Wüthrich
Forthcoming).
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way, the actual microstate of a given macroscopic geometry is underdetermined by
the Eqs. (7.5) and (7.6). However, the generic quantum state of the macroscopic
spacetime is not supposed to be a weave state, but a superposition of weave states.

7.2.3 Micro-structure of Spacetime: Spin Foams

The preceding two sub-sections have described only the kinematics of the theory:
since the spin networks are based in the kinematical Hilbert space rather than the
physical Hilbert space, they represent microstates of space rather than spacetime.
There is a covariant version of LQG which aims to discover the dynamics of the
theory without engaging with the Hamiltonian constraint of canonical LQG. This
formulation, which is known as spin foam theory describes the micro-structure of
spacetime as a spin foam, which is a history of spin networks. Presently, this theory
is also incomplete and its relation to canonical LQG not known. It should also be
noted that the sum-over-histories approach described in this sub-section is not rep-
resentative of the full covariant LQG program, in that its starting-point draws from
the concepts and results of canonical LQG.

Recall that in quantum mechanics, a complete description of the dynamics of a
particle is provided by the transition probability amplitudes, A, defined as,

A = 〈ψ′|e i
�
H0(t−t ′)|ψ〉 (7.7)

where |ψ〉 is the initial quantum state prepared at t , and |ψ′〉 is the final state of
the system, measured at t ′, and H0 is the Hamiltonian operator. Following Feyn-
man, this amplitude can be calculated as a sum-over-paths between the “initial” and
“final” states. The same is true in LQG, where the dynamics of the theory may be
described entirely by the spin network transition amplitudesW (s ′, s), governedby the
Hamiltonian operator H , which is defined on the space of the spin networks. The
space of solutions of the Wheeler–DeWitt equation is the physical Hilbert space,
denoted H. There is an operator P : HK → H that projects HK on the space
of solutions of the Wheeler–DeWitt equation.20 The transition amplitudes between
an “initial” spin network state |s ′〉 and the “final” spin network state |s〉 (recalling
that there is no external time variable in the theory) are the matrix elements of the
operator P ,

W (s, s ′) = 〈s|P|s ′〉HilbK = 〈s|s ′〉H (7.8)

The Hamiltonian operator H (in all its different versions in LQG) acts only on the
nodes of the spin network graph; in the vicinity of a node, the action of H upon
a generic spin network state |s〉, is to change the topology and labels of the graph.
Typically, H splits a node into three nodes and multiplies the state by a number a
that depends on the labels of the spin network around the node. This is illustrated in
Fig. 7.5.

20Rovelli (2004), Sect. 1.2.3.
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Fig. 7.5 Scheme of the action of H on a node of a spin network

Fig. 7.6 “Lime” rock candy: A slice width-wise reveals a cross-section with a lime-shaped pattern,
which represents a spin network state s1. The face at the “bottom” of the stick is s′, and the one
at the top is s. The whole length of the stick represents a history of spin networks, i.e. a spin
foam, σ = (s, sN , . . . , s1, s′) (Of course, every slice of rock candy will reveal a cross-section of
essentially the same pattern, whereas “slices” of a spin foam would reveal different shaped spin
networks, since the spin networks are transformed under the action of H )

The transition amplitude W (s, s ′) can be represented as a sum-over-histories: a
representation that follows from summing over different histories of sequences of
actions of H that send s ′ to s.21 The histories (of spin networks) being summed over
are spin foams; a history of going from s ′ to s is a spin foam, σ, bounded by s ′ and s.
The heuristic way to picture a spin foam is to imagine a 4-d spacetime in which the
graph of a spin network s is embedded. If this graph moves along “upwards” through
the “time” coordinate of the 4-d spacetime, then it “sweeps out” a “worldvolume” (a
3-dimensional version of a worldline). Actually, it is sort of like rock candy, shown
in the picture, Fig. 7.6.

More schematically, Fig. 7.7 illustrates the worldsheet of a spin network that’s
shaped like θ. The surfaces traced out by the links of the spin network graph are
called faces; the worldlines traced out by the nodes of the spin network graph
are called edges. A spin foam, σ also includes a colouring, where faces are labelled
by the area quantum numbers jl and edges are labelled by the volume quantum
numbers in .

21Although Rovelli (2004, p. 26) states that this is just one of several ways to arrive at the sum-
over-histories representation of W .
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Fig. 7.7 A simple spinfoam:
the worldsheet of a spin
network (“colouring” of the
faces and edges not
indicated) (Adapted from
Rovelli 2004, p. 325)

Fig. 7.8 Vertex of a spin
foam (Rovelli 2004, p. 325)

Fig. 7.9 Spinfoam with one
vertex. One face has been
shaded green/grey, and one
edge is shown in red/grey
(Adapted from Rovelli 2004,
p. 326)

When H acts on a node, it results in the corresponding edge of the spin foam to
branch off into three edges, in the “3-dimensional” version of the action shown in
Fig. 7.5. The point where the edges branch is called a vertex, v, as shown in Fig. 7.8.
A spin foam with a vertex is shown in Fig. 7.9.

A spin foam is a Feynman graph of spin networks. However, it differs from
usual Feynman graphs in that it has one additional structure: while Feynman graphs
have edges and vertices, spin foams have edges, vertices and faces. In the pertur-
bative expansion of W (s, s ′), each spin foam σ, bounded by s ′ and s, is weighted
by an amplitude which is given by (a measure term μ(σ)-times) the product over
the vertices, v of a vertex amplitude, Av(σ). The vertex amplitude is determined by
the matrix elements of H between the incoming and outgoing spin networks and
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depends on the labels of the faces and the edges adjacent to the vertex (Rovelli 2004,
pp. 26–27). This is analogous to the amplitude of a standard Feynman vertex, which
is determined by the matrix element of the Hamiltonian between the incoming and
outgoing states.

The sum-over-histories is thus,

W (s, s ′) =
∑

σ

μ(σ)
∏

v

Av(σ) (7.9)

Just as Feynman’s sum-over-histories can be interpreted as a sum over different
possible classical paths that a particle might take between two points, so too the
spin foam sum (7.9) can be interpreted as a sum over spacetimes. And yet, even
though Feynman’s sum-over-histories can be interpreted as a sum over different
possible particle trajectories, we know (in quantum theory) that there are no classical
trajectories. The sum-over-histories is not itself a history.Although a single spin foam
can be thought of as representing a spacetime, the theory states that spacetime is not
a single spin foam, but a sum over spin foams. For this reason, Rovelli (2004, p. 31)
states that the notion of spacetime disappears in quantum gravity in the sameway that
the notion of a particle trajectory disappears in the quantum theory of a particle. This
interpretation of spin foam theory may also be applicable to the discrete quantum
gravity approaches which utilise a sum-over-histories.

We can distinguish between two types of discrete quantum gravity approaches
which utilise a sum-over-histories (i.e. approaches which attempt to define a discre-
tised path integral in quantum gravity). The first group represents those approaches
where spacetime is approximated by a fixed number of simplices and the integra-
tion is performed over all edge lengths: quantum Regge calculus is an example. The
second group represents those approaches, including causal dynamical triangula-
tions, where the simplices are assigned fixed edge lengths, and the sum is taken over
different triangulations while keeping the number of simplices fixed (thus chang-
ing the “shape” of the triangulation but not its “volume”). Spin foam theory falls
into the former category, along with quantum Regge calculus, since, in the first step
of the procedure—which is calculating the partition function for a given spin foam—
all spins are summed over (for the given spin foam), but there is no addition, removal
or replacement of edges, vertices or faces.

In the second step (which aims to recover continuous geometry), the sum is taken
over all spin foams, as in (7.9). The method by which to perform this step is not
formally agreed upon; Nicolai and Peeters (2007) suggests that one way of doing
it would be to weight each spin foam term in the sum according to its “shape”, in
order to achieve formal independence of the triangulations. This would thus resonate
with CDT (Sect. 6.6), where, recall, the spacetime obtained was autonomous from
the 4-simplices used to approximate the path integral, and so Nicolai and Peeters

http://dx.doi.org/10.1007/978-3-319-39508-1_6
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(2007) state that we might interpret such a spin foam model as a hybrid of the two
classes just distinguished.22

A key difference between CDT and spin foam theory is the ontological inter-
pretation of the two approaches. In spin foam theory, following LQG, the discrete
elements described by the theory are interpreted realistically, as the ultimate con-
stituents of spacetime.23 Recall that in CDT, however, the 4-simplices are taken
simply to be mathematical tools that aid in the regularisation procedure used to
define the integral—at the end of calculations, the aim is to remove the discretisation
and recover a continuum theory (as in lattice QFT). Hence, spacetime according to
CDT (and quantum Regge calculus) is not fundamentally discrete.24 The fact that
the discrete elements of space are interpreted realistically in LQG is the reason why
the “continuum limit” cannot be recovered as it is in the other theories: the “lattice
spacing” cannot be taken to zero (as described above in Sect. 7.2.2).

7.3 Emergence

Although LQG is incomplete and its physical Hilbert space undefined, there are still
some potential bases for a conception of emergence in the theory. Interestingly, there
does not appear to be a notion of emergence that might be based on the idea of a
limiting relation in the theory (or, at least, not based on a limiting relation alone).
This is because macroscopic geometry is not recovered in the limit as the density
of the weave of loops goes to infinity. Originally in LQG, before the spectra of the
area and volume operators had been derived, the limiting procedure was thought to
run analogously to that in conventional QFT, where a continuum theory is defined
by taking the limit of a lattice theory, as the lattice spacing a goes to zero. However,
when the limit of the “loop constant” in LQG (the constant which was believed to
be analogous to the “lattice spacing”)25 is taken to zero, there is no increase in the
accuracy of the LQG approximation to macroscopic geometry.26

The reason the theory fails to approximate a smooth geometry in the limit as the
loop constant goes to zero is that the physical density of the loops does not increase
in this limit. Instead, what occurs is that the eigenvalues of the area and volume
operators increase, meaning that the areas and volumes in the region being studied

22Note that, in spin foam theory, this method of constructing the sum would mean a sum over spin
foams with different numbers of simplices and different edge lengths, which is not how it is done
in CDT.
23Although, as described above, there may be reason to question this interpretation of LQG.
24Oriti (2014) describes some further differences between LQG, Regge calculus and CDT, and
explores what they might teach us about the fundamental nature of space and time, in combination
with the group field theory (GFT) approach. GFT is essentially similiar to LQG and spin foam
models, but with a key advantage in its definition of the dynamics—in particular, it prescribes a
strict means by which to calculate the weights for the terms in the path integral.
25Please refer to Footnote 17.
26Rovelli 2004, p. 269.



7.3 Emergence 195

grow larger. In other words, the loop density remains constant because we look at
greater volumes. If we believe that area and volume are quantised, then this result
can be readily interpreted: there is a minimum size for the loops, and thus, a minimal
physical scale. The theory refuses to approximate a smooth geometry as the loop
constant is taken below lP because—on this interpretation—there is no physical
length scale below lP . Thus, such a limit is unable to serve as the means by which
to recover spacetime from its fundamental spin network structure. This seems to
suggest that a conception of emergence based on the idea of a limiting relation (e.g.
that of Butterfield 2011a, b) will not be applicable in LQG.

Wüthrich (Forthcoming), however, suggests that perhaps the failure of the limiting
procedure to recover spacetime is due to the fact that it is only capable of representing
one of the two necessary transitions involved in the recovery process. The two steps
of the process are: firstly, an approximating procedure which turns the quantum
states into semiclassical ones, and, secondly, the limiting procedure which relates
the semiclassical states to the phase space of the classical (i.e. the “emergent”) theory.
The associated notion of emergence comes fromButterfield and Isham (1999, 2001),
where a theory T1 emerges from another theory, T2, iff T1 can be arrived at from T2
by either a limiting procedure or an approximation procedure, or both.

A limiting procedure is defined as taking themathematical limit of somephysically
relevant parameter(s) in the underlying theory T2 in order to recover the emergent
theory T1. An approximation procedure is defined as the process of either neglecting
some physical magnitudes, and justifying such neglect, or selecting a proper subset
of states in the state space of the approximating theory, and justifying such selection,
or both, in order to arrive at a theory whose values of physical quantities remain suffi-
ciently close to those of the theory to be approximated (Butterfield and Isham 1999).
In LQG, Wüthrich (Forthcoming) imagines the limiting procedure to be something
akin to the one mentioned above, where the semiclassical weave states are mapped
to classical spacetimes. The weave states themselves are supposed to be arrived at
via an approximation procedure.

The method of constructing weave states, described above, fits the definition of
an approximation procedure, since they must be carefully selected to include only
those states which are peaked around the geometrical values (of area and volume)
determined by the fiducial metric eia . This can be achieved either by neglecting
all those operators constructed from connection operators (since the “geometrical”
eigenstates are maximally spread in these operators), or, if this cannot be justified
(as the approximation procedure requires), then only the semiclassical states that are
peaked in both the connection and the triad basis, and peaked in such a way that they
approximate classical states, should be considered. This approximation procedure
is taken to represent whatever the physical mechanism is that drives the quantum
states to semiclassical ones.We can suppose that this physical mechanism (justifying
this approximation procedure) is decoherence.27 This approximation procedure is
necessary in addition to the limiting procedure because no limiting procedure (not
even the � → 0 limit) can resolve a quantum superposition into a classical state.

27Although, as should be clear, LQG makes no reference to any such mechanism.
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The � → 0 limit is the “textbook” means of justifying the use (or explaining
the success) of “older”, classical, theories for large orbits and low energies. The
fact that it is typically paired with the approximation procedure corresponding to
decoherence suggests that the limiting procedure may be interpreted as representing
the micro/macro transition (a rescaling of the theory) while decoherence represents
the quantum/classical transition—both being necessary for an account of emergence
(as discussed in Sect. 1.7). This interpretation seems to accord with the claim that
the � → 0 limit has the N → ∞ limit as a special case; while the N → ∞ limit
implies moving to a large system of many particles, the � → 0 limit means moving
to a description where � can be treated as negligible. This is certainly what is being
indicated by the weave analogy in LQG.

It is worth emphasising again that both the idea of decoherence and the � → 0
limit are external to the theory itself: they have been imposed in an attempt to have
LQG match up with low-energy classical physics, including GR. Decoherence and
the � → 0 limit are among the traditional means by which quantum theories are
shown to “reduce” to classical physics (although, again, the former represents a
physical mechanism, and its interpretation more controversial than the mathematical
limit in this case), and it would be distressing if they did not work in the context
of LQG, given that the theory itself does not offer any “natural” means by which to
recover spacetime: LQG does not (on its own, without the additional assumption of
decoherence) explain how or why some states (those that are able to be “mapped” to
classical states) are “selected”.28

However, this might be expected given that LQG is a quantisation of GR. Perhaps
LQG should be considered as a sort of “stepping stone”, offering us access to the
information contained in quantised GR, without (uniquely) capturing the micro-
dynamics. On such an interpretation, the recovery of large-scale physicsmight be less
important thanmaking predictions—an interpretation along the same lines as treating
GR as an EFT, as in (Sect. 5.3). Leaving these concerns aside, though, we can begin
to sketch how we might understand the emergence of spacetime from LQG, based
on the implications of applying the approximation and limiting procedures. These
procedures lead to an underdetermination of the “more basic” quantum description
by the emergent classical one.

The idea of emergence that Wüthrich utilises is inspired by Landsman (2006),
who argues that while neither the limiting procedure nor decoherence is sufficient,
on its own, for understanding how the classical picture emerges from the quantum
world, together these procedures indicate that it comes from ignoring certain states
and observables in the quantum theory. “Thus the classical world is not created by
observation (as Heisenberg once claimed), but rather by the lack of it” (Landsman
2006, p. 417).On this account, the classical realm is correlatedwith certain “classical”
states and observables, those which are robust against coupling to the environment,

28As explained in the Introduction (Sect. 1.7.1), there is a strong possibility that quantum gravity
will provide some insight into the physical means (mechanism) by which quantum superpositions
are resolved into classical states (e.g. decoherence), even in familiar quantummechanics. LQG does
not, as it stands, offer such insight, even though this physical mechanism is likely to play a role in
the emergence of spacetime from LQG.

http://dx.doi.org/10.1007/978-3-319-39508-1_1
http://dx.doi.org/10.1007/978-3-319-39508-1_5
http://dx.doi.org/10.1007/978-3-319-39508-1_1
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andwhich “survive” the approximation procedure that eliminates the non-“classical”
states and observables.

Hence, this means of possibly recovering spacetime from LQG embodies an idea
of underdetermination, and this provides the basis for the autonomy of spacetime
from LQG. If this conception of emergence does apply in LQG, then the classical
spacetime that emerges from LQG will be independent of many of the micro-states
described by the theory. Unfortunately, this claim is a very vague one since the rela-
tion between the spin network states, weave states and spacetime being utilised is, at
this stage, only a crude sketch. Nevertheless, we can see that themacro physics is also
significantly novel compared to the micro-theory, given the substantial differences
between the fundamental structures of LQG and those of GR—in particular, the fail-
ure of the relation of adjacency to map onto the corresponding notion of “closeness”
in the classical geometry (as described in Sect. 7.2.1).

The failure of this relation to translate properly into the emergent spacetime sug-
gests another possible conception of emergence associatedwith the idea of an approx-
imation procedure. Because the spin networks generically give rise to geometries in
which the notion of adjacency is not respected (from the point of view of the spin
network), all those spin networks which correspond to geometries in which the spa-
tial counterparts of two adjacent nodes are separated by more than a Planck length
must be suppressed. In other words, we must select “classical” spin networks and
ignore the rest, as accords with the definition of an approximating procedure, so long
as some physical justification is provided for the neglect. Thus, it seems as though
understanding this procedure and the justification for it could potentially lead to
another notion of emergence in LQG.29

Finally, the weave states furnish yet another possible basis for emergence, where
the relevant conception of emergence resembles that associated with thermodynam-
ics, and is again related to the idea of underdetermination. The underdetermination
comes about because the Eqs. (7.5) and (7.6) do not uniquely determine a weave
state for a given metric. The reason for this, recall (Sect. 7.2.2), is that the equa-
tions only utilise averaged properties, which could be represented by a number of
different microstates. This is similar to the case of thermodynamics, where an aver-
aged, macroscopic property, such as temperature, will correspond to many different
microstates in a system with a large number of micro-level degrees of freedom.

Hence, this account seems to accord with the picture of emergence associated
with thermodynamics, Sect. 4.12, although there are two differences of potential
relevance: firstly, emergence in thermodynamics can be connected to the idea of
universality. Because there is no physical Hilbert space in LQG, it is not clear that
the notion of universality makes sense within the theory (at this stage). Secondly,
macroscopic geometry is supposed to correspond to a superposition of weave states
(Sect. 7.2.2), whereas the macroscopic variables of thermodynamics are not typically
taken to correspond to superpositions of micro-states.

29Recall that the idea of emergence associated with neglecting certain states has also been proposed
by Bain (2013), in the context of EFT. This is discussed in Sect. 3.9, where I also tie it to the idea
of underdetermination.

http://dx.doi.org/10.1007/978-3-319-39508-1_4
http://dx.doi.org/10.1007/978-3-319-39508-1_3
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Most of the potential bases for a conception of emergence in LQG that have
been presented here utilise the idea of underdetermination (as providing an explana-
tion for spacetime being largely autonomous of its micro-structure). The suggestion
that the micro-structure of spacetime is a superposition of microstates—which is
made not only in regards to the weave states in LQG, but also in spinfoam theory
(Sect. 7.2.3)—raises some interesting questions in regards to how the classical idea
of underdetermination corresponds to quantum indeterminacy. This is another point
where the quantum/classical transition intersects with the micro/macro transition,
and perhaps the idea of decoherence will be of some help.

Given the substantial differences between LQG and GR, and the absence of any
limiting procedure linking the two theories, it might seem pointless to attempt to
frame a conception of emergence with GR taken to be emergent from LQG. The idea
of emergence related to underdetermination that has been presented here perhaps
fuels this worry—on it, any low-energy theory might be said to be emergent from
LQG in the same way that GR is supposed to be. Of course, the only reply is that
LQG is a direct quantisation of GR. It is hoped (or assumed) that GR must somehow
be emergent from LQG because we are able to “go the other way” and arrive at LQG
from GR. The aim of the project is not to recover some other spacetime theory from
LQG, but to approximate GR in the regime where the accuracy of the latter theory
has been proven. Here, it is worth pointing out, however, that a theory of quantum
gravity need not be a quantisation of GR30: conversely, a quantisation of GR does
not necessarily produce a theory of quantum gravity.

7.4 Conclusion

LQG and spin foam theory are incomplete, with no definite means by which to
describe the dynamics in either theory: there are several alternative Hamiltonian
operators in LQG, and a number of options for calculating the measures in the
spin foam sum, but no indication that any choice is correct in either of the cases.
This incompleteness means that we are unable to develop a concrete picture of how
spacetime could emerge from LQG. It is likely that such a picture would involve
both themicro/macro transition as well as the quantum/classical transition, where the
latter perhaps will need to be understood before the former can be implemented—
nevertheless, I have purposefully avoided engaging with questions related to the
quantum/classical transition and the idea of decoherence here. It may be that the
failure of the “continuum limit” of LQG is a consequence of not yet understanding
the role of decoherence.

Because the limit in which the density of the weave states goes to infinity fails
to approximate continuous geometry, it is unclear how a conception of emergence
based on the idea of a limiting relation, such as described by Butterfield (2011a, b),

30It could be a quantisation of a theory other than GR, or it might not be a quantisation of any
classical theory.
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could apply in LQG. This could potentially be problematic, since (as described in
Sects. 1.6 and 2.3) a limiting relation is a common means by which a newer theory is
shown to relate to the older theory it is supposed to supplant, and the demonstration
of the recovery of GR (which may be done through the use of a limiting relation)
is generally taken as necessary for a theory of quantum gravity. An RG scaling
procedure is also unable to be implemented as a means of recovering spacetime at
large-distances, since the physical Hilbert space of LQG is undefined.

Although the area and volume operators of LQG have discrete spectra, the fact
that they are not gauge invariant—only existing at the kinematical level—means we
cannot say definitely that LQG predicts spacetime discreteness. Additionally, LQG is
faced with the problem of time and the problem of space, which are also related to the
difficulties of interpreting gauge invariance (amplified by tensions between quantum
theory and GR, Sect. 1.5). It may be that the problems with LQG have to do with
the fact that it is a quantisation of GR. This fact also makes the lack of a low-energy
limit of the theory particularly worrisome—given that LQG is a quantisation of GR,
we would expect it to be relatively easy31 to recover GR through decoherence plus
a semiclassical limit. This having not been done is perhaps further motivation for
considering an approach to quantum gravity that does not have a quantisation of GR
as its starting point.

In spite of these difficulties, a number of potential bases for emergence can be
identified in LQG. The requisite criterion of novelty is fulfilled, since the macro-
structures of GR differ in several major ways from the micro-structures described
by LQG. Not only is the discreteness of the spin networks (and spin foams) of
LQG a departure from the structures of GR, but the generic micro-state of spacetime
is not supposed to even be a single spin network (spin foam)—rather a quantum
superposition of such states. Furthermore, the fundamental relation of adjacency in
a spin network, which indicates that two “quanta of space” are next to one another, is
not typically preserved in themacroscopic geometry that the spin network is supposed
to underlie: two adjacent quanta of space in a spin network may be arbitrarily far
away from one another in the emergent space.

The idea of autonomy that forms the second part of the account of emergence
presented here (Sect. 2.4) is furnished primarily by the underdetermination of the
micro-states given the macro-states. For instance, while a weave state is constructed
so as to represent themicro-state of a given (macroscopic, three-dimensional) metric,
the construction of weave states means that, for a given metric there is a multitude
of potential micro-states.32 In other words, the emergent spacetime is able to be
represented by a number of different spin networks, and so is independent of the
details of themicro-theory. The reason for this is the fact that the weave states depend
only on average values, and so this idea of emergence resembles that associated with

31Well, compared to other approaches!
32More correctly: a weave state is constructed so as to demonstrate the existence of a micro-state
for a given macro-state.

http://dx.doi.org/10.1007/978-3-319-39508-1_1
http://dx.doi.org/10.1007/978-3-319-39508-1_2
http://dx.doi.org/10.1007/978-3-319-39508-1_1
http://dx.doi.org/10.1007/978-3-319-39508-1_2
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hydrodynamics/thermodynamics, where a number of micro-states correspond to the
same macro-state of a system. The emergent structures depend only on collective
properties of the micro-degrees of freedom.
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