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Abstract. Shape matching of 3D digital objects is an important domain
of study from topological as well as geometric point of view. Shape
matching of two or more digital objects by an efficient segmentation-
based method is reported in this paper. The method receives input
objects after segmentation of their articulated components and exploits
the topological relation between the articulated components and the cen-
tral section of the objects for shape matching. The method involves sim-
ple calculations and is primarily based on the extent of articulations in
the objects. The accuracy of shape matching is dependent on the object
size and segmentation of the object and is invariant to rotation. Exper-
imental results are provided to demonstrate the structural similarity in
various digital objects.

1 Introduction

Shape matching of 3D digital objects is a well-explored area of research that
often leads to feature extraction and 3D shape retrieval mechanisms. With
the increase in the tools available for efficient extraction and storage of three-
dimensional data, 3D shape matching has been useful for a wide variety of dis-
ciplines including computer vision, mechanical engineering, artifact searching,
molecular biology, chemistry, CAD, virtual reality, medicine, entertainment, etc.
Shape matching has been attempted from various perspectives including topo-
logical, graph-based, feature-based, etc. In [3], a shape descriptor called shape
context is attached to each point on two comparable shapes and the correspon-
dences between such points are used to estimate an aligning transform that aligns
the two shapes. Content based 3D shape retrieval by different 3D shape descrip-
tors have been proposed [9,13]. Similarity between polyhedral models has been
accurately identified by a topology matching approach using multi-resolution
Reeb graphs [5]. This method has been extended [4] for accurate and fast deter-
mination of search key. The shape retrieval method in [2] uses extended Reeb
graphs to encode different shape characteristics and compare the graphs by a
method of multiple kernel learning. Another approach [7] is based on convert-
ing 3D models into skeletal graphs and matching the graphs thereby preserving
topological and geometric information. The topology-varying shape matching
method in [1] establishes correspondences between shapes with large topological
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discrepancies by topological operations like part split, duplication, and merging.
Other 3D shape matching techniques involve continuous geodesic eccentricity
transform [6], representing the signature of an object as a shape distribution
[10], using multivariate Gaussian distribution of real valued shape descriptors
[12], etc. Shape matching by object segmentation has been proposed in [11]
where curve skeleton of an object has been used for segmentation.

The shape matching method proposed in this paper uses 3D segmentation as
a tool for shape matching. The areas of the segment of the objects are used to
identify geometric and topological properties to be used for shape matching. The
rest of the paper is organized as follows. In Sect. 2, the segmented object is rep-
resented as topological space and the surface areas of the segments are processed
to find similar objects. The paper is concluded with a few shape matching results
in Sect. 3.

2 Proposed Work

Given a digital object A and a set of other digital objects {A1, A2, ..., An}, a
shape matching method comparing A with each of Ai, 1 � i � n, is presented in
this paper. The digital objects, represented as topological spaces, are segmented
and the separated articulated components are used to find the extent of similarity
between two or more objects.

A digital object A represented as a triangulated surface is closed and ori-
entable (2-manifold). The triangulation is such that exactly two triangles are
incident on each edge and the interiors of no two triangles intersect. Let A be
imposed on a 3D digital grid G represented as a set of unit grid cubes (UGCs)
each of grid size g. Each grid line of G represents a grid level gi, where 0 � i < l,
l representing the length of the object along a given coordinate plane.

2.1 Representation of Digital Object as Topological Space

Let W be a topological space defined by the set of triangles representing A and
endowed with the topology ΓW . Let βW be a basis for W defined as a collection
of basis elements such that

(i.) a basis element Pi consists of triangles (elements) corresponding to the
object-occupied UGCs intercepted between grid values gi and gi+1, where
0 � i < l.

(ii.) if ∃Pi,Pj ∈ βW such that Pi ∩ Pj �= ∅, then ∃Pk ∈ βW such that Pk ⊆
Pi ∩ Pj .

For instance, in Fig. 1, the UGCs intercepted between g0 and g1 are intersected
by the triangles t1, t2, t3, t5, t6, t7, t8, and t9. Hence, the basis element P0 =
{t1, t2, t3, t5, t6, t7, t8, t9}. Similarly, P1 = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}, P2 =
{t4, t5, t6, t10}, and P3 = P0 ∩ P2 = {t5, t6}. Thus, βW = {P0,P1,P2,P3}.

A digital object represented as the topological space W is segmented by an
efficient algorithm [8]. As W is a closed and orientable 2-manifold, it is home-
omorphic to the topological space representing the 3D isothetic cover of the
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Fig. 1. Digital object A is represented as the topological space W defined by the set
of triangles {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}. The basis elements of the basis βW are
defined according to the grid ranges in G.

object for sufficiently small grid size. Quotient topology is imposed on W such
that the basis elements representing the topologically invariant sections of the
object are mapped to the elements of the corresponding quotient space. The
quotient spaces are represented by weighted Reeb graphs along the yz-, zx-, and
xy-planes which are segmented by an efficient algorithm. Natural segmentation
is ensured by using dynamic threshold of segmentation decided by exponential
averaging of the node weights belonging to the same segment. The segmented
quotient spaces corresponding to the three coordinate planes are related to each
other and transformed topologically to yield the segmented object in a topolog-
ical space W ′ which is used here for further analysis.

Let triangles t1 and t2 be two elements of W such that they are incident on the
same edge. Hence, there exists elements in W that do not, in general, possess
disjoint neighborhoods. That is, W is not a Hausdorff space. The segmented
topological space W ′ having topology ΓW′ is defined as a collection of disjoint
subsets of W. Hence, each element ti ∈ W ′ belongs to a single open set in W ′ so
that the elements (triangles) defining the segmentation contour virtually have
disjoint neighborhoods.

2.2 Shape Matching Through Segmentation of Topological Spaces

Let W ′
1 and W ′

2 be the topological spaces representing the two objects A1 and A2

after segmentation. Let r be the number of disjoint open sets in W ′
1 that represent

the segments of A1. Let each open set Si in W ′
1, 1 � i � r, be represented by

k number of triangles, where k > 0. The surface area covered by each open
set (segment) is calculated as the total surface area of k number of triangles.
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Fig. 2. Graph-theoretic representation of a segmented object.

The segmentation procedure separates the articulated sections from the rest
of the object. The ‘rest of the object’ is henceforth referred to as the ‘central
section’. The topological relation between the articulated components and the
central section of the object is explored by studying certain properties explained
next. Shape matching of A1 and A2 is carried out using these properties.

Let R = {S1, S2, ..., Sc, ..., Sr} denotes the set of segments of an object. Let
Sc represents the central component such that R′ = R\{Sc}. Let μ be the mean
surface area of the segments in R′. Let σR represents the standard deviation of
the surface areas of the r segments in R and let σR′ represents the same for
the r − 1 segments in R′. The topological relation between Sc and the other
articulated components is determined by the terms,

(i.) |α(Sc)−μ|
α(Sc)

(ii.) |σR−σR′ |
σR

where α(Sc) denotes the surface area of Sc.
Figure 2 gives a graph-theoretic representation of the segmented object where

each node denotes a segment. As the segmentation procedure separates the artic-
ulated components from the rest of the object, each of the nodes in R′ repre-
senting the articulated components are adjacent to the node Sc representing the
body of the object. Thus, the general structure of the graph, excluding degener-
ate cases, contains several pendant vertices adjacent to a node of higher degree.
The surface area covered by each segment is mentioned in the corresponding
node. The variation between the areas of the articulated segments and the cen-
tral segment provides an idea about the variation of object topology. The term
|α(Sc)−μ|

α(Sc)
gives a measure of the variation considering the mean μ of the articu-

lated segment areas. For instance, if the central segment of an object is of much
larger area than its articulated segments, then the value of |α(Sc)−μ|

α(Sc)
is large.

Since different articulated components may have different structures and surface
areas, use of the mean surface area in the above expression is justified. Again,
the variation of the structures of the articulated segments from their mean μ
is captured in the standard deviation σR′ . Similarly, variation of the structures
of the articulated and the central segment from their mean is measured by σR.
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The term |σR−σR′ |
σR

provides information about the contribution of the central
segment to the total area of the object surface. For instance, if the articulated
components of an object are much smaller in area than the central section, then
the value of |σR−σR′ |

σR
is large.

Let us consider two digital objects A1 and A2 with mean surface areas μ1 and
μ2 such that they are segmented into r1 and r2 number of segments respectively.
Let R1 (R2) be the set of r1 (r2) number of segments and let R1′ (R2′) be the
set of segments excluding the central segment Sc1 (Sc2). A1 and A2 are said to
be similar in shape if the following conditions are satisfied.

(i.) Δr = |r1 − r2| � ξ1

(ii.) Δs = |( |α(Sc1 )−μ1|
α(Sc1 )

) − ( |α(Sc2 )−μ2|
α(Sc2 )

)| � ξ2

(iii.) Δt = |( |σR1−σR1′ |
σR1

) − ( |σR2−σR2′ |
σR2

)| � ξ3

The condition (i.) is a preliminary condition for checking the similarity of two
objects. Here, the threshold ξ1 ranges from 0 to 1 so that A1 (A2) has at most
one segment more than A2 (A1). If condition (i.) is satisfied then only we proceed
further with the other conditions. For instance, in Table 1, the object Horse is
checked for similarity with Hand, Leopard, and Dinosaur (Δr � 1) and not with
Spider and Ant (Δr > 1).

For a reasonable range of areas of articulated components, the value of
|α(Sc1 )−μ1|

α(Sc1 )
in condition (ii.) determines the extent of articulation in the topology

of A1. Similarly, the value of |α(Sc2 )−μ2|
α(Sc2 )

determines the extent of articulation in
the topology of A2. Similarity of A1 and A2 w.r.t. their articulations is measured
by the value of Δs. Two objects are more similar if the value of Δs is lower. As a
convention, the threshold ξ2 varies between 0 and 0.05 for the objects considered
in this paper. That is, we allow a variation of 5 % in the shapes of A1 and A2. For
instance, in Table 2, the objects Table and Human are not comparable because
Δs = 0.39 or Δs = 0.31. It is evident that the variation of the central section
area from the mean of the articulated segment areas is much larger (larger than
the threshold) in case of Table than that in case of Human. On the other hand,
Horse and Leopard are comparable as Δs = 0.01. The value of ξ2 depends on
the object size, nature of triangulation, and density of triangulation.

The contribution of articulated components and the central component in the
total surface area of A1 is determined by the value of |σR1−σR1′ |

σR1
in condition

(iii.). The contribution of articulated components and the central component in
the total surface area of A2 is determined by the value of |σR2−σR2′ |

σR2
. Similarity of

A1 and A2 w.r.t. the relation between the articulated and non-articulated sections
of the objects is determined by the value of Δt. Two objects are more similar if
the value of Δt is lower. For instance, in Table 2, the central section in the object
Horse has a much greater contribution in its total surface area than the articu-
lated segments. Similar is the case in Dinosaur; hence Dinosaurmay be compared
to Horse (Δt = 0.14). In Human, the contribution of the central section and the
articulated components to the total surface area are comparable; hence Human is
not comparable to Horse (Δt = 0.68). The value of threshold ξ3 also depends on
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the object size, nature of triangulation, and density of triangulation. If A1 and A2

satisfy all the three conditions, then they are considered as similar.

3 Results and Conclusion

Shape matching results for some topologically segmented objects are shown in
Figs. 3 and 4 and Tables 1 and 2 where the articulated components have been
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Fig. 3. Shape matching results with search object Horse (top left). According to the

values of |α(Sc)−μ|
α(Sc)

and
|σR−σR′ |

σR
terms the objects Leopard (top middle) and Dog (top

right) are more similar to Horse than Octopus, Chair, and Human (bottom left, middle,
and right).
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Fig. 4. Top: Shape matching results with search object Spider (left) which is more
similar to Ant (middle) than Hand (right). Bottom: Shape matching results with search
object Airplane (left) which is more similar to Bird (middle) than Teddy (right).

separated from the central section. Figure 3 shows graph-theoretic representation
of the objects Horse, Leopard, Dog, Octopus, Chair, and Human. Comparing the
values of r, |α(Sc)−μ|

α(Sc)
, and |σR−σR′ |

σR
shows that the search object Horse is more

similar with Leopard and Dog, than with Octopus, Chair, and Human. Similarly,
in Fig. 4, the search object Spider is more similar to Ant than Hand, and the
search object Airplane is more similar to Bird than Teddy. Databases for shape
matching of different segmented objects and at various postures are presented in
Tables 1 and 2. The values of Δr, Δs, and Δt show that the same object at differ-
ent postures are the most similar (diagonal entries in the table). The similarity
of Horse with Leopard and Dinosaur, or Ant with Spider, and the dissimilar-
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Table 1. Shape matching results for the objects Hand, Spider, Ant, Animal (Horse and
Leopard), and Dinosaur at different postures. Each object in the database is matched
against all other objects in the database. Δr denotes the difference in the number
of segments of the two objects. Δs gives the difference when the term |α(Sc)−μ|

α(Sc)
is

evaluated for the two objects. Δt denotes the difference when the term
|σR−σR′ |

σR
is

evaluated for the two objects. Same objects at different postures are the most similar.

Δr = 0 Δr = 3 Δr = 3 Δr = 1 Δr = 1
Δs = 0.05 Δs = 0 Δs = 0.02 Δs = 0.02 Δs = 0.06
Δt = 0.02 Δt = 0.02 Δt = 0.05 Δt = 0.10 Δt = 0.29

Δr = 3 Δr = 0 Δr = 0 Δr = 2 Δr = 2
Δs = 0.04 Δs = 0.01 Δs = 0.01 Δs = 0.03 Δs = 0.07
Δt = 0.04 Δt = 0 Δt = 0.07 Δt = 0.12 Δt = 0.31

Δr = 3 Δr = 0 Δr = 0 Δr = 2 Δr = 2
Δs = 0.02 Δs = 0.02 Δs = 0.04 Δs = 0 Δs = 0.04
Δt = 0.11 Δt = 0.13 Δt = 0.06 Δt = 0.01 Δt = 0.18

Δr = 1 Δr = 2 Δr = 2 Δr = 0 Δr = 0
Δs = 0.08 Δs = 0.03 Δs = 0.05 Δs = 0.01 Δs = 0.03
Δt = 0.13 Δt = 0.17 Δt = 0.10 Δt = 0.05 Δt = 0.14

Δr = 1 Δr = 2 Δr = 2 Δr = 0 Δr = 0
Δs = 0.08 Δs = 0.03 Δs = 0.05 Δs = 0.01 Δs = 0.03
Δt = 0.25 Δt = 0.29 Δt = 0.32 Δt = 0.17 Δt = 0.02

ity of Human with Table and Horse are also substantiated by the values of Δr,
Δs, and Δt in Tables 1 and 2. The segmentation method is rotation-invariant
preserving the areas of the segments during rotation. Hence, shape matching of
two objects is preserved under rotation. Shape matching w.r.t. scaling can be
taken care of by normalizing the sizes of the two objects before segmentation.
The objects are segmented by topological means and the topological variations
on the object surface are incorporated in the graph-theoretic representations.
The scheme of shape matching in this paper, however, is independent of the
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Table 2. Shape matching results for the objects Animal (Horse and Leopard),
Dinosaur, Table, Chair, and Human at different postures. Each object in the data-
base is matched against all other objects in the database. Δr denotes the difference
in the number of segments of the two objects. Δs gives the difference when the term
|α(Sc)−μ|

α(Sc)
is evaluated for the two objects. Δt denotes the difference when the term

|σR−σR′ |
σR

is evaluated for the two objects. Same objects at different postures are the
most similar.

Δr = 0 Δr = 0 Δr = 2 Δr = 1 Δr = 1
Δs = 0.01 Δs = 0.03 Δs = 0.06 Δs = 0.53 Δs = 0.42
Δt = 0.05 Δt = 0.14 Δt = 0.18 Δt = 0.74 Δt = 0.68

Δr = 0 Δr = 0 Δr = 2 Δr = 1 Δr = 1
Δs = 0.01 Δs = 0.03 Δs = 0.06 Δs = 0.53 Δs = 0.42
Δt = 0.17 Δt = 0.02 Δt = 0.30 Δt = 0.62 Δt = 0.56

Δr = 2 Δr = 2 Δr = 0 Δr = 1 Δr = 1
Δs = 0.04 Δs = 0 Δs = 0.03 Δs = 0.50 Δs = 0.39
Δt = 0.10 Δt = 0.29 Δt = 0.03 Δt = 0.89 Δt = 0.83

Δr = 1 Δr = 1 Δr = 1 Δr = 0 Δr = 0
Δs = 0.60 Δs = 0.56 Δs = 0.53 Δs = 0.06 Δs = 0.17
Δt = 0.78 Δt = 0.59 Δt = 0.91 Δt = 0.01 Δt = 0.05

Δr = 1 Δr = 1 Δr = 1 Δr = 0 Δr = 0
Δs = 0.38 Δs = 0.34 Δs = 0.31 Δs = 0.16 Δs = 0.05
Δt = 0.53 Δt = 0.34 Δt = 0.66 Δt = 0.26 Δt = 0.20

topological equivalence of objects. That is why we attempt to compare the shape
of an object like Chair, which is homeomorphic to a torus, to that of a spherical
object Human.
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