
Chapter 1
The Roles of MicroRNAs and PiRNAs
in Virus-Host Interactions

Anh T. Tran

Abstract MicroRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs) are two
groups of small non-coding RNAs with different functional roles. miRNAs are
post-transcriptional regulators of gene expression in a plethora of critical processes
in multicellular eukaryotes. Therefore, it comes as no surprise that viral pathogens
have evolved ways to subvert the miRNA network. It is increasingly evident that
miRNAs have functional roles in viral replication as well as their potential
employment by host cells to combat viral infection. A number of viruses are now
known to encode for miRNAs, predominantly in DNA viruses such as her-
pesviruses. Although virus-encoded miRNAs have been reported in retroviruses
such as HIV-1, their functional significance is under debate. This controversy also
extends to RNA viruses and their ability to express miRNAs. Identification of target
genes for some of these viral miRNAs suggests they may function in the regulation
of lytic and latent viral replication and in restricting antiviral responses. Viruses
have also evolved the ability to downregulate or upregulate the expression of
specific cellular miRNAs to enhance their replication. I will also briefly review
evidence that demonstrate the role of piRNAs in silencing transposable elements to
maintain germline genome integrity. This chapter provides an overview of our
current understanding of the complex relationship between viruses and cellular
miRNA and piRNA machineries.

1.1 miRNA and piRNA Biogenesis and Function

1.1.1 miRNAs

miRNAs are noncoding RNAs *21–23 nucleotide (nt) in length that
post-transcriptionally regulate the expression of a plethora of eukaryotic genes.
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miRNAs are first transcribed as primary transcripts (pri-miRNAs) by RNA poly-
merase II (RNAP II) (Fig. 1.1). Many pri-miRNA are capped and polyadenylated,
and all contain a stem-loop secondary structure. At the nucleus, this secondary
structure is recognized by the RNAse type-III Drosha, in association with its
co-factor DGCR8, which cleaves the pri-miRNA into its intermediate form
(pre-miRNA) of about 70 nt in length with a 2 bp overhang at its 3′ end. The
excised hairpin loop is then recognized by the nuclear export factor exportin 5,
which facilitates the transport of the pre-miRNA from the nucleus to the cytoplasm
where it is processed by another RNAse III Dicer, and its co-factor TRBP, into its
mature duplex form. The “guide” strand of the mature miRNA (often the anti-sense
strand) is subsequently recruited to the RNA-induced silencing complex (RISC) by
its interaction with the Argonaute protein, whereas the “passenger” strand fre-
quently gets degraded (Shukla et al. 2011; Van Wynsberghe et al. 2011;
Erson-Bensan 2014). Although the mechanism in allocating the “guide” and
“passenger” strand designation is not fully understood, it is thought that once a
strand is selected and loaded onto RISC, the other (“star”) strand is destroyed. The
proteins present in RISC vary between species, but the core proteins include Dicer
and the Argonaute protein family. Argonaute proteins are phylogenetically cate-
gorized into two clades based on sequence similarity: the Argonaute (Ago) clade

Fig. 1.1 The canonical miRNA biogenesis pathway. Pri-miRNA are transcribed from viral or
cellular genomic DNA by RNA polymerase II. The transcript is processed by Drosha and its
cofactor DCGR8 to produce pre-miRNA, which gets exported to the cytoplasm by cellular
exportin-5 protein. In the cytoplasm, pre-miRNA is further processed into a miRNA duplex by
Dicer and its cofactor TRBP. The mature strand of the miRNA duplex (*21–23 nt) is loaded into
the miRISC complex. Depending on the degree by which the miRNA “seed” sequence binds to the
target mRNA, the resultant mRNA target can be translationally inhibited, deacetylated and
degraded, or sequestered to P-bodies for storage
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and the P-element induced wimpy testis (Piwi) clade (Carmell et al. 2002). The Ago
clade is associated with miRNA and short interfering RNA (siRNA) activities
whereas the Piwi proteins are associated with a different sncRNA pathway to be
discussed in the next subsection. There are 4 Argonaute proteins in human cells but
so far only Argonaute 2 (Ago2) has been reported to contain endonuclease activity
(Meister 2013). The miRNA acts as a guide to direct the RISC complex to the target
mRNA via base complementarity between the miRNA 5′ seed region (nucleotides
at positions 2–8) and the mRNA 3′ untranslated region (3′-UTR) (Bartel 2009;
Agarwal et al. 2015). Perfect sequence complimentary between the miRNA and
target mRNA may result in target cleavage by the endonucleolytic activity of RISC
and significant mRNA destabilization. However, if sequence complimentarity is
only partial then RISC binding induces translational inhibition. miRNA regulation
of genes was initially known to occur mainly through translational repression, but
subsequent observations revealed that miRNAs can also induce mRNA degradation
as a result of deadenylation of target mRNAs (Bagga et al. 2005; Krutzfeldt et al.
2005; Valencia-Sanchez et al. 2006). A relatively recent study reported that miRNA
mode of regulation may encompass both aspects with initial repression of target
mRNAs followed by deadenylation and subsequent degradation (Djuranovic et al.
2012). Moreover, Bartel’s group showed that mRNA destabilization may be a
major consequence of mRNA repression by miRNA (Eichhorn et al. 2014).

Despite significant advances in our understanding of miRNA activity, the
molecular mechanism by which miRNAs suppresses protein production of targeted
mRNAs is not completely understood. It has been proposed that miRNA translo-
cation of the targeted mRNA into cytoplasmic processing bodies (P-bodies) leads to
induction of translational inhibition, deadenylation, and degradation of the target
(Leung and Sharp 2013). P-bodies lack ribosomes and are reported to regulate
mRNA turnover and degradation (Leung and Sharp 2013). They also may participate
in miRNA regulation of gene expression based on evidence that miRNA-mRNA
complexes and components of the miRISC complex such as DGCR8 and Ago
localize to these cytoplasmic foci (Leung and Sharp 2013; Baril et al. 2015; Chen and
Shyu 2013; Jakymiw et al. 2007; Nishi et al. 2015). It has been proposed that the
translocation of miRNA-bound target mRNA complexes to P-bodies promote their
catalytic function or for temporal storage, and that this translocation may be mediated
by GW182, a component of P-bodies, through its binding to the Argonaute protein in
miRISC. Deadenylases that reside within P-bodies can deadenylate targeted mRNAs,
which are then decapped and degraded. P-bodies can also function as a temporary
storage compartment where targeted mRNAs are held in stasis, spatially removed
from the translational machinery (Nilsen 2007).

1.1.2 piRNAs

PiRNAs were first identified as small RNAs that specifically interact with Piwi
proteins in mouse and rat germ cells (Aravin et al. 2006; Girard et al. 2006;
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Lau et al. 2006). Subsequent studies revealed an extremely complex population of
piRNAs that is highly enriched in the germline tissues of most metazoans examined
to date (Lim and Kai 2015). Unlike miRNAs, piRNAs are transcribed by RNA
polymerase II from intergenic loci called piRNA clusters as long continuous,
single-stranded precursor transcripts which are processed by a Dicer-independent
mechanism into *24–31 nt with 2′–O–methyl modification sites at the 3′ end
(Hirakata and Siomi 2015; Vagin et al. 2006) (Fig. 1.2), which may be targets for
the murine methylase HENMT1 (Kirino and Mourelatos 2007). PiRNAs constitute
the largest class of noncoding RNAs and have the greatest sequence diversity
among known classes of cellular RNAs (Moazed 2009; Lim and Kai 2015).
PiRNAs predominantly regulate transposon activities within the genome to preserve
normal gametogenesis and reproduction because the expression and transposition of
these transposable elements pose a high risk of destabilizing genome integrity. Piwi
proteins and piRNAs are conserved in a broad range of metazoans. The absence of
Piwi resulted in fertility defects in diverse animal species, indicating the

Fig. 1.2 piRNA biogenesis pathway. piRNA precursors are transcribed by RNA polymerase II
from piRNA clusters. These precursors have a 5′ cap and 3′ poly-A tail. The precursor piRNAs are
exported to the cytoplasm where they are further processed by an unidentified exonuclease at the 3′
end, which is methylated by the murine homolog HENMTI. The mature piRNA associates with
Piwi proteins and gets recruited into the piRISC complex
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Piwi/piRNA pathway has an important role in maintaining fertility (Carmell et al.
2007; Das et al. 2008; Houwing et al. 2007). Notably, piRNAs possess the ability to
distinguish between “self” and “non-self” through a complex mechanism that
effectively identifies non-self genes for regulation (Malone and Hannon 2009), the
details of which won’t be discussed in this chapter.

After assembly, the piRISC complex gets imported into the nucleus where it
directs histone 3 lysine 9 (H3K9me3) methylation of target transposon loci to
induce a heterochromatin state that transcriptionally silences transposons (Lim and
Kai 2015; Le Thomas et al. 2013). In Drosophila, the nuclear protein Asterix/
DmGTSF1 is required for piRISC to mediate the addition of this silencing histone
marker (Ohtani et al. 2013). The precise mechanisms for how piRISC directs the
deposition of H3K9me3 at targeted transposon loci have yet to be elucidated.

1.2 Current Methods Used for Viral MiRNA
Identification

The very nature and function of miRNAs make them an attractive strategy for
viruses to use to manipulate their host environments. Due to the limited size of most
viral genomes, the low coding capacity needed to encode the small size of miRNAs,
coupled with their non-immunogenic characteristics, makes them an attractive tool
to incorporate into a virus’ arsenal. Furthermore, a single miRNA has the potential
to target numerous host and viral RNAs, which allows a virus to modulate the
infection cycle with only limited virus-encoded factors. Viral miRNAs (vmiRNAs)
are encoded by many viruses, but the large dsDNA herpesvirus family is the
predominant group of viruses that have the most miRNAs characterized within their
genomes. The biogenesis of vmiRNAs utilize the same cellular machinery involved
in processing cellular miRNAs, and they undergo a similar cascade of steps from
the transcription of pri-vmiRNAs transcribed in the nucleus to their subsequent
maturation in the cytoplasm. VmiRNAs have been documented to modulate the
host environment by targeting either viral or cellular mRNAs to facilitate different
facets of the viral lifecycle such as latency.

The most commonly used method to identify vmiRNAs requires the isolation of
total small RNAs from infected cells, reverse transcription into cDNA followed by
sequencing. Computer algorithms such as TargetScan (Agarwal et al. 2015),
miRanda (John et al. 2004; Betel et al. 2008), and RNAhybrid (Rehmsmeier et al.
2004), are also used to predict potential miRNA coding regions which are then
verified by direct experimental assays (Bennasser et al. 2004; Pfeffer et al. 2005).

The identification of each miRNA target(s) is not a simple task because a single
miRNA can potentially target multiple cellular mRNAs. Bioinformatics computa-
tion is used to query for miRNA-seed sequences in the 3′-UTR of potential target
mRNAs (Kim and Nam 2006; Rajewsky 2006). Predicting miRNA targets is
complicated by the variability in “seed” sequence complementarity between
miRNA-mRNA, and that a single miRNA has the potential to regulate the
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expression of up to 100 discrete mRNAs (Brennecke et al. 2005). Currently, the use
of bioinformatics platforms to identify the entire complement of potential mRNA
targets (the ‘targetome’) of a given miRNA results in long lists that very likely
contain many false positives. Nevertheless, successful identifications of miRNA
targets have been reported using this method and advances are continually being
made in this area.

Messenger RNA microarrays have also been employed to identify targets of a
given miRNA by measuring the change in global gene expression in the presence or
absence of the miRNA. Differential expression of specific mRNAs in the presence
or absence of a given miRNA suggests it may be a potential target of the miRNA,
and bioinformatics tools also help predict a target site for the miRNA in the
identified mRNA, providing stronger support that this is likely a real target.

Alternatively, target mRNAs can be recovered and sequenced through methods
such as mRNA-protein crosslinking followed by immunoprecipitation (CLIP) with
a miRISC component such as AGO2 or from P bodies by immunopurification
(Easow et al. 2007). CLIP is a powerful tool for the global recovery of miRISC
target sites, but the accurate identification of the compliment miRNA responsible
for mediating the recruitment of the mRNA to miRISC remains a challenge.
A common assay used to confirm that a miRNA targets an identified mRNA is the
use of reporter constructs that contain a chimeric transcription with the 3′-UTR
from the target mRNA. When the miRNA is overexpressed, its ability to silence the
reporter transcript with the target 3′-UTR would appease one criterion supportive of
specific targeting.

1.3 Herpesviruses

Herpesviruses are a group of DNA viruses whose infectious lifecycle encompasses
both lytic and latent cycles. During latency, viral gene expression is limited to a few
specialized genes that maintain the latency state. Life-long persistence in hosts
infected with herpesvirus is closely associated with the virus’ ability to evade
immune detection and establish latency (Feldman and Tibbetts 2015; Frappier
2015). The first virally encoded miRNA identified arose from a cloning experiment
in human B cells latently infected with the herpesvirus Epstein-Barr virus (EBV).
This initial discovery spurred the prospect that other herpesviruses or large DNA
viruses in general might also encode for vmiRNAs (Pfeffer et al. 2004). Indeed,
vmiRNAs were recovered from cells infected with herpes simplex 1 (HSV-1),
human cytomegalovirus (HCMV), and Kaposi’s sarcoma herpesvirus (KSHV)
(Feldman and Tibbetts 2015; Kincaid and Sullivan 2012; Pfeffer et al. 2005).
Interestingly, most herpesvirus vmiRNAs identified to date are expressed during
latency, and have been found to regulate both viral and cellular functions to allow
the virus to evade immune detection and persist in the infected host. Nevertheless,
certain herpesviruses such as HHV-6, HHV-7, and Varacella Zoster virus (VZV) do
not appear to encode miRNAs. A group reported the inability to identify viral
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miRNAs in cells latently infected with VZV, but this does not rule out the possi-
bility that there may be miRNAs produced during VZV lytic infection (Umbach
et al. 2009). Nevertheless, this observation is particularly interesting given that
Varicelloviruses such as Bovine Herpesvirus 1 and Suid Herpesvirus 1 do encode
miRNAs (Anselmo et al. 2011; Glazov et al. 2010). This raises the question as to
what is different between viruses that do and do not encode miRNAs, the answer of
which will be informative in understanding virus miRNA function. Notably, most
vmiRNAs encoded by different herpesviruses are not conserved with each other or
with host miRNAs, which suggests herpesvirus vmiRNA genes may undergo rapid
evolution. However, Poxviruses, which are DNA viruses that replicate in the
cytoplasm, do not appear to encode for vmiRNAs (Skalsky and Cullen 2010).

1.3.1 Herpes Simplex Virus

The most studied virally encoded miRNAs among the herpesvirus family are
encoded by HSV-1, the prototypical alpha herpesvirus (Table 1.1). miR-H1 is a late
gene product initially identified from cells lytically infected with HSV-1 and
reported to downregulate an ND10 component alpha-thalassemia/mental retardation
syndrome X-linked (ATRX) (Jurak et al. 2012). During HSV-1 latent infections in
the sensory ganglia, the latency associated transcript (LAT) is expressed. LAT is
encoded antisense to the immediate early (IE) gene ICP0 in the long terminal repeat
end of the unique long genome segment (Roizman and Whitley 2013). AlteRNAtive
splicing gives rise to 3 isoforms of the LAT transcript, all of which show different
expression patterns. LAT transcripts have not been observed to translate into any
peptides, but studies have reported further processing of LAT in HSV-1 latently
infected cells to produce 6 functional miRNAs designated as miR-H2, miR-H3,
miR-4, miR-H5, miR-H7, and miR-H8 (Umbach et al. 2009). miR-H2 expression
leads to a reduction of ICP0 protein level by translational inhibition, as ICP0mRNA
level is not affected (Umbach et al. 2008). ICP0 is an E3 ubiquitin ligase that allows
for a lytic mode of replication at low multiplicity of infection (MOI) (Roizman and
Whitley 2013). This protein also facilitates the remodeling of ND10 or PML, which
are repressive bodies in the nucleoplasm (Roizman and Whitley 2013). Despite
being transcribed antisense to ICP34.5 transcript, miR-H3 and miR-H4 do not
appear to effect ICP34.5 levels (Umbach et al. 2008). On the other hand, miR-H6,
another HSV-1 encoded miRNA, inhibits translation of the viral transactivator for
early viral gene expression, ICP4, via imperfect binding to the ICP4 mRNA. The
downregulation of ICP0 and ICP4 by miR-H2 and miR-H6 may inhibit entry into
lytic replication and maintenance of an established latent state.

Although there is limited sequence homology between miRNAs expressed by
the closely related herpes simplex virus 2 (HSV-2), its miRNAs, also expressed
from LAT transcripts, also target ICP0 and ICP34.5 for downregulation, suggesting
similar mechanisms for establishing and maintaining latency.

1 The Roles of MicroRNAs and PiRNAs in Virus-Host Interactions 9



Table 1.1 Selected virus-encoded miRNAs and known mRNA targets

Viral MIRNA Viral
targets

Cellular targets Reference

Herpesviruses

HSV-1 miR-H1 – Alpha-thalassemia/mental
retardation syndrome
X-linked (ATRX)

Jurak et al. (2012)

miR-H2 ICP0 – Umbach et al. (2008)

miR-H6 ICP4 – Umbach et al. (2008)

HSV-2 miR-I, -II ICP34.5 – Tang et al. (2008,
2009)

miR-III ICP0 – Tang et al. (2009)

HCMV miR-UL112-1 IE1 IL-32, MICB Murphy et al. (2008),
Huang et al. (2013),
Stern-Ginossar et al.
(2007)

miR-US25-2-3p – TIMP3 Esteso et al. (2014)

miR-UL148 – RANTES Kim et al. (2012)

miR-US4-1 – ERAP1 Kim et al. (2012)

miR-UL112-3p – TLR2 Landais et al. (2015)

miR-US25-1 – Cyclin E2 Grey et al. (2010)

EBV miR-BART2 BALF5 – Barth et al. (2008)

miR-BART16,
17-5p, and 1-5p

– LMP1 Lo et al. (2007)

miR-BART5 – PUMA Choy et al. (2008)

miR-BART15-3p – BRUCE Choi et al. (2013)

KSHV miR-K5, -K9, -
K10

– BCLAF1 Ziegelbauer et al.
(2009)

miR-K9 RTA – Bellare and Ganem
(2009)

miR-K1, -K3-3p,
-K6-3p

– THBS1 Narizhneva et al.
(2005)

miR-K1 – p21 Gottwein and Cullen
(2010)

Polyomaviruses

SV40 miR-M1 T-Antigens – Sullivan et al. (2005)

BK miR-B1 T-Antigens – Seo et al. (2008)

JC miR-J1 T-Antigens – Seo et al. (2008)

MC miR-S1 T-Antigens – Seo et al. (2009)

Adenovirus mivaRI-138 – TIA-1 Aparicio et al. (2010)
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1.3.2 Human Cytomegalovirus

Human cytomegalovirus (HCMV) has the largest genome of the human herpesvirus
at 230 kb and is the prototype of beta herpesviruses. To date, experimental evidence
has uncovered 14 HCMV miRNAs from lytically infected primary cells (Table 1.1),
3 of which are transcribed from the antisense strand of known ORFs, 5 miRNAs are
located in intergenic regions, and 1 is situated within an intron (Pfeffer et al. 2005).

HCMV miR-UL112-1 was reported to inhibit the transactivation of early gene
expression during lytic infection by binding to the 3′ UTR of viral IE1 (Murphy
et al. 2008). This suggests that miR-UL112-1 may contribute to the establishment
and maintenance of latency, but expression of miR-UL112-1 during latent infection
remains unknown (Murphy et al. 2008). miR-UL112-1 has recently been implicated
in downregulating IL-32, which is critical for both innate and adaptive immune
responses (Huang et al. 2013). miR-UL112-1 also has been shown to target the
cellular major histocompatibility complex class-I-related chain B (MICB), a
cell-surface protein recognized by natural killer (NK) cells, resulting in a decline in
MICB protein levels (Stern-Ginossar et al. 2007). Additionally, miR-US25-2-3p
was shown to downregulate tissue inhibitors of metalloprotease 3 (TIMP3)
expression resulting in an increased shedding of soluble major histocompatibility
complex class-I-related chain A (MICA) in patient serum (Esteso et al. 2014). The
targeting of MICB by miR-UL112-1 and TIMP3 by miR-US25-2-3p most likely
prevents NK cells from killing HCMV-infected cells. Another HCMV-encoded
miRNA that targets NK cell activity is miR-UL148, which was determined to bind
to the 3’ UTR of RANTES, a cellular protein that induces proliferation and acti-
vation of NK cells (Kim et al. 2012).

HCMV miR-US4-1 was also shown to indirectly inhibit cytotoxic T lymphocyte
(CTL) response by targeting ERAP1 transcripts (Kim et al. 2012). ERAP1 is essential
in antigenic peptide production in the ER and mediates the stability of MHC class
I-b2-microglobulin-peptide heterotrimer. Thus, miR-US4-1 targetting of ERAP1
would have profound affects on antigen presentation and the resultant CTL response.

HCMV miRNA activity also affects other signalling cascades such as NF-jB
signalling. miR-UL112-3p inhibits NF-jB signalling by targeting Toll-like receptor
2 (TLR2), a major pathogen recognition receptor (PRR) of NF-jB signalling
(Landais et al. 2015). There is also miR-US25-1, which has been implicated in the
downregulation of cell cycle control protein cyclin E2 (Grey et al. 2010). Thus,
HCMV encodes for several miRNAs which have been shown to target both viral
and cellular transcripts that affect a number of key signalling pathways.

1.3.3 Epstein–Barr Virus

Epstein-Barr virus (EBV) is a gamma herpesvirus that chronically persists in human
B-lymphocytes after primary infection (Young and Rickinson 2004). In vitro
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studies have shown that EBV is capable of transforming normal human B-cells into
malignant cells, and infection with EBV is associated with malignant diseases such
as Hodgkin’s lymphoma, endemic Burkitt’s lymphoma, and nasopharyngeal car-
cinoma (Young and Rickinson 2004). During latency, EBV expresses
latency-associated genes that include latency-associated membrane proteins
(LMP) and Epstein–Barr virus-associated nuclear antigens (EBNAs) (Young and
Rickinson 2004). Two regions within the EBV genome, the Bam HI fragment H
rightward open reading frame 1 (BHRF1) gene and in the Bam HI-A-region
rightward transcript (BART) gene, encode for viral miRNAs (Table 1.1).
miR-BHRF1-3 activity may be associated with host immune evasion by down-
regulating a T-cell attractant CXCL-11 (Xia et al. 2008). miR-BART2 targets
BALF5 transcripts resulting in a reduction of BALF5 viral DNA polymerase, which
may serve to stabilize latency in EBV by suppressing lytic cycle viral replication
(Barth et al. 2008). The late membrane protein (LMP1) modulates NF-jB sig-
nalling and contributes to EBV-mediated transformation. However, several BART
miRNAs target the 3’ UTR of EBV LMP1 transcripts, resulting in a reduction of
late membrane protein (LMP1) levels thereby affecting the protein’s activity in
viral-mediated transformation and NF-kB signalling. miR-BART5 has been shown
to target apoptosis signalling by downregulating pro-apoptotic protein PUMA
(Choy et al. 2008). In contrast, a relatively recent study reported EBV
miR-BART15-3p promotes apoptosis by targeting anti-apoptotic protein BRUCE
(Choi et al. 2013). The targeting of PUMA implies that miR-BART5 inhibits
apoptosis to promote infected cell survival and persistent viral progeny production.
However, it remains to be seen what role miR-BART15-3p plays in EBV lifecycle
by promoting apoptosis.

1.3.4 Kaposi’s Sarcoma-Associated Herpesvirus

The oncogenic Kaposi’s sarcoma-associated herpesvirus (KSHV or HHV8) is also
a gamma herpesvirus associated with the development of several human malig-
nancies including Kaposi’s sarcoma, primary effusion lymphoma (PEL), and
Castleman’s disease (Ensser and Fleckenstein 2005). KSHV expresses 12 viral
miRNAs in latently infected cells from a 5-kb latency-associated region of the viral
genome (Table 1.1). Cellular mRNA BCLAF1 is believed to be involved in KSHV
latency, since its downregulation by miR-K5, miR-K9, and mir-K10 resulted in
significant reduction in progeny virus recovery after exit from latency (Ziegelbauer
et al. 2009). Similarly, miR-K9 targets an important lytic switch protein RTA,
which suggests this miRNA may have a role in regulating KSHV latency (Bellare
and Ganem 2009). KSHV miR-K1, miR-K3-3p, and miR-K6-3p may be involved
in host immune response evasion by targeting thrombospondin-1 (THBS1), which
acts as a chemoattractant to recruit monocytes and T cells to sites of infection
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(Narizhneva et al. 2005). miR-K1 inhibits cell arrest by downregulating the
cyclin-dependent kinase inhibitor p21 in B cells latently infected with KSHV
(Gottwein and Cullen 2010).

1.4 Polyomavirus, Adenovirus, and Papillomavirus

Polyomaviruses are small dsDNA viruses that can establish persistent infections as
well as immortalize infected cells (White et al. 2013). Current human diseases
caused by polyomaviruses are limited to 4 virus strains: BK polyomavirus, which
causes kidney and urinary tract diseases; JC polyomavirus, which causes progres-
sive multifocal leukoencephalopathy in immunocompromised individuals; Merkel
cell polyomavirus, which causes Merkel cell carcinoma; and trichodysplasia
spinulosa-associated polyomavirus, which causes a rare condition of its namesake
(White et al. 2013). miRNAs encoded by polyomaviruses were first identified in
SV40, a well-studied monkey polyomavirus (Alwine and Khoury 1980; Sullivan
et al. 2005). Since then, many polyomaviruses are reported to encode for miRNAs
including medically significant BK, JC and Merkel cell polyomaviruses (Seo et al.
2008, 2009). SV40 miRNA appears to be involved in immune evasion. SV40
miRNAs target the viral large T-antigen transcript, leading to cleavage of the
transcription and a reduction in both transcript and protein levels (Sullivan et al.
2005). Since the large T-antigen is a target for CTL, miRNA-mediated reduction of
large T-antigen levels may allow infected cells to escape immune detection.

Adenoviruses are also small dsDNA viruses that encode for 2 noncoding virus
associated RNA (VAI and VAII). VAI confers resistance to cellular
interferon-related defenses and contributes to viral replication. Both VAI and VAII
have been reported to be processed by Dicer to yield miRNAs that are loaded onto
miRISC (Aparicio et al. 2006, 2010; Xu et al. 2007; Sano et al. 2006). However, the
functions of these miRNAs remain to be determined.

Initial pursuit to discover miRNAs in papillomaviruses (HPV-31), another DNA
virus family, did not yield any positive identifications, suggesting this group of
virus may not encode for any miRNAs (Cai et al. 2006). However, most recently, a
study reported the identification of viral miRNAs encoded by HPV-16, HPV-38,
and HPV-68 using advance sequencing technology SOLiD 4 (Qian et al. 2013). It
remains to be seen how these miRNAs affect HPV infection and whether other
groups may discover more miRNAs in other HPV genotypes.

1.5 RNA Viruses and Retroviruses

Contrary to DNA viruses, encryption of functional miRNAs in RNA virus genomes
remains controversial. Functional miRNAs have not been detected from studies
with RNA viruses such as hepatitis C virus (HCV), yellow fever virus, and human
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immunodeficiency virus (HIV-1) (Swaminathan et al. 2013). The absence of
miRNAs in RNA virus genomes may be due to the fact that most RNA viruses
replicate in the cytoplasm, which seclude them from nuclear microprocessing
machineries such as Drosha and TRBP. However, even with nuclear replicating
RNA viruses such as influenza virus, no functional miRNAs have been identified so
far (Umbach et al. 2010; Tycowski et al. 2015; Perez et al. 2010, 2012). It is quite
possible that inclusion of non-coding miRNA regions within an RNA virus genome
may lead to degradation of the entire viral genome by RISC-mediated mechanisms.
Therefore, it has been generally accepted that RNA viruses do not encode
vmiRNAs.

However, retroviruses, such as HIV-1, the causative agent of the acquired im-
munodeficiency syndrome (AIDS), are suspected to potentially encode for
vmiRNAs due to the way they replicate within a host cell. HIV-1 viral RNA is
reverse transcribed into double-stranded DNA that gets transported into the nucleus
where it integrates into the host genome. Thus, HIV-1 should have access to RNAi
machinery components present in both the nucleus and cytoplasm, similar to host
miRNAs. As such, computational analysis predicts HIV-1 is capable of encoding
several miRNA precursors (Bennasser et al. 2004, 2006). The vmiRNA
Nef-U3-miR-N367, encoded within nef, was reported to target nef transcripts that
resulted in its degradation and reduction in Nef protein levels, which led to a
significant decline in viral replication through various mechanisms (Omoto et al.
2004). The inhibition of HIV-1 replication by Nef-U3-miR-N367 suggests this
vmiRNA may play a crucial role in establishing persistent HIV-1 infection. Several
other studies have reported the discovery of other vimiRNA encoded within the
HIV-1 genome. Kaul et al. reported the identification of a pre-miRNA sequence in
the 3′-end of the viral genome called hiv1-miR-H1. They observed this vmiRNA
specifically targets a transcription factor that plays an important role negatively
regulating cellular apoptosis (Kaul et al. 2009). The authors further noted
hiv1-miR-H1 also suppresses other cellular proteins such as c-myc, Par-4, Bcl-2
and Dicer as well as downregulates cellular miR-149, which targets the HIV-1 Vpr
protein (Kaul et al. 2009). The authors propose that this vmiRNA activates apop-
tosis in mononuclear cells by initiating an epigenomic pathway. Interestingly, the
Env and Gag-Pol coding regions of different HIV-1 strains are reported to contain
miRNA-like sequences with a surprisingly high similarity to human miR-196,
miR-30d, miR-30e, miR-374a, and miR-424 (Holland et al. 2013). Additionally,
the HIV-1 transactivation RNA (TAR) element has been found to undergo asym-
metrical processing by Dicer to produce TAR-miR-5p and -3p (Ouellet et al. 2008).
Recent studies using the extremely sensitive SOLiDTM 3 Plus System and a novel,
sequence-targeted enrichment strategy identified several hundred small non-coding
RNAs (sncRNAs) in infected T lymphocytes and macrophages ranging between 16
and 89 nt in length (Althaus et al. 2012; Schopman et al. 2012). However, con-
troversy remains over whether HIV-1 truly encodes functional vmiRNAs given that
some labs failed to detect the expression of any vmiRNA in HIV-1 infected cells
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(Lin and Cullen 2007; Whisnant et al. 2013) in addition to the lack of experimental
demonstrations on the physiological relevance of these reported vmiRNAs.

1.6 Activities of Cellular MiRNAs and PiRNAs in Viral
Infections

1.6.1 Influence of Cellular MiRNAs and PiRNAs on Virus
Replication in Mammalian Host

The possibility that cellular miRNAs may modulate virus replication has been the
subject of intense investigation. Relatively recent experimental evidence provides
support that mammalian sncRNAs regulate virus replication but whether this is
physiologically relevant in vivo is still debatable (Yeung et al. 2007). Nevertheless,
the impact of cellular miRNA on viral replication was first hinted at when the
knockdown of major miRNA-processing enzymes Drosha and Dicer led to more
robust replication of viruses such as influenza, vesicular stomatitis virus (VSV), and
HIV-1 as a result of reduced mature miRNAs levels in mammalian cells
(Matskevich and Moelling 2007; Otsuka et al. 2007; Triboulet et al. 2007).
Moreover, the overexpression of virus-encoded RNAi suppressors resulted in a 5-
to 10 fold increase in virus replication (de Vries et al. 2008). Antagomirs, chemi-
cally modified antisense-oligoribonucleotides, are the current stable method used to
inactivate individual cellular miRNAs to assess their functional roles in targeting
viruses. (Bennasser et al. 2005; Krutzfeldt et al. 2005). These observations suggest
mammalian miRNA/RNAi functionally regulates viral replication.

Studies on miR-122 in HCV replication provide the only current evidence for
direct regulation of virus replication by cellular miRNA (Jopling et al. 2005). HCV
establishes persistent infections in the liver that may lead to liver cirrhosis and
hepatocellular carcinoma. This cellular miRNA is highly expressed in the liver
where it has been shown to positively regulate HCV replication in Huh7 human
liver cells (Jopling et al. 2005) by directly interacting with two adjacent sites in the
5′ UTR of the viral RNA (Jopling et al. 2005). The mechanism that underlies
miR-122`s affect on HCV replication remains unknown but recent studies begin to
shed light on this process. miR-122 binding to sites located upstream of the
HCV IRES, which directs translation of the positive-sense viral RNA genome,
resulted in moderate upregulation of viral protein translation (Henke et al. 2008).
However, another study has shown that miR-122 may act at another, yet undefined,
stage of viral replication (Jangra et al. 2010).

Many cellular miRNAs have been found to indirectly affect HIV-1 replication by
targeting factors known to be important to HIV infection called HIV dependency
factors (HDF). Evidence for the anti-viral nature of cellular miRNA in HIV-1
infection comes from a study carried out by Triboulet et al. where they knocked
down Drosha and Dicer, two important miRNA processing proteins, and found
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viral replication was greatly enhanced in peripheral blood mononuclear cells
(PBMCs) from HIV-1-infected patients and in latently infected cells (Triboulet
et al. 2007). The same group further showed that viral mRNA co-localized with
components of the miRISC complex. Interestingly, they reported virus reactivation
in PBMCs isolated from patients undergoing cART when they knocked down
cellular factors involved in miRNA-mediated silencing. These factors were also
shown to inhibit viral gene expression by interfering with viral mRNA association
with polysomes (Chable-Bessia et al. 2009). Also, a cluster of human miRNAs that
include miR-28, miR-125b, miR-150, miR-223 and miR-382 was shown to target
the 3′ end of HIV-1 mRNAs for repression (Huang et al. 2007). These observations
highlight the important role miRNAs have in regulating HIV-1 infection.

Knockdown of Dicer greatly enhances influenza A virus (IAV) replication,
suggesting cellular RNAi also has antiviral effects on influenza A virus replication
(Matskevich and Moelling 2007). Song et al. used a 3′ UTR reporter construct to
show that host miR-323, miR-491, and miR-654 inhibited influenza strain
A/WSN/33 H1N1 replication through the binding of the PB1 transcript, resulting in
degradation of the PB1 mRNA (Song et al. 2010). PB1 forms part of the IAV viral
polymerase complex necessary for viral genome transcription and replication
(Kobayashi et al. 1996). Several studies have reported modulation of host miRNA
expression profiles upon viral infection, where infection of specific IAV subtypes
resulted in different expression profiles of cellular miRNAs (Loveday et al. 2012;
Tambyah et al. 2013; Li et al. 2010). This raises the question of whether the
differing pathogenicities exhibited by different IAV subtypes may be associated
with the differential expressions of specific cellular miRNAs. One recent study
suggests that miR-24 may modulate the highly pathogenic H5N1 virus by down-
regulating the furin secretory pathway. This pathway is exploited by the virus to
proteolytically cleave its haemagglutinin precursor to active forms that allow viral
entry in host cells via viral-host membrane fusion (Loveday et al. 2015).
Surprisingly, miR-24 was reported to have little effect on low-pathogenic 2009
pandemic H1N1 infection, suggesting its activity may be strain-specific.

The cellular RNAi arsenal is not limited to miRNAs but include short interfering
RNAs (siRNAs) and a separate class of sncRNAs called piRNAs. In the nematode
model organism Caenorhabditis elegans, RNAi has been demonstrated to be the
main antiviral response to Flock House virus and the natural pathogen Orsay virus.
This antiviral response involves the PIWI family of genes such as rde-1, which
encodes an Argonaute protein, and rde-4, which encodes a dsRNA-binding protein
(Felix et al. 2011). While there are no homologues of these proteins in mammalian
cells, there are evidence that piRNAs or repeat-associated small interfering RNAs
(rasiRNAs) functionally suppress mammalian endogenous retroviruses in germ and
somatic cells (Carmell et al. 2007; Watanabe et al. 2006). It has also been shown
that mouse ES cells, and possibly a subset of somatic stem cells, retain the ability to
generate small RNA species from exogenous dsRNA and viral RNA, which are also
implicated in repressing retrotransposon activities (Calabrese et al. 2007). However,
the importance of these small RNA species as antiviral agents against human viral
infections remains to be fully addressed.
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1.6.2 Interferon-Mediated Antiviral Activity Via MiRNAs

The interferon (IFN) signalling pathway is an important part of cellular antiviral
immunity. This pathway is activated upon the production of long dsRNAs within a
cell. Interestingly, there is evidence to suggest the IFN pathway partially overlaps
with the RNAi pathway. It has been noted that proteins such as PACT and TRBP,
which function in the IFN antiviral network, also has a role in miRNA processing
and function (Chendrimada et al. 2005; Haase et al. 2005; Kok et al. 2007; Lee
et al. 2006). Additionally, RNA-binding proteins are capable of suppressing both
the IFN effector protein kinase R (PKR) (Cai et al. 2000; Li et al. 2004; McMillan
et al. 1995) and RNAi (Bennasser et al. 2005; Haasnoot et al. 2007). Most notably
was the report that interferon beta (IFN-b) can regulate the expression of several
cellular miRNAs, 8 of which are predicted to have binding sites within the HCV
genomic RNA. In support of this, the introduction of synthetic miRNA-mimics
resembling these IFN-b-induced miRNAs recapitulated the antiviral effects of
IFN-b on HCV infection. Additionally, IFN-b’s antiviral effects against HCV were
attenuated when antagomirs to these IFN-b-induced miRNAs were introduced into
the infected cells (Pedersen et al. 2007). This evidence support the potential overlap
of miRNAs and the IFN network in mammalian cells and possible IFN-dependent
and IFN-independent defenses to viral infection. There also is evidence in a number
of viruses that show vmiRNAs modulate the innate immune system by directly
targeting the downregulation of immune factors, which affect processes such as the
recruitment of effector cells of the immune system (Cullen 2013).

1.6.3 Viral Counter-Responses to Cellular RNAi Restriction

Viruses appear capable of countering the cell’s RNAi restriction by actively sup-
pressing RNAi activation through viral dsRNA-binding proteins that sequester and
neutralize the antiviral RNAi activities. An example of this may be influenza A
virus’s NS1 protein which has been suggested to suppress host RNAi activity
possibly through its dsRNA-binding capability (Haasnoot et al. 2007). HIV-1
counteracts this host defense by developing strategies to modulate cellular miRNA
expression and interfere with the overall biogenesis of miRNAs. Viral protein Tat
inhibits Dicer activity through its physical interaction with the helicase domain of
Dicer and its binding to host mRNAs. However, the authors did not determine
whether this was a direct protein-protein interaction (Chable-Bessia et al. 2009;
Bennasser et al. 2005). Contradicting observations have been made in whether the
SRS/RSS function of Tat alters miRNA expression profiles. Some have reported
this function of Tat does result in altered miRNA expression in T cell lines and
primary PBMCs, whereas others have shown that it does not affect miRNA
expression in PBMCs (Mishra et al. 2012). AlteRNAtively, HCV evolved to adapt
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to miRNA-restriction in a way that benefitted the virus’ replication, for example the
enhancement of HCV replication by liver-specific miR-122 (Jopling et al. 2005).

1.7 Concluding Remarks and Future Perspectives

Given the relatively recent discovery of sncRNAs, tremendous advances have been
made in the discovery and characterization of these molecules and their effects on
viral replication. However, the more we discover the clearer it becomes that viruses
of diverse origin have evolved to exploit the host miRNA pathway in vast numbers
of ways to effectively regulate infection and the host response. Nevertheless, several
prominent issues remain to be addressed. The physiological importance of viral
miRNAs in many groups of viruses aside from herpesviruses and polyomaviruses is
still unclear. Likewise, it is very likely that the present list of targets identified for
herpesvirus miRNAs represent only a partial number of potential targets; that many
more targets remain to be discovered. Notably, the relationship between herpesvirus
miRNA expression and viral latency and immune evasion remains uncertain.
Although it is known that miRNAs from different herpesviruses target common
pathways, it remains unclear whether these miRNAs also share a common function.

Another major area to expand future research is cellular miRNA regulation of
viral infection. It appears that a broad spectrum of viruses employ complex
mechanisms to regulate cellular miRNA expression to mold the host environment
into something more permissible and advantageous for viral replication. The
mechanistic details specific viruses use to modulate cellular miRNA expressions are
largely unknown. Viral proteins may directly modulate host miRNA expression or
indirectly regulate it due to a general host response to the infection. There have
been several reports of direct cellular miRNA binding to viral RNA and negatively
regulating the virus but most of these studies were performed in tissue culture or in
organisms other than the natural host, which brings into question the physiological
relevance of these interactions. It would be rational to imagine that evolutionary
pressure would preclude viruses retaining cellular miRNA target sites that nega-
tively regulate its replication, but if such sites were beneficial to the pathogen, then
it seems possible the viruses might want to retain them in their genomes.

Although tremendous advances have been made to understand the relationship
between miRNAs and viral replication, much remains to be discovered. This poses
exciting potentials in terms of scientific discovery as well as prospects for novel
therapeutic strategies to control viral infections.
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