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Abstract Increasing evidences have emphasized the importance of gut microbiota
and integrity of the intestinal epithelium to avoid the occurrence of many diseases.
Recently, microRNAs have emerged as important gene expression regulators in
many conditions. A dysregulated microRNA expression is a common feature of
various human diseases, such as cancer, developmental abnormalities, muscular and
cardiovascular disorders, and inflammatory diseases. Moreover, exosomal
microRNAs have been recently reported to have a crucial role in modulating the
bacterial gene expression. So far, the interplays between microRNAs expression and
gut microbiota modulation have not been explored in details. To provide further
insights into this interesting relationship, in this chapter we discussed some papers
appeared in the literature in the last few years.

3.1 The Intestinal Epithelium and the Gut Microbiota

The human body contains a great variety of bacteria, collectively referred to as the
human microbiota. The human intestinal tract harbors a diverse and complex
microbial community, the gut microbiota, which plays a central role in human
health. It has been estimated that our gut contains up to 100 trillion microbes, 1000
bacterial species and 100-fold more genes than those codified by the human gen-
ome (Ley et al. 2006b; Qin et al. 2010).

Humans have their first contact with bacteria during birth, when the baby passes
through the mother’s birth canal (Dethlefsen et al. 2007; Ley et al. 2006a). In the
postnatal period, the human intestine is colonized rapidly by an array ofmicrobes. The
conditions known to influence the colonization process include the gestational age, the
mode of delivery (vaginal birth vs. assisted delivery), diet (breast milk vs. formula),
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sanitation, and antibiotic treatment (Adlerberth andWold 2009;Marques et al. 2010).
By the end of the first year of life, infants possess an individually distinct microbial
profile, converging toward the characteristic microbiota of an adult. By 2–5 years of
age, the microbiota fully resembles that of an adult in terms of composition and
diversity (Koenig et al. 2011; Yatsunenko et al. 2012). In the adult, the abundance and
the composition of the gut microbial population is different between individuals and
this variability is influenced by life style, weight, and overall metabolic state of the
host (Tagliabue and Elli 2013; Tehrani et al. 2012). This life-long process of gut
colonization led to the formation of a complex ecosystem where the host and its
microbiome form an equilibrium that represents a remarkable example of reciprocal
adaptation.

Disruptions to the normal balance between the gut microbiota and the host, that
can occurs either by changes of the gut microbiota composition or by alterations of
the host response, is associated with many pathological conditions such as obesity
(Ley et al. 2006b; Turnbaugh et al. 2008), malnutrition (Kau et al. 2011), inflam-
matory bowel disease (IBD) (Dicksved et al. 2008; Frank et al. 2007), neurological
disorders (Gonzalez et al. 2011) and cancer (Lupton 2004).

A coordinated interplay between commensal microbiota and mucosal immune
responses occurs to maintain the host intestinal immune homeostasis. In fact, the
immune system is the principal regulator of the gut microbiota homeostasis and acts
mainly by maintaining the equilibrium between a correct defense against pathogens
and tolerance to commensals. Environmental stimuli elicit continuously the
intestinal epithelium and many gut cells are necessary to form a barrier against
them. In fact, several intestinal diseases are caused by deregulation of the intestinal
barrier function (Krogius-Kurikka et al. 2009). The intestinal epithelium is the
largest mucosal surface of the body, covering *400 m2. Its main function is to
prevent infections and protect by invading pathogens (Johansson et al. 2011). The
intestinal epithelium is organized into crypts and villi, and contains different cells:
(i) pluripotent intestinal epithelial stem cells (pluripotent IESCs), that reside at the
base of crypts and continuously renew the surface, (ii) enterocytes (for metabolic
and digestive functions) and (iii) secretory IECs, including enteroendocrine cells,
goblet cells and Paneth cells specialized for maintaining the digestive or barrier
function of the epithelium. Enteroendocrine cells represent a link between the
central and enteric neuroendocrine systems through the secretion of numerous
hormones that regulate the digestive function. The luminal secretion of mucins and
antimicrobial proteins (AMPs) by goblet cells and Paneth cells, respectively,
establishes a physical and biochemical barrier to microbial contact with the ep-
ithelial surface and underlying immune cells (Gallo and Hooper 2012; Kim and Ho
2010). Many regulatory mechanisms control the equilibrium between microbiota
and the host intestinal cell response (Coombes and Powrie 2008; Sartor 2008;
Strober 2009). In fact, pathogens in commensal bacteria, abnormal microbial
composition (i.e., decreased concentrations of protective bacteria) or defective host
containment of commensal bacteria (i.e., reduced secretion of antimicrobial pep-
tides to reduce mucosal bacterial overgrowth) may determine an imbalance of this
delicate interplay (Sartor 2008). Moreover, this equilibrium is mainly determined
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by mucosal dendritic cells, that have an important role in the regulation of intestinal
immunity processes (Coombes and Powrie 2008; Strober 2009).

However, we cannot exclude that microRNAs as well may represent comple-
mentary molecular determinants potentially involved in these processes.

3.2 microRNAs Biogenesis and Processing

MicroRNAs (miRNAs) have emerged as major regulators of various biological
processes and important mediators of immune development and virulence (Choi
et al. 2014; O’Connell et al. 2010; Slaby et al. 2009). microRNAs (miRNAs) are
short, highly conserved small noncoding RNA molecules naturally occurring in the
genomes of plants and animals. miRNAs are 17–27 nucleotides long and regulate
post-transcriptionally the mRNA expression, typically by binding to the 3′
untranslated region (3′UTR) of the complementary mRNA sequence, resulting in
translational repression and gene silencing (Bartel 2004). microRNAs are tran-
scribed by RNA polymerase II (Pol II) (Cai et al. 2004) and RNA polymerase III (Pol
III) (Borchert et al. 2006) in primitive transcripts, named pri-miRNA. Pri-miRNAs
are processed into fragments of*70-bp, the precursors (pre-miRNAs), in a two-step
process catalyzed by the proteins Drosha and Dicer (Lee et al. 2003). The exportin-5
(Exp-5) recognizes the double-stranded pre-miR and transports it from the nucleus to
the cytoplasm, irrespective of miRNA nucleotide sequence and the presence of
diverse structural motifs (Lund et al. 2004; Okada et al. 2009). Once in the cyto-
plasm, the RNA III ribonuclease Dicer complex converts the pre-miRNA in a mature
miRNA, producing a miRNA–miRNA* duplex (Cullen 2004), which displays a 2-nt
3′overhang at both ends. Only one miRNA strand (the guide strand, or -5p form) of
the duplex is loaded into Argonaute protein (AGO) (O’Toole et al. 2006) to form the
RISC complex (referred to as the miRISC) that is the effector of the reaction by
recognizing the miRNA target in a sequence-specific manner and can mediate
various type of gene silencing (Tijsterman and Plasterk 2004), mRNA degradation
or translation inhibition (Djuranovic et al. 2012), whereas the inactive strand (the -3p
form) is degraded (Kim 2005).

3.3 Interplays Between miRNAs and Microbiota

miRNAs have been also found to be implicated in gut microbiota-host interactions
(Kaser et al. 2011). To investigate the mechanisms by which the host cell reprogram
their transcription during colonization, germ-free mice were colonized with the
microbiota from pathogen-free mice (Dalmasso et al. 2011). RNA extracted from
ileum and colon of germ free and colonized mice, showed down- and up-regulated
miRNAs: eight microRNAs were expressed in the ileum, whereas seven in the
colon. The expression of host miRNAs is modulated in response to microbiota
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colonization and this indicates that microbiota modulates host miRNAs expression
suggesting an implication of miRNAs in microbiota-mediated host gene regulation.
In particular, by intersecting the microarray-detected dysregulated genes with the
potential targets of dysregulated miRNAs (predicted by at least two algorithms), the
authors identified only one gene, Abcc3, potentially targeted by mmu-miR-665 in
the colon, whereas no overlapping genes were found in the ileum (Dalmasso et al.
2011). Abcc3 belongs to the multidrug resistance-associated protein family, which
mediates the metabolism of xenobiotics and endogenous toxins (Hooper et al.
2001). Therefore, mmu-miR-665 was identified as a microRNA potentially impli-
cated in the colonization of microbiota through the direct targeting and inhibition of
Abcc3.

Many authors found that different intestinal tracts have distinct miRNAs
expression patterns. By using germ-free and conventionally raised mice, the impact
of the endogenous microbiota on the global expression of caecal miRNAs in vivo
has been investigated by Singh et al. (2012). The murine miRNA signature in the
caecum is affected by the presence of the microbiota. Moreover, authors found that
34 putative miRNA target genes encode for proteins involved in the regulation of
the intestinal barrier function (i.e., glycosylation enzymes, junctional proteins,
proteins found in the mucus layers) and in the immune regulation (i.e., MHCI and II
proteins). They found that the expression of miRNAs depends on the endogenous
microbiota and that 16 unique miRNAs were deregulated between germ-free and
conventional raised mice. By cross-matching the list of intestinal barrier genes
predicted to be modulated by differentially expressed miRNAs, with genes already
demonstrated to be deregulated in the mucosa of intestinal-specific Dicer knock-out
mice (McKenna et al. 2010) the authors supported the hypothesis that gut com-
mensals impact the intestinal barrier via miRNAs expression modulation.

3.4 Inflammatory Diseases

It is now apparent that a dysregulated miRNA expression is a common feature of
various human diseases, such as cancer, developmental abnormalities, muscular and
cardiovascular disorders, and inflammatory diseases such as inflammatory bowel
diseases (IBD) (Takagi et al. 2010). In fact, a study by Xue et al. focused on the
microbiota regulation of miRNAs expression and on the maintenance of intestinal
homeostasis, and reported a connection between the expression of miR-10a and of
its target IL-12/IL-23p40, a key molecule for innate immune responses to com-
mensal bacteria (Xue et al. 2011). The authors found that commensal bacteria
down-regulated dendritic cell miR-10a expression via TLR–TLR ligand interac-
tions through a MyD88-dependent pathway and that mice with colitis expressed
higher levels of IL-12/IL-23p40 and lower level of gut miR-10a, compared to
control mice, opening new perspectives for the study of miRNAs regulation in
intestinal diseases.
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Intestinal inflammation is characterized by epithelial disruption, loss of barrier
function, recruitment of immune cells, and host immune responses to gut micro-
biota. Recently, it has been observed that PepT1, a di/tripeptide transporter that
uptakes bacterial products, is upregulated in inflamed colon tissue (Dai et al. 2015).
This peptide has a role in bacterium-associated intestinal inflammation. The amount
of this peptide is inversely correlated with the level of miR-193a-3p in inflamed
colon tissues with active ulcerative colitis. Moreover, miR-193a-3p reduced PepT1
expression and activity as a target gene and subsequently suppressed the NF-jB
pathway, suggesting that miR-193a-3p may have a crucial role to regulate the
colonic inflammation process (through PepT1) and to maintain intestinal
homeostasis.

Another example of microRNAs that regulate gut mucosal immunity has been
reported by Biton et al. who studied miR-375 in mice with an inducible intestinal
epithelial cell-specific deficiency in Dicer1 (Dicer1Dgut) (Biton et al. 2011)
(Fig. 3.1).

Biton et al. reported that Dicer1 depletion in the mice gut leads to goblet-cell
depletion and that the regulation of goblet-cell differentiation is dependent on the
expression of miR-375 (Biton et al. 2011). The expression of this miRNA is able to
inhibit the translation of KLF5, an antagonist of the goblet cell–differentiation
factor KLF4, supporting the differentiation of goblet cells. Moreover, they observed
a lower expression of IL-4, IL-5 and IL-13 in Dicer1Dgut mice and an enhanced
susceptibility to infection by the helminth parasite Trichuris muris. IL-13, pre-
sumably supplied by TH2 cells, induces miR-375 in intestinal epithelial cells
in vitro and a downstream production of the TH2-facilitating epithelial cytokine

Fig. 3.1 Depletion of Dicer1 or miR-375 results in fewer goblet cells and diminished TH2
responses
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TSLP, indicating an appropriately balanced TH2 feed-forward loop regulated by
miR-375. Based on their results, the authors suggested that miR-375 directs the
differentiation of goblet cells and the promotion of antiparasitic TH2 immune
responses. As the miR-375 expression is very high in the human intestine (Wu et al.
2010), mucosal expression of this particular miRNA might also be important in the
regulation of intestinal homeostasis and protection against parasite infection in
humans (Wu et al. 2010).

Previously (Masotti 2012) we reported a study by Chassin et al. who found that
the TLR-4-mediated transcriptional activation of intestinal epithelial cells observed
in mice immediately after birth, was induced by an oral ingestion of endotoxins
from the environment and induced a post-transcriptional down-regulation of
epithelial IRAK1 protein expression, which protected from secondary
bacteria-induced epithelial damages (Chassin et al. 2010).

In a very recent paper, Runtsch et al. investigated the role of miR-146a in reg-
ulating intestinal immunity and barrier function and verified the miRNA expression
in a variety of gut tissues in adult mice (Runtsch et al. 2015). By comparing intestinal
gene expression in wild type (WT) and in miR-146a-/- mice, the authors demon-
strated that miR-146a repressed a subset of immune-related signaling genes related
to an increase of gut barrier and inflammation. Consistent with an enhanced in-
testinal barrier, Runtsch et al. found that miR-146a-/- mice, a model of Ulcerative
Colitis (UC), are more resistant to the dextran sulphate-induced colitis compared to
WT. The elevated expression of colonic miR-146a has been observed also in UC
patients, therefore suggesting a crucial role for miR-146a in modulating the intestinal
barrier function, which is a process that alters gut homeostasis and enhances some
intestinal diseases. These results will constitute the basis of further research and will
open new perspectives for therapeutic applications.

The same authors reviewed the literature and discussed the influence that
miRNAs have on both immune and epithelial cell biology in the mammalian
intestines and its impact on the microbiota. However, the authors emphasized the
lack of studies aimed at deciphering the functions of specific miRNAs within the
gut finalized to the understanding of the cellular mechanisms that promote intestinal
homeostasis and the identification of potential molecular targets underlying
intestinal diseases such as inflammatory bowel disease and colorectal cancer
(Runtsch et al. 2014).

3.5 Symbiosis of Host and Guest

All of the papers discussed in the previous paragraphs described the interplay
between the microbiota and the host. In particular, we discussed how microbiota
modulates the gene expression of the host through miRNAs. So far, nothing has
been know on how the host regulates the microbiota. This is a crucial point, because
it represents the missing part in the big picture describing the symbiosis of the host
and the guest (Fig. 3.2).
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To close this gap, a very recent work by Liu et al. described how the host
selectively shapes the microbiota through miRNAs contained in extracellular
vesicles (EVs) produced by the host itself (Liu et al. 2016). miRNAs, when con-
tained in vesicles, are relatively stable compared to other RNAs (Jung et al. 2010).
Fecal miRNAs can exist in EV-free forms, associated with high-density lipopro-
teins or argonaute protein (Creemers et al. 2012), or in a completely free form. Liu
et al. reported that the miRNAs they have identified and characterized, can target
specific bacterial genes after entering the bacteria, modulating their gene expres-
sion. In their work, Liu et al. used Escherichia coli and Fusobacterium nucleatum,
two bacterial species that have been reported to promote colorectal cancer
(Rubinstein et al. 2013). The authors demonstrated that different miRNAs have
different ability to enter into bacteria and that miRNAs shapes bacteria with a
temporal and spatial organization (Liu et al. 2016).

3.6 Conclusions

In this chapter, we discussed the papers that appeared in the literature in the last
5 years (Table 3.1), that studied the interplays between gut microbiota and gene
expression modulation mediated by microRNAs.

Fig. 3.2 The human intestinal lumen is populated by microorganisms (gut microbiota) that
regulate the host gene expression through microRNAs. Similarly, the host produces extracellular
vesicles containing microRNAs that regulate the expression of microbial genes. This ‘symbiotic
loop’ is emerging as a powerful inter-kingdom communication system, although the precise
molecular mechanisms underlying it are still not know. We have no doubt that this loop will be
extensively explored in the next few years
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Table 3.1 Papers dealing with the interplays between gut microbiota and gene expression
modulation by microRNAs

Aim of the study Experimental
model

Investigated miRNAs Target genes Reference

To study whether
miRNAs are
involved in
microbiota-mediated
regulation of host
gene expression

Germ-free mice
colonized with the
microbiota from
pathogen-free
mice

miR-298; miR-128;
miR-200c*;
miR-342-5p;
miR-465c-5p;
miR-466d-3p/5p;
miR-665; miR-683

Abcc3 Dalmasso
et al.
(2011)

To study the impact
of the endogenous
microbiota on the
global expression of
caecal miRNAs
in vivo

Germ-free and
conventionally
raised mice

miR-21*; miR-351;
miR-487b;
miR-467a; miR-27b;
miR-148a; miR-145;
miR-183; miR-133a;
miR-150; miR-672;
miR-181a; miR-664;
miR-455; miR-138*;
let-7 g*

34 genes among
glycosylation
enzymes, junctional
proteins, proteins
found in the mucus
layers and in the
immune regulation

Singh
et al.
(2012)

To study miRNAs
affecting the
intestinal epithelial
monolayer

Mice with an
inducible
intestinal
epithelial
cell-specific
deficiency in
Dicer1
(Dicer1Dgut)

miR-375 KLF5 Biton
et al.
(2011)

To study the
TLR-4-mediated
transcriptional
activation of
intestinal epithelial
cells (IECs)

Mice immediately
after birth

miR-146a IRAK-1 Chassin
et al.
(2010)

To study microbiota
regulation of miRNA
expression and
intestinal
homeostasis

C57BL/6 (B6),
B6.IL-10-/-, B6.
MyD88-/- and B6.
RAG-/- mice

miR-10a IL-12/IL-23p40 Xue et al.
(2011)

To study the role of
miRNAs in the
immune regulation of
innate and adaptive
responses to
microbiota in
Inflammatory bowel
disease (IBD)

Inflamed ileal
and/or colonic
tissues of IBD
patients and
specific
pathogen-free
female C57BL/6
mice

miR-10a (IL)-
12/IL-23p40/NOD2

Wu et al.
(2015)

(continued)
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We wondered whether microRNAs could be exploited therapeutically to mod-
ulate an altered gut microbiota composition and ultimately restore a healthy con-
dition. For example, it has been reported recently that the incidence of type 1
diabetes cannot be explained only by genetics, epigenetics and environmental
factors only (Gulden et al. 2015). Lifestyle, diet and the use of antibiotics also
should be taken into account. The diet supplementation with pre-/pro-biotics has
emerged as a potential mean to improve gut integrity and avoid the occurrence of
diseases. However, we think that the recent work by Liu and colleagues (Liu et al.
2016) is a clear demonstration that other bacterial modulatory mechanisms can be

Table 3.1 (continued)

Aim of the study Experimental
model

Investigated miRNAs Target genes Reference

To study the role of
miRNAs in
regulating intestinal
immunity and barrier
functions

Intestines of
germ-free
(GF) and specific
pathogen-free
(SPF) mice and
miR-146a-/-mice

miR-146a 289 genes were
upregulated and 77
genes were
downregulate.
Among these there
are: members of the
C-type lectin
antimicrobial
peptide family
Reg3, genes that
produce intestinal
mucus, intestinal
cell adhesion
molecules

Runtsch
et al.
(2015)

To study the role of
miRNAs as critical
gene regulators and
mediators of the
activation of host
responses to gut
microbiota

Colonic tissue
samples

miR-193a-3p PepT1 Dai et al.
(2015)

How the microbes
are selected and
whether the host
specifically regulates
microbial gene
expression

Gut luminal
contents from the
distal ileum and
colon and Dicer1
DlEC and Dicer1
fl/fl littermate
mice

MiR-101,
hsa-miR-515-5p,
miR-876-5p,
hsa-miR-325, and
hsamiR-1253 could
potentially target Fn
nucleic acid
sequences;
hsa-miR-4747-3p,
hsa-miR-1224-5p,
hsa-miR-1226-5p,
and hsa-miR-623
could potentially
target E. coli nucleic
acid sequences

16S rRNA/23S
rRNA; E. coli
yegHmRNA;
RNaseP; rutA
mRNA; fucO

Liu et al.
(2016)
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elicited, as for example, the use of microRNAs for the dysregulation of bacterial
gene expression. We still do not know if it will be possible to modulate gut bacterial
composition by simply employing microRNAs (i.e., by modulating gut bacteria
gene expression to activate cell death processes that could lead to a progressive
enrichment or depletion of a given bacterial population). In any case, if validated,
this kind of innovative ‘therapeutic’ intervention could be exploited also for other
pathologies, and not be limited only to diabetes.

In the near future, many other works will surely prompt further research aimed at
deciphering the existence of other types of interactions between the host microbiota
and the guest itself. The interpretation of the complex ‘inter-kingdom communi-
cation’ system and all the ways and pathways by which these systems interact each
other will be the next challenge that we are going to face
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