
Alexandra Bac
Jean-Luc Mari (Eds.)

 123

LN
CS

 9
66

7

6th International Workshop, CTIC 2016
Marseille, France, June 15–17, 2016
Proceedings

Computational
Topology
in Image Context

Lecture Notes in Computer Science 9667

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexandra Bac • Jean-Luc Mari (Eds.)

Computational
Topology
in Image Context
6th International Workshop, CTIC 2016
Marseille, France, June 15–17, 2016
Proceedings

123

Editors
Alexandra Bac
Aix-Marseille Université
Marseille
France

Jean-Luc Mari
Aix-Marseille Université
Marseille
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-39440-4 ISBN 978-3-319-39441-1 (eBook)
DOI 10.1007/978-3-319-39441-1

Library of Congress Control Number: 2016939994

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 6th International Workshop on Computational Topology in Image Context (CTIC
2016) took place in Marseille (France) from June 15 to 17, 2016. This conference
addressed an incredibly large international audience considering the relatively small
size of the community in computational topology: 35 papers were submitted originating
from 15 different countries. Following a peer-reviewing process by two qualified
reviewers, 24 papers were accepted and scheduled for either oral (19) or poster pre-
sentation (5). All of them appear in these proceedings.

The organization of this conference has been a rewarding experience for our
research team G-Mod (LSIS laboratory) and for our research group on discrete
geometry (G-Dis), part of the Research Federation in Computer Science and Interac-
tions of Aix-Marseille (FRIIAM).

CTIC 2016 was the first edition to be endorsed by the International Association of
Pattern Recognition (IAPR). It expresses an increasing interest of researchers in dis-
crete mathematics and computer science for computational topology and its applica-
tions. This event was associated with the Technical Committee on discrete geometry
IAPR-TC18. Moreover, CTIC 2016 was the second edition to be accepted for publi-
cation by Springer as a LNCS proceedings. The conference was also supported by our
sponsoring institutions: Aix-Marseille Université, the LSIS laboratory, the FRIIAM
Federation, the “Archimède” Excellence Laboratory (LabEx Archimède), the “Conseil
Régional PACA”, the “Conseil Départemental des Bouches-du-Rhône”, and the City of
Marseille. We also thank the engineering school “Polytech Marseille” at Aix-Marseille
Université for hosting this event and providing all the necessary facilities.

The community dealing with computational topology grows a little bigger every
year. CTIC was initially image-oriented when it was created in 2008 in Poitiers, France.
But in 8 years, the topics moved slightly from nD images to more general topological
objects, with application to genomics, cosmology, geology, or music analysis.
Whenever it is possible to have a geometric representation of an abstract object or
phenomenon, it is then possible to analyze its topology, with tools becoming more and
more popular like persistent homology. The latter is actually an inescapable implement
for extracting information in a structural way. This has led to a significant expansion
of the number of papers dealing with persistence in the last years.

It has been a great honor for us to count on the participation of two international
renowned researchers as invited speakers: Massimo Ferri (Professor of Geometry at the
Engineering Faculty of the Bologna University, Department of Mathematics, Research
Center for Mathematical Applications, Advanced Research Center for Electronic
Systems “E. De Castro”) and Pascal Lienhardt (Professor of Computer Science at the
University of Poitiers, Computer Graphics team, XLIM-SIC, UMR CNRS 7252).

We would like to express our gratitude to the scientific committee members for their
helpful comments, which enabled the authors to improve the quality of their contri-
butions, and to Raphaël Maëstre for the design of the CTIC logo.

Finally, our warmest thanks go to the local Organizing Committee (Eric Remy, Aldo
Gonzalez-Lorenzo, Ricardo Uribe Lobello) and to the conference secretary, Régine
Martin, for their invaluable contribution to the organization of the event.

June 2016 Alexandra Bac
Jean-Luc Mari

VI Preface

Organization

Program Committee

All organizers are members of the Université d’Aix-Marseille, France:

Alexandra Bac (Co-chair)
Aldo Gonzalez-Lorenzo
Jean-Luc Mari (Co-chair)
Eric Remy
Edouard Thiel
Ricardo Uribe Lobello

Scientific Committee

Alexandra Bac
Antonio Bandera
Reneta Barneva
Arindam Biswas
Isabelle Bloch
Srecko Brlek
Didier Coquin
Michel Couprie
Guillaume Damiand
Leila De Floriani
Isabelle Debled-Rennesson
Florent Dupont
Massimo Ferri
Fabien Feschet
Patrizio Frosini
Laurent Fuchs
Antonio Giraldo
Rocío González-Díaz
Aldo González-Lorenzo
María José Jiménez
Bertrand Kerautret
Reinhard Klette
Walter Kropatsch
Jacques-Olivier Lachaud
Pascal Lienhardt
Joakim Lindblad

Christophe Lohou
Jean-Luc Mari
Serge Miguet
Helena Molina-Abril
Marian Mrozek
Nicolas Normand
Darian Onchis
Nicolas Passat
Paweł Pilarczyk
Sanjoy Pratihar
Pedro Real
Eric Remy
Tristan Roussillon
Julio Rubio
Gabriella Sanniti di Baja
Henrik Schulz
Isabelle Sivignon
Natasa Sladoje
Michela Spagnuolo
Robin Strand
Edouard Thiel
Ricardo Uribe Lobello
Antoine Vacavant
Jose Antonio Vilches
Sophie Viseur

Contents

Invited Speakers

Progress in Persistence for Shape Analysis (Extended Abstract) 3
Massimo Ferri

Homology Computation During an Incremental Construction Process 7
Pascal Lienhardt and Samuel Peltier

Main Contributions

Persistence-Based Pooling for Shape Pose Recognition 19
Thomas Bonis, Maks Ovsjanikov, Steve Oudot, and Frédéric Chazal

Bijectivity Certification of 3D Digitized Rotations. 30
Kacper Pluta, Pascal Romon, Yukiko Kenmochi, and Nicolas Passat

Morse Chain Complex from Forman Gradient in 3D with Z2 Coefficients . . . 42
Lidija Čomić

Parallel Homology Computation of Meshes . 53
Guillaume Damiand and Rocio Gonzalez-Diaz

Computing the Overlaps of Two Maps . 65
Jean-Christophe Janodet and Colin de la Higuera

Topological Descriptors for 3D Surface Analysis . 77
Matthias Zeppelzauer, Bartosz Zieliński, Mateusz Juda,
and Markus Seidl

Towards a Topological Fingerprint of Music . 88
Mattia G. Bergomi, Adriano Baratè, and Barbara Di Fabio

Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti
Numbers: Application to CO2 Storage Uncertainty Analysis 101

Asmae Dahrabou, Sophie Viseur, Aldo Gonzalez-Lorenzo,
Jérémy Rohmer, Alexandra Bac, Pedro Real, Jean-Luc Mari,
and Pascal Audigane

Topological Analysis of Amplicon Structure in Comparative Genomic
Hybridization (CGH) Data: An Application to ERBB2/HER2/NEU
Amplified Tumors . 113

Sergio Ardanza-Trevijano, Georgina Gonzalez, Tyler Borrman,
Juan Luis Garcia, and Javier Arsuaga

http://dx.doi.org/10.1007/978-3-319-39441-1_1
http://dx.doi.org/10.1007/978-3-319-39441-1_2
http://dx.doi.org/10.1007/978-3-319-39441-1_3
http://dx.doi.org/10.1007/978-3-319-39441-1_4
http://dx.doi.org/10.1007/978-3-319-39441-1_5
http://dx.doi.org/10.1007/978-3-319-39441-1_5
http://dx.doi.org/10.1007/978-3-319-39441-1_6
http://dx.doi.org/10.1007/978-3-319-39441-1_7
http://dx.doi.org/10.1007/978-3-319-39441-1_8
http://dx.doi.org/10.1007/978-3-319-39441-1_9
http://dx.doi.org/10.1007/978-3-319-39441-1_10
http://dx.doi.org/10.1007/978-3-319-39441-1_10
http://dx.doi.org/10.1007/978-3-319-39441-1_10
http://dx.doi.org/10.1007/978-3-319-39441-1_11
http://dx.doi.org/10.1007/978-3-319-39441-1_11
http://dx.doi.org/10.1007/978-3-319-39441-1_11

Fast, Simple and Separable Computation of Betti Numbers on
Three-Dimensional Cubical Complexes . 130

Aldo Gonzalez-Lorenzo, Mateusz Juda, Alexandra Bac, Jean-Luc Mari,
and Pedro Real

Computation of Cubical Steenrod Squares . 140
Marek Krčál and Paweł Pilarczyk

On Homotopy Continuation for Speech Restoration. 152
Darian M. Onchis and Pedro Real

Finding Largest Rectangle Inside a Digital Object . 157
Apurba Sarkar, Arindam Biswas, Mousumi Dutt,
and Arnab Bhattacharya

Shape Matching of 3D Topologically Segmented Objects. 170
Nilanjana Karmakar and Arindam Biswas

Construction of an Approximate 3D Orthogonal Convex Skull 180
Nilanjana Karmakar and Arindam Biswas

Designing a Topological Algorithm for 3D Activity Recognition 193
Maria-Jose Jimenez, Belen Medrano, David Monaghan,
and Noel E. O’Connor

Robust Computations of Reeb Graphs in 2-D Binary Images 204
Antoine Vacavant and Aurélie Leborgne

The Coherent Matching Distance in 2D Persistent Homology 216
Andrea Cerri, Marc Ethier, and Patrizio Frosini

Persistent Homology on Grassmann Manifolds for Analysis of
Hyperspectral Movies . 228

Sofya Chepushtanova, Michael Kirby, Chris Peterson,
and Lori Ziegelmeier

Persistence Based on LBP Scale Space . 240
Ines Janusch and Walter G. Kropatsch

On Some Local Topological Properties of Naive Discrete Sphere 253
Nabhasmita Sen, Ranita Biswas, and Partha Bhowmick

DIG: Discrete Iso-contour Geodesics for Topological Analysis of
Voxelized Objects . 265

Gurman Bhalla and Partha Bhowmick

Solving Distance Geometry Problem with Inexact Distances in
Integer Plane . 277

Piyush K. Bhunre, Partha Bhowmick, and Jayanta Mukhopadhyay

X Contents

http://dx.doi.org/10.1007/978-3-319-39441-1_12
http://dx.doi.org/10.1007/978-3-319-39441-1_12
http://dx.doi.org/10.1007/978-3-319-39441-1_13
http://dx.doi.org/10.1007/978-3-319-39441-1_14
http://dx.doi.org/10.1007/978-3-319-39441-1_15
http://dx.doi.org/10.1007/978-3-319-39441-1_16
http://dx.doi.org/10.1007/978-3-319-39441-1_17
http://dx.doi.org/10.1007/978-3-319-39441-1_18
http://dx.doi.org/10.1007/978-3-319-39441-1_19
http://dx.doi.org/10.1007/978-3-319-39441-1_20
http://dx.doi.org/10.1007/978-3-319-39441-1_21
http://dx.doi.org/10.1007/978-3-319-39441-1_21
http://dx.doi.org/10.1007/978-3-319-39441-1_22
http://dx.doi.org/10.1007/978-3-319-39441-1_23
http://dx.doi.org/10.1007/978-3-319-39441-1_24
http://dx.doi.org/10.1007/978-3-319-39441-1_24
http://dx.doi.org/10.1007/978-3-319-39441-1_25
http://dx.doi.org/10.1007/978-3-319-39441-1_25

Segmentation and Classification of Geoenvironmental Zones of Interest in
Aerial Images Using the Bounded Irregular Pyramid 290

Mariletty Calderón, Rebeca Marfil, and Antonio Bandera

Author Index . 303

Contents XI

http://dx.doi.org/10.1007/978-3-319-39441-1_26
http://dx.doi.org/10.1007/978-3-319-39441-1_26

Invited Speakers

Progress in Persistence for Shape Analysis
(Extended Abstract)

Massimo Ferri(B)

Dip. di Matematica e ARCES, Univ. di Bologna, Bologna, Italy
massimo.ferri@unibo.it

Persistent topology mitigates the excessive freedom of topological equivalence by
studying not just a topological space but a filtration of it. This makes it a very
effective class of shape descriptors, with an impressive potential for applications
in the image context, in particular when it comes to images of natural origin.
Research in this field is lively and follows various threads. The talk will sample
some recent results without any attempt to completeness.

1 Image Processing

Understanding the topology of an object out of a sampling — typically a digital
picture — of it was at the origin of the Stanford flavour of persistence [10].
This raised very interesting issues of robustness with respect to noise (e.g. in
[5,20]). An amazing segmentation algorithm in presence of noisy data is given
in [22], where different segmentation options are suggested by the very nature
of a persistence diagram (see Fig. 1).

Fig. 1. A segmentation from noisy data [22]

2 Shape Analysis

Apart from the early applications to computer vision in the 90’s (when persis-
tence was still in its Size Theory era) there has always been research on 2D and
3D shapes using barcodes and persistence diagrams. More recent ones concern

c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 3–6, 2016.
DOI: 10.1007/978-3-319-39441-1 1

4 M. Ferri

– classification of hepatic lesions, where multidimensional filtering functions are
used, and shown to be superior to the separate 1D ones [1],

– gait classification: four different filtrations in a sequence of silhouettes capture
relations among the parts of a walking human body [23],

– analysis of hurricanes and galaxies: two different studies of natural spirals
[2,3],

– analysis of brain artery trees: here persistent 1-cycles play a central role [6],
– retrieval of images of melanocytic lesions, with various colour-related filtering

functions [16] (see Fig. 2).

Fig. 2. Retrieval: A melanoma with a neighbourhood of nevi and melanomas [16]

3 Theoretical Progress

The simple remark that colour pictures are maps with range R3 suggests that the
1D indexing of “classical” persistence is not enough. Therefore the study of dis-
continuities of the persistent Betti numbers functions [11,13], of the monodromy
phenomenon [12] and of the interleaving distance [24] in the multidimensional
context are welcome.

Another, related measure of dissimilarity is the natural pseudodistance (“nat-
ural” with respect to persistence) between homeomorphic spaces endowed with
filtering functions: It takes into account all possible homeomorphisms between
the two spaces, and registers the infimum of the distorsions induced on the filter-
ing functions. There are settings, in which it is convenient to limit the analysis
to a subgroup of homeomorphisms [18]; this is an aspect of a new framework for
shape analysis [17].

An interesting simplification comes from the use of persistence landscapes in
statistical data analysis [9].

An extension of the theory, A∞-persistence, makes the use of more sophisti-
cated tools, like Massey products, possible [4].

Recent progress in the computation of the bottleneck distance between per-
sistence diagrams [21] makes the representation through complex polynomials
[14] less attractive, but the different impact of the various coefficients fosters its
use in a “skimming” phase of image retrieval.

Progress in Persistence for Shape Analysis 5

4 Not Only Images

Persistence has applications which go far beyond the image context: genetics [27],
linguistics [28], neurosciences [26], music [7], robot navigation [8] take advantage
of its power.

Acknowledgements. Work performed under the auspices of INdAM-GNSAGA.

References

1. Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the
matching metric. Comput. Vis. Image Underst. 121, 36–42 (2014)

2. Banerjee, S.: Size functions in the study of the evolution of cyclones. Int. J. Mete-
orol. 36(358), 39 (2011)

3. Banerjee, S.: Size functions in galaxy morphology classification. Int. J. Comput.
Appl. 100(3), 1–4 (2014)

4. Belch́ı, F., Murillo, A.: A∞-persistence. Appl. Algebra Eng. Commun. Comput.
26(1–2), 121–139 (2015)

5. Bendich, P., Edelsbrunner, H., Morozov, D., Patel, A., et al.: Homology and robust-
ness of level and interlevel sets. Homology Homotopy Appl. 15(1), 51–72 (2013)

6. Bendich, P., Marron, J., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology
analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198–218 (2016)

7. Bergomi, M.G.: Dynamical and topological tools for (modern) music analysis.
Theses, Université Pierre et Marie Curie - Paris VI, December 2015. https://tel.
archives-ouvertes.fr/tel-01293602

8. Bhattacharya, S., Ghrist, R., Kumar, V.: Persistent homology for path planning
in uncertain environments. IEEE Trans. Robot. 31(3), 578–590 (2015)

9. Bubenik, P., D�lotko, P.: A persistence landscapes toolbox for topological statistics.
J. Symbolic Comput. (in press, 2016). http://dx.doi.org/10.1016/j.jsc.2016.03.009,
arXiv:1207.6437 [math.AT]

10. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
11. Cavazza, N., Ferri, M., Landi, C.: Estimating multidimensional persistent homol-

ogy through a finite sampling. Int. J. Comput. Geom. Appl. 25(03), 187–205 (2015)
12. Cerri, A., Ethier, M., Frosini, P.: A study of monodromy in the computation of

multidimensional persistence. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B.
(eds.) DGCI 2013. LNCS, vol. 7749, pp. 192–202. Springer, Heidelberg (2013)

13. Cerri, A., Frosini, P.: Necessary conditions for discontinuities of multidimensional
persistent Betti numbers. Math. Methods Appl. Sci. 38(4), 617–629 (2015)

14. Di Fabio, B., Ferri, M.: Comparing persistence diagrams through complex vec-
tors. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 294–305.
Springer, Heidelberg (2015)

15. Edelsbrunner, H., Morozov, D.: Persistent homology: Theory and practice. In:
European Congress of Mathematics Kraków, 2–7 July 2012, pp. 31–50 (2014)

16. Ferri, M., Tomba, I., Visotti, A., Stanganelli, I.: A feasibility study for a persistent
homology based k-nearest neighbor search algorithm in melanoma detection. arXiv
preprint (2016)

17. Frosini, P.: Towards an observer-oriented theory of shape comparison. In: Euro-
graphics Workshop on 3D Object Retrieval, pp. 1–4 (2016)

https://tel.archives-ouvertes.fr/tel-01293602
https://tel.archives-ouvertes.fr/tel-01293602
http://dx.doi.org/10.1016/j.jsc.2016.03.009
http://arxiv.org/abs/1207.6437

6 M. Ferri

18. Frosini, P., Jab�loński, G.: Combining persistent homology and invariance groups
for shape comparison. Discrete Comput. Geom. 55(2), 373–409 (2016)

19. Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern
Recogn. Image Anal. 9(4), 596–603 (1999)

20. Frosini, P., Landi, C.: Persistent Betti numbers for a noise tolerant shape-based
approach to image retrieval. Pattern Recogn. Lett. 34(8), 863–872 (2013)

21. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence
diagrams. In: ALENEX 2016, pp. 103–112. SIAM (2016)

22. Kurlin, V.: A fast persistence-based segmentation of noisy 2D clouds with provable
guarantees. Pattern Recognition Letters (2015)

23. Lamar-León, J., Garćıa-Reyes, E.B., Gonzalez-Diaz, R.: Human gait identification
using persistent homology. In: Mejail, M., Gomez, L., Jacobo, J., Alvarez, L. (eds.)
CIARP 2012. LNCS, vol. 7441, pp. 244–251. Springer, Heidelberg (2012)

24. Lesnick, M.: The theory of the interleaving distance on multidimensional persis-
tence modules. Found. Comput. Math. 15(3), 613–650 (2015)

25. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1995–2002 (2014)

26. Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P.,
Vaccarino, F.: Homological scaffolds of brain functional networks. J. R. Soc. Inter-
face 11(101) (2014). 20140873. doi:10.1098/rsif.2014.0873

27. Platt, D.E., Basu, S., Zalloua, P.A., Parida, L.: Characterizing redescriptions using
persistent homology to isolate genetic pathways contributing to pathogenesis. BMC
Syst. Biol. 10(1), 107 (2016)

28. Port, A., Gheorghita, I., Guth, D., Clark, J.M., Liang, C., Dasu, S., Marcolli, M.:
Persistent topology of syntax. arXiv preprint (2015). http://arxiv.org/abs/1507.
05134

http://dx.doi.org/10.1098/rsif.2014.0873
http://arxiv.org/abs/1507.05134
http://arxiv.org/abs/1507.05134

Homology Computation During an Incremental
Construction Process

Pascal Lienhardt(B) and Samuel Peltier

Université de Poitiers, Laboratoire XLIM, UMR CNRS 7252, Poitiers, France
{pascal.lienhardt,samuel.peltier}@xlim.fr

http://www.xlim.fr/

Abstract. Controlling the construction of geometric objects is impor-
tant for several Geometric Modeling applications. Homology (groups and
generators) may be useful for this control. For such incremental construc-
tion processes, it is interesting to incrementally compute the homology,
i.e. to deduce the homological information at step s of the construction
from the homological information computed at step s−1. We here study
the application of effective homology results [13] for such incremental
computations.

Keywords: Homology · Simplicial and cellular combinatorial struc-
tures · Incremental computation

1 Introduction

Geometric Modeling deals with the representation and the construction of geo-
metric objects. For instance, many representations and related construction oper-
ations have been conceived for CAD/CAM applications; since a modeled geo-
metric object can be manufactured, it is necessary to control its construction, in
order to detect any problem as soon as possible. According to the application,
homology (i.e. homology groups and/or the correspondence between their gen-
erators and chains of cells of the object at each step of its construction) may be
useful for controlling the construction.

Many works in Geometric Modeling deal with subdivided geometric objects,
i.e. objects partitioned into cells of different dimensions, and many methods have
been proposed for computing the homology of subdivided objects, e.g. based
upon the Smith Normal Form of incidence matrices [1]. Such methods make it
possible to compute the homology at each step of the construction of a geometric
object; but the whole homological information has to be computed at each step,
without taking advantage of the information known at the previous step. So, it
seems interesting for such a process to incrementally compute the homology, i.e.
to deduce the homology of the object at step s from the homology of the object
at step s − 1, according to the operation which is applied. Such incremental
computation can be done by applying results of effective homology [13].

c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 7–15, 2016.
DOI: 10.1007/978-3-319-39441-1 2

8 P. Lienhardt and S. Peltier

Although some aspects are close to the work described in [6], the approach
here focuses on the application of construction operations and the related com-
plexities. Since only the structure of an object has to be taken into account
in order to compute its homology, it will be assumed that it is represented by
a semi-simplicial set or a cellular combinatorial structure (incidence graph or
combinatorial map). In the simplicial (resp. cellular) case, two basic operations
(and the inverse operations) are studied1: cone and identification (resp. exten-
sion and identification), which make it possible to construct any semi-simplicial
set (resp. any cellular combinatorial structure). At each step, some “homological
information” is maintained in order to reduce the complexity of the homology
computation. This “homological information” depends on the (subset of) com-
binatorial structure which is taken into account: for semi-simplicial sets and a
subclass of cellular combinatorial structures, a “homological information” related
to connected components is maintained; but it is necessary to maintain a “homo-
logical information” associated with cells and connected components for cellular
combinatorial structures in general. More precision can be found in [3].

Notations. A chain complex (C, ∂) can be associated with a semi-simplicial
set or a cellular combinatorial structure S, in such a way that there is a strong
correspondence between them (for instance, a generator of the chain complex is
associated with any simplex, and the boundary operator is deduced from the face
operators). Chain complex (H, 0) (or equivalently H) denotes the homology of S.
The complexity of a chain complex, or a combinatorial structure, is related to the
number of generators and the “cost” of the face or boundary operators (in terms
of generators): for instance, the complexity of a n-dimensional semi-simplicial
set (or its associated chain complex) is

∑n
i=0 kici +

∑n
i=1(i + 1)kidi−1, where ki

is the number of i-simplices, ci (resp. di) is the complexity of the representation
of a i-simplex (resp. of a i-simplex in the boundary of a (i + 1)-simplex).

2 Effective Homology Bases

This section is mainly based on the course notes of J. Rubio and F. Sergeraert
[13] (see also [5]).

A reduction ρ = ((C, ∂), (CS , ∂S), h, f, g) is a 5-tuple where (1) (C, ∂) and
(CS , ∂S) are chain-complexes; (2) f : (C, ∂) → (CS , ∂S) and g : (CS , ∂S) →
(C, ∂) are chain-complex morphisms; (3) h : (C, ∂) → (C, ∂) is a graded module
morphism of degree +1. They satisfy2: (4) gf = idCS ; (5) fg + h∂ + ∂h =
idC ; (6) hf = gh = hh = 0. Reduction ρ will be sometimes symbolized by
(C, ∂)

ρ⇒⇒⇒ (CS , ∂S). The homologies of (C, ∂) and (CS , ∂S) are isomorphic, and
the complexity of (CS , ∂S) is lower than that of (C, ∂); so, the homology of (C, ∂)
is computed with a better complexity starting from (CS , ∂S). Several methods

1 Obviously, other operations are useful for Geometric Modeling applications, and a
similar study has to be done for each operation.

2 fg denotes g ◦ f .

Homology Comp. During an Incr. Construction Process 9

are based on (composition of) elementary reductions3 in order to simplify a chain
complex before computing its homology [9,11].

A homological equivalence Υ is a pair of reductions (C, ∂)
ρ⇐⇐⇐ (CB , ∂B)

ρS

⇒⇒⇒
(CS , ∂S). This notion makes it possible to associate a “small” chain complex
(CS , ∂S) with another chain complex (C, ∂), through a “bigger” one (CB , ∂B),
even when no reduction (C, ∂) ⇒⇒⇒ (CS , ∂S) exists.

An effective short exact sequence ((C0, ∂0), (C1, ∂1), (C2, ∂2), i, j, r, s) is a
diagram:

0 0−→ (C0, ∂0)
r←−−→
i

(C1, ∂1)
s←−−→
j

(C2, ∂2) 0−→ 0

where (1) (C0, ∂0), (C1, ∂1), (C2, ∂2) are chain complexes; (2) i,j are chain
complex morphisms; (3) r,s are graded module morphisms. They satisfy (4)
ir = idC0 ; (5) ri + js = idC1 ; (6) sj = idC2 . This notion is a key one for opti-
mizing the homology computation at each step of an incremental construction
process; indeed, if an effective short exact sequence can be associated with the
applied operation, the following SES theorem can be applied (only the subparts
of the theorem which are useful here are provided: cf. [13] page 71).

Theorem 1 (SES Theorem). Let ((C0, ∂0), (C1, ∂1), (C2, ∂2), i, j, r, s) be a
short exact sequence. Then, given two homological equivalences Υ0 : (C0, ∂0)⇐⇐⇐
(CB0, ∂B0)⇒⇒⇒(CS0, ∂S0) and Υ1 : (C1, ∂1) ⇐⇐⇐ (CB1, ∂B1) ⇒⇒⇒ (CS1, ∂S1) (resp.
Υ2 : (C2, ∂2) ⇐⇐⇐ (CB2, ∂B2) ⇒⇒⇒ (CS2, ∂S2)), it is possible to deduce from
i, j, r, s, Υ0 and Υ1 (resp. Υ2) a homological equivalence Υ2 : (C2, ∂2) ⇐⇐⇐
(CB2, ∂B2) ⇒⇒⇒ (CS2, ∂S2) (resp. Υ1 : (C1, ∂1) ⇐⇐⇐ (CB1, ∂B1) ⇒⇒⇒ (CS1, ∂S1)).

If the applied operation “corresponds” to a short exact sequence, and if the
operands of the operation are associated with homological equivalences, it is pos-
sible to deduce a homological equivalence, and thus a (homologically equivalent)
“small” complex, for the result of the operation, providing a better complexity
for the final homology computation4. Of course, it is also necessary to check the
complexity of the application of the SES theorem in order to check that the whole
computation is better than, say, a computation based upon the computation of
the Smith Normal Form of the incidence matrices.

3 Application to Simplicial Structures

The SES theorem has been applied in order to reduce the cost of the homology
computation [14]. For instance, Boltcheva et al. [5] applied it for the concep-
tion of the Mayer-Vietoris (MV) algorithm, which computes the homological
3 An elementary reduction can be defined when a i-dimensional generator x appears

in the boundary of a (i + 1)-generator y with a coefficient equal to 1 or −1. Note
that reductions exist, which are not compositions of elementary reductions.

4 For instance, when Υ2 is deduced from i, j, r, s, Υ0 and Υ1, the generators of CS2

are that of CS0 and CS1.

10 P. Lienhardt and S. Peltier

information of abstract simplicial complexes from the homological information
of sub-complexes and their intersections. This algorithm has been applied for the
Manifold-Connected decomposition of abstract simplicial complexes [6]. The basic
idea is the following: let B and C be sub-complexes of A, such that A = B ∪ C,
and ΥB∩C , ΥB and ΥC are homological equivalences associated with B ∩ C, B
and C; a short exact sequence ((B ∩ C), (B ⊕ C), A = (B ∪ C), i, j, r, s) can be
defined5, and a homological equivalence associated with A can be computed by
applying the SES theorem.

More basic operations are studied here: cone and identification (cf. [3] for
more precisions). Cone(A), the cone of A, consists in adding a new 0-simplex
v to A, and, for each i-simplex σ, in adding a (i + 1)-simplex incident to σ
and v. Obviously, a homological equivalence Υ : (Cone(A)) ⇐⇐⇐ (Cone(A))
⇒⇒⇒ (X) can be defined, where X contains only one 0-dimensional generator (the
homology of a cone is trivial), and Υ can be computed in linear time according
to the size of A.

The basic identification operation Ident(A, σ, τ) consists, given two
i-simplices σ and τ having the same boundary, in replacing them by a new
simplex μ such that the boundary (resp. the star) of μ is the boundary of σ
(resp. the union of the stars of σ and τ). This operation can be easily gener-
alized in order to identify any two i-simplices, and more generally subsets of
simplices.

Assume a homological equivalence Υ : (A) ⇐⇐⇐ (AB) ⇒⇒⇒ (AS) is associated
with A. Given a set of simplices A0 which have to be identified, a chain complex
(A0) can be computed, in which each i-dimensional generator corresponds to
a basic identification of i-simplices (i.e. if k i-simplices are identified into one
i-simplex, there are (k − 1) corresponding i-generators in (A0)). The boundary
operator of (A0) is deduced from the face operators of the simplices of A0. So,
a homological equivalence Υ0 : (A0) ⇐⇐⇐ (A0) ⇒⇒⇒ (A0) can be computed in
linear time according to the size of A0 (the size takes into account the simplices
of A0 and their face operators). A better homological equivalence Υ′0 : (A0)
⇐⇐⇐ (A0) ⇒⇒⇒ (A′0) may be deduced by applying a method for simplifying (A0),
i.e. which computes a reduction (A0) ⇒⇒⇒ (A′0).

Let Ident(A,A0) be the result of the identification of the simplices of A0 in A.
It is possible to compute a short exact sequence Q = ((A0), (A), (Ident(A,A0)),
i, j, r, s) in linear time according to the size of A. Thus, by applying the SES
theorem, it is possible to compute a homological equivalence ΥI : (Ident(A,A0))
⇐⇐⇐ (IB) ⇒⇒⇒ (IS) (cf. Fig. 1). Once again, a better homological equivalence
Υ′I : (Ident(A,A0)) ⇐⇐⇐ (IB) ⇒⇒⇒ (I ′S) may be deduced by applying a method
for simplifying (IS), i.e. which computes a reduction (IS) ⇒⇒⇒ (I ′S). Then, the
homology of Ident(A,A0) can be computed from (I ′S).

As said before, the homological equivalence Υ0 can be computed in linear
time according to the size of A0, and the short exact sequence Q can be com-
puted in linear time according to the size of A. The generators of (IB) (resp.
(IS)) are the generators of (A0) and of (AB) (resp. (A′0) and (AS); this explains

5 The chain complex associated with X is denoted (X).

Homology Comp. During an Incr. Construction Process 11

why it is interesting to reduce (A0) into (A′0)). It is not possible to give a precise
evaluation of the complexity related to the computation of the boundary opera-
tors of (IB) and (IS), and of the mappings of ΥI , since this complexity depends
on Υ, and thus depends also on the operations previously applied for construct-
ing A. But the complexity can be evaluated for certain cases: for instance, when
A is constructed by applying identifications, the whole computation is linear;
moreover, if (IB) (resp. IS) is deduced by modifying (AB) (resp. (AS)), the
computation is sub-linear; and the complexity of the whole construction (i.e.
related to all computations for all steps) is linear according to the size of the
initial object. In the general case, the complexity of the computation is clearly
related to the size of the parts of the object which are identified, i.e. (A0).

An informal argument for the interest of the approach is the fact that, for
many construction processes, local operations are applied at each construction
step; since the complexity is related to the modified parts, it is interesting to
modify a previously known homological information rather than to compute it
from scratch. Other precisions are given in Section 3 and Appendix 6.7 in [3]. In
particular, note that the SES theorem applies for the inverse operation of the
identification.

Fig. 1. Incremental computation of homological equivalences

At last, note that these results generalize in some sense the results described
in [5,6], since the identification operation is a more basic operation than the
gluing of connected components. In other words, gluing connected components
can be achieved by identifying parts of their boundaries; but the identification
operation can also be applied to subsets of simplices belonging to the same
connected component.

12 P. Lienhardt and S. Peltier

4 Application to Cellular Structures

The previous results directly apply to other structures, as cubical [8] and sim-
ploidal [12] structures (as for simplices, the homology of any cube or simploid is
trivial; moreover, classical results apply for the cartesian product, which corre-
sponds in some way to the cone for simplicial objects). They can also be applied
to cellular combinatorial structures as incidence graphs6 [10] and combinatorial
maps [7]. An incidence graph is represented in Fig. 2; results in [3] are obtained
for combinatorial maps, which generalize incidence graphs in order to take multi-
incidence into account7, and these results directly apply to incidence graphs.

Any cellular combinatorial structure can be constructed by applying two
basic operations: extension and identification. Given a connected n-dimensional
structure, in which the dimension of all main cells is n, the extension consists
in adding a new (n + 1)-cell incident to all n-cells. For instance, this operation
applied to the incidence graph in Fig. 2 adds a volume incident to faces f1 and
f2, the resulting “corresponding object” is a 3-ball. The identification operation
consists in “merging” two cells having the same boundary; as for the simplicial
case, this operation can be generalized in order to identify subsets of cells (this
is constrained by the fact that two cells can be identified if they are isomorphic:
for instance, it is not possible to identify a triangle and a square).

Fig. 2. A 2-sphere, subdivided into 2 faces, 2 edges and 2 vertices, together with its
simplicial equivalent and the corresponding incidence graph.

In the general case, it is not possible to associate a “cellular” chain complex
(A) with any cellular combinatorial structure A, i.e. a chain complex in which
any generator corresponds to a cell, and such that the homology of (A) is the
homology of A. It is thus not possible to directly apply the results obtained in the
simplicial case to cellular combinatorial structures. Indeed, cellular combinator-
ial structures exist, in which cells cannot be associated with balls. For instance,
applying the extension operation to an incidence graph which corresponds to
6 These structures have been defined in different contexts; they are sometimes referred

to as orders, Hasse diagrams, etc.
7 It is not possible to unambiguously represent with incidence graphs “objects” in

which a cell is incident several times to another one, but this is possible with com-
binatorial maps.

Homology Comp. During an Incr. Construction Process 13

a subdivided torus or a Klein bottle does not produce a 3-ball. Moreover, any
(n + 1)-cell can be defined as the result of the application of the extension oper-
ation to a n-dimensional cellular combinatorial structure; but we do not know
how to decide in the general case whether a (simplicial or cellular) combinatorial
structure corresponds to a n-sphere. So, we do not know how to decide in the
general case whether a combinatorial cell corresponds to a ball.

But it is always possible to associate a simplicial equivalent S(A) with any
cellular combinatorial structure A; so, it is always possible to associate a “sim-
plicial” chain complex (S(A)) with any cellular combinatorial structure A, i.e.
a chain complex in which any generator corresponds to a simplex of S(A), and
such that the homology of (S(A)) is the homology of A. So, the results presented
in Sect. 3 can be directly applied, by maintaining at each step of the construction
of A its simplicial chain complex (S(A)). The problem here is the complexity
of the approach, since it is possible that many simplices in S(A) are associated
with one cell in A. So, more efficient approaches have been investigated.

4.1 A Subclass of Cellular Combinatorial Structures

A subset of cellular combinatorial structures has been defined in [2] (cf. also [4]):
each structure A of this subclass satisfies properties so that the cellular chain
complex (A) is homologically equivalent to the simplicial chain complex (S(A)).
So, the results presented in Sect. 3 can be directly applied to the structures of
this subclass, associated with their corresponding cellular chain complexes, but
it is necessary to check at each construction step whether the properties of the
subclass are still satisfied (this control can be done easily without significative
cost, due to the definition itself of the properties).

4.2 The General Case

The properties characterizing this subclass are sufficient but not necessary to
ensure the equivalence between (A) and (S(A)). Moreover, it may be useful for
some constructions to ignore these properties, even if only temporarily. It can
thus be useful to handle A and (S(A)), even if it is less efficient than to handle A
and (A). Even in this case, it is possible to optimize the computations. Indeed,
the interior of each cell c in A corresponds to a subset of simplices in S(A);
a homological equivalence Υc can be associated with the interior of c when it
is created, and it is possible to maintain Υc during the construction process in
order to optimize the homology computation.

More precisely, assume a homological equivalence is associated with the inte-
rior of any cell and with any connected component. Assume c is created by an
extension operation applied to a connected component C of A. This operation
corresponds in S(A) to a cone operation applied to S(C), where the vertex v of
the cone symbolizes cell c (in fact, the interior of c corresponds to the subset
incident to v, so the structure of the interior of c is very close to the structure of
S(C), since c corresponds to a cone on S(C)). Each cell of C remains unchanged,

14 P. Lienhardt and S. Peltier

so its homological equivalence is unchanged; the homological equivalence associ-
ated with the connected component after operation is trivially defined, since the
resulting connected component is a cone; the homological equivalence associated
with c can be easily deduced from the homological equivalence associated with
C by applying the perturbation lemmas (cf. [13] pages 48–49). All computations
can be performed in linear time according to the size of S(C). Note that, at last,
some reduction process may be applied to the small chain complex of Υc.

Let Ident(A,A0) be the result of the identification of cells of a subset A0 in
A. Let c be a cell of Ident(A,A0): either c does not result from the identification
of cells, and its homological equivalence Υc is not modified; either it results from
the identification of isomorphic cells, and Υc is simply a homological equivalence
associated with one of these identified cells (all these homological equivalences
are homologically equivalent, since the cells are isomorphic): so, nothing is really
computed.

The homological equivalence associated with S(Ident(A,A0)) is computed in
the following way. A homological equivalence Υ1

A0 is computed as the direct sum
of homological equivalences corresponding to the identified cells; more precisely
(and as for the simplicial case), if k isomorphic i-cells {cj}j∈[1,k] are identified
into one cell, there are in Υ1

A0 k−1 copies of Υcj , for some j ∈ [1, k] (for instance,
j may be chosen according to the complexity of Υcj). It is now possible to deduce
from Υ1

A0 a homological equivalence Υ2
A0 by “linking” the homological equiva-

lences corresponding to cells accordingly to the boundary relations between cells
in A; this can be done by applying the perturbation lemmas (cf. [13] pages 48–
49), and the complexity is linear according to the size of Υ1

A0 and n, where n is
the highest dimension of a cell in A0. Then, a reduction process can be applied
to the small complex of Υ2

A0 , producing Υ0 : C(A0) ⇐⇐⇐ CB(A0) ⇒⇒⇒ CS(A0).
Moreover, a short exact sequence Q = (C(A0), (S(A)), (S(Ident(A,A0))),

i, j, r, s) can be computed in linear time according to the size of S(A) (as for
the simplicial case, the complexity of the computation of the “interesting” infor-
mation is sub-linear). The SES theorem can then be applied in order to deduce
a homological equivalence ΥI associated with Ident(A,A0); as for the simpli-
cial case, a reduction process can be applied to the small complex of ΥI , and a
“better” homological equivalence Υ′I can be deduced.

As for the simplicial case in Sect. 3, similar remarks about the complexity
of the process can be done (the main difference with the simplicial case is the
complexity of the computation of Υ0, which depends also on the dimension of
the identified cells). At last, note that a similar process can also be applied for
the inverse of the identification operation.

Acknowledgments. Many thanks to Francis Sergeraert, Sylvie Alayrangues and Lau-
rent Fuchs.

Homology Comp. During an Incr. Construction Process 15

References

1. Agoston, M.K.: Algebraic Topology: A First Course. Pure and Applied Mathemat-
ics. Marcel Dekker Ed., New York (1976)

2. Alayrangues, S., Damiand, G., Lienhardt, P., Peltier, S.: A Boundary Operator for
Computing the Homology of Cellular Structures. Research Report <hal-00683031-
v2> (2011)

3. Alayrangues, S., Fuchs, L., Lienhardt, P., Peltier, S.: Incremental computation of
the homology of generalized maps - an application of effective homology results.
Research Report <hal-01142760-v2> (2015)

4. Basak, T.: Combinatorial cell complexes and Poincaré duality. Geom. Dedicata
147(1), 357–387 (2010)

5. Boltcheva, D., Merino, S., Léon, J.-C., Hétroy, F.: Constructive Mayer-Vietoris
Algorithm: Computing the Homology of Unions of Simplicial Complexes. INRIA
Research Report RR-7471 (2010)

6. Boltcheva, D., Canino, D., Aceituno, S.M., Léon, J.-C., De Floriani, L., Hétroy, F.:
An iterative algorithm for homology computation on simplical shapes. Comput.
Aided Des. 43(11), 1457–1467 (2011)

7. Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A K Peters/CRC Press, Boca Raton
(2014)

8. Dlotko, P., Kaczynski, T., Mrozek, M.: Computing the cubical cohomology ring.
In: 3rd International Workshop on Computational Topology in Image Context,
Chipiona, Spain, pp. 137–142 (2010)

9. Dlotko, P., Kaczynski, T., Mrozek, M., Wanner, T.: Coreduction homology algo-
rithm for regular CW-complexes. Discrete Comput. Geom. 46(2), 361–388 (2011)

10. Edelsbrunner, H.: Algorithms in Computational Geometry. Springer, New York
(1987)

11. González-Dı́az, R., Jiménez, M.J., Medrano, B., Real, P.: Chain homotopies for
object topological representations. Discrete Appl. Math. 157(3), 490–499 (2009)

12. Peltier, S., Fuchs, L., Lienhardt, P.: Simploidals sets - Definitions, operations and
comparison with simplicial sets. Discrete App. Math. 157, 542–557 (2009)

13. Rubio, J., Sergeraert, F.: Constructive homological algebra and applications. In:
Genova Summer School on Mathematics - Algorithms - Proofs, Genova, Italy
(2006)

14. The Kenzo program. https://www-fourier.ujf-grenoble.fr/∼sergerar/Kenzo/

https://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

Main Contributions

Persistence-Based Pooling for Shape Pose
Recognition

Thomas Bonis1(B), Maks Ovsjanikov2, Steve Oudot1, and Frédéric Chazal1

1 DataShape Team, Inria Saclay, Palaiseau, France
Thomas.bonis@inria.fr

2 Laboratoire d’Informatique de l’Ecole Polytechnique, Palaiseau, France

Abstract. In this paper, we propose a novel pooling approach for shape
classification and recognition using the bag-of-words pipeline, based on
topological persistence, a recent tool from Topological Data Analysis.
Our technique extends the standard max-pooling, which summarizes the
distribution of a visual feature with a single number, thereby losing any
notion of spatiality. Instead, we propose to use topological persistence,
and the derived persistence diagrams, to provide significantly more infor-
mative and spatially sensitive characterizations of the feature functions,
which can lead to better recognition performance. Unfortunately, despite
their conceptual appeal, persistence diagrams are difficult to handle,
since they are not naturally represented as vectors in Euclidean space and
even the standard metric, the bottleneck distance is not easy to compute.
Furthermore, classical distances between diagrams, such as the bottle-
neck and Wasserstein distances, do not allow to build positive definite
kernels that can be used for learning. To handle this issue, we provide
a novel way to transform persistence diagrams into vectors, in which
comparisons are trivial. Finally, we demonstrate the performance of our
construction on the Non-Rigid 3D Human Models SHREC 2014 dataset,
where we show that topological pooling can provide significant improve-
ments over the standard pooling methods for the shape pose recognition
within the bag-of-words pipeline.

Keywords: Shape recognition · Bag-of-words · Topological Data
Analysis

1 Introduction

In the recent years, databases of 3-dimensional objects have been getting larger
and larger. In order to automatically process these databases, many algorithms
relying on retrieval have been proposed. However, for certain tasks, classifica-
tion techniques can be more efficient. Efficient classification pipelines have been
proposed for images and some elements of these techniques such as the bag-of-
words methods [1] or feature learning using deep network architectures [2] have
been used to perform retrieval and shape comparison. Traditionally, the bag-of-
words method relies on extracting an unordered collection of descriptors from the
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 19–29, 2016.
DOI: 10.1007/978-3-319-39441-1 3

20 T. Bonis et al.

shapes we consider, which are then quantized into a set of vectors called “words”.
The information given by this quantization process is then summarized using a
pooling scheme, which produces a vector usable by standard learning algorithms.
Ideally, all the steps of this framework should be robust to transformations of
the shape: translations, rotations, changes of scale, etc. Modern bag-of-words
approaches for 3D-shapes usually rely on a pooling method called sum-pooling
[1] which consists in taking the average of the value of each words across the
shape.

Since its introduction for image processing in [3], the bag-of-words pipeline,
which we present in Sect. 2, has been improved in various ways. Here, we focus on
the pooling part of the framework. Apart from the traditional sum-pooling app-
roach, a popular pooling method, called max-pooling introduced in [4], consists
in taking the maximum of the value for each visual word. Several works have
highlighted the improvement in accuracy obtained using this pooling scheme as
well as its compatibility with the linear kernel for learning purposes, [4,5]. The
strength of max pooling is due in part to its remarkable robustness properties.
One of the main assumptions made in the bag-of-words approach is that the
“word” values that compose the output of the encoding step, are, for a given
class and a given word, i.i.d random variables. Refinements of the max-pooling
scheme have been proposed under this assumption: for instance [6] proposed to
consider the k highest values for each words to estimate the probability of at
least k features being present in the object. However, the independence assump-
tion of the word functions is unrealistic; for 3D shapes close vertices tend to have
similar word functions, as illustrated in Fig. 1. Thus, in this example, the gener-
alization proposed by [6] ends up capturing the same feature multiple times and
providing multiple redundant values. On the other hand, pooling on different
parts of an image [7] and 3D shape [8,9] has been proposed to take advantage
of spatial information, an approach known as Spatial Pyramid Matching. This
approach has drastically improved the performance of the bag-of-words proce-
dures on multiple datasets, although it contradicts the identically distributed
assumption, and lacks proper robustness guarantees.

In this work, we propose to see the word functions not as a unordered col-
lection of random values but as a random function defined on the vertices of a
graph (in our case, the mesh of the shape). Following this approach, we propose
to use persistent homology to capture information regarding the global struc-
ture of the word functions which is not available for the traditional max-pooling
approach.

Persistent homology was first introduced in the context of Topological Data
Analysis under the name size theory [10]. It was later generalized to higher
dimensions as persistent homology theory [11,12]. The 0-dimensional persistent
homology of the superlevel-sets of a function encodes the prominence of the
peaks of the function into a collection of points in the plane, called a persis-
tence diagram. These diagrams enjoy strong robustness properties [13–15]. One
option to compare persistence diagrams is to use a distance between diagrams
such as the bottleneck distance and to use nearest-neighbor algorithms as it was

Persistence-Based Pooling for Shape Pose Recognition 21

Fig. 1. Example of a word function obtained on two different shapes in the same pose
and for the two different poses.

done by [16]. However, in this work, we aim at being able to use classification
algorithms such as SVM or logistic regression that requires a Hilbert space struc-
ture, which is not the case of the space of persistence diagrams. One approach
to tackle this issue is to make use of the “kernel trick” by using a positive-
definite kernel in order to map the persistence diagrams into a Hilbert space. As
recently shown by Reininghaus et al. [17], one cannot rely on natural distances
such as the Wasserstein distance to build traditional distance-based kernels such
as the Gaussian kernel. This led the authors to propose another kind of kernel.
A major limitation of their approach, however, is that these types of kernel are
non-linear and the complexity of the classification becomes linear with the size
of the training set which causes scalability issues. Another approach to directly
embed persistence diagrams into a Hilbert Space was proposed in [18]. However
this embedding is highly memory-consuming as it maps a single diagram into a
set of functions and is not appropriate for dealing with large datasets.

In this work, we propose to perform pooling by computing the persistence
diagrams of each word function. We then map these persistence diagrams into
R

d for some reasonable value of d -< 20- by considering the peaks with highest
prominence. Since we provide a direct mapping of persistence diagrams into R

d,
we can use it for the pooling stage for the bag-of-words procedure and achieve
good performance with respect to the classification phase. We call this pool-
ing approach Topological Pooling. Since it relies on persistence diagrams, this
method is stable with respect to most transformations the shape can undergo:
translations, rotations, etc., as long as the descriptors used in input are also
invariant to these transformations. Moreover, we show that this pooling app-
roach is robust to perturbations of the descriptors. Finally we demonstrate the
validity of our approach compared to both sum-pooling and max-pooling by
performing pose recognition on the SHREC 2014 dataset.

2 The Bag of Words Pipeline

The bag-of-words pipeline consists of three main steps: feature extraction, coding
and pooling. Here we describe each step briefly taking a functional point of view,

22 T. Bonis et al.

and we also introduce the notations we will need to define our new pooling
method. We will assume that the input to the pipeline is a set of M 3D-shapes
Gi represented as triangle meshes with vertices Vi.

Feature extraction aims at deriving a meaningful representation of the shape:
the feature function denoted as Fi : Vi → R

N . It is usually done by computing
local descriptors (such as HKS [19], SIHKS [20], WKS [21], Shape-net features
[2], etc.) on each vertex of the mesh.

The purpose of coding is to decompose the values of the Fi by projecting
them on a set of points W = (wk)k∈[|1,K|] ∈ R

N called a codebook. This allows
to replace each feature function by a family of functions (Ci : Vi → R

K)i∈[1,M],
called the word functions. In other words, for a coding procedure Coding and
codebook W , the Ci are defined through

Ci(Vi) = Coding(Fi(V),W).

There exist various coding methods, such as Vector Quantization [22], Sparse
Coding [4], Locally Constrained Linear Coding [23], Fisher Kernel [24] or Super-
vector [25]. The codebook is usually computed using K-means but supervised
codebook learning methods [5,23] generally achieve better accuracy. In the
Sparse Coding approach, the one we use in this paper, W and C are computed
on the training set following

min
(Ci)i∈[1,M],W

M∑

i=1

∑

x∈Vi

(‖(Fi(x)) − WCi((Fi(x)))‖22 + λ‖Ci(Fi(x))‖1
)
,

with constraint ‖wi‖ ≤ 1 and regularization parameter λ. During the testing
phase, the optimization is only performed on C with the codebook already com-
puted.

The pooling step aims at summarizing properties of the family (Ci)i∈[1,M] and
representing them through a compact vector (Pi)i∈[1,M] which can then be used
in standard learning algorithms such as the SVM (Support Vector Machine).
Usually, the pooling method depends on the coding scheme. For Vector Quanti-
zation, one traditionally uses sum-pooling:

Pi = (SumPool(Ci,1), ..., SumPool(Ci,K))

= (
∑

x∈Vi

(Ci(Fi(x)))1, ...,
∑

x∈Vi

(Ci(Fi(x)))k).

Max-pooling was introduced along the Sparse Coding scheme by Yang et al. in
[4]. With this pooling technique, we summarize a function by its maximum:

Pi = (MaxPool(Ci,1), ...,MaxPool(Ci,K))
= (max

x∈V
(Ci(Fi(x)))1, ...,max

x∈V
(Ci(Fi(x)))K).

It is interesting to note that the max-pooling approach is more robust than
the sum-pooling. Indeed, it is robust to usual transformations the shape can

Persistence-Based Pooling for Shape Pose Recognition 23

Fig. 2. A function f (red), a noisy approximation f̃ of f (blue) and their respective
local maxima. Despite having a lot of local maxima, f̃ only has two “prominent peaks”
(green and yellow). (Color figure online)

undergo: translations, rotations, changes of scales, etc. However, it is still quite
limited as it summarizes a whole function by a single value. A natural idea is to
not limit ourselves to the global maximum of the function but rather to capture
all local maxima. On the other hand, in this naive form, the method results in
a very unstable pooling vector since arbitrarily small perturbations of the word
functions can create many local maxima, as shown in Fig. 2. Thus, a pooling
approach consisting of taking the highest k local maxima is not stable. On the
other hand, in the example shown in Fig. 2, we can see that, while there are a lot
of local maxima for the noisy function, both functions show only two “prominent
peaks”. These notions of “peak” and “prominence” are properly defined in the
0-dimensional persistent homology framework which provides us with tools to
derive a robust pooling method.

3 Introducing 0-dimensional Persistent Homology

0-persistent homology provides a formal definition of prominence and mea-
sures the prominence of each peak of a function f , with the promise that the
most prominent ones are stable under small perturbations of f . We provide a
brief overview of the computation of 0-dimensional persistent homology for the
superlevel-sets of a function defined on a graph, and invite the reader to consult
[11] for a more general introduction.

Let f be a function defined on the vertices of a finite graph G = (V,E). In
0-dimensional persistent homology, one focuses on the evolution of the connec-
tivity of the subgraphs Fα of G induced by the superlevel-sets of f : Fα = ({v ∈
V | f(v) ≥ α}, {(u, v) ∈ E | min(f(u), f(v)) ≥ α}), as α decreases from +∞ to
−∞, as shown in Fig. 3. A vertex v is a local maximum if, for any edge (v, u) in
E, we have f(u) ≤ f(v). A peak p corresponds to a local maximum bp = f(vp) of
f . We say that p is born at bp, see Fig. 3(b). For a local maximum vp, let C(vp, α)
be the connected component of vp in Fα and let dp be the largest value of α such
that the maximum of f over C(vp, α) is larger than bp, we say that p dies at
dp. Intuitively, a peak dies when its connected component gets merged with the

24 T. Bonis et al.

y = x

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Evolution of the connectedness of the superlevel-sets Fα of a function f in blue
(a) as α (green) decreases from +∞ to −∞ (b–f). This evolution is then encoded in a
persistence diagram (g).

one of another peak that has a higher maximum. Thus, there exists a vertex up

which connects the two components such that f(up) = dp. up is called a saddle,
see Fig. 3(c). The “prominence” of p is then the difference bp − dp. The peak
corresponding to the global maximum of f dies when α reaches the minimum
value of f on G1. Thus, a peak of f can be described by the couple (bp, dp). The
set of such points (with multiplicity) in the plane is called a persistence diagram,
denoted Δf , see Fig. 3(g).

Persistence diagrams are endowed with a natural metric called the bottleneck
distance. The definition of this metric involves the notion of partial matching.
A partial matching M between two diagrams Δ1 and Δ2 is a subset of Δ1 × Δ2

such that each point of Δ1 and Δ2 appears at most once in M . The bottleneck
cost C(M) of a partial matching M between two diagrams Δ1 and Δ2 is the
infimum of δ ≥ 0 that satisfy the following conditions:

– For any (p1, p2) ∈ M , ||p1 − p2||∞ ≤ δ, and
– For any other point (b, d) of Δ1 or Δ2, b − d ≤ 2δ.

The bottleneck distance between two diagrams D1 and D2, is then defined as:

dB(Δ1,Δ2) = inf
δ

{δ | ∃M,C(M) ≤ δ}

Intuitively, the bottleneck distance can be seen as the cost of a minimum per-
fect matching between persistence diagrams (with possibility to match points to
the diagonal y = x), where the cost is the length of the longest line, see Fig. 4.
A remarkable property of persistence diagrams, proven by [13,15], is their robust-
ness with respect to perturbations of f . Given two functions f and g defined on
some graph G, we have:

dB(Δf ,Δg) ≤ ||f − g||∞ = sup
v∈V

|f(v) − g(v)| (1)

In other words, if we compare the diagrams of a function f and of a noisy version
of a function f̃ then each point p ∈ Df̃ can either be matched to a point of Df

or it has a low prominence, see Fig. 4.
1 This point is slightly different from the traditional persistent homology framework.

Usually, the death value of the peak corresponding to the global maximum is set to
−∞.

Persistence-Based Pooling for Shape Pose Recognition 25

y = x

(a) (b)

Fig. 4. (a): A real-valued function f (red) and a noisy approximation f̃ of f (blue).(b):
Their respective persistence diagrams have close bottleneck distance. (Color figure
online)

Computation As 0-dimensional persistence encodes the evolution of the connec-
tivity of the superlevel-sets of a function, computing it can be done using a simple
variant of a Union-find algorithm; in practice we use Algorithm 1 described by
Chazal et al. [26], with parameter τ set to infinity. This algorithm has close to
linear complexity in the number of vertices of the meshes; more precisely it has
complexity O(|V | log(|V |) + |V |α(|V |)) where α is the inverse of the Ackermann
function.

4 Using Persistence Diagrams for Pooling

As we previously mentioned at the end of Sect. 2, a simple idea to enhance
the max-pooling approach is to consider the values of multiple local maxima.
However, this can be highly unstable under small perturbations of the word
functions. As we saw in Sect. 3, we can use persistence diagrams to deal with
this issue. Given a persistence diagram Δ, we define the prominence p of a point
(b, d) ∈ Δ by p = b − d; in other words, the prominence corresponds to the
lifespan of a peak during the computation of the persistence diagram. Given a
function f on a graph G, we define the infinite-dimensional Topological Pooling
vector of f with i − th coordinate given by

TopoPool(f)i = pi(Δf),

where pi(Δf) is the i-th highest prominence of the points of Δf if there is at
least i points in Δf and 0 otherwise. Since the stability of persistence diagrams
given in Eq. 1 implies the stability of the prominence of the points of Δf , such
a construction yields some stability for our pooling scheme.

Proposition 1. Let G be a graph and f and g two functions on a graph G with
vertices V . Then, for any integer n, and any 0 < k < n,

|TopoPool(f)k − TopoPool(g)k| ≤ 2 sup
x∈V

|f(x) − g(x)|

26 T. Bonis et al.

Fig. 5. The real SHREC 2014 dataset

Of course, in practice we cannot use an infinite-dimensional vector and we simply
consider a truncation of this vector keeping n first coordinates, we denote such
a truncated pooling vector “TopoPool-n”. Using the notations of Sect. 2, given
some n > 0, the pooling vectors (Pi)1≤i≤M we consider are

Pi = (TopoPool − n((Ci(Fi(x)))1), ..., T opoPool − n((Ci(Fi(x))))K).

5 Experiments

In this section we evaluate the sum-pooling, the max-pooling and our topological
pooling approaches on the SHREC 2014 dataset “Shape Retrieval of Non-Rigid
3D Human Models” [27], which we modify by applying a random rotation to
each 3D shape. The dataset is composed of 400 meshes of 40 subjects taking
10 different poses (Fig. 5) and we wish to classify each of these meshes with
respect to the pose taken by the subject. We consider both SIHKS features [20]
and curvature-based features corresponding to the unary features from [28] and
composed of 64 values corresponding to the curvatures, the Gaussian curvature,
the mean curvature . . . The coding step is performed using Sparse Coding [4]
and the computation are performed performed using the SPAMS toolbox [29].
The learning part is done using a Support Vector Machine. We use 3 shapes per
class for the training set, 2 for the validation set and 5 for the testing set. We
compare the traditional sum-pooling with our TopoPool-n with different values
for n -remark that n = 1 is equivalent to max-pooling- and under different
codebook sizes. As a baseline, we also display the results obtained using a rigid
Iterated Closest Point (ICP) [30] and a 1-nearest neighbour classification, which
aims at iteratively minimizing the distance between two point clouds through
rigid deformations. In our case it corresponds to finding the correct rotation to
align the shapes as two shapes in a similar pose are close, however the approach
can fail if it gets stuck in a local minimum and is not able to recover the correct
rotation. We run the experiment a hundred times, selecting the training and
testing sets at random. We display the mean accuracy over the multiple runs in
Table 1.

The first noticeable fact about our experiments being the overall better
results obtained by our Topological Pooling scheme compared to the max-pooling

Persistence-Based Pooling for Shape Pose Recognition 27

Table 1. Mean accuracy obtained on the SHREC 2014 dataset.

Pooling / Codebook size 40 60 80 100 120 140 160 180 200

SIHKS features

Sum-Pooling 0.53 0.56 0.60 0.60 0.58 0.62 0.61 0.60 0.60

TopoPool-1 0.46 0.55 0.53 0.54 0.58 0.59 0.63 0.64 0.64

TopoPool-5 0.69 0.71 0.69 0.70 0.73 0.70 0.74 0.73 0.72

TopoPool-10 0.70 0.71 0.71 0.69 0.72 0.71 0.73 0.74 0.72

TopoPool-15 0.72 0.73 0.71 0.70 0.74 0.71 0.74 0.75 0.71

TopoPool-20 0.72 0.73 0.70 0.72 0.73 0.72 0.73 0.75 0.73

Curvature features

Sum-Pooling 0.80 0.80 0.84 0.85 0.88 0.88 0.87 0.88 0.89

TopoPool-1 0.39 0.56 0.56 0.57 0.64 0.69 0.69 0.73 0.76

TopoPool-5 0.63 0.79 0.80 0.80 0.82 0.85 0.86 0.87 0.86

TopoPool-10 0.74 0.85 0.85 0.86 0.86 0.87 0.89 0.89 0.88

TopoPool-15 0.78 0.85 0.87 0.87 0.88 0.89 0.89 0.90 0.90

TopoPool-20 0.79 0.88 0.88 0.88 0.88 0.89 0.90 0.90 0.89

ICP 0.55

and to the sum-pooling for the SIHKS features. In the case of curvature fea-
tures, Topological Pooling and sum-pooling gives similar accuracy results for
large codebooks but in the case of smaller codebooks, Topological pooling gives
much better results. It is interesting to notice that the gap between the differ-
ent pooling scheme decreases as the size of the codebook increases. Indeed, the
smaller the codebook, the richer each word function in terms of topology -and
thus the richer each persistence diagrams will be-.

Regarding the running time of our experiment in the case of SIHKS features,
online testing using the bag-of-words procedure with the largest codebook to
a given shape takes around 40 seconds, where most of the time is devoted to
computing the SIHKS. On the other hand, performing ICP between two shapes
takes 6 seconds, thus the online testing time for a single shape with ICP is 6 times
the cardinality of our training set seconds; in our case 5 minutes. On the other
hand, with the ICP approach requires no offline training while the bag of words
requires to compute the codebook, perform the whole bag-of-words pipeline on
each training shape and compute the SVM which takes roughly 45 minutes.
Overall we have to classify 350 shapes, the bag-of-words approach requires 4
hour and a half while the ICP approach requires more than a day.

6 Conclusion

In this paper, we proposed to use the canonical graph structure on shapes to
capture neighborhood information between the different feature vectors. We

28 T. Bonis et al.

then built discrete “word functions” on this graph instead of following the tra-
ditional approach of considering a collection of independent “word” vectors.
We then proposed to consider new pooling features making use of this new
information and generalizing the classical max-pooling approach by using the
critical points of the “word functions”. We proposed to use 0-dimensional per-
sistent homology to ensure stability of a pooling output relying on these features.
Finally, we designed a new pooling method relying on these new features and
we experimentally showed that these features are efficient in a pooling context.

Acknowledgements. This work was supported by ANR project TopData ANR-
13-BS01-0008. First author was supported by the French Délégation Générale de
l’Armement (DGA). Second author was supported by Marie-Curie CIG-334283-HRGP,
a CNRS chaire dexcellence, a chaire Jean Marjoulet from Ecole Polytechnique, and a
Faculty Award from Google Inc.

References

1. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google:
Geometric words and expressions for invariant shape retrieval. ACM Trans. Graph.
30, 1–20 (2011)

2. Masci, J., Boscaini, D., Bronstein, M.M., Vandergheynst, P.: Shapenet: Convo-
lutional neural networks on non-euclidean manifolds. http://arxiv.org/abs/1501.
06297

3. Fei-Fei, L., Pietro, P.: A bayesian hierarchical model for learning natural
scene categories. In: Proceedings of the 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR 2005), CVPR
2005, vol. 2, pp. 524–531. IEEE Computer Society, Washington, DC (2005).
http://dx.doi.org/10.1109/CVPR.2005.16

4. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using
sparse coding for image classification. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2009)

5. Boureau, Y.-L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for
recognition. In: Proceedings of CVPR (2010)

6. Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: ICCV 2011,
pp. 2486–2493 (2011)

7. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 2006, vol. 2, pp. 2169–2178 (2006)

8. López-Sastre, R.J., Garćıa-Fuertes, A., Redondo-Cabrera, C., Acevedo-Rodŕıguez,
F.J., Maldonado-Bascón, S.: Evaluating 3D spatial pyramids for classifying 3D
shapes. Comput. Graph. 37, 473–483 (2013)

9. Li, C., Hamza, A.B.: Intrinsic spatial pyramid matching for deformable 3D shape
retrieval. IJMIR 2, 261–271 (2013)

10. Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape
analysis. Biol. Cybern. 70, 99–107 (1993)

11. Edelsbrunner, H., Harer, J.: Computational Topology - An Introduction. American
Mathematical Society, New York (2010)

http://arxiv.org/abs/1501.06297
http://arxiv.org/abs/1501.06297
http://dx.doi.org/10.1109/CVPR.2005.16

Persistence-Based Pooling for Shape Pose Recognition 29

12. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput.
Geom. 33, 249–274 (2005)

13. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
In: Proceedings of 21st ACM Symposium Computer Geometry, pp. 263–271 (2005)

14. Chazal, F., Cohen-Steiner, D., Guibas, L.J., Glisse, M., Oudot, S.Y.: Proximity
of persistence modules, their diagrams. In: Proceedings of 25th ACM Symposium
Computer Geometry (2009)

15. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The structure and stability of
persistence modules (2012). http://arxiv.org/abs/1207.3674

16. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In:
CVPR, pp. 2003–2010 (2014)

17. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for
topological machine learning. In: CVPR (2015)

18. Bubenik, P.: Statistical topology using persistence landscapes. JMLR 16, 77–102
(2015)

19. Sun, J., Ovsjanikov, M., Guibas, L.: A concise, provably informative multi-scale
signature based on heat diffusion. In: Proceedings of the Symposium on Geometry
Processing, SGP 2009, pp. 1383–1392 (2009)

20. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid
shape recognition. In: Proceedings of CVPR (2010)

21. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF).
Comput. Vis. Image Underst. 110, 346–359 (2008)

22. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill Inc., New York (1986)

23. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained
linear coding for image classification. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2010)

24. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale
image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010,
Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)

25. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector
coding of local image descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.)
ECCV 2010, Part V. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010)

26. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in
riemannian manifolds. J. ACM 60, 41 (2013)

27. Pickup, D., et al.: SHREC 2014 track: Shape retrieval of non-rigid 3D human
models, EG 3DOR 2014 (2014)

28. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and
labeling. ACM Trans. Graph. 29, 102 (2010)

29. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization
and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

30. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans.
Pattern Anal. Mach. Intell. 14, 239–256 (1992)

http://arxiv.org/abs/1207.3674

Bijectivity Certification of 3D Digitized
Rotations

Kacper Pluta1,2(B), Pascal Romon2, Yukiko Kenmochi1, and Nicolas Passat3

1 Université Paris-Est, LIGM, CNRS, ESIEE, Paris, France
kacper.pluta@univ-paris-est.fr, yukiko.kenmochi@esiee.fr

2 Université Paris-Est, LAMA, UPEM, Paris, France
pascal.romon@u-pem.fr

3 Université de Reims Champagne-Ardenne, CReSTIC, Reims, France
nicolas.passat@univ-reims.fr

Abstract. Euclidean rotations in R
n are bijective and isometric maps.

Nevertheless, they lose these properties when digitized in Z
n. For n = 2,

the subset of bijective digitized rotations has been described explicitly by
Nouvel and Rémila and more recently by Roussillon and Cœurjolly. In
the case of 3D digitized rotations, the same characterization has remained
an open problem. In this article, we propose an algorithm for certifying
the bijectivity of 3D digitized rational rotations using the arithmetic
properties of the Lipschitz quaternions.

1 Introduction

Rotations defined in Z
3 are simple yet crucial operations in many image process-

ing applications involving 3D data. One way of designing rotations on Z
3 is to

combine continuous rotations defined on R
3 with a digitization operator that

maps the result back into Z
3. However, the digitized rotation, though uniformly

close to its continuous sibling, often no longer satisfies the same properties. In
particular, due to the alteration of distances between points—provoked by the
digitization—the bijectivity is lost in general.

In this context, it is useful to understand which 3D digitized rotations are
indeed bijective. “Simple” 3D digitized rotations, in particular those around one
of the coordinate axes, possess the same properties as 2D digitized rotations.
Therefore, an obvious subset of 3D bijective digitized rotations consists of the
2D bijective digitized rotations embedded in Z

3. Nevertheless, the question of
determining whether a non-simple 3D digitized rotation is bijective, remained
open.

To our knowledge, few efforts were devoted to understand topological alter-
ations of Z

3 induced by digitized rotations. The contributions known to us were
geared toward understanding these alterations in Z

2: Andres and Jacob provided
some necessary conditions under which 2D digitized rotations are bijective [5];
Andres proposed quasi-shear rotations which are bijective but possibly gener-
ate errors, particularly for angles around π/2 [1]; Nouvel and Rémila studied
the discrete structure induced by digitized rotations that are not bijective but
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 30–41, 2016.
DOI: 10.1007/978-3-319-39441-1 4

Bijectivity Certification of 3D Digitized Rotations 31

generate no error [12,14]; moreover, they characterized the set of 2D bijective
digitized rotations [13]. More recently, Roussillon and Cœurjolly used arithmetic
properties of the Gaussian integers to give a different proof of the conditions for
bijectivity of 2D digitized rotations [17]. On the other hand, more general 2D
digitized rigid motions—rotations, translations and their compositions—were
studied by Ngo et al. [9], with their impact on the topological properties of finite
digital grids [10]. Moreover, Ngo et al. established some sufficient conditions for
topology preservation under 2D digitized rigid motions [11]. Lately we provided
a characterization of the set of 2D bijective digitized rigid motions [16].

In this article, our contribution is as follows. We consider an approach similar
to that proposed by Roussillon and Cœurjolly to prove the conditions for bijec-
tivity of 2D digitized rotations using arithmetic properties of Gaussian integers
[17]—which are complex numbers whose real and imaginary parts are integers
[4]. Indeed, the product of two complex numbers has a geometrical interpre-
tation; more precisely, it acts as a rotation when the norm of the multiplier
is one. In our work, we partially extend the results of Roussillon and Cœur-
jolly to 3D digitized rotations, employing Lipschitz quaternions, which play a
similar role to Gaussian integers. However, due to the non-commutative nature
of quaternions and their two-to-one relation with 3D rotations, the former app-
roach has not succeeded yet to fully characterize the bijective digitized rotations.
Nevertheless, we propose an algorithm which certifies whether a given digitized
rotation, defined by a Lipschitz quaternion, is bijective. As a consequence, we
cover all the rational rotations, i.e., those whose corresponding matrix represen-
tation contains only rational elements—since they correspond to rotations given
by Lipschitz quaternions. From the point of view of the applications, excluding a
rotation whose matrix has irrational elements is a minor issue, since computers
mainly work with rational numbers. Moreover, using rational numbers ensures
the exactness of the proposed certification algorithm.

This article is organized as follows. In Sect. 2, we recall the basic definitions
of 3D rotations and Lipschitz quaternions. Section 3 provides our framework for
studying the bijectivity of digitized rotations in Z

3. In Sect. 4, we provide an
algorithm certifying whether a given rational rotation is bijective or not when
digitized in Z

3. Finally, in Sect. 5, we conclude this article and provide some
perspectives.

2 Digitized Rotations in Three Dimensions

A rotation in R
3 is a bijective isometric map defined as

∣
∣
∣
∣
U : R

3 → R
3

x �→ Rx (1)

where R is a 3D rotation matrix. Note that the matrix R can be obtained
from a rotation angle and axis by Rodrigues’ rotation formula [6,8,19] or from
a quaternion [6,19].

32 K. Pluta et al.

2.1 Spatial Rotations and Quaternions

The proposed framework for bijectivity certification uses the formalism of quater-
nions. These are the elements of the set H = {a + bi + cj + dk | a, b, c, d ∈ R}
with the following properties:

i2 = −1, j2 = −1, k2 = −1,
jk = −kj = i, ki = −ik = j, ij = −ji = k .

Similarly to the set of complex numbers, H possesses a division ring structure,
albeit a non-commutative one. More precisely, for p, q, r ∈ H:

– the conjugate of q = a + bi + cj + dk is defined as q̄ = a − bi − cj − dk;
– the product of two quaternions, defined as

qp = (a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k) =
a1a2 − b1b2 − c1c2 − d1d2 + (a1b2 + b1a2 + c1d2 − d1c2)i

+(a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k,

is not commutative, i.e. qp �= pq, in general, although real numbers, i.e.,
quaternions such that q = q̄ do commute with all others;

– the norm of q is defined as |q| =
√

qq̄ =
√

q̄q =
√

a2 + b2 + c2 + d2;
– the inverse of q is defined as q−1 = q̄

|q|2 , so that qq−1 = q−1q = 1.

Any point in R
3 is represented by a pure imaginary quaternion: x =

(x1, x2, x3) � x1i+x2j+x3k. Then, any rotation U can be written as x �→ qxq−1,
where x ∈ R

3 [6,19]. The quaternion q is uniquely determined up to mul-
tiplication by a nonzero real number, and, if |q| = 1, up to a sign change:
qxq−1 = (−q)x(−q)−1; hence the correspondence between unit quaternions
and rotation matrices is two-to-one. Note that for any unit norm quaternion
q = a + bi + cj + dk, a rotation angle θ and an axis of rotation ωωω are given as
θ = 2 cos−1 a, and ωωω = (b,c,d)t

|(b,c,d)t| , respectively. We refer the reader unfamiliar with
quaternions to [2,6,19].

2.2 Digitized Rotations

According to Eq. (1), we generally have U(Z3) � Z
3. As a consequence, to define

digitized rotations as maps from Z
3 to Z

3, we usually consider Z
3 as a subset of

R
3, apply U , and then combine the real results with a digitization operator

∣
∣
∣
∣
D : R

3 → Z
3

(x, y, z) �→ (⌊
x + 1

2

⌋
,
⌊
y + 1

2

⌋
,
⌊
z + 1

2

⌋)

where �s	 denotes the largest integer not greater than s. The digitized rotation
is thus defined by U = D◦U|Z3 . Due to the behavior of D that maps R

3 onto Z
3,

digitized rotations are, most of the time, non-bijective. This leads us to define
the notion of point status with respect to a given digitized rotation.

Bijectivity Certification of 3D Digitized Rotations 33

Fig. 1. Examples of three different point statuses: digitization cells corresponding to
0-, 1- and 2-points are in green, black and red, respectively. White dots indicate the
positions of images of the points of the initial set Z

3 by U , embedded in R
3, subdivided

into digitization cells around the points of the final set Z
3, represented by gray trian-

gles. Note that, for readability purpose, U is a simple 3D digitized rotation such that
θ = π

9
,ωωω = (0, 0, 1)t. Therefore, as for 2D digitized rotations, only 0-, 1- and 2- point

statuses are possible. Note that only one 2D slice of 3D space is presented.

Definition 1. Let y ∈ Z
3 be an integer point. The set of preimages of y with

respect to U is defined as MU (y) = {x ∈ Z
3 | U(x) = y}, and y is referred to

as a s-point, where s = |MU (y)| is called the status of y.

Remark 1. In Z
3, |MU (y)| ∈ {0, 1, 2, 3, 4} and one can prove that only points

p,q ∈ Z
3 such that |p−q| <

√
3 can be preimages of a 2-point; points p,q, r ∈ Z

3

forming an isosceles triangle of side lengths 1, 1 and
√

2 can be preimages of a
3-point; points p,q, r, s ∈ Z

3 forming a square of side length 1 can be preimages
of a 4-point.

The non-injective and non-surjective behaviors of a digitized rotation result in
the existence of s-points for s �= 1. Figure 1 illustrates a simple 3D rotation which
provokes 0- and 2- point statuse.

3 Bijectivity Certification

3.1 Set of Remainders

Let us compare the rotated digital grid U(Z3) = qZ
3q−1 with the grid Z

3.
The digitized rotation U = D ◦ U is bijective if and only if each digitization
cell of Z

3 contains one and only one rotated point of qZ
3q−1; in other words,

34 K. Pluta et al.

∀y ∈ Z
3, |MU (y)| = 1. Let us denote by C (y) the digitization cell, i.e. the unit

cube, centered at the point y = (y1, y2, y3) ∈ Z
3:

C (y) =
[

y1 − 1
2
, y1 +

1
2

)

×
[

y2 − 1
2
, y2 +

1
2

)

×
[

y3 − 1
2
, y3 +

1
2

)

.

Instead of studying the whole source and target spaces, we study the set of
remainders defined by the map

∣
∣
∣
∣
Sq : Z

3 × Z
3 → R

3

(x,y) �→ qxq−1 − y.

Then, the bijectivity of U can be expressed as

∀y ∈ Z
3 ∃!x ∈ Z

3, Sq(x,y) ∈ C (0),

which is equivalent to the “double” surjectivity relation, used by Roussillon and
Cœurjolly [17]:

{∀y ∈ Z
3 ∃x ∈ Z

3, Sq(x,y) ∈ C (0)
∀x ∈ Z

3 ∃y ∈ Z
3, Sq(x,y) ∈ qC (0)q−1 (2)

provided that both sets Sq(Z3, Z3) ∩ C (0) and Sq(Z3, Z3) ∩ qC (0)q−1 coincide;
in other words, Sq(Z3, Z3) ∩ ((C (0) ∪ qC (0)q−1) \ (C (0) ∩ qC (0)q−1)) = ∅.
Hereafter, we shall rely on Formula (2), and in the study of the bijectivity of
digitized rotation U , we will focus on the values of Sq. More precisely, we will
study the group G spanned by values of Sq:

G = Zq
(

1
0
0

)
q−1 + Zq

(
0
1
0

)
q−1 + Zq

(
0
0
1

)
q−1 + Z

(
1
0
0

)
+ Z

(
0
1
0

)
+ Z

(
0
0
1

)
.

3.2 Dense Subgroups and Non-injectivity

The key to understanding the conditions that ensure the bijectivity of U is the
structure of G. For this reason, we start by looking at the image G of Sq, and
discuss its density.

Proposition 2. If one or more generators of G have an irrational term, then
G∩V is dense for some nontrivial subspace V . We say that G has a dense factor.

On the contrary, we have the following result.

Proposition 3. If all generators of G have only rational terms, then there exist
vectors σσσ,φφφ,ψψψ ∈ G which are the minimal generators of G.
Proof. The generators of G are given by the rational matrix B = [R | I3] where
I3 stands for the 3 × 3 identity matrix. As B is a rational, full row rank matrix,
it can be brought to its Hermite normal form H = [T | 03,3], where T is a
non-singular, lower triangular non-negative matrix and 03,3 stands for 3 × 3
zero matrix, such that each row of T has a unique maximum entry, which is

Bijectivity Certification of 3D Digitized Rotations 35

located on the main diagonal1 [18]. Note that the problem of computing the
Hermite normal form H of the rational matrix B reduces to that of computing
the Hermite normal form of an integer matrix: let s stand for the least common
multiple of all the denominators of B which is given by s = |q|2; compute the
Hermite normal form H′ for the integer matrix sB; finally, the Hermite normal
form H of B is obtained by s−1H′. The columns of H are the minimal generators
of G. Notice that the rank of B is equal to 3. Therefore, H gives a base (σσσ,φφφ,ψψψ),
so that G = Zσσσ + Zφφφ + Zψψψ. As H′ gives an integer base, sG is an integer
lattice. ��
Lemma 4. Whenever G is dense, the corresponding 3D digitized rotation is not
bijective.

Proof. Since G is dense, there exists μ = Sq(x,y) ∈ G ∩C (0), such that μ+σ =
Sq(x + i,y) also line in C (0). Then x and x + i are both preimages of y by U,
which is therefore not bijective. ��

When G is dense (see Fig. 2(a)), the reasoning of Nouvel and Rémila, orig-
inally used to discard 2D digitized irrational rotations as being bijective [13],
shows that a corresponding 3D digitized rotation cannot be bijective as well.
What differs from the 2D case is the possible existence of non-dense G with a
dense factor (see Fig. 2(b)). In this context, we state the following conjecture.

Conjecture 1. Whenever G has a dense factor, the corresponding digitized
rotation is not bijective.

Henceforth, we will assume that G is generated by rational vectors, and forms
therefore a lattice (see Fig. 2(c)). In other words, corresponding rotations are
considered as rational. The question now remains of comparing the (finitely
many) points in Sq(Z3, Z3) ∩ C (0) and Sq(Z3, Z3) ∩ qC (0)q−1.

3.3 Lipschitz Quaternions and Bijectivity

To represent 2D rational rotations, Roussillon and Cœurjolly used Gaussian
integers [17]. In R

3, rational rotations are characterized as follows [3].

Proposition 5. There is a two-to-one correspondence between the set of Lip-
schitz quaternions L = {a + bi + cj + dk | a, b, c, d ∈ Z} such that the greatest
common divisor of a, b, c, d is 1, and the set of rational rotations.

Working in the framework of rational rotations allows us to turn to inte-
gers: |q|2G is an integer lattice. As integer lattices are easier to work with from
the computational point of view, we do scale G by |q|2 in order to develop a
certification algorithm.

1 Note that the definition of Hermite normal form varies in the literature.

36 K. Pluta et al.

Fig. 2. Illustration of a part of G when: (a) G is dense; (b) G is not dense but has a
dense factor – the set of points at each plane is dense while the planes are spaced by a
rational distance; (c) G is a lattice. In the case of (a) and (b), only some random points
are presented, for the sake of visibility. In (c), vectors σσσ,φφφ,ψψψ are marked in red, blue
and green, respectively (Color figure online).

Similarly to the former discussion, after scaling G by |q|2, we consider the
finite set of remainders, obtained by comparing the lattice qZ

3q̄ with the lattice
|q|2Z3, and applying the scaled version of the map Sq defined as

∣
∣
∣
∣
Šq : Z

3 × Z
3 → Z

3

(x,y) �→ qxq̄ − qq̄y.
(3)

Indeed, Formula (2) is rewritten as
{∀y ∈ Z

3 ∃x ∈ Z
3, Šq(x,y) ∈ |q|2C (0)

∀x ∈ Z
3 ∃y ∈ Z

3, Šq(x,y) ∈ qC (0)q̄.
(4)

Note that the right hand sides of Formulae (3) and (4) are left multiples of q.
As a consequence, we are allowed to divide them by q on the left, while keeping
integer-valued functions. Let us define

Bijectivity Certification of 3D Digitized Rotations 37

∣
∣
∣
∣
S′
q : Z

3 × Z
3 → Z

4

(x,y) �→ xq̄ − q̄y.

Then, the bijectivity of U is ensured when
{∀y ∈ Z

3 ∃x ∈ Z
3, S′

q(x,y) ∈ q̄C (0)
∀x ∈ Z

3 ∃y ∈ Z
3, S′

q(x,y) ∈ C (0)q̄, (5)

provided that both sets S′
q(Z

3, Z3) ∩ q̄C (0) and S′
q(Z

3, Z3) ∩ C (0)q̄ coincide.

4 An Algorithm for Bijectivity Certification

In this section we present an algorithm which indicates whether a digitized ratio-
nal rotation given by a Lipschitz quaternion is bijective or not. The strategy con-
sists of checking whether there exists w ∈ ((q̄C (0)∪C (0)q̄)\(q̄C (0)∩C (0)q̄))∩Z

4

such that w = S′
q(x,y). If this is the case, then the rotation given by q is not

bijective, and conversely.
Because q is a Lipschitz quaternion, the values of S′

q span a sublattice Ǧ ⊂ Z
4.

Therefore, given a Lipschitz quaternion q = a+bi+cj+dk, solving S′
q(x,y) = w

with x,y ∈ Z
3 for w ∈ Ǧ leads to solving the following linear Diophantine

system:
Az = w (6)

where zt = (x,y) ∈ Z
6 and

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b c d −b −c −d

a −d c −a −d c

d a −b d −a −b

−c b a −c b −a

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The minimal basis (σ̌σσ, φ̌φφ, ψ̌ψψ) of Ǧ can be obtained from the columns of the
Hermite normal form of the matrix A. Since the rank of A is 3, we have
Ǧ = Zσ̌σσ + Zφ̌φφ + Zψ̌ψψ.

Therefore, the problem amounts to: (i) finding the minimal basis (σ̌σσ, φ̌φφ, ψ̌ψψ) of
the group Ǧ by reducing the matrix A to its Hermite normal form; (ii) checking
whether there exists a linear combination of these basis vectors w = uσ̌σσ+vφ̌φφ+wψ̌ψψ,
for u, v, w ∈ Z such that w ∈ (q̄C (0) ∪ C (0)q̄) \ (q̄C (0) ∩ C (0)q̄).

To find points of Ǧ that violate Formula (5), we consider points w ∈ Z
4 ∩

q̄C (0) (or w ∈ Z
4 ∩ C (0)q̄) such that w /∈ C (0)q̄ (or w /∈ q̄C (0)). Then, we

verify whether w belongs to Ǧ. The membership verification can be done in two
steps. Step 1: we check if Eq. (6) has solutions, while verifying if the following
holds:

aw1 − bw2 − cw3 − dw4 = 0,

where w = (w1, w2, w3, w4) and q = a + bi + cj + dk. Step 2: we check if Eq. (6)
has integer solutions by solving it. This can be done by reducing the matrix

38 K. Pluta et al.

[A | w] to the Hermite normal form. Note that before iterating over points
w ∈ Z

4 ∩ q̄C (0) (or w ∈ Z
4 ∩ C (0)q̄), we can first reduce the matrix A to its

Hermite normal form Ȟ and then reduce the augmented matrix [Ȟ | w], which
is computationally less costly, as explained in the following discussion.

All the steps are summarized in Algorithm 1. Figure 3 presents sets of points
qw ∈ qC (0)q̄ ∪ |q|2C (0) for some Lipschitz quaternions, which induce bijective
digitized rational rotations, while Fig. 4 presents non-bijective cases. Finally,
Table 1 lists some examples of Lipschitz quaternions that generate non-simple
3D bijective digitized rotations2.

Algorithm 1. Checks if a given Lipschitz quaternion generates a 3D bijec-
tive digitized rotation.
Data: a Lipschitz quaternion q = a + bi + cj + dk s.t. gcd(a, b, c, d) = 1.
Result: True if the digitized rotation given by q is bijective and false otherwise.

1 Ȟ ← HermiteNormalForm(A)
2 foreach w = (w1, w2, w3, w4) ∈ Z

4 ∩ q̄C (0) do

3 if aw1 − bw2 − cw3 − dw4 = 0 and {p | Ȟp = w,p ∈ Z
3} �= ∅ then

4 if w /∈ C (0)q̄ then
5 return false

6 return true

The time complexity of Algorithm 1 is given as follows.
Step 1: reduction of the matrix A to the Hermite normal form can be done

in a polynomial time [18]. For instance, one can apply the algorithm proposed
by Micciancio and Warinschi [7] or its more recent, optimized version pro-
posed by Pernet and Stein [15], whose running time complexity for full row
rank matrices—with some slight modifications it can handle non-full row rank
matrices—is O(mn4 log2 N(A)), where n is the number of rows, m the number
of columns and N(A) stands for a bound on the entries of the matrix A [7].
Here n = 4 and m = 6. Thus, the time complexity of Step 1 is O(log2 N(A)).

Step 2: the number of points in Z
4 ∩ q̄C (0) (resp. Z

4 ∩ C (0)q̄) is bounded
by |q|3. For each point, the time needed to reduce the matrix [Ȟ | w] to the
Hermite normal form is O(n4 log2 N([Ȟ | w])), where n = 4 and N([Ȟ | w]) is a
bound on the entries of the matrix [Ȟ | w] [7]. Therefore, the time complexity of
Step 2 is O(|q|3 log2 N([Ȟ | w])). Note that determining whether w /∈ C (0)q̄ (or
w /∈ q̄C (0)) can be done in a constant time while checking a set of inequalities.

Finally, we can conclude that the time complexity of Algorithm1 is given by
the complexity of Step 2, namely O(|q|3 log2 N([Ȟ | w])).

2 A complete list of Lipschitz quaternions in the range [−10, 10]4, inducing bijective
3D digitized rotations can be downloaded from: http://dx.doi.org/10.5281/zenodo.
50674

http://dx.doi.org/10.5281/zenodo.50674
http://dx.doi.org/10.5281/zenodo.50674

Bijectivity Certification of 3D Digitized Rotations 39

(a) (b)

Fig. 3. Visualization of qw ∈ qC (0)q̄ ∪ |q|2C (0) together with qC (0)q̄ and |q|2C (0),
for (a) q = 3+k and (b) q = 3+4i+k, each of which induce bijective digitized rational
rotation. Points qw are depicted as blue spheres (Color figure online).

(a) (b)

Fig. 4. Visualization of qw ∈ qC (0)q̄ ∩ |q|2C (0) – in blue, qw ∈ qC (0)q̄ \ |q|2C (0) –
in red, and |q|2C (0) \ qC (0)q̄ – in green, for (a) q = 4 + k and (b) q = 2 − 3i − 2j − 5k,
each of which induces a non-bijective digitized rational rotations (Color figure online).

40 K. Pluta et al.

Table 1. Examples of Lipschitz quaternions which generate 3D bijective digitized
rotations.

Lipschitz quaternion Angle axis representation

3 + 2i + j θ ≈ 73.4◦,ωωω =
(

2√
5
, 1√

5
, 0
)

5 + 4i + j θ ≈ 79.02◦,ωωω =
(

4√
17

, 1√
17

, 0
)

2 + i + j + k θ ≈ 81.79◦,ωωω =
(

1√
3
, 1√

3
, 1√

3

)

4 + j + 3k θ ≈ 76.66◦,ωωω =
(
0, 1√

10
, 3√

10

)

3 + i + j + k θ ≈ 60◦,ωωω =
(

1√
3
, 1√

3
, 1√

3

)

4 + i + j + k θ ≈ 46.83◦,ωωω =
(

1√
3
, 1√

3
, 1√

3

)

5 + i + j + k θ ≈ 38.21◦,ωωω =
(

1√
3
, 1√

3
, 1√

3

)

3 + 2i + 2j + 3k θ ≈ 107.9◦,ωωω =
(

2√
17

, 2√
17

, 3√
17

)

−5 + 3i + 5j + 5k θ ≈ 246.1◦,ωωω =
(

3√
59

, 5√
59

, 5√
59

)

5 − 4i + −5j + 5k θ ≈ 116.8◦,ωωω =
(
−2
√

2
33

, − 5√
66

, 5√
66

)

10 − 10i + 10j + 9k θ ≈ 118.4◦,ωωω =
(
− 10√

281
, 10√

281
, 9√

281

)

−10 + 9i − 9j − 10k θ ≈ 243.4◦,ωωω =
(

9√
262

, − 9√
262

, −5
√

2
131

)

2 + 2i + j + 2k θ ≈ 112.6◦,ωωω =
(
2
3
, 1
3
, 2
3

)

−2 − 2i − j + k θ ≈ 258.5◦,ωωω =
(
−
√

2
3
, − 1√

6
, 1√

6

)

5 Conclusion

In this article, we showed the existence of non-simple 3D bijective digitized
rotations—ones for which a given rotation axis does not correspond to any of
the coordinate axes.

The approach is similar to that used by Roussillon and Cœurjolly to prove the
conditions for the bijectivity of 2D digitized rotations using Gaussian integers
[17]. In our work, we used Lipschitz quaternions, which play a similar role to
Gaussian integers. Due to the non-commutative nature of quaternions and their
two-to-one relation with 3D rotations, the former approach has not succeeded
yet to fully characterize the set of 3D bijective digitized rotations. Nevertheless,
we proposed an algorithm that certifies whether a digitized rotation given by
a Lipschitz quaternion q is bijective or not. The time complexity of proposed
certification algorithm is O(|q|3 log2 N([Ȟ | w])).

As a part of our future work, we would like to prove Conjecture 1 and find the
general solution to Eq. (6), which allows us to characterize the set of 3D bijective
digitized rotations. We may also consider images of finite sets (e.g. digital images
or pieces of ambient space). The bijective digitized rotations found above will
map bijectively any finite subset of Z

3; but other (non-bijective) rotations may
also be bijective when restricted to a given finite subset. Identifying those can
be achieved by applying a similar algorithm to the one proposed by the authors
in [16] for 2D rigid motions, though at a greater cost.

Bijectivity Certification of 3D Digitized Rotations 41

Acknowledgments. The authors express their thanks to Éric Andres of Université
de Poitiers for his very helpful feedback and comments which allowed us to improve
the article.

The research leading to these results has received funding from the Programme
d’Investissements d’Avenir (LabEx Bézout, ANR-10-LABX-58).

References

1. Andres, E.: The quasi-shear rotation. In: Miguet, S., Ubéda, S., Montanvert, A.
(eds.) DGCI 1996. LNCS, vol. 1176. Springer, Heidelberg (1996)

2. Conway, J., Smith, D.: On Quaternions and Octonions. Taylor & Francis, Ak Peters
Series, Boca Raton (2003)

3. Cremona, J.: Letter to the editor. American Mathematical Monthly 94(8), 757–758
(1987)

4. Hardy, G.H., Wright, E.M.: Introduction to the Theory of Numbers, vol. IV. Oxford
University Press, Cambridge (1979)

5. Jacob, M.A., Andres, E.: On discrete rotations. In: DGCI. pp. 161–174 (1995)
6. Kanatani, K.: Understanding Geometric Algebra: Hamilton, Grassmann, and Clif-

ford for Computer Vision and Graphics. CRC Press, Boca Raton (2015)
7. Micciancio, D., Warinschi, B.: A linear space algorithm for computing the Hermite

Normal Form. In: ISSAC. pp. 231–236. ACM (2001)
8. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipula-

tion. CRC Press, Boca Raton (1994)
9. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid

transformations in 2D digital images. Comput. Vis. Image Underst. 117(4), 393–
408 (2013)

10. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for
2D digital images under rigid transformations. J. Math. Imaging Vis. 49(2), 418–
433 (2014)

11. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transfor-
mation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)

12. Nouvel, B., Rémila, É.: On colorations induced by discrete rotations. In: Nyström,
I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 174–
183. Springer, Heidelberg (2003)

13. Nouvel, B., Rémila, É.: Characterization of bijective discretized rotations. In:
Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer,
Heidelberg (2004)

14. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: Periodicity
and quasi-periodicity properties. Discrete Appl. Math. 147(2–3), 325–343 (2005)

15. Pernet, C., Stein, W.: Fast computation of Hermite normal forms of random integer
matrices. J. Number Theory 130(7), 1675–1683 (2010)

16. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective rigid motions of the
2D Cartesian grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI
2016. LNCS, vol. 9647, pp. 359–371. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-32360-2 28

17. Roussillon, T., Cœurjolly, D.: Characterization of bijective discretized rotations by
Gaussian integers. Research report, LIRIS UMR CNRS 5205 (2016). https://hal.
archives-ouvertes.fr/hal-01259826

18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)
19. Vince, J.: Quaternions for Computer Graphics. Springer, London (2011)

http://dx.doi.org/10.1007/978-3-319-32360-2_28
http://dx.doi.org/10.1007/978-3-319-32360-2_28
https://hal.archives-ouvertes.fr/hal-01259826
https://hal.archives-ouvertes.fr/hal-01259826

Morse Chain Complex from Forman Gradient
in 3D with Z2 Coefficients

Lidija Čomić(B)

Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
comic@uns.ac.rs

Abstract. A Forman gradient V on a cell complex Γ enables efficient
computation of the homology of Γ : the Morse chain complex defined
by critical cells of V and their connection through gradient V -paths is
equivalent to the homology of chain complex defined by cells of Γ and
the immediate boundary relation between them.

We propose an algorithm that computes the boundary operator of the
Morse chain complex associated with Forman gradient V defined on a
regular cell 3-complex Γ . The algorithm computes the boundary operator
with coefficients in Z2, and encodes it in the form of the boundary matrix.
Our algorithm is incremental: as it progresses through a filtration of Γ
induced by V , it computes the boundary operator for each critical cell
reached in the filtration order.

Keywords: Morse chain complex · Forman gradient

1 Introduction

Available scientific data sets are of increasing quantity and quality, thus gener-
ating the need for efficient computational methods for the topological analysis
of shapes represented as such complexes and of functions defined on them.

Forman theory has been established as a versatile and widely applied tool
in many research fields, such as computational topology, computer graphics,
scientific visualization, molecular shape analysis, and geometric modeling [1,2,7–
9,11,13]. To be able to exploit its theoretical results, starting from a scalar field f
given on the vertices of a regular cell complex Γ , a Forman gradient V is defined
on Γ . Many algorithms that construct such gradient have been proposed, and
the connection between critical points of scalar field f and critical cells of the
associated Forman gradient V has been established in 2D [9] and 3D [13].

The Morse chain complex M of a Forman gradient V on a cell complex Γ
enables the calculation of its (persistent) homology [4,12]. The chain groups of
M are defined by the critical k-cells of V and the boundary operator is defined
through gradient V -paths connecting them.

We propose here an iterative algorithm, which computes the boundary opera-
tor ∂M and boundary matrices Bk with coefficients in Z2 from a Forman gradient
V on a regular 3-complex Γ in R

3. The algorithm updates the Morse chain com-
plex at each step of the Forman gradient traversal. Thus, it produces the Morse
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 42–52, 2016.
DOI: 10.1007/978-3-319-39441-1 5

Morse Chain Complex from Forman Gradient in 3D 43

chain complex not only for the given cell complex Γ , but also for each subcom-
plex Fi in a (non -unique) filtration ∅ = F0 ⊆ F1 ⊆ ... ⊆ FM = Γ induced
by V .

In Sect. 2 we give some basic notions on Forman theory. In Sect. 3 we describe
our algorithm for computing the Morse chain complex M. In Sect. 4 we summa-
rize the paper with a brief discussion.

2 Background Notions

We review some basic notions on Forman gradient and on the associated Morse
chain complex. We focus on regular cell 3-complexes. Recall that a cell d-complex
in R

m is a finite set Γ of cells in R
m such that (i) the cells in Γ are pairwise

disjoint, and (ii) for each cell a ∈ Γ , the boundary of a is a disjoint union
of cells in Γ . The maximum of dimensions of cells in Γ is d. A complex is
constructed inductively by starting from a discrete set of points and attaching
discs of nondecreasing dimension along their boundaries. Each attaching map
is continuous, homeomorphic on the interior of discs, and maps the boundary
of the disc to a union of lower-dimensional discs. A complex is regular if each
attaching map is a homeomorphism. The immediate boundary of a k-cell a in Γ
is composed of (k − 1)-cells incident to a (called faces of a). The set of k-cells in
Γ is denoted as Γk. The total number of cells in Γ is denoted as n.

2.1 Forman Gradient

A discrete vector field V on a regular cell complex Γ is a collection of pairs (a, b),
such that

– a is a k-cell, and b is a (k + 1)-cell of Γ ,
– a is a face of b (denoted as a < b), and
– each cell in Γ is in at most one pair of V .

Thus, V can be seen as a mapping V : Γ → Γ ∪{∅}. If (a, b) ∈ V , then V (a) = b,
and (from the third condition of the previous definition) V (b) = ∅.

A V -path is a sequence a1, b1, a2, b2, ..., ar+1 of k-cells ai and (k + 1)-cells bj ,
i = 1, .., r+1, j = 1, .., r, such that (ai, bi) ∈ V , bi > ai+1, and ai �= ai+1. V -path
a1, b1, ..., ar+1, r > 0, is closed if ar+1 = a1. Sequence a1 is a stationary V -path.

A discrete vector field V is called a Forman (discrete) gradient if and only
if there are no closed V -paths in V . A critical cell of V of index k is a k-cell
c which does not appear in any pair of V . In other words, a cell c is critical if
V (c) = ∅, and c /∈ ImV . We denote as C the set of critical cells, and as Ck the
set of critical k-cells.

In Fig. 1, two Forman gradients V1 and V2 are illustrated. The pairing between
a k-cell a and a (k +1)-cell b is indicated by an arrow starting at a and pointing
towards b. Both gradients V1 and V2 have two critical vertices (labeled 1 and 2)
and one critical edge (labeled c). Gradient V2 has also one critical face (labeled D)
and one critical 3-cell (labeled v).

44 L. Čomić

1

2

3

4

b
c

d

f

A

DBC

e

a
v

1

2

3

4

b
c

d

e f

A

DC B
a

v

)b()a(

Fig. 1. Forman gradient (a) V1 and (b) V2 defined on a complex Γ with one 3-cell, four
triangles, six edges and four vertices (a solid tetrahedron). Arrows indicate the pairing
between cells (green for vertices and edges, blue for edges and faces, red for faces and
3-cells). (Color figure online)

2.2 Morse Chain Complex

The homology of cell complex Γ with Z2 coefficients can be computed as the
homology of the chain complex with chain groups defined by the k-cells in Γ , and
the boundary operator defined for each k-cell a in Γ as the set of all (k −1)-cells
in its immediate boundary. The homology of Γ is equivalent to the homology of
the Morse chain complex M induced by a Forman gradient V on Γ [5]. The chain
groups of M are defined by the critical cells of V , and the boundary operator ∂M
is defined by the parity of gradient V -paths connecting them: a critical (k − 1)-
cell c is in the boundary ∂M(d) of critical k-cell d in the Morse chain complex
M if there is an odd number of V -paths connecting some (k − 1)-cell incident
to d in Γ to c, i.e., for d ∈ Ck

∂M(d) =
∑

c∈Ck−1
there is an odd number of V -paths

starting at a cell e ∈ Γk−1, e<d, and ending at c

c

Complex M has fewer cells than complex Γ , implying that homology compu-
tation on M requires less time than homology computation on Γ , if the bound-
ary operator ∂M can be computed efficiently. In the next section, we propose
an iterative algorithm that computes this boundary operator and the boundary
matrices Bk of the Morse chain complex M, not only for Γ , but also for sub-
complexes Fi of Γ in a filtration induced by the topological order defined by
Forman gradient V .

3 Extraction Algorithm

The input of the algorithm is a regular cell 3-complex Γ in R
3, endowed with

a Forman gradient V . The gradient V induces a filtration ∅ = F0 ⊂ F1 ⊂ .. ⊂

Morse Chain Complex from Forman Gradient in 3D 45

FM = Γ of Γ , which is computed in the preprocessing step of the algorithm. In
the main loop of the algorithm, the boundary operator ∂M on the Morse chain
complex M is computed iteratively, while traversing a filtration induced by V .
In the post processing step, boundary matrices Bk, 1 ≤ k ≤ 3, are constructed
from boundary operator ∂M.

Recall that a cell complex is regular if all the attaching maps are homeomor-
phisms, i.e., if there are no identifications on the boundaries of attached cells. We
are interested in computing the boundary operator ∂M of the associated Morse
chain complex M and the boundary matrices Bk, 1 ≤ k ≤ 3, with coefficients in
Z2. Thus, there is no need to consider the orientation of cells: the incidence coef-
ficient between incident cells of consecutive dimension in Γ is equal to 1. Most
complexes used in shape modeling, computer graphics, or image processing, such
as cubical and simplicial complexes, are regular.

3.1 Filtration

A Forman gradient V on a cell complex Γ can be encoded in a directed acyclic
graph (DAG) G = (N,A). Each node in N corresponds either to a critical cell
of V , or to a pair of cells in V , i.e., N = {{c} : c ∈ C} ∪ {{a, b} : (a, b) ∈ V }.
There is an arc in A connecting node m1 ∈ N to node m2 ∈ N if a cell in node
m2 is in the boundary of a cell in node m1.

The DAG G encodes a partial order on the set N of nodes, which can be
extended to a (non-unique) total order, called topological order of the DAG [3].
When the nodes in N are sorted in ascending topological order as m1 ≤ m2 ≤
... ≤ mM , then no cell in Γ comes before any cell in its boundary.

Each subsequence m1, .. mi corresponds to a subcomplex Fi of Γ . The topo-
logical order induces the filtration ∅ = F0 ⊆ F1 ⊆ ... ⊆ FM = Γ of Γ , where
each Fi, 1 ≤ i ≤ M , is obtained from Fi−1 by adding to it the cells in mi. Thus

– Fi = Fi−1 ∪ {c}, where c is a critical cell of V , or
– Fi = Fi−1 ∪ {a, b} where (a, b) ∈ V .

For the Forman gradient V1 illustrated in Fig. 1(a), one possible topological
order is e.g.

{{1}, {2}, {3, a}, {4, b}, {c}, {d,A}, {e,B}, {f, C}, {D, v}}.

For Forman gradient V2 in Fig. 1(b), one possible topological order is

{{1}, {2}, {3, a}, {4, b}, {c}, {d,A}, {e,B}, {f, C}, {D}, {v}}.

The corresponding filtrations of complex Γ are illustrated in Fig. 2.

3.2 Boundary Operator

For each critical edge c, ∂M(c) is either empty, or it consists of two distinct
critical vertices. As the gradient lines connecting critical vertices and edges never
split, they can be extracted by tracing the Forman gradient V starting from the

46 L. Čomić

1 1

2

1

2

3
a

(a) Conn(1) = {1} (b) Conn(2) = {2} (c) Conn(3) = {1}
Conn(a) = ∅

1

2

3

4

a

b

1

2

3

4

a

b
c

1

2

3

4

a

b
c

d

A

(d) Conn(4) = {1} (e) Conn(c) = {c} (f) Conn(d) = ∅
Conn(b) = ∅ ∂M(c) = {1, 2} Conn(A) = ∅

A

e

d
c

1

2

3

4

a

b

B C
A

fe

1

2

3

4

a

b
c

d

B

(g) Conn(e) = {c} (h) Conn(f) = {c}
Conn(B) = ∅ Conn(C) = ∅

1

2

3

4

b
c

d

f

A

DBC

e

a
v

1

2

3

4

a

b
c

d

e f

A
C B D

1

2

3

4

b
c

d

e f

A

DC B
a

v

(i) Conn(D) = ∅ (j) Conn(D) = ∅ (k) ∂M(v) = {D}
∂M(D) = {c}�{c} = ∅

Fig. 2. (a)–(h) The common subcomplexes in the filtrations induced by the topological
order of Forman gradients V1 and V2 illustrated in Fig. 1, and the updates of sets Conn
and ∂M performed by the extraction algorithm. (i) The final complex obtained by
adding the paired face D and 3-cell v to the complex illustrated in (h) and the last
step of the extraction algorithm for Forman gradient V1 illustrated in Fig. 1(a). (j) and
(k) The final complex obtained by adding critical face D and critical 3-cell v to the
complex in (h) and the last steps of the extraction algorithm for Forman gradient V2

illustrated in Fig. 1(b)

Morse Chain Complex from Forman Gradient in 3D 47

endpoints of each critical edge c until critical vertices are reached. If the two
reached critical vertices are distinct, then there is a unique gradient path from c
to each of them, and they both belong to ∂M(c). Otherwise, if the same critical
vertex is reached from both endpoints of c, then it is reached through two distinct
gradient paths from c, and ∂M(c) is empty.

Dually, gradient lines connecting critical 3-cells and faces never merge, and
can be extracted by backtracking V starting from critical faces until critical
3-cells are reached. Each critical face d belongs to ∂M(v) of two distinct critical
3-cells, or it does not belong to ∂M(v) for any critical 3-cell v, depending on
whether the two reached critical 3-cells are distinct or the same, respectively.
Thus, boundary operator for critical edges and critical 3-cells (and boundary
matrices B1 and B3) can be computed directly from V in a straightforward
fashion. For completeness, we will include their computation in the algorithm
through the same technique used for the computation of boundary operator for
faces (and boundary matrix B2).

The interesting and challenging part of the algorithm is the extraction of
boundary operator for critical faces in the Morse chain complex, and we describe
this part of the algorithm in greater detail. The algorithm is iterative. It traverses
the cells of the complex in ascending order determined by the Forman gradient
V and the induced filtration F and updates two sets (Conn and ∂M) associated
with relevant edges and faces.

The edges that contribute to boundary operator for faces are critical edges
and edges that are paired with a face, while the edges paired with a vertex do
not contribute to it. The faces that contribute to boundary operator for critical
faces are critical faces of V , and those that are paired with an edge. The latter
will be processed at the same step of the algorithm as the edge they are paired
with. The algorithm stores for each current reached edge a the set Conn(a) of
all critical edges c that can be reached from a following the Forman gradient V ,
through an odd number of gradient V -paths.

If a is a critical edge, then the only critical edge that can be reached from a
is a itself, through a unique stationary path of length 0 (Conn(a) = {a}). This
unique path from a to a consists of a only.

If edge a is paired with some face b in V , then each V -path starting at a is
of the form a, b, e, ..., where e is an edge incident to face b in Γ . The only critical
edges that can be reached from a are those that can be reached from some of
the edges e. In other words, the set of all gradient V -paths that start at edge
a and connect edge a to some critical edge can be obtained by adding edge a
and face b at the beginning of each gradient V -path that starts at some edge e
incident to face b in Γ and ends at some critical edge. Such edges e are those
that are not paired with a vertex in V : they are either critical edges, or edges
that are paired with some face in V . The information contained in the edges e in
the boundary of b is propagated to edge a. If a critical edge c cannot be reached
through a V -path from some edge e incident to face b in Γ , then it cannot be
reached from edge a, and it does not belong to Conn(a). If c can be reached
through a V -path from some edge e incident to b in Γ , then the total number of
V -paths from a to c that pass through e is equal to the total number of V -paths

48 L. Čomić

from e to c. This is due to the fact that there is exactly one V -path from a to
e: it is the path a, b, e. The total number of paths from a to c (mod 2), i.e., the
parity of the number of such paths, is equal to the sum (mod 2) of the number
of paths from some edge e incident to face b in Γ to c. The sum is taken over
all edges e. Thus, the set Conn(a) of all critical edges that can be reached from
edge a through an odd number of V -paths can be obtained as the symmetric
difference of sets Conn(e) over all edges e incident to face b in Γ .

When a critical face d is reached by the algorithm, critical edges c in the
sets Conn(e) associated with the edges e incident to critical face d in Γ are
used to compute the boundary operator ∂M(d). With the similar reasoning as
above, we conclude that ∂M(d) can be obtained as the symmetric difference of
sets Conn(e) over all edges e incident to d in Γ .

We give a more formal pseudo-code-like description of the algorithm, and we
illustrate its steps in Fig. 2. At step i, i.e., when complex Fi is reached in the
filtration F , the following actions are performed depending on Di = Fi − Fi−1:

Di = {c}, c ∈ C0

– set Conn(c) = {c}
For example, after the addition of critical vertex 1 to empty complex F0, the

set Conn(1) of critical vertices that are connected to critical vertex 1 through
an odd number of gradient V -paths contains only vertex 1 (see Fig. 2(a)), and
similarly for critical vertex 2 (Fig. 2(b)).

Di = {a,b}, (a,b) ∈ V,a ∈ Γ0,b ∈ Γ1

– set Conn(a) = Conn(a1), where a1 is the other endpoint of edge b
– set Conn(b) = ∅

For example, when vertex 3 and edge a (that are paired in V) are reached and
added to the complex, the set Conn(3) of critical vertices connected to vertex 3
contains critical vertex 1 (see Fig. 2(c)). Similarly, when vertex 4 and edge b are
added, the set Conn(4) contains critical vertex 1 (Fig. 2(d)). The sets Conn(a)
and Conn(b) are empty.

Di = {c}, c ∈ C1

– set Conn(c) = {c}, ∂M(c) = ∅
– for each of the two vertices v incident to c in Γ do ∂M(c) = ∂M(c)
Conn(v)

For example, the two vertices incident to critical edge c in Γ are 2 and 4. Since
Conn(2) = {2}, Conn(4) = {1} and 1 �= 2, the boundary ∂M(c) of c contains
critical vertices 1 and 2. The set Conn(c) of critical edges that are connected to
c contains only edge c (see Fig. 2(e)).

Di = {a,b}, (a,b) ∈ V,a ∈ Γ1,b ∈ Γ2

– set Conn(a) = ∅
– for each edge e incident to face b in Γ do Conn(a) = Conn(a)
Conn(e)
– set Conn(b) = ∅

Morse Chain Complex from Forman Gradient in 3D 49

For example, there are no critical edges in the set Conn(d) of edge d paired
with face A in V , because the other two edges a and b incident to face A in Γ are
paired with a vertex in V : no critical edge can be reached from edge d through
V (see Fig. 2(f)). The set Conn(e) for edge e paired with face B in V contains
critical edge c, because c is incident to face B in Γ , and the remaining edge b
incident to A is paired with a vertex (Fig. 2(g)). The set Conn(f) for edge f
paired with face C contains critical edge c, because the other two edges incident
to face C in Γ are a and e. Edge a is paired with a vertex (Conn(a) = ∅) and
Conn(e) = {c} (Fig. 2(h)).

Di = {a,b}, (a,b) ∈ V,a ∈ Γ2,b ∈ Γ3

– set Conn(a) = ∅
– for each face f incident to 3-cell b in Γ do Conn(a) = Conn(a)
Conn(f)

For example, Conn(D) = ∅, because each of the remaining faces A, B and
C incident to 3-cell v in Γ is paired with an edge, and hence no critical face is
connected to any of them through V1 (see Fig. 2(i)).

Di = {d},d ∈ C2

– set Conn(d) = {d}
– set ∂M(d) = ∅
– for each edge e incident to d in Γ do ∂M(d) = ∂M(d)
Conn(e)

For example, ∂M(D) = ∅, because there are two gradient paths starting at
an edge incident to D in Γ and ending at c: one starts at edge f , and the other
at edge c (see Fig. 2(j)).

Di = {v}, c ∈ C3

– set ∂M(v) = ∅
– for each face f incident to v in Γ do ∂M(v) = ∂M(v)
Conn(f)

For example, ∂M(v) = {D}, since there is one gradient path from a face
incident to 3-cell v in Γ to critical face D: it is the stationary path D (see
Fig. 2(k)).

3.3 Boundary Matrices

There is a 1-1 correspondence between rows in Bk and critical (k − 1)-cells of
V , and between columns of Bk and critical k-cells of V . Boundary matrices are
computed from the boundary operator in a straightforward manner.

For the 2-complex Γ1 and the Forman gradient illustrated in Fig. 2(i), the
computed boundary matrices are

B1 =
[

1
1

]

and B2 =
[
0
]
.

The rows of matrix B1 correspond to critical vertices 1 and 2, respectively,
and the column corresponds to critical edge c.

50 L. Čomić

The row of matrix B2 corresponds to critical edge c and the column corre-
sponds to critical face D.

For the 3-complex Γ and Forman gradient V1 illustrated in Fig. 1(a) and in
Fig. 2(j), the (only nontrivial) boundary matrix is

B1 =
[

1
1

]

.

For the 3-complex Γ and Forman gradient V2 in Figs. 1(b) and 2(k), the
boundary matrices are

B1 =
[

1
1

]

B2 =
[
0
]

and B3 =
[
1
]
.

The row of matrix B3 corresponds to critical face D and the column corre-
sponds to critical 3-cell v.

3.4 Analysis

The preprocessing step of the proposed algorithm finds a topological order in
the DAG G = (N,A) induced by Forman gradient V on the complex Γ . The
number |N | of nodes in N is in O(n), where n is the total number of cells in Γ .
The number |A| of arcs in A in a DAG is at most |N | · |N − 1|/2. Thus, |A| is
in O(n2). Kahn’s algorithm finds a topological order of the nodes in N in time
O(|N | + |A|) = O(n2) [3].

If Γ is a cubical complex, then each k-cell has a constant number of (k − 1)-
cells in its immediate boundary (six for 3-cells, four for edges and two for edges).
Thus, the number |A| of arcs in A is in O(n), and the preprocessing step takes
O(n) time in the worst case.

Proposition 1. The proposed algorithm correctly extracts the boundary opera-
tor ∂M and boundary matrices Bk from the Forman gradient V on a regular 3D
cell complex Γ .

Proof. We need to show that the extracted boundary operator ∂M is correct and
does not depend on the filtration order. The algorithm maintains the following
invariant: if the sets Conn and ∂M are correct for complex Fi−1, then the appli-
cation of the corresponding step of the algorithm produces the correct sets Conn
and ∂M for complex Fi, 1 ≤ i ≤ n. This follows from the discussion in Sect. 3.2,
and the fact that the initial complex F0 is empty. Thus, for each sub complex
Fi, the algorithm computes the correct sets Conn and ∂M. The last complex in
every filtration induced by some topological order is Γ , implying that the output
of the algorithm is correct and independent of the filtration order.

Proposition 2. The time cost of the extraction algorithm is in O(nhc), where
h is the maximum cardinality of the set of cells forming the immediate boundary
of cells in Γ and c is the total number of critical cells of V .

Morse Chain Complex from Forman Gradient in 3D 51

Proof. The algorithm iterates over the filtration induced by V , and the number
of complexes Fi in the filtration is in O(n). The time cost for each step of the
algorithm depends on the set Di, and can be broken in two parts. The first
consists of initialization of sets Conn and/or ∂M, which can be done in constant
time. The second part is due to loop through O(h) (k − 1)-cells incident to the
processed k-cell (critical k-cell c if Di = {c}, c ∈ Ck, or higher-dimensional cell
b if Di = {(a, b)}, (a, b) ∈ V), and the computation of symmetric difference of
O(h) sets each containing O(c) elements.

If Γ is a cubical 3-complex, then h is constant (h = 6), and the extraction
algorithm runs in time O(nc) = O(n2) (the total number of critical cells of V
may be linear in the total number of cells in Γ).

The alternative algorithms for the extraction of Morse chain complex with
Z2 coefficients have been proposed in [6,13]. Both algorithms first construct a
Forman gradient on a (cubical) cell 3-complex Γ , and then the Morse chain
complex induced by it.

For each critical k-cell d of V , the algorithm in [13] follows all gradient paths
that start at d using a breadth first search, and counts those that connect d
to another critical (k − 1)-cell c. First, the (k − 1)-cells incident to d in Γ that
are paired with some k-cell in V are enqueued. Then, for each (k − 1) cell a
in the queue that is paired with a k-cell b in V , each non-critical (k − 1)-cell e
that is incident to b in Γ and that is paired with a k-cell in V is enqueued and
subsequently processed by the algorithm. The gradient paths connecting edges
and faces may (branch and) merge, causing the possible multiple traversal of
cells: when processing a critical k-cell d, each (k − 1)-cell e that can be reached
from d through a V -path may be enqueued and processed multiple times.

The algorithm in [6] improves on the previous one by not allowing this multi-
ple traversal. It first extracts all (k − 1)-cells that can be reached from a critical
k-cell d by traversing Forman gradient V and deleting the visited cells, thus
preventing the multiple traversal of cells. Then, from each critical (k − 1) cell
c that can be reached from d, V -paths connecting d and c are backtracked and
their number is counted (mod 2). The reported computational complexity of
algorithms in [13] and [6] is in O(n2) and O(cn), respectively.

Both algorithms in [13] and [6] compute the boundary operator ∂M and
boundary matrices for the given cubical 3-complex Γ with the Forman gradient
V . Unlike ours, these algorithms do not adapt straightforwardly to the com-
putation of the same boundary information for all intermediate complexes in a
filtration induced by V .

4 Conclusions

We have presented an iterative algorithm that extracts the boundary operator
∂M and boundary matrices Bk, k = 1, 2, 3 for homology computation over Z2

of the Morse chain complex M of a regular 3D cell complex Γ endowed with a
Forman gradient V . The algorithm progresses through a filtration of Γ induced

52 L. Čomić

by V , and computes this data not only of the Morse chain complex of Γ but also
of each of the subcomplexes in the filtration of Γ .

Our present work includes the extension of the algorithm presented here to
computation of boundary operator and boundary matrices with coefficients in Z

for cell complexes in arbitrary dimension. We are also developing a specialization
of the extraction algorithm to cubical complexes. The structure of cubical com-
plexes allows for implicit encoding of its cells, which can be accessed through
their combinatorial coordinates [10]. We will utilize this encoding for efficient
implementation of the extraction algorithm. We plan to investigate the compu-
tation of persistent homology of Γ using the extracted boundary matrices.

References

1. Cazals, F., Chazal, F., Lewiner, T.: Molecular shape analysis based upon the
Morse-Smale complex and the Connolly function. In: Proceedings of the Nine-
teenth Annual Symposium on Computational Geometry, pp. 351–360 (2003)

2. Čomić, L., Mesmoudi, M.M., De Floriani, L.: Smale-like decomposition and For-
man theory for discrete scalar fields. In: Debled-Rennesson, I., Domenjoud, E.,
Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 477–488. Springer,
Heidelberg (2011)

3. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press,
Cambridge (1990)

4. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. Discrete Comput. Geom. 28(4), 511–533 (2002)

5. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)
6. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D

Morse-Smale complexes and persistent homology using discrete Morse theory. Vis.
Comput. 28(10), 959–969 (2012)

7. Gyulassy, A., Bremer, P.-T., Hamann, B., Pascucci, V.: A practical approach to
Morse-Smale complex computation: scalability and generality. IEEE Trans. Vis.
Comput. Graph. 14(6), 1619–1626 (2008)

8. Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of
Morse-Smale complexes for three-dimensional scalar functions. IEEE Trans. Vis.
Comput. Graph. 13(6), 1440–1447 (2007)

9. King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from
point data. Exp. Math. 14(4), 435–444 (2005)

10. Kovalevsky, V.A.: Geometry of Locally Finite Spaces (Computer Agreeable Topol-
ogy and Algorithms for Computer Imagery). Editing House Dr. Bärbel Kovalevski,
Berlin (2008)

11. Lewiner, T., Lopes, H., Tavares, G.: Applications of Forman’s discrete Morse the-
ory to topology visualization and mesh compression. Trans. Vis. Comput. Graph.
10(5), 499–508 (2004)

12. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Redwood City
(1984)

13. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing
discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal.
Mach. Intell. 33(8), 1646–1658 (2011)

Parallel Homology Computation of Meshes

Guillaume Damiand1(B) and Rocio Gonzalez-Diaz2

1 Univ Lyon, CNRS, LIRIS, UMR5205, F-69622 Lyon, France
guillaume.damiand@liris.cnrs.fr

2 Dpto. de Matemática Aplicada I, Universidad de Sevilla, 41012 Sevilla, Spain
rogodiuses@gmail.com

Abstract. In this paper, we propose a method to compute, in paral-
lel, the homology groups of closed meshes (i.e., orientable 2D manifolds
without boundary) represented by combinatorial maps. Our experiments
illustrate the interest of our approach which is really fast on big meshes
and which obtains good speed-up when increasing the number of threads.

Keywords: Homology groups computation · 2D combinatorial maps ·
Parallel algorithm

1 Introduction

With the rapid increase of the amount of data produced in recent decades, avail-
ability of efficient tools to analyze these data is of great importance. Homology
computation is a basic tool that helps to identify connected components, holes
and voids in the given data. Nevertheless, the design of efficient algorithms for
computing homology on large data is still a challenging task nowadays.

In [11], two parallel algorithms to compute homology of large simplicial com-
plexes on multicore machines and GPUs were presented. The given complex is
decomposed into different partitions. A map from simplices to their boundaries
and coboundaries is constructed. This step takes up the highest percentage of the
total execution time. Then, parallel algebraic reductions of cells [8] that reduce
the size of the chain complex while maintaining its homology are performed. The
modification of boundaries and coboundaries is also time-consuming. Finally,
reduced chain complexes are merged together and algebraic reductions are then
performed sequentially to compute the homology of the input complex.

In this paper, we use 2D combinatorial maps to represent meshes (i.e., ori-
entable 2D manifolds) avoiding the time-consuming step of constructing and
modifying boundaries and coboundaries of cells. Besides, instead of using alge-
braic structures (i.e., chain complexes) our data structures are always combina-
torial maps. The principle of our method is to merge, in parallel, the faces of the
mesh while the topology is preserved. To achieve this goal, faces of the object
are dispatched in clusters. Edges shared by two faces in the same cluster can
be processed safely in parallel. The edges shared by two faces in different clus-
ters are then processed sequentially. In order to test quickly (in almost constant
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 53–64, 2016.
DOI: 10.1007/978-3-319-39441-1 6

54 G. Damiand and R. Gonzalez-Diaz

time) if two adjacent faces can be merged, union find trees are used. At the end
of the process, a minimal 2D combinatorial map gives a direct representation of
homology generators of the given mesh.

Section 2 recalls the related material regarding combinatorial maps and
homology computation on these maps. Section 3 proposes a parallel algorithm
to compute a minimal combinatorial map from which we can directly obtain
homology groups and generators. Some experimental and computational results
are presented in Sect. 4. Finally, we summarize the paper with a brief discussion
in Sect. 5.

2 Preliminary Notions

2.1 2D Combinatorial Maps

A 2D combinatorial map [6,9], called 2-map, is a model of representation of a
mesh, which is composed by i-cells: vertices or 0-cells associated with points,
edges or 1-cells which link two vertices, and faces or 2-cells which are bounded
by cycle of edges. Two cells are incident if one cell belongs to the boundary of
the other one; while two i-cells c1 and c2 are adjacent if it exists one (i − 1)-
cell incident to both c1 and c2. Note that, in the meshes considered here, it is
possible to mix different types of faces. For example, we can find triangles and
quadrangles in a same mesh. The mesh shown in Fig. 1a, has 5 faces, 14 edges
and 12 vertices. The 2-map shown in Fig. 1b describing such mesh has 20 darts.

f3

1e
4e

5e

f2
2e 3e

f4

v2

v1

f1

v3

6e

f5 7e

(a)

4

5

1
2

3

6

11

12

9

8

10

7

13

16

17

14
15

18

20

19

(b)

Fig. 1. (a) Example of a mesh. (b) The corresponding 2-map.

An edge e is dangling if it is adjacent to only one edge (like edge e6 in Fig. 1a).
In this case, one vertex incident to e is incident to no other edge than e. An edge
e′ is isolated if it has no adjacent edge (like edge e7 in Fig. 1a). Note that an
isolated edge is a special case of a dangling edge. In this case, the two vertices
incident to e′ are incident to no other edge than e′. An edge e′′ incident to two
different faces is called inner (like edge e1 in Fig. 1a). Such an edge is necessarily
not dangling, nor isolated. Reciprocally, a dangling or isolated edge is necessarily
incident to only one face.

Parallel Homology Computation of Meshes 55

In a 2-map, the different elements of a mesh are encoded by darts and links
between these darts. A dart is an orientation of an edge. If an edge separates
two faces, it is described by two darts in the 2-map which represent the two
possible orientations of the edge. A dart belongs exactly to one vertex, one edge
and one face, and thus each cell of the mesh is described by a set of darts in the
2-map. For example, in Fig. 1b, we can see the 2-map which represents the mesh
given in Fig. 1a. This 2-map has 20 darts drawn in Fig. 1b as oriented numbered
segments. Vertex v1 of the mesh is described by the set of darts {2, 5, 8, 12}; edge
e1 by {8, 11}, and face f1 by {11, 12, 13, 14, 15, 16, 17, 18}.

Note that a 2-map is equivalent to the well-known half-edge data structure
[10,12]. The main interest of combinatorial maps is that they can be defined
in any dimension which allows us to envisage to extend this work in higher
dimension.

A 2-map represents the topological part of the mesh, i.e. its subdivision into
cells and all the incidence and adjacency relations between these cells. It is
possible to associate information to cells thanks to the notion of attribute. We
speak about i-attributes for information associated to i-cells (for example colors
to faces, or mutexes to vertices).

Several operations are defined on 2-maps in order to build, traverse and
update meshes. Among these operations, edge removal and edge contraction will
be used in this paper in order to compute the homology of a mesh. The removal
of an inner edge (like edge e1 in Fig. 1a) consists in removing the edge from the
mesh by merging its two incident faces. In Fig. 1a, removing edge e1 will merge
faces f1 and f4 in only one face with 9 edges. Removing a dangling edge (like
edge e6 in Fig. 1a) will also remove the vertex incident only to the dangling edge
(this avoids isolated vertex). In Fig. 1a, removing edge e6 will remove also vertex
v3. Lastly removing an isolated edge will also remove its two incident vertices
(like edge e7 in Fig. 1a) and its incident face (because this face was described by
only this isolated edge and its two incident vertices). Edge contraction consists
in contracting an edge by merging its two incident vertices (when they exist).
In Fig. 1a, contracting edge e1 will merge vertices v1 and v2 in only one vertex,
then face f1 becomes a pentagon with a dangling edge and f4 a triangle.

2.2 Homology Computation

Homology can be thought as a method for defining k-dimensional holes (con-
nected components, tunnels, voids) in a given mesh. We can think in a cycle as a
closed submanifold and a boundary as the boundary of a submanifold. Then, a
homology class (which represents a hole) is an equivalence class of cycles modulo
boundaries. Homology groups (i.e. the groups of homology classes) are defined
from an algebraic structure called chain complex composed by a set of groups
{Ck}, where each Ck is the group of k-chains generated by all the k-cells, and
a set of homomorphisms {∂k : Ck → Ck−1}, called boundary operator, describ-
ing the boundaries of k-chains. This way, a k-dimensional homology generator
(called Hk generator) is a k-cycle which is not the boundary of any (k + 1)-
chain. Thus, in principle, the manipulation of the boundary operator is needed
to compute homology.

56 G. Damiand and R. Gonzalez-Diaz

An algorithm allowing to compute the minimal 2-map describing an initial
mesh without boundary while preserving the homology is described in [7]. Its
principles consist first in removing all the inner edges: this merges all the faces
of the mesh in only one face. The second step removes all the dangling edges:
a dangling edge is removed when it is found, and the possible path of dangling
edges is followed in order to ensure that all the dangling edges are removed. For
computing H0 generators, we keep in a stack one vertex for each isolated edge
before to remove it from the 2-map. The last step of the algorithm consists in
contracting all non-loop edges. This allows us to obtain the minimal representa-
tion of the initial mesh with 1 vertex for each connected component which is not
a sphere, plus some loops incident to these vertices depending on the amount of
H1 generators of the corresponding mesh. Observe that we do not need to com-
pute or store the boundary operator for computing the homology of the mesh.
The resulting minimal 2-map gives a direct representation of homology genera-
tors. H0 generators are directly obtained by the set of vertices in the stack plus
the set of vertices in the 2-map; H1 generators are directly obtained by the set of
edges in the 2-map which are all loops and H2 generators are directly obtained
by the set of faces in the initial 2-map.

3 Parallel Algorithm

The goal of this section is to propose a parallel version of the previous algorithm
allowing to compute the minimal 2-map corresponding to a given mesh. When
writing a parallel algorithm, the main issue is the concurrent access of the shared
memory. In order to allow efficient parallel access, we use here a distributed
version of 2-maps.

A distributed 2-map M is a 2-map where darts are distributed in several
clusters, each face of the 2-map belonging to exactly one cluster. To describe
that a face belongs to a cluster, we associate all darts of this face with this
cluster. In this way, clusters are sets of darts which form a partition of the set of
all the darts, and which can also be seen as a partition of the set of all the faces
of the 2-map. An edge of M is said critical if it belongs to different clusters1,
otherwise it is said non-critical.

The main interest of a distributed 2-map is to allow to process in parallel the
different clusters since they are independent. However, it allows only to process
in parallel all the non-critical edges. This property is used in Algorithm1, the
algorithm which is the parallel simplification of a given 2-map. This algorithm
has four steps:

– step 1a and step 1b to remove the inner edges; 1a in parallel for non-critical
edges (by cluster); 1b sequentially for the whole set of critical edges of the
2-map;

– step 2 to remove dangling edges in parallel (for the global 2-map);
– step 3 to contract non loop edges sequentially (for the global 2-map).

1 Since an edge e in a 2-map without boundary is a set of two darts, e belongs to
different clusters if its two darts belong to two different clusters.

Parallel Homology Computation of Meshes 57

Algorithm 1. Parallel simplification of a closed mesh in its minimal rep-
resentation.
Input: A distributed 2-map M representing a closed mesh.
Output: The minimal 2-map corresponding to M, computed in parallel.

1a parallel for each non-critical edge e of M (by cluster) do
if e is an inner edge then remove e;

1b foreach critical edge e of M (sequentially for the global 2-map) do
if e is an inner edge then remove e;

2 parallel for each edge e of M (for the global 2-map) do
while e is dangling do

if e is isolated then push one vertex of e in S ; Remove e;
else

e′ ← one edge adjacent to e;
lock the vertex v incident to e and e′;
remove e; e ← e′;
unlock v;

3 foreach edge e of M (sequentially for the global 2-map) do
if e is not a loop then

contract e;

3.1 Inner Edge Removals

The step which does the inner edge removals is split in two parts (for non-critical
edges and critical edges). Indeed, it is not possible to process in parallel the critical
edge as illustrated in Fig. 2. In this example, a mesh representing a torus is sim-
plified (cf. Fig. 2a). This 2-map has two different clusters (darts in the first cluster
are drawn in red and darts in the second cluster in blue). After the removal of the
three inner edges e1, e2 and e4, the 2-map shown in Fig. 2b is obtained. If edges e3

e1

e2 e3

e4

e5

(a)

e5

e3

(b)

Fig. 2. Example of 2-map simplification illustrating why it is not possible to process
critical edges in parallel for inner edge removal step. (a) Initial 2-map representing a
torus. (b) 2-map obtained after the removal of the three inner edges of the initial 2-map
e1, e2 and e4 (arrows on darts are not drawn in this figure). (Color figure online)

58 G. Damiand and R. Gonzalez-Diaz

and e5 (which are criticals) are considered in parallel, they are both inner edges
and thus they will be both removed. This would result in a wrong 2-map because
the face resulting of the union of the 5 initial faces is not homeomorphic to a disk
(here this is an annulus). Considering critical edges sequentially solves this prob-
lem: if e3 is considered, it is an inner edge and it is thus removed. Then when e5
will be considered, it will be no more an inner edge (because it will be incident
twice to the same face) and thus it will be kept.

Note that this problem can not occur for non-critical edges (i.e. edges between
two faces belonging to the same cluster). Indeed, in this case the two faces can
be merged by only one thread, the one which processes this cluster. This justifies
why we can process non-critical edges in parallel in step 1a of Algorithm 1.

For these two first steps, we avoid all the possible concurrent accesses because:

– darts of different clusters are distributed in different containers in the 2-map.
The parallel for each is done by associating one thread to each cluster, which
allows to remove these darts in parallel during step 1a;

– critical edges (having two darts belonging to two different clusters) are
processed sequentially.

3.2 Dangling Edge Removals

The same solution (process first non-critical edges in parallel then critical edges
sequentially) can not be used for dangling edges, as illustrated in Fig. 3. This
example shows the result of the two first steps of our simplification algorithm
(steps 1a and 1b) on the mesh representing a torus (given in Fig. 2a). We have a
2-map having only one face (otherwise we would have some inner edges), some
edges belong to H1 generators, i.e. to a cycle (in purple in Fig. 3b) but other
edges do not (in black in Fig. 3b). The black edges need to be removed since
they do not belong to H1 generators. This is done by the dangling edge removal
step. In this example, all the edges 45, 78, gh, no and de are dangling and will
be removed. However edges 69 and 3a are not yet dangling: they will become
dangling after the removal of other dangling edges.

Two problems can arise if we want to process dangling edges in parallel
cluster by cluster:

1. if two threads process edges in parallel (a first thread for red edges, a second
for blue edges), we can consider simultaneously edges 45 and 69 (if the thread
that processes red edges has already removed edge 78). If the two edges are
removed simultaneously, the two threads will follow the path of dangling edges
and they both will try to remove the same edge 3a;

2. to solve this problem, we can restrict each thread to process only the edges
in its cluster. In this case, if edge 45 is considered by the blue thread before
edge 69 by the red thread, the blue thread will not remove edge 3a because
it is not yet dangling.

Our solution, given in Algorithm 1 step 2 is to process all edges in parallel
without taking into account the clusters. When a thread founds a dangling edge e,

Parallel Homology Computation of Meshes 59

8

n

u

1
t

2

s

3

a
b

r

7 6

5

4

9

c

q

de

f

p

o

ghj
v

m

i
l

w
k

(a)

1t

ku
jv

lw im

gh

no

fp

de

cq

br

45

78
69

3a
2s

(b)

Fig. 3. Example of dangling edge removal. (a) 2-map obtained from the initial 2-map
given in Fig. 2a at the end of steps 1a and 1b. All inner edges were removed. Darts are
labeled by numbers and letters. (b) Cellular representation representing by a graph all
the vertices and edges of (a). Each edge of the graph is labeled by the two labels of its
two darts in (a). Purple edges belong to H1 cycles while black edges not.

it removes e and follows the possible path of dangling edges starting from e. In
order to avoid two threads to follow the same path, it is enough to add a mutex
on each vertex of the 2-map, and to lock the mutex of the vertex which is not only
incident to the dangling edge before removing the edge.

Now let us reconsider the previous example (given in 3) where two threads
are processing edges 45 and 69 simultaneously. Only one thread will be able to
lock the vertex {4, 6, a}; let us suppose it is the blue thread. This thread will
remove edge 45, and then it will stop to follow the path of edges since the next
edge in the path is not yet dangling. Then the second thread will now be able to
take the mutex and will remove edge 69, but then the next edge 3a is dangling
and it will be processed by this thread.

These mutexes solve the problem of concurrent access while guaranteeing
that each edge that does not belong to an H1 generator will be removed. Indeed,
these edges either belong to only one path of dangling edges (like edge 69 in the
example) and these edges will be removed when the extremity of the path will be
considered; or these edges belong to several paths (like edge 3a in the example)
and these edges will be considered exactly once by the last thread that will take
the mutexes of the vertices incident to the edges.

Lastly, darts are not directly deleted from the 2-map during this step because
the two darts of the current edge can belong to two different clusters, and two
threads can want to delete simultaneously two darts belonging to the same clus-
ter. Instead of adding mutexes on the containers of darts, we do not delete the
darts when dangling edges are removed but we only mark the darts to delete
thanks to a specific Boolean mark. Then marked darts are deleted after having
finished to process all dangling edges. These deletions can be done in parallel by
iterating simultaneously through all the different containers.

60 G. Damiand and R. Gonzalez-Diaz

3.3 Non Loop Edge Contraction

The last step of Algorithm 1 is the contraction of all the non-loop edges (an
edge is a loop if it is incident twice to the same vertex). As we will see in our
experiments in the next section, since this step is very fast (because the number
of edges to contract is very small regarding the number of edges to remove),
we decide in this work not to parallelize this step. Thus we use the classical
algorithm which consists in iterating through each edge e, test if e is not a loop
and contract it when it is the case.

4 Experiments

We have implemented our two algorithms, sequential and parallel version, by
using the CGAL implementation of combinatorial maps [2] and the additional
layer, called linear cell complex, which additionally represents the geometry [3].
All our experiments were run on an Intel R©i7-4790 CPU, 4 cores @ 3.60 GHz with
32 Go RAM. We have tested our algorithms by comparing the sequential and the
parallel version, and compared also our sequential version with RedHom [1]2.

For our tests, we used the six meshes shown in Fig. 4, having between 703.512
and 10.000.000 faces. All these meshes have only one connected component,
except Blade which has 295 connected components because it contains many
small isolated closed meshes inside the blade. For the parallel algorithm, clusters
are built during the load of the off files. We divide the bounding box of the mesh
in 8×8×8 cubes, and fix the cluster of a face of the mesh depending on the cube
which contains the minimal point of the face (these clusters are represented by
different colors in Fig. 4).

Firstly we have compared our sequential algorithm and the sequential one
implemented in RedHom. As we can see in Fig. 5a, our method is much faster
than RedHom: 22 times faster in average, the minimum gain is 3, 3 times for
DrumDancer, and the maximum gain is 97 times for Blade. We observe that
RedHom requires more time for meshes with big genus and/or big number of
connected components while the complexity of our method is only related to the
number of cells and not to the genus nor to the number of connected components.

Secondly we have compared our two algorithms: the sequential and the par-
allel one. For the parallel version, we used eight threads because we ran the tests
in a four core CPU, but with hyper-threading enabled. As we can observe in
Fig. 5b, the parallel version is in average 2, 4 times faster than the sequential
one, the minimum gain is 1, 7 times for Blade and the maximum gain is 3 times
for Neptune. We observe that the gain is better for bigger time of the sequen-
tial algorithm, while this gain becomes small for very small time. However, this
result is interesting because it is more important to speed up the bigger times
than the smaller ones.

2 We did not compare our solution with [11] because we were not able to compile their
parallel version.

Parallel Homology Computation of Meshes 61

(a) (b)

(c) (d) (e) (f)

#0-cells #1-cells #2-cells #H0 #H1 #H2

(a) Blade 882.954 2.648.082 1.765.388 295 330 295
(b) DrumDancer 1.335.436 4.006.302 2.670.868 1 0 1
(c) Neptune 2.003.932 6.011.808 4.007.872 1 6 1
(d) HappyBuddha 543.652 1.631.574 1.087.716 1 208 1
(e) Iphigenia 351.750 1.055.268 703.512 1 8 1
(f) ThaiStatue 4.999.996 15.000.000 10.000.000 1 6 1

Fig. 4. The six meshes used in our experiments. Colors show the different clusters.
Black curves show the H1 generators computed by our algorithm. The table gives the
number of i-cells, #i-cells, and the number of Hi generators, #Hi, for i = 0, 1, 2. (Color
figure online)

62 G. Damiand and R. Gonzalez-Diaz

 0

 5

 10

 15

 20

 25

Neptune

Blade
Drum

Dancer

HappyBuddha

Iphigenia

Statuette

T
im

e
(s

ec
)

RedHom
Sequential

4.29

23.3

1.74
3.60

0.55

10.7

1.06
0.24 0.52 0.19 0.11

1.95

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

Neptune

Blade
Drum

Dancer

HappyBuddha

Iphigenia

Statuette

T
im

e
(s

ec
)

Sequential
Parallel

1.06

0.24

0.52

0.19
0.11

1.95

0.35

0.14 0.19
0.09 0.06

0.68

(b)

Fig. 5. (a) Comparison of the times for the homology computation between RedHom
and our sequential version. (b) Comparison of the times for the homology computation
between our sequential and parallel versions (8 threads for the parallel version).

This result was confirmed by our next experiment where we have used our
parallel algorithm by progressively increasing the number of threads from 1 to
8. The results shown in Fig. 6 confirm that the gain is more important when the
time is bigger.

In order to study more precisely our algorithm, we have computed the num-
ber of edges contracted and removed during the different parts of our algorithms,
both for the sequential version and the parallel version. Results are given in
Table 1. Firstly we can see that the biggest number of edges is for the inner edge
removal step (S1 and P1a), and the second biggest number is for the dangling edge
removal step (S2 and P2). This justifies the interest of parallelizing these two steps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8

T
im

e
(s

ec
)

Number of threads

Neptune
Blade

DrumDancer
HappyBuddha

Iphigenia
Statuette

Fig. 6. Times for the homology computation depending on the number of threads: 1,
2, 4 and 8.

Parallel Homology Computation of Meshes 63

Secondly we can see that the number of critical edges processed by the parallel
algorithm is very small as well as the time spend by this step (P1b). This shows
that our solution to process these edges sequentially does not penalize the effi-
ciency of our method. Lastly, we can see that the number of contracted edges is
small as well as the time spend by this step (S3 and P3) which shows that the
interest of parallelizing this step is less important (even if we can probably have
a small gain here).

Table 1. Number of edges removed and contracted during the different steps of our
algorithms, comparing the sequential and the parallel ones (8 threads for the parallel
version). The different steps are: for the sequential algorithm: S1 is the inner edge
removal, S2 is the dangling edge removal, S3 is the edge contraction; for the parallel
algorithm: P1a is the inner edge removal of non critical edges, P1b is the inner edge
removal of critical edges, P2 is the dangling edge removal and P3 is the edge contraction.
All the rows give the number of removed or contracted edges, except the last line which
gives the time (in seconds). The last two lines are the means for the six meshes.

Sequential Parallel

S1 S2 S3 P1a P1b P2 P3

Blade 1,765,093 857,663 24,996 1,764,486 607 858,825 23,834

DrumDancer 2,670,867 1,335,435 0 2,669,774 1,093 1,335,435 0

Neptune 4,007,871 1,991,051 12,880 4,006,454 1,417 1,998,477 5,454

HappyBuddha 1,087,715 531,494 12,157 1,085,360 2,355 529,280 14,371

Iphigenia 703,511 350,189 1,560 702,319 1,192 350,693 1,056

Statuette 9,999,999 4,994,414 5,581 9,991,484 8,515 4,995,786 4,209

Mean 3,372,509 1,676,708 9,529 3,369,980 2,530 1,678,083 8,154

Time 0.363s 0.278s 0.077s 0.113s 0.009s 0.093s 0.078s

5 Conclusion

In this paper, we propose a parallel algorithm for computing the homology of
orientable 2D manifolds without boundary represented by a 2-map. Our exper-
iments illustrate that the implemented version of the algorithm is computa-
tionally convenient on big meshes and with good speed-up when increasing the
number of threads.

We plan to extend our work to non-orientable manifolds once the package
implementing generalized maps will be integrated in CGAL. Another possible
extension is the parallel homology computation on manifolds with boundary.
Probably we will need to add to the algorithm a special case for border edges.
Finally, extension in nD could be given based on the theoretical results for
removal and contraction operations in any dimension given in [4,5].

64 G. Damiand and R. Gonzalez-Diaz

Acknowledgments. This research was partially supported by Spanish project
MTM2015-67072-P and by the French National Agency (ANR), project SoLStiCe
ANR-13-BS02-0002-01. We also thank the anonymous reviewers for their valuable com-
ments.

References

1. Redhom. http://redhom.ii.uj.edu.pl/
2. Damiand, G.: Combinatorial maps. In: CGAL User and Reference Manual. 3.9th

edn (2011). http://www.cgal.org/Pkg/CombinatorialMaps
3. Damiand, G.: Linear cell complex. In: CGAL User and Reference Manual. 4.0edn

(2012). http://www.cgal.org/Pkg/LinearCellComplex
4. Damiand, G., Gonzalez-Diaz, R., Peltier, S.: Removal operations in nD generalized

maps for efficient homology computation. In: Ferri, M., Frosini, P., Landi, C., Cerri,
A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 20–29. Springer, Heidelberg
(2012)

5. Damiand, G., Gonzalez-Diaz, R., Peltier, S.: Removal and contraction operations
in nD generalized maps for efficient homology computation. CoRR, abs/1403.3683
(2014)

6. Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A K Peters/CRC Press, Boca Raton
(2014)

7. Damiand, G., Peltier, S., Fuchs, L.: Computing homology for surfaces with general-
ized maps: application to 3D images. In: Bebis, G., Boyle, R., Parvin, B., Koracin,
D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J.,
Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp.
235–244. Springer, Heidelberg (2006)

8. Kaczyński, T., Mrozek, M., Ślusarek, M.: Homology computation by reduction of
chain complexes. Comput. Math. Appl. 35(4), 59–70 (1998)

9. Lienhardt, P.: N-Dimensional generalized combinatorial maps and cellular quasi-
manifolds. Int. J. Comput. Geom. Appl. 4(3), 275–324 (1994)

10. Mäntylä, M.: An Introduction to Solid Modeling. Computer Science Press, College
Park (1988)

11. Murty, N.A., Natarajan, V., Vadhiyar, S.: Efficient homology computations on
multicore and manycore systems. In: 2013 20th International Conference on High
Performance Computing (HiPC), pp. 333–342, December 2013

12. Weiler, K.: Edge-based data structures for solid modeling in curved-surface envi-
ronments. Comput. Graph. Appl. 5(1), 21–40 (1985)

http://redhom.ii.uj.edu.pl/
http://www.cgal.org/Pkg/CombinatorialMaps
http://www.cgal.org/Pkg/LinearCellComplex

Computing the Overlaps of Two Maps

Jean-Christophe Janodet1(B) and Colin de la Higuera2

1 IBISC Lab, University of Evry, 23 Bd de France, 91037 Evry, France
janodet@ibisc.univ-evry.fr

2 LINA Lab, UMR 6241, University of Nantes, 2 R de la Houssinière,
44322 Nantes, France
cdlh@univ-nantes.fr

Abstract. Two combinatorial maps M1 and M2 overlap if they share a
sub-map, called an overlapping pattern, which can be extended without
conflicting neither with M1 nor with M2. Isomorphism and subisomor-
phism are two particular cases of map overlaps which have been studied
in the literature. In this paper, we show that finding the largest connected
overlap between two combinatorial maps is tractable in polynomial time.
On the other hand, without the connectivity constraint, the problem is
NP-hard. To obtain the positive results we exploit the properties of a
product map.

Keywords: 2D semi-open combinatorial maps · Overlaps · Overlapping
patterns · Product map

1 Introduction

2D-combinatorial maps are algebraic structures which allow to describe and work
with plane graphs, that is, embeddings of planar graphs, with applications in
Image Processing for instance [1]. Using such structures has allowed to establish
several algorithmic properties. E.g., it is possible to decide whether two drawings
of planar graphs, or two maps, are isomorphic or not in quadratic time [2–4].
Moreover, deciding whether a pattern (i.e., a drawing made of a connected subset
of faces) appears in a map is also tractable in quadratic time; this property is
interesting since determining whether a connected graph is a sub-graph of a
planar graph is known to be an NP-complete problem [4–6]. So focusing on a
particular drawing of a planar graph (among possibly an exponential number of
possibilities) is very helpful from an algorithmic point of view. It has also been
shown that searching for a disconnected -pattern, built from several disconnected
patterns, is an NP-hard problem [4].

A related problem consists in finding large common patterns in two maps. In
order to get a common pattern, one must eliminate subsets of faces from both
maps and obtain the same pattern up to an isomorphism. E.g., in Fig. 1, map (c)

C. de la Higuera—The author Wishes to acknowledge the support of University of
Kyoto.

c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 65–76, 2016.
DOI: 10.1007/978-3-319-39441-1 7

66 J.-C. Janodet and C. de la Higuera

is the maximum common pattern of maps (a) and (b); the eliminated faces are
shown with dotted lines. It has been proved in [7] that computing such large
common patterns is an NP-hard problem, even when patterns are connected.

In this paper, we constrain the definition of common patterns: we now require
the pattern to be extendable to both maps when adding independent groups of
faces. Independence means that if any new face is added in a connected way to
the common pattern, then the result ceases to be a pattern of one of the two
maps; moreover, if any face is added to the pattern in order to get one of the
maps, then no face can be added at the same place in the pattern to get the
second map. See Fig. 1(d) for an example. Every common pattern that has this
property results of an overlap between both maps, where pairs of faces of both
maps were merged together: such an overlap defines an overlapping pattern.

(a) (b) (d)(c)

Fig. 1. Maps (a) and (b) have map (c) as maximal common pattern, and map (d) as
maximal overlapping pattern. Dotted lines are construction features, and do not belong
to the maps.

Notice that the overlapping patterns can be smaller than the maximal com-
mon patterns. On the other hand, while the latter are not tractable in polynomial
time [7], we show in this paper that computing any connected overlap is tractable
in linear time, and enumerating all of the connected overlap is a quadratic-time
problem. It follows that finding the largest connected overlap can also be done
in polynomial time and space. In contrast, we prove that finding large possibly
disconnected overlaps is NP-hard.

Finally, in terms of applications, every maximal overlapping pattern O yields
a distance defined by: d(M1,M2) = size(M1) + size(M2) − 2.size(O). If one can
find any maximal overlap in polynomial time, distance d is efficiently computable,
and may then be used as an efficient rough approximation to tighter NP-hard
graph edit distances.

In Sect. 2, we recall the definitions of full and semi-open maps. The overlaps
are introduced in Sect. 3, and the overlapping patterns in Sect. 4. The polynomial
problems, related to the existence and the enumeration of the connected overlaps,
are investigated in Sect. 5. The correctness of both algorithms is sketched with
no detail, due to the lack of space. The case of disconnected overlaps is discussed
in Sect. 6. Finally, Sect. 7 concludes the paper.

Computing the Overlaps of Two Maps 67

2 Combinatorial Maps

Definition 1. Let D be a finite set of darts. A 2D full combinatorial map is
a triple M = (D,α, β) such that (1) α : D → D is a 1-to-1 mapping (i.e., a
permutation over D), and (2) β : D → D is a 1-to-1 mapping such that for all
d ∈ D, β(β(d)) = d (i.e., an involution over D). Two darts d and d′ such that
d′ = α(d) or d′ = β(d) are respectively said α-sewn or β-sewn.

Figure 2 shows an example of a full map. Notice that, given a dart d, the
face which is incident to d is obtained by iterating α. E.g., in Fig. 2, the face
incident to dart 12 is described with set {12, 13, 14, 15} and we have α(12) = 13,
α(13) = 14, α(14) = 15 and α(15) = 12. Similarly, the edges and the vertices of
a full map are respectively introduced as the orbits of permutations α and β ◦α.

7 9

11

12

6

13 16

8 10
5

4
17

18
314

2

151

α
β

Fig. 2. An example of full map. The darts are represented by numbered black seg-
ments. Two α-sewn darts are drawn consecutively, and two β-sewn darts are drawn
concurrently and in reverse orientation, with little gray segment between them.

All the faces of a full map are defined, which is irrelevant if this map is
expected to overlap with others; some faces must be invisible, so function β
must be partially defined. This leads us to introduce semi-open maps, simply
called maps throughout the rest of this paper [8]. The idea is to implicitly add
a new element ε to the set of darts, and allow any dart to be β-linked with ε
whenever such a dart has no adjacent face. Figure 3 shows an example.

f

a

b

d

g

c e α
β ε ε ε ε ε

Fig. 3. An example of (semi-open) map. Darts a, b, d, f and g are not β-sewn.

68 J.-C. Janodet and C. de la Higuera

Definition 2. Let D be a finite set of darts and ε �∈ D a fresh implicit dart. A
semi-open map, or simply map, is a triple M = (D,α, β) such that

– α : D ∪ {ε} → D ∪ {ε} is a 1-to-1 mapping with α(ε) = ε;
– β : D ∪ {ε} → D ∪ {ε} is a partial involution [9, Definition 4], that is, a

mapping such that (1) β(ε) = ε and (2) for all d ∈ D, if β(d) �= ε, then
β(β(d)) = d.

The complexity of the problems that we address on the maps is often related
to connectivity. For instance, searching for a connected pattern (subset of con-
tiguous faces) in a map is a quadratic problem, whereas searching for a discon-
nected pattern (subset of independent patterns) is NP-complete [9].

Definition 3. Let M = (D,α, β) be a semi-open map. Any subset U ⊆ D is
connected in map M if for all d, d′ ∈ U , there exists a sequence d0, d1, . . . dn ∈ U
such that (1) d0 = d and (2) dn = d′ and (3) for all 0 ≤ k < n, we have
dk+1 = γk(dk) with γk = α or γk = β. We say that map M is connected if set
D itself is connected in map M .

3 The Overlaps of Two Maps

An overlap is a maximal one-to-one matching. Let M1 = 〈D1, α1, β1〉 and M2 =
〈D2, α2, β2〉 be two fixed semi-open maps.

Definition 4. A (one-to-one) matching is a function h : U1 → U2 such that

1. U1 ⊆ D1 and U2 ⊆ D2,
2. h is bijective,
3. for all d1 ∈ U1 and d2 = h(d1),

– α1(d1) ∈ U1 if and only if α2(d2) ∈ U2, and h(α1(d1)) = α2(d2);
– β1(d1) ∈ U1 if and only if β2(d2) ∈ U2, and h(β1(d1)) = β2(d2).

An example is given in Fig. 4. Notice that ε �∈ U1 and ε �∈ U2 (since ε �∈ D1

and ε �∈ D2); nevertheless, for convenience reasons, we shall implicitly suppose
that h(ε) = ε.

1 3

2

5

4

6 7

11 15

8

9 13

4101 21

Fig. 4. Consider the maps M1 and M2 above. Mapping h = {1 �→ 8, 2 �→ 9, 6 �→ 13}
is a matching, whereas mapping h′ = {1 �→ 8, 2 �→ 9, 6 �→ 10} is not; indeed, we have
α2(9) = 10, but α1(2) �= 6. Any matching must preserve the seams of both maps.

Computing the Overlaps of Two Maps 69

Definition 5. Let h : U1 → U2 be a one-to-one matching as in Definition 4.
We say that h is an overlap if:

1. for all d1 ∈ U1, we have α1(d1) ∈ U1, and
2. for all d1 ∈ U1 and d2 = h(d1), if β1(d1) �= ε and β2(d2) �= ε, then β1(d1) ∈ U1

and β2(d2) ∈ U2.

We say that h is a connected overlap if subset U1 is connected in map M1. We
say that h is a disconnected overlap otherwise.

The first condition above implies that if a dart d1 of M1 matches a dart d2
of M2, then the whole face incident to d1 must match the whole face incident
to d2. The second condition means that if darts d1 and d2 match together and
both have adjacent faces, then opposite β-sewn darts, and thus adjacent faces
must also match together. In consequence, each pieces of both maps M1 and
M2 must be as large as possible, that is, the matching must be “maximal”. See
Figs. 5 and 6 for examples.

2

3

4

7

8

8′

5′

6′

7′

4′

1′

2′

3′

6

5 1

Fig. 5. An example of connected overlap h = {1 �→ 1′, 2 �→ 2′, . . . 8 �→ 8′}. Notice that
no overlap can be built with darts 5 and 4’ matched together.

1′

2′

3′

4′

5

6

7

8

1

2

3

4

5′

6′

7′

8′

Fig. 6. An example of disconnected overlap h = {1 �→ 1′, 2 �→ 2′, . . . 8 �→ 8′}.

4 Properties of the Overlapping Patterns

Given two maps M1 and M2 and an overlap h : U1 → U2, the elimination of
all the darts, but those from sets U1 and U2, in maps M1 and M2 respectively,
defines two isomorphic sub-maps of M1 and M2. In other words, an overlap
defines an overlapping common pattern:

70 J.-C. Janodet and C. de la Higuera

Definition 6. Map P = 〈D,α, β〉 is a pattern of map M = 〈D′, α′, β′〉 if there
exists a one-to-one matching ϕ : D → V (with V ⊆ D′). Moreover, any map P
is a common pattern of maps M1 and M2 if P is a pattern of both M1 and M2.

As direct consequences of Definitions 4 and 5, the overlapping patterns have
the following properties:

– Every overlapping pattern of M1 and M2 is a pattern of both M1 and M2;
– Given every pair of darts (d1, d2), there exists at most one connected overlap,

and thus at most one connected overlapping pattern, in which d1 and d2 are
matched together;

– An overlapping pattern is maximal in the following sense: if we add to this
pattern something and the result is a semi-open map, then this map is no
longer a sub-map of M1 or of M2.

Concerning computational issues, we have provided in [3] an algorithm in
O(|D1| × |D2|) time to decide whether two (possibly non-connected) maps were
isomorphic or not. An extension of this algorithm can be used to prove that a
connected map is a pattern of another map. In both cases, due to the technical
necessity for the matching h to commute with bijections α and β, there are
no more than |D1| possible matching functions, and the algorithms actually
enumerate all of them in O(|D1| × |D2|) time. Concerning the second problem,
the fact that the first map is connected is crucial, since this problem is NP-
complete for disconnected patterns [7].

With respect to finding large common connected patterns, it has unfortu-
nately been shown in [7] that this problem is NP-hard too. But looking for
large overlapping patterns is simpler: whereas in general the pattern can be
placed anywhere in the maps, we now insist on the pattern to somehow be placed
on the border of both maps, corresponding to the part where they overlap.

In order to illustrate and discuss this point, we turn to strings. In terms of
strings, common patterns would be common sub-strings of two given strings:
given u, v ∈ Σ∗, a pattern is a string w ∈ Σ+ such that u = lwr and v = l′wr′

for some l, l′, r, r′ ∈ Σ∗.
On the other hand, an overlap defines a string w as above, such that u = lwr

and v = l′wr′ but with the added condition that l = ε or l′ = ε on one hand,
r = ε or r′ = ε on the other. This means that exactly 4 cases are possible:

1. u = lw and v = wr′, w is a suffix of u and a prefix of v,
2. u = wr′ and v = l′w, w is a prefix of u and a suffix of v,
3. u = lwr and v = w, v is a sub-string of u,
4. u = w and v = l′wr′, u is a sub-string of v.

So the problem is simpler.

5 Finding Connected Overlaps Efficiently

In this section, we show that it is possible to efficiently find the largest connected
overlap of two maps.

Computing the Overlaps of Two Maps 71

5.1 A Linear Time and Space Algorithm to Check Whether a
Connected Overlap Exists

Let M1 = 〈D,α1, β1〉 and M2 = 〈D2, α2, β2〉) be two semi-open maps. The
first problem we tackle consists in determining whether two darts d1 ∈ D1 and
d2 ∈ D2 can match together in an overlap. This is the purpose of Algorithm 1.

This procedure performs a parallel traversal of both maps M1 and M2, start-
ing from the darts d1 and d2, which are grouped together into a couple (d1, d2).
The procedure uses the α- and β-functions of both maps to discover new cou-
ples of darts from the couples that have been discovered so far. It more precisely
builds a candidate overlap h such that h[d1] = d2. So initially, h[d1] is set to d2,
whereas h[d] are set to nil for all other darts d.

Each time a couple (a, a′) is discovered from another couple (d, d′) by using
the α-functions, we check whether both darts a and a′ have ever been met. If
either a or a′ have already been visited through the traversal, we carefully check
basic conditions which ensure us to get a valid matching h at the end of the
algorithm. Otherwise, h[a] is set to a′ and the couple (a, a′) is further used to
discover new darts. With respect to β-functions, the same principle holds, but
more cases of failure can occur, as the darts d or d′ may have no adjacent face.

Note that Algorithm 1 returns a single Boolean value. Nevertheless, one can
easily modify the procedure and get the connected overlap h as a certificate, in
case of success. The following theorem claims the correctness of this algorithm.
We shall sketch a proof just after Theorem 3.

Theorem 1. Algorithm 1 is correct, that is:

– If checkConnectedOverlap(M1,M2, d1, d2) returns true, then the array
h that is built by the procedure encodes a connected overlap h : U1 → U2 such
that h(d1) = d2.

– If checkConnectedOverlap(M1,M2, d1, d2) returns false, then no over-
lap h : U1 → U2 exists such that h(d1) = d2.

With respect to the complexity of the algorithm, we have:

Theorem 2. Algorithm 1 runs inO(min(|D1|, |D2|)) time and O(max(|D1|, |D2|))
space.

Proof. Suppose that |D1| ≤ |D2| without loss of generality. Then the while loop
of Algorithm 1 is iterated at most |D1| times. Indeed, (1) at each iteration,
exactly one dart d ∈ D1 is removed from the stack S, within a couple (d, x) for
some x ∈ D2, and (2) each dart d ∈ D1 enters S at most once, within a couple
(d, x) for any x ∈ D2: d enters S only if h[d] = nil, and before entering S, h[d]
is set to dart x. So the algorithm runs in O(min(|D1|, |D2|)) time. As for space
issues, notice that the arrays h and g respectively have |D1| and |D2| entries,
while stack S never contains more than min(|D1|, |D2|) couples of darts. ��

72 J.-C. Janodet and C. de la Higuera

Algorithm 1. checkConnectedOverlap(M1,M2, d1, d2)
Input: Two semi-open maps M1 = 〈D1, α1, β1〉 and M2 = 〈D2, α2, β2〉, and an

initial couple of darts (d1, d2) ∈ D1 × D2

Output: true if a connected overlap h exists such that h(d1) = d2, false
otherwise

Variables: Two arrays h : D1 → D2 and g : D2 → D1 (where g = h−1) both
initialized with nil, and a stack S which is initially empty

1 h[d1] ← d2; g[d2] ← d1; push (d1, d2) in S ;

2 while S is not empty do
3 pop a couple of darts (d, d′) from S ;

4 a ← α1(d); a′ ← α2(d
′) ;

5 if h[a] = nil and g[a′] = nil then
6 h[a] ← a′; g[a′] ← a; push (a, a′) in S ;
7 else if h[a] �= a′ or g[a′] �= a then
8 return false;

9 b ← β1(d); b′ ← β2(d
′) ;

10 if b �= ε and b′ �= ε then
11 if h[b] = nil and g[b′] = nil then
12 h[b] ← b′; g[b′] ← b; push (b, b′) in S ;
13 else if h[b] �= b′ or g[b′] �= b then
14 return false;

15 else if b = ε and b′ �= ε and g[b′] �= nil then
16 return false ;
17 else if b �= ε and b′ = ε and h[b] �= nil then
18 return false;

19 return true; // Array h may be returned as a certificate

Notice that Algorithm 1 exploits the same key idea as the algorithms devel-
oped in [3] to solve the map isomorphism and sub-isomorphism problems. We
nevertheless improve them as the failure cases are detected during the traversal
of the maps, and no further verification stage is needed after the traversal.

5.2 A Quadratic Time and Space Algorithm to Get All the
Connected Overlaps

Let M1 = 〈D,α1, β1〉 and M2 = 〈D2, α2, β2〉 be two semi-open maps. In Sect. 5.1,
we have given a procedure that checks whether two darts d1 ∈ D1 and d2 ∈ D2

can match together in a connected overlap. To achieve this goal, Algorithm 1
performs a parallel traversal of both maps M1 and M2, starting from couple
(d1, d2), and using the α- and β-functions of both maps to investigate new couples
of darts from the couples that have been visited so far. Clearly, this procedure
may visit any couple of D1×D2. So we use this set to define a new map, denoted
M1 ⊗ M2, and call the product map of maps M1 and M2:

Computing the Overlaps of Two Maps 73

Definition 7. The product of two maps M1 and M2 is M1 ⊗ M2 = 〈D1 ×
D2, α, β〉 where, for all (d1, d2) ∈ D1 × D2:

α(d1, d2) = (α1(d1), α2(d2)), and

β(d1, d2) =
{

(β1(d1), β2(d2)) if β1(d1) �= ε and β2(d2) �= ε,
ε otherwise.

For instance, consider the maps of Fig. 7, respectively made of 7 and 6 darts.
The product map M1 ⊗ M2, which has 42 darts, contains 6 connected com-
ponents. Clearly, two kinds of connected components appear. The four small
components will be called real, and the two large ones, imaginary :

11

10

8 9

31 21
7 5

4

3

6

1 2

M1

M2

α β

(1, 8) (2, 9) ε
(2, 9) (3, 10) ε
(3, 10) (1, 8) (4, 11)
(4, 11) (5, 12) (3, 10)
(5, 12) (6, 13) ε
(6, 13) (7, 11) ε
(7, 11) (4, 12) ε
(4, 12) (5, 13) ε
(5, 13) (6, 11) ε
(6, 11) (7, 12) ε
(7, 12) (4, 13) ε
(4, 13) (5, 11) ε
(5, 11) (6, 12) ε
(6, 12) (7, 13) ε
(7, 13) (4, 11) ε

α β

(1

Map

, 12) (2, 13) ε
(2, 13) (3, 11) ε
(3, 11) (1, 12) (4, 10)
(4, 10) (5, 8) (3, 11)
(5, 8) (6, 9) ε
(6, 9) (7, 10) ε
(7, 10) (4, 8) ε
(4, 8) (5, 9) ε
(5, 9) (6, 10) ε
(6, 10) (7, 8) ε
(7, 8) (4, 9) ε
(4, 9) (5, 10) ε
(5, 10) (6, 8) ε
(6, 8) (7, 9) ε
(7, 9) (4, 10) ε

α β

(1, 9) (2, 10) ε
(2, 10) (3, 8) ε
(3, 8) (1, 9) ε

α β

(1, 10) (2, 8) ε
(2, 8) (3, 9) ε
(3, 9) (1, 10) ε

α β

(1, 11) (2, 12) ε
(2, 12) (3, 13) ε
(3, 13) (1, 11) ε

α β

(1, 13) (2, 11) ε
(2, 11) (3, 12) ε
(3, 12) (1, 13) ε

Map

Fig. 7. Given the maps M1 and M2, we build the product map M1⊗M2 and display its
connected components. The two big components are imaginary, and the four small ones
are real. Couple (1, 8) belongs to an imaginary component, so following Theorem 3,
no overlap exists such that darts 1 and 8 match. Conversely, couple (1, 9) is in a real
component and mapping {1 �→ 9, 2 �→ 10, 3 �→ 8} is a connected overlap.

74 J.-C. Janodet and C. de la Higuera

Definition 8. A connected component C = 〈D,α, β〉 of product map M1 ⊗ M2

is said real if for all (d1, d2), (d′
1, d

′
2) ∈ D,

1. d1 = d′
1 iff d2 = d′

2, and
2. β1(d1) = d′

1 iff β2(d2) = d′
2.

A connected component which is not real is said imaginary.

Remark 1. The reader may wonder why no condition addressing the α-functions
is given in Definition 8. Actually, a consequence of Condition 1 is that for all
(d1, d2), (d′

1, d
′
2) ∈ D, we have α1(d1) = d′

1 iff α2(d2) = d′
2. Indeed, let (d1, d2) ∈

D and suppose that (α1(d1), d′
2) ∈ D; as component C is connected, we have

α(d1, d2) = (α1(d1), α2(d2)) ∈ D; so using Condition 1, we deduce that d′
2 =

α2(d2). Such a proof cannot be given for Condition 2, due to the fact that d1 or
d2 can β-free.

Connected overlaps of maps M1 and M2 on the one hand, and real connected
components of product map M1 ⊗ M2 on the other hand, are strongly related.
Indeed, we get the following result, which proceeds from the definitions:

Theorem 3. Let M1 and M2 be two semi-open maps.

– For each connected overlap h : U1 → U2, there exists a real connected compo-
nent C of product map M1 ⊗ M2 whose set of darts is {(d, h(d)) : d ∈ U1};

– Conversely, for every real connected component C = 〈D,α, β〉 of product map
M1 ⊗M2, set D is the graph of a connected overlap of M1 and M2, that is to
say, if we fix h(d1) = d2 for all (d1, d2) ∈ D, then h is a connected overlap.

Note that we get Theorem 1 as a consequence of Theorem 3. Indeed, Algo-
rithm 1 actually traverses the connected component where initial couple of darts
(d1, d2) stands; if the traversal returns false, then we get an evidence that the
component is imaginary, so no connected overlap h exists such that h(d1) = d2.
Otherwise, we can show that the component is real and the array h is a connected
overlap.

As a consequence of Theorem 3, we also deduce an efficient algorithm to
enumerate all the connected overlaps (see Algorithm 2).

Algorithm 2. getAllConnectedOverlaps(M1,M2)
Input: Two semi-open maps M1 = 〈D, α1, β1〉 and M2 = 〈D2, α2, β2〉)
Output: All the connected overlaps of M1 and M2

1 Compute product map M1 ⊗ M2; // see Definition 7

2 Select all the real connected components; // see Definition 8

3 Return all the connected overlaps; // see Theorem 3

Computing the Overlaps of Two Maps 75

Theorem 4. Algorithm 2 is correct and runs in O(|D1| · |D2|) time and space.

Proof. The correctness follows from Theorem 3. As for the complexity, the prod-
uct map M1 ⊗M2 has |D1| · |D2| darts. Obviously, the computation of functions
α and β, and the computation of the connected components, and the selection
of the real connected components, are in linear time and space with respect to
|D1| · |D2|. ��

5.3 Finding the Largest Overlap of Two Maps

It is straightforward to use the results from the previous algorithm to return the
largest overlap, provided this one is connected.

Furthermore a direct procedure exists to find the largest possibly discon-
nected overlap: consider a graph whose nodes are the connected overlaps between
maps M1 and M2, each with a weight indicating how many darts they concern,
and an edge indicates that two overlaps are compatible (do not contain common
darts). Finding a clique with maximum sum of weights gives the largest possibly
disconnected overlap. This procedure clearly runs in exponential time, and the
following section shows that we cannot hope better.

6 Finding Large Disconnected Overlaps Is Intractable

We consider the following problem:

Name Large Disconnected Overlap;
Instance An integer N , and two semi-open maps M1 and M2;
Problem Does there exist a disconnected overlap h : U1 → U2 s.t. |U1| ≥ N?

We get the following result:

Theorem 5. Problem Large Disconnected Overlap is NP-complete.

Proof. Basically, Problem Large Disconnected Overlap is in class NP
since any certificate h can easily be verified. Now consider following problem:

Name Disconnected Pattern;
Instance Two semi-open maps M1 and M2;
Problem Is map M1 a disconnected pattern of map M2?

One can prove, by reduction from Separable Planar 3SAT [10, Lemma 1],
that this problem is NP-complete. We do not give the details here: the proof is
essentially the same as that provided in [7, Sect. 4]1. We can finally reduce Dis-

connected Pattern to Large Disconnected Overlap: we simply need to
fix N = |D1|. Indeed, map M1 is a pattern of map M2 iff an overlap h : U1 → U2

exists with |U1| ≥ |D1| (that is, U1 = D1). ��
1 Actually, Problem Disconnected Pattern, which is defined for semi-open maps,

is an instance of Problem Induced Submap Isomorphism, which is defined for nG-
maps, but proved NP-complete by using 2G-maps, and gadgets that can easily be
redefined in terms of semi-open maps. Thus rewriting such a proof is of no relevance.

76 J.-C. Janodet and C. de la Higuera

7 Conclusion and Future Works

Computing the overlaps has two advantages over computing the common pat-
terns of two maps: on one hand, the optimisation problems are tractable (Sect. 5),
and on the other, the overlaps are maximal objects (Sect. 4).

The overlaps allow us also to consider super-maps, where a super-map of M1

and M2 is a map of which both M1 and M2 are patterns. Then the smallest
common super-map is obtained by adding to the largest overlap the faces which
belong to M1 and M2 but are not matched.

Super-maps offer interesting possibilities as smallest common super-maps
would be constructable in polynomial time whereas their duals, the largest com-
mon sub-maps, are not.

Finally, notice that the techniques introduced in this paper can, with no
difficulty, be extended to open maps2, nD-maps and n-Gmaps [1].

References

1. Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A K Peters/CRC Press (2014)

2. Cori, R.: Un code pour les graphes planaires et ses applications. Ph.D. thesis,
Université Paris 7 (1973)

3. Damiand, G., de la Higuera, C., Janodet, J.-C., Samuel, É., Solnon, C.: A polyno-
mial algorithm for submap isomorphism. In: Torsello, A., Escolano, F., Brun, L.
(eds.) GbRPR 2009. LNCS, vol. 5534, pp. 102–112. Springer, Heidelberg (2009)

4. de la Higuera, C., Janodet, J.C., Samuel, E., Damiand, G., Solnon, C.: Polynomial
algorithms for open plane graph and subgraph isomorphisms. Theor. Comput. Sci.
498, 76–99 (2013)

5. Dorn, F.: Planar subgraph isomorphism revisited. In: Proceedings of 27th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2010),
vol. 5 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 263–
274(2010)

6. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms Appl. 3(3), 1–27 (1999)

7. Solnon, C., Damiand, G., de la Higuera, C., Janodet, J.C.: On the complexity of
submap isomorphism and maximum common submap problems. Pattern Recogn.
48(2), 302–316 (2015)

8. Poudret, M., Arnould, A., Bertrand, Y., Lienhardt, P.: Cartes combinatoires
ouvertes. Research Notes 2007–1, Laboratoire SIC E.A. 4103, F-86962 Futuroscope
Cedex - France (2007)

9. Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.C., Samuel, E.: Polyno-
mial algorithms for subisomorphism of nD open combinatorial maps. Comput.
Vis. Image Underst. 115(7), 996–1010 (2011)

10. Lichtenstein, D.: Planar formulæ and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

2 for which the α-functions may be partial permutations [8].

Topological Descriptors for 3D Surface Analysis

Matthias Zeppelzauer1(B), Bartosz Zieliński2(B), Mateusz Juda2,
and Markus Seidl1

1 Media Computing Group, Institute of Creative Media Technologies,
St. Poelten University of Applied Sciences, Matthias-Corvinus Strasse 15,

3100 St. Poelten, Austria
{m.zeppelzauer,markus.seidl}@fhstp.ac.at

2 The Institute of Computer Science and Computer Mathematics,
Faculty of Mathematics and Computer Science, Jagiellonian University,

ul. �Lojasiewicza 6, 30-348 Kraków, Poland
{bartosz.zielinski,mateusz.juda}@uj.edu.pl

Abstract. We investigate topological descriptors for 3D surface analy-
sis, i.e. the classification of surfaces according to their geometric fine
structure. On a dataset of high-resolution 3D surface reconstructions we
compute persistence diagrams for a 2D cubical filtration. In the next step
we investigate different topological descriptors and measure their ability
to discriminate structurally different 3D surface patches. We evaluate
their sensitivity to different parameters and compare the performance
of the resulting topological descriptors to alternative (non-topological)
descriptors. We present a comprehensive evaluation that shows that
topological descriptors are (i) robust, (ii) yield state-of-the-art perfor-
mance for the task of 3D surface analysis and (iii) improve classification
performance when combined with non-topological descriptors.

Keywords: 3D surface classification · Surface topology analysis · Sur-
face representation · Persistence diagram · Persistence images

1 Introduction

With the increasing availability of high-resolution 3D scans, topological surface
description is becoming increasingly important. In recent years, methods for
sparse and dense 3D scene reconstruction have progressed strongly due to avail-
ability of inexpensive, off-the-shelf hardware (e.g. Microsoft Kinect) and the
development of robust reconstruction algorithms (e.g. structure from motion
techniques, SfM) [5,28]. Since 3D scanning has become an affordable process
the amount of available 3D data has increased significantly. At the same time,
the reconstruction accuracy has increased strongly, which enables 3D recon-
structions with sub-millimeter resolution [27]. The high resolution enables the
accurate description of a 3D surface’s geometric micro-structure, which opens
up new opportunities for search and retrieval in 3D scenes, such as the recog-
nition of objects by their specific surface properties as well as the distinction of
different types of materials for improved scene understanding.
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 77–87, 2016.
DOI: 10.1007/978-3-319-39441-1 8

78 M. Zeppelzauer et al.

In this paper, we investigate the problem of describing and classifying 3D
surfaces according to their geometric micro-structure. Two different types of
approaches exist for this problem. Firstly, the dense processing of the surface in
3D space and secondly, the processing of the surface geometry in image-space
based on depth maps derived from the surface.

For the representation of surface geometry in 3D, descriptors are required
that capture the local geometry around a given point or mesh vertex. Different
types of local 3D descriptors have been developed recently that are suitable for
the description of the local geometry around a 3D point, such as spin images [12],
3D shape context [4], and persistent point feature histograms [24].

The dense extraction of surface geometry by local 3D descriptors, however,
becomes a computationally demanding task when several millions of points need
to be processed. A computationally more efficient approach is the analysis of 3D
surfaces in image space. In such approaches a 3D surface is first mapped to a
depth map which represents a height field of the surface. This processing step
maps the 3D surface analysis problem to a 2D texture analysis task which can
be approached by analyzing the surface by texture descriptors, such as HOG,
GLCM, and Wavelet-based features [19,29,30].

The presented approach falls into the category of image-space approaches.
We first map the surface to image-space by a depth projection. Next, we divide
the resulting depth map into patches and describe them with traditional non-
topological as well as with topological surface descriptors. For the classification
of surface patches we use random undersampling boosting (RUSBoost) [25] due
to its high accuracy for imbalanced class distributions [16].

2 Topological Approach

By mathematical standards topology, with its 120 years of history, is a relatively
young discipline. It grew out of H. Poincares seminal work on the stability of the
solar system as a qualitative tool to study the dynamics of differential equations
without explicit formulas for solutions [20–22]. Due to the lack of useful analytic
methods, topology soon became a purely theoretical discipline. However, in the
last few years we observe a rapid development of topological data analysis tools,
which open new applications for topology.

Topological spaces appearing in data analysis are typically constructed from
small pieces or cells. A natural tool in the study of multidimensional images
with topological methods are hypercubes (points, edges, squares, cubes etc.), e.g.
a pixel in a 2 dimensional image is equivalent to a square, a voxel in a 3 dimen-
sional volume is equivalent to a cube. Hypercubes are building blocks for struc-
tures called cubical complexes. Such representations give topology a combinatorial
flavour and make it a natural tool in the study of multi-dimensional data sets.

Intuitively, the rank of the nth homology group, the so called nth Betti
number denoted βn, counts the number of n-dimensional holes in the topological
space. In particular, β0 counts the number of connected components. As an
example consider the image of the digit 8. In this image there is one connected

Topological Descriptors for 3D Surface Analysis 79

component and two holes, hence β0 = 1 and β1 = 2. For a hollow sphere we have
β0 = 1, β1 = 0, β2 = 1. For a tube in a tire we have β0 = 1, β1 = 2, β2 = 1.

Betti numbers do not differentiate between small and large holes. In conse-
quence, the holes resulting from the noise in the data cannot be distinguished
from the holes indicative for the nature of the data. For instance, in a noisy
image of the digit 8 one can get easily β0 > 1. A remedy for this drawback is
persistent homology, a tool invented at the beginning of the 20th century [7].
Persistent homology studies how the Betti numbers change when the topological
space is gradually built by adding cubes in some prescribed order.

If X is a cubical complex, one can add cubes step by step. Typically, the
construction goes through different scales, starting from the smallest pieces.
However, in general an arbitrary function f : X → R, called the Morse function
or measurement function, may be used to control the order in which the complex
is built, starting from low values of f and increasing subsequently. This way we
obtain a sequence of topological spaces, called a filtration,

∅ = Xr0 ⊂ Xr1 ⊂ Xr2 ⊂ · · · ⊂ Xrn
= X,

where Xr := f−1((−∞, r]) and ri is a growing sequence of values of f at which
the complex changes. As the space is gradually constructed, holes are born,
persist for some time and eventually may die. The length of the associated birth-
death intervals (persistence intervals) indicates if the holes are relevant or merely
noise. The lifetime of holes is usually visualized by the so called persistence
diagram (PD). Persistence diagrams constitute the main tool of topological data
analysis. They visualize geometrical properties of a multidimensional object X
in a simple two dimensional diagram.

Figure 1(a) shows a 3D surface as a 2D depth map, where colors corresponds
to depth (blue refers to low depth, yellow to high depth). In this case pixels
are represented as 2-dimensional cells of a cubical complex. For the complex we
can obtain a filtration Xr using a measuring function which has a value for a
2-dimensional cube equal to height (pixel color). For a lower dimensional cell
(a vertex or an edge) we can set the function value as a maximum from the
higher-dimensional neighborhoods of the cell. Figure 1(b) shows the persistence
diagram for Xr.

There is still no specific answer on how and when the tools of computational
topology and machine learning should be used together. A first attempt is to pro-
vide a descriptor of a topological space filtration based on elementary statistics
of persistence intervals (or equivalently on persistence diagrams). Let

I := {[b1, e1], [b2, e2], . . . , [bn, en]}

be a set of persistence intervals. Let D := {di := (ei − bi)}ni=1 be a set of the
interval lengths. We build an aggregated descriptor of D, denoted by PD AGG,
using following measures: number of elements, minimum, maximum, mean, stan-
dard deviation, variance, 1-quartile, median, 3-quartile, and norms

∑√
di,

∑
di,

and
∑

(di)2.

80 M. Zeppelzauer et al.

20 40 60 80 100 120

20

40

60

80

100

120

(a)

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

8

(b)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(c)

Fig. 1. Example patch: (a) the original 3D surface as a 2D depth map; (b) the corre-
sponding persistent diagram; (c) and the persistent image with σ = 0.001 and resolution
16 × 16. (Color figure online)

Except the PD AGG descriptor described above, which can be used with
standard classification methods, there are also attempts to use PD directly with
appropriately modified classifiers. Reininghaus et al. [23] proposed a multiscale
kernel for PDs, which can be used with a support vector machine (SVM). While
this kernel is well-defined in theory, in practice it becomes highly inefficient
for a large number of training vectors (as the entire kernel matrix must be
computed explicitly). As an alternative, Chepushtanova et al. [1] introduced a
novel representation of a PD, called a persistence image (PI), which is faster and
can be used with a broader range of machine learning (ML) techniques.

A PI is derived from mapping a PD to an integrable function Gp : R2 → R,
which is a sum of Gaussian functions centered at each point of the PD. Taking a
discretization of a subdomain of Gp defines a grid. An image can be created by
computing the integral of Gp on each grid box, thus defining a matrix of pixel
values. Formally, the value of each pixel p within a PI is defined by the following
equation:

PI(p) =
∫∫

p

∑

[bi,ei]∈I

g(bi, ei)
1

2πσxσy
e
− 1

2

(
(x−bi)

σ2
x

+
(y−ei)

σ2
y

)
dy dx,

where g(bi, ei) is a weighting function, which depends on the distance from the
diagonal (points close to the diagonal are usually considered as noise, therefore
they should have low weights), σx and σy are the standard deviations of the
Gaussians in x and y direction. The resulting image (see Fig. 1c) is vectorized to
achieve a standardized vectorial representation which is compatible to a broad
range of ML techniques.

The advantage of PIs compared to PDs descriptor is a high classification
accuracy and stability [1]. However, they require numerous parameters like the
PI resolution, the weighting function g, as well as σx and σy.

3 Experimental Setup

In our experiments we investigate the robustness and expressiveness of the topo-
logical descriptors presented in Sect. 2 for 3D surface analysis and compare and

Topological Descriptors for 3D Surface Analysis 81

combine them with traditional non-topological descriptors. For our experiments,
we employ a dataset of high-resolution 3D reconstructions from the archaeolog-
ical domain with a resolution below 0.1 mm [30]. The dimension of the scanned
surfaces ranges from approx. 20×30 cm to 30×50 cm. The reconstructions repre-
sent natural rock surfaces that exhibit human-made engravings (so-called rock-
art). The engravings represent symbols and figures (e.g. animals and humans)
engraved by humans in ancient times. See Fig. 2 for an example surface. The
engraved regions in the surface exhibit a different surface geometry than the
surrounding natural rock surface. In our experiments we aim at automatically
separating the engraved areas from the natural rock surface. The corresponding
ground truth is depicted in Fig. 2c.

The employed dataset contains 4 surface reconstructions with a total number
of 12.3 millions of points. For each surface a precise ground truth has been gen-
erated by domain experts that labels all engravings on the surface. The dataset
contains two classes of surface topographies: class 1 represents engraved areas
and class 2 represents the natural rock surface. Class priors are imbalanced.
Class 1 represents 16.6 % of the data and is thus underrepresented.

X
Y

Z

(a)

x

y

(b)

x

y

(c)

Fig. 2. Example data: (a) the 3D point cloud of the surface; (b) the depth projection of
the surface with compensated global curvature; (c) ground truth labeling that specifies
areas with different topography, such as the human-shaped figure in the center whose
head is marked with an arrow.

For each scan we perform depth projection and preprocessing as described
in [30]. The result is a depth map that reflects the geometric micro-structure of
the surface, see Fig. 2b. This representation is the input to feature extraction.

From the depth map we extract a number of non-topological image descriptors
in a block-based manner that serve as a baseline in our experiments. The block
size is 128 × 128 pixels (i.e. 10.8 × 10.8 mm) and the step size between two blocks
is 16 pixels (1.35 mm). The baseline features include: MPEG-7 Edge Histogram
(EH) [11], Dense SIFT (DSIFT) [17], Local Binary Patterns (LBP) [18], Histogram
of Oriented Gradients (HOG) [6], Gray-Level Co-occurrence Matrix (GLCM) [10],
GlobalHistogramShape (GHS),SpatialDepthDistribution (SDD), aswell asman-
ually modified enhanced versions of GHS and SDD (short EGHS and ESDD) that
apply additional enhancements to the depth map described in [30].

82 M. Zeppelzauer et al.

Additionally to the baseline descriptors, we extract persistent homology
descriptors in the same block-wise manner. For each patch, we compute a persis-
tence diagram and derive the 12-dimensional aggregated descriptor (PD AGG)
as described in Sect. 2. Additionally, we extract persistence images (PIs) for dif-
ferent resolutions (8, 16, 32, 64) and standard deviations (0.00025, 0.0005, 0.001,
0.002) with and without weighting (see Sect. 2).

Alternatively, we first extract Completed LBP (CLBP) features [9] from the
depth map as proposed in [15,23] and then extract PD AGG and PIs from the
CLBP S and CLBP M maps.

For the discrimination of different surface topographies we employ supervised
machine learning. All employed descriptors are represented by numerical vectors
of fixed dimension and are thus suitable for statistical classification. As men-
tioned above, the class priors in our dataset are imbalanced. Skewed datasets
pose problems to most classification techniques and often yield suboptimal mod-
els as one class dominates the other classes. A classifier expecially designed for
imbalanced datasets is Random Undersampling Boosting (RUSBoost) [25]. Rus-
Boost builds upon AdaBoost [8] which is an ensemble method that combines
the weighted decisions of weak classifiers to obtain a final decision for a given
input sample. RUSBoost extends this concept by a data sampling strategy that
enforces similar class priors. During each training iteration the majority class in
the training set is undersampled in a random fashion to balance the resulting
class priors. In this manner, the weak classifiers can be learned from balanced
datasets without being biased from the skewed class distribution.

For training the RUSBoost classifier we split the entire dataset into inde-
pendent training and evaluation sets. The training set contains image patches
from scans 1 and 2 from the dataset. Scans 3 and 4 make up the evaluation set.
From the training set we randomly select 50 % of the blocks from class 1 (2962
blocks) and 30 % from class 2 (7592 blocks). From this subset of 9654 samples
we train the RUSBoost classifier. For training we apply 5-fold cross-validation to
estimate suitable classifier parameters (primarily the number of weak classifiers
of the ensemble). The best parameters are used to train the classifier on the
entire training set. The trained classifier is finally applied to the independent
evaluation set of 27192 patches.

As a performance measure we employ the Dice Similarity Coefficient (DSC).
DSC measures the mutual overlap between an automatic labeling X of an image
and a manual (ground truth) labeling Y :

DSC(X,Y) =
2|X ∩ Y |
|X| + |Y | .

DSC is between 0 and 1 where 1 means a perfect segmentation.
Each classification experiment is repeated 10 times with 10 different ran-

domly selected subsets from the training set to reduce the dependency from the
training data. From the 10 resulting DSC values we provide median and standard
deviation as the final performance measures.

Topological Descriptors for 3D Surface Analysis 83

Aside from quantitative evaluations we investigate the following questions:

– Can persistent homology descriptors outperform descriptors like HOG, SIFT,
and GLCM for surface classification?

– How does aggregation of the PD (PD AGG) influence performance compared
to non-aggregated representations like PI?

– Is CLBP a suitable input representation for persistent homology descriptors?
– How sensitive is PI to its parameters (resolution, sigma, weighting)?
– Do persistent homology descriptors add beneficial or even necessary informa-

tion to the baseline descriptors in our classification task?

The experiment was implemented in Matlab. Most of the descriptors were
extracted with VLFeat library [26], except PD AGG and PI. We compute per-
sistence intervals of the images using CAPD::RedHom library [13,14] with the
PHAT [2,3] algorithm for persistence homology.

4 Results

We start our evaluation with the aggregated descriptor PD AGG. The descriptor
applied to our surfaces yields a DSC of 0.6528±0.0118 and represents a first base-
line for further comparisons. Next, we apply PI with different resolutions, sigmas
with and without weighting. Results are summarized in Table 1. All results for PI
outperform that of PD AGG. We assume the reason is that PD AGG neglects
the information about the points’ localization, which is preserved in PI. The
best result for PI is a DSC of 0.7335 ± 0.0024 without weighting. The difference
between the best weighting and no weighting result is statistically significant1

with p − value = 0.006. This result is surprising as it is contrary to the results
of [1] where artificial datasets were used for evaluation. Results in Table 1 further
show that PI has low sensitivity to different resolutions and sigmas.

Next, we evaluate the performance of PD AGG and PI with CLBP as input
representation, see Table 2. The best result for PD AGG (0.6874 ± 0.0030) is

Table 1. DSC for PI descriptors depending on the sigma of the Gaussian function
(σ) and resolution (res). Bold represents the best results for PI with and without
weighting.

res = 8× 8 res = 16× 16 res = 32× 32 res = 64× 64

weighting σ = 0.00025 0.714± 0.005 0.718± 0.007 0.715± 0.007 0.709± 0.008

σ = 0.0005 0.718± 0.005 0.715± 0.005 0.715± 0.006 0.714± 0.004

σ = 0.001 0.715± 0.006 0.716± 0.005 0.718± 0.004 0.718± 0.005

σ = 0.002 0.706± 0.003 0.719± 0.005 0.715± 0.004 0.710± 0.005

no wghting. σ = 0.001 0.724± 0.004 0.734± 0.002 0.732± 0.004 0.733± 0.004

1 Statistical significance is computed with the Wilcox signed rank test, as most of the
samples do not pass the Shapiro-Wilk normality test.

84 M. Zeppelzauer et al.

Table 2. DSC for PD AGG and PI descriptors extracted from the CLBP S and
CLBP M maps. We consider two encodings for CLBP: rotation invariant uniform (riu2)
and rotation invariant (ri) and vary radius r and the number of samples n. Bold num-
bers represent the best results for PD AGG and PI.

Descriptor CLBP type n = 8 n = 16

PD AGG riu2 r = 3 0.613 ± 0.009 0.625 ± 0.005

r = 5 0.654 ± 0.003 0.636 ± 0.010

ri r = 3 0.632 ± 0.009 0.666 ± 0.007

r = 5 0.681 ± 0.004 0.687± 0.003

PI riu2 r = 3 0.688 ± 0.005 0.702 ± 0.004

r = 5 0.704 ± 0.002 0.717 ± 0.003

ri r = 3 0.699 ± 0.002 0.699 ± 0.002

r = 5 0.703 ± 0.003 0.703± 0.003

obtained for the rotation invariant CLBP maps with radius 5 and number of
samples 16. This improvement is statistically significant, with p− value = 0.002
(compared to the PD AGG without CLBP). For PI we do not observe an
improvement. This was confirmed by further experiments, where we combined
PI obtained for the original depth map with PI on CLBP maps. The resulting
DSC equals 0.7178 ± 0.0034. This shows not only that CLBP brings no addi-
tional information for PI, but further indicates that it can even be confusing for
the classifier. The expressiveness of PI seems to be at a level where CLBP is
not able to add additional information. Whereas PD AGG is less expressive and
thus benefits from the additional processing.

As a next step we investigate which locations of PI are the most important
ones for classification. For this purpose we computed Gini importance measure
for each location of the PI, see Fig. 3a. The most important pixels are located in
the middle of the PI. It is worth noting that there are only few very important
pixels, while the others are more than 10 time less important. Moreover, there are
few important pixels near to the center of the diagonal. To get a more complete
picture, we compute the Fisher discriminant for each location of the PI, see
Fig. 3b. The result is to a large degree consistent with the Gini measure and
confirms our observation.

Finally, we investigate the performance of topological vs. non-topological
descriptors and their combinations. The DSC for baseline descriptors and for
their combination with PD AGG and PI are presented in Table 3. Our exper-
iments show that both topological descriptors contribute additional valuable
information to the baseline descriptors and improve the classification accuracy.
All combinations with PD AGG are significantly better than the baseline itself.
Moreover, PI works significantly better than PD AGG with all of the baseline
descriptors (except for GHS, GHS+SDD, EGHS+ESDD where the improvement
is not significant).

Topological Descriptors for 3D Surface Analysis 85

5 10 15

2

4

6

8

10

12

14

16 0

0.5

1.0

1.5

2.0

2.5

-4x 10

(a)

5 10 15

2

4

6

8

10

12

14

16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b)

Fig. 3. Importance of the PI’s pixels obtained with Gini importance measure and
Fisher discriminant.

Table 3. DSC for baseline descriptors (B) and their combination with PD AGG and
PI descriptors (B + PD AGG and B + PI, respectively). Asterisks (∗) correspond to
p − values < 0.01 when comparing B to B + PD AGG and B + PD AGG to B + PI.

Descriptor Baseline (B) B + PD AGG B + PI

EH 0.641 ± 0.007 0.669 ± 0.015∗ 0.696 ± 0.015∗

LBP 0.452 ± 0.020 0.531 ± 0.023∗ 0.587 ± 0.027∗

DSIFT 0.486 ± 0.003 0.739 ± 0.004∗ 0.764 ± 0.004∗

HOG 0.503 ± 0.008 0.712 ± 0.007∗ 0.732 ± 0.003∗

GLCM 0.645 ± 0.003 0.706 ± 0.002∗ 0.732 ± 0.002∗

GHS 0.301 ± 0.048 0.470 ± 0.038∗ 0.476 ± 0.066

SDD 0.692 ± 0.003 0.735 ± 0.003∗ 0.767 ± 0.004∗

GHS+SDD 0.399 ± 0.028 0.426 ± 0.027∗ 0.454 ± 0.029

EGHS 0.650 ± 0.008 0.683 ± 0.003∗ 0.690 ± 0.004∗

ESDD 0.743± 0.002 0.763± 0.002∗ 0.790± 0.002∗

EGHS+ESDD 0.728 ± 0.005 0.740 ± 0.003∗ 0.743 ± 0.005

5 Conclusion

We have presented an investigation of topological descriptors for 3D surface
analysis. Our major conclusions are: (i) the aggregation of persistence diagrams
removes important information which can be retained by using PI descriptors,
(ii) PIs are expressive and robust descriptors that are well-suited to include
topological information into ML pipelines, and (iii) topological descriptors are
complementary to traditional image descriptors and represent necessary infor-
mation to obtain peak performance in 3D surface classification. Furthermore, we
observed that short intervals in the PD contribute more to classification accuracy
than expected. This will be subject to future research.

86 M. Zeppelzauer et al.

Acknowledgements. Parts of the work for this paper has been carried out in the
project 3D-Pitoti which is funded from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no 600545; 2013-2016.

References

1. Adams, H., Chepushtanova, S., Emerson, T., Hanson, E., Kirby, M., Motta,
F., Neville, R., Peterson, C., Shipman, P., Ziegelmeier, L.: Persistent images:
A stable vector representation of persistent homology (2015). arXiv preprint
arXiv:1507.06217

2. Bauer, U., Kerber, M., Reininghaus, J.: Phat - persistent homology algorithms
toolbox (2013). https://code.google.com/p/phat/

3. Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: PHAT – Per-
sistent homology algorithms toolbox. In: Hong, H., Yap, C. (eds.)
ICMS 2014. LNCS, vol. 8592, pp. 137–143. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-662-44199-2 24

4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

5. Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous opti-
mization for large-scale structure from motion. In: 2011 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 3001–3008. IEEE (2011)

6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

7. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. Discrete Comput. Geom. 28, 511–533 (2002)

8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

9. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern
operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663
(2010)

10. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image clas-
sification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

11. ISO-IEC: Information Technology - Multimedia Content Description Inter-
face.15938, ISO/IEC, Moving Pictures Expert Group, 1st edn. (2002)

12. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in
cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

13. Juda, M., Mrozek, M., Brendel, P., Wagner, H., et al.: CAPD::RedHom (2010–
2015). http://redhom.ii.uj.edu.pl

14. Juda, M., Mrozek, M.: CAPD:RedHom v2 - homology software based on reduction
algorithms. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 160–166.
Springer, Heidelberg (2014)

15. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2003–
2010. IEEE (2014)

16. López, V., Fernández, A., Garćıa, S., Palade, V., Herrera, F.: An insight into
classification with imbalanced data: Empirical results and current trends on using
data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

http://arxiv.org/abs/1507.06217
https://code.google.com/p/phat/
http://dx.doi.org/10.1007/978-3-662-44199-2_24
http://redhom.ii.uj.edu.pl

Topological Descriptors for 3D Surface Analysis 87

18. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on featured distributions. Pattern Recogn. 29(1), 51–59
(1996)

19. Othmani, A., Lew Yan Voon, L., Stolz, C., Piboule, A.: Single tree species classi-
fication from terrestrial laser scanning data for forest inventory. Pattern Recogn.
Lett. 34(16), 2144–2150 (2013)

20. Poincaré, H.J.: Sur le probleme des trois corps et les équations de la dynamique.
Acta Math. 13, 1–270 (1890)

21. Poincaré, H.J.: Les méthodes nouvelles de la mécanique céleste. Gauthiers-Villars,
Paris (1892, 1893, 1899)

22. Poincaré, H.J.: Analysis situs. J. Éc. Polytech., ser. 2 1, 1–123 (1895)
23. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for

topological machine learning (2014). arXiv preprint arXiv:1412.6821
24. Rusu, R.B., Marton, Z.C., Blodow, N., Beetz, M.: Persistent point feature his-

tograms for 3D point clouds. In: Proceedings of the 10th International Confer-
ence on Intel Autonomous System (IAS-10), Baden-Baden, Germany, pp. 119–128
(2008)

25. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Rusboost: A hybrid
approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A:
Syst. Hum. 40(1), 185–197 (2010)

26. Vedaldi, A., Fulkerson, B.: Vlfeat: An open and portable library of computer vision
algorithms. In: Proceedings of the International Conference on Multimedia, pp.
1469–1472. ACM (2010)

27. Wohlfeil, J., Strackenbrock, B., Kossyk, I.: Automated high resolution 3D recon-
struction of cultural heritage using multi-scale sensor systems and semi-global
matching. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. XL-4 W 4,
37–43 (2013)

28. Wu, C.: Towards linear-time incremental structure from motion. In: 2013 Interna-
tional Conference on 3DTV, pp. 127–134. IEEE (2013)

29. Zeppelzauer, M., Poier, G., Seidl, M., Reinbacher, C., Breiteneder, C., Bischof, H.,
Schulter, S.: Interactive segmentation of rock-art in high-resolution 3D reconstruc-
tions. In: 2015 Digital Heritage, vol. 2, pp. 37–44, September 2015. doi:10.1109/
DigitalHeritage.2015.7419450

30. Zeppelzauer, M., Seidl, M.: Efficient image-space extraction and representation of
3D surface topography. In: Proceedings of the IEEE International Conference on
Image Processing (ICIP). IEEE, Quebec, Canada (2015). http://arXiv.org/pdf/
1504.08308v3.pdf

http://arxiv.org/abs/1412.6821
http://dx.doi.org/10.1109/DigitalHeritage.2015.7419450
http://dx.doi.org/10.1109/DigitalHeritage.2015.7419450
http://arXiv.org/pdf/1504.08308v3.pdf
http://arXiv.org/pdf/1504.08308v3.pdf

Towards a Topological Fingerprint of Music

Mattia G. Bergomi1(B), Adriano Baratè2, and Barbara Di Fabio3

1 Champalimaud Neuroscience Programme,
Champalimaud Centre for the Unknown, Lisbon, Portugal

mattia.bergomi@neuro.fchampalimaud.org
2 Laboratorio di Informatica Musicale,

Università degli Studi di Milano, Milano, Italy
barate@di.unimi.it

3 Dipartimento di Scienze e Metodi dell’Ingegneria,
Università di Modena e Reggio Emilia, Reggio Emilia, Italy

barbara.difabio@unimore.it

Abstract. Can music be represented as a meaningful geometric and
topological object? In this paper, we propose a strategy to describe some
music features as a polyhedral surface obtained by a simplicial interpre-
tation of the Tonnetz. The Tonnetz is a graph largely used in computa-
tional musicology to describe the harmonic relationships of notes in equal
tuning. In particular, we use persistent homology in order to describe
the persistent properties of music encoded in the aforementioned model.
Both the relevance and the characteristics of this approach are discussed
by analyzing some paradigmatic compositional styles. Eventually, the
task of automatic music style classification is addressed by computing
the hierarchical clustering of the topological fingerprints associated with
some collections of compositions.

Keywords: Music · Classification · Clustering · Tonnetz · Persistent
homology

1 Introduction

Generally, the core of a piece of music consists of a small collection of
strong, recognizable concepts, that are grasped by the majority of the listen-
ers [13,17,29]. These core concepts are developed during the composition by
varying levels of tension over time, drawing the attention of the listener to par-
ticular moments thanks to specific choices, frustrating his/her intuition through
unexpected changes, or confirming his/her expectation with, for instance, a well-
known cadence leading to resolution.

As the models for the analysis of audio signals take advantage of the strate-
gies developed for image analysis [22,27,30], it is possible to borrow some tools
from the topological analysis of shapes and data to tackle the problem of music
analysis and classification. The main aim of this paper is the introduction of a
low-dimensional geometric-topological model in order to describe, albeit in an
extremely simplified form, music styles.
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 88–100, 2016.
DOI: 10.1007/978-3-319-39441-1 9

Towards a Topological Fingerprint of Music 89

Loosely speaking, we introduce a metric representation of music as a planar
polyhedral surface, whose vertices are then shifted along a third dimension in
basis on a specific function. The shapes obtained via these deformations are fin-
gerprinted by computing their persistent homology [15]. Afterwards, the musical
meaning of this topological representation of music is discussed and applied to
automatic style classification on three different datasets.

2 Background on Persistent Homology

In computational topology [14], persistent homology is actually considered an
invaluable tool to describe both geometry and topology of a certain space, not
only because of the simplicity of the method, but also because all the properties
are ranked by importance, allowing us to choose the level of detail at which to
perform such a description [15,18].

In more formal terms, given a topological space X, we define a continuous
function f : X → R to obtain a family of subspaces Xu = f−1((−∞, u]), u ∈ R,
nested by inclusion, i.e. a filtration of X. The map f , called therefore a filter-
ing function, is chosen according to the geometrical properties of interest (e.g.,
height, distance from center of mass, curvature). Applying homology to the fil-
tration, births and deaths of topological features can be algebraically detected
and their lifetime measured. The scale at which a feature is significant is mea-
sured by its longevity. Formally, given u ≤ v ∈ R, we consider the inclusion
of Xu into Xv. This inclusion induces a homomorphism of homology groups
Hk(Xu) → Hk(Xv) for every k ∈ Z. The image of such a homomorphism con-
sists of the k-homology classes that live at least from u to v along the filtration,
and is called the kth persistent homology group of the pair (X, f) at (u, v). When,
for every (u, v), u ≤ v, the kth persistent homology groups are finitely generated,
we can compactly describe them using the so-called persistence diagrams. A per-
sistence diagram Dk(X, f) is the subset of {(u, v) ∈ R

2 : u < v} consisting of
points (called proper points) and vertical lines (called points at infinity) encod-
ing the levels of f at which the birth and the death of homological classes occur,
union all the points belonging to the diagonal u = v. In particular, if there exists
at least one k-homology class that is born at the level ū and is dead at the level
v̄ along the filtration induced by f , then p = (ū, v̄) is a proper point of Dk(X, f);
if there exists at least one k-homology class that is born at the level ū and never
dies along the filtration induced by f , then p = (ū,+∞) is a point at infinity of
Dk(X, f). A point at infinity is usually represented as the vertical line u = ū.
Both points and lines are equipped with a multiplicity that depends on the num-
ber of classes with the same lifetime [19]. An example of persistence diagrams
is displayed in Fig. 1. The surface X ⊂ R

3 is endowed with the height function
f . The associated persistence diagrams D0(X, f) and D1(X, f) are displayed on
the right. D0(X, f) consists of one point at infinity r, whose abscissa u detects
the absolute minimum of f , and one proper point p, whose abscissa and ordinate
detect, respectively, the level at which the new connected component appears
and merges with the existing one. D1(X, f) consists of one proper point, whose

90 M.G. Bergomi et al.

Fig. 1. Left: the height function on the topological space X. Right: the associated
persistence diagrams Dk(X, f), with k = 0, 1.

abscissa and ordinate detect, respectively, the level at which a new tunnel is
created and disappears along the filtration.

One of the main reasons behind the usage of persistence diagrams in appli-
cations consists in the possibility of estimating the degree of dissimilarity of two
spaces with respect to a certain geometrical property through an appropriate
comparison of these shape descriptors. Because of its properties of stability [7]
and optimality [10], the most used instrument to compare persistence diagrams
is given by the so called bottleneck distance (a.k.a. matching distance) [9]. By
stability, we mean that small changes of the filtering functions imply only small
changes of the associated persistence diagrams in terms of this distance; by sta-
bility and optimality, we mean that, among all the stable distances between
persistence diagrams, the bottleneck distance is the most discriminative one.

Definition 1. The bottleneck distance between two persistence diagrams D and
D′ is defined as

dB(D,D′) = min
σ

max
p∈D

d(p, σ(p)),

where σ varies among all the bijections between D and D′ and

d ((u, v) , (u′, v′)) = min
{

max {|u − u′|, |v − v′|} ,max
{

v − u

2
,
v′ − u′

2

}}

for every (u, v) , (u′, v′) ∈ {(x, y) ∈ R
2 : x ≤ y}.

3 Musical Setting

In order to safely introduce the main model presented in this paper, we start by
defining some basic musical objects.

Towards a Topological Fingerprint of Music 91

Fig. 2. Fundamental music representation spaces: the pitch space (left), and the pitch-
class space (right).

We model a note in equal tuning n as a pair (p, d) ∈ R
2, where p is called the

pitch of the note, and d is its duration in seconds. In particular, if ν denotes the
fundamental frequency of n, the pitch p(ν) is defined as p(ν) = 69+12 log2

(
ν

440

)
,

where 440 Hz is the fundamental frequency of the note A4 (the la of the fourth
octave of the piano). For further details on pitches, see, e.g., [11].

On a perceptual level, two notes an octave apart are really similar [4], thus,
it is common to identify pitches modulo octave, by considering pitch classes
[p] = {p + 12k : k ∈ Z} ∼= R/12Z. A representation of both the pitch and
pitch-class spaces is depicted in Fig. 2.

3.1 The simplicial Tonnetz

The Tonnetz was originally introduced in [16] as a simple 3 × 4 matrix rep-
resenting both the acoustical and harmonic relationships among pitch classes.
Later, it has been largely generalized to several formalisms, see, e.g., [8,12,32].
We will focus on its interpretation as a simplicial complex [2]. In this setting, the
Tonnetz is modeled as an infinite planar simplicial complex, whose 0-simplices
are labeled with pitch classes in a way that 1-simplices form either perfect fifth,
major, or minor third intervals, and 2-simplices correspond to either major or
minor triads. A finite subcomplex of the Tonnetz T is depicted in Fig. 3a. We
observe that the labels on its vertices are periodic with respect to the transposi-
tion of both minor and major third. This feature allows to work with the more
comfortable toroidal representation T displayed in Fig. 3b.

It is possible to analyze and classify music by considering the subcomplexes
of T generated by a sequence of pitch classes [2]. However, this approach does not
allow to discriminate musical styles in a geometric or topological sense. In fact,
as the example in Fig. 4 shows, two perceptively distinct sonorities (Fig. 4a and
b) can be represented by isomorphic subcomplexes (Fig. 4c and d, respectively).

92 M.G. Bergomi et al.

mIII PV

MIII

(a)

C
E

F

A

D

G
B

E

G B

D

A

(b)

Fig. 3. (a) A finite subcomplex of the Tonnetz. (b) The Tonnetz torus T obtained by
identifying vertices in (a) equipped with the same labels.

3.2 A Deformed Tonnetz for Music Analysis

In order to capture both the temporal and harmonic information encoded in a
musical phrase, the associated Tonnetz should depend on both the pitches which
are played and their duration. Our idea is based on the following observation: Let
us consider again the example in Fig. 4. The musical phrases in Fig. 4a and b can
be easily distinguished if we endow each vertex of the associated subcomplexes
with a non-negative real number that detects for how long the associated pitches
have been played during the execution of the phrase. Practically, we can replace
the planar subcomplexes in Fig. 4c and d by the new subcomplexes Fig. 4e and
f, respectively, obtained by shifting upward each vertex of a quantity equal to
this weight.

In symbols, let V be the set of vertices of T and consider a finite collection of
notes of a musical phrase, {n1, . . . , nm} = {(p1, d1), . . . , (pm, dm)} . Assume that
{ni1 , . . . , nik} is the subset whose pitches pi1 , . . . , pik belong to [p]. We define a
map that takes each vertex v = (xv, yv, 0) ∈ R

3 labeled with [p] to the point
(xv, yv, dv) ∈ R

3, where dv =
∑k

j=1 dij , and then extend it linearly to all the
simplices. The Tonnetz deformed under the action of this map will be denoted
by T , and will be used as the main object of our topological description of
music style. A 3-dimensional interactive animation showing how the Tonnetz
is deformed by a musical phrase is available at http://nami-lab.com/tonnetz/
examples/deformed tonnetz int sound pers.html. It allows the user to play with
its own keyboard to generate specific deformations or simply to analyze their
evolution in real time during the execution of a certain song.

http://nami-lab.com/tonnetz/examples/deformed_tonnetz_int_sound_pers.html
http://nami-lab.com/tonnetz/examples/deformed_tonnetz_int_sound_pers.html

Towards a Topological Fingerprint of Music 93

Fig. 4. Two modes (a) and (b) represented by isomorphic subcomplexes (c) and (d)
of the Tonnetz. They can be distinguished when deforming the Tonnetz by taking into
account the duration of the notes: (e) and (f) are deformed subcomplexes associated
to the modes, observed from the same position.

4 A Topological Fingerprint of Music Styles

In order to describe the deformed Tonnetz, we use persistent homology.
We define the height function f on T to induce a lower level set filtration on

the torus T. The persistence diagrams obtained with this process are descriptors
of the style characterizing the composition represented as a shape.

0th Persistence Diagrams. The connectedness of T is retrieved by the pres-
ence of only one point at infinity. Let u = ū be its equation: ū is the absolute
minimum of f on the deformed Tonnetz. If ū ≈ 0, then there exists at least one
pitch-class set that does not have a relevant role in the composition, suggesting
that it is based on a stable tonal or modal choice. On the contrary, if ū >> 0,
then all the pitch classes have been used in the composition for a relevant time.
This configuration suits a more atonal or chromatic style. The presence of proper
points is due to the existence of minima of the height function, that are sub-
complexes of the Tonnetz not connected by an edge, and hence, representing a
dissonant interval [26]. Furthermore, the structure of the Tonnetz torus allows
to retrieve a maximum of three connected components. To create this particular
configuration, it is necessary to play a chromatic cluster: for instance, C,C�,D,
that is not usually used in a tonal or modal context.

1st Persistence Diagrams. The lifespan of 1-dimensional holes traversing the
filtration provides symmetrical information with respect to the 0th persistence

94 M.G. Bergomi et al.

5

4

3

2

1

0

6

5
4
3
2
1

0

6

8
7

4

2

0

6

10

8

543210 6543210 6 7 8 420 6 108

1.41.210.80.60.40.2

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

5

4

3

2

1

0
543210

4
3.5

3
2.5

1.5

1
0.5
0

2

43.532.51.510.50 2

D0

D1

(a) Arabesque

(d) Arabesque

Fig. 5. The 0th (first row) and 1st persistence diagrams (second row) representing the
topological fingerprints associated with three different compositions.

analysis. In this case, two points at infinity detect the two generators of the
1st homology group of the torus and, if there exists, proper points detect the
presence of maxima of the height function, that are subcomplexes of the Tonnetz
not connected by an edge.

As an example, we consider the persistence diagrams associated with
Debussy’s Arabesque, Jeux d’Eau by Ravel, and Klavierstück 1 by Schönberg,
shown in Fig. 5. In the 0th persistence diagram describing Arabesque, there are
no proper points. This is an evidence of the pentatonic and diatonic/modal
inspiration of the composition [28]. We also observe that the entire chromatic
scale has been used, since ū > 0. The abscissa of the point at infinity in the
0th persistence diagram of Jeux d’Eau is characterized by a high value, thus the
entire set of pitch classes has been largely used in the composition. Moreover,
the presence of a proper point highlights the ante-litteram use of the Petrushka
chord, a superposition of a major triad and its tritone substitute: for instance,
G = (G,B,D) + C� = (C�,E�,G�). Finally, the diagram associated with the
Klavierstück 1 has two relevant proper points: this last feature points out the
atonal nature of the composition.

The second row of Fig. 5 shows the 1st persistence diagrams associated with
the same compositions. The tonal nature of Arabesque is highlighted by the a
large distance between the points at infinity and the absence of proper points.
The chromatic style of Jeux d’Eau implies the reduction of the distance between
the two points at infinity. This last feature appears also in the diagram describ-
ing the Klavierstück 1, whose atonal tendency is stressed by a proper point
representing the relevant lifespan of a third non-connected subcomplex.

Towards a Topological Fingerprint of Music 95

Fig. 6. Persistence-based clustering of nine classical and contemporary pieces.

4.1 Applications

In the following applications, we show how the persistence diagrams associated
with a collection of compositions can effectively classify them according to their
style. For k = 0, 1, let D = {D1, . . . , Dn} be the set of kth persistence diagrams.
Let M = mij = dB(Di,Dj), for 1 � i, j � n, be their distance matrix. The
hierarchical clustering analysis [25] allows us to describe the configuration of the
diagrams Di ∈ D with respect to the bottleneck distance. We will represent the
organization of all their possible clusters as a dendrogram [21,23]. In this type
of diagram, the abscissa of each splitting (vertical line) measures the distance
between two clusters. Such distance is computed through elementary operations
on the elements of M .

Tonal and Atonal Music. We consider a dataset composed by nine
pieces selected among the compositions by Beethoven, Debussy, Mozart, Ravel
and Schönberg available at http://nami-lab.com/tonnetz/examples/deformed
tonnetz int sound pers.html.

The clustering computed using the 0th persistence of these pieces is depicted
in Fig. 6. Data are organized in two main clusters, that segregate the two first
pieces of Schönberg’s Drei Klavierstücke and Ravel’s Jeux d’Eau, from the ones
by Mozart, Beethoven and Debussy. The association between Klavierstück 2 and
Jeux d’Eau mirrors the particular nature of this Schönberg’s composition, that
lies at the crossroad of tonal and atonal music, as it is proven by its disparate
tonal interpretations [3,24,31]. The two movements of Mozart’s KV311 form
immediately a cluster reached at an increasing distance by the two first move-
ments of the Sonata in C major by Beethoven. The third movement of Sonata in
C major is grouped with Arabesque because both are characterized by a generous
use of the pentatonic scale.

Comparing Three Versions of All the Things You Are. The three inter-
pretations are structured as follows:

http://nami-lab.com/tonnetz/examples/deformed_tonnetz_int_sound_pers.html
http://nami-lab.com/tonnetz/examples/deformed_tonnetz_int_sound_pers.html

96 M.G. Bergomi et al.

Fig. 7. Comparing three different versions of All the Things You Are.

1. Version 1 is played by a quartet in a standard way. Its main sections are
a 3/4 introduction, a first exposition of the theme, and a 12 bars interlude
introducing the last theme enriched by short improvisations.

2. Version 2 is performed by a piano solo, and it is characterized by a rich
chromatic playing style of both hands. The main theme is executed twice.

3. Version 3 is performed by a duo (piano and bass). Its structure consists of an
introduction, an exposition of the theme, and a piano improvisation.

The dataset is composed by the complete versions of the standard labeled as
i complete and a transposed version (i complete interval). Segments of each
versions are included in the dataset and labeled as i segment. In order to test the
ability of the model to distinguish between a piece modulating in several tonali-
ties, enriched with chromatic solos, and a non-structured sequence of pitches, a
random version of each interpretation is also part of the dataset (i random).

The resulting dendrogram is displayed in Fig. 7. We observe that the trans-
posed versions have distance zero from the original ones, as an effect of the
invariance of the filtration induced on the Tonnetz torus by the height function
under uniform transposition. The randomized versions of the songs are well seg-
regated. A small cluster groups the interlude of the first and the introduction of
the third version, because both fragments share a very similar structure in terms
of intervallic leaps and rhythm. Finally, in the top cluster, the two complete songs
are linked to the fragment of the third version containing the theme. Hence, the
0th persistence homology retrieves the fragments containing the whole structure
of the standard. This feature is surprising when taking into account the several
modulations of the piece.

Towards a Topological Fingerprint of Music 97

Big Pop Clustering. Figure 8 shows a simplification of the clustering result-
ing by the comparison of the 1st persistence diagrams associated with 58 pop
songs performed by 28 artists, spacing from Ray Charles to Lady Gaga. In order
to give a simplified representation of this dendrogram, we considered only the
three biggest clusters detected by the algorithm. On the left of each cluster, we
listed the artists whose songs belong to that group. Names written in black bold
characters indicate artists whose songs are entirely grouped in the cluster at
their right, while red bold characters identify the three artists whose songs are
spread among the three groups. We observe how the entire collection of songs
by Ringo Starr, Paul McCartney and Simon & Garfunkel are grouped together
in the blue cluster with Ray Charles, Stevie Wonder and George Benson. More-
over, the heterogeneity that characterizes Sting’s compositions is mirrored by
the presence of one of his songs in each cluster. The second and third clusters
are less homogeneous, but promising, taking into account that so far each song
is identified by a single persistence diagram.

Ringo Starr (3/3)
Paul McCartney (3/3)

Simon and Garfunkel (3/3)
Ray Charles (1/1)

Prince (1/1)
Phil Collins (1/1)

Bobby McFerrin (1/1)
Stevie Wonder (1/1)

George Benson (1/1)
Aretha Franklin (1/1)

All Saints (1/1)
Enya (2/3)

Jamiroquai (2/3)
Whitney Huston (2/3)
Michael Jackson (1/2)

ABBA (1/2)
George Michael (1/2)

Oasis (1/2)
Britney Spears (1/3)

Cranberries (1/3)
Sting (1/3)

The Corrs (1/3)
Jennifer Lopez (3/3)
Britney Spears (2/3)

Natalie Imbruglia (1/2)
Marvin Gaye (1/2)

George Michael (1/2)
ABBA (1/2)

Cranberries (1/3)
Sting (1/3)

The Corrs (1/3)

Christina Aguilera (2/2)
Backstreet Boys (2/2)

Lady Gaga (1/1)
Natalie Imbruglia (1/2)

Oasis (1/2)
Michael Jackson (1/2)

Marvin Gaye (1/2)
Jamiroquai (1/3)

Enya (1/3)
Whitney Huston (1/3)

Sting (1/3)
Cranberries (1/3)

The Corrs (1/3)

%
*

>

%

)
)
)
)
)
)
)
)
)
)
)
)
)

%
*%

>.

%

*%

(If You Love Somebody Set Them Free)
(I Never Loved You Anyway)

(Linger)

(Love Gives Love Takes)

(Zombie)
(Fields of Gold)

(Leave Me Alone)
(Cordell)

(Fortress Around Your Heart)

Fig. 8. A simplified representation of the clustering of 58 pop songs generated from
their 1st persistence diagrams.

98 M.G. Bergomi et al.

5 Discussion and Future Works

We suggested a model describing music by taking into account the contribution
of each pair (pitch class, duration) associated with the notes of a composition.
The height function has been defined on the vertices of the simplicial Tonnetz
to induce a lower level set filtration on the Tonnetz torus. The 0th and 1st per-
sistence diagrams associated with different musical pieces have been interpreted
in musical terms and their bottleneck distance has been used to classify them
hierarchically. The possible clusterings have been represented as dendrograms,
showing that 0th and 1st persistence can be used to analyze and classify music.

The analysis and classification of music we performed has been realized by
considering datasets composed by MIDI files. However, the extension of this
model to audio files is straightforward. Given an audio signal, the chroma analy-
sis [20] retrieves the contribution in time of each pitch class. Using a chromagram
to define the height function, it would surely be affected by the noisy data com-
ing from the signal. The stability of persistence diagrams, when compared using
the bottleneck distance, assures robustness against noise.

The model itself can be extended in several ways. For instance, it is possible
to augment the dimensionality of the simplicial Tonnetz. This would result in
losing the property of being easily visualizable, but it would give the possibility
to encode more information. This could be done by associating with each pitch
class of the Tonnetz a velocity, or by adding information concerning whatever
pitch-class related feature. Moreover, topological persistence offers further tools
to improve the strategies we suggested. A natural development is the study of
the multidimensional persistent homology [5,6] of musical spaces and their time-
varying nature [1].

References

1. Bergomi, M.G.: Dynamical and Topological Tools for (Modern) Music Analysis.
Ph.D. thesis, Université Pierre et Marie Curie (2015)

2. Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and
visualization of musical structures in chord-based simplicial complexes. In: Yust, J.,
Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS, vol. 7937, pp. 38–51. Springer,
Heidelberg (2013)

3. Brinkmann, R.: Arnold Schönberg, drei Klavierstücke Op. 11: Studien zur frühen
Atonalität bei Schönberg. Franz Steiner Verlag (1969)

4. Burns, E.M., Ward, W.D.: Intervals, scales, and tuning. Psychol. Music 2, 215–264
(1999)

5. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete
Comput. Geom. 42(1), 71–93 (2009)

6. Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in mul-
tidimensional persistent homology are stable functions. Math. Meth. Appl. Sci.
36(12), 1543–1557 (2013)

7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
Discrete Comput. Geom. 37(1), 103–120 (2007)

Towards a Topological Fingerprint of Music 99

8. Cohn, R.: Neo-riemannian operations, parsimonious trichords, and their “Tonnetz”
representations. J. Music Theor. 41, 1–66 (1997)

9. d’Amico, M., Frosini, P., Landi, C.: Using matching distance in size theory: a
survey. Int. J. Imag. Syst. Tech. 16(5), 154–161 (2006)

10. d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching
between reduced size functions. Acta Applicandae Mathematicae 109(2), 527–554
(2010)

11. De Cheveigne, A.: Pitch perception models. In: Plack, C.J., Fay, R.R., Oxenham,
A.J., Popper, A.N. (eds.) Pitch, pp. 169–233. Springer, New York (2005)

12. Douthett, J., Steinbach, P.: Parsimonious graphs: a study in parsimony, contextual
transformations, and modes of limited transposition. J. Music Theor. 42, 241–263
(1998)

13. Dowling, W.J.: Recognition of melodic transformations: inversion, retrograde, and
retrograde inversion. Percept. Psychophys. 12(5), 417–421 (1972)

14. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American
Mathematical Society, Providence (2009)

15. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453,
257–282 (2008)

16. Euler, L.: De harmoniae veris principiis per speculum musicum repraesentatis.
Opera Omnia 3(2), 568–586 (1774)

17. Folgieri, R., Bergomi, M.G., Castellani, S.: EEG-based brain-computer interface
for emotional involvement in games through music. In: Lee, N. (ed.) Digital Da
Vinci. Computers in Music, pp. 205–236. Springer, New York (2014)

18. Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern
Recogn. Image Anal. 9, 596–603 (1999)

19. Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Eng. Comm.
Comput. 12(4), 327–349 (2001)

20. Harte, C., Sandler, M.: Automatic chord identifcation using a quantised chroma-
gram. In: Audio Engineering Society Convention 118. Audio Engineering Society
(2005)

21. Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster
tree: the dynamic tree cut package for R. Bioinformatics 24(5), 719–720 (2008)

22. Li, T.L., Chan, A.B., Chun, A.: Automatic musical pattern feature extraction using
convolutional neural network. In: Proceedings of International Conference on Data
Mining and Applications (2010)

23. Martinez, W.L., Martinez, A., Solka, J.: Exploratory Data Analysis with MAT-
LAB. CRC Press, Boca Raton (2010)

24. Ogdon, W.: How tonality functions in Shoenberg Opus-11, Number-1. J. Arnold
Schoenberg Inst. 5(2), 169–181 (1981)

25. Ott, N.: Visualization of Hierarchical Clustering: Graph Types and Software Tools.
GRIN Verlag, Munich (2009)

26. Plomp, R., Levelt, W.J.: Tonal consonance and critical bandwidth. J. Acoust. Soc.
Am. 38(4), 548–560 (1965)

27. Smaragdis, P., Brown, J.C.: Non-negative matrix factorization for polyphonic
music transcription. In: 2003 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, pp. 177–180. IEEE (2003)

28. Trezise, S.: The Cambridge Companion to Debussy. Cambridge University Press,
Cambridge (2003)

29. Tulipano, L., Bergomi, M.G.: Meaning, music and emotions: a neural activity
analysis. In: NEA Science. pp. 105–108 (2015)

100 M.G. Bergomi et al.

30. Wang, A., et al.: An Industrial Strength Audio Search Algorithm. In: ISMIR. pp.
7–13 (2003)

31. William, B.: Harmony in Radical European Music. In: Society of Music Theory
(1984)

32. Žabka, M.: Generalized Tonnetz and well-formed GTS: a scale theory inspired by
the neo-riemannians. In: Chew, E., Childs, A., Chuan, C.-H. (eds.) MCM 2009.
CCIS, vol. 38, pp. 286–298. Springer, Heidelberg (2009)

Topological Comparisons of Fluvial Reservoir
Rock Volumes Using Betti Numbers:

Application to CO2 Storage Uncertainty
Analysis

Asmae Dahrabou1, Sophie Viseur2(B), Aldo Gonzalez-Lorenzo3,4,
Jérémy Rohmer5, Alexandra Bac3, Pedro Real4, Jean-Luc Mari3,

and Pascal Audigane5

1 Neuchâtel University, Neuchâte, Switzerland
2 Aix-Marseille Université, CEREGE UM 34, CNRS, IRD, Marseille, France

viseur@cerege.fr
3 Aix-Marseille Université, CNRS, LSIS UMR 7296, Marseille, France

4 Department of Applied Mathematics I, University of Seville, Seville, Spain
5 BRGM, Orléans, France

Abstract. To prevent the release of large quantities of CO2 into the
atmosphere, carbon capture and storage (CCS) represents a potential
means of mitigating the contribution of fossil fuel emissions to global
warming and ocean acidification. Fluvial saline aquifers are favourite
targeted reservoirs for CO2 storage. These reservoirs are very heteroge-
neous but their heterogeneities were rarely integrated into CO2 reser-
voir models. Moreover, contrary to petroleum reservoirs, the available
dataset is very limited and not supposed to be enriched. This leads to
wide uncertainties on reservoir characteristics required for CSS manage-
ment (injection location, CO2 plume migration, etc.). Stochastic simula-
tions are classical strategies in such under-constrained context. They aim
at generating a wide number of models that all fit the available dataset.
The generated models serve as support for computing the required reser-
voir characteristics and their uncertainties. A challenge is to optimize
the uncertainty computations by selecting stochastic models that should
have a priori very different flow behaviours. Fluid flows depend on the
connectivity of reservoir rocks (channel deposits). In this paper, it is
proposed to study the variability of the Betti numbers in function of dif-
ferent fluvial architectures. The aim is to quantify the impact of fluvial
heterogeneities and their spatial distribution on reservoir rock topology
and then on CO2 storage capacities. Representative models of different
scenarios of channel stacking and their internal heterogeneities are gen-
erated using geostatistical simulation approaches. The Betti numbers are
computed on each generated models and statistically analysed to exhibit
if fluvial architecture controls reservoir topology.

1 Introduction

The impact of the heterogeneities on the reservoir performances has always
been a key topic in geosciences, especially in the case of fluvial reservoirs.
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 101–112, 2016.
DOI: 10.1007/978-3-319-39441-1 10

102 A. Dahrabou et al.

They consist of sediments deposited along rivers. They are very heterogeneous
and characterized by a complex spatial organization of sedimentary entities.

Many studies have been developed for analyzing uncertainty of hydrocar-
bon fluvial reservoirs [1]. For instance, stochastic simulation methods have been
proposed to generate plausible 3D models of fluvial sedimentary architectures,
conditioned to available subsurface data (e.g., seismic, well). These sets of 3D
models serve as support for risk assessments. An important issue is to character-
ize the uncertainties on dynamic reservoir characteristics because flow simulators
are highly time and power consuming. As a consequence, only few 3D models of
reservoir heterogeneity are used to perform flow simulations. For several years,
optimization techniques [2] have been proposed to scan more rapidly the uncer-
tainty space. It is based on the determination of distances between the generated
stochastic simulations. Descriptors, i.e. variables estimated on the reservoir, are
used to define distances between models and multivariate statistics are used
to guide the selection of a limited subset of 3D reservoir models that are very
different and that correspond to a representative subsampling of the generated
plausible models.

In the CO2 geological storage context, taking into account high resolution
heterogeneity is still at the beginning even though some studies have shown the
impact of heterogeneities on CO2 reservoir performances and capacities [3,4].
Techniques proposed for petroleum reservoir analysis [1,2,5] may be used as
basis for CO2 applications. Several descriptors have been proposed to describe
the geometry and the topology (i.e. connectivity) of reservoir rocks. However,
differences exist between the problematics of petroleum and CO2-storage reser-
voirs. First, the involved space and time scales are greater in the CO2-storage
domain than in the hydrocarbon industry. Second, the amount and availability
of data are generally much more limited in CO2 context. Finally, the use of flow
simulation in CCS studies is not for predicting the flow path from an injection
well to a producing one, but mainly for estimating the reservoir capacity and
overpressure. This means that specific descriptors are needed.

In this paper, we focus on searching formal frameworks to define topological
descriptors. Indeed, several geometrical characteristics have been already pro-
posed [2,5,6], while only descriptors based on degraded flow simulations have
been proposed for describing the reservoir connectivity. Even if these descrip-
tors provide insights on rough flow behavior, they remain time consumming.
The question is then to determine if the “static” topology of the reservoir rocks
can also provide information about fluid flow behaviors. In this paper, we pro-
pose to use the formal framework of the Betti number to study the topology of
the reservoir rock volume. However, we focus on determining if different fluvial
architectures lead to significant differences of Betti number averages.

In a first section, basics on fluvial sediment architecture and the main mod-
elling issues are presented. To compare the Betti numbers on different fluvial
architectures, we propose to generate a synthetic data set of different 3D fluvial
reservoirs. It is then possible to master the explanatory parameters of the models.
Thus, the method used for generating the synthetic dataset and the explanatory

Topological Comparisons of Fluvial Reservoir Rock Volumes 103

parameters are described in a second section. In a third part, the mathematical
background of the Betti numbers is briefly presented. The proposed approach
for using the Betti numbers as descriptors is then described in a fourth section.
The statistical approaches proposed to analyse the connectivity of these different
reservoir models are also explained. Finally, the results are shown and discussed.

2 Fluvial Reservoir Modelling and Problematics

Rivers bring and deposit coarse sediments along their path (Fig. 1(A)) in a flood
plain consisting in fine sediments. If the river becomes unstable due to inter-
nal or external (e.g. tectonics) factors, an avulsion occurs and the river path
changes its location, potentially its orientation, in the flood plain. Coarse sed-
iments are then deposited at the new river location. The sedimentary bodies
deposited between two avulsions are often termed as channels even if the more
convenient terminology is channelbelts [7,8]. Thus, fluvial reservoirs consist in
the stackings of elongated tabular permeable bodies, the channelbelts, in an
impermeable background. The fluvial architecture follows sedimentological laws
such as: the channelbelt bodies pass entirely through the volume and their posi-
tions are correlated, in most cases [4,9] (Fig. 1(B)). The fluvial reservoirs are
highly compartmentalized: the channelbelt bodies may be amalgamated in cer-
tain places and the connectivity between these bodies has then a major impact
on the final reservoir rock organization, hence fluid flows.

For modelling purpose, it is common to only consider two lithologies ([4],
Fig. 1(A)): the overbank deposits (mainly impermeable) and the channelbelts
(reservoir rocks). Several algorithms have been proposed to stochastically repro-
duce the channelbelt stackings of fluvial architecture. Poisson point processes
and simulated annealing are the most known techniques [1,10]. However, even if
they assert to provide equiprobable models conditioned to subsurface data, both
techniques consider channel positions as independent and do not assert that the
generated objects totally pass through the volume. These drawbacks have been
noticed by several authors [4,11,12]. In [4], the authors propose an algorithm to

Fig. 1. Fluvial architecture: (A) channelbelt stackings and associated overbank
deposits (levees, crevasse-splays, flood plain fines); (B) Conceptual model of a chan-
nelbelt stacking influenced by a fault activity (modified from [9]).

104 A. Dahrabou et al.

stochastically reproduce channel stackings that fit sedimentological laws. How-
ever, this technique is unconditional and can not then account for subsurface
data. The integration of geological laws into stochastic conditioned models is
still a sensitive issue in reservoir modelling [12] and a question is to determine
which sedimentological laws really influence reservoir behaviors [5].

In this work, the objective is to determine if the connectivity of the reservoir
rocks is in average influenced by different scenarios of channel stacking. An
algorithm inspired from [4] was used to generate different families of stochastic
models. The Betti numbers are proposed as descriptors for formelly compare the
final topology, i.e. connectivity, of the reservoir rocks.

3 Synthetic Data Set

A grid of 100 × 100 × 100 cells and 50 × 50 × 25 scale was built. A channel-
belt template is also constructed as a median polygonal line with perpendicular
demi-ellipse cross-sections. Its length is twice the grid one to ensure that simu-
lated objects totally pass through the volume. At a first glance, the object sizes
have no importance as we only deal with topology. However, the channel sizes are
chosen small enough compared to the grid in order to assert that the stochastic
simulation is an ergodic process (i.e. statistics are reproduced on a realization [1]).

The principle of the algorithm is to simulate N channelbelt parametric
objects within the volume. At each step, a channelbelt object is randomly gener-
ated and located in the volume using translation and rotation operations. Many
parameters are required to define the dimensions, the sinuosity, the orientation
and the location of a simulated channelbelt object. In this work, only two aspects
have been considered as variable: the style of stacking and the orientations of
the channelbelts. Indeed, the more parameters are variable, the more models
are required for cross comparisons. Except the width and height of the channel
sections, all the parameters are simulated using a Monte Carlo sampling on a
density probability law. For a sake of simplicity, the probability laws are always
considered as uniform and noticed U(min,max) in the following. The minimum
and maximum values are chosen so that it reproduces “realistic” shapes of chan-
nelbelts.

The sinuosity of the channel middle lines is simulated using a cosine equation
as follows:

X = a · cos(φ + τ · Y +40
280

φ = b·π
180

τ = c · π
(1)

where a ∼ U(5, 20), b ∼ U(5, 30) and c ∼ U(1, 5). The width and height of the
channel sections are constant and equal, respectively, to 10 and 3.
On one hand, two different styles of channel stacking were simulated (Fig. 2):

1. unstructured : the ith simulated object is randomly located in the volume,
independently from the i − 1 already simulated objects. This is similar to
Poisson point process as the events are considered as independent.

Topological Comparisons of Fluvial Reservoir Rock Volumes 105

2. structured : the location of the ith object depends on the location of the i−1th

object. Vertical and lateral translations are defined between them (Fig. 2(A)).
These values are simulated using a Monte Carlo sampling on, respectively,
U(0, 3) and U(−10, 10), except for the first simulated object for which the
lateral translation is randomly chosen in the volume. The vertical translation
asserts that there is no vertical gap between the i − 1th and the ith objects.
The values follow the sedimentological laws detailed in [4].

On the other hand, the orientations of the channel bodies are modified. In
two model series, the channelbelt orientation θ varies from −10◦ to 10◦, and in
the two others from −90◦ to 90◦ (Fig. 2(B)). In other words, the channelbelts
are roughly oriented in the same directions (North-South) for the first two series,
and in any orientations for the two others.

This leads to four series of models: (A) unstructured, orientations simulated
on U(−10◦, 10◦); (B) unstructured, U(−90◦, 90◦); (C) structured, U(−10◦, 10◦);
and (D) structured, U(−90◦, 90◦). Figure 3 shows top and cross-section views of
two models corresponding to, respectively, A and D type.

Fig. 2. Parameters for location simulation: (A) vertical and horizontal translations
between objects i − 1 and i; (B) Definition of the angle θ for simulating the main
channel orientations.

Moreover, it may be easy to imagine that proportions can also control the
Betti numbers, even if no specific study has been dedicated to that problem,
to our knowledge. To illustrate this phenomenon, a purely random white noise
of a binary variable was simulated for a proportion of black pixels from 0 to
100%. It may be seen in Fig. 4 that the Betti numbers are influenced in average
by the proportion. For this reason, we choose to generate 3D models of channel
stacking for which the poportion of the reservoir rock (channel) ranges over
[0.35, 0.4] (in average, 20 objects are simulated in the volume). This proportion
range is realistic and for a first study, corresponds to a balance between a too
small reservoir rock proportion leading to isolated small bodies (unexploitable)
and a high proportion (e.g. 80%), for which it has been shown that the geometry
and the organization of the channels have no more impact on reservoir behavior
[5,13].

Fifty simulations were provided for each model type (A, B, C and D) to
have a sufficient sampling of models. Simulations were performed using a Gopy

106 A. Dahrabou et al.

research plugin of the Gocad R© software. The generated 3D models are firstly
represented as a set of parametric objects (Fig. 3, top view). These models are
secondly rasterized in the grid by storing the value 1 when a cell is intersected
by a channel and 0, else. At the end, the 3D models represent binary volumes
(3D grids), for which the value 1 corresponds to the reservoir rocks (channels)
and 0 the background (impermeable).

Fig. 3. Examples of 3D models: (left) the 8th simulation in the model A, section of the
3D grid and top view of the corresponding simulated parametric objects; (right) the
7th simulation in the model D, section of the 3D grid and top view of the corresponding
simulated parametric objects.

Fig. 4. Betti numbers (β0 in blue, β1 in green and β2 in red) computed for each
proportion of black pixels, over 10000 experiments on a 7 × 7 × 7 grid. (Color figure
online)

3.1 3D Cubical Complexes and Homology

The following section defines the Betti numbers for binary volumes. Let us first
point out that these numbers cannot be directly obtained from the volume, so
an intermediate structure, called cubical complex, must be considered.

An elementary interval is an interval of the form [k, k + 1] or a degenerate
interval [k, k], where k ∈ Z. An elementary cube is the Cartesian product of n
elementary intervals, and the number of non-degenerate intervals in this prod-
uct is its dimension. An elementary cube of dimension q will be called q-cube

Topological Comparisons of Fluvial Reservoir Rock Volumes 107

for short. Given two elementary cubes P and Q, we say that P is a face of Q if
P ⊂ Q. A 3D cubical complex is a set of elementary cubes. The boundary of a
q-cube is the collection of its (q − 1)-dimensional faces.

Given a binary volume X, we can define a topologically equivalent 3D cubical
complex K(X) which contains a 3-cube [x1, x1 + 1] × [x2, x2 + 1] × [x3, x3 + 1]
for every voxel (x1, x2, x3) of X.

A chain complex (C, d) is a sequence of R-modules C0, C1, . . . (called chain
groups and homomorphisms d1 : C1 → C0, d2 : C2 → C1, . . . (called differential
or boundary operators) such that dq−1dq = 0, for all q > 0, where R is some
ring, called the ground ring or ring of coefficients. In this paper we fix R = Z2

since we work in a three-dimensional space. The group chains are thus Z2-vector
spaces.

A 3D cubical complex K induces a chain complex. Cq(K) is the Z2-vector
space of dimension fq(K), the number of q-cubes in K. Its elements (called
q-chains) are formal sums of q-cubes with coefficients in Z2, so they can be
interpreted as sets of q-cubes. The linear operator dq maps each q-cube to the
sum of its (q − 1)-dimensional faces.

A q-chain x is a cycle if dq(x) = 0, and a boundary if x = dq+1(y) for some
(q + 1)-chain y. By the property dq−1dq = 0, every boundary is a cycle, so we
can define the q-th homology group of the chain complex (C, d):

H(C)q = ker(dq)/im(dq+1). (2)

This set is a group isomorphic to (Z2)b for some b ≥ 0. The ranks of the
homology groups are called the Betti numbers.

In the present work, the Betti numbers are scrutinized to determine if they
can be used for describing differences on reservoir geobody network or connec-
tivity.

4 Betti Numbers Used as Descriptor

4.1 Computations and Geological Meanings

This section aims at defining the “physical” meaning of each Betti number in the
case where the targeted object is a reservoir 3D model. Indeed, we may consider
two kinds of volume: the volume of reservoir rock (channelbelt sediments), which
corresponds to fluid storage and drainage, and the volume of impermeable rocks
(overbank deposits), which corresponds to flow barrier. We can then consider
not only the Betti numbers β0, β1 and β2 of the reservoir rock volumes but also
the Betti numbers of the impermeable background, that we refer to as β−

0 , β−
1

and β−
2 in the following.

The Betti number of dimension β0 represents the number of reservoirs con-
tained in the background. By “reservoir”, we mean the amalgamated channelbelt
bodies that lead to a connected volume of reservoir rock. The Betti numbers β1

and β2 represent, respectively, the number of impermeable tunnels and cavities
contained in the reservoir rock. These two parameters may have importance for

108 A. Dahrabou et al.

CO2 storage application, as it has been shown that the presence of imperme-
able lenses in a reservoir rock volume increases the capacity of CO2 storage [14],
because of the CO2 accumulation under the lenses.

Concerning the complementary volume (i.e. the impermeable background),
β−
0 is the number of the barriers that compartmentalize the reservoir. Obvi-

ously, β−
1 and β−

2 are the number of tunnels and cavities in the background,
respectively. The tunnels may have importance as they represent potential leaks
for CO2 in the impermeable covers. It is of paramount importance for storage
efficiency and reliability that the CO2 does not migrate inside the impermeable
covers. Several studies have been conducted on the impact of thin permeable
tunnels (e.g. faults) in impermeable sediments [15].

The Betti numbers were calculated using an add hoc C++/python code and
the RedHom software [16]. The ad hoc code was developed to automate the
model import into the RedHom software and to extract a convenient output
format (i.e. column based file) from RedHom outputs for the statistical analysis
over the 200 models.

4.2 Statistical Tests

As previously mentioned, the final objective is to determine if significant differ-
ences in Betti number values can be observed between the four series of models.
A common way to achieve this is the use of hypothesis testing. In this study,
we propose to use the non-parametric Kruskal-Wallis test, whose purpose is to
compare the mean of a random variable V between different samplings, that are
assumed to be independent but that can have different sizes. This test does not
require that V follows a particular parametric distribution law.

Let us consider N samplings on which a random variable V has been mea-
sured and mi the means of V on the ith sampling. The Kruskal-Wallis test is
presented as follows:

{
The null hypothesis, H0 : m1 = m2 = ... = mN

The alternative hypothesis, H1 : ∃i, j/mi 	= mj
(3)

The underlying objective is to determine if the samplings are stemming from
the same statistical population (the null hypothesis). Thus, the question is to
reject or not H0. As any hypothesis testing, it relies on the computation of a
statistics t that should follow a given hypothetic law under H0. Then, an observed
value tobs is computed from the samplings and compared to a critical value tc.
This critical value is defined by assuming a given risk α, which corresponds to
the probability to reject H0 although it is true. If tobs is greater than tc, H0

is rejected, else it is accepted. Another way to interpret results is to compute
the p-value, which corresponds to the probability of rejecting H0 although it is
true, computed from the samplings. If it is greater than α then H0 is accepted,
otherwise rejected.

In the case of H0 rejection, it is a common practice to use post hoc tests
that allows the determination of which means are different from the others.

Topological Comparisons of Fluvial Reservoir Rock Volumes 109

In this study, the post hoc test “Kruskalmc” (multiple comparison) was chosen
in order to evaluate differences in medians among the four models. It is important
to notice that this test is less powerful than the Kruskal-Wallis test. This can lead
to unconsitent results between the two tests. The power of an hypothesis testing
corresponds to the probability to reject H0 when H1 is true. It characterizes its
robustness.

Moreover, in order to scrutinize the values of the Betti numbers, we propose
to use the boxplot (Fig. 5). The box plot displays the full range of variation (from
min to max), the likely range of variation (the IQR), and a typical value (the
median). They have also lines extending vertically from the boxes (whiskers)
indicating variability outside the upper and lower quartiles. Outliers may be
plotted as individual points. The spacing between the different parts of the box
indicate the degree of dispersion (spread) and skewness in the data, and show
outliers.

The statistical analysis was performed using the R software.

Fig. 5. Boxplots: left, diagram of the boxplot parameters; right, the four boxplots for
each Betti number.

5 Results and Discussion

5.1 Kruskal-Wallis Tests

For the 200 generated simulations, no cavity was found: β2 = 0 and β−
2 = 0.

They are then not studied. Concerning the four other numbers, Table 1 summa-
rizes the results found for the Kruskal-Wallis test. Except for β0, all the p-values
are under 5%. Thus, it can be concluded that the mean of β0 is not signifi-
cantly different between the different series. On the contrary, for β1, β−

0 and
β−
1 , there is at least one mean that is significantly different from the others.

110 A. Dahrabou et al.

The post hoc test “Kruskalmc” was applied to evaluate differences among the
four models for these three variables. Table 2 summarizes the results. For β1, the
models are all different. In terms of β−

0 , the models C is significantly different
from the others. Finally, all the models are considered as similar in terms of β−

1 .
This is unconsistent with previous results. However, as previously mentioned,
the “kruskalmc” test is less powerful and “more easily accepts” H0, which can
explain these results. Moreover, the found p-values (0.03774) is very close to 5%.
Similarly, the tobs of the comparison between A − B (27.3) is very close to the
critical value (27.7123). This means that using a higher risk than 5%, the means
could be considered as different and that the models B would be considered as
different from A, C and D. In order to depict graphically the four groups of
numerical data through their quartiles, boxplots were used (see Fig. 5). These
plots confirm previous interpretations.

Table 1. Results of the Kruskal-Wallis test, p-values are always under 5 %, except for
β0 (in bold). It may be noticed that the p-value of β−

1 (in italic) is close to 5 %.

Betti number β0 β1 β−
0 β−

1

p-value 0.2334 7.5e−5 1.33e−6 0.03774

Table 2. Results of the Kruskal-Wallis post hoc test, applied for β1, β−
0 , and β−

1 .

β1 tobs tc Difference

A-B 33.96 27.7123 TRUE

A-C 46.94 27.7123 TRUE

A-D 37.96 27.7123 TRUE

β−
0 tobs tc Difference

A-B 11.94 27.7123 FALSE

A-C 46.15 27.7123 TRUE

A-D 1.59 27.7123 FALSE

β−
1 tobs tc Difference

A-B 27.3 27.7123 FALSE

A-C 0.63 27.7123 FALSE

A-D 12.55 27.7123 FALSE

5.2 Interpretations and Discussions

Considering a proportion of reservoir rock between [0.35; 0.4], it could be said
that the number of reservoir geobodies does not depend on the stacking law
and the channel orientation variability. On the contrary, both stacking and
orientations modify significantly the number of impermeable tunnels in the

Topological Comparisons of Fluvial Reservoir Rock Volumes 111

reservoir rocks. Regarding Fig. 5, the unstructured models seem to increase the
occurence of tunnels, in average. This means that this type of reservoir archi-
tecture is more tortuous and may facilitate dissolutions if these impermeable
tunnels are preferentially horizontal [14]. Concerning the number of imperme-
able compartmentalization (β−

0), it seems that unstructured models with sub-
parallel channel orientation present smaller occurences of these features. Regard-
ing Fig. 5, higher orientation variability leads to higher compartmentalization.
On the contrary, the stacking correlation tends to decrease it. Both trends explain
that the models C are different from the others, with a smallest mean. This
result is suprising as we could imagine at a first glance that the stacking corre-
lation tends to create vertical chimneys of reservoir geobodies that separate the
background in different components. Finally, the number of permeable tunnel
in background (β−

1) seems to be positively influenced by the stacking correla-
tion but negatively impacted by the channel orientation variability. This leads
to differentiate models B from the others. However, the difference is not clearly
significant as p − value and observed statistics are close to the cutoffs.

6 Conclusion

This preliminary study allowed us to define a “physical meaning” to the Betti
numbers computed on both permeable and impermeable volumes for reservoir
characterizations. Six variables were defined, but only four were really used in
the study because no cavity was found. This study also highlights that the type
of channelbelt stackings influence the reservoir topology. These results have been
only performed for a proportion of reservoir rocks ranged over [0.35; 0.4]. It could
be interesting to test if the trends observed in this study remain similar for dif-
ferent proportions. It may be noticed that some Betti numbers correspond to
entities that can be computed using more classical algorithms, such as β0 and
β−
0 . However, Betti numbers are known as powerful to characterize the number

of tunnels, which generally remains the most difficult task. The presence of per-
meable tunnels in impermeable background caused by faults or lithologies have
major impacts on CO2 storage risks. Thus, the use of Betti numbers helps com-
puting relevant topological indices for reservoir compactness characterization. In
further studies, we will study the impact on proportions on the observed trends
but also we will analyze more complex models having more than two lithologies.
Finally, hydraulic behavior will be also studied to check if relationships exist
between static (reservoir rock network) and dynamic (flow path) topology.

Acknowledgements. The authors would like to thank the ParadigmGeo company
and the ASGA for its support in providing the Gocad software and its research plug-
ins. This project belong to the ANR H-CUBE project and the authors would like to
thank the ANR for funding this research.

112 A. Dahrabou et al.

References

1. Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Oxford University
Press, New York (1997)

2. Scheidt, C., Caers, J.: Representing spatial uncertainty using distances and kernels.
Math. Geosci. 41(4), 397–419 (2009)

3. Bouquet, S., Bruel, D., De Fouquet, C.: Influence of geological parameters on CO2
storage prediction in deep saline aquifer at industrial scale. In: TOUGH Sympo-
sium, Berkeley (2012)

4. Issautier, B., Viseur, S., Audigane, P., Le Nindre, Y.M.: Impacts of fluvial reser-
voir heterogeneity on connectivity: Implications in estimating geological storage
capacity for CO2. Int. J. Greenhouse Gas Control 20, 333–349 (2014)

5. Larue, D.K., Hovadik, J.: Why is reservoir architecture an insignificant uncertainty
in many appraisal and development studies of clastic channelized reservoirs? J. Pet.
Geol. 31, 337–366 (2008)

6. Larue, D., Hovadik, J.: Connectivity of channelized reservoirs: a modelling app-
roach. Pet. Geosci. 12(4), 291–308 (2006)

7. Allen, J.: Studies in fluviatile sedimentation; an exploratory quantitative model
for the architecture of avulsion-controlled alluvial sites. Sediment. Geol. 21(2),
129–147 (1978)

8. Schumm, S., Mosley, M., Weaver, W.: Experimental Fluvial Geomorphology. Wiley,
New York (1987)

9. Miall, A.: The Geology of Fluvial Deposits: Sedimentary Facies Basin Analysis and
Petroleum Geology. Springer, Heidelberg (1996)

10. Lantuejoul, C.: Geostatistical Simulation: Models and Algorithms. Springer,
Heidelberg (2001)

11. Bridge, J., Tye, R.: Interpreting the dimensions of ancient fluvial channelbars,
channels, and channel belts from wireline-logs and cores. AAPG Bull. 84(8), 1205–
1228 (2000)

12. Larue, D.K., Friedmann, F.: The controversy concerning stratigraphic architecture
of channelized reservoirs and recovery by waterflooding. Pet. Geosci. 11, 131–146
(2005)

13. King, P.: The connectivity and conductivity of overlapping sand bodies. In: Buller,
A., Berg, E., Hjelmeland, O., Kleppe, J., Torsaeter, O., Aasen, J. (eds.) North Sea
Oil and Gas Reservoir II, pp. 353–362. Springer, Netherlands (1990)

14. Hesse, M.A., Woods, A.W.: Buoyant dispersal of CO2 during geological storage.
Geophysical Research Letters 37, 5 p. (2010)

15. Tsang, C.-F., Birkholzer, J., Rutqvist, J.: A comparative review of hydrologic issues
involved in geologic storage of CO2 and injection disposal of liquid waste. Environ.
Geol. 54, 1723–1737 (2008)

16. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V., Wagner, H., Juda, M., D�lotko,
P.: The efficiency of a homology algorithm based on discrete Morse theory and core-
ductions. In: Rocio Gonzalez Diaz, P.R.J. (ed.): Proceedings of the 3rd Interna-
tional Workshop on Computational Topology in Image Context, Chipiona, Spain.
Volume Image A, vol. 1. 41–47 (2010)

Topological Analysis of Amplicon Structure
in Comparative Genomic Hybridization (CGH)
Data: An Application to ERBB2/HER2/NEU

Amplified Tumors

Sergio Ardanza-Trevijano1, Georgina Gonzalez2, Tyler Borrman3,
Juan Luis Garcia4, and Javier Arsuaga2,5(B)

1 Department of Physics and Applied Mathematics, University of Navarra,
31080 Pamplona, Spain

sardanza@unav.es
2 Department of Molecular and Cellular Biology, University of California Davis,

One Shields Avenue, Davis, CA 95616, USA
gingonzalez@ucdavis.edu

3 Medical School, University of Massachusetts, 368 Plantation Street,
Worcester, MA 01605, USA

tyler.borrman@umassmed.edu
4 Centro de Investigación del Cancer, Universidad de Salamanca,

37007 Salamanca, Spain
jlgarcia@usal.es

5 Department of Mathematics, University of California Davis,
One Shields Avenue, Davis, CA 95616, USA

jarsuaga@ucdavis.edu

Abstract. DNA copy number aberrations (CNAs) play an important
role in cancer and can be experimentally detected using microarray com-
parative genomic hybridization (CGH) techniques. Amplicons, CNAs
that extend over large sections of the genome, are difficult to study
since they may contain multiple independent and dependent copy num-
ber changes. Here, we propose an algorithm to find the CNAs structure
within a given amplicon. Our method relies on the observation that co-
occurring CNAs can be encoded as 1-dimensional cycles. Applying this
method to breast cancer patients known as ERBB2/HER2/NEU ampli-
fied we find three regions that can be co-occuring: the first region is in
the cytoband 17q12, where the ERBB2 gene is located, the second region
expands between 17q21.2 to 17q21.31 and includes the keratin genes, the
third one is 17q21.33. We suggest that the first homology group helps
uncovering the structure of amplicons.

Keywords: Copy number aberrations · Cancer · Computational
homology · First homology group

S. Ardanza-Trevijano and G. Gonzalez contributed equally to this work.

c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 113–129, 2016.
DOI: 10.1007/978-3-319-39441-1 11

114 S. Ardanza-Trevijano et al.

1 Introduction

Cancer is a set of complex genetic diseases whose pathogenesis is not well under-
stood. Initiation and progression of these diseases depend on the misregula-
tion of key genes called cancer/tumor genes. Gene misregulation occurs through
different mechanisms including the gain and losses of DNA chromosome frag-
ments (e.g. [11,18,20,24]). These events are commonly termed DNA copy num-
ber aberrations (CNAs) and are routinely detected in the laboratory through
comparative genomic hybridization (CGH) arrays, single nucleotide polymor-
phism (SNP) arrays and sequencing (e.g. [12–14,17,22,36,47]). However not all
detected CNAS are relevant for tumor initiation and/or progression. It is cur-
rently believed that CNAs that contain tumor genes are those that are relevant
for tumor progression. These CNAs are called drivers while those which appear to
have no biological implications are called passengers. Determining which CNAs
are driving tumor progression and which ones are just passengers remains an
open problem. Certain CNAs expand over large fragments of the genome and
are sometimes termed Amplicons. These regions are important because contain
multiple tumor genes and the presence or absence of certain CNAs within an
amplicon has been associated with patient’s prognosis (e.g. [23,41]). Examples
include 9p in breast cancer, colon and glioblastoma tumors and lymphomas
[5,19], 11q in head and neck, breast, oral and liver tumors (reviewed in [46])
and 17q in ERBB2/HER2/NEU (ERBB2+, thereafter) positive breast cancer
[4]. The detailed structure of amplicons is complex and difficult to investigate
using traditional statistical methods since some amplifications appear to occur
simultaneously, hence they are not significant as independent CNAs, and have
synergistic effects [1,28,43]. In this work we will call co-occurring CNAs those
that occur simultaneously independently of their functional effects. One poten-
tial approach to study the structure of an amplicon and identify potential co-
occurring CNAs is to encode combinations of CNAs as a single predictor variable
and perform association studies between these new predictor variables and phe-
notypes of interest.

Here we extend our previously reported supervised approach, termed Topo-
logical Analysis of array CGH (TAaCGH), to study the structure of an ampli-
con. In TAaCGH, we associate a point cloud to each CGH profile (or section of
a CGH profile) through a sliding window algorithm [15], build a Vietoris-Rips
(VR) simplicial complex [31] and perform an association study between the topo-
logical properties of the VR complex and the chosen phenotype. The difference
between TAaCGH and other current association studies is that TAaCGH uses
the topological properties of the point cloud, instead of the probes, as predic-
tor variables. The advantage of using topological properties as predictors is that
they can encode relationships between probes. In previous works we showed that
using the rank of the zero homology group (β0) as a predictor variable in asso-
ciation studies of breast cancer is comparable to other statistical methods [3].
Here we hypothesize that performing association between the rank of the first
homology group β1 and a specific phenotype helps analyze the underlying struc-
ture of amplicons. This hypothesis is based on recent analytical and numerical

Topological Analysis of Amplicon Structure 115

results that shows that β1 encodes for periodic patterns [34] and by our own
observations that show that neighboring (not-necessarily periodic) regions of
amplifications are mirrored by β1 [10,38].

To test our hypothesis and to illustrate our methodology we analyze the
amplicon on 17q in ERBB2/HER2/NEU (ERBB2+, thereafter) positive breast
cancer samples. ERBB2+ breast cancer is an aggressive form of the disease that
comprises 25 % of all breast tumors diagnosed (reviewed in [35]). The ERBB2
gene is located in the region of the genome labeled as cytoband 17q12 (where 17 is
the chromosome arm, q denotes the long arm of the chromosome and 12 denotes
a specific band that can be detected by chromosome staining). Misregulation
of ERBB2 in ERBB2+ tumors commonly occurs through copy number gains
of 17q12. In many patients, this amplification is accompanied by gains of other
regions in the same chromosome arm. This includes amplifications of 17q21.2 that
encompasses the Top2A gene [32], chromosome regions 17q21.1, 17q22 [27] and
17q21.33− q25.1 which is predictive of early recurrence [9] and contains TANC2
(17q23) and PPM1D genes [29,37], two independent co-amplified regions have
also been reported in 17q23 [4,39].

To test whether TAaCGH can detect these events, we analyzed two inde-
pendently published data sets [13,20]. We first confirmed the presence of the
amplicon in 17q in both data sets using β0, we then identified specific regions
within this arm using β1 analysis. This study revealed two regions of signifi-
cance delimited by 17q12 and 17q12 − 17q21.33. To further localize the regions
of the genome that contributed to the significance of β1 we calculated the gen-
erators of the first homology group and the correspondence between the probes
and the generators. Statistical analysis quantifying the over-representations of
genomic regions in the generators allowed us to further subdivide the region
17q12 − 17q21.33. A first amplification was detected in between the neighbor-
ing regions 17q21.2−17q21.31 (extending from base pairs 40,884,763-41,826,877)
and the region 17q21.33 (from base-pairs 46,603,678-49,075570). Using the UCSC
genome browser we observed that the first region contains the keratin cluster
(e.g. [30]) and the second contains, among others the HOXB cluster (see [8] for
a review). Both of these clusters have been previously reported in breast cancer
studies. Whether their functionality is synergistic in some patients remains to
be determined.

2 Data Sets and Methods

2.1 CGH Data

CNAs are defined as gains or losses of genome fragments and can be detected
using microarray technologies. Through Comparative Genomic Hybridization
(CGH), DNA probes (i.e., fragments of DNA sequences) are spotted on a plat-
form. Tumor DNA, labeled with Cy3, and control DNA, labeled with Cy5, are
co-hybridized in a 1:1 ratio. The intensity of the hybridized samples is captured
and transformed into a red-green ratio value called the log2 ratio. Since the
physical position of each probe is known, these log2 ratios can be mapped to

116 S. Ardanza-Trevijano et al.

the original genome producing a CGH profile (Fig. 1). In traditional statistical
approaches each CGH profile is normalized and segmented, and significant copy
number aberrations are then identified [6,33,45].

Fig. 1. A CGH profile for chromosome arm 17q. The x-axis indicates the genomic
position and the y-axis the log2 ratio of the intensity of the tumor and control samples
co-hybridized to the same array.

2.2 Simulation Data Set

We simulated single and co-occurring aberrations. A detailed description of the
simulation methods for a single aberration can be found in [3,25,26]. In brief,
each simulation consisted of 200 profiles, 100 in the control set and 100 in the test
set. Each simulated profile contained 100 aCGH probes. The value of the copy
number along the profile was determined by three parameters: the mean value
of the aberration μ, the length of the aberration λ, and the standard deviation
associated with noise σ. Probes outside the aberration and in the control set
had μ = 0, whereas for those probes inside the aberration was μ = 0.6 or 1.
Aberration length λ was equal to 5 and 10 probes. Noise was implemented by
drawing samples from a Gaussian distribution of mean 0 and standard deviation
σ of values 0.2, 0.6 or 1. The control set for single aberrations was made of
profiles without aberrations (i.e. only noise).

Co-occurring aberrations were represented by two aberrations of different
lengths. In the first aberration μ = 0.6 or 1 and in the second μ = 1. The control
set was made of profiles with no aberrations or with only one aberration.

2.3 Horlings Data Set

This dataset analyzed was published by Horlings and colleagues [20] and was
obtained from the supplementary data [21]. Measurements of copy number

Topological Analysis of Amplicon Structure 117

variations were performed on microarrays containing 3.5 k BAC, PAC-derived
DNA segments covering the entire genome with a spacing average of 1 Mb. Each
BAC clone was spotted and triplicated on every slide (Code Link Activated Slides,
Amersham Biosciences). Our own preprocessing of the data can be found in [3].
This study contained 14 ERBB2+ patients determined by clinical diagnosis. The
control set consisted of the patients belonging to the remaining subtypes.

2.4 Climent Data Set

This data set was used as a validation set. In [13] genome-wide measurements
of copy number variations were performed by array CGH (UCSF Hum. Array
2.0) with an average spacing between probes of 1Mb. The study contained
180 patients diagnosed with a stage I/II lymph node-negative breast cancer.
The data set was downloaded from the GEO data base with accession number
GSE6448. Arrays were preprocessed by averaging/removing probes as follows:
18 clones mapping to chromosome Y or missing genomic location information
were removed, 80 probes mapping to identical genomic regions were averaged
and represented as single values, 179 probes missing entries for 30 % or more
patients were removed, and missing values were imputed using the lowess regres-
sion method in the aCGH package for R [16]. This resulted in 2,168 unique clones
from the original 2,445 printed in the array. We classified as ERBB2+ tumors
the subset of 9 patients that showed a copy number change >1 (in log scale) at
the clone DMPC-HFF#1-61H8 which contains the ERBB2 gene.

2.5 Multidimensional Analysis of CGH Profiles Using
Computational Algebraic Topology

We previously reported a new method to analyze CGH data called topological
analysis of array CGH (TAaCGH) [3,15]. Our method uses a sliding window
algorithm that associates a point cloud to a given CGH profile (or section of
a CGH profile). The dimension of the point cloud is determined by the size
of the sliding window. In this study and based on our previous work [3] we
considered windows of size n = 2. TAaCGH assigns a β0 curve to each CGH
profile, computes the average 〈β0〉 curve for each population of patients (test
and control) and performs statistical analysis to determine differences between
them (see below). Here we extended TAaCGH by incorporating a similar analysis
using 〈β1〉 curves. We used the program JavaPlex to perform the calculation of
β1 and its generators [40]. As in the case of β0, we generated the function β1(ε)
for each patient. In this case ε took values between 0 and the value at which
β0= 1.Given the β1(ε) for each patient, we computed the average 〈β1〉 for the
ERBB2 set and the control set (consisting of the reminder of the patients) and
test for statistically significant differences between the two 〈β1〉 curves.

2.6 Testing for Statistical Differences

To test for statistically significant differences between 〈βi〉 curves associated
to different patient groups, we assumed the null hypothesis that 〈βi〉 curves

118 S. Ardanza-Trevijano et al.

for a sample of patients was independent of the cancer subtype. We quantified
deviations from the null distribution by the statistic Sexp, which was defined as
the sum of the squares of the differences between the average 〈βi〉 curves across
all radii, i.e.

Sexp,i =
∑

(aij − bij)2 for j = 1, . . . , N

where aij and bij are the 〈βi(j)〉 value for each population under study and
for the value of the filtration parameter ε = j.

2.7 Finding Co-Occurring Aberrations

In order to determine the regions of the genome that contributed to the first
homology we found the CGH probes that were mapped to each of the vertices
of the generators. First, generators for each patient and value of the filtration
coefficient were calculated using JavaPlex [40]. Second, the probes of the CGH
profile that mapped to the vertices of the generators were identified. Third, since
generators were not necessary minimal and, due to the noise of the data, some
generators mapped to different areas of the genome we determined a CNA by
measuring the concentration of the probes. Regions with higher concentration
of probes than the control set were called CNAs.

2.8 Software for Visualization of Generators

We created an exploratory tool using Shiny app to visualize the generators in the
point cloud together with their corresponding probes in the CGH profile. The
app highlights the probes and generators as the values of the filtration coefficient
changes. The software allows to visualize the dispersion of the probes associated
with the probes through the CGH profile. An example is shown in Fig. 5. The
software is available from the authors upon request.

3 Results

3.1 Computer Simulations

To better interpret our results we performed computer simulations. Since the
analysis of β0 has been performed elsewhere [3,15], we focused on simulations
concerning the detection of CNAs using β1. Figure 2 shows an example of two
simulated profiles, one with no aberrations as control (Fig. 2) and a second one
with two co-occurring aberrations (Fig. 2B). In both Fig. 2A and B, the x-axis
represents the position along the chromosome and the y-axis the log2 ratio of the
copy number values. The 〈β1〉 curves (Fig. 2C) obtained from the curves above
help understand the growth and disappearance of the first homology. In the case
of no amplification (red), the 〈β1〉 curve starts at 〈β1〉 = 0, since for very small
values of ε there is no 1-dimensional homology. 〈β1〉 rapidly increases due to the
structure of the noise until it reaches a maximum after which it decays to 0.

Topological Analysis of Amplicon Structure 119

The graph for 〈β1〉 is different when two aberrations are present (blue). For small
values of the filtration parameter the graph behaves similarly to the graph without
aberrations, however in this case the graph shows more than one local maximum
and a lower log2 ratio of copy number values at the first maximum.

Fig. 2. Examples of simulated aberration profiles and 〈β1〉 curve. (A) shows a
control profile with no aberrations with σ=0.2. (B) shows a profile with two aberrations
with parameters λ = 10 and 5, μ = 0.6 and 1 and σ = 0.2 for both. The blue dashed
lines represent two standard deviations. The bottom graph shows in red the 〈β1〉 for the
control group with no aberrations and in blue the 〈β1〉 curve for a pair of aberrations
with λ = 10, μ = 0.6 and 1 and σ = 0.2 (Color figure online).

We tested our method by performing a sensitivity and specificity analysis in
three different simulation experiments. Each experiment consisted of 200 profiles
(100 tests and 100 controls) and all possible combinations of parameters were
considered. A successful identification of an aberration was scored when the
obtained P-value was less than 0.05 after correcting by FDR. First we considered
the case of one single amplification (test set) taking as control set a population
with no aberrations. In this case sensitivity was 87.5 %. In the second experiment
we used profiles with two amplifications as a test set and no amplifications as the
control set. In this experiment we got average sensitivity of 95 %. In the third

120 S. Ardanza-Trevijano et al.

experiment we compared double amplifications with single (as control). Results
showed 82.5 % in sensitivity. Specificity was measured by comparing two control
data sets resulting in 97.5 %. Our method has bigger chances to fail when the
length of the aberration is small (5 or less) and μ = σ.

β0 Significance of 17q

As discussed elsewhere [3,15], 〈β0〉 curves can detect chromosome aberrations.
Since we are interested in the entire amplicon in 17q, we applied TAaCGH to full
chromosome arms. The chromosome arm 17q was significant in both data sets.
In the Horlings data set we found significance on 〈β0〉 curves when comparing
chromosome arm 1q (P-value = 0.021) and 17q (P-value = 0.004). The graph
for chromosome 1q however showed that the control curve was above the test
set indicating that the control set (ERBB-) had more CNAs that the test set
(ERBB+). Therefore was not relevant in this study. In our validation data set,
we found only 17q to be significant with a corresponding P-value after FDR cor-
rection of 0.0037. Figure 3 shows examples of 〈β0〉 curves for both chromosomes.
Since β0 is the number of connected components of the simplicial complex, 〈β0〉
curves start at the value of the number of probes in each chromosome arm for
ε = 0 and gradually decays with increasing ε until a single connected compo-
nent remains. All blue curves shown in Fig. 3 represent the ERBB2+ population
and all red curves represent the ERBB2- population. Results shown in Fig. 3A
and B include 〈β0〉 curves associated to 17q for the Climent and Horlings data
sets respectively; Fig. 3C shows 〈β0〉 curves associated to 1q and Fig. 3D 〈β0〉
curves associated to the negative control 19q. Chromosome arm 17q showed, as
expected, a higher number of chromosome aberrations in the ERBB2+ patients
than in the ERBB2- patients.

β1 Significance of 17q

Next, we analyzed the significance of β1 in chromosome arm 17q. We considered
two approaches. First we tested for β1 significance of the entire chromosome
arm 17q and then for overlapping sections of the chromosome arm. We found
important to use both approaches since co-occurring CNAs may be local or
spread over the entire arm. Analysis using the whole arm showed 17q to be
significant in the Climent data set (with a P-value of 0.040), but not in the
Horlings data set (P-value 0.172). Figure 4 shows the corresponding 〈β1〉 curves
for both studies suggesting that any amplicon structure, if present, would be
local.

Following our previous work [3] we subdivided chromosome arm 17q in the
Horlings data set into 6 sections, which corresponded to 5 sections in the Climent
data set. Each section containing 20 CGH probes with 10 overlapping probes.
Results are shown in Table 1. Column 1 shows the section analyzed; columns
2 and 5 the cytogenetic band, columns 3 and 6 the location in base pairs, and
columns 4 and 7 the p-values [7]. Both data sets showed some significant sections.
In the Horlings data set, Sects. 2 and 3 significant after correction for multiple
testing (column 4). In the Climent data set all sections except Sect. 4 were sig-
nificant (column 7). Based on the reproducibility of these results we concluded

Topological Analysis of Amplicon Structure 121

Fig. 3. Examples of 〈β0〉 curves in dimension 20. Blue indicates the ERBB2+ popula-
tion and red the ERBB2-. (A) Arm 17q arm in Climent; (B) Arm 17q in Horlings, (C)
Arm 1q in Horlings and (D) Arm 19q in Horlings (Color figure online).

that sections containing cytobands 17q12 to 17q21.33 had co-occurring CNAs
and are therefore good candidates for uncovering the underlying structure of the
amplicon.

To further identify the regions within 17q12 and 17q21.31 − 17q21.33 we
identified the generators of the first homology group for each patient and mapped
the probes to the vertices of the corresponding generators. Before we discuss the
statistical results we highlight some interesting properties of the generators: (1)
probes that made up the generators may be distributed throughout the entire

Table 1. Chromosome Sections. Correspondence between sections, cytobands and base
pairs range for each of the sections used to analyze chromosome 17q.

Section Cytoband

(Horlings et al.)

Basepair (P−value)

FDR correction

Cytoband

(Climent et al.)

Basepair (P−value)

FDR Correction

17q.s1 q11.1-q12 25440972- (0.043) q11.1-q21.2 25530227- 0.0088

37812853 0.08640 40615955

17q.s2 q12-q21.31 32489785- (0.0008) q12-q21.33 35669421- 0.0016

43339849 0.00480 47644854

17q.s3 q21.2-q21.33 38428492- (0.0116) q21.31-q22 42170022- 0.0378

49075570 0.03480 55594526

17q.s4 q21.31-q22 44084882- (0.471) q21.33-q24.3 47968636- 0.100

57340119 0.47170 70573094

17q.s5 q22-q24.2 51080264- (0.253) q23.1-q25.3 58025830- 0.009

66108804 0.30432 78774742

17q.s6 q23.1-q25.3 57996713- (0.237)

80780814 0.30432

122 S. Ardanza-Trevijano et al.

Fig. 4. 〈β1〉 Significance of 17q in the climent and the horlings data sets.
(A)The figure shows the 〈β1〉 curves for ERBB2+ (blue) and ERBB2-(red) in the
Climent data set (significant). (B) Here we show the 〈β1〉 curves for both categories
for the Horlings data set (non-significant) (Color figure online).

arm or localized in a specific region (2) unlike β0 generators do not necessarily
detect the global maximum in the profile but different regions that contribute
to several local maxima (3) neighboring maxima or even sections of the same
maximum are detected at different values of the filtration parameter. Figure 5
shows the profile of a patient for 17q and the point cloud. Probes in blue are
those that were mapped to the generators at two different filtration coefficient
values. The corresponding 2D point cloud (with edges included) and with the
vertices in each cycle highlighted in blue are also shown.

These inherent variability of the generators and the noise of the data moti-
vated us to use a statistical approach. As detailed in the methods sections for
each patient and value of the filtration parameter we computed the cycles and
the probes that defined those cycles. The frequency at which a probe was mapped
to a particular region of the genome is represented by a histogram (see Fig. 6).
The top graphs show the histograms for the Horlings data set and the bottom
ones the histograms for the Climent data set. The histograms on the left are
the control and the ones on the right correspond to the ERBB2+. The most
remarkable feature is the difference between the control and the ERBB2 data
sets. While the control show no significant concentration of the probes that

Topological Analysis of Amplicon Structure 123

Fig. 5. Correspondence between CGH probes and generators. Different values
of the filtration parameter detects different generators which corresponds to different
probes in the genome. Panel A shows the profile of one patient and its associated point
cloud. The probes highlighted in blue correspond to the vertices of the single generator,
also in blue. The filtration coefficient was ε = 0.78. Panel B shows the same patient
and point cloud for a different value of the filtration coefficient ε = 0.83

belong to cycles the ERBB2+ clearly show three regions of interest. 17q12 has a
significant concentration of cycle elements and corresponds to the position of the
gene ERBB2. Two regions extend beyond the position of ERBB2 The first one
is in the boundary between 17q21.2 and 17q21.31. The Horlings data set suggests
that the region of interest is more localized in 17q21.31 while the Climent data
set suggest a region contained in 17q21.2. The last region is located at 17q21.33
and is common to both studies.

Since our simulations show that the first homology group can also identify
single amplifications one may argue that the found amplifications correspond to
single independent events. To address this problem we analyzed the distribution
of the cycles-forming-probes. Figure 7 show some examples of the distribution of
cycles in the genome for specific patients. Each plate corresponds to one patient,
the x-axis is the position along the genome and the y-axis the “life” of the cycle.
Each color represents a different cycle. If the amplifications were independent
events one would expect to see single colors concentrated at specific regions.
However we see cycles dispersed over the entire profile indicating the presence
of co-occurring CNAs.

124 S. Ardanza-Trevijano et al.

Fig. 6. Comparison of ERBB2- (left) andERBB2+ (right) patients at the gen-
erator level. The top histograms correspond to the Horlings data set and the bottom
to the Climent data set. Each bar in the histogram represents a probe. Its height repre-
sents the cumulative presence of that probe on the generators of the first homology group
divided by the number of patients. The cumulative presence is calculated by counting the
number of cycles in which the probe is part of the generator for each value of the filtration
parameter (multiplied by the number of generators if they were more than one).

Topological Analysis of Amplicon Structure 125

Patient 20 Patient 26

Patient 53 Patient 66

0 10 20 30 40 0 10 20 30 40

genindex
1
2
3
4
5
6

Fig. 7. Distribution of cycles in CGH profiles. Each plate corresponds to the
CGH profile of a patient and how the vertices of the cycles are mapped back to the
profile. Different colors indicate different cycles and do not represent the same cycle in
each plate. The height of the bars represent the life of the cycle (Color figure online).

4 Discussion

Copy number measurements provide an unparalleled opportunity to identify the
underlying mechanisms of cancer. Previous efforts in analyzing copy number data
have mainly focused on the identification of single, independent chromosome
copy number aberrations. These approaches however are known to be deficient
in the identification of co-occurring copy number changes since there is a large
number of combinations of probes that one needs to interrogate. In this study,
we have presented a methodology that helps circumvent the search for simulta-
neously occurring CNAs by encoding copy number data as topological objects.
In particular we have used the rank of the first homology group to perform this
association. To test this hypothesis, we searched for co-occurring aberrations in
ERBB2+ breast cancer patients. Our results show β1 significance in chromosome
cytobands that extend from 17q12 to 17q21.33. By identifying the probes that
form the generators and measuring their concentration along the CGH profiles
we were able to further narrow this significant region to three amplifications.
The first is 17q12 which contains the ERBB2 gene. The second and the third

126 S. Ardanza-Trevijano et al.

have also been reported in ERBB2+ patients. The second amplification is in
the boundary between 17q21.2 and 17q21.31 and according to our estimation is
delimited by the Top2A and BRCA1 genes (base pairs 40, 884763−41, 826, 877).
This region encompasses the type I keratin gene cluster. Finally we identified
17q21.33 (base pairs 47, 400, 368 − 49, 075570) a large region that contain mul-
tiple tumor associated genes including the HOXB cluster [42], Prohibitin [44]
and amplification of this region has been associated with poor prognosis [41].
Unfortunately at this point, due to the small sample size, we cannot determine
how common these co-occurring CNAs are in the general population of ERBB2+
patients or whether they form subtypes within the ERBB2+ subtype. Neverthe-
less the fact that these regions are significant in two independent data sets is
encouraging. It is therefore our immediate plan to scale up this study on larger
data sets.

Our work presents also new tools for the topological analysis of time series.
We and others [34] independently introduced the concept of using the sliding
window algorithm to analyze time series. In our previous work we noted that:
(1) the overall shape of the point cloud already provides information of the data
[2,3,15], (2) The point cloud can be seen as the reconstruction set of the dynam-
ical system induced by the sliding window algorithm [2], (3) the zero homology
group identifies large step increments between consecutive measurements [15].
Our contributions in this work is the development of algorithms that (1) detect
the single and co-occuring maxima in the data in non-necessarily periodic sig-
nals using the first homology group (2) Identify local maxima by computing the
concentration of the pre-images (by the sliding window algorithm) of the vertices
that form the cycles. It is our belief that the use of topological methods for the
analysis of signals using simple construction techniques, such as the commonly
used sliding window algorithm, can provide new insights in the analysis of time
series.

Acknowledgments. We would like to thank H. Bengtsson and T. Speed for very
helpful comments during the development of this methodology. T.B and J.A. were
partially supported by NSF grant 1217324 and by NIH-RIMI (Research Infrastructure
in Minority Institutions) grant 2P20MD000544-06. SA was partially supported by the
Ministerio de Economı́a y competitividad grant MTM2013-42486-P.

References

1. Arriola, E., Marchio, C., Tan, D.S., et al.: Genomic analysis of the HER2/TOP2A
amplicon in breast cancer and breast cancer cell lines. Lab Invest. 88(5), 491–503

2. Arsuaga, J., Baas, N.A., DeWoskin, D., et al.: Topological analysis of gene expres-
sion arrays identifies high risk molecular subtypes in breast cancer. Appl. Algebra
Eng. Commun. Comput. 23(1), 3–15 (2012)

3. Arsuaga, J., Borrman, T., Cavalcante, R., Gonzalez, G., Park, C.: Identification
of copy number aberrations in breast cancer subtypes using persistence topology.
Microarrays 4(3), 339–369 (2015)

Topological Analysis of Amplicon Structure 127

4. Barlund, M., Tirkkonen, M., Forozan, F., Tanner, M.M., Kallioniemi, O.,
Kallioniemi, A.: Increased copy number at 17q22-q24 by CGH in breast can-
cer is due to high-level amplification of two separate regions. Genes Chromosom.
Cancer. 20(4), 372–376 (1997)

5. Barrett, M.T., Anderson, K.S., Lenkiewicz, E., et al.: Genomic amplification of
9p24.1 targeting JAK2, PD-L1, and PD-L2 is enriched in high-risk triple negative
breast cancer. Oncotarget 6(28), 26483–26493 (2015)

6. Bengtsson, H., Ray, A., Spellman, P., Speed, T.P.: A single-sample method for
normalizing and combining full-resolution copy numbers from multiple platforms,
labs and analysis methods. Bioinformatics 25(7), 861–867 (2009)

7. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57(1), 289–300
(1995)

8. Bhatlekar, S., Fields, J.Z., Boman, B.M.: HOX genes and their role in the devel-
opment of human cancers. J. Mol. Med. (Berl) 92(8), 811–823 (2014)

9. Bilal, E., Vassallo, K., Toppmeyer, D., et al.: Amplified loci on chromosomes 8
and 17 predict early relapse in ER-positive breast cancers. PLoS One 7(6), e38575
(2012)

10. Cavalcante, R.: Using Homology and networks to locate copy number aberrations
associated to recurrence in breast cancer. MA Thesis, San Francisco State Univer-
sity (2012)

11. Chin, K., DeVries, S., Fridlyand, J., Spellman, P.T., Roydasgupta, R., et al.:
Genomic and transcriptional aberrations linked to breast cancer pathophysiolo-
gies. Cancer Cell 10, 529–541 (2006)

12. Ching, H.C., Naidu, R., Seong, M.K., Har, Y.C., Taib, N.A.: Integrated analysis
of copy number and loss of heterozygosity in primary breast carcinomas using
high-density SNP array. Int. J. Oncol. 39(3), 621–633 (2011)

13. Climent, J., Garcia, J.L., Mao, J.H., Arsuaga, J., Perez-Losada, J.: Characteriza-
tion of breast cancer by array comparative genomic hybridization. Biochem Cell
Biol. 85(4), 497–508 (2007)

14. Desmedt, C., Voet, T., Sotiriou, C., Campbell, P.J.: Next-generation sequencing in
breast cancer: first take home messages. Curr Opin. Oncol. 24(6), 597–604 (2012)

15. DeWoskin, D., Climent, J., Cruz-White, I., Vazquez, M., Park, C., et al.: Appli-
cations of computational homology to prediction of treatment response in breast
cancer patients. Topology Appl. 157, 157–164 (2010)

16. Fridlyand, J., Dimitrov, P.: aCGH: Classes and functions for Array Comparative
GenomicHybridization data. R package version 1.34.0

17. Fridlyand, J., Snijders, A.M., Pinkel, D., Albertson, D.G., Jain, A.N.: Hidden
Markov models approach to the analysis of array CGH data. J. Multivar. Anal.
90, 132–153 (2004)

18. Fridlyand, J., Snijders, A.M., Ylstra, B., Li, H., Olshen, A., et al.: Breast tumor
copy number aberration phenotypes and genomic instability. BMC Cancer 6, 96
(2006)

19. Green, M.R., Monti, S., Rodig, S.J., et al.: Integrative analysis reveals selective
9p24.1 amplification, increased PD-1 ligand expression, and further induction via
JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large
B-cell lymphoma. Blood 116(17), 3268–3277

20. Horlings, H.M., Lai, C., Nuyten, D.S.A., et al.: Integration of DNA copy number
alterations and prognostic gene expression signatures in breast cancer patients.
Clin Cancer Res. 16(2), 651–663 (2010)

128 S. Ardanza-Trevijano et al.

21. Horlings, H.M., Lai, C., Nuyten, D.S.A., et al.: Supplementary Data. Clin. Cancer
Res. 16(2), 651–663 (2010b). http://clincancerres.aacrjournals.org/content/16/2/
651/suppl/DC1

22. Hupe, P., Stransky, N., Thiery, J.P., Radvanyi, F., Barillot, E.: Analysis of array
CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics
20(18), 3413–3422 (2004)

23. Jacot, W., Fiche, M., Zaman, K., Wolfer, A., Lamy, P.J.: (2013) The HER2 ampli-
con in breast cancer: Topoisomerase IIA and beyond. Biochim. Biophys. Acta. 1,
146–157 (1836)

24. Jonsson, G., Staaf, J., Vallon-Christersson, J., Ringner, M., Holm, K., et al.:
Genomic subtypes of breast cancer identified by array comparative genomic
hybridization display distinct molecular and clinical characteristics. Breast Cancer
Res. 12(3), R42 (2010)

25. Lai, W.R., Johnson, M.D., Kucherlapati, R., Park, P.J.: Comparative analysis of
algorithms for identifying amplifications and deletions in array CGH data. Bioin-
formatics (2005). doi:10.1093/bioinformatics/bti611

26. Lai, C., Horlings, H., van de Vijver, M.J., et al.: SIRAC: supervised identification
of regions of aberration in aCGH datasets. BMC Bioinform. 8, 422 (2007)

27. Latham, C., Zhang, A., Nalbanti, A., et al.: Frequent co-amplification of two dif-
ferent regions on 17q in aneuploid breast carcinomas. Cancer Genet. Cytogenet.
127(1), 16–23 (2001)

28. Leiserson, M.D., Vandin, F., H-T, Wu, et al.: Pan-cancer network analysis identifies
combinations of rare somatic mutations across pathways and protein complexes.
Nat. Genet. 47, 106–114 (2015)

29. Mahmood, S.F., Gruel, N., Chapeaublanc, E., et al.: A siRNA screen identifies
RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3
and 17q23 amplicons in breast cancer with effects on cell growth, survival and
transformation. Carcinogenesis 35(3), 670–682 (2014)

30. Martin-Castillo, B., Lopez-Bonet, E., Bux, M., et al.: Cytokeratin 5/6 fingerprint-
ing in HER2-positive tumors identifies a poor prognosis and trastuzumab-resistant
basal-HER2 subtype of breast cancer. Oncotarget 6(9), 7104–22 (2015)

31. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with
high confidence from random samples. Discrete Comput. Geom. 39, 419–441 (2008)

32. Nielsen, K.V., Muller, S., Mller, S., Schonau, A., Balslev, E., Knoop, A.S., Ejlert-
sen, B.: Aberrations of ERBB2 and TOP2A genes in breast cancer. Mol. Oncol.
4(2), 161–168 (2010)

33. Olshen, A.B., Venkatraman, E.S., Lucito, R., Wigler, M.: Circular binary segmen-
tation for the analysis of array-based DNA copy number data. Biostatistics 5(4),
557–572 (2004)

34. Perea, J., Harer, J.: Sliding windows and persistence: An application of topological
methods to signal analysis. Found. Computat. Math. 15(3), 799–838

35. Perou, C., Borresen-Dale, A.L.: Systems biology and genomics of breast cancer.
Cold Spring Harbor Perspect. Biol. 3, a003293 (2011)

36. Pinkel, D., Albertson, D.G.: Array comparative genomic hybridization and its
applications in cancer. Nat. Genet. 37(Suppl), S11–S17 (2005)

37. Rauta, J., Alarmo, E.L., Kauraniemi, P., et al.: The serine-threonine protein phos-
phatase PPM1D is frequently activated through amplification in aggressive primary
breast tumours. Breast Cancer Res. Treat. 95(3), 257–263 (2006)

38. Rebouh: Exploring topological methods to study topological imbalance in breast
cancer. San Francisco State University MA thesis (2012)

http://clincancerres.aacrjournals.org/content/16/2/651/suppl/DC1
http://clincancerres.aacrjournals.org/content/16/2/651/suppl/DC1
http://dx.doi.org/10.1093/bioinformatics/bti611

Topological Analysis of Amplicon Structure 129

39. Sinclair, C.S., Rowley, M., Naderi, A., Couch, F.J.: The 17q23 amplicon and breast
cancer. Breast Cancer Res. Treat. 78(3), 313–322 (2003)

40. Tausz, A., Vejdemo-Johansson, M., Adams, H.: JavaPlex: A research software pack-
age for persistent (co)homology. In: Hong, H., Yap, C. (eds.) Mathematical Soft-
ware – ICMS 2014. LNCS, vol. 8592, pp. 129–136. Springer, Heidelberg (2014)

41. Thompson, P.A., Brewster, A.M., Kim-Anh, D.: Selective genomic copy number
imbalances and probability of recurrence in early-stage breast cancer. PLoS One
6(8), e23543 (2010)

42. Torresan, C., Oliveira, M.M., Pereira, S.R., et al.: Increased copy number of the
DLX4 homeobox gene in breast axillary lymph node metastasis. Cancer Genet.
207(5), 177–187 (2014)

43. Ulz, P., Heitzer, E., Speicher, M.: Co-occurrence of MYC amplification and TP53
mutations in human cancer. Nat. Genet. 48(2), 104–106 (2016)

44. Webster, L.R., Provan, P.J., Graham, D.J., et al.: Prohibitin expression is associ-
ated with high grade breast cancer but is not a driver of amplification at 17q21.33.
Pathology 45(7), 629–636 (2013). doi:10.1097/PAT.0000000000000004

45. Willenbrock, H., Fridlyand, J.: A comparison study: applying segmentation to array
CGH data for downstream analyses. Bioinformatics 21(22), 4084–4091 (2005)

46. Wilkerson, P.M., Reis-Filho, J.S.: The 11q13-q14 amplicon: clinicopathological cor-
relations and potential drivers. Genes Chromosom. Cancer 52(4), 333–355 (2013)

47. Zhou, X., Rao, N.P., Cole, S.W., Mok, S.C., Chen, Z., Wong, D.T.: Progress in
concurrent analysis of loss of heterozygosity and comparative genomic hybridiza-
tion utilizing high density single nucleotide polymorphism arrays. Cancer Genet.
Cytogenet 159(1), 53–57 (2005)

http://dx.doi.org/10.1097/PAT.0000000000000004

Fast, Simple and Separable Computation
of Betti Numbers on Three-Dimensional

Cubical Complexes

Aldo Gonzalez-Lorenzo1,2(B), Mateusz Juda3, Alexandra Bac1,
Jean-Luc Mari1, and Pedro Real2

1 Aix-Marseille Université, CNRS, LSIS UMR 7296, Marseille, France
aldo.gonzalez-lorenzo@univ-amu.fr

2 Institute of Mathematics IMUS, University of Seville, Seville, Spain
3 Institute of Computer Science and Computational Mathematics,

Jagiellonian University, Krakow, Poland

Abstract. Betti numbers are topological invariants that count the num-
ber of holes of each dimension in a space. Cubical complexes are a class of
CW complex whose cells are cubes of different dimensions such as points,
segments, squares, cubes, etc. They are particularly useful for modeling
structured data such as binary volumes.

We introduce a fast and simple method for computing the Betti num-
bers of a three-dimensional cubical complex that takes advantage on its
regular structure, which is not possible with other types of CW com-
plexes such as simplicial or polyhedral complexes. This algorithm is also
restricted to three-dimensional spaces since it exploits the Euler-Poincaré
formula and the Alexander duality in order to avoid any matrix manipu-
lation. The method runs in linear time on a single core CPU. Moreover,
the regular cubical structure allows us to obtain an efficient implemen-
tation for a multi-core architecture.

Keywords: Cubical complex · Betti numbers · 3D · Separable ·
Computational topology · Homology

1 Introduction

Understanding a discrete volume can be addressed by determining its volume,
its convexity, its diameter or any other geometrical descriptor. A higher level
analysis can be made through topology, which tolerates continuous deformations.
This could be seen as a less interesting approach, as we could not distinguish a
sphere from a cube, but it actually furnishes a more essential information of the
object. Homology is a powerful tool as its formalizes the concept of hole.

M. Juda—This research is supported by the Polish National Science Center under
grant 2012/05/N/ST6/03621.

c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 130–139, 2016.
DOI: 10.1007/978-3-319-39441-1 12

Fast, Simple and Separable Computation of Betti Numbers 131

Holes of dimension 0, or 0-holes, correspond to connected components.
1-holes are tunnels or handles, which are particularly difficult to count in a vol-
ume depending on their shape. 2-holes correspond to voids in a volume. These
notions can be generalized to higher dimensions, but they do not have an intu-
itive interpretation. We can compute the number of holes in each dimension or
even draw them on the volume, though this is not useful with a complex shape.

Homology can be used for understanding an object without visualizing it, or
to compare objects in a flexible way. It has been applied to dynamical systems
[13,15], material science [4,18], electromagnetism [7,8], image understanding
[1,14] and sensor networks [6].

In this article we aim at counting the number of holes (the Betti numbers) of
a cubical complex embedded in a three-dimensional space. This is far from being
an abstract work, as binary volumes (3D binary images, with voxels instead of
pixels) can be transformed into equivalent cubical complexes. Our algorithm has
a very specific input, since it cannot treat meshes or higher dimension cubical
complexes, but it benefits from a good time complexity (linear) and a wide range
of applications where data is structured in a lattice.

There have been a lot of works in computational homology in the last decades.
Many of them [9,16,17] can compute the homology groups of more general spaces
in cubical time. Computing only the Betti numbers (number of holes), which are
the ranks of these groups, should be faster, but this has not been algorithmically
proved. Delfinado and Edelsbrunner [5] introduce an algorithm with almost lin-
ear time complexity that computes the Betti numbers of a simplicial complex
which is a subcomplex of a triangulation of S3. The software library RedHom [12]
is optimized for computing the homology in the context of cubical complexes.
Wagner [19] also proposes an adapted algorithm for computing persistent homol-
ogy on a cubical complex.

We propose an algorithm that is based on the computation of connected
components and avoids any matrix manipulation. This is possible due to the
Euler-Poincaré formula and the Alexander duality, which turn to be extraordi-
narily useful in the context of three-dimensional cubical complexes.

A simple description of the algorithm is given in Sect. 3. Then, we explain in
Sect. 4 how to parallelize the computation by considering a different method for
counting the connected components which is more adapted to the input data.
Sections 5 and 6 explain the implementation of the algorithm and compare it
with a previous software respectively.

2 Preliminaries

2.1 nD Cubical Complex

An elementary interval is an interval of the form [k, k + 1] or a degenerate inter-
val [k, k], where k ∈ Z. An elementary cube is the Cartesian product of n ele-
mentary intervals, and the number of non-degenerate intervals in this product
is its dimension. An elementary cube of dimension d will be called d-cube for
short. Given two elementary cubes p and q, we say that p is a face of q if p ⊂ q.

132 A. Gonzalez-Lorenzo et al.

The Khalimsky coordinates of an elementary cube
∏n

i=1 [ai, bi] are (a1 +
b1, · · · , an+bn). The dimension of an elementary cube and its faces can be easily
deduced from its Khalimsky coordinates. For a cube q we denote its Khalimsky
coordinates by q[] and its ith component by q[i].

An nD cubical complex is a set of elementary cubes. The boundary of a d-
cube is the collection of its (d − 1)-dimensional faces. By virtue of its regular
structure, an nD cubical complex can be represented as an n-dimensional array
(called CubeMap in [19]), where the cubes are represented by their Khalimsky
coordinates.

From now on we assume that cubes of a given nD cubical complex K have
all positive coordinates bounded by integers wi (1 ≤ i ≤ n). AK is the binary
n-dimensional array of size L :=

∏n
i=1(2wi + 1) where elementary cubes are

represented by a Boolean equal to true associated to their Khalimsky coordi-
nates. An element of the array with coordinates x = (x1, . . . , xn) is denoted by
AK [x1] . . . [xn] or A[x] for short. The element AK [q[]] associated to the cube q
is denoted by AK [q].

It is straightforward to provide an enumeration of Khalimsky coordinates in∏n
i=1 [0, 2wi]. Namely, there exists a bijection I :

∏n
i=1 [0, 2wi] → [0, L − 1]. Such

bijection I will be referred to as the index map and its image as the index set.
For a cube q, I(q) means I(q[]) = I(q[1], . . . , q[n]).

The support of K, denoted by supp(K), is the nD cubical complex contain-
ing all the elementary cubes in

∏n
i=1 [0, wi]. Thus, AK encodes both K and

supp(K) \ K.

2.2 Homology

A chain complex (C, d) is a sequence of R-modules C0, C1, . . . (called chain
groups) and homomorphisms d1 : C1 → C0, d2 : C2 → C1, . . . (called differential
or boundary operators) such that dq−1dq = 0, for all q > 0, where R is some ring,
called the ground ring or ring of coefficients. In this paper we will fix R = Z2.

An nD cubical complex K induces a chain complex. Cq is the free R-module
generated by the q-cubes of K. Its elements (called q-chains) are formal sums
of q-cubes with coefficients in Z2, so they can be interpreted as sets of q-cubes.
The linear operator dq maps each q-cube to the sum of its (q − 1)-dimensional
faces.

A q-chain x is a cycle if dq(x) = 0, and a boundary if x = dq+1(y) for some
(q + 1)-chain y. By the property dq−1dq = 0, every boundary is a cycle, but the
reverse is not true: a cycle which is not a boundary contains a “hole”. The qth
homology group of the chain complex (C, d) contains the q-dimensional “holes”:
H(C)q = ker(dq)/im(dq+1). This set is a finite-dimensional vector space, so
there is a basis typically formed by the holes of the complex, whose elements
are called homology generators. The ranks of the homology groups are called the
Betti numbers, which count the number of holes in each dimension.

There is a slightly different homology theory called reduced homology where
d0 is defined otherwise. Thus, the zeroth Betti number β0 is decremented by one.
This avoids exceptional cases in several theorems.

Fast, Simple and Separable Computation of Betti Numbers 133

3 The Algorithm

In this section we give a first presentation of our algorithm. It considers a
restricted class of complexes: 3D cubical complexes. We explain in the following
how we obtain each Betti number.

0th Betti number — It is well known that β0(K) is the number of connected
components of K. This is easy to compute with a traversal of the complex.

2nd Betti number — Alexander duality relates the homology of a complex K
of dimension 3 to the homology of its complementary in the three-dimensional
sphere S3 \ K.

Proposition 1 (Alexander Duality). Let K be a 3D cubical complex. Then
Hq(K) and H2−q(S3 \K) are isomorphic for reduced homology and cohomology.

As a consequence, β2(K) = β0(S3 \ K) − 1. That is, the number of voids in K
is the number of connected components in the complementary minus one.

This result, which holds for more general spaces, is computationally inter-
esting in the context of cubical complexes. First, the sphere Sn is easy to build.
Figure 1 shows the spheres S1 and S2 as cubical complexes.

Fig. 1. Cubical complexes homeomorphic to S1 and S2.

Also, the complementary of a cubical complex is obvious to compute given its
regular structure. Figure 2 illustrates the complementary of a cubical complex.

We want to obtain the number of connected components (minus one) of S3\K
for deducing β2(K). Nevertheless, we do not need to build S3 \ K. It suffices to
count the connected components in supp(K) \ K and consider only those which
do not contain a cube in the boundary of supp(K). These connected components
are connected to S3 \ supp(K), thus making only one connected component in
S3 \ K. Note that this fact is far easier to understand for a 1D or a 2D cubical
complex.

134 A. Gonzalez-Lorenzo et al.

Fig. 2. A two-dimensional cubical complex K and its complementary S2 \ K

1st Betti number — Once β0(K) and β2(K) are known, β1(K) is easy to obtain
via the Euler-Poincaré formula. The Euler-Poincaré characteristic of a 3D cubi-
cal complex K is the alternating sum of its cubes. Formally,

χ(K) = k0 − k1 + k2 − k3,

where kq denotes the number of cubes of dimension q in K. This number, which
is easy to compute, is a topological invariant.

Proposition 2 (Euler-Poincaré Formula). Let K be a 3D cubical complex.
Then χ(K) = β0(K) − β1(K) + β2(K).

Therefore, β1(K) = β0(K) + β2(K) − χ(K).

Algorithm 1 combines these three ideas. It passes by all the elements of AK

and traverses the connected components of K and supp(K) \ K. For the sake of
simplicity we do not explicitly describe the computation of χ(K) in Algorithm 1.
It can be obtained by adding χ ← χ + (−1)dim(p) to line 13. As each cube is
connected to six other cubes in AK (except for the cubes in the boundary of
AK), the complexity of the algorithm is O(n+6n) = O(n) where n is the number
of cubes in supp(K).

4 Recursive Version of the Algorithm

The core of the previous algorithm is the computation of connected components
through a traversal of the three-dimensional array AK . This is difficult to par-
allelize because it uses a queue data structure. In this section we describe an
algorithm for computing connected components of an nD cubical complex K
in parallel. The algorithm total CPU utilization (i.e. work) is almost linear. It
significantly uses the representation of a cubical complex as a multidimensional
array AK with an index map I.

In Sect. 3 we count connected components by traversing the connectivity
graph of the cubical complex. Another well known approach to compute con-
nected components is to use disjoint set data structure. The data structure

Fast, Simple and Separable Computation of Betti Numbers 135

Algorithm 1. BettiViaCC
Input: K a 3D cubical complex; AK its associated binary array
Output: The Betti numbers of K: β0, β1, β2

1 β0 ← 0, β2 ← 0;
2 foreach p ∈ AK not marked do
3 b ← false;
4 Q ← an empty queue;
5 Q.push(p); mark p;
6 while Q not empty do
7 q ← Q.pop();
8 if q belongs to the boundary of AK then
9 b ← true;

10 foreach q′ 6-neighbor of q, AK [q′] = AK [q], q′ not marked do
11 Q.push(q′); mark q′;

12 if AK [p] = true then
13 β0 ← β0 + 1;

14 else if b = false then
15 β2 ← β2 + 1;

16 β1 ← β0 + β2 − χ(K);
17 return (β0, β1, β2);

maintains a collection S = {S1, . . . , Sk } of disjoint sets. Each set in S is iden-
tified by a representative, which is a member of the set (see [3, Chap. 21]). The
following operations may be performed on the disjoint set data structure C:

– C.makeSet(x) - creates a new set whose only member (and thus representa-
tive) is x.

– C.find(x) - returns a pointer to the representative of the (unique) set con-
taining x.

– C.union(x, y) - merges the sets that contain x and y into a new set that is
the union of these two sets.

To compute connected components of a cubical complex it is enough to call
C.union(x, y) for each pair x, y of adjacent cubes. A parallel version of such
algorithm requires synchronization, so in practice it cannot be implemented effi-
ciently. However, the regular structure of a cubical complex allows us to propose
a different approach where synchronization is not needed. The idea is to recur-
sively cut the complex in two halves, find the connected components in each half
and then merge them.

Let K be a cubical complex and I the index map of Khalimsky coor-
dinates. Let J be a subset of the index set associated with K. We define
KJ := { q ∈ K | I(q) ∈ J }. We also define the left slice, right slice and mid-
dle slice of J in dimension d by x respectively as

136 A. Gonzalez-Lorenzo et al.

S(J, x−, d) := { y ∈ J | I−1(y)[d] < x }
S(J, x+, d) := { y ∈ J | x ≤ I−1(y)[d] }
S(J, x, d) := { y ∈ J | x − 1 ≤ I−1(y)[d] ≤ x }.

For a j ∈ J we denote by ccJ (j) the connected component of KJ to which j
belongs. Algorithm 2 computes recursively connected components of a cubical
complex. Observe that at each step of the recursion the set J is split following
some rule. We do not give an explicit description of the rule, but it should divide
J into two sets of similar size by separating KJ along alternate axes. We thus
obtain three subsets that cover J , one of them intersecting the other two so
we can merge the connected components computed on each side. The first two
recursive steps (lines 4 and 5) work on independent data, so they can be executed
in parallel. The third recursive step at line 6 always jumps to the line 8 (since
J ≯ ε = ∞) and it depends on the previous two steps.

Algorithm 2. RecursiveCC
Input: K a 3D cubical complex; I its associated index map; J ⊂ I
Input: C a disjoint set data structure on the index set of K, such that

C. find(i) �= C. find(j) for all i, j ∈ J
Input: Parameters: d ∈ Z and ε > 0
Output: For each pair i, j ∈ J we have ccJ(i) = ccJ(j) if and only if

C. find(i) = C. find(j)
1 if size of J > ε then
2 d ← using d choose dimension for next slicing;
3 x ← choose slicing value in dimension d;
4 RecursiveCC(K, I, S(J, x−, d), d, ε, C);
5 RecursiveCC(K, I, S(J, x+, d), d, ε, C);
6 RecursiveCC(K, I, S(J, x, d), d, ∞, C);

7 else
8 foreach p ∈ KJ do
9 foreach q 2n-neighbor of p in KJ do

10 C. union(I(p), I(q));

Algorithm 3 computes the Betti numbers of a 3D cubical complex K. It
computes the connected components of K and supp(K) \ K in two calls to
Algorithm 2. Again, χ(K) can be computed during the traversal of the complex.

5 Implementation

Algorithm 3 is implemented as a part of the CAPD::RedHom project [11].
Our parallel version of the implementation uses Threading Building Blocks
library [10]. A crucial part of the implementation is a data structure for efficient

Fast, Simple and Separable Computation of Betti Numbers 137

Algorithm 3. RecursiveBetti
Input: K a 3D cubical complex; I its associated index map
Input: Parameter ε > 0
Output: The Betti numbers of K: β0, β1, β2

1 C1 ← a disjoint set for im I;
2 foreach q ∈ K do
3 C1. makeSet(I(q));

4 RecursiveCC(K, I, im I, 0, ε, C1);
5 β0 ← number of sets in C1;

6 K0 ← supp(K) \ K;
7 C0 ← a disjoint set for im I;
8 foreach q ∈ K0 do
9 C0. makeSet(I(q));

10 RecursiveCC(K0, I, im I, 0, ε, C0);
11 r ← number of sets in C0 containing a cube in the boundary of supp(K);
12 β2 ← number of sets in C0 minus r;
13 β1 ← β0 + β2 − χ(K);
14 return (β0, β1, β2);

slicing of the index set. For this we use Boost.MultiArray, a library from Boost
Project [2]. It is an implementation of a multidimensional array container. In
our case the data structure contains the index set. It provides an efficient slicing
operation implemented as views to the original container. We use it to implement
the operation S from the algorithm. At each recursion step we take a direction
an cut the multidimensional array in the middle of the direction.

The data structure provides a mapping from multidimensional indices (in
our case Khalimsky coordinates) to the index set. Technically it is enough to
implement a mapping from the set of indices to a linear space of memory [0, L−1]
containing the value i at the ith position. Taking advantage of this fact, features
of the C++ language, and Boost.MultiArray, we do not have to allocate memory
for the index set. We get the index set and the slicing operation without any
additional cost. Of course we can achieve it in many ways, however with our
approach we can reuse well tested code.

6 Validation

Table 1 shows results of numerical experiments with the algorithm implemen-
tation. We compare also with standard approach for Betti numbers computa-
tions using elementary reductions, coreduction, and Morse decomposition from
CAPD::RedHom [11]. All the computations were performed using one data struc-
ture, only algorithms vary.

Data sets N0001 and P0001 come from computer assisted proofs in dynam-
ics. Data sets rand pP S were generated randomly, where S is the size of the
grid and each 3-cube (together with its faces) is included with probability P.

138 A. Gonzalez-Lorenzo et al.

The data sets are in binary format, thus reading time can be omitted. Com-
putations were performed on a 2,3 GHz Intel Core i7 (4 real cores, 8 virtual)
with 16 GB RAM. The results show that the parallel implementation is around
4 times faster than the sequential one. It suggest a perfect scalability with the
number of real cores. Also, we see that for the new algorithm only grid size
matters.

Table 1. CPU time (format [h:]mm:ss) usage for cubical complexes. Computations with
following algorithms from CAPD::RedHom: Algorithm 3 parallel, Algorithm 3 sequen-
tial, standard

Parallel sequential standard

Data set Grid size Number of cells CPU CPU CPU

N0001 2563 75357994 0:23 1:18 1:31

P0001 2563 75559573 0:23 1:18 1:39

rand p25 256 2563 75897341 0:22 1:13 3:35:22

rand p50 256 2563 110450571 0:23 1:15

rand p75 256 2563 127326478 0:23 1:17

rand p25 384 3843 256006045 1:21 4:12 > 4h

rand p50 384 3843 372383238 1:18 4:17

rand p75 384 3843 429007477 1:17 4:15

7 Conclusion

This paper introduces a linear algorithm that computes the Betti numbers of
a 3D cubical complex. It counts the connected components of the complex and
its complementary in S3 and uses the Euler-Poincaré formula. The algorithm
is specially conceived for cubical complex as it takes advantage of its regular
structure both in a theoretical and a practical manner. It cannot be extended
to 4D cubical complexes since the Euler-Poincaré formula does not suffices to
obtain all the Betti numbers.

An interesting issue that should be addressed in the near future is how to
adapt this algorithm for simplicial complexes. The main problem is that we need
a triangulation of the complementary of the complex in S3, which is not as easy
as for cubical complexes.

The current implementation outperforms the existing software for com-
puting Betti numbers on cubical complexes. It is available as a part of the
CAPD::RedHom [11] project. A more detailed comparison will be done in a
forthcoming paper.

Fast, Simple and Separable Computation of Betti Numbers 139

References

1. Allili, M., Corriveau, D.: Topological analysis of shapes using Morse theory. Com-
put. Vis. Image Underst. 105(3), 188–199 (2007)

2. BoostCommunity. Boost Project (2016). http://www.boost.org/
3. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.

McGraw-Hill Higher Education, New York (2001)
4. Day, S., Kalies, W.D., Wanner, T.: Verified homology computations for nodal

domains. Multiscale Model. Simul. 7(4), 1695–1726 (2009)
5. Cecil, J.A., Delfinado, H.E.: An incremental algorithm for Betti numbers of simpli-

cial complexes on the 3-sphere. Comput. Aided Geom. Des. 12(7), 771–784 (1995)
6. Dlotko, P., Ghrist, R., Juda, M., Mrozek, M.: Distributed computation of cover-

age in sensor networks by homological methods. Appl. Algebra Eng. Commun.
Comput. 23(1–2), 29–58 (2012)

7. D�lotko, P., Specogna, R.: Efficient cohomology computation for electromagnetic
modeling. CMES: Comput. Model. Eng. Sci. 60(3), 247–278 (2010)

8. Gross, P.W., Robert Kotiuga, P.: Electromagn. Theory Comput. Cambridge Uni-
versity Press, Cambridge (2004). Cambridge Books Online

9. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V.: Discrete morse theoretic algo-
rithms for computing homology of complexes and maps. Found. Comput. Math.
14(1), 151–184 (2013)

10. Intel. Threading Building Blocks (2016). https://www.threadingbuildingblocks.
org/

11. Juda, M., Mrozek, M., Brendel, P., Wagner, H., et al.: CAPD: : RedHom (2010–
2016). http://redhom.ii.uj.edu.pl

12. Juda, M., Mrozek, M.: CAPD:RedHom v2 - homology software based on reduction
algorithms. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 160–166.
Springer, Heidelberg (2014)

13. Mischaikow, K.: Conley index theory. In: Johnson, R. (ed.) Dynamical Systems.
Lecture Notes in Mathematics, vol. 1609, pp. 119–207. Springer, Heidelberg (1995)

14. Mrozek, M., Zelawski, M., Gryglewski, A., Han, S., Krajniak, A.: Homological
methods for extraction and analysis of linear features in multidimensional images.
Pattern Recogn. 45(1), 285–298 (2012)

15. Mrozek, M.: Index pairs algorithms. Found. Comput. Math. 6, 457–493 (2006)
16. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)
17. Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.-O.: Computation of homology

groups and generators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI
2005. LNCS, vol. 3429, pp. 195–205. Springer, Heidelberg (2005)

18. Teramoto, T., Nishiura, Y.: Morphological characterization of the diblock copoly-
mer problem with topological computation. Jpn. J. Ind. Appl. Math. 27(2), 175–
190 (2010)

19. Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology
for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological
Methods in Data Analysis and Visualization II. Mathematics and Visualization,
pp. 91–106. Springer, Berlin Heidelberg (2012)

http://www.boost.org/
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
http://redhom.ii.uj.edu.pl

Computation of Cubical Steenrod Squares

Marek Krčál and Pawe�l Pilarczyk(B)

Institute of Science and Technology Austria,
Am Campus 1, 3400 Klosterneuburg, Austria
{marek.krcal,pawel.pilarczyk}@ist.ac.at

Abstract. Bitmap images of arbitrary dimension may be formally per-
ceived as unions of m-dimensional boxes aligned with respect to a rec-
tangular grid in R

m. Cohomology and homology groups are well known
topological invariants of such sets. Cohomological operations, such as
the cup product, provide higher-order algebraic topological invariants,
especially important for digital images of dimension higher than 3. If
such an operation is determined at the level of simplicial chains [see e.g.
González-Dı́az, Real, Homology, Homotopy Appl, 2003, 83–93], then it
is effectively computable. However, decomposing a cubical complex into
a simplicial one deleteriously affects the efficiency of such an approach.
In order to avoid this overhead, a direct cubical approach was applied in
[Pilarczyk, Real, Adv. Comput. Math., 2015, 253–275] for the cup prod-
uct in cohomology, and implemented in the ChainCon software package
[http://www.pawelpilarczyk.com/chaincon/].

We establish a formula for the Steenrod square operations [see Steen-
rod, Annals of Mathematics. Second Series, 1947, 290–320] directly at
the level of cubical chains, and we prove the correctness of this formula.
An implementation of this formula is programmed in C++ within the
ChainCon software framework. We provide a few examples and discuss
the effectiveness of this approach.

One specific application follows from the fact that Steenrod squares
yield tests for the topological extension problem: Can a given map
A → Sd to a sphere Sd be extended to a given super-complex X of
A? In particular, the ROB-SAT problem, which is to decide for a given
function f : X → R

m and a value r > 0 whether every g : X → R
m with

‖g − f‖∞ ≤ r has a root, reduces to the extension problem.

Keywords: Cohomology operation · Cubical complex · Cup product ·
Chain contraction

1 Introduction

Binary images (or bitmaps) appear in various contexts, not only image process-
ing. One can perceive a 2-dimensional bitmap image as a finite collection of
squares (black pixels) aligned with respect to a fixed grid in R

2, and indexed
in both directions by the integers. A generalization to R

m may be called an
m-dimensional binary image. For example, a 3-dimensional binary image corre-
sponds to a collection of voxels that represent a 3-dimensional object embedded
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 140–151, 2016.
DOI: 10.1007/978-3-319-39441-1 13

http://www.pawelpilarczyk.com/chaincon/

Computation of Cubical Steenrod Squares 141

in R
3. This definition of an m-dimensional bitmap does not limit the area of

applications to image processing alone. For example, a rectangular lattice in R
m

is often used for numerical simulations of PDEs or simply for approximating
bounded sets in R

m, e.g., an outer bound for a set of solutions to some equation.
Cohomology and homology groups are well known topological invariants that

can be used to describe or classify the rough shape defined by an m-dimensional
bitmap. There exist theory and software that allow one to efficiently compu-
tate these invariants. For example, the monograph [11] and the CHomP [2]
and CAPD [3] software projects contain algorithms aimed specifically at effi-
cient homology computation of m-dimensional bitmaps described in terms of
full cubical sets and cubical complexes (see Sect. 2 for precise definitions of these
terms).

Cohomological operations, such as the cup product, provide higher-order
algebraic topological invariants than (co)homology groups alone. This is espe-
cially important for bitmaps of dimension higher than 3, where the natural
human intuition may easily fail. One way to compute the operations effectively
is to use an approach to homology computation known as “effective homology”
[20,21]. In this approach, instead of reducing the topological information to a
minimal linear system that describes the degree of connectivity of the objects,
one computes an algebraic skeleton, further called an algebraic-topological model
(or an AT model for short), for representing these objects. In particular, an AT
model contains homomorphisms that allow to instantly obtain representative
cycles for each homology generator, and to efficiently compute, for an arbitrary
cycle, the combination of the corresponding homology generators. We refer to [9]
for an explanation of the philosophy behind this approach, and to [17] for an
application in the context of cubical sets.

Steenrod squares [23] are cohomology operations which, roughly speaking,
enhance the cohomology ring structure and thus help discriminating between
topologically different spaces which still might have isomorphic cohomology
rings. Steenrod squares, as well as any cohomology operations, are by defini-
tion natural : They are compatible with the induced homomorphisms, and thus
can discriminate between non-homotopic maps. Moreover, due to the naturality,
Steenrod squares can provide tests and sometimes even complete characteriza-
tion for problems in homotopy theory. The primary example of such and also an
important motivation for our work is the topological extension problem (for maps
into a sphere): Can a given map A → Sd to a sphere Sd be extended to a given
super-complex X of A? Here the Steenrod squares yield stronger test than the
one obtained by plain cohomology and this test is complete if dimX ≤ d + 2. In
fact, this has been the original motivation for Steenrod to introduce his squares,
which has been a major breakthrough in homotopy theory of the end of the first
half of the twentieth century.

We are interested in the extension problem mainly because another compu-
tational problem – called robust satisfiability – reduces to it [5]. In that problem,
given a continuous function f : X → R

n and a value r > 0, one has to decide
whether every g : X → R

n with ‖g − f‖∞ ≤ r has a root. In plain words, we ask
for solvability of the system of equations f(x) = 0 under uncertainty about the

142 M. Krčál and P. Pilarczyk

function f quantified by the value of r. Robust satisfiability and the topological
extension problem are essentially computationally equivalent [5]. In particular,
theoretical complexity study of the extension problem [1] shows that robust sat-
isfiability is decidable in polynomial time when dimX ≤ 2n − 3 or n = 1, 2,
and undecidable when dimX ≥ 2n − 2 and n is odd. (In the remaining cases
of n even and arbitrary dimension of X, the problem is decidable [25].) More
practical point of view and an actual implementation is presented in [15] where
the Steenrod squares are used in the context of cubical complexes.

Determining cohomological operations at the level of cochains allows one to
use an AT model to compute them effectively. The idea is to take the cocycles
corresponding to cohomology generators, apply the operation to them, and to
determine the combination of the cohomology generators that defines the coho-
mology class represented by the resulting cocycle; see [8] for an in-depth descrip-
tion of this approach. In particular, the simplicial formula provided implicitly
in the first Steenrod’s paper on the topic [23] (see also [7] for an alternative
approach), computes the Steenrod squares at the level of representing simplicial
cocycles. This yields an effective method for computing the Steenrod squares on
the level of cohomology of simplicial complexes, if combined with the computa-
tion of an AT model. Unfortunately, decomposing a cubical set into a simplicial
complex deleteriously affects the efficiency of such an approach. A direct cubical
approach was proposed in [17] for the cup product in cohomology (see also [12]),
and implemented in the ChainCon software package [16].

The purpose of our paper is to establish a formula for the Steenrod square
operations directly at the level of cubical chains. We emphasize the fact that
our result is not based upon the formula provided by Real [19] for the case of
simplicial sets; rather, we develop a direct cubical formula, following Steenrod’s
original approach [23]; the correctness of this formula follows from the axiomatic
approach to Steenrod squares, as explained at the beginning of Sect. 3. An imple-
mentation of this formula is programmed in C++ and put within the ChainCon
software framework [16], and serves the purpose of proof-of-concept and bench-
marking.

2 Topological Preliminaries

Cubical Complexes. An (abstract) cubical complex X is a family of sets X =
(X0,X1, . . .) equipped with face operators

∂s
i : Xn → Xn−1 for each i ∈ {1, . . . , n} and s ∈ {+,−}

satisfying the relation

∂s
i ∂t

j = ∂t
j∂

s
i+1 for i ≥ j and s, t ∈ {+,−}. (1)

Computation of Cubical Steenrod Squares 143

The elements of each Xn are called n-cubes and the face operators ∂±
i can be

thought of as an abstract counterpart of obtaining a facet of the cube [−1, 1]n

by fixing the ith coordinate to ±1, that is,

∂±
i [−1, 1]n = [−1, 1]i−1 × {±1} × [−1, 1]n−i .

The simplest example is indeed the cubical complex Im where each set of n-cubes
Im
n consists of all n-faces of the geometric cube [−1, 1]m and the face operators

are defined in the obvious sense. An important example will be cubical complexes
derived from cubical sets as explained below.

A cubical map f : X → Y from a cubical complex X to a cubical complex Y
is a family of maps fn : Xn → Yn that commute with all the face operators.

Cubical Sets. We follow the terminology and notation based upon [11,14].
Let m be a positive integer. An elementary cube is the cartesian product of

m intervals of length 1 (the non-degenerate case) or 0 (the degenerate case) with
integer coordinates; formally:

[a1, b1] × · · · × [am, bm],

where ai, bi ∈ Z, and either bi = ai + 1, or ai = bi (and then [ai, bi] denotes the
singleton {ai}). If all the intervals in this product are non-degenerate then the
elementary cube is called a full cube.

A set A ⊂ R
m is called a cubical set if it is a finite union of elementary cubes;

Note that cubical sets are obviously compact ENRs. The cubical set A is called a
full cubical set if it is a finite union of full cubes. For example, an m-dimensional
binary image (or a bitmap) can be perceived as a full cubical set in R

m for the
purpose of topological analysis.

Since the face of an elementary cube is also an elementary cube, sets of
elementary cubes yield a natural cubical complex structure. The homological
properties of this cubical complex agree with the (singular) homology of the
corresponding cubical set.

Cubical Chain Complexes. To each cubical complex X and an Abelian group
G we assign a cubical chain complex

. . .
d3→ C2(X;G) d2→ C1(X;G) d1→ C0(X;G),

where each Cn(X;G) is the group of formal sums
∑

σ∈Xn
gσ ·σ with coefficients

in G and each boundary operator dn is the homomorphism defined by

dn(g · σ) =
n∑

i=1

(−1)i(g · ∂+
i σ − g · ∂−

i σ).

144 M. Krčál and P. Pilarczyk

At Models. Let us recall the notion of an AT model, which helps us to compute
Steenrod squares effectively at the cohomology level using the formula defined
at the level of cochains.

A chain map between two chain complexes is a homomorphism that com-
mutes with the boundary operator. A chain contraction from a chain complex
C∗ to another chain complex C ′

∗ is a triple (π, ι, φ) of chain maps π : C∗ → C ′
∗

(projection), ι : C ′
∗ → C∗ (inclusion) and φ : C∗ → C∗+1 (chain homotopy)

that satisfy the following conditions: (a) IdC − ιπ = ∂φ + φ∂; (b) πι = IdC′ ;
(c) πφ = 0; (d) φι = 0; (e) φφ = 0. See e.g. [4, §12] for the motivation of this
definition, and [8, p. 86] for comments on the terminology and applications. Note
that the existence of a chain contraction from C∗ to C ′

∗ implies the fact that the
homology and cohomology modules of both chain complexes are isomorphic.

An algebraic topological model (introduced in [6]), or an AT model for short,
of a cubical complex K, is a chain contraction from C∗(K) to some free chain
complex M∗ with null differential. Note that M∗ is isomorphic to the homology
module of K. In particular, an AT model of K exists if H∗(K) has no torsion.
In what follows, we work with coefficients in Z2, so this condition is satisfied.

We use an AT model for representing the homology of K in the following way.
The image of each element of M∗ by the inclusion ι is a cycle that represents the
corresponding homology class. Additionally, the image of each cycle in C∗(K) by
the projection map π is the homology class that contains the cycle. In this way,
the homomorphisms ι and π are used to go back and forth between homology
generators and the corresponding cycles in C∗(K).

3 The Cubical Formulas for the Steenrod Operations

We follow the general scheme of many standard textbooks and sources addressing
Steenrod operations such as [10,24], but the particular notation is very close to
[18]. The (non-algorithmic) construction there is based on the existence of chain
maps Dk

∗ : C∗(X;Z2) → (
C∗(X;Z2) ⊗ C∗(X;Z2)

)
∗+k

for k = 0, 1, . . . satisfying
the following: D0

∗ is a diagonal approximation1 and, all the chain maps Dk
∗ satisfy

the relation
Dk

∗ − TDk
∗ = (d ⊗ d)Dk+1

∗ + Dk+1
∗ d, (2)

where T : C∗(X;Z2) ⊗ C∗(X;Z2) → C∗(X;Z2) ⊗ C∗(X;Z2) is defined as fol-
lows: T (σ ⊗ τ) = τ ⊗ σ. Each chain map Dk

∗ is called the kth higher diagonal
approximation.

1 A diagonal approximation for X is any chain map C∗(X; G) → C∗(X; G)⊗C∗(X; G)
which induces the map Δ∗ : H∗(X; G) → H∗(X × X; G) where Δ : X → X × X is
the diagonal map x �→ (x, x). In the case of cubical chain complexes, the explicit
formula was given by Serre [22].

Computation of Cubical Steenrod Squares 145

Definition 1 ([18, pp. 186,187]). The Steenrod square Sqj : Hn(X;Z2) →
Hn+j(X;Z2) is induced by the composition

Zn(X;Z2)
Δ �� Zn(X;Z2) ⊗ Zn(X;Z2)

(Dn−j
n+j)

∗
�� Zn+j(X;Z2) ,

where Δ(z) := z ⊗ z is the diagonal map.

Our goal here is to give formulas for the chain maps Dk
∗ in the special case

when X is a cubical complex – see Definition 2 and Theorem 3 below.
There is a subtle difference between our definition above and the definition

provided in [18]: The chain maps Dk
∗ are defined in [18] for chain complexes with

integral coefficients. Indeed, their existence can be proved in this stronger sense;
however, for the definition of the Steenrod operations alone the “modulo 2”
version is only relevant. The proof of [18, Theorem 3.60] gives a chain homotopy
between any two choices of higher diagonal approximations (no matter whether
over Z or Z2). Thus the higher diagonal approximations over Z2 necessarily lead
to the identical cohomology operations – Steenrod squares.

Definition 2. For given integers n, k ≥ 0, let us define the set

Fk
n := {(A,B) | A,B ⊆ [n], A ∩ B = ∅ and |A| + |B| = n − k}.

Let X be a cubical complex. We define the homomorphisms Dk
n : Cn

(X;Z2) → (
C∗(X;Z2) ⊗ C∗(X;Z2)

)
n+k

of degree k by the formula

Dk
n(σ) :=

∑

(A,B)∈Fk
n

∂−∗
A σ ⊗ ∂∗

Bσ ,

where for A = {a1 < a2 < . . . < ap} and B = {b1 < b2 < . . . < bq} we define
∂−∗

A = ∂
−s(a1)
a1 . . . ∂

−s(ap)
ap and ∂∗

B = ∂
s(b1)
b1

. . . ∂
s(bq)
bq

where

s(x) = (−1)|[x]\(A∪B)| .

Theorem 3. The homomorphisms Dk
n defined above satisfy relation (2).

Proof. Over Z2, relation (2) is equivalent to

Dk
n + TDk

n + Dk+1
n−1dn = (d ⊗ d)n+k+1D

k+1
n . (3)

The right-hand side of (3) evaluates on a given generator 1 · σ ∈ Cn(X;Z2)
as follows (we will denote 1 · σ simply by σ):

∑

(A,B)∈Fk+1
n

(∑

i∈[n−|A|]
sigma∈{+,−}

∂s
i ∂−∗

A σ ⊗ ∂∗
Bσ +

∑

i∈[n−|B|]
sigma∈{+,−}

∂−∗
A σ ⊗ ∂s

i ∂∗
Bσ

)

=
∑

(A,B)∈Fk+1
n

(∑

j∈[n]\A
sigma∈{+,−}

∂−∗,s
A,j σ ⊗ ∂∗

Bσ +
∑

j∈[n]\B
sigma∈{+,−}

∂−∗
A σ ⊗ ∂∗,s

B,jσ
)
,

146 M. Krčál and P. Pilarczyk

where the operator ∂∗,s
B,j is equal to ∂∗

B with ∂s
j inserted at the correct posi-

tion (that is, ∂∗,s
B,j = ∂

s(b1)
b1 . . . ∂

s(br)
br

∂s
j ∂

s(br+1)
br+1

. . . ∂
s(bq)
bq

for br < j < br+1 and
s(x) = (−1)|[x]\(A∪B)|) and similarly for ∂−∗,s

A,j . This equality follows by applying
relation (1). Each term of the sum above can be rewritten into one of the fol-
lowing forms according to whether the face operator ∂±

j is present on both sides
of the tensor product:

1. When the face operator ∂±
j is present on both sides of the tensor product,

each term can be rewritten in one of the two types according to whether the
signs of the operators ∂±

j on the left and on the right agree or not, explicitly

∂−∗
A′ ∂t

jσ ⊗ ∂∗
B′∂−t

j σ and ∂−∗
A′ ∂t

jσ ⊗ ∂∗
B′∂t

jσ

for unique (A′, B′) ∈ Fk+1
n−1 and t ∈ {+,−} determined by A,B, j and s. It is

not difficult to see that for any fixed A′, B′, t and j, the term of the first type
appears either twice (when t = s(j)) or never (when t �= s(j)). In the second
type, the term appears exactly once (either ∂−∗

A′ ∂t
j = ∂∗

A or ∂∗
B′∂t

j = ∂∗
B for

some A and B).
2. When the face operator ∂±

j is present on one side of the tensor product only,
we set up the following labeling:

– ∂−∗,s
A,j σ ⊗ ∂∗

Bσ will be called an (A ∪ {j}, B, j,−)-term when s = s(j) =
(−1)|[j]\(A∪B)|.

– ∂−∗,s
A,j σ ⊗ ∂∗

Bσ will be called an (A ∪ {j}, B, j,+)-term when s = −s(j).
– ∂−∗

A σ ⊗ ∂∗,s
B,jσ will be called an (A,B ∪ {j}, j,+)-term when s = s(j).

– ∂−∗
A σ ⊗ ∂∗,s

B,jσ will be called an (A,B ∪ {j}, j,−)-term when s = −s(j).
It follows that for each (A′, B′) ∈ Fk

n , each j ∈ A′ ∪ B′, and each sign
t ∈ {+,−}, there is exactly one (A′, B′, j, t)-term in the sum above. We define
the following pairing on the set of all such (A′, B′, j, t)-terms: We pair each
(A′, B′, j,+)-term with the (A′, B′, j′,−)-term for j′ = min

(
(A ∪ B) \ [j]

)

when the minimum exists.2 Note that the paired terms are equal.
The unpaired

– (A′, B′, j,+)-terms for j = max(A′ ∪ B′) and
– (A′, B′, j,−)-terms for j = min(A′ ∪ B′)

are equal to
– ∂−∗

A′ σ ⊗ ∂∗
B′σ and

– ∂∗
A′σ ⊗ ∂−∗

B′ σ,
respectively.

Summing up what has been said above, the right-hand side of (3) equals to
∑

(A′,B′)∈Fk
n

∂−∗
A′ σ ⊗ ∂∗

B′σ + ∂∗
A′σ ⊗ ∂−∗

B′ σ +
∑

(A′,B′)∈Fk+1
n−1

∑

j∈[n]
t∈{+,−}

∂−∗
A′ ∂t

jσ ⊗ ∂∗
B′∂t

jσ ,

which is exactly the left-hand side of (3). ��
2 Or, equivalently, we pair each (A′, B′, j, −)-term with the (A′, B′, j′, +)-term for

j′ = max
(
(A ∪ B) ∩ [j]

)
when the maximum exists.

Computation of Cubical Steenrod Squares 147

Corollary 4. Definition 2 yields an explicit cubical formula for the Steenrod
squares as follows:

〈Sqj(zn), σ〉 :=
∑

A,B⊆[n+j]
A∩B=∅

|A|=|B|=j

〈zn, ∂−∗
A σ〉〈zn, ∂∗

Bσ〉. (4)

4 The Algorithm, Software, and Examples

Algorithm for Computing Steenrod Squares. In order to compute all the
nontrivial Steenrod squares in a cubical complex K, we first compute an AT
model of K, using the algorithm provided in [17]. The AT model consists of
a finitely generated free chain complex M∗ with null differential, and a chain
contraction (π, ι, φ) from C∗(K) to M∗. In particular, M∗ is represented by a
finite collection M∗ of its generators. In this algorithm, for a chain z ∈ Cn(K),
its dual cochain is denoted as zn.

Algorithm 5.
Input:

(M∗, π, ι, φ) – an AT model of K;
Output:

P = {(zp, jp, σp) : p = 1, . . . , P} for some P ∈ Z, where zp ∈ Mnp
,

np ∈ Z, jp ∈ Z, σp ∈ Mjp+np
, and the elements of P represent

all the nontrivial Steenrod squares in K, that is, 〈Sqjp(znp
p), σp〉 = 1;

Code:
P := ∅;
d := the dimension of M∗;
for each n ∈ {0, . . . , d}

for each j ∈ {0, . . . ,max(n, d − n)}
for each generator z ∈ Mn

for each generator σ ∈ Mn+j

α(z, j, σ) := 0;
for each A,B ⊆ [n + j], A ∩ B = ∅, |A| = |B| = j

for each s in ι(σ)
if z appears in π(∂−∗

A s) and in π(∂∗
Bs) then

α(z, j, σ) := α(z, j, σ) + 1;
if α(z, j, σ) �= 0 then

P := P ∪ {(z, j, σ)};
return P.

Software Implementation. The software publicly available at [16] under the
GNU General Public License is written in the C++ programming language using
the technique of generic programming. In particular, the type of cells in a cellu-
lar complex is a template parameter, so the same software applies to simplicial

148 M. Krčál and P. Pilarczyk

and cubical complexes alike, provided that the cell-specific operations (like the
boundary) have been defined. In addition to a programming library that is acces-
sible from within a program written in C++ and is the most efficient way of using
this software, there are a few command-line programs provided that read defin-
itions of cellular complexes saved in human-readable text files, and output the
results in text format to the console. These programs thus constitute an easy to
use interface to the main features of the software. Simplicial and cubical cells are
defined, and several algorithms are implemented, including the computation of
an AT model, the cohomology ring, and the Steenrod squares. The main program
written especially for this paper is called ssqcub, and computes the Steenrod
squares of a cubical complex. Additional programs that may be used for com-
parison and for gathering additional information, are: ssqsim (computation of
Steenrod squares for simplicial complexes), ssqcubs (computation of Steenrod
squares for cubical complexes using simplicial subdivision), cringcub (computa-
tion of the cohomology ring for cubical complexes), and cringsim (computation
of the cohomology ring for simplicial complexes). We refer to the website [16]
and instructions provided there for further information.

Approximations of Sample Manifolds. Given a finite set X ⊂ R
n that

roughly approximates a bounded set M ⊂ R
n whose homological information

we would like to demonstrate, we approximate it by means of a full cubical
set A as follows. For each point x = (x1, . . . , xn) ∈ X, we take the point a =
(a1, . . . , an) ∈ Z

n, where ai := �xi� is the largest integer that does not exceed
xi, and is effectively computed by truncating the coordinates of x down to the
nearest integers. Then we take the union of all the full cubes whose minimal
vertices are given in this way. More precisely:

A :=
⋃{[�x1�, �x1� + 1

] × · · · × [�xn�, �xn� + 1
]

: x ∈ X
}
.

In order to reduce a full cubical set A to a cubical set A′ ⊂ A which has the same
homological properties, we apply the reduction techniques introduced in [14],
which include removal of full cubes at the boundary of the set, and then a
sequence of free face collapses. The examples of full cubical sets and (general)
cubical sets discussed in this section are available at [16], and were obtained
as described above, with the application of the reductions. In particular, the
inclusion A′ → A induces an isomorphism in (co)homology.

The parametrization given by (α, β) �→ (R cos α+r cos α cos α
2 cos β,R sin α+

r sinα cos α
2 cos β, r sin α

2 cos β, r sinβ), with R = 4, r = 2, and α, β ∈ [0, 2π], was
used for the Klein bottle embedded in R

4, and the parametrizations provided in
[13] were used for RP2 embedded in R

5 and for CP2 embedded in R
8 (the third

coordinate in both original formulas was dropped).

Sample Computation of the Steenrod Squares. We consider three rep-
resentative examples which exhibit nontrivial Steenrod squares, in addition to
the obvious Sq0 ∼= id. A summary of these examples is gathered in Table 1. The
cohomology over Z2 (in terms of Betti numbers) and the nontrivial cup products,
as well as the nontrivial Steenrod squares are listed in Table 2.

Computation of Cubical Steenrod Squares 149

Table 1. A list of sample cubical sets that approximate selected manifolds with
nontrivial Steenrod squares.

Name of the Embedding Number of Number of

example dimension full cubes elementary cubes

K2 – Klein bottle 4 111 406

RP2 – real projective plane 5 38 288

CP2 – complex projective plane 8 281 16,915

Table 2. The nontrivial cup products and the nontrivial Steenrod squares. Coho-
mology generators are denoted by consecutive alphabetic letters for each dimension
(e.g., a for dimension 0, e for dimension 4) with appended indices starting from 1
within each dimension separately.

Example Betti numbers Nontrivial cup products Nontrivial Steenrod squares

K2 (1, 2, 1) b1 � b1 = c1, b1 � b2 = c1 Sq1(b1) = c1

RP2 (1, 1, 1) b1 � b1 = c1 Sq1(b1) = c1

CP2 (1, 0, 1, 0, 1) c1 � c1 = e1 Sq2(c1) = e1

Using Simplicial Subdivision. In the previous approach for the computation
of the Steenrod squares of digital images [7,8], one would have to first compute a
simplicial subdivision of a cubical set, and then compute the simplicial Steenrod
squares, e.g., using the efficient formulas provided in [7]. This approach is con-
siderably less efficient than using the direct cubical formula, especially in higher
dimensions, where it takes a considerable number of simplices to fill a full cube.
For example, our approximation of Klein bottle consisting of 111 full cubes of
dimension 4 (see Table 1) yields a simplicial complex with 27,404 simplices, as
opposed to the cubical complex containing 5,724 cubical cells. The 38 full cubes
of dimension 5 that approximate RP2 yield 76,475 simplicial cells and 7,113
cubical cells, respectively. Obviously, the high numbers of simplicial cells detri-
mentally affect the computation speed (which is not linear!), and the memory
usage as well.

Computation for the Suspension. For each of the sample cubical sets, we
construct a cubical counterpart of its suspension, as follows. Given a cubical
set A ⊂ R

m, let B be a contractible cubical set in R
m such that A ⊂ B. For

example, if [mi,Mi] is the range of the i-th coordinate of all the points in A
then the cartesian product Πm

i=1[mi,Mi] is a cubical set that contains A and is
obviously contractible. Then we take

Sc(A) := (A × [0, 1]) ∪ (B × {0, 1}).

150 M. Krčál and P. Pilarczyk

It is immediate to see that Sc(A) is homotopically equivalent to the suspension
of A, defined as

S(A) := (A × [0, 1])/{(x1, 0) ∼ (x2, 0) and (x1, 1) ∼ (x2, 1) for all x1, x2 ∈ A}.

As expected, computations show that the nontrivial Steenrod squares remain
in the suspension, although are shifted by one dimension (see Table 3), but the
nontrivial cup products disappear in the suspension (and are thus not shown in
the table).

Table 3. Nontrivial Steenrod squares for suspensions. Cohomology generators are
denoted by consecutive alphabetic letters for each dimension (e.g., a for dimension
0, e for dimension 4) with appended indices starting from 1 within each dimension
separately.

Example Betti numbers Nontrivial Steenrod squares

Sc(K2) (1, 0, 2, 1) Sq1(c1) = d1

Sc(RP2) (1, 0, 1, 1) Sq1(c1) = d1

Sc(CP2) (1, 0, 0, 1, 0, 1) Sq2(d1) = f1

Time Complexity. Provided that an AT model of a chain complex has been
already computed, computing all the Steenrod squares involves the computation
of the inclusion map on selected homology generators, applying the formulas for
the Steenrod squares at the level of chains, and checking if specific homology
generators appear in the projections of faces that appear in the formula. Let
s denote the number of cells in the chain complex, let g be the number of
homology generators. An upper bound for the number of how many times (4) is
applied is at most O(g2). Assume the dimension is fixed, and then (4) evaluates
in constant time times the cost of checking the projections, which is at most
O(g). Since the chains are not longer than O(s), the overall pessimistic time
complexity of the computation of all the Steenrod squares is O(g3s2). Note
that the time complexity of computing an AT model is O(s3), and in typical
applications the numbers of homology generators are very small; therefore, the
cost of computing Steenrod squares is neglibigle if computation of complete
homological information of a cubical complex is taken into consideration.

Acknowledgements. The research conducted by both authors has received funding
from the People Programme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme (FP7/2007-2013) under REA grant agreements no. 291734 (for
M. K.) and no. 622033 (for P. P.).

References

1. Čadek, M., Krčál, M., Matoušek, J., Vokř́ınek, L., Wagner, U.: Polynomial-time
computation of homotopy groups and Postnikov systems in fixed dimension. Siam
J. Comput. 43(5), 1728–1780 (2014)

Computation of Cubical Steenrod Squares 151

2. Computational Homology Project software. http://chomp.rutgers.edu/software/
3. Computer Assisted Proofs in Dynamics group. http://capd.ii.uj.edu.pl/
4. Eilenberg, S., Mac Lane, S.: On the groups H(Π, n), I. Ann. Math. 58, 55–106

(1953)
5. Franek, P., Krčál, M.: obust satisfiability of systems ofequations. J. ACM 62(4),

26:1–26:19 (2015). http://doi.acm.org/10.1145/2751524
6. Gonzalez-Dı́az, R., Medrano, B., Sánchez-Peláez, J., Real, P.: Simplicial perturba-

tion techniques and effective homology. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 166–177. Springer, Heidelberg (2006)

7. González-Dı́az, R., Real, P.: A combinatorial method for computing Steenrod
squares. J. Pure Appl. Algebra 139(1–3), 89–108 (1999)

8. González-Dı́az, R., Real, P.: Computation of cohomology operations on finite sim-
plicial complexes. Homology Homotopy Appl. 5(2), 83–93 (2003)

9. González-Dı́az, R., Real, P.: HPT and cocyclic operations. Homology Homotopy
Appl. 7(2), 95–108 (2005)

10. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001).
http://www.math.cornell.edu/ hatcher/AT/ATpage.html

11. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational homology, Applied
Mathematical Sciences, vol. 157. Springer-Verlag, New York (2004)

12. Kaczynski, T., Mrozek, M.: The cubical cohomology ring: An algorithmic approach.
Found. Comput. Math. 13(5), 789–818 (2013)

13. Kühnel, W., Banchoff, T.F.: The 9-vertex complex projective plane. Math. Intelli-
gencer 5(3), 11–22 (1983)

14. Mischaikow, K., Mrozek, M., Pilarczyk, P.: Graph approach to the computation of
the homology of continuous maps. Found. Comput. Math. 5, 199–229 (2005)

15. Franek, P., Krčál, M., Wagner, H.: Robustness of zero sets: Implementation, sub-
mitted

16. Pilarczyk, P.: The ChainCon software. Chain contractions,homology and cohomol-
ogy software and examples. http://www.pawelpilarczyk.com/chaincon/

17. Pilarczyk, P., Real, P.: Computation of cubical homology, cohomology, and
(co)homological operations via chain contraction. Adv. Comput. Math. 41(1), 253–
275 (2015)

18. Prasolov, V.V.: Elements of Homology Theory. Graduate Studies in Mathematics,
American Mathematical Society (2007)

19. Real, P.: On the computability of the Steenrod squares. Ann. Univ. Ferrara, Nuova
Ser., Sez. VII, Sc. Mat. 42, 57–63 (1996)

20. Sergeraert, F.: Effective homology, a survey (1992). http://www-fourier.
ujf-grenoble.fr/∼sergerar/Papers/Survey.pdf

21. Sergeraert, F.: The computability problem in algebraic topology. Adv. Math.
104(1), 1–29 (1994)

22. Serre, J.P.: Homologie singulière des espaces fibrés. Ann. Math. 54(3), 425–505
(1951)

23. Steenrod, N.E.: Products of cocycles and extensions of mappings. Ann. Math.
48(2), 290–320 (1947)

24. Steenrod, N.E.: Cohomology operations, and obstructions to extending continuous
functions. Adv. Math. 8, 371–416 (1972)

25. Vokř́ınek, L.: Decidability of the extension problem for maps into odd-dimensional
spheres. [math.AT] (2014). arXiv:1401.3758

http://chomp.rutgers.edu/software/
http://capd.ii.uj.edu.pl/
http://doi.acm.org/10.1145/2751524
http://www.math.cornell.edu/hatcher/AT/ATpage.html
http://www.pawelpilarczyk.com/chaincon/
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf
http://arxiv.org/abs/1401.3758

On Homotopy Continuation
for Speech Restoration

Darian M. Onchis1(B) and Pedro Real2

1 Faculty of Mathematics, University of Vienna, Vienna, Austria
darian.onchis@univie.ac.at

2 Department of Applied Mathematics I, University of Seville, Seville, Spain
real@us.es

Abstract. In this paper, a homotopy-based method is employed for the
recovery of speech recordings from missing or corrupted samples taken in
a noisy environment. The model for the acquisition device is a compressed
sensing scenario using Gabor frames. To recover an approximation of
the speech file, we used the basis pursuit denoising method with the
homotopy continuation algorithm. We tested the proposed method with
various speech recordings.

Keywords: Homotopy continuation · Speech restoration · Basis
pursuit · �1 regularization · Gabor frames · Numerical algorithm

1 Introduction

The reconstruction of an audio signal with missing sampled or clipped, is a clas-
sical problem in signal processing and it was largely discussed in the specialized
scientific literature, see [1–3].

In this paper, we report the experiments performed with a method inspired
from computational topology, namely the homotopy continuation method in
order to enhance the typical recovery of audio speech recordings based on �1−
minimization, [4–6].

To precisely formulate the problem, we consider the following non parametric
model with observations:

y = Θs + e ∈ R
P

where s ∈ R
N is the speech signal to recover, e ∈ R

P is a noise vector, and
Θ ∈ R

P×N models the acquisition device. This device is nowadays equipped
with the additional assumption of sparsity, which refers to the circumstance
that many natural signals can be expanded (using a suited dictionary Θ) with
only few non zero coefficients. We assume a compressed sensing scenario where
the operator Θ could be the realization of a random Gaussian, Bernoulli, or
partial Fourier matrix satisfying the restricted isometry property (RIP) [7]. But
given the special characteristics of nature signals as the speech recordings, which
usually consist of sets of distinct components as transients and harmonics with
orientation in time and frequency, we have used for the proposed method a Gabor
frame generated by the Alltop sequences as proposed in [8,9].
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 152–156, 2016.
DOI: 10.1007/978-3-319-39441-1 14

On Homotopy Continuation for Speech Restoration 153

2 Gabor Frames and the �1−minimization

Frames (gi)i∈I generalize the idea of a basis in a Hilbert space H and consist of
the indexed families such that the so-called frame operator S

Sf =
∑

i∈I

〈f, gi〉gi (1)

is invertible. The main tool for time-frequency analysis is the Short-Time Fourier
Transform, defined for functions f, g ∈ L2(Rd) at λ = (α, β) ∈ R

2d by

Vgf(λ) = Vgf(α, β) = 〈f,MβTαg〉 = 〈f, π(λ)g〉 (2)

where Tαf(t) = f(t−α) is the translation (time shift) and Mβf(t) = e2πiβ·tf(t)
is the modulation (frequency shift). The operators π(λ) := MβTα are called time-
frequency shifts and the set Λ = {λ; λ = (α, β) ∈ R

d × R̂
d} is a lattice, [11].

The Gabor system G(g, Λ) = {π(λ)g; λ ∈ Λ} over the lattice Λ consisting of
the translated and modulated versions of one atom g, is a frame for the space
L2(Rd), if and only if there exist 0 < A ≤ B < ∞ (frame bounds) with

A||f ||2 ≤
∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B||f ||2 for everyf ∈ L2(Rd), (3)

We will use in the construction of Gabor frames the Alltop sequences as proposed
in [8].

To recover an approximation of the signal s, a standard method is the basis
pursuit denoising or �1-minimization [10]. This method is based on using the �1

norm as a sparsity enforcing penalty. That turns into an optimization problem
and allows us to recover the signal minimizing the expression:

sρ ∈ argmins∈RN

1
2
‖y − Θs‖2 + ρ‖s‖1 (4)

where the �1 norm is defined as ‖s‖1 =
∑

i |si|.
The parameter ρ should be set in accordance to the noise level ‖e‖.
In the case where there is no noise, e = 0, we let λ → 0+ and solve the basis

pursuit constrained optimization s0+ ∈ argminΘs=y‖s‖1.
In order to avoid technical difficulties, we could further assume that Θ is

such that sρ is uniquely defined.
In the following, for some index set I ⊂ {1, . . . , N}, we denote by

ΘI = (θi)i∈I ∈ R
P×|I|

the sub-matrix obtained by extracting the columns θi ∈ R
P of Θ indexed by I.

The support of a vector is supp(x) = {i ∈ {1, . . . , N} : xi
= 0} .
Using results from the convex analysis, we obtain that sρ is a solution of (4)

if and only if {
(C1) Θ∗

I (y − ΘIsρ,I) = ρsign(sρ,I),
(C2) ‖Θ∗

J (y − ΘIsρ,I)‖∞ ≤ ρ

where I = supp(sρ) and J = Ic is the complementary.

154 D.M. Onchis and P. Real

3 The Homotopy-Continuation Algorithm and
Experiments

Topology helps to understand the different degrees of connectivity a geometric
object has. To deal with topological isomorphisms or homeomorphisms between
continuous geometric objects is a hard task and discretization strategies, such
as triangulations, are employed for reducing the computational complexity of
the topological interrogation. While homology considers the notion of hole in
linear algebra terms, the homotopy is dealing with the same issues in a purely
combinatorial terms. Therefore, homotopy computation is much more harder in
general than homology computation, but in combination with numerical meth-
ods it can be proven to be a useful tool for signal recovery but also in image
recognition.

The proposed homotopy-based method for speech recovery is gradually
deforming a trivial initialization of the speech vector into the original speech
vector through the process of path-tracking. The numerical homotopy proce-
dure is based on the fact that the objective function undergoes a homotopy
from the �2 to the �1 optimization as the algorithm progresses. The homotopy
algorithm proceeds by computing iteratively the value sρ.

We sum below the complete algorithm:

Homotopy-speech restoration algorithm

Input: y-noisy speech file ,

Θ-Gabor frame compressed sensing operator ,

Initialization : Corr = Θ′ ∗ y, ρ = max(Corr), sρ = 0,
Isparsity = supp(sρ)
Output: sρ-restored speech file , ρ,
Isparsity

Begin iteration

Compute the correlations Corr = Θ′ ∗ (y − Θ ∗ sρ);
Update direction dir = Θ′ ∗ Θ sign(Corr);
Compute J the complementary support of Isparsity

Compute minimum α for condition (C1) and (C2)

Update solution sρ = sρ + α ∗ dir; ρ = ρ − α; Isparsity = supp(sρ).
End Iteration

(�1−minimization with homotopy deformation)

For the numerical experiments, we have used 5 speech data s of 2 to 5 s,
recorded by a microphone and sampled at 16 kHz. All signals were normalized,
and after that the following noise level σ = 0.05 ∗ norm(Θ ∗ s)/sqrt(P) was
applied. We used P = round(N/4) where N = size(s). The distorted measure-
ments where defined by the expression y = Θ ∗ s + σ ∗ randn(P, 1) as in [5].
These measurements were the input for our algorithm.

In Fig. 1, we displayed 6 iterations of the algorithm to visualize the homotopic
progression towards the correct restoration. For clarity reasons, only the first
2000 samples of the speech signal are shown.

On Homotopy Continuation for Speech Restoration 155

Fig. 1. First 6 iterations of the homotopy algorithm (orginal in red, recovered in blue)
(Color figure online)

Even though the application of the algorithm provides a complete recovery
of the original speech recording, a drawback is the large number of iterations.
In our experiments, we managed to recover the 5 speech data, with a number
of iterations proportional with almost half the size of the signal, depending on
the distortion applied. In comparison with other �1−minimization methods like
the iterative shrinkage-thresholding, proximal gradient or augmented Lagrange
multiplier, the homotopy achieves the best accuracy, even though, as mentioned
before, in terms of speed, the homotopy takes longer time to converge when the
distortion is high. But since speech recognition is usually a sensitive issue, the
accuracy degree of the reconstruction made us confident in the utility of the
proposed algorithm.

4 Conclusions

In this report, we presented the results of speech restoration using the basis
pursuit algorithm in a sparse Gabor frames scenario, enhanced with a topology-
inspired procedure entitled the homotopy-continuation method. The method
allows a complete recovery of a speech recording with missing samples or clipped
but with a high computational cost given by a large number of iteration neces-
sary. Further parallelization of the algorithm are considered by the authors.

Acknowledgments. The first author gratefully acknowledge the support of the Aus-
trian Science Fund (FWF): project number P27516.

156 D.M. Onchis and P. Real

References

1. Abel, J.S., Smith III., J.O.: Restoring a clipped signal. In: Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing. IEEE, pp.
1745–1748 (1991)

2. Godsill, S.J., Rayner, P.J.: A Bayesian approach to the restoration of degraded
audio signals. IEEE Trans. Speech Audio Process. 3(4), 267–278 (1995)

3. Adler, A., Emiya, V., Jafari, M., Elad, M., Gribonval, R., Plumbley, M.D.: Audio
inpainting. IEEE Trans. Audio Speech Lang. Process. 20(3), 922–932 (2012)

4. Emmanuel Candes. http://statweb.stanford.edu/∼candes/l1magic/
5. Numerical Tours of Signal Processing. http://www.numerical-tours.com/matlab/

optim8homotopy/
6. Malioutov, D.M., Cetin, M., Willsky, A.S.: Homotopy continuation for sparse signal

representation. In: IEEE International Conference on Acoustics, Speech and Signal
Processing, Philadelphia, PA, vol. 5, pp. 733–736, March 2005

7. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theor.
51(12), 4203–4215 (2005)

8. Herman, M.A., Strohmer, T.: High-resolution radar via compressed sensing. IEEE
Trans. Signal Process. 57(6), 2275–2284 (2009)

9. Strohmer, T., Heath, R.: Grassmanian frames with applications to coding and
communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

10. Gill, P.R., Wang, A., Molnar, A.: The in-crowd algorithm for fast basis pursuit
denoising. IEEE Trans. Signal Process. 59(10), 4595–4605 (2011)

11. Ricaud, B., Stempfel, G., Torresani, B., Wiesmeyr, C., Lachambre, H., Onchis, D.:
An optimally concentrated Gabor transform for localized time-frequency compo-
nents. Adv. Comput. Math. 40(3), 683–702 (2014)

http://statweb.stanford.edu/~candes/l1magic/
http://www.numerical-tours.com/matlab/optim8homotopy/
http://www.numerical-tours.com/matlab/optim8homotopy/

Finding Largest Rectangle Inside
a Digital Object

Apurba Sarkar1(B), Arindam Biswas2, Mousumi Dutt3,
and Arnab Bhattacharya4

1 Department of Computer Science and Technology,
Indian Institute of Engineering Science and Technology, Howrah, India

as.besu@gmail.com
2 Department of Information Technology,

Indian Institute of Engineering Science and Technology, Howrah, India
barindam@gmail.com

3 Department of Computer Science and Engineering,
International Institute of Information Technology, Naya Raipur, India

duttmousumi@gmail.com
4 Department of Computer Science and Engineering,

Indian Institute of Technology, Kanpur, India
arnabb@iitk.ac.in

Abstract. We present a combinatorial algorithm which runs in
O(n log n) time to find largest rectangle (LR) inside a given digital object
without holes, n being the number of pixels on the contour of digital
object. The object is imposed on background isothetic grid and inner
isothetic cover is obtained for a particular grid size, g, which tightly
inscribes the digital object. Certain combinatorial rules are applied on
the isothetic cover to obtain the largest rectangle. The largest rectangle
is useful for shape analysis of digital objects by varying grid size, by
rotating the object, etc. Experimental results on different digital objects
are also presented.

Keywords: Digital object · Isothetic grid · Rectangle · Inner isothetic
cover · Shape analysis

1 Introduction

The problem of finding the Largest area axis-parallel Rectangle (LR) inside a
general polygon of n vertices is a geometric optimization problem in the class
of polygon inclusion problem [4]. There are many solutions for this problem in
various scenarios (e.g. in convex polygon, in orthogonal polygon, etc.) because
of the practical importance of the problem. Chazelle et al. [5,6] proposed an
algorithm to find largest area rectangle with sides parallel to the given rectangle
containing n points and reported that their algorithm runs in O(n log3 n) time
and O(n log n) space. Aggarwal et al. [1] simplifies that algorithm by Chazelle
et al. [5,6] and proposed an algorithm that takes same O(n log3 n) time but
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 157–169, 2016.
DOI: 10.1007/978-3-319-39441-1 15

158 A. Sarkar et al.

Fig. 1. (a) The digital object, A, (b) Inner isothetic cover (g = 8), (c) Largest
Rectangle.

O(n) space. They proposed another algorithm that runs in O(n log2 n) time and
O(n) space. Daniels et al. [7] considered a geometric optimization problem of
finding maximum area axis parallel rectangle from a n-vertex general polygon.
They characterized the largest area rectangle problem by considering different
cases based on the types of contacts between the rectangle and the polygon.
They also proposed a framework that can transform an algorithm for orthogonal
polygons into an algorithm for non-orthogonal polygons and showed that the
running time of their algorithm for general polygons to be O(n log2 n). They
have established lower bound for finding the largest empty rectangles in both self-
intersecting polygons and general polygons with holes to be O(n log n). McKenna
et al. [9] use a divide-and-conquer approach to find the LR in an orthogonal
polygon in O(n log5 n) time. For the merge step at the first level of divide-and-
conquer, they obtain an orthogonal, vertically separated, horizontally convex
polygon. At the second level, their merge step produces an orthogonally convex
polygon, for which they solve the LR problem in O(n log3 n) time. They also
establish a lower bound of time in Ω(n log n) for finding the LR in orthogonal
polygons with degenerate holes, which implies the same lower bound for general
polygons with degenerate holes.

LR problem has many applications in electronic design automation, design
and verification of physical layout of integrated circuits [10,11]. Largest area
rectangle problem has many interesting industrial applications also, e.g., consider
a sheet of fabric or a rectangular piece metal with certain number of flaws in it.
This problem can be salvaged to find a maximum area rectangular sheet that
does not contain any flaws.

In this paper we present another flavor of the same problem - finding largest
rectangle in a digital object which is useful for shape analysis of the object. It is to
be noted here that the resulting largest rectangle may not be unique. The digital
object (Fig. 1(a)) is imposed on a background grid (grid size may vary depending
on the shape and size of the object). Inner isothetic cover which tightly inscribes
the digital object is shown in Fig. 1(b). The corresponding largest rectangle
is shown in Fig. 1(c) for grid size g = 8. In Sect. 2 required definitions and
procedure to obtain inner isothetic cover are explained in brief. While traversing
along the inner isothetic cover combinatorial rules are applied to obtain the

Finding Largest Rectangle Inside a Digital Object 159

largest rectangle. The algorithm presented in this paper runs in O(n log n) time,
where n is the number of pixels on the contour of the digital object. In Sect. 3,
the procedure to obtain largest rectangle is stated in details including rules,
algorithm, time complexity, and demonstration. Experimental results are given
in Sect. 4 to verify the algorithm. Section 5 contains concluding remarks.

2 Definitions and Preliminaries

A digital object A is a 8-connected component [8]. The background grid is given
by G = (H,V), where H and V represent the respective sets of (equi-spaced)
horizontal grid lines and vertical grid lines. The grid size g is defined as the
distance between two consecutive horizontal/vertical grid lines. A grid point is
the point of intersection of a horizontal and a vertical grid line. A unit grid
block (UGB) is the smallest square having its four vertices as four grid points
and edges as grid edges. An isothetic polygon P is a simple polygon (i.e., with
non-intersecting sides) of finite size in Z

2 whose alternate sides are subsets of
the members of H and V. The polygon P , hence given by a finite set of UGBs,
is represented by the (ordered) sequence of its vertices, which are grid points.
The border BP of P is the set of points belonging to its sides. The interior of P
is the set of points in the union of its constituting UGBs excluding the border
of P . An isothetic cover has two type of vertices 900 (type 1) and 2700 (type 3).
The inner (isothetic) cover (IIC), denoted by P (A), is a set of inner polygons
and (inner) hole polygons, such that the region, given by the union of the inner
polygons minus the union of the interiors of the hole polygons, contains a UGB
if and only if it is a subset of A. An edge of P defined by two consecutive vertices
of type 1 is termed as a convex edge, as it gives rise to a convexity. Similarly,
an edge defined by two consecutive type 3 vertices gives rise to a concavity, and
hence termed as a concave edge.

Using the algorithm in [2,3], we obtain (the ordered set of vertices of) P for
A, which is, therefore, the maximum-area isothetic polygon inscribing A. During
the construction of P , the vertices and grid points lying on the edges of P are
dynamically inserted in a circular doubly-linked list, L, and simultaneously in
two lexicographically sorted (in increasing order) lists, Lx and Ly, with respective
primary and secondary keys as x- and y-coordinates for Lx, and opposite for Ly.
Each node of the list L has two level pointers, the lower level pointers are used
to link both edge and corner points of IIC and the top level pointers are used to
link only the corner points of IIC.

3 Procedure to Determine Largest Rectangle

To find a largest rectangle, the inner isothetic cover P (constructed using
algorithm in [2,3]) is traversed in anti-clockwise direction from its top left
corner. During this traversal, whenever a convex edge is encountered, corre-
sponding histogram polygon (i.e., a portion of the main polygon) is constructed,
as explained in Sect. 3.1. Largest rectangle inscribed in the histogram polygon

160 A. Sarkar et al.

Fig. 2. Histogram polygon w.r.t. a convex edge.

is determined (Sect. 3.2). The convexity encountered in P is reduced using the
appropriate reduction rule explained in Sect. 3.3. After reduction, it may give
rise to a convex edge, corresponding to which the histogram polygon, thereof the
largest rectangle inscribed in it, is determined. Thus, the traversal continues till
it reaches the start point of P , the largest of all such largest rectangles, inscribed
in the histogram polygons of convex edges, is the resulting largest rectangle of P .

3.1 Finding Histogram Polygon

During traversal, whenever a convex edge (say e) is detected, histogram polygon
is considered, whose base is e. The base may lie horizontally (at top or bottom)
or vertically (at left or right). The base is extended to extract the histogram
polygon which does not contain any concavity horizontally (vertically) if the
base is vertical (horizontal). Figure 2(a) shows a vertical convex edge e at left
side, which is extended upto the right side of P in such a way that there is no
horizontal concavities. Corresponding histogram polygon is shown in Fig. 2(b)
in blue outline.

3.2 Finding Largest Rectangle in a Histogram Polygon

To find the largest rectangle in histogram polygon, the opposite side of the
base, e, is traversed. Whenever a convex edge is encountered, the area of the
corresponding rectangle is determined, which is compared with the stored largest
rectangle (or global largest rectangle). Larger rectangle is stored as global largest
rectangle. After considering the rectangle in histogram polygon, P is reduced
based on the reduction rules stated in Sect. 3.3. This process continues until it
traverses all the convex edges opposite to e. For example, in Fig. 3(a), the area
corresponding to the first convexity, shown as the gray rectangle, is computed as
l1 × l2 and the convexity is reduced as shown in Fig. 3(b). In Fig. 3(b), the area
corresponding second convexity is shown. Figure 3(c) shows the third convexity
and its area, Fig. 3(d) shows the area corresponding to fourth convexity and
finally Fig. 3(e) shows area corresponding to last convexity. It may be noted
that the convexities in Fig. 3(c,d,e) are derived convexities.

Finding Largest Rectangle Inside a Digital Object 161

3.3 Reduction Rules

The reduction rules are applied only when two consecutive type 1 vertices,
i.e., convex edge is detected. Let v1, v2, v3, and v4 be the four most recent vertices
in order and type of v2 and v3 be 1. Let v0 be the vertex (if any) that precedes
v1. If v0 exists then reduction rule is applied on the sequence < v0, v1, v2, v3, v4 >
of vertices otherwise it is applied on the sequence < v1, v2, v3, v4 > of vertices.
Depending on the types of vertices v1 and v4, there will be four possibilities—
(i) 3113, (ii) 3111, (iii)1111 and finally (iv) 1113. Two rules with their sub-rules
are formulated, Rule 1 takes care of the pattern in (i) and (iv) and Rule 2 deals

Fig. 3. Illustration of finding largest rectangle in a histogram polygon.

Fig. 4. Illustration of reduction Rule 1

162 A. Sarkar et al.

with the pattern in (ii) and (iii). The proposed algorithm applies reduction rules
only when patterns 3113 or 3111 are encountered. The reduction processes are
explained below.

Pattern 3113: This pattern implies that two convex (Type 1) vertices pre-
ceded concave (Type 3) and followed by another concave vertex. Two consecu-
tive Type 1 vertices in the middle of the pattern creates a convex edge which is
to be removed. The reduction process is explained with the help of Fig. 4. Let li
denote the length of outgoing edge from vertex vi. Depending on the length l1
and l3 there are three sub-rules.
Rule 11 (l1 = l3)
To remove the convexity, there are two cases to be considered depending on the
existence of the vertex v0. If v0 exists, vertices v1, v2, v3, and v4 are removed and
the length l0 is updated to l0 + l3 + l4. On the other hand, if v0 does not exist,
vertices v2, v3, and v4 are removed and length l1 is updated to l3 + l4.

Fig. 5. Illustration of reduction Rule 2

Finding Largest Rectangle Inside a Digital Object 163

Rule 12 (l1 > l3)
To remove the convexity, vertex v2 is modified to v′

2 and its length is set to l2+l4.
The length l1 is modified as l1 − l3 and the vertices v3 and v4 are removed. This
reduction is independent of presence of the vertex v0.
Rule 13 (l1 < l3)
This rule depends on the presence of vertex v0. If v0 is present, its length is
updated to l0 + l2, vertices v1 and v2 are removed, and vertex v3 is modified to
v′
3 with its length set to l3 − l1. On the other hand, if v0 is not present, length

l1 is modified as l2, vertex v2 is removed, and vertex v3 is modified to v′
3 with

its length set to l3 − l1.

Pattern 3111: This pattern indicates that three consecutive convex (Type 1)
vertices is preceded by a concave (Type 3) vertex and may create a convoluted
sequence of vertices on the boundary of the object. To remove the convexity
of this pattern, the traversal is continued until it comes out of the convoluted
region (i.e., the shaded region) bounded by the horizontal line lh through v1 and
the vertical line lv through v4 as shown in Fig. 5.
Rule 21(l1 < l3)
This rule is same as R13. If v0 exists, its length is updated to l0 + l3, vertices
v1 and v2 are removed, and vertex v3 is modified to v′

3 with its length modified
to l3 − l1. If v0 does not exist, length l1 is modified as l2, vertex v2 is removed,
and finally vertex v3 is modified as v′

3 with its length modified to l3 − l1.
Rule 22(l1 ≥ l3)
To remove this type of convexity, the traversal is continued from vertex v4 until
it comes out of the convoluted region. This can be checked by comparing the
coordinates of the vertices during the traversal. The middle and bottom rows
of Fig. 5 illustrate this situation for one direction (downward or direction 3) of
vertex v2. In this case the traversal comes out of the convoluted region when it
reaches the first vertex whose x-coordinate value is less than the x-coordinate
value of v4 and the y value is greater than the y value of vertex v1. As shown in
the figure, when the traversal reaches vertex v′′, the above condition is satisfied
and reduction is applied as follows. Let v′ is the immediate previous vertex of
v′′. If l1 = l3, length of v0 if exists, is updated to l0+v′.x−v1.x, v3 is modified to
v′
3 with its length modified to v′′.y − v4.y, and finally vertices v1, v2 and all the

the vertices from v4(including it) to v′ are deleted. If v0 does not exist, length of
v1 is updated to v′.x − v1.x, vertex v3 is modified to v′

3 with its length modified
to v′′.y − v4.y, and finally vertices v2 and all the the vertices from v4(including
it) to v′ are removed. This is explained by rule R22A in Fig. 5. If l1 > l3,
length of v1 is updated to l1 − l3, v2 is modified to v′

2 with its length modified
to v′.x − v1.x, v3 is modified to v′

3 with its length modified to v′′.y − v4.y, and
finally all the vertices from v4(including it) to v′ are removed. In this case the
reduction process is independent of existence of v0. This is explained by rule
R22B in Fig. 5. It is to be noted that after reduction rule is applied there still
exists a convexity formed by vertices v1, v

′
2, v

′
3 and v′′ which will be removed

subsequently by the application of one of the available rules.

164 A. Sarkar et al.

3.4 Algorithm

The Algorithm Find-Rect (Algorithm 1) is used to determine a largest rectan-
gle in a digital object, which takes as input the digital object, A, and the largest
rectangle is reported as the output. Inner isothetic cover of A is generated by
calling the procedure IIC (Step 1) and L, Lx, and Ly are created (procedure IIC
is based on Sect. 2 [2,3]). Lcurr determines the current position of the vertex L
whereas Lend is the last vertex in the vertex list L. Initially, Lcurr is set to the
start of L, i.e., Lstart and the area of global largest rectangle, rect.area, is set
to ‘0’ (Step 2). The list L is traversed until it reaches the end Lend (Steps 3-6).
The procedure Check-Convex checks whether there is a convex edge (Step 4)
and if it is so, procedure Find-Hist is called (Step 5). Lcurr advances one step
in L (Step 6). In the Procedure Find-Hist (Procedure 1), LH stores all the ver-
tices of histogram polygon in anticlockwise manner. Initially LH is set to NULL

(Step 1). Search-Next procedure finds out the next vertex, v, of the histogram
polygon (explained in Sect. 3.1) (Step 2). The vertices v1, v2, and v are appended
in LH (Step 3). All the vertices in histogram polygon has to be found out till
it is in range (Steps 4-6) which is determined by the procedure Chk-Range

(Step 4). In Step 5, the next vertex, v′ in histogram polygon is found out by
the procedure Search-Next (Step 5) and v′ is appended in LH (Step 6). The
Find-Rect (Procedure 2) procedure is called to determine the rectangles in
histogram polygon (Step 7). Reduction rules (discussed in Sect. 3.3) are applied
on convex edge from which histogram polygon has been generated, by calling
the procedure Apply-Rule (Step 8). The Lcurr will be updated accordingly
(Step 9) and will be returned to Find-LR (Step 10).

In the Procedure 2, Find-Rect, LHv
is initialized to the next vertex of the

convex edge in anticlockwise manner in the histogram polygon (Step 1). Steps 3–
9 are repeated until the condition in Step 2 is false, i.e., all the vertices of the
histogram polygon will be traversed except its base. If a convex edge is detected
by calling the procedure Check-Convex in Step 3, corresponding rectangle,
rect′, is determined by calling the procedure Cal-Rect (Step 4). Corresponding
area of the rectangle is determined by the procedure Cal-Area (Step 5). The
area of rect′ is compared with rect, if the area of rect′ is larger, then the global
largest rectangle is updated (Steps 6-7). Reduction rules (discussed in Sect. 3.3)
are applied on the convex edge (Step 8). LHv

advances one step in L (Step 9).

Algorithm 1. Find-LR
Input: A
Output: rect

1 L, Lx, Ly ← IIC(A) ;
2 Lcurr ← Lstart, rect.area ← 0;
3 while Lcurr �= Lend do
4 if Check-Convex(Lcurr →

type, (Lcurr → next) → type) then
5 Find-

Hist(Lcurr, Lcurr → next)

6 Lcurr ← Lcurr → next;

7 return rect;

Procedure 1. Find-Hist(v1, v2)
1 LH ← {φ};
2 v ← Search-Next(v2, Lx, Ly);

3 LH ← LH ∪ {v1, v2, v};
4 while Chk-Range(v1, v2) do
5 v′ ←Search-Next(v, Lx, Ly);

6 LH ← LH ∪ {v′};
7 Find-Rect(LH);

8 Apply-Rule(v1, v2);

Finding Largest Rectangle Inside a Digital Object 165

Procedure 2. Find-Rect(LH)
1 LHv ← LHstart → next → next;
2 while LHv �= LHend

do
3 if Check-Convex(LHv → type,

(LHv → next) → type) then
4 rect′ ←

Cal-Rect(LHv , LHv → next);

5 rect′.area ← Cal-Area(rect′) ;

6 if rect′.area > rect.area then
7 rect ← rect′;

8 Apply-Rule(Lv, Lv → next);

9 LHv ← LHv → next;

Fig. 6. Demonstration of the proposed algorithm on an object (Bird)

3.5 Demonstration

An illustration of obtaining largest rectangle is shown in Fig. 6. The top-left
figure shows the IIC of the object, the green polygons in each step indicates the
reduced polygon, the yellow rectangle indicates the largest rectangle found so
far and the pink polygon indicates the largest rectangle for immediate previous
convexity or the current convexity. Step 1 shows the result of application of

166 A. Sarkar et al.

reduction rule R13 for the first convexity it encounters and the largest rectangle
(in yellow) found corresponding to this convexity. Step 2 shows the removal
of second convexity with rule R12. Since the largest area rectangle obtained
for this convexity is greater than the largest rectangle obtained so far (before
this), the global largest rectangle is updated with this rectangle. Continuing this
way the convexity at Step 5, gives largest rectangle for this object since the
rectangles corresponding to all subsequent convexities are smaller. It is to be
noted that reduction rules are applied for patterns 3113 and 3111, so the IIC
will be reduced to a histogram polygon whose base will be the bottom edge of
the reduced polygon. At the last step the largest rectangle for this histogram
polygon is to be computed for potential largest rectangle. In this case the largest
rectangle for this reduced polygon is smaller than the one already computed.

3.6 Time Complexity

To estimate the running time of the algorithm, let us look at the steps involved
and their individual running time. Also, let n be the number of pixels on the con-
tour of the digital object, A and g be the grid size. To construct inner isothetic
cover along with L, Lx, and Ly O((n/g) log(n/g)) time is required. To deter-
mine the largest rectangle, the inner isothetic cover is linearly traversed once and
whenever an unexplored convex edge is encountered the procedure Find-Hist

and thereby procedure Find-Rect is called to find the largest rectangle corre-
sponding to this convex edge. To find the histogram polygon with respect to a
convex edge, O(n/g + log(n/g)) time is required, as it includes searching in Lx

and Ly which takes O(log n/g) time. Procedure Check-Convex, Chk-Range,
Apply-Rule, Update, Cal-Area, and Find-Rect take O(1) time. Procedure
Find-Rect traverses linearly only the vertices lying opposite to the base of the
histogram polygon found out by the procedure Find-Hist. So, Find-Rect takes
O(n/g) time to calculate the largest rectangle inside the histogram polygon. It
is to be noted that each convex edge is traversed only once and the other convex
edges which are in opposite direction but totally contained within the convex
edge currently being considered need not be checked as largest rectangle corre-
sponding to these convex has already been taken care of. If there are in total
k number of convex regions where k � n, then total time complexity will be
O(k.n/g + (n/g) log(n/g)).

3.7 Proof of Correctness

The algorithm identifies a convex edge and finds out the corresponding histogram
polygon, then the largest rectangle inside the histogram polygon is computed.
After a convex edge is considered, it is reduced following a certain combinato-
rial reduction rules. After the reduction if it gives rise to secondary convex, it
is treated in the similar manner stated above to find the corresponding largest
rectangle. The largest of all these rectangles corresponding to each convex edge
is reported as largest rectangle. To prove that the algorithm indeed finds out
largest rectangle we have to show that the algorithm considers all convex edges.

Finding Largest Rectangle Inside a Digital Object 167

The traversal procedure ensures that all convex edges (and secondary convex
edges) are considered as it starts from the top left vertex of the IIC and contin-
ues till the traversal reaches the start point. Sides of a largest rectangle, as it
tries to maximise the area, will either be a convex edge or a concave edge may
constitute a part of its side. The procedure for finding out largest rectangle inside
a histogram polygon of a convex edge, ensures that it finds a largest rectangle as
it walks along the sky-line of the histogram polygon (reduces whenever required)
and determines the rectangle it produces with the base (the convex edge). To
prove that the algorithm also terminates, it is to be noted that during the tra-
versal, whether or not a convex edge is encountered, the traversal advances to
the next vertex of IIC. So, eventually the traversal reaches the start point and
terminates.

Fig. 7. Largest area rectangle (shaded in yellow) inside six different objects for g = 8.

Table 1. Different data for various digital objects at grid size, g = 8.

Object Object Object Perimeter Area Perimeter Area

perimeter area of IIC of IIC of LR of LR

Bird 625 27768 688 7168 208 2688

Kangaroo 1151 57828 1088 11008 224 3136

Dancer 1057 50398 1320 14400 352 6144

Cartoon 918 65536 1152 35456 528 17024

Cat 730 42920 616 8896 256 2816

Hand 1300 72675 1632 28224 464 13312

Mapple leaf 861 50882 992 17472 352 6720

Plus Symbol 978 70488 960 23744 608 13888

168 A. Sarkar et al.

4 Experimental Results

The proposed algorithm is implemented in C in Ubuntu 12.04, 64-bit, kernel
version 3.5.0-43-generic, the processor being Intel i5-3570, 3.4 GHz FSB. Exper-
imental results of six different digital objects are shown in Fig. 7. In Table 1,
different data, e.g., area and perimeter of digital object, IIC, and largest rectan-
gle, are given. It is seen that largest rectangle occupies approximately one-third
area of inner isothetic polygon. The results show that the algorithm can be use-
ful for shape analysis of digital object, as most of the time the largest rectangle
determined is at the central position of the digital object. A digital object my be
characterized by positioning the successive largest rectangle inside it. These type
of information may be useful to determine some topological information from
digital objects when the largest rectangles are placed recursively in the rest of
the IIC.

5 Conclusion

This paper describes a combinatorial algorithm to find largest rectangle inside a
digital object in O(k.n/g+(n/g) log(n/g)) time. The paper also presents the rules
for the algorithm, a demonstration, and time complexity. Experimental results
show the efficacy of the algorithm. The algorithm can be applied for shape analy-
sis of digital object. LR problem has some industrial application also which has
been stated in Sect. 1. One largest rectangle can divide the object in several parts.
We can generate iteratively largest rectangle in each part upto a certain limit.
LR in each level will form a tree which will represents the connectivity among
several parts inside the object. In future, some topological information for the
digital objects can be derived from above mentioned technique. All these implies
the practical importance of the problem in various shape related applications.

References

1. Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle.
In: Proceedings of the 3rd Annual Symposium on Computational Geometry, pp.
278–290 (1987)

2. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: on finding a tight isothetic
polygonal shape covering a 2D object. In: Kalviainen, H., Parkkinen, J., Kaarna,
A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 930–939. Springer, Heidelberg (2005)

3. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of isothetic covers
of a digital object: A combinatorial approach. J. Vis. Comun. Image Represent.
21(4), 295–310 (2010)

4. Chang, J., Yap, C.: A polynomial solution for the potato-peeling problem. Discrete
Comput. Geom. 1, 155–182 (1986)

5. Chazelle, B., Drysdale, R.L., Lee, D.T.: Computing the largest empty rectangle.
In: STACS-1984, pp. 43–54. Springer, Heidelberg (1984)

6. Chazelle, B., III, R.D., Lee, D.: Computing the largest empty rectangle. SIAM J.
Comput. 15, 300–315 (1986)

Finding Largest Rectangle Inside a Digital Object 169

7. Daniels, K., Milenkovic, V., Roth, D.: Finding the largest area axis-parallel rec-
tangle in a polygon. Comput. Geom.: Theor. Appl. 7, 125–148 (1997)

8. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

9. McKenna, M., O’Rourke, J., Suri, S.: Finding the largest rectangle in an orthogo-
nal polygon. In: Proceedings of the 23rd Allerton Conference on Communication,
Control and Computing, pp. 486–495 (1985)

10. Nandy, S.C., Bhattacharya, B.B., Ray, S.: Efficient algorithms for identifying
all maximal isothetic empty rectangles in VLSI layout design. In: Nori, K.V.,
Veni Madhavan, C.E. (eds.) Foundations of Software Technology and Theoreti-
cal Computer Science. LNCS, vol. 472, pp. 255–269. Springer, Heidelberg (1990)

11. Ullman, J.: Chap. 9: Algorithms for VLSI Design Tools. Computational Aspects
of VLSI. Computer Science Press, Rockville (1984)

Shape Matching of 3D Topologically
Segmented Objects

Nilanjana Karmakar(B) and Arindam Biswas

Department of Information Technology,
Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India

nilanjana.nk@gmail.com, barindam@gmail.com

Abstract. Shape matching of 3D digital objects is an important domain
of study from topological as well as geometric point of view. Shape
matching of two or more digital objects by an efficient segmentation-
based method is reported in this paper. The method receives input
objects after segmentation of their articulated components and exploits
the topological relation between the articulated components and the cen-
tral section of the objects for shape matching. The method involves sim-
ple calculations and is primarily based on the extent of articulations in
the objects. The accuracy of shape matching is dependent on the object
size and segmentation of the object and is invariant to rotation. Exper-
imental results are provided to demonstrate the structural similarity in
various digital objects.

1 Introduction

Shape matching of 3D digital objects is a well-explored area of research that
often leads to feature extraction and 3D shape retrieval mechanisms. With
the increase in the tools available for efficient extraction and storage of three-
dimensional data, 3D shape matching has been useful for a wide variety of dis-
ciplines including computer vision, mechanical engineering, artifact searching,
molecular biology, chemistry, CAD, virtual reality, medicine, entertainment, etc.
Shape matching has been attempted from various perspectives including topo-
logical, graph-based, feature-based, etc. In [3], a shape descriptor called shape
context is attached to each point on two comparable shapes and the correspon-
dences between such points are used to estimate an aligning transform that aligns
the two shapes. Content based 3D shape retrieval by different 3D shape descrip-
tors have been proposed [9,13]. Similarity between polyhedral models has been
accurately identified by a topology matching approach using multi-resolution
Reeb graphs [5]. This method has been extended [4] for accurate and fast deter-
mination of search key. The shape retrieval method in [2] uses extended Reeb
graphs to encode different shape characteristics and compare the graphs by a
method of multiple kernel learning. Another approach [7] is based on convert-
ing 3D models into skeletal graphs and matching the graphs thereby preserving
topological and geometric information. The topology-varying shape matching
method in [1] establishes correspondences between shapes with large topological
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 170–179, 2016.
DOI: 10.1007/978-3-319-39441-1 16

Shape Matching of 3D Topologically Segmented Objects 171

discrepancies by topological operations like part split, duplication, and merging.
Other 3D shape matching techniques involve continuous geodesic eccentricity
transform [6], representing the signature of an object as a shape distribution
[10], using multivariate Gaussian distribution of real valued shape descriptors
[12], etc. Shape matching by object segmentation has been proposed in [11]
where curve skeleton of an object has been used for segmentation.

The shape matching method proposed in this paper uses 3D segmentation as
a tool for shape matching. The areas of the segment of the objects are used to
identify geometric and topological properties to be used for shape matching. The
rest of the paper is organized as follows. In Sect. 2, the segmented object is rep-
resented as topological space and the surface areas of the segments are processed
to find similar objects. The paper is concluded with a few shape matching results
in Sect. 3.

2 Proposed Work

Given a digital object A and a set of other digital objects {A1, A2, ..., An}, a
shape matching method comparing A with each of Ai, 1 � i � n, is presented in
this paper. The digital objects, represented as topological spaces, are segmented
and the separated articulated components are used to find the extent of similarity
between two or more objects.

A digital object A represented as a triangulated surface is closed and ori-
entable (2-manifold). The triangulation is such that exactly two triangles are
incident on each edge and the interiors of no two triangles intersect. Let A be
imposed on a 3D digital grid G represented as a set of unit grid cubes (UGCs)
each of grid size g. Each grid line of G represents a grid level gi, where 0 � i < l,
l representing the length of the object along a given coordinate plane.

2.1 Representation of Digital Object as Topological Space

Let W be a topological space defined by the set of triangles representing A and
endowed with the topology ΓW . Let βW be a basis for W defined as a collection
of basis elements such that

(i.) a basis element Pi consists of triangles (elements) corresponding to the
object-occupied UGCs intercepted between grid values gi and gi+1, where
0 � i < l.

(ii.) if ∃Pi,Pj ∈ βW such that Pi ∩ Pj �= ∅, then ∃Pk ∈ βW such that Pk ⊆
Pi ∩ Pj .

For instance, in Fig. 1, the UGCs intercepted between g0 and g1 are intersected
by the triangles t1, t2, t3, t5, t6, t7, t8, and t9. Hence, the basis element P0 =
{t1, t2, t3, t5, t6, t7, t8, t9}. Similarly, P1 = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}, P2 =
{t4, t5, t6, t10}, and P3 = P0 ∩ P2 = {t5, t6}. Thus, βW = {P0,P1,P2,P3}.

A digital object represented as the topological space W is segmented by an
efficient algorithm [8]. As W is a closed and orientable 2-manifold, it is home-
omorphic to the topological space representing the 3D isothetic cover of the

172 N. Karmakar and A. Biswas

g0

g1

g2

g3

t1 t2

t3

t4

t5
t6

t7

t8

t9

t10

W G

Fig. 1. Digital object A is represented as the topological space W defined by the set
of triangles {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}. The basis elements of the basis βW are
defined according to the grid ranges in G.

object for sufficiently small grid size. Quotient topology is imposed on W such
that the basis elements representing the topologically invariant sections of the
object are mapped to the elements of the corresponding quotient space. The
quotient spaces are represented by weighted Reeb graphs along the yz-, zx-, and
xy-planes which are segmented by an efficient algorithm. Natural segmentation
is ensured by using dynamic threshold of segmentation decided by exponential
averaging of the node weights belonging to the same segment. The segmented
quotient spaces corresponding to the three coordinate planes are related to each
other and transformed topologically to yield the segmented object in a topolog-
ical space W ′ which is used here for further analysis.

Let triangles t1 and t2 be two elements of W such that they are incident on the
same edge. Hence, there exists elements in W that do not, in general, possess
disjoint neighborhoods. That is, W is not a Hausdorff space. The segmented
topological space W ′ having topology ΓW′ is defined as a collection of disjoint
subsets of W. Hence, each element ti ∈ W ′ belongs to a single open set in W ′ so
that the elements (triangles) defining the segmentation contour virtually have
disjoint neighborhoods.

2.2 Shape Matching Through Segmentation of Topological Spaces

Let W ′
1 and W ′

2 be the topological spaces representing the two objects A1 and A2

after segmentation. Let r be the number of disjoint open sets in W ′
1 that represent

the segments of A1. Let each open set Si in W ′
1, 1 � i � r, be represented by

k number of triangles, where k > 0. The surface area covered by each open
set (segment) is calculated as the total surface area of k number of triangles.

Shape Matching of 3D Topologically Segmented Objects 173

α(Sc)

α(S1)

α(S2)

α(S3) α(Sr)

articulated
components

central section

Sc

S1

S2

S3 Sr

Fig. 2. Graph-theoretic representation of a segmented object.

The segmentation procedure separates the articulated sections from the rest
of the object. The ‘rest of the object’ is henceforth referred to as the ‘central
section’. The topological relation between the articulated components and the
central section of the object is explored by studying certain properties explained
next. Shape matching of A1 and A2 is carried out using these properties.

Let R = {S1, S2, ..., Sc, ..., Sr} denotes the set of segments of an object. Let
Sc represents the central component such that R′ = R\{Sc}. Let μ be the mean
surface area of the segments in R′. Let σR represents the standard deviation of
the surface areas of the r segments in R and let σR′ represents the same for
the r − 1 segments in R′. The topological relation between Sc and the other
articulated components is determined by the terms,

(i.) |α(Sc)−μ|
α(Sc)

(ii.) |σR−σR′ |
σR

where α(Sc) denotes the surface area of Sc.
Figure 2 gives a graph-theoretic representation of the segmented object where

each node denotes a segment. As the segmentation procedure separates the artic-
ulated components from the rest of the object, each of the nodes in R′ repre-
senting the articulated components are adjacent to the node Sc representing the
body of the object. Thus, the general structure of the graph, excluding degener-
ate cases, contains several pendant vertices adjacent to a node of higher degree.
The surface area covered by each segment is mentioned in the corresponding
node. The variation between the areas of the articulated segments and the cen-
tral segment provides an idea about the variation of object topology. The term
|α(Sc)−μ|

α(Sc)
gives a measure of the variation considering the mean μ of the articu-

lated segment areas. For instance, if the central segment of an object is of much
larger area than its articulated segments, then the value of |α(Sc)−μ|

α(Sc)
is large.

Since different articulated components may have different structures and surface
areas, use of the mean surface area in the above expression is justified. Again,
the variation of the structures of the articulated segments from their mean μ
is captured in the standard deviation σR′ . Similarly, variation of the structures
of the articulated and the central segment from their mean is measured by σR.

174 N. Karmakar and A. Biswas

The term |σR−σR′ |
σR

provides information about the contribution of the central
segment to the total area of the object surface. For instance, if the articulated
components of an object are much smaller in area than the central section, then
the value of |σR−σR′ |

σR
is large.

Let us consider two digital objects A1 and A2 with mean surface areas μ1 and
μ2 such that they are segmented into r1 and r2 number of segments respectively.
Let R1 (R2) be the set of r1 (r2) number of segments and let R1′ (R2′) be the
set of segments excluding the central segment Sc1 (Sc2). A1 and A2 are said to
be similar in shape if the following conditions are satisfied.

(i.) Δr = |r1 − r2| � ξ1

(ii.) Δs = |(|α(Sc1)−μ1|
α(Sc1)

) − (|α(Sc2)−μ2|
α(Sc2)

)| � ξ2

(iii.) Δt = |(|σR1−σR1′ |
σR1

) − (|σR2−σR2′ |
σR2

)| � ξ3

The condition (i.) is a preliminary condition for checking the similarity of two
objects. Here, the threshold ξ1 ranges from 0 to 1 so that A1 (A2) has at most
one segment more than A2 (A1). If condition (i.) is satisfied then only we proceed
further with the other conditions. For instance, in Table 1, the object Horse is
checked for similarity with Hand, Leopard, and Dinosaur (Δr � 1) and not with
Spider and Ant (Δr > 1).

For a reasonable range of areas of articulated components, the value of
|α(Sc1)−μ1|

α(Sc1)
in condition (ii.) determines the extent of articulation in the topology

of A1. Similarly, the value of |α(Sc2)−μ2|
α(Sc2)

determines the extent of articulation in
the topology of A2. Similarity of A1 and A2 w.r.t. their articulations is measured
by the value of Δs. Two objects are more similar if the value of Δs is lower. As a
convention, the threshold ξ2 varies between 0 and 0.05 for the objects considered
in this paper. That is, we allow a variation of 5 % in the shapes of A1 and A2. For
instance, in Table 2, the objects Table and Human are not comparable because
Δs = 0.39 or Δs = 0.31. It is evident that the variation of the central section
area from the mean of the articulated segment areas is much larger (larger than
the threshold) in case of Table than that in case of Human. On the other hand,
Horse and Leopard are comparable as Δs = 0.01. The value of ξ2 depends on
the object size, nature of triangulation, and density of triangulation.

The contribution of articulated components and the central component in the
total surface area of A1 is determined by the value of |σR1−σR1′ |

σR1
in condition

(iii.). The contribution of articulated components and the central component in
the total surface area of A2 is determined by the value of |σR2−σR2′ |

σR2
. Similarity of

A1 and A2 w.r.t. the relation between the articulated and non-articulated sections
of the objects is determined by the value of Δt. Two objects are more similar if
the value of Δt is lower. For instance, in Table 2, the central section in the object
Horse has a much greater contribution in its total surface area than the articu-
lated segments. Similar is the case in Dinosaur; hence Dinosaurmay be compared
to Horse (Δt = 0.14). In Human, the contribution of the central section and the
articulated components to the total surface area are comparable; hence Human is
not comparable to Horse (Δt = 0.68). The value of threshold ξ3 also depends on

Shape Matching of 3D Topologically Segmented Objects 175

the object size, nature of triangulation, and density of triangulation. If A1 and A2

satisfy all the three conditions, then they are considered as similar.

3 Results and Conclusion

Shape matching results for some topologically segmented objects are shown in
Figs. 3 and 4 and Tables 1 and 2 where the articulated components have been

109468
12903

17392

17957 13365

13599

30514

fore legshind legs

tail
head

torso (Sc) 80328

4889

10125

10716 15439

14557

13228

hind legsfore legs

tailhead
torso (Sc)

137164
17607

17756

17614 15969

15949

6338

fore legshind legs

tail
head

torso (Sc)

μ = 17622, |α(Sc)−μ|
α(Sc)

= 0.84 μ = 11492, |α(Sc)−μ|
α(Sc)

= 0.85 μ = 15206, |α(Sc)−μ|
α(Sc)

= 0.89
|σR−σR′ |

σR
= 0.81, r = 7

|σR−σR′ |
σR

= 0.86, r = 7
|σR−σR′ |

σR
= 0.91, r = 7

92957

13329

20983

21657 32750

20284

23655

torso (Sc)
17589

20569

57787

15132

16835 16565

15508

50749

fore legshind leg

back rest

seat (Sc)

hind leg

2952215435

29790 30174

17785

9684

legs

head

torso (Sc)

handhand

μ = 21352, |α(Sc)−μ|
α(Sc)

= 0.77 μ = 22958, |α(Sc)−μ|
α(Sc)

= 0.6 μ = 20574, |α(Sc)−μ|
α(Sc)

= 0.3
|σR−σR′ |

σR
= 0.77, r = 9

|σR−σR′ |
σR

= 0.23, r = 6
|σR−σR′ |

σR
= 0.001, r = 6

Fig. 3. Shape matching results with search object Horse (top left). According to the

values of |α(Sc)−μ|
α(Sc)

and
|σR−σR′ |

σR
terms the objects Leopard (top middle) and Dog (top

right) are more similar to Horse than Octopus, Chair, and Human (bottom left, middle,
and right).

176 N. Karmakar and A. Biswas

168288

18038

17338

18270 21352

18266

21807

torso (Sc)

17902

18395

132093

14741

17086

16493 16128

15012

12027

torso (Sc)

16954

13219

101939

7789

9246

19402

36914

palm (Sc)

5719

thumb

μ = 18921, |α(Sc)−μ|
α(Sc)

= 0.88 μ = 15208, |α(Sc)−μ|
α(Sc)

= 0.88 μ = 15813, |α(Sc)−μ|
α(Sc)

= 0.84
|σR−σR′ |

σR
= 0.97, r = 9

|σR−σR′ |
σR

= 0.95, r = 9
|σR−σR′ |

σR
= 0.66, r = 6

72205

9502

26375 26744

8082

body (Sc)

10610

7785
tip

wing wing

tail

42936

2879

18367 10091

3868

body (Sc)

7761

18367

head

tail

wing wing

leg leg

273268

49236

31359 33087

44914

body (Sc)

24620 23735

ears

legs

handhand

μ = 14850, |α(Sc)−μ|
α(Sc)

= 0.79 μ = 8593, |α(Sc)−μ|
α(Sc)

= 0.80 μ = 34492, |α(Sc)−μ|
α(Sc)

= 0.87
|σR−σR′ |

σR
= 0.61, r = 7

|σR−σR′ |
σR

= 0.60, r = 7
|σR−σR′ |

σR
= 0.89, r = 7

Fig. 4. Top: Shape matching results with search object Spider (left) which is more
similar to Ant (middle) than Hand (right). Bottom: Shape matching results with search
object Airplane (left) which is more similar to Bird (middle) than Teddy (right).

separated from the central section. Figure 3 shows graph-theoretic representation
of the objects Horse, Leopard, Dog, Octopus, Chair, and Human. Comparing the
values of r, |α(Sc)−μ|

α(Sc)
, and |σR−σR′ |

σR
shows that the search object Horse is more

similar with Leopard and Dog, than with Octopus, Chair, and Human. Similarly,
in Fig. 4, the search object Spider is more similar to Ant than Hand, and the
search object Airplane is more similar to Bird than Teddy. Databases for shape
matching of different segmented objects and at various postures are presented in
Tables 1 and 2. The values of Δr, Δs, and Δt show that the same object at differ-
ent postures are the most similar (diagonal entries in the table). The similarity
of Horse with Leopard and Dinosaur, or Ant with Spider, and the dissimilar-

Shape Matching of 3D Topologically Segmented Objects 177

Table 1. Shape matching results for the objects Hand, Spider, Ant, Animal (Horse and
Leopard), and Dinosaur at different postures. Each object in the database is matched
against all other objects in the database. Δr denotes the difference in the number
of segments of the two objects. Δs gives the difference when the term |α(Sc)−μ|

α(Sc)
is

evaluated for the two objects. Δt denotes the difference when the term
|σR−σR′ |

σR
is

evaluated for the two objects. Same objects at different postures are the most similar.

Δr = 0 Δr = 3 Δr = 3 Δr = 1 Δr = 1
Δs = 0.05 Δs = 0 Δs = 0.02 Δs = 0.02 Δs = 0.06
Δt = 0.02 Δt = 0.02 Δt = 0.05 Δt = 0.10 Δt = 0.29

Δr = 3 Δr = 0 Δr = 0 Δr = 2 Δr = 2
Δs = 0.04 Δs = 0.01 Δs = 0.01 Δs = 0.03 Δs = 0.07
Δt = 0.04 Δt = 0 Δt = 0.07 Δt = 0.12 Δt = 0.31

Δr = 3 Δr = 0 Δr = 0 Δr = 2 Δr = 2
Δs = 0.02 Δs = 0.02 Δs = 0.04 Δs = 0 Δs = 0.04
Δt = 0.11 Δt = 0.13 Δt = 0.06 Δt = 0.01 Δt = 0.18

Δr = 1 Δr = 2 Δr = 2 Δr = 0 Δr = 0
Δs = 0.08 Δs = 0.03 Δs = 0.05 Δs = 0.01 Δs = 0.03
Δt = 0.13 Δt = 0.17 Δt = 0.10 Δt = 0.05 Δt = 0.14

Δr = 1 Δr = 2 Δr = 2 Δr = 0 Δr = 0
Δs = 0.08 Δs = 0.03 Δs = 0.05 Δs = 0.01 Δs = 0.03
Δt = 0.25 Δt = 0.29 Δt = 0.32 Δt = 0.17 Δt = 0.02

ity of Human with Table and Horse are also substantiated by the values of Δr,
Δs, and Δt in Tables 1 and 2. The segmentation method is rotation-invariant
preserving the areas of the segments during rotation. Hence, shape matching of
two objects is preserved under rotation. Shape matching w.r.t. scaling can be
taken care of by normalizing the sizes of the two objects before segmentation.
The objects are segmented by topological means and the topological variations
on the object surface are incorporated in the graph-theoretic representations.
The scheme of shape matching in this paper, however, is independent of the

178 N. Karmakar and A. Biswas

Table 2. Shape matching results for the objects Animal (Horse and Leopard),
Dinosaur, Table, Chair, and Human at different postures. Each object in the data-
base is matched against all other objects in the database. Δr denotes the difference
in the number of segments of the two objects. Δs gives the difference when the term
|α(Sc)−μ|

α(Sc)
is evaluated for the two objects. Δt denotes the difference when the term

|σR−σR′ |
σR

is evaluated for the two objects. Same objects at different postures are the
most similar.

Δr = 0 Δr = 0 Δr = 2 Δr = 1 Δr = 1
Δs = 0.01 Δs = 0.03 Δs = 0.06 Δs = 0.53 Δs = 0.42
Δt = 0.05 Δt = 0.14 Δt = 0.18 Δt = 0.74 Δt = 0.68

Δr = 0 Δr = 0 Δr = 2 Δr = 1 Δr = 1
Δs = 0.01 Δs = 0.03 Δs = 0.06 Δs = 0.53 Δs = 0.42
Δt = 0.17 Δt = 0.02 Δt = 0.30 Δt = 0.62 Δt = 0.56

Δr = 2 Δr = 2 Δr = 0 Δr = 1 Δr = 1
Δs = 0.04 Δs = 0 Δs = 0.03 Δs = 0.50 Δs = 0.39
Δt = 0.10 Δt = 0.29 Δt = 0.03 Δt = 0.89 Δt = 0.83

Δr = 1 Δr = 1 Δr = 1 Δr = 0 Δr = 0
Δs = 0.60 Δs = 0.56 Δs = 0.53 Δs = 0.06 Δs = 0.17
Δt = 0.78 Δt = 0.59 Δt = 0.91 Δt = 0.01 Δt = 0.05

Δr = 1 Δr = 1 Δr = 1 Δr = 0 Δr = 0
Δs = 0.38 Δs = 0.34 Δs = 0.31 Δs = 0.16 Δs = 0.05
Δt = 0.53 Δt = 0.34 Δt = 0.66 Δt = 0.26 Δt = 0.20

topological equivalence of objects. That is why we attempt to compare the shape
of an object like Chair, which is homeomorphic to a torus, to that of a spherical
object Human.

Acknowledgements. A part of this research is funded by Council of Scientific and
Industrial Research (CSIR), Government of India.

Shape Matching of 3D Topologically Segmented Objects 179

References

1. Alhashim, I.: Topology-Varying Shape Matching and Modeling. Ph.D. thesis,
Simon Fraser University (2015)

2. Barra, V., Biasotti, S.: 3D shape retrieval and classification using multiple kernel
learning on extended reeb graphs. Vis. Comput. 30(11), 1247–1259 (2014)

3. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

4. Chen, D.Y., Ouhyoung, M.: A 3D object retrieval system based on multi-resolution
reeb graph. In: Proceedings of Computer Graphics Workshop (CG) (2002)

5. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully
automatic similarity estimation of 3d shapes. In: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001,
Los Angeles, USA, pp. 203–212. ACM, New York (2001)

6. Ion, A., Artner, N., Peyre, G., Marmol, S., Kropatsch, W., Cohen, L.: 3D shape
matching by geodesic eccentricity. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, CVPRW
2008, pp. 1–8, June 2008

7. Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: A multi-scale hier-
archical 3D shape representation for similar shape retrieval. In: Proceedings of
Tools and Methods for Competitive Engineering Conference, Lausanne, Switzerland
(2004)

8. Karmakar, N., Biswas, A., Bhowmick, P.: Reeb graph based segmentation of artic-
ulated components of 3D digital objects. Theoret. Comput. Sci. 624, 25–40 (2016).
doi:10.1016/j.tcs.2015.11.013

9. Körtgen, M., Novotni, M., Klein, R.: 3D shape matching with 3D shape contexts.
In: Proceedings of the 7th Central European Seminar on Computer Graphics,
Vienna, Austria (2003)

10. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Matching 3D models with
shape distributions. In: Proceedings of the International Conference on Shape Mod-
eling & Applications SMI 2001, Genoa, Italy, pp. 154–166. IEEE Computer Society,
Washington, DC (2001)

11. Serino, L., Arcelli, C., di Baja, G.S.: From skeleton branches to object parts. Com-
put. Vis. Image Underst. 129, 42–51 (2014)

12. Shilane, P., Funkhouser, T.: Selecting distinctive 3D shape descriptors for similarity
retrieval. In: Proceedings of the IEEE International Conference on Shape Model-
ing and Applications SMI 2006, Matsushima, Japan, pp. 18–23. IEEE Computer
Society, Washington, DC (2006)

13. Veltkamp, R., Tangelder, J.: Content based 3D shape retrieval. In: Furht, B. (ed.)
Encyclopedia of Multimedia, pp. 88–96. Springer, Heidelberg (2006)

http://dx.doi.org/10.1016/j.tcs.2015.11.013

Construction of an Approximate 3D Orthogonal
Convex Skull

Nilanjana Karmakar(B) and Arindam Biswas

Department of Information Technology,
Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India

nilanjana.nk@gmail.com, barindam@gmail.com

Abstract. Orthogonal convex skull of a 3D digital object is a maximal
volume orthogonal convex polyhedron lying entirely inside the object.
An efficient combinatorial algorithm to construct an approximate 3D
orthogonal convex skull of a digital object is presented in this paper.
The 3D orthogonal inner cover, an orthogonal polyhedron which tightly
inscribes the digital object, is divided into slab polygons and 2D orthogo-
nal skulls of these slab polygons are combined together using combinator-
ial techniques to obtain an approximate 3D orthogonal convex skull. The
algorithm operates in integer domain and requires at most two passes.
The current version of the algorithm deals with non-intersecting objects
free from holes and cavities. Experimentation on a wide range of digital
objects has provided expected results, some of which are presented here
to demonstrate the efficacy of the algorithm.

Keywords: Approximate 3D orthogonal convex skull · Orthogonal slic-
ing · 3D orthogonal inner cover · 3D concavity

1 Introduction

Shape description of digital objects is a prominent area of research in the realm
of image analysis. Convex skull can be used as an effective tool for shape descrip-
tion of digital objects. The concept of convex skull was initially studied as the
potato-peeling problem which dealt with finding the convex polygon of maxi-
mum area contained in a given simple (non-convex) polygon [7,9]. The solution
for a planar n-gon, n ≤ 5 [9] was followed by polynomial time algorithms of
O(n9 log n) and O(n7) [5,6]. The same problem has been addressed later under
the name of the convex skull problem [12]. Variations of the potato-peeling prob-
lem using triangulated polygons with or without holes is addressed in [2] and a
near-optimal near-linear time algorithm based on visibility graph is proposed in
[4]. An orthogonal version of the problem is addressed in [13] with an improved
complexity of O(n2), where the maximal-area orthoconvex polygon is determined
by computing the maximal ‘staircase’ boundary of the polygon. The method of
finding the orthogonal convex skull of a digital object used in the current work
has been reported in [8]. The convex skull problem has been extended to the
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 180–192, 2016.
DOI: 10.1007/978-3-319-39441-1 17

Approx. 3D Orthogonal Convex Skull of a Digital Object 181

(a) P
G
(A) (b) slab polygons (xy) (c) Approximate 3OCS(A)

Fig. 1. 3D orthogonal inner cover of a digital object A, slab polygons due to orthogonal
slicing along the xy-plane, and an approximate 3D orthogonal convex skull.

3D orthogonal domain where the maximal volume convex subset enclosed in the
object is determined by using a constrained distance transform [3].

A novel and efficient algorithm for the construction of an approximate 3D
orthogonal convex skull of a digital object is presented in this paper. A two-
pass algorithm is used to determine the approximate orthogonal convex skull
irrespective of the object size or grid resolution. The algorithm accounts for
non-intersecting objects free from holes and cavities. Figure 1(a) shows a digital
object, its slice polygons for xy-plane (Fig. 1(b)), and its approximate 3OCS(A)
is shown in Fig. 1(c). The rest of the paper is organized as follows. The problem
is defined in Sect. 2. The algorithm with its time complexity are explained in
Sect. 3. The paper is concluded with experimental results in Sect. 4.

2 Definitions and Preliminaries

A digital object A is defined as a finite subset of Z3, with all its constituent points
(i.e., voxels) having integer coordinates and connected in 26-neighborhood. Each
voxel is equivalent to a 3-cell [11] centered at the concerned integer point
(Fig. 2(Left)). A digital grid G consists of three orthogonal sets of equi-spaced
grid lines along the x-, y-, and z-axes. A larger (smaller) value of the grid size
g implies a sparser (denser) grid. A unit grid cube (UGC) is a (closed) cube
of length g. A UGC-face, fk, has two adjacent UGCs, U1 and U2, such that
fk = U1 ∩ U2 (Fig. 2(Left)). A UGC consists of g × g × g voxels and each UGC-
face consists of g × g voxels.

An orthogonal polyhedron is a 3D polytope with all its vertices as grid ver-
tices, all its edges made of grid edges, and all its faces being simple isothetic
polygons lying on face planes. An orthogonal convex polyhedron is an orthogo-
nal polyhedron whose intersection with a face plane parallel to any coordinate
plane is either empty or a collection of projection-disjoint orthogonal convex
polygons1. The 3D orthogonal inner cover of A, P

G
(A), is defined as the set of

orthogonal polyhedrons that tightly inscribes A; i.e.,

i. P
G
(A) ⊆ A

ii. for each p ∈ P
G
(A), 0 < d�(p,A′) � g

1 Orthogonal convex polygons are also known as “hv-convex” polygon in literature..

182 N. Karmakar and A. Biswas

Fig. 2. Left: α-adjacent 3-cells for g = 2. Right: Slab St of height g, bounded on top
by slab polygon t lying on Πi and in the bottom by b, the projection of t on Πi−1.

where P
G
(A) denotes the entire inner cover including its surface P

G
(A) and

interior region. Here, A′ = Z
3 \ A and d� denotes isothetic distance2. In this

work, we consider objects such that its P
G
(A) contains only one orthogonal

polyhedron.
The 3D orthogonal convex skull of a digital object A, denoted by 3OCS(A),

is a maximal volume orthogonal polyhedron such that

i. no point p ∈ Z
3 \ A lies on or inside 3OCS(A) and

ii. 3OCS(A) is orthogonally convex.

3 Proposed Work

Given a digital object, A, its inner orthogonal cover, P
G
(A), is sliced into slab

polygons [10] (Sect. 3.1) along one plane (say xy-). The concavities in these slab
polygons are removed and the convex slab polygons are regrouped to form an
orthogonal polyhedron. The resulting polyhedron is again sliced along another
plane (say yz-) and the concavities are removed from the slab ploygons. Simi-
larly, this procedure is repeated for zx-plane. This constitutes one pass of the
algorithm. After the second pass, the resulting orthogonal polyhedron, which is
devoid of any concavity along any plane, is an approximate orthogonal convex
skull.

3.1 Slicing and Orthogonal Slabs

The 3D object A is provided as a set of voxels. A is imposed on a 3D digital grid
G represented as a set of UGCs each of grid size g. A UGC Ul containing object
2 Isothetic distance between two points p(x1, y1, z1) and q(x2, y2, z2) is defined as the

Minkowski norm L∞ given by d�(p, q) = max {|x1 − x2|, |y1 − y2|, |z1 − z2|}. Iso-
thetic distance of a point p from an object A is d�(p, A) = min {d�(p, q) : q ∈ A}. It
may be noted that isothetic distance may also be expressed in terms of Chebyshev
distance [1] which is a special case of Minkowski norm..

Approx. 3D Orthogonal Convex Skull of a Digital Object 183

(3, 3, 3) (4, 4, 4) (4, 6, 6) (5, 3, 3) (6, 2, 2) (7, 3, 3)

Fig. 3. Types of concave vertex (that do not belong to intersecting polyhedron).

voxels is defined as a partially object-occupied UGC. A UGC Uk lying completely
inside A is defined as a fully object-occupied UGC.

Let Π = {Π1,Π2, ...,Πr} be a set of slicing planes separated by g and parallel
to the zx-plane (or yz- or xy-plane) which intersects P

G
(A). A UGC-face fk (fl)

is considered as fully object-occupied (partially object-occupied) if there exists a
Uk (Ul) below (in case of zx-plane) fk (fl). The inner boundary of A intersected
by Πi is traversed orthogonally keeping fully occupied UGC-faces fk to the left.
Thus, a slab polygon on Πi is obtained. Let t be a slab polygon on Πi and b
be the projection of t on Πi−1. The section of P

G
(A) of height g intercepted

between Πi and Πi−1 and bounded horizontally on top and bottom by t and b
respectively is defined as the slab St (Fig. 2(Right)). Since b is the projection of
t, their shapes are identical, that is, t does not vary from Πi to Πi−1. Hence,
St can be represented by t. It is evident that the UGCs contained in a slab are
fully object-occupied.

3.2 Concavity in Three Dimensions

Depending on the fully object-occupied neighboring UGCs a grid vertex v may
be classified into different types where each type is represented by a 3-tuple
defined as (#incident UGCs, #incident edges, #incident faces) w.r.t. v. The
grid vertices of types (3, 3, 3), (4, 4, 4), (4, 6, 6), (5, 3, 3), (6, 2, 2), and (7, 3, 3) are
classified as concave vertices. In Fig. 3, some instances of the possible concave
vertices (which do not form intersecting polyhedrons) are shown.

While traversing a slab polygon t (which represents St) a concavity is detected
if we encounter at least two consecutive concave vertices. In Fig. 4(a), the con-
cave vertices on t and b are shown in blue color. For a nested concavity the
number of consecutive concave vertices is more than two, as shown in Fig. 4(c).
The rectangular faces of St having width g and incident on the concave vertices
are defined as concavity faces. If two concavity faces are parallel to each other,
then they are referred to as parallel concavity faces. A concavity on a slab has
at least three concavity faces. Two of them must be parallel concavity faces (see
Fig. 4(a) and (c)).

3.3 Resolving the Concavities of a Slab

During the traversal along the boundary of a slab, whenever a concavity is
detected, it is resolved as follows. A face plane Πf perpendicular to a slab St

and passing through the concave vertices of a concavity divides the slab into

184 N. Karmakar and A. Biswas

concavity face

t

b

St

concave
vertex

Πf

St

sub-polyhedron
concavity face b

St

concave
vertex

concave
vertex

t

)c()b()a(

Fig. 4. (a) A concavity on slab St containing two consecutive concave vertices (blue)
on each of the slab polygons t and b, and a pair of parallel concavity faces. (b) Sub-
polyhedrons formed when a face plane Πf passes through the concave vertices of St.
(c) Nested concavity on St containing four consecutive concave vertices on each of t
and b (Color figure online).

three different parts: two separate sub-polyhedrons lying on one side of Πf ,
and the rest of the slab on the other side (Fig. 4(b)). To maintain convexity of
the slab one of the sub-polyhedrons has to be dropped depending on whether
the concavity is defined by two or more consecutive 270◦ grid vertices. While
traversing a concavity, the sub-polyhedron appearing before the concavity has
already been processed in the previous steps. Hence, that sub-polyhedron does
not contain any concavity. The next sub-polyhedron is checked recursively for
concavity. If deleting a sub-polyhedron disconnects the slab into two parts, then
the sub-polyhedron is not deleted. Otherwise, the sub-polyhedron having the
smaller volume is dropped. This ensures that the sub-polyhedron having the
larger volume is included in OCS(St), thereby striving to achieve a larger volume
of 3OCS(A). As retaining the larger volume sub-polyhedron is a local decision,
it does not ensure that 3OCS(A) will be of the largest possible volume.

Figure 5 shows a brief demonstration of resolving the concavities in a slab.
Concavity C1 (category Cz,x) has two sub-polyhedrons A and B (Fig. 5(a)). The
sub-polyhedron A, occurring after C1, is checked recursively for concavity. Con-
cavity C2 (category Cz,y) is detected on A (Fig. 5(b)). C2 has sub-polyhedrons
A1 and A2. A2 is devoid of concavity. Volume of A2 is smaller than A1 and delet-
ing A2 does not disconnect the slab. Hence, A2 is deleted. In case of concavity C3

(category Cz,x), sub-polyhedrons A3 and A4 are of equal volume (Fig. 5(c)). As
deleting A4 disconnects the slab, A4 is not deleted. Hence, A3 is deleted. Now,
sub-polyhedron A of concavity C1 contains no further concavity (Fig. 5(d)). As
volume of B is less than A, sub-polyhedron B is deleted to resolve C1 (Fig. 5(e)).
Similarly, concavity C4 (category Cz,y) is resolved by deleting sub-polyhedron D.
Thus, all the concavities on the given slab are resolved (Fig. 5(f)). The process is
repeated for all the slabs parallel to a given coordinate plane. After each deletion
of a sub-polyhedron, P

G
(A) is modified accordingly.

Approx. 3D Orthogonal Convex Skull of a Digital Object 185

3.4 Finding Approximate 3D Orthogonal Convex Skull

Construction of an approximate 3D orthogonal convex skull of A involves resolv-
ing the concavities of P

G
(A) so that 3OCS(A) is a convex orthogonal polyhe-

dron. Along each coordinate plane the following steps are carried out:

i. A is sliced orthogonally to form a set of orthogonal slabs that represent
P

G
(A) (Sect. 3.1).

ii. The concavities on each slab are detected and resolved, thereby modifying
P

G
(A) (Sect. 3.3).

iii. If P
G
(A) has been disconnected into more than one polyhedrons, then all

the polyhedrons except the one having the largest volume are discarded.

The above steps are repeated along another coordinate plane considering the
modified P

G
(A) as input.

A

B

C1

A1

B

A2 A

C1

C2

B

A

A3

A4

C3

C1

B

A

C1

C
D

C4

(a) (b) (c) (d) (e) (f)

Fig. 5. Demonstration of resolving the concavities on a slab. Concavity C1 is of category
Cz,x, C2 of category Cz,y, C3 of category Cz,x, and C4 of category Cz,y.

x

y

z

(a) Cx,z (b) Cx,y (c) Cy,z (d) Cy,x (e) Cz,y (f) Cz,x

Plane Concavity
Induced concavity

yz-plane zx-plane xy-plane

yz
Cx,z Cy,z

- -
Cx,y Cz,y

zx
Cy,z

-
Cx,z

-
Cy,x Cz,x

xy
Cz,y - -

Cx,y

Cz,x Cy,x

Fig. 6. Two categories of possible concavities w.r.t. a slab along each coordinate plane.
(a) Resolving concavity of category Cx,z induces concavity of category Cy,z along yz-
plane, (b) resolving Cx,y induces Cz,y along yz-plane, (c) resolving Cy,z induces Cx,z

along zx-plane, (d) resolving Cy,x induces Cz,x along zx-plane, (e) resolving Cz,y

induces Cx,y along xy-plane, and (f) resolving Cz,x induces Cy,x along xy-plane.

186 N. Karmakar and A. Biswas

Along each coordinate plane there exists exactly two categories of concavity
on a slab St, as shown in the table in Fig. 6. A concavity can be resolved only
along the coordinate plane to which it is parallel, i.e., Cx,z (belonging to category
Cx,z) and Cx,y (belonging to category Cx,y) are resolved only along the yz-plane,
etc. Resolving a concavity along a coordinate plane may induce another concavity
along a different coordinate plane which leads to the following observation.

Observation 1. W.l.o.g., resolving an instance of concavity of category Cx,z,
while traversing the slab along the yz-plane, may induce one (or more)
instance(s) of concavity of category Cy,z.

It is observed that resolving a concavity of category Cx,z may induce a con-
cavity of category Cy,z, and resolving a concavity of category Cy,z may induce
a concavity of category Cx,z; resolving Cx,y may induce Cz,y and vice versa;
resolving Cy,x may induce Cz,x and vice versa. W.l.o.g. let us consider concav-
ity Cy,z (belongs to Cy,z). Cy,z and Cx,z (belongs to Cx,z) may be induced from
each other for a finite number of times, which leads to the following lemma.

Lemma 1. Let resolving an instance of concavity Cy,z induces one or more
instances of concavity Cx,z and resolving those instances of Cx,z induces one or
more instances of Cy,z. Then resolving the instances of the induced concavity
Cy,z does not induce any further concavity.

Proof. Let the concavities of slab polygons of P along the zx-plane be resolved
first, followed by the yz-plane and the xy-plane. Since resolving a concavity may
induce another concavity, more than one pass may be required to resolve the
induced concavities, as will be elaborated later in Theorem 1. In the first pass,
let the concavity Cy,z on slab Sy1 of P (Fig. 7(a)) be resolved by deleting one
of its sub-polyhedrons A along the zx-plane (Fig. 7(b)). As a result one or more
instances of concavity C ′

x,z may be induced on slabs Sx1 and Sx2 of P ′, by
Observation 1 (Fig. 7(c)). While resolving each instance of C ′

x,z along the yz-
plane (Fig. 7(d)), one or more instances of concavity C ′

y,z may be induced on
slabs Sy2 and Sy3 of P ′′ (Fig. 7(e)). In this case, no concavity is detected along
the xy-plane in the first pass. Hence, it is not shown in Fig. 7. In the second
pass, one or more instances of concavity C ′

y,z on P ′′ (Fig. 7(f)) are resolved
along the zx-plane. Let us assume, by contradiction, that this induces one or
more instances of C ′′

x,z on slab Sx3 of P ′′′ (Fig. 7(h)).
A concavity on a slab is characterized by two sub-polyhedrons and is resolved

by deleting any one of them according to certain rules (Sect. 3.3). During the
first pass along the zx-plane, Cy,z is the only concavity detected on slab Sy1 of P
(Fig. 7(a)). During the second pass along the zx-plane (Fig. 7(e)), two instances
of concavity C ′

y,z are detected on slabs Sy2 and Sy3. They are resolved by delet-
ing sub-polyhedrons D and E respectively from P ′′. Since C ′

y,z is not detected on
P in the first pass along the zx-plane, it is concluded that the sub-polyhedrons
D and E existed as a part of P (Fig. 7(a)). Hence, it is justified that if resolving
an instance of concavity Cy,z induces one or more instances of concavity Cx,z,
then resolving those instances of Cx,z induces one or more instances of Cy,z

(Fig. 7 (a–e)).

Approx. 3D Orthogonal Convex Skull of a Digital Object 187

x

y

z

Cy,z
Sy1A

P P

Cy,z
Sy1A

(a) Pass 1, zx-plane (b) Pass 1, zx-plane

C ′
x,z

C ′
x,z

B C P ′

Sx2 Sx1

Sy1

P ′

C ′
x,z

C ′
x,z

B C

Sx2 Sx1

Sy1

C ′
y,z Sy2

C ′
y,z

Sy3D
E

Sx2 Sx1

Sy1

P ′′
(c) Pass 1, yz-plane (d) Pass 1, yz-plane (e) Pass 2, zx-plane

Sx3
P ′′

Sy2
Sy3

Sx2 Sx1

Sy1
C ′
y,z

C ′
y,z

D
E

P ′′′

Sy2
Sy3

Sx2 Sx1

Sy1

Sx3

C ′′
x,z

F

P ′′′

Sy2
Sy3

Sx2 Sx1

Sy1

Sx3
(f) Pass 2, zx-plane (g) Pass 2, yz-plane (h) Pass 2, yz-plane

Fig. 7. (a) When an instance of concavity Cy,z is resolved along the zx-plane (b) by
deleting a sub-polyhedron A, (c) two instances of concavity C′

x,z are induced, which
are resolved along the yz-plane (d) by deleting sub-polyhedrons B and C. As a result
(e) two instances of C′

y,z are induced which are resolved along the zx-plane (f) by
deleting sub-polyhedrons D and E . (g) Polyhedron P ′′′ is obtained after resolving all
the concavities of P . (h) It is assumed that an instance of concavity C′′

x,z exists on P ′′′.

During the first pass along the yz-plane (Fig. 7(c)), two instances of concavity
C ′

x,z are detected on the slabs Sx1 and Sx2 of P ′. If it is assumed that concavity
C ′′

x,z exists on slab Sx3 (Fig. 7(h)), then the sub-polyhedron F should be present
on the slab Sx3 of P ′′′ during the second pass along the yz-plane. But the sub-
polyhedron F did not exist as a part of P ′ during the first pass along the yz-
plane (Fig. 7(c)). It implies that F has been deleted before the first pass along
the yz-plane, i.e., F has been deleted while resolving Cy,z along the zx-plane
(Fig. 7(b)). Hence, F cannot exist on Sx3 during the second pass along the yz-
plane. In absence of the sub-polyhedron F , concavity C ′′

x,z cannot exist on Sx3 of
P ′′′ (Fig. 7(h)). This contradicts our assumption. Hence, no concavity is induced
while resolving an instance of C ′

y,z (Fig. 7(g)). Hence proved. ��

188 N. Karmakar and A. Biswas

The induced concavities may not be resolved within a single pass of the
algorithm, i.e., applying the algorithm once along the yz-, zx-, and xy-planes.
The following theorem proves that two passes of the algorithm are sufficient for
the purpose.

Theorem 1. The orthogonal polyhedron formed by applying the proposed algo-
rithm at most twice on P

G
(A) for the set of three coordinate planes (yz-, zx-,

and xy-planes) gives an approximate 3D orthogonal convex skull 3OCS(A).

Proof. According to Lemma 1, a concavity along with its subsequent induced
concavities (if any) are resolved completely by applying the concavity removal
method along three coordinate planes. The sequence of coordinate planes starts
and ends with the same coordinate plane. For example, a concavity of cat-
egory Cy,z and the induced concavities of category Cx,z and again Cy,z are
resolved along the zx-, yz-, and zx-planes (Fig. 7). This is possible only if two
passes of the algorithm are used. Since there exists categories of concavity along
each of the three coordinate planes, application of the algorithm along each of
yz-, zx-, and xy-planes may be required twice. Resolving all the concavities
of P

G
(A) can, however, conclude in less than two passes depending on the

object structure which does not induce concavity. Therefore, all the concavi-
ties and induced concavities on P

G
(A) are resolved in at most two passes of the

algorithm.
A slab refers to a section of P

G
(A) at a given slicing plane. Since P

G
(A) is of

maximum volume that can be inscribed in the object, at the given slicing plane
a slab is also of maximum volume. While resolving a concavity on a slab, the
sub-polyhedron with the larger volume is included in the 3D orthogonal convex
skull of the slab, thereby trying to achieve a larger volume of 3OCS(A). It may
be noted that the 3D orthogonal convex skull of the slab may not be unique due
to the varying starting point and initial direction of traversal. Also, the volume
of 3OCS(A) may vary with different order of the coordinate planes along which
the algorithm is applied. Due to the variation in volume, the result given by the
algorithm is an approximate 3D orthogonal convex skull. Hence proved. ��

3.5 Algorithm

Given an object A as a set of voxels, its approximate 3D orthogonal convex
skull is constructed by the two-pass algorithm presented in Fig. 8. The three
coordinate planes are considered in sequence (for loop Steps 3–15), for each
slicing plane along a coordinate plane the concavities in a slab are removed (Steps
6–11). On a slicing plane, each slab S[i] is subjected to a method explained
in Sect. 3.3 to construct the 2D orthogonal convex skull OCS(S[i]) (Step 10).
Consequently, the slab corresponding to the 2D orthogonal convex skull K[i]
along each slicing plane is accumulated in P ′

G
(A) (Step 11).

While finding the 2D orthogonal convex skull of the slab polygon w.r.t. a slab,
the volume of the slab is determined by computing the area of the slab polygon.
The total volume of a set of consecutive slabs in the direction perpendicular to

Approx. 3D Orthogonal Convex Skull of a Digital Object 189

Algorithm 3OCS(A,G)
01. count ← 0 � # passes
02. do
03. for each coordinate plane j �j ∈ {yz, zx, xy}
04. set P ′

G
(A) ← 0 � empty set of polyhedrons

05. slice P
G
(A) with Π �Π = {Π1, Π2, ..., Πr}

06. for each slicing plane Πk �1 ≤ k ≤ r
07. set s ← # slabs on Πk

08. set S ← set of slabs on Πk

09. for i = 1 to s
10. set K[i] ← 2D orthogonal convex skull OCS(S[i])
11. P ′

G
(A) ← P ′

G
(A) ∪ K[i]

12. set m ← # polyhedrons in P ′
G
(A)

13. set M ← set of polyhedrons in P ′
G
(A)

14. P
G
(A) ← largest(vol(M [1]), vol(M [2]), ..., vol(M [m]))

15. count ← count + 1
16. while(count < 2)
17. return P

G
(A)

Fig. 8. Brief outline of the proposed algorithm.

the given coordinate plane gives the volume of the polyhedron composed of the
set of slabs. Thus, the volumes of all the orthogonal polyhedrons in P ′

G
(A) are

determined. If P ′
G
(A) contains a single polyhedron, then P ′

G
(A) represents the

modified 3D orthogonal inner cover P
G
(A). If P ′

G
(A) contains more than one

polyhedron, then the polyhedron having the largest volume is assigned to P
G
(A)

(Step 14) and the rest of the polyhedrons are discarded.
The process is repeated with the modified P

G
(A) along the other coordinate

planes (Steps 3–15) and the algorithm is repeated exactly once along all the three
coordinate planes (Steps 2–16). Finally, the modified 3D orthogonal inner cover
P

G
(A) is reported as the approximate 3D orthogonal convex skull (approximate

3OCS(A)) (Step 17). The algorithm deals with non-intersecting objects free from
holes and cavities.

3.6 Time Complexity

Let n be the number of voxels on the object surface connected in 26-
neighborhood. A UGC is a cube of length g which contributes a maximum of five
faces to the cover. Therefore, the number of UGCs on the object surface contain-
ing object voxels is O(n/g) in the worst case, which implies that the number of
UGC-faces on the object surface is given by O(n/g). The full object occupancy
of a UGC is determined by checking six UGC-faces completely in O(g2) time.

W.r.t. each slicing plane, orthogonal slicing involves traversal of the grid
vertices on the slicing plane exactly once. Therefore, considering all the slicing
planes, the UGCs on the object surface are traversed exactly once. This traversal
requires O(n/g) time. O(g2) time is required to check whether a UGC-face is
fully object-occupied. Hence, the direction of traversal at each grid vertex is

190 N. Karmakar and A. Biswas

determined in O(g2) time. Therefore, the orthogonal slicing along a coordinate
plane is completed in O(n/g) × O(g2) = O(ng) time.

The grid vertices on the object surface are sorted lexicographically in O((n/g)
log (n/g)) time. Once a concavity is detected on a slab, the terminal vertices of
the next sub-polyhedron are found from the lexicographically sorted lists. For
all the slabs this operation is completed in O(log n) time. In case of nested con-
cavity, connectivity of a sub-polyhedron is checked in O(1) time. Volumes of the
sub-polyhedrons are computed in O(n/g) time to remove the sub-polyhedron
of smaller volume in every case. Hence, the overall time complexity for resolv-
ing the concavities on all the slabs is bounded by O(n log n). Volume of the
approximate 3D orthogonal convex skull is determined by computing the vol-
ume of all the slabs parallel to a given coordinate plane in O(n/g) time. There-
fore, the total time complexity for finding an approximate 3OCS(A) is given by
O(ng) + O(n log n) = O(n log n).

4 Experimental Results and Conclusions

The proposed algorithm has been implemented in C in Linux Fedora Release 13,
Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB. The experimental results in

Chess pawn Seahorse Bottle

g = 2, volOIC = 4630, g = 2, volOIC = 52690, g = 2, volOIC = 14967,
volOCS = 3628 volOCS = 36583 volOCS = 13605

g = 4, volOIC = 436, g = 4, volOIC = 5445, g = 4, volOIC = 1524,
volOCS = 365 volOCS = 3964 volOCS = 1374

Fig. 9. Approximate 3D orthogonal convex skull of Chess pawn, Seahorse, and Bottle.

Approx. 3D Orthogonal Convex Skull of a Digital Object 191

Fig. 9 display an approximate 3D orthogonal convex skull of each of the objects
Chess pawn, Seahorse, and Bottle for different grid sizes. The volumes of both
the 3D orthogonal inner cover (volOIC) and the approximate 3D orthogonal
convex skull (volOCS) decrease exponentially with increasing grid size. It may
be noted that the number of concave vertices of all the types except (7, 3, 3) is
less in the approximate 3OCS(A) than in the 3D orthogonal inner cover.

The approximate 3D orthogonal convex skull of an object may vary with the
order of the coordinate planes along which the algorithm is applied. If the two
sub-polyhedrons due to a concavity on a slab are of equal volume, then more
than one result may exist. The approximate 3D orthogonal convex skull may
also vary depending on the starting point and initial direction of traversal (anti-
clockwise or clockwise) while resolving the concavities on a slab. The result
will be unique only if none of the concavities on a slab have more than two
consecutive 270◦ vertices or the sub-polyhedron with the larger volume is not
deleted to maintain connectivity of the slab. The volume of 3OCS(A) may vary
with its structure, reporting an approximate 3D orthogonal convex skull in every
case. Figure 10 illustrates the variation of the approximate 3D orthogonal convex
skull when the proposed algorithm is applied on the object along the coordinate
planes in different orders, like, along the yz-plane first, followed by the zx-plane
and the xy-plane, etc. The current version of the algorithm is limited to non-
intersecting digital objects and objects free from holes and cavities. Extension
of the algorithm to account for those objects may be attempted in future.

(a) yz-, zx-, and xy-planes (b) zx-, yz-, and xy-planes (c) yz-, xy-, and zx-planes

Fig. 10. Variation of the approximate 3D orthogonal convex skull of Phone due to
application of the algorithm along the coordinate planes in different orders.

Acknowledgement. A part of this research is funded by CSIR, Govt. of India.

References

1. Abello, J.M., Pardalos, P.M., Resende, M.G.C. (eds.): Handbook of Massive Data
Sets, vol. I. Springer, Heidelberg (2002)

2. Aronov, B., van Kreveld, M., Löffler, M., Silveira, R.I.: Peeling meshed potatoes.
Algorithmica 60(2), 349–367 (2011)

3. Borgefors, G., Strand, R.: An approximation of the maximal inscribed convex set
of a digital object. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617,
pp. 438–445. Springer, Heidelberg (2005)

192 N. Karmakar and A. Biswas

4. Cabello, S., Cibulka, J., Kynčl, J., Saumell, M., Valtr, P.: Peeling potatoes near-
optimally in near-linear time. In: Proc. 13th Annual Symposium on Computational
Geometry, SOCG 2014, Kyoto, Japan. pp. 224–231. ACM, New York (2014)

5. Chang, J., Yap, C.: A polynomial solution for potato-peeling and other polygon
inclusion and enclosure problems. In: Proceedings of the 25th Annual Symposium
on Foundations of Computer Science, SFCS 1984, Singer Island, Florida, pp. 408–
416. IEEE Computer Society, Washington, DC (1984)

6. Chang, J., Yap, C.: A polynomial solution for the potato-peeling problem. Discrete
Comput. Geom. 1(2), 155–182 (1986)

7. Chassery, J.M., Coeurjolly, D.: Optimal shape and inclusion. In: Ronse, C.,
Najman, L., Decenciére, E. (eds.) Mathematical Morphology: 40 Years On. Com-
putational Imaging and Vision, vol. 30, pp. 229–248. Springer, Netherlands (2005)

8. Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: On finding an orthogonal
convex skull of a digital object. Int. J. Imaging Syst. Technol. 21, 14–27 (2011)

9. Goodman, J.E.: On the largest convex polygon contained in a non-convex n-gon,
or how to peel a potato. Geometriae Dedicata 11(1), 99–106 (1981)

10. Karmakar, N., Biswas, A., Bhowmick, P.: Fast slicing of orthogonal covers using
DCEL. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012.
LNCS, vol. 7655, pp. 16–30. Springer, Heidelberg (2012)

11. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

12. Woo, T.: The convex skull problem. Technical report, Department of Industrial
and Operations Engineering, University of Michigan, Ann Arbor, MI (1986)

13. Wood, D., Yap, C.K.: The orthogonal convex skull problem. Discrete Comput.
Geom. 3(4), 349–365 (1988)

Designing a Topological Algorithm
for 3D Activity Recognition

Maria-Jose Jimenez1(B), Belen Medrano1, David Monaghan2,
and Noel E. O’Connor2

1 Applied Math Department, School of Computer Engineering, University of Seville,
Campus Reina Mercedes, 41012 Sevilla, Spain

{majiro,belenmg}@us.es
2 INSIGHT Centre for Data Analytics, Dublin City University, Dublin, Ireland

{david.monaghan,noel.oconnor}@dcu.ie

Abstract. Voxel carving is a non-invasive and low-cost technique that
is used for the reconstruction of a 3D volume from images captured from
a set of cameras placed around the object of interest. In this paper we
propose a method to topologically analyze a video sequence of 3D recon-
structions representing a tennis player performing different forehand and
backhand strokes with the aim of providing an approach that could be
useful in other sport activities.

Keywords: 3D video sequence · Voxel carving · Volume reconstruction ·
Persistent homology · Activity recognition

1 Introduction

The combinatorial nature of a 3D digital image is a suitable material to homology
computation by taking as input the (algebraic) cubical complex associated to the
image (whose building blocks are vertices, edges, squares and cubes). Homology
is a topological invariant that characterizes “holes” in any dimension (in the case
of a 3D space, connected components, tunnels and cavities). Persistent homology
[5,20] studies homology classes and their life-times (persistence) in an increasing
nested sequence of subcomplexes (a filtration on the cubical complex).

Space or voxel carving [2,4,12,18] is a technique for creating a three-dim-
ensional reconstruction of an object from a series of two-dimensional images
captured from cameras placed around the object at different viewing angles.
The technique involves capturing a series of synchronised images of an object,

M.-J. Jimenez and B. Medrano—Author partially supported by IMUS, Junta de
Andalucia under grant FQM-369, Spanish Ministry under grant MTM2012-32706
and MTM2015-67072-P and ESF ACAT programme.
D. Monaghan and N.E. O’Connor—Part of this work was supported by Science Foun-
dation Ireland through the Insight Centre for Data Analytics under grant number
SFI/12/RC/2289.

c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 193–203, 2016.
DOI: 10.1007/978-3-319-39441-1 18

194 M.-J. Jimenez et al.

and, by analysis of these images and with prior knowledge of the exact three-
dimensional location of the cameras, deriving an approximation of the shape of
the object.

There are numerous research papers dealing with the problem of human
activity recognition from 3D data (see [1] for a recent review). An important
subgroup of these works provide algorithms for activity recognition from a set
of silhouettes of the subject, such as [19] or [11]. In [19] Fourier Transform in
cylindrical coordinates is performed to compare motion history volumes repre-
senting different actions. In [11], the so-called action volume is produced from
a set of human body silhouettes from the same view angle. They combine mul-
tiview angles to obtain a set of representative action volumes that are used to
classify the action.

There have been some papers (see [13–15]) dealing with the application of
persistent homology to the problem of gait recognition. Different silhouettes
are extracted from a whole gait cycle (from only one viewpoint) and stacked
together to form some kind of action volume to be topologically analyzed by
using persistent homology.

In this paper we focus on sequences of 3D reconstructions of volumes that are
captured from a small set of cameras with different viewpoints in a tennis court.
From that input, we construct another 3D object containing the motion history
information and that we analyze it from a persistent homology perspective.

In the following section, we describe the specific context in which we develop
our work. Section 3 describes the design of our method to apply persistent homol-
ogy to such specific context with the aim of recognizing the activity in a video
sequence of voxel carving reconstructions. Reports on the computations per-
formed as well as some conclusions are collected in Sect. 4. We draw some ideas
for future work in the last section.

2 Voxel Carving Video Sequences

Voxel carving techniques are very useful for 3D reconstruction since they are non-
invasive and they can cover a very large environment. They can be implemented
with an array of low-cost cameras to produce a synchronised set of images. In
each image, the subject of interest is identified and then segmented from the
background of the image (this is commonly known by silhouette extraction).
The subject silhouette is segmented from the background and a 3D bound-
ing box is then drawn around the subject’s approximate position in 3D space.
This bounding box defines a volume that has a corresponding real world three-
dimensional coordinate system. The different silhouettes are used to “carve” the
defined volume accordingly. A sequence of reconstructed volumes can be seen
in Fig. 1.

In the real world coordinate system the approximate subject volume is popu-
lated with voxels, that are set at a particular distance apart or spatial resolution,
i.e. if the distance between voxels decreases then the spatial resolution increases.
From experimental observation, authors in [16] found that a three dimensional

A Topological Algorithm for 3D Activity Recognition 195

Fig. 1. A sequence of 3D reconstructions by voxel carving. Each frame is a 3D point
cloud.

spatial frequency of 4 cm, i.e. 15,625 samples per cubic metre, was sufficiently
adequate for their purposes and in [7] they concluded that higher resolutions
did not contribute to a better topological model in the reconstruction process.
That means that the spacing considered between each voxel is 4 cm in the OX,
OY and OZ directions. This way, it is satisfied that the final reconstructions
are qualitatively detailed enough to be used as a 3D visualisation tool, and, at
the same time, based on the computational performance of a single PC, this
resolution allows to run the algorithm at near to real-time. Regarding the qual-
ity of space carving results, persistent homology was proposed first in [8] as a
tool for a topological analysis of the carving process along the sequence of 3D
reconstructions with increasing number of cameras.

The general voxel technique proposed in [12] was modified and adapted to
a specific task, as fully detailed in [16,17]. And it is, in fact, that specific voxel
carving technique that we are using in this paper, fixing the number of cameras
to five, since this is the usual constraint we can find in practise.

Once we get the sequence of voxel carving results, the first step is to segment
the frames involving each action accomplished by the subject. This can be done
by a visual inspection of the video, but an attempt to automatically recognize
the beginning and end of each movement (either forehand or backhand strokes)
led us to compute the variation of the mass center of each 3D frame with respect
to previous and next ones with a kind of second derivative. That is, for each
frame Fi, consider the mass center (ci,1, ci,2, ci,3) and compute the list of values
|2ci,1 − ci−1,1 − ci+1,1| + |2ci,2 − ci−1,2 − ci+1,2| + |2ci,3 − ci−1,3 − ci+1,3| whose
graphic representation can be seen in Fig. 2. One can observe that peaks are
mainly grouped around five points corresponding to five movements of the player
(three forehand and two backhand).

3 Persistent Homology for 3D Activity Recognition

Persistent homology has been proved to be a useful tool in the study of 3D shape
comparison. For example, in the paper [3] the authors provide an algorithm
to approximate the matching distance (which is computationally costly) when
comparing 3D shapes represented by triangle meshes.

196 M.-J. Jimenez et al.

Fig. 2. Graphic representation of variation of mass center of each frame in the sequence
with respect to previous and next ones.

However, as far as we know there is no work on activity recognition using
persistent homology, except for the related topic of gait recognition which has
already been explored from the persistent homology viewpoint in [13–15].

We are concerned with the application of persistent homology computation
to provide topological analysis of a time sequence of 3D reconstructions by the
voxel carving technique. We consider a sequence of voxel carving results under
a fixed number of cameras, so it is convenient to have in mind that each frame
is referring to a 3D reconstruction, that is, a set of 3D points in space.

The input data is a sequence {Ft}t of 3D binary digital images or subsets of
points Ft of Z3 considered under the (26, 6)–adjacency relation for the foreground
(Ft) and background (Z3 \Ft), respectively. Due to the nature of our input data,
we focus on a special type of cell complex: cubical complex. A cubical complex
Q in R

3, is given by a finite collection of p-cubes such that a 0-cube is a vertex,
a 1-cube is an edge, a 2-cube is a square and a 3-cube is a solid cube (or simply
a cube); together with all their faces and such that the intersection between
two of them is either empty or a face of each of them. The cubical complex
Q(Ft) associated to Ft is given by identification of each 3D point of Ft with the
unit cube centered at that point and then considering all those 3-cubes together
with all their faces (square faces, edges and vertices), such that shared faces are
considered only once. Sometimes we will refer to p-cubes with the more general
term of cells (corresponding to the more general concept of cell complex, see [10]).

Given a cell complex, homology groups can be computed using a variety
of methods. Incremental Algorithm for computing AT-model (Algebraic Topo-
logical Model) [9], computes homology information of the cell complex by an
incremental technique, considering the addition of a cell each time following a

A Topological Algorithm for 3D Activity Recognition 197

full order on the set of cells of the complex. In [6], the authors revisited this
algorithm with the aim of setting its equivalence with persistent homology com-
putation algorithms [5,20] working over Z/2Z as ground ring. We make use of
algorithm in [6] for the persistent homology computation, though any other algo-
rithm for computing persistent homology, adapted to cubical complexes, could
have been applied. We will use the generated persistence barcode as a source to
create a feature vector characterising the movement. Recall that a persistence
barcode encodes “times” (indexes in the ordering) of birth and death of each
homology class (see [5,20]).

The method described in this paper consists in the following steps starting
from a segmented sequence of 3D frames reconstructed by voxel carving: (1)
from each reconstructed volume, take the projection on a plane parallel to the
net in the tennis court; (2) produce a stack with the 2D images from the previous
step; (3) topologically analyze the volume by considering different directions; (4)
create several topological feature vectors associated to the volume; (5) compare
vectors by using a similarity measure.

Step 1. In this specific context, a particular viewpoint that can be useful for
recognizing the action is a front view from the net in the tennis court. Having
a 3D reconstruction obtained from different viewpoints allows to reproduce the
result from a viewpoint of interest even though there is no camera in that viewing
angle. For each 3D reconstructed volume, hence, we project the points onto a
plane parallel to the net (see Fig. 3). If necessary, this projection could be done
onto other planes of interest depending on the action to be recognized. Even
more, one could combine the information obtained from different projections,
that is the advantage of having a 3D reconstruction of the subject.

Step 2. Form a stack with all the 2D images from the previous step, by aligning
the mass centre of every 2D projection. This way, a volume is constructed that
can be considered a motion history volume since contains information of the
whole movement. In this volume, we will convene that OX is the axis that is
perpendicular to the net (in the tennis court), OY is parallel to the net and OZ
means the hight of the points in the volume (see Fig. 4).

Step 3. Consider the cubical complex Q associated to the 3D digital image
from previous step. We must consider a full ordering of its cubes {c1, . . . , cn}
such that if ci is a face of cj , then i < j. Such ordering will be determined by
different filter functions given by the distance to certain planes in the 3D space.
Then we will have a nested sequence of subcomplexes ∅ = Q0 ⊆ Q1 · · · ⊆ Qm

(a filtration over Q determined by the value of the filter function induced on the
cells of the complex) for which persistent homology can be computed.

Set the minimum and maximum coordinates of the points in the consid-
ered volume, {xmin, xmax, ymin, ymax, zmin, zmax}, and consider the following
“directions” to provide the filters:

198 M.-J. Jimenez et al.

– direction given by OX axis, x+: the filter function x+ is provided then by the
distance to the plane x = xmin;

– directions given by OY axis, y+ and y−: the filter function y+ (resp. y−)
is provided then by the distance to the plane y = ymin (resp. minus the
distance);

– directions given by OZ axis, z+ and z−: the filter function z+ (resp. z−)
is provided then by the distance to the plane z = zmin (resp. minus the
distance);

Fig. 3. Set of silhouettes obtained, from a sequence of 3D reconstructions, by projection
on a plane parallel to the net in the tennis court

Fig. 4. Stack of silhouettes obtained, from a sequence of 3D reconstructions represent-
ing a backhand movement

A Topological Algorithm for 3D Activity Recognition 199

– 45◦ direction on the OY Z plane, oyz+ and oyz−: the filter function oyz+

(resp. oyz−) is provided then by the distance to the plane y+z = ymin+zmin

(resp. minus the distance);
– (−45)◦ direction on the OY Z plane, ozy+ and ozy−: the filter function ozy+

(resp. ozy−) is provided then by the distance to the plane y−z = ymax−zmin

(resp. minus the distance);

These directions are represented in Fig. 5. However, direction given by OX axis
would provide poor information when applied to the whole complex, since in
normal conditions, it will produce a unique connected component. That is why
we propose a subdivision of the initial complex into 9 volumes (see Fig. 6) in
order to compute persistent homology of each of these volumes separately along
x+ direction. This way, each silhouette is divided into a 3 by 3 array that may
separate the evolution of movement of extremities from the central part of the
body. More specifically, the volumes are given by Vij = {(x, y, z), yi ≤ y ≤
yi+1, zj ≤ z ≤ zj+1} for i, j = 0, 1, 2, with y0 = ymin; z0 = zmin; yi = ymin +
i
3 (ymax−ymin) and zi = zmin+ i

3 (zmax−zmin) for i = 1, 2; y3 = ymax; z3 = zmax.

Fig. 5. Each of the 9 possible directions described to provide a filter function to order
the cells in the complex.

Step 4. The filter function considered in the previous step set an ordering of
all que cells in the cubical complex. Next step is to compute the persistence
barcode for the cubical complex representing the motion volume. We make use
of the concept of simplified barcode stated in [7] by which bars shorter than the
distance between two consecutive subcomplexes in the considered filtration are
discarded. In the case of the subdivision in the nine volumes, the computation is
performed for each one of them. Hence, out of each computed barcode, a vector
is produced in the style of Lamar et al. [13–15]. That is, consider the ordered set
of cells in the whole volume {c1, . . . , cN} and a partition of this ordered set into
n equal parts. Then, for each of the n intervals (cji , c

j+1
k], j = 1, . . . n, compute

1. aj = the number of homology classes living along the interval;
2. bj = the number of homology classes that are born in the interval;

and compose the vector [a1, b1, a2, b2, . . . , an, bn].

200 M.-J. Jimenez et al.

Fig. 6. Color representation of the 9 volumes segmented from the motion history
volume

Step 5. Finally, a similarity measure has to be considered for comparison of
the feature vectors. We adopt the cosine of the angle between two vectors to
measure how similar the corresponding barcodes are, that is, for two vectors V1

and V2 computed on the same direction, compute

S1,2 =
V1 · V2

|V1| · |V2| .

Notice that each barcode produces a feature vector so the final similarity measure
would be computed as the total sum of all the partial comparison measures
between the corresponding vectors.

4 Experiments

We have considered 8 video sequences for forehand stroke and other 8 for back-
hand strokes. Such video sequences correspond to synthetic 3D reconstructions
by voxel carving with coordinates on 0.4Z3. Due to the fact that the result of
voxel carving process may carry eventual numerical errors that produce some
missing points, and after taking some experiments, we discarded the 1-homology
classes and considered only dimension 0, that is, connected components.

By an initial evaluation on the computed barcodes (see Fig. 7, last column),
we have confirmed the intuition that the direction z− (that is, from top to
bottom), is not very informative, so we have skipped it to compute the similarity
measure. We have implemented the partition for n = 5 and n = 10 and realized
that the latter provides much better results. This was also quite intuitive from
observing Figs. 7 and 8 since n = 5 is too low to distinguish the numerous small
bars from the few more significant bars that appear in the barcode.

We have also come up with the conclusion that the division into the 9 volumes
to follow up the movement direction x+ does not provide good results, what was
also clear by watching the corresponding barcodes. The problem is that the
connection of the whole object is lost and the division can be very different
depending on the inclination of the subject yielding to different results. In the

A Topological Algorithm for 3D Activity Recognition 201

first column of results of Fig. 9, the normalized similarity measure has been
computed from the sum of similarity measures of each pair of vectors in directions
y+, y−, z+, oyz+, oyz−, ozy+ and ozy−, as well as those of volumes V00, V01,
V02, V10, V12, V20, V21, V22, for n = 5 in direction x+.

Fig. 7. Persistence 0-barcodes of three forehand movements (three rows) on each of
the directions y+, y−, z+ and z−

Fig. 8. Persistence 0-barcodes of three forehand movements (three rows) on each of
the directions oyz+, oyz−, ozy+ and ozy−

202 M.-J. Jimenez et al.

Second and third columns of results in Fig. 9 have been computed without
considering volumes Vij , for partitions n = 5 and n = 10 respectively. It is clear
that only for n = 10 does the method provide good results.

Fig. 9. Results of normalized similarity measures between three forehand and three
backhand strokes with different partitions and filter functions.

5 Conclusions and Future Work

Fixing a certain number of cameras and considering a video sequence of 3D
reconstructions (by voxel carving), we propose a method for activity recognition
of a tennis player stroke based on persistent homology. This work could set the
ground for extension to other activities recognition. Depending on the context,
different projections could be used to form the stack of silhouettes to be analyzed
and different directions of interest could be selected.

References

1. Aggarwal, J.K., Xia, L.: Human activity recognition from 3D data: a review. Pat-
tern Recogn. Lett. 48, 70–80 (2014)

2. Broadhurst, A., Drummond, T., Cipolla, R.: A probabilistic framework for space
carving. In: Conference on Computer Vision, vol. 1, p. 388 (2001)

3. Cerri, A., Di Fabio, B., Jablonski, J., Medri, F.: Comparing shapes through multi-
scale approximations of the matching distance. Comput. Vis. Image Underst. 121,
43–56 (2014)

4. Culbertson, W.B., Malzbender, T., Slabaugh, G.G.: Generalized voxel coloring. In:
Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp.
100–115. Springer, Heidelberg (2000)

5. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. In: FOCS 2000, pp. 454–463. IEEE Computer Society (2000)

A Topological Algorithm for 3D Activity Recognition 203

6. Gonzalez-Diaz, R., Ion, A., Jimenez, M.J., Poyatos, R.: Incremental-decremental
algorithm for computing at-models and persistent homology. In: Real, P.,
Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011,
Part I. LNCS, vol. 6854, pp. 286–293. Springer, Heidelberg (2011)

7. Gutierrez, A., Jimenez, M.J., Monaghan, D., O’Connor, N.E.: Topological evalu-
ation of volume reconstructions by voxel carving. Comput. Vis. Image Underst.
121, 27–35 (2014)

8. Gutierrez, A., Monaghan, D., Jiménez, M.J., O’Connor, N.E.: Persistent homology
for 3D reconstruction evaluation. In: Ferri, M., Frosini, P., Landi, C., Cerri, A.,
Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 30–38. Springer, Heidelberg
(2012)

9. Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete
Appl. Math. 147(2–3), 245–263 (2005)

10. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
11. Iosifidis, A., Tefas, A., Pitas, I.: Multi-view action recognition based on action

volumes, fuzzy distances and cluster discriminant analysis. Sig. Process. 93, 1445–
1457 (2013)

12. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Intern. J. Com-
put. Vision. 38, 199–218 (2000)

13. Lamar-León, J., Garćıa-Reyes, E.B., Gonzalez-Diaz, R.: Human gait identification
using persistent homology. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.)
CIARP 2012. LNCS, vol. 7441, pp. 244–251. Springer, Heidelberg (2012)

14. Leon, J.L., Cerri, A., Reyes, E.G., Diaz, R.G.: Gait-based gender classification
using persistent homology. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.)
CIARP 2013, Part II. LNCS, vol. 8259, pp. 366–373. Springer, Heidelberg (2013)

15. Lamar-Leon, J., Baryolo, R.A., Garcia-Reyes, E., Gonzalez-Diaz, R.: Gait-based
carried object detection using persistent homology. In: Bayro-Corrochano, E.,
Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 836–843. Springer,
Heidelberg (2014)

16. Monaghan, D., Kelly, P., O’Connor, N.E.: Quantifying human reconstruction accu-
racy for voxel carving in a sporting environment. In: ACM MM, Scottsdale, AZ,
28 November–1 December 2011

17. Monaghan, D., Kelly, P., O’Connor, N.E.: Dynamic voxel carving in tennis based
on player localisation using a low cost camera network. In: 2011 IEEE International
Conference on Image Processing (ICIP 2011), Brussels, Belgium, 11–14 September
2011

18. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison
and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Conference
on Computer Vision and Pattern Recognition, vol. 1, pp. 519–528 (2006)

19. Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using
motion history volumes. Comput. Vis. Image Underst. 104, 249–257 (2006)

20. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput.
Geom. 33(2), 249–274 (2005)

Robust Computations of Reeb Graphs
in 2-D Binary Images

Antoine Vacavant1(B) and Aurélie Leborgne1,2

1 ISIT, Université d’Auvergne, UMR/CNRS/6284, BP10448,
63000 Clermont-Ferrand, France
antoine.vacavant@udamail.fr

2 Université de Lyon, INSA-Lyon, LIRIS, UMR/CNRS/5205,
69621 Villeurbanne, France

aurelie.leborgne@liris.cnrs.fr

http://isit.u-clermont1.fr/~anvacava/index.html

http://liris.cnrs.fr/aurelie.leborgne

Abstract. In this article, we present a novel approach devoted to
robustly compute the Reeb graph of a digital binary image, possibly
altered by noise. We first employ a skeletonization algorithm, named
DECS (Discrete Euclidean Connected Skeleton), to calculate a discrete
structure centered within the object. By means of an iterative process,
valid with respect to Morse theory, we finally obtain the Reeb graph of
the input object. Our various experiments show that our methodology
is capable of computing the Reeb graph of images with a high impact
of noise, and is applicable in concrete contexts related to medical image
analysis.

Keywords: Skeletonization · Reeb graph · Topology

1 Introduction

The Reeb graph [15] is a compact discrete structure representing the topol-
ogy of a graphical object by associating edges to its branches and vertices to
their junctions. This graph is calculated on any compact manifold in two or in
three dimensions (2-D or 3-D respectively) thanks to the definition of a given
function h, in the sense of Morse theory [8,14]. The critical points of this h
function (extrema and saddle points) are related to the vertices of the graph.
As a natural consequence, Reeb graphs have been extensively explored by opti-
mizing algorithms for its construction, and especially for 3-D meshes [4,9,19].
For this construction, one of the keys is the definition of h. A classic viewpoint
is to consider a one-directional function as Morse induced (also named height
function, e.g. along one space axis X, Y or Z), but it could also be defined
as a geodesic distance in 2-D or in 3-D [10,19]. The first option, illustrated in
Fig. 1(a), can be justified since the topology of many objects may be represented
along an axis (statues, animals, persons, etc.), but it is generally not sufficient

c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 204–215, 2016.
DOI: 10.1007/978-3-319-39441-1 19

Robust Computations of Reeb Graphs in 2-D Binary Images 205

to model the topology of every kinds of complex objects, requiring geodesic-
like functions (see Fig. 1(b)). More generally, in pattern recognition, the Reeb
graph has been employed to model 2-D and 3-D shapes for many applications,
e.g. object retrieval [2,20], character recognition in license plates [18], noisy
contour vectorization [22], implicit curve tracing [21] and image segmenta-
tion [12,23].

Skeletons, medial axes and their extensions [1,3,5,13] are other digital struc-
tures capable of capturing some topological features of the processed shapes. As
a consequence, a natural strategy is to compute a skeleton or a medial axis of
an object to obtain its Reeb graph [10,16] and vice-versa [7]. However, in prac-
tice, these structures cannot be linked directly to Reeb graphs since they are
very sensible to image noise. Generally, they produce extra branches or other
unwanted data that do not belong to the Reeb graph, and the specific treatment
of these artefacts is a difficult task. The closest and most recent related work (to
the best of our knowlegde) following this strategy is presented in [10], wherein
the authors use a classic skeletonization scheme and local binary patterns to
obtain the Reeb graph of the input binary image.

h values

(a)

h values

(b)

Fig. 1. From a skeleton computed in 2-D binary shapes, we can obtain a valid Reeb
graph, by adopting h as a height function, along Y axis for instance, in (a), or by
respecting shape’s geometry with a geodesic distance (b). Skeleton edge pixels are
colored depending on their h function values (see palette below), and colored squares
represent the set of these pixels having the same value

Our paper focuses on the computation of the Reeb graph of 2-D binary
shapes, by employing a robust skeletonization scheme [13] (Fig. 1). Thanks to
an iterative process, we can build the Reeb graph of complex and possibly very
noisy objects by respecting a given height function, but also by considering
other functions (by following a centrifugal force for example). The reminder
of our article is the following: in Sect. 2, we recall the robust skeletonization
algorithm introduced in a previous work, so that we can obtain a valid Reeb
graph in Sect. 3. We propose in Sect. 4 experiments showing the robustness of
our approach, and its application in our context of medical image analysis.

206 A. Vacavant and A. Leborgne

2 Skeleton Extraction

Througout our article, we will use the following notations. From any image I,
we denote a pixel by p ∈ Z

2 belonging to I with its X- and Y -coordinates x and
y respectively. To access randomly a pixel in I, we also use the notation I(x, y).

In this section, we remind the robust skeletonization algorithm intro-
duced in [13] named Discrete Euclidean Connected Skeleton (DECS for short).
Algorithm 1 summarizes the workflow of DECS, first calculating the sparse
reduced discrete medial axis (RDMA) from [5] of the foreground object E in
the input binary image I, as a part of the union of maximal balls:

E =
⋃

1≤k≤K

B
(
pk, δ(pk)

)
,where B (p, r) =

{
q ∈ Z

2 : dE(p,q) < r
}
. (1)

E represents the union of K balls (pk, δ(pk)) ∈ Z
2×N, δ(pk) is the radius of the

maximal ball centered in pk, and dE is the classic Euclidean distance. These radii
are obtained thanks to the computation of the Euclidean distance transform of
I (EDTI) by any algorithm of the literature [6]. The RDMA removes the balls
which are not maximal in E, and is generally illustrated by the set of balls’
centers {pk}k=1,K .

Algorithm 1. DECS Algorithm [13].

input : A binary image I.
output : The DECS of the foreground object in I.
begin1

compute the Euclidean distance map EDTI of I ; {See [6]}2

compute RDMAI the reduced discrete medial axis from EDTI ; {From [5]}3

compute Laplacian-of-Gaussian filtering of DI as RDGI ;4

combine RDGI and RDMAI to calculate a coarse skeleton SI ;5

thin and prune SI to obtain S∗
I ;6

return S∗
I ;7

end8

With the map EDTI , we also define the ridgeness map RDGI of I as

RDGI(x, y) =
1

πσ4

(

1 − x2 + y2

2σ2

)

exp
(

−x2 + y2

2σ2

)

× EDTI(x, y). (2)

In [13], the authors suggest to set σ = 1. This map is indeed obtained by applying
the Laplacian of Gaussian operator on EDTI , and represents the ridges wherein
main branches of the input object are located. A simple thresholding operation
on RDGI is not sufficient to obtain a valid skeleton, and a more relevant process
has to be designed for this purpose.

In this way, by combining both RDMAI and RDGI , the DECS algorithm
then leads to a coarse and thick skeleton SI of the image I, which is then

Robust Computations of Reeb Graphs in 2-D Binary Images 207

pruned and thinned to obtain the final skeleton S∗
I . It should be noted that

(1) the complexity of this algorithm has been proved to be linear with respect
to the size of I in [13]; (2) the few parameters of this method can be set once for
a wide range of images, always leading to a robust skeletonization. Every phases
of DECS are illustrated in Fig. 2.

(a) DI (b) RDMAI (c) RDGI (d) SI (e) S∗
I

Fig. 2. Example of the application of DECS algorithm on a sample binary image I (for
notations, refer to Algorithm 1)

3 Reeb Graph Computation

3.1 Reeb Graph Definition

The goal of this section is to show that the calculation of a valid Reeb graph
of any binary image I can be carried out using the robust skeleton obtained
by DECS. We first need definitions related to topological spaces (Definition 1
below). Suppose we have an equivalence relation ∼ defined on a topological
space M . Let M∼ be the set of equivalence classes and let ψ : M → M∼ map
each point p to its equivalence class (also called the quotient map).

Definition 1 (Quotient topology and space). The quotient topology of M∼
consists of all subsets U ⊆ M∼ whose preimages, ψ−1(U) are open in M . The
set M∼ together with the quotient topology is the quotient space defined by ∼.

Then, we can present the definition of the Reeb graph in the continuous case as:

Definition 2 (Reeb graph). Let h be a continuous function defined on a com-
pact variety M , h : M → R. The Reeb graph of M , denoted by G(h), is the
quotient space defined by the equivalence relation p ∼ q ⇔ (p, h(p)) ∼ (q, h(q))
such that:

{
h(p) = h(q),
p and q belongs to the same connected component of h−1(h(p)). (3)

From this definition, we can extract the following properties of Reeb graphs.

208 A. Vacavant and A. Leborgne

Fig. 3. Notations of G(h) for an
illustrative continuous shape

By construction, G(h) is defined by con-
sidering the level-sets of the function h,
and by associating points belonging to the
same connected component (equivalence rela-
tion ∼), for every level-sets of h. If we consider
h as a height function along an axis, as in
Fig. 3, G(h) is built by considering increasing
values of h along this axis. This shows that
Reeb graphs bring together topology (as it
is equivalent to a topological quotient space)
and geometry (by the expression of the func-
tion h over the shape of M). As a consequence,
the definition of h upon the geometry of M is
a key for the Reeb graph computation.

Once a h function is decided, the construction of the Reeb graph G(h) =
(V,E) is composed of edges in E associated to the shape’s branches, i.e. the
points belonging to the same connected component for any h value. In G(h),
vertices of V represent the critical points of the h function (see Fig. 3) as: begin
for the minimal h values and end for maximal h values, both having a degree
of one; merge and split for saddle values, with higher degrees. These points
are defined according to the construction of edges by merging or splitting them
respectively.

All previous notions hold in the discrete case. The consequence of our obser-
vations is that algorithms designed in the construction of G(h) employ an itera-
tive propagation process, througout a finite number of level-sets of h, calculating
vertices and edges of the graph of the input digital object. To obtain those ele-
ments, our strategy is to use the robust skeletonization process presented in the
previous section so that we compute a valid Reeb graph even for altered binary
images.

3.2 Robust Reeb Graph Computation with DECS

The construction of the Reeb graph based on the DECS is described in
Algorithm 2. Once a starting point pS is selected, a breadth-first search for
vertices and edges of the Reeb graph is launched. During this process, the func-
tion h is calculated in a discrete way by attributing increasing values to scanned
points of the graph (line 14). Vertices are added in V by associating the correct
label, with respect to the h function’s critical points, in line 10 (see also Fig. 3).

Proposition 1. For any binary image I, Algorithm2 computes the Reeb graph
of the foreground object GI(h).

We propose to justify this proposition with two axes: (1) the DECS skeleton
is able to represent the medial topological branches of the input foreground
object; (2) the rest of Algorithm 2 actually calculates its Reeb graph with its
edges, vertices and the associated h function.

Robust Computations of Reeb Graphs in 2-D Binary Images 209

Algorithm 2. Reeb graph computation algorithm.
input : A binary image I.
output : The Reeb graph GI(h) of the foreground object in I.
begin1

compute the DECS S∗
I with Alg. 1 ;2

GI(h) = (V,E) ← ∅ ;3

select a starting point pS in S∗
I ;4

h(pS) ← 0 ;5

Q ← {pS} ;6

while Q �= ∅ do7

p ← top(Q) ; {Breadth-first construction of GI(h)}8

if p is associated to a critical point of h then9

add p in V with correct label amongst {begin, end,merge, split} ;10

add in E edges connected to p ;11

foreach point p′ adjacent to p in S∗
I do12

if p′ is not treated then13

h(p′) ← h(p) + 1 ; {Increasing level-set}14

Q ← Q ∪ {p′} ;15

return GI(h) ;16

end17

The medial axis RDMAI , used in the DECS algorithm, is able to capture
the topology of the foreground object in I [17]. As illustrated in Fig. 2, this
is a sparse and disconnected representation, but it is also able to reconstruct
the whole geometry of the input shape by calculating the union of maximal
balls expressed in Eq. 1. This minimal set of the maximal balls included in the
object is a relevant basis for the DECS algorithm, since this is an incomplete
but sufficient representation of its branches, from a topological point of view.
Conversely, the ridgeness map RDGI (see Fig. 2 again) of the input image is a
dense and complete model which smoothly locates main branches by ridges for
each image pixel.

Fig. 4. Illustration of the location of Reeb graph vertices points with respect to RDGI

map

210 A. Vacavant and A. Leborgne

Thanks to the combination of RDMAI and RDGI , the DECS skeleton leads
to the complete branches, stored in the edges of the Reeb graph GI(h) and, at
their junctions, the vertices of GI(h). Definition 2 shows that this graph co-exists
with a function defined on the input compact variety. In our case, the values of
this function are calculated during the breadth-first scanning of the object; the
starting point of our process is associated to zero (and is a begin critical point),
then scanned points are assigned with an increasing value. They can be saddle
critical points of h (merge, split) or maximal points (end).

Figure 4 shows the location of the Reeb graph vertices (black circles) with
respect to the RDGI map (see Eq. 2 for its formulation) plotted as an elevation
map, for each input image pixel. This figure illustrates that the Reeb graph
vertices correspond to the highest RDGI values, and so located on the most
relevant branches of the input shape.

As a validation of our contribution, the next section is devoted to the exper-
imental evaluation of our robust Reeb graph computation algorithm thanks to
synthetic and real images.

4 Experimental Evaluation

We first propose to build the DECS skeleton and the Reeb graph of noisy images,
generated from the synthetic examples given in Fig. 1. For this purpose, we use a
noise generation model close to the one proposed by Kanungo et al. [11], iterated
several times to increase its impact. This alters the contour of the input object by
switching the values of pixels belonging to the foreground object border. Figure 5
groups the results of our algorithm with noise generated once, then 5, 10, 50 and
100 times on the same image. We can observe that the S∗

I skeleton obtained by
the DECS algorithm is very robust, and enables to extract the Reeb graph of
the foreground object, which stays stable despite of the increasing noise. For the
simple one-hole object, we select the lowest skeleton point as the starting point
of the Reeb graph construction; for the spiral object, this is the most external
one. We can consider an h function along an axis (first case) or defined in a
geodesic way to respect the geometry of the input shape (spiral object).

To numerically represent the topology of the processed objects, we can cal-
culate the Euler number χ from the Reeb graph GI(h) = (V,E), thanks to this
formulation [15]:

χ =
∑

n∈V,n=begin∨n=end

deg(n) −
∑

n∈V,n=split∨n=merge

deg(n) − 2. (4)

For the first one-hole object, we always obtain an Euler number χ = 0, meaning
that it is homeomorpheous to a torus; for the spiral shape, we obtain χ = 2,
the same number as a point. We also remind that the Euler number can be also
calculated as χ = 2 − 2 × #holes, which confirms the values we obtain. This
numerical analysis will be further useful for the comparison of our contribution
with other computations of Reeb graphs based on skeletonization schemes.

Robust Computations of Reeb Graphs in 2-D Binary Images 211

In Fig. 6, we propose to test our algorithm in a concrete application about
analysis of histological image of liver cells. In (a), we first enhance specific col-
ors of the complex input image of size 1280×1024 pixels1, to highlight then
hepatocytes (cell centers) by applying a double thresolding operation. Then, we
calculate the DECS of the image by considering the hepatocytes as background
objects (and the rest obviously as foreground). By using this structure, we can
then select different starting points to construct the Reeb graph (b). For exam-
ple, we can select the most upper left point of the skeleton, meaning that the
graph is built along a diagonal axis (from top-left to bottom-right). We can
also choose the central DECS point, leading to a breadth-first scanning follow-
ing a centrifugal direction. In this experiment, we have selected one starting
point as in Algorithm2, i.e. GI(h) contains only one begin node, and we could

(a) nit = 1 (b) nit = 5

(c) nit = 10 (d) nit = 50

(e) nit = 100

Fig. 5. Extraction of DECS and Reeb graph for more and more noisy synthetic images,
with an increasing number of iterations nit. The value of h function is depicted with
the palette used in Fig. 1

1 Available at https://embryology.med.unsw.edu.au/embryology/index.php/
Histology.

https://embryology.med.unsw.edu.au/embryology/index.php/Histology
https://embryology.med.unsw.edu.au/embryology/index.php/Histology

212 A. Vacavant and A. Leborgne

(a)

h values

(b)

(c)

Fig. 6. Extraction of Reeb graph in a liver histological image, enhanced and segmented
to extract hepatocytes (a). In (b), we show that the graph can be computed by con-
sidering a one-directional height function h, from top-left to bottom-right (left), or a
centrifugal function (right). Graph edge pixels are colored depending on their h func-
tion values (see palette below), and colored squares represent the set of these pixels
having the same value. (c): Obtained Reeb graph superimposed on the segmented and
original images (color figure online)

Robust Computations of Reeb Graphs in 2-D Binary Images 213

select multiple starting points as an extension. In this case, we would have to
handle several breadth-first constructions of separated graphs, and merge them
into a single graph. We show in Fig. 6(c) the Reeb graph we obtain, whatever
the starting point chosen, superimposed on the segmented image and on the
original image.

By using Eq. 4 expressed earlier, we can determine the number of holes within
the processed binary object thanks to the Euler number. In our case, we have
obtained χ = −812, leading to 407 holes in the image (and so 407 cell cen-
ters); this number can be verified with the original segmented image, depicted in
Fig. 6(a), by counting the number of connected components. Besides this numer-
ical evaluation, the Reeb graph brings obviously more information about the
shape and organization of hepatocytes in the histological image. Indeed, the
graph calculated as we propose would be of high interest to analyse further the
structure of the liver, since homogeneous and regular cells arranged around the
central vein imply that the liver is healthy, contrary to a cirrhotic one wherein
cells have irregular shapes and are disrupted around the vein.

We finally propose in Fig. 7 to compute the Reeb graph of the liver vessels
represented within a sample angiogram. The input image2 is first segmented
by considering a simple thresholding process based on angiogram intensities,
similar to the one we used in the previous experiment. This binary object is
then treated by our algorithm, to obtain the vascular structure with the Reeb
graph in Fig. 7(b). The starting point of our process has been selected at the
entrance of the vein (most right-bottom point in DECS), which permits to have
the complete path of blood inside the liver, from this entrance to the finest veins.

Fig. 7. Reeb graph computation in an angiogram of liver vessels

5 Conclusion and Future Works

In this article, we have proposed a novel approach able to compute robustly the
Reeb graph of a 2-D shape contained in a binary image. Our algorithm is capable
2 From http://health.siemens.com/ct applications/somatomsessions/index.php/

minimally-invasive-treatment-of-hepatocellular-carcinoma-using-a-siemens-miyabi-
system/.

http://health.siemens.com/ct_applications/somatomsessions/index.php/minimally-invasive-treatment-of-hepatocellular-carcinoma-using-a-siemens-miyabi-system/
http://health.siemens.com/ct_applications/somatomsessions/index.php/minimally-invasive-treatment-of-hepatocellular-carcinoma-using-a-siemens-miyabi-system/
http://health.siemens.com/ct_applications/somatomsessions/index.php/minimally-invasive-treatment-of-hepatocellular-carcinoma-using-a-siemens-miyabi-system/

214 A. Vacavant and A. Leborgne

of constructing this graph, by considering a relevant h function depending on
the shape of the input object. We have shown the performance of our approach
throughout two main experiments involving synthetic and real images. In the
first case, we have confirmed that our contribution can compute the Reeb graph
despite of a very strong contour-based noise model. We have then illustrated the
application of our algorithm in a concrete context of medical image analysis.

A first future direction of our research concerns, still in the 2-D case, the
validation of our approach in a medical context as shown in Sect. 4. We would
like to test its performance on a large database of vascular images, requiring
that we extract finely the vessel structures and their bifurcations. Moreover,
we would like to compare our pipeline with other skeletonization algorithms,
to ensure that DECS is the most robust way to obtain a valid Reeb graph. To
do so, we can use a numerical evaluation by using the Euler number together
with a structural comparison by using graph matching techniques as graph edit
distance for example. Another important future work is to extend our approach
to 3-D. As explained in Sect. 2, the DECS computation is based on several stages
that can be adapted rather easily to higher dimensions. Then, the Reeb graph
construction employs a breadth-first search-like strategy, which could be adapted
to n-D. This work could also be highlighted in a medical context, to analyze the
vessels in 3-D volumes acquired from CT-scans or MRI for example. Finally, we
aim at designing matching algorithms for (2-D and then in higher dimensions)
patterns or objects based on Reeb graphs.

References

1. Arcelli, C., di Baja, G.S., Serino, L.: Distance-driven skeletonization in voxel
images. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 709–720 (2010)

2. Barra, V., Biasotti, S.: 3D shape retrieval and classification using multiple kernel
learning on extended Reeb graphs. Vis. Comput. Int. J. Comput. Graph. 30(11),
1247–1259 (2014)

3. Bertrand, G., Couprie, M.: Powerful parallel and symmetric 3D thinning schemes
based on critical kernels. J. Math. Imaging Vis. 48(1), 134–148 (2014)

4. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analy-
sis and applications. Theor. Comput. Sci. 392(1–3), 5–22 (2008)

5. Coeurjolly, D., Montanvert, A.: Optimal separable algorithms to compute the
reverse Euclidean distance transformation and discrete medial axis in arbitrary
dimension. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 437–448 (2007)

6. Coeurjolly, D., Vacavant, A.: Separable distance transformation and its applica-
tions. In: Brimkov, V., Barneva, R. (eds.) Theoretical Foundations and Applica-
tions to Computational Imaging Digital Geometry Algorithms, vol. 2, pp. 189–214.
Springer, Heidelberg (2012)

7. Ge, X., Safa, I.I., Belkin, M., Wang, Y.: Data skeletonization via reeb graphs.
In: ShaweTaylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., Weinberger, K.Q.,
(eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 837–845
(2011)

8. Gramain, A.: Topologie des surfaces. Presses Universitaires Françaises, Paris (1971)

Robust Computations of Reeb Graphs in 2-D Binary Images 215

9. Harvey, W., Wang, Y., Wenger, R.: A randomized O(mlogm) time algorithm for
computing Reeb graphs of arbitrary simplicial complexes. In: Proceedings of Sym-
posium on Computational Geometry (SCG), pp. 267–276 (2010)

10. Janusch, I., Kropatsch, W.G.: Reeb graphs through local binary patterns. In: Liu,
C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069,
pp. 54–63. Springer, Heidelberg (2015)

11. Kanungo, T., Haralick, R., Baird, H., Stuezle, W., Madigan, D.: A statistical,
nonparametric methodology for document degradation model validation. IEEE
Trans. Pattern Anal. Mach. Intell. 22(11), 1209–1223 (2000)

12. Karmakar, N., Biswas, A., Bhowmick, P.: Reeb graph based segmentation of artic-
ulated components of 3D digital objects. Theoret. Comput. Sci. 624, 25–40 (2016)

13. Leborgne, A., Mille, J., Tougne, L.: Noise-resistant digital euclidean connected
skeleton for graph-based shape matching. J. Vis. Commun. Image Represent. 31,
165–176 (2015)

14. Morse, M.: The Calculus of Variations in the Large, vol. 18. American Mathemat-
ical Society Colloquium Publication, New York (1934)

15. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complétement intégrable
ou d’une fonction numérique. Comptes Rendus de l’Académie des Sciences, Paris
222, 847–849 (1946)

16. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line compu-
tation of reeb graphs: Simplicity and speed. ACM Trans. Graph. 26(3), 1–9 (2007).
Article number 58

17. Sherbrooke, E., Patrikalakis, N.M., Wolter, F.E.: Differential and topological prop-
erties of medial axis transforms. Graph. Models Image Process. 58, 574–592 (1996)

18. Thome, N., Vacavant, A., Robinault, L., Miguet, S.: A cognitive and video-based
approach for multinational license plate recognition. Mach. Vis. Appl. 22(2), 389–
407 (2011)

19. Tierny, J., Vandeborre, J.P., Daoudi, M.: Invariant high level reeb graphs of 3D
polygonal meshes. In: Proceedings of IEEE International Symposium on 3D Data
Processing, Visualization and Transmission (3DPVT 2006), pp. 105–112 (2006)

20. Tierny, J., Vandeborre, J.P., Daoudi, M.: Partial 3D shape retrieval by reeb pattern
unfolding. Comput. Graph. Forum 28(1), 41–55 (2009). Wiley

21. Vacavant, A., Coeurjolly, D., Tougne, L.: A framework for dynamic implicit curve
approximation by an irregular discrete approach. Graph. Models 71(3), 113–124
(2009)

22. Vacavant, A., Roussillon, T., Kerautret, B., Lachaud, J.O.: A combined multi-
scale/irregular algorithm for the vectorization of noisy digital contours. Comput.
Vis. Image Underst. 117(4), 438–450 (2013)

23. Werghi, N., Xiao, Y., Siebert, J.: A functional-based segmentation of human body
scans in arbitrary postures. IEEE Trans. Syst. Man. Cybern. Part B Cybern. 36(1),
153–165 (2006)

The Coherent Matching Distance
in 2D Persistent Homology

Andrea Cerri1(B), Marc Ethier2,3, and Patrizio Frosini4

1 IMATI – CNR, Genova, Italy
andrea.cerri@ge.imati.cnr.it

2 Faculté des Sciences, Université de Saint-Boniface, Winnipeg, MB, Canada
methier@ustboniface.ca

3 Institute of Computer Science and Computational Mathematics,
Jagiellonian University, Kraków, Poland

4 Dipartimento di Matematica, Università di Bologna, Bologna, Italy
patrizio.frosini@unibo.it

Abstract. Comparison between multidimensional persistent Betti num-
bers is often based on the multidimensional matching distance. While this
metric is rather simple to define and compute by considering a suitable
family of filtering functions associated with lines having a positive slope,
it has two main drawbacks. First, it forgets the natural link between
the homological properties of filtrations associated with lines that are
close to each other. As a consequence, part of the interesting homolog-
ical information is lost. Second, its intrinsically discontinuous definition
makes it difficult to study its properties. In this paper we introduce a
new matching distance for 2D persistent Betti numbers, called coherent
matching distance and based on matchings that change coherently with
the filtrations we take into account. Its definition is not trivial, as it must
face the presence of monodromy in multidimensional persistence, i.e. the
fact that different paths in the space parameterizing the above filtra-
tions can induce different matchings between the associated persistent
diagrams. In our paper we prove that the coherent 2D matching distance
is well-defined and stable.

Keywords: Multidimensional matching distance · Multidimensional
persistent betti numbers · Monodromy

1 Introduction

In the last twenty-five years the concept of topological persistence has become
of common use in computational geometry and topological data analysis. It is

Work carried out under the auspices of INdAM-GNSAGA. M.E. has been partially
supported by the Toposys project FP7-ICT-318493-STREP, as well as an ESF Short
Visit grant under the Applied and Computational Algebraic Topology networking
programme. A.C. is partially supported by the FP7 Integrated Project IQmulus,
FP7-ICT-2011–318787, and the H2020 Project Gravitate, H2020 - REFLECTIVE -
7 - 2014 - 665155.

c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 216–227, 2016.
DOI: 10.1007/978-3-319-39441-1 20

The Coherent Matching Distance in 2D Persistent Homology 217

based on the idea that the most important properties of a filtered topological
space are the ones that persist under large changes of the parameters defining
the sublevel sets in the filtration. The concept of persistence revealed quite useful
in extracting information from data that can be described by functions taking
values in R

h and defined on a topological space (e.g., images or point clouds
representing 3D-models, via a distance function).

The theory of topological persistence was initially developed for the case
h = 1, but in recent years the interest in the case h > 1 has rapidly increased,
leading to new theoretical developments and computational methods (cf., e.g.,
[1,4,5,12]). One of this methods is based on a reduction of the h-dimensional
case to the 1-dimensional setting by using a suitable family of derived real-
valued functions [2,3,6]. If h = 2, it consists of changing the 2D filtration
given by a filtering function f = (f1, f2) : M → R

2 into the 1D filtra-
tions associated with the real-valued functions f∗

a,b : M → R defined as

f∗
a,b(x) := min{a, 1 − a} · max

{
f1(x)−b

a , f2(x)+b
1−a

}
, for a ∈]0, 1[and b ∈ R. This

approach allows for introducing a distance Dmatch(βf , βg) between the persis-
tent Betti numbers associated with f and g, which is defined as the supremum
of the classical bottleneck distance between the persistent diagrams of f∗

a,b and
g∗

a,b, varying a and b.
While this method brings back the problem to the 1D case, it opens the way

to new issues of interest. First of all, the distance Dmatch forgets the natural link
between the homological properties of filtrations associated with pairs (a, b) that
are close to each other. This fact implies that part of the homological information
is lost. Second, its intrinsically discontinuous definition makes it difficult to study
its properties.

As a possible answer to these observations, we introduce in this paper a new
matching distance for 2D persistent Betti numbers, called coherent matching
distance and based on the use of matchings that change continuously with respect
to the filtrations we take into account. In order to state its definition, we have to
manage the problem of monodromy, consisting of the fact that a loop in the space
parameterizing the above filtrations can induce a transformation that changes a
matching σ between the associated persistent diagrams into a matching τ �= σ [7].

The paper is organized as follows. In Sect. 2, we recall the definitions of mul-
tidimensional persistent Betti number and multidimensional matching distance,
together with the monodromy phenomenon in 2D persistent homology. In Sect. 3,
we introduce the coherent 2D matching distance and prove that it is well-defined
and stable.

2 Mathematical Setting

Let f = (f1, f2) be a continuous map from a finitely triangulable topological
space M to the real plane R

2.

218 A. Cerri et al.

2.1 Persistent Betti Numbers

As a reference for multidimensional persistent Betti numbers we use [6]. Accord-
ing to the main topic of this paper, we will also stick to the notations and working
assumptions adopted in [7]. In particular, we build on the strategy adopted in
the latter to study certain instances of monodromy for multidimensional persis-
tent Betti numbers. Roughly, the idea is to reduce the problem to the analysis of
a collection of persistent Betti numbers associated with a real-valued function,
and their compact representation in terms of persistence diagrams.

We use the following notations: Δ+ is the open set {(u, v) ∈ R×R : u < v}.
Δ represents the diagonal {(u, v) ∈ R × R : u = v}. We can extend Δ+ with
points at infinity of the kind (u,∞), where |u| < ∞. Denote this set Δ∗. For
a continuous function ϕ : M → R, and for any n ∈ N, if u < v, the inclusion
map of the sublevel set Mu = {x ∈ M : ϕ(x) ≤ u} into the sublevel set Mv =
{x ∈ M : ϕ(x) ≤ v} induces a homomorphism from the nth homology group of
Mu into the nth homology group of Mv. The image of this homomorphism is
called the nth persistent homology group of (M,ϕ) at (u,v), and is denoted by
H

(u,v)
n (M,ϕ). In other words, the group H

(u,v)
n (M,ϕ) contains all and only the

homology classes of n-cycles born before or at u and still alive at v. By assuming
to work with coefficients in a field K, we get that homology groups are vector
spaces. Therefore, they can be completely described by their dimension, leading
to the following definition [10].

Definition 1 (Persistent Betti Numbers). The persistent Betti numbers
function of ϕ, briefly PBN, is the function βϕ : Δ+ → N ∪ {∞} defined by

βϕ(u, v) = dim H(u,v)
n (M,ϕ).

Under the above requirements for M , it is possible to show that βϕ is finite for
all (u, v) ∈ Δ+ [6]. Obviously, for each n ∈ Z, we have different PBNs of ϕ
(which might be denoted by βϕ,n, say), but for the sake of notational simplicity
we omit adding any reference to n.

Following [6], we assume the use of Čech homology, and refer the reader to
that paper for a detailed explanation about preferring this homology theory to
others. For the present work, it is sufficient to recall that, with the use of Čech
homology, the PBNs of a real-valued function can be completely described by
the corresponding persistence diagrams. Formally, a persistence diagram can be
defined via the notion of multiplicity [8,11]. Following the convention used for
PBNs, any reference to n will be dropped in the sequel.

Definition 2 (Multiplicity). The multiplicity μϕ(u, v) of (u, v) ∈ Δ+ is the
finite, non-negative number given by

min
ε>0

u+ε<v−ε

βϕ(u + ε, v − ε) − βϕ(u − ε, v − ε) − βϕ(u + ε, v + ε) + βϕ(u − ε, v + ε).

The multiplicity μϕ(u,∞) of (u,∞) is the finite, non-negative number given by

min
ε>0, u+ε<v

βϕ(u + ε, v) − βϕ(u − ε, v).

The Coherent Matching Distance in 2D Persistent Homology 219

Definition 3 (Persistence Diagram). The persistence diagram Dgm(ϕ) is
the multiset of all points (u, v) ∈ Δ∗ such that μϕ(u, v) > 0, counted with their
multiplicity, union the points of Δ, counted with infinite multiplicity.

Each point (u, v) ∈ Δ∗ with positive multiplicity will be called a cornerpoint.
A cornerpoint (u, v) will be said to be a proper cornerpoint if (u, v) ∈ Δ+, and
a cornerpoint at infinity if (u, v) ∈ Δ∗ \ Δ+.

Persistence diagrams are stable under the bottleneck distance (a.k.a. match-
ing distance). Roughly, small changes in the considered function induce small
changes in the position of the cornerpoints which are far from the diagonal in
the associated persistence diagram, and possibly produce variations close to the
diagonal [8,9]. A visual intuition of this fact is given in Fig. 1. Formally, we have
the following definition:

Definition 4 (Bottleneck distance). Let Dgm1, Dgm2 be two persistence dia-
grams. The bottleneck distance dB (Dgm1,Dgm2) is defined as

dB(Dgm1,Dgm2) = min
σ

max
X∈Dgm1

d(X,σ(X)),

where σ varies among all the bijections between Dgm1 and Dgm2 and

d ((u, v) , (u′, v′)) = min
{

max {|u − u′|, |v − v′|} ,max
{

v − u

2
,
v′ − u′

2

}}

(1)

for every (u, v) , (u′, v′) ∈ Δ∗ ∪ Δ.

In practice, the distance d defined in (1) compares the cost of moving a point X
to a point Y with that of annihilating them by moving both X and Y onto Δ,
and takes the most convenient. Therefore, d(X,Y) can be considered a measure
of the minimum cost of moving X to Y along two different paths. These remarks
easily yield that d is actually a pseudo-distance, that is, a distance without the
property d(X,Y) = 0 ⇒ X = Y .

The stability of persistence diagrams can then be formalized as follows [8,9]:

Theorem 1 (Stability Theorem). Let ϕ,ψ : M → R be two continuous func-
tions. Then dB (Dgm(ϕ),Dgm(ψ)) ≤ ‖ϕ − ψ‖∞.

2.2 2-Dimensional Setting

The definition of persistent Betti numbers can be easily extended to functions
taking values in R

h [6]. It has been proved that, in this case, the information
enclosed in the persistent Betti numbers is equivalent to that represented by the
set of persistent Betti numbers associated with a certain family of real-valued
functions. We discuss this for the specific case of the above function f : M → R

2,
referring the reader to Fig. 2 for a pictorial representation.

Consider the pairs (a, b) ∈]0, 1[×R. Any such pair identifies an ori-
ented line ra,b ∈ R

2 of positive slope, parameterized by t with equation

220 A. Cerri et al.

u

v

M

ϕ

ψ

Fig. 1. Changing the function ϕ to ψ induces a change in the persistence diagram. In
this example, the graphs on the left represent the real-valued functions ϕ and ψ, defined
on the space M (a segment). The corresponding persistence diagrams (restricted to the
0th homology) are displayed on the right.

(u, v) = t ·(a, 1−a)+(b,−b). The space Λ of lines obtained according to this pro-
cedure is referred to as the set of admissible lines, whereas P (Λ) denotes the set
of pairs (a, b) parameterizing Λ. The generic point (u, v) = t · (a, 1 − a) + (b,−b)
of ra,b can be associated with the sublevel set of M defined as {x ∈ M : f1(x) ≤
u, f2(x) ≤ v}, which is equivalent to that given by {x ∈ M : fa,b(x) ≤ t} induced

by the real-valued function fa,b : M → R with fa,b(x) := max
{

f1(x)−b
a , f2(x)+b

1−a

}
.

In this setting, the Reduction Theorem proved in [6] states that the persistent
Betti numbers βf can be completely recovered by considering all and only the
persistent Betti numbers βfa,b

associated with the admissible lines ra,b, which
are in turn encoded in the corresponding persistence diagrams Dgm(fa,b).

2-Dimensional Matching Distance. Assume now that we have two contin-
uous functions f, g : M → R

2. We consider the persistence diagrams Dgm(fa,b),
Dgm(ga,b) associated with the admissible line ra,b, and normalize them by multi-
plying their points by min{a, 1−a}. This is equivalent to consider the normalized
persistence diagrams Dgm(f∗

a,b), Dgm(g∗
a,b), with f∗

a,b = min{a, 1 − a} · fa,b and
g∗

a,b = min{a, 1 − a} · ga,b, respectively. The 2-dimensional matching distance
Dmatch(βf , βg) [2] is then defined as

Dmatch(βf , βg) = sup
P (Λ)

dB(Dgm(f∗
a,b),Dgm(g∗

a,b)),

with dB(Dgm(f∗
a,b),Dgm(g∗

a,b)) denoting the bottleneck distance between the
normalized persistence diagrams Dgm(f∗

a,b) and Dgm(g∗
a,b).

Remark 1. The introduction of normalized persistence diagrams is crucial here.
Indeed, the bottleneck distance dB(Dgm(f∗

a,b),Dgm(g∗
a,b)) is stable against func-

tions’ perturbations when measured by the sup-norm, while this is not true for
the distance dB(Dgm(fa,b),Dgm(ga,b)), see [6, Theorem 4.2] for details.

The Coherent Matching Distance in 2D Persistent Homology 221

s(
a
, 1

−
a
)
+
(b
,−

b)

t(a, 1 − a) + (b, −b)

Dgm(f∗
a,b)

(b,−b)

u + v = 0
s

t

(a, b)

f1

f2

ra,b

(a, 1 − a)

Fig. 2. Correspondence between an admissible line ra,b and the persistence diagram
Dgm(f∗

a,b). Left: a 1D filtration is constructed by sweeping the line ra,b. The vector
(a, 1−a) and the point (b,−b) are used to parameterize this line as ra,b = t ·(a, 1−a)+
(b,−b). Right: the persistence diagram of the 1D filtration can be found on a planar
section of the domain of the 2D persistent Betti numbers.

Monodromy in 2-Dimensional Persistent Homology. We know that nor-
malized persistence diagrams are stable with respect to changes of the underly-
ing functions, when the sup-norm is considered (Remark 1). Since each function
f∗

a,b depends continuously on the parameters a and b with respect to the sup-
norm, it follows that the set of points in Dgm(f∗

a,b) depends continuously on the
parameters a and b. Analogously, the set of points in Dgm(g∗

a,b) depends contin-
uously on the parameters a and b. Suppose that σa,b : Dgm(f∗

a,b) → Dgm(g∗
a,b)

is an optimal matching, i.e. one of the matchings achieving the bottleneck dis-
tance dB(Dgm(f∗

a,b),Dgm(g∗
a,b)). Given the above arguments, a natural question

arises, whether σa,b changes continuously varying a and b. In other words, we
wonder if it is possible to straightforwardly introduce a notion of coherence for
optimal matchings with respect to the elements of P (Λ).

Perhaps surprisingly, the answer is no. A first obstruction is given by the
fact that, trying to continuously extend a matching σa,b, the identity of points
in the (normalized) persistent diagrams is not preserved when considering an
admissible pair (ā, b̄) for which either Dgm(f∗

ā,b̄
) or Dgm(g∗

ā,b̄
) has points with

multiplicity greater than 1. In other words, we cannot follow the path of a
cornerpoint when it collides with another cornerpoint. On the one hand, this
problem can be solved by replacing P (Λ) with its subset Reg(f)∩Reg(g), with

Reg(f) = {(a, b) ∈ P (Λ)|Dgm(f∗
a,b) does not contain multiple points},

Reg(g) = {(a, b) ∈ P (Λ)|Dgm(g∗
a,b) does not contain multiple points}.

Throughout the rest of the paper, we will talk about singular pairs for f to
denote the pairs (a, b) ∈ P (Λ) \ Reg(f), and about regular pairs for f to denote
the pairs (a, b) ∈ Reg(f). An analogous convention holds referring to the singular
and regular pairs for g.

222 A. Cerri et al.

On the other hand, however, continuously extending a matching σa,b presents
some problems even in this setting. Roughly, the process of extending σa,b along
a path c : [0, 1] → Reg(f) ∩ Reg(g) depends on the homotopy class of c relative
to its endpoints. This phenomenon is referred to as monodromy in 2-dimensional
persistent homology, and has been studied for the first time in [7]. In what follows
we will show how to overcome this issue in order to define a coherent modification
of the standard 2-dimensional matching distance Dmatch.

2.3 Working Assumptions

To simplify the exposition, in what follows we state our results by assuming that
M is homeomorphic to the m-sphere Sm, with m ≥ 2. In particular, this implies
that all normalized persistence diagrams Dgm(f∗

a,b), Dgm(g∗
a,b) contain a single

cornerpoint at infinity in degree 0 and n, and no cornerpoint at infinity in the
other homology degrees. In this way, the problem of continuously extending a
matching can be restricted to considering only proper cornerpoints, as there are
no ambiguities in following the evolution of cornerpoints at infinity. Also, we
assume that

1. the functions f, g : M → R
2 are normal, i.e. the sets of singular pairs for f

and g are discrete [7];
2. a constant real value k > 0 exists such that if two proper cornerpoints X1,X2

of Dgm∗(fa,b) have Euclidean distance less than k from Δ, then the Euclidean
distance between X1 and X2 is not smaller than k, for all (a, b) ∈ P (Λ). The
same property holds for Dgm∗(ga,b).

3 The Coherent 2-Dimensional Matching Distance

The existence of monodromy implies that each loop in Reg(f) induces a permu-
tation on Dgm(f∗

a,b). In other words, it is not possible to establish which point
in Dgm(f∗

a,b) corresponds to which point in Dgm(f∗
a′,b′) for (a, b) �= (a′, b′), since

the answer depends on the path that is considered from (a, b) to (a′, b′) in the
parameter space Reg(f). As a consequence, different paths going from (a, b) to
(a′, b′) might produce different results while extending a matching σa,b. However,
it is still possible to define a notion of coherent 2-dimensional matching distance.

3.1 Transporting a Matching Along a Path

First, we need to specify the concept of transporting a proper cornerpoint X ∈
Dgm(ϕ) along a homotopy h(τ, x) := (1−τ) ·ϕ(x)+τ ·ψ(x), with ϕ,ψ : M → R.

Definition 5 (Admissible path). Let p ∈ [0, 1]. A continuous path P : [0, p] →
Δ+ ∪ Δ is said to be admissible for h at p̄ ∈ [0, p] if the following hold:

1. P (τ) ∈ Dgm(h(τ, ·)) for τ ∈ [0, p];
2. P ([0, p]) ∩ Δ is finite;

The Coherent Matching Distance in 2D Persistent Homology 223

3. if P (p̄) ∈ Δ then there is no p′ ∈]p̄, p] such that P ([p̄, p′]) = {P (p̄)} and a
continuous path Q : [p̄, p′] → Δ+ ∪ Δ exists for which Q(τ) ∈ Dgm(h(τ, ·))
for τ ∈ [p̄, p′], Q(p̄) = P (p̄) and Q([p̄, p′]) �= {P (p̄)}.

P is called admissible for h if it is admissible for h at every point of its domain.

In other words, P is not admissible for a homotopy h if it “stops” at a point
P (p̄) ∈ Δ while it could “move on” in Δ+. The set of all paths P : [0, p] → Δ+∪Δ
admissible for h is endowed with a partial order. For two paths P1 : [0, p1] →
Δ+ ∪ Δ, P2 : [0, p2] → Δ+ ∪ Δ admissible for h, we say that P1 � P2 if p1 ≤ p2
and P1(τ) = P2(τ) for every τ ∈ [0, p1].

In what follows, we focus on paths that are admissible for the homotopy
induced on the function f∗

c(τ) by a continuous path c : [0, 1] → Reg(f). With a
slight abuse of notation, we talk about paths admissible for c.

Proposition 1. Let c : [0, 1] → Reg(f) be a continuous path with c(0) = (a, b).
For every proper cornerpoint X ∈ Dgm(f∗

a,b), a unique path P : [0, 1] → Δ+ ∪ Δ
admissible for c exists, such that P (0) = X.

Proof. For every real number α ≥ 0, consider the property

(∗) a path Pα : [0, α] → Δ+ ∪ Δ admissible for c exists, with Pα(0) = X.

Define the set A = {α ∈ [0, 1] : property (∗) holds}. A is non-empty, since
0 ∈ A. Set ᾱ = supA. We need to show that ᾱ ∈ A. First, let (αn) be a non-
decreasing sequence of numbers of A converging to ᾱ. Since αn ∈ A, for each n
there is a path Pn : [0, αn] → Δ+ ∪ Δ admissible for c with Pn(0) = X. By the
Hausdorff maximal principle, we can consider a maximal chain of paths Pn and
define a function P ′

ᾱ : [0, ᾱ) → Δ+ ∪ Δ by setting P ′
ᾱ(τ) = Pn(τ) for any Pn in

the maximal chain whose domain contains τ .
In particular, the function P ′

ᾱ is such that P ′
ᾱ(0) = X and P ′

ᾱ(τ) ∈
Dgm(f∗

c(τ)) for all τ ∈ [0, ᾱ). However, to prove that ᾱ ∈ A we still need to
show that P ′

ᾱ can be continuously extended to the point ᾱ. The localization of
cornerpoints [6, Proposition 3.8] implies that, possibly by extracting a convergent
subsequence, we can assume that the limit limn Pn(αn) = limn P ′

ᾱ(αn) exists. By
the 1-dimensional Stability Theorem 1, we have that limn P ′

ᾱ(αn) ∈ Dgm(f∗
c(ᾱ)).

Now, the function P ′
ᾱ can be extended to a path Pᾱ : [0, ᾱ] → Δ+ ∪Δ by setting

Pᾱ(ᾱ) = limn P ′
ᾱ(αn). It is easy to check that Pᾱ is admissible for c, and hence

ᾱ ∈ A.
Last, we prove by contradiction that ᾱ = 1. Suppose that ᾱ < 1. If

Pᾱ(ᾱ) �∈ Δ, again by the 1-dimensional Stability Theorem and the fact that
c(ᾱ) ∈ Reg(f), for any sufficiently small ε > 0 we could take a real number
η > 0 such that there is exactly one proper cornerpoint X ′(τ) ∈ Dgm(f∗

c(τ)) with
d(X ′(τ), Pᾱ(ᾱ)) ≤ ε for every τ with ᾱ ≤ τ ≤ ᾱ + η. By setting Pᾱ(τ) = X ′(τ)
for every such τ , we would get a continuous path that extends Pᾱ to the interval
[0, ᾱ + η). We could work similarly also in case Pᾱ(ᾱ) ∈ Δ. Indeed, our working
assumption (2., Sect. 2.3) implies that arbitrarily close to Pᾱ(ᾱ) we could find

224 A. Cerri et al.

at most one proper cornerpoint X ′(τ), for all τ with ᾱ ≤ τ ≤ ᾱ + η and η suffi-
ciently small, to be used to extend Pᾱ. If there is no such a proper cornerpoint,
Pᾱ could be extended by setting Pᾱ(τ) = Pᾱ(ᾱ) for the same values of τ . In any
case, we would get a contradiction of our assumption that ᾱ = supA.

We now show that there is a unique path P : [0, 1] → Δ+ ∪ Δ that is
admissible for c and starts at X. Assume that another path P ′ : [0, 1] → Δ+ ∪Δ
admissible for c exists, with X = P (0) = P ′(0). Denote by τ̄ the greatest value
for which P (τ) = P ′(τ) for all τ ∈ [0, τ̄]. Since P differs from P ′, τ̄ < 1. By the
1-dimensional Stability Theorem, if P (τ̄) �∈ Δ then P (τ̄) is a proper cornerpoint
of Dgm(f∗

c(τ̄)) with multiplicity strictly greater than 1, against our assumption
that c(τ) ∈ Reg(f) for all τ ∈ [0, 1]. If P (τ̄) ∈ Δ then P and P ′ contradict
the definition of admissible path for c, because of our working assumption (2.,
Sect. 2.3). Therefore, the path P must be unique.

We say that c transports X to X ′ = P (1) with respect to f. Now, we need to define
the concept of transporting a matching along a path c : [0, 1] → Reg(f)∩Reg(g)
with c(0) = (a, b). Suppose that σ(a,b)(X) = Y . Let σa,b be a matching between
Dgm(f∗

a,b) and Dgm(g∗
a,b), with (a, b) an element of Reg(f) ∩ Reg(g). We can

naturally associate to σa,b a matching σc(1) : Dgm(f∗
c(1)) → Dgm(g∗

c(1)). We set
σc(1)(X ′) = Y ′ if and only if c transports X to X ′ with respect to f and Y to Y ′

with respect to g. We also say that c transports σa,b to σc(1) along c with respect
to the pair (f,g).

Following the same line of proof of Proposition 1, we can also prove the
following result.

Proposition 2. Let G(s, x) := (1 − s) · ϕ(x) + s · ψ(x) be a homotopy between
ϕ,ψ : M → R. Then, for every X ∈ Dgm(ϕ) of multiplicity 1 and every suffi-
ciently small ε > 0, a unique path P : [0, ε] → Δ+∪Δ exists, such that P (0) = X
and P is admissible for G at any τ ∈ [0, ε].

We say that G transports X to X’.
We are now ready to introduce the coherent 2-dimensional matching distance.

Definition 6. Choose a point (a, b) ∈ Reg(f) ∩ Reg(g). Let Γ be the set of all
continuous paths c : [0, 1] → Reg(f) ∩ Reg(g) with c(0) = (a, b). Let S be the set
of all matchings σ : Dgm(f∗

c(0)) → Dgm(g∗
c(0)). For every σ ∈ S and every c ∈ Γ ,

the symbol T
(f,g)
c (σ) will denote the matching obtained by transporting σ along

c with respect to the pair (f, g). We define the coherent 2-dimensional matching
distance CDmatch(βf , βg) as

CDmatch(βf , βg) = max
{

min
σ∈S

sup
c∈Γ

cost
(
T (f,g)

c (σ)
)

, γ∞

}

, (2)

with

– cost
(
T

(f,g)
c (σ)

)
the cost of the matching T

(f,g)
c (σ) with respect to the

max-norm;

The Coherent Matching Distance in 2D Persistent Homology 225

– γ∞ the maximum distance between the cornerpoint at infinity of f∗
a,b and the

cornerpoint at infinity of g∗
a,b varying (a, b) in P (Λ) for degrees 0 and m, and

0 for the other degrees.

The following statements hold, proving that CDmatch is well-defined and satisfies
the properties of a pseudo-distance.

Proposition 3. The definition of CDmatch(βf , βg) does not depend on the
choice of the point (a, b) ∈ Reg(f) ∩ Reg(g).

Proof. Let us choose another basepoint (a′, b′) ∈ Reg(f) ∩ Reg(g). We can
take a path c′ ∈ Γ with c′(1) = (a′, b′). It is sufficient to observe that
T

(f,g)
c (σ) = T

(f,g)
c∗c′−1

(
T

(f,g)
c′ (σ)

)
for every σ ∈ S and every c ∈ Γ , where ∗

denotes the concatenation of paths and c′−1 is the inverse path of c′, i.e.,
c′−1(t) := c′(1 − t).

Proposition 4. CDmatch(βf , βg) is a pseudo-distance.

Proof. It is sufficient to observe that if two matchings σ : Dgm(f∗
a,b) →

Dgm(g∗
a,b), τ : Dgm(g∗

a,b) → Dgm(h∗
a,b) are given, then T

(f,h)
c (τ ◦σ) = T

(g,h)
c (τ)◦

T
(f,g)
c (σ) for every c ∈ Γ taking values in Reg(f)∩Reg(g)∩Reg(h). This implies

that cost
(
T

(f,h)
c (τ ◦ σ)

)
≤ cost

(
T

(g,h)
c (τ)

)
+ cost

(
T

(f,g)
c (σ)

)
. Hence the trian-

gle inequality follows.

The next result shows the stability of the coherent 2-dimensional matching
distance.

Theorem 2. It holds that CDmatch(βf , βg) ≤ ‖f − g‖∞.

Proof. First of all we recall that for every (a, b) ∈ P (Λ) and every x ∈ M , we
have

|f∗
a,b(x) − g∗

a,b(x)| = min{a, 1 − a} · |fa,b(x) − ga,b(x)| ≤
min{a, 1 − a} · max

{∣
∣
∣
f1(x)−g1(x)

a

∣
∣
∣ ,

∣
∣
∣
f2(x)−g2(x)

1−a

∣
∣
∣
}

≤
max {|f1(x) − g1(x)| , |f2(x) − g2(x)|} ,

in other words, ||f∗
a,b − g∗

a,b||∞ ≤ ‖f − g‖∞. Let us consider the closed set C
obtained from P (Λ) by taking away a union of small balls of radius δ around
the singular pairs for f . Let ε be the infimum for (a, b) ∈ C of the minimum
distance between any two proper cornerpoints of Dgm(f∗

a,b). Note that, setting
K = maxx∈M{‖f(p)‖∞, ‖g(p)‖∞}, the computation of ε can be accomplished
on the compact set C ′ = {(a, b) ∈ C : |b| ≤ K}. Indeed, for all (a, b) ∈ C with
|b| > K, we have that either Dgm(f∗

a,b) = Dgm(f∗
1) or Dgm(f∗

a,b) = Dgm(f∗
2)

(analogously for g). Hence, by recalling our working assumption (2., Sect. 2.3)
and by construction of C ′, we have that ε > 0.

Let ε′ be the infimum for (a, b) ∈ C of the minimum distance between any
two points of Dgm(g∗

a,b). From the fact that ||f∗
a,b −g∗

a,b||∞ ≤ ‖f −g‖∞, we know

226 A. Cerri et al.

that when we change f according to the homotopy Gs := (1 − s) · f + s · g, each
point in the normalized persistence diagram moves by a distance not greater than
‖f −Gs‖∞ ≤ ‖f −g‖∞, because of the stability of 2-dimensional persistent Betti
numbers under the multidimensional matching distance [6, Thm. 4.2]. Hence we
have that ε′ ≥ ε− 2‖f −Gs‖∞ ≥ ε− 2‖f − g‖∞. Therefore, if ‖f − g‖∞ is small
enough, we have that ε > 0 implies ε′ > 0.

As a consequence, if ‖f −g‖∞ is small enough, for each (a, b) ∈ C we can con-
sider the unique matching σa,b : Dgm(f∗

a,b) → Dgm(g∗
a,b) obtained by changing

the identity ida,b : Dgm(f∗
a,b) → Dgm(f∗

a,b) according to the change of persis-
tence diagrams induced by the homotopy G∗

s := (1 − s) · f∗
a,b + s · g∗

a,b (see
Proposition 2). Formally, for each proper cornerpoint X of Dgm(f∗

a,b), we set
σa,b(X) = X ′ if and only if the homotopy G∗

s transports X to the cornerpoint
X ′ of Dgm(g∗

a,b).
We have that cost(σa,b) ≤ ‖f∗

a,b − g∗
a,b‖∞ ≤ ‖f − g‖∞. If ĉ is a continuous

path from (ā, b̄) to (a, b) with ĉ([0, 1]) ⊂ C, it is easy to see that the function
σĉ(t) in the variable t describes the transport of σā,b̄ to σa,b made by ĉ with
respect to the pair (f, g), because σĉ(t) depends continuously on t.

Now, let c be a continuous path from (ā, b̄) to (a, b) with c([0, 1]) ⊂ Reg(f)∩
Reg(g). The image of c may be not contained in C, but if (ā, b̄), (a, b) ∈ C, c
is relative homotopic to a path ĉ : [0, 1] → C from (ā, b̄) to (a, b). This path ĉ
transports σā,b̄ to σa,b, too.

Hence we have that cost
(
T

(f,g)
c (σā,b̄)

)
= cost

(
T

(f,g)
ĉ (σā,b̄)

)
= cost (σa,b) ≤

‖f − g‖∞. From this and from the fact that we can choose an arbitrarily small
δ, it follows that minσ∈S supc∈Γ cost

(
T

(f,g)
c (σā,b̄)

)
≤ ‖f − g‖∞ for every c ∈ Γ .

We conclude by observing that the definition of the coherent 2-dimensional
matching distance immediately implies that it is not less informative than the
usual 2-dimensional matching distance. Formally,

Proposition 5. Dmatch(βf , βg) ≤ CDmatch(βf , βg).

4 Conclusions

In this contribution we have introduced the notion of coherent 2-dimensional
matching distance. Similarly to the classical 2-dimensional matching distance, it
is based on defining a suitable family of filtrations associated with lines having a
positive slope; however, this new distance only considers matchings that change
coherently with respect to the filtrations which are taken into account.

Through the paper we formally proved that the coherent matching distance
between 2-dimensional Persistent Betti numbers is well-defined, stable and does
not loose discriminative information with respect to the usual 2-dimensional
matching distance. We believe that these first results make the coherent match-
ing distance deserving further investigation, such as extending the study of its
theoretical properties as well as exploring how to develop computational tech-
niques for its practical evaluation.

The Coherent Matching Distance in 2D Persistent Homology 227

References

1. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D.: A new algorithm for computing the
2-dimensional matching distance between size functions. Pattern Recogn. Lett.
32(14), 1735–1746 (2011)

2. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size
functions for shape comparison. J. Math. Imaging Vis. 32(2), 161–179 (2008)

3. Cagliari, F., Di Fabio, B., Ferri, M.: One-dimensional reduction of multidimensional
persistent homology. Proc. Am. Math. Soc. 138(8), 3003–3017 (2010)

4. Carlsson, G., Singh, G., Zomorodian, A.J.: Computing multidimensional persis-
tence. J. Comput. Geom. 1(1), 72–100 (2010)

5. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discr.
Comput. Geom. 42(1), 71–93 (2009)

6. Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multi-
dimensional persistent homology are stable functions. Math. Methods Appl. Sci.
36(12), 1543–1557 (2013)

7. Cerri, A., Ethier, M., Frosini, P.: A study of monodromy in the computation of
multidimensional persistence. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B.
(eds.) DGCI 2013. LNCS, vol. 7749, pp. 192–202. Springer, Heidelberg (2013)

8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
Discrete Comput. Geom. 37(1), 103–120 (2007)

9. d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching
between reduced size functions. Acta Applicandae Math. 109(2), 527–554 (2010)

10. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and sim-
plification. Discrete Comput. Geom. 28(4), 511–533 (2002)

11. Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Eng. Com-
mun. Comput. 12(4), 327–349 (2001)

12. Lesnick, M.: The theory of the interleaving distance on multidimensional persis-
tence modules. Found. Comput. Math. 15(3), 613–650 (2015)

Persistent Homology on Grassmann Manifolds
for Analysis of Hyperspectral Movies

Sofya Chepushtanova1(B), Michael Kirby2, Chris Peterson2,
and Lori Ziegelmeier3

1 Wilkes University, Wilkes-Barre, PA, USA
sofya.chepushtanova@wilkes.edu

2 Colorado State University, Fort Collins, CO, USA
{kirby,peterson}@math.colostate.edu

3 Macalester College, Saint Paul, MN, USA
lziegel1@macalester.edu

Abstract. The existence of characteristic structure, or shape, in com-
plex data sets has been recognized as increasingly important for mathe-
matical data analysis. This realization has motivated the development of
new tools such as persistent homology for exploring topological invari-
ants, or features, in large data sets. In this paper, we apply persis-
tent homology to the characterization of gas plumes in time dependent
sequences of hyperspectral cubes, i.e. the analysis of 4-way arrays. We
investigate hyperspectral movies of Long-Wavelength Infrared data mon-
itoring an experimental release of chemical simulant into the air. Our
approach models regions of interest within the hyperspectral data cubes
as points on the real Grassmann manifold G(k, n) (whose points para-
meterize the k-dimensional subspaces of Rn), contrasting our approach
with the more standard framework in Euclidean space. An advantage of
this approach is that it allows a sequence of time slices in a hyperspectral
movie to be collapsed to a sequence of points in such a way that some of
the key structure within and between the slices is encoded by the points
on the Grassmann manifold. This motivates the search for topological
features, associated with the evolution of the frames of a hyperspectral
movie, within the corresponding points on the Grassmann manifold. The
proposed mathematical model affords the processing of large data sets
while retaining valuable discriminatory information. In this paper, we
discuss how embedding our data in the Grassmann manifold, together
with topological data analysis, captures dynamical events that occur as
the chemical plume is released and evolves.

Keywords: Grassmann manifold · Persistent homology · Hyperspectral
imagery · Signal detection · Topological data analysis

1 Introduction

Hyperspectral imaging (HSI) technology allows the acquisition of information
across the electromagnetic spectrum that is invisible to humans. In a very real
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 228–239, 2016.
DOI: 10.1007/978-3-319-39441-1 21

Persistent Homology on Grassmann Manifolds for Analysis 229

sense, these cameras allow us to “see the unseen” by including wavelengths
spanning ultraviolet and far infrared. In contrast, humans can observe a very
limited range of the electromagnetic spectrum, i.e. wavelengths of approximately
400–700 nm are visible to the human eye.

Fig. 1. Illustration of one frame, or data cube, of a hyperspectral movie collected with
the Fabry-Pérot Interferometer.

Multi- and hyper-spectral imaging technology has become widely available,
and there is an increasing number of canonical data sets available for scientific
analysis including, e.g. the AVIRIS Indian Pines1 and the ROSIS University of
Pavia2 data sets. In addition, moving objects may be detected with devices such
as the Fabry-Pérot Interferometer [10] which can capture hyperspectral movies
at frame rates of approximately 5 Hz. See Fig. 1 for an illustration. The resulting
4-way arrays of spatial-spectral-temporal data provide a high fidelity view of our
environment and may help in the monitoring of pollution in the air and water.
An application that concerns us in this paper is the characterization of gaseous
plumes as they are released into the environment.

Traditionally, one of the primary applications of hyperspectral image analysis
consists of object detection and classification. The focus is generally on the iden-
tification of anomalous pixels in the image and the determination of the composi-
tion of the materials in the pixel. A range of mathematical tools have been devel-
oped for the analysis of hyperspectral images including, e.g. matched subspaces,
the RX algorithm, and the adaptive cosine estimator [19]. More recently, man-
ifold learning algorithms have been applied to hyperspectral images to exploit
topology and geometry, i.e. mathematical shape, or signatures, in data at the
pixel level [1,18].

The subspace perspective is also taken in this paper, but in the direction of
understanding the topology and geometry of the Grassmann manifold (Grass-
mannian) associated with hyperspectral images, i.e. the manifold parameteriz-
ing the k-dimensional subspaces of n-dimensional space. While we are motivated
by ideas similar to those found in prior applications of manifold learning algo-
rithms, e.g. [1,18], our application data is not at the pixel level. By constructing
1 Available from https://engineering.purdue.edu/∼biehl/MultiSpec.
2 Available from http://www.ehu.es/ccwintco/index.php/.

https://engineering.purdue.edu/~biehl/MultiSpec
http://www.ehu.es/ccwintco/index.php/

230 S. Chepushtanova et al.

subspaces of pixels we are able to exploit the rich metric structure of the Grass-
mannian based on measuring angles between subspaces. The advantage of this
approach is that a set of pixels used to form a subspace is seen to capture the
variability in the data missing in a single pixel observation.

An example that illustrates the power of this framework is the application to
illumination spaces in the face recognition problem. The variation in illumination
on an object may be approximated by a cone captured in a low-dimensional
subspace. Subspace angles can be used to compute similarity of illumination
spaces and the effect on classification accuracy was striking when applied to the
CMU-PIE data set, even on ultra-low resolution images [4]. More recently, tools
have been developed to represent points on Grassmannians via subspace means
[20], or nested flags of subspaces [12]. In another application to video sequence
data, we used the setting of the Grassmannian to extend an algorithm on vector
spaces for detection of anomalous activities [25].

In this paper, we address the question of the existence of topological sig-
natures in the setting of hyperspectral movies mapped to the Grassmannian.
Our approach builds on applying the Grassmannian architecture to hyperspec-
tral movies that has shown promise in preliminary work [6,7]. Here, our focus is
on application of persistent homology (PH) to the characterization of the evo-
lution of chemical plumes as acquired by hyperspectral movie data sets. As in
the application to face recognition, we encode a single frame of a hyperspectral
movie (or a collection of pixels of a single frame in the movie) as a point on the
Grassmann manifold. We speculate that this manifold representation affords a
form of compression of information while capturing essential topological struc-
ture. We consider the application of this approach to the characterization of
chemical signals as measured by the Long-Wavelength Infrared (LWIR) data set
[10]. Our goal is to establish the existence of topological signatures that can
provide insight into the evolution of complex 4-way data arrays.

The paper outline includes an overview of PH in Sect. 2 and the geometry of
the Grassmannian in Sect. 3. Computational experiments are discussed in Sect. 4
and conclusions are given in Sect. 5.

2 Persistent Homology

Homology is an invariant that measures features of a topological space and can
be used to distinguish distinct spaces from one another [16]. Persistent homology
encodes a parameterized family of these homological features. It is a computa-
tional approach to topology that allows one to answer basic questions about
the structure of point clouds in data sets at multiple scales [3]. This proce-
dure involves (1) interpreting a point cloud as a noisy sampling of a topological
space, (2) creating a global object by forming connections between proximate
points based on a scale parameter, (3) determining the topological structure
made by these connections, and (4) looking for structures that persist across
different scales. PH has been used to understand the topological structure of

Persistent Homology on Grassmann Manifolds for Analysis 231

data arising from applications including [8,11,17,21,22,24]. For a detailed dis-
cussion of homology, see [16], and for further discussions of persistent homology,
see [3,14,15].

One way to associate a family of topological objects with a point cloud is to
use the points to construct a family of nested simplicial complexes. The Vietoris-
Rips complex builds a simplicial complex Sε with vertices as the data points
and higher dimensional k-simplices formed whenever k + 1 points have pairwise
distances less than ε. The k-dimensional holes of this simplicial complex generate
a homology group Hk(Sε) whose rank, known as the k-th Betti number, counts
the number of k-dimensional holes. For instance, Betti0 measures the number of
connected components (clusters) of the point cloud, while Betti1 indicates the
existence of topological circles (loops), or periodic phenomenon. To avoid picking
a specific scale ε, persistent homology seeks structures that persist over a range
of scales, exploiting the fact that as ε grows, so do the simplicial complexes
Sε1 ⊆ Sε2 ⊆ Sε3 ⊆ . . . indexed by the parameters ε1 ≤ ε2 ≤ ε3 ≤ Thus, PH
tracks homology classes of the point cloud along the scale parameter, indicating
at which ε a kth order hole appears and for which range of ε values it persists.
The Betti numbers, as functions of the scale ε, can be visualized in a distinct
barcode for each dimension k [15].

0 0.2 0.4 0.6 0.8

D
im

en
si

on
 0

0 0.2 0.4 0.6 0.8

D
im

en
si

on
 1

Fig. 2. Betti0 (top right) and Betti1 (bottom right) barcodes corresponding to point
cloud data sampled from the unit circle (left).

Figure 2 is an example of the k = 0 and k = 1 barcodes generated for a
point cloud sampled from a circle. Each horizontal bar begins at the scale where
a topological feature first appears and ends at the scale where the feature no
longer remains. The kth Betti number at any given parameter value ε is the
number of bars that intersect the vertical line through ε. Short-lived features are
often considered as noise while those features persisting over a large range of scale
represent true topological characteristics. In the case of Betti0, at small values of
ε there will be a distinct bar for each point, as the simplicial complex Sε consists
of isolated vertices. At large values of ε, only one bar remains, as all data will
eventually connect into a single component. For the circle, Betti0 = Betti1 = 1
which correspond to the number of connected components and number of loops,
respectively, shown by the longest (persistent) horizontal bars in each plot. We
use JavaPlex, a library for computing PH and TDA in this paper [23].

232 S. Chepushtanova et al.

3 The Geometry of the Grassmann Manifold

The (real) Grassmann manifold G(k, n) is a parameterization of all k-dimensional
subspaces of n-dimensional space [13]. A point on G(k, n) can be represented by
a tall n × k matrix Y with the property that Y T Y = Ik where Y is an element
of the equivalence class �Y � consisting of all matrices of the form Y Q with
Q ∈ O(k), the orthogonal group that consists of k × k orthogonal matrices [13].

Hyperspectral data is a 3-way cube x × y × λ that can be mapped to points
in a Grassmannian in a variety of ways. Here, we select a subset of k frequencies
λi. For each of the k frequencies we propose to “vectorize” the xy = n spatial
components to form an n × k matrix X. It is assumed that the construction is
such that k < n/2−1 so subspaces don’t overlap trivially. To map X to a matrix
Y representing a point on the Grassmann we compute any orthogonal basis for
the column space of X. For instance, the n × k matrix U in the thin singular
value decomposition X = UΣV T provides one option as a representation of a
point on the Grassmanian G(k, n).

The mapping described above allows us to construct a sequence of points
on G(k, n), each one taken from the same spatial location in the 3-way array
of hyperspectral pixels or from the same frame of a hyperspectral movie. The
pairwise distances between the points in this sequence are computed in terms of
the principal angles between the subspaces. The implementation of the Grass-
mannian framework is, in part, motivated by the rich metric structure of a variety
of distance measures including the chordal, geodesic, and Fubini-Study distances,
which are all functions of the k principal angles between the subspaces [2,9].

The experiments in this paper use the (pseudo)distance between two sub-
spaces measured by the smallest principal angle. This (pseudo)distance has been
effective in other numerical experiments [4,6], and in fact, we observed, in the
experiments in this paper, that using it resulted in stronger topological signals
than other distance measures. Once a distance matrix for the points on the
Grassmannian is computed, we apply PH to determine topological structure.
In particular, we explore Betti0 barcodes to estimate the number of connected
components and Betti1 barcodes to detect topological circles. The goal is to
associate physical properties in the HSI image that relate to these structures.

4 Experimental Results

In this section, we apply PH to Long-Wavelength Infrared (LWIR) multispectral
movies, each of an explosive release of a chemical and resulting toxic plume
which travels across the horizon of the scene [10]. The simulants released included
Triethyl Phosphate (TEP) and Methyl Salicylate (MeS) in quantities of 75 kg and
150 kg, respectively. The LWIR data sets are captured using an interferometer
in the 8–11 μm range of the electromagnetic spectrum. A single frame, or data
cube, of this movie consists of 256×256 pixels collected at 20 IR bands. A given
movie is a sequence of data cubes consisting of pre-burst and post-burst frames.

The purpose of this paper is not to propose a new algorithm for detecting
chemical plumes but rather to investigate the topological features associated

Persistent Homology on Grassmann Manifolds for Analysis 233

Fig. 3. The ACE detector on LWIR data cubes: (a) ACE values of a pre-burst cube
indicating that no plume is detected; (b) ACE values of a post-burst cube with a plume
detected. We have magnified the plume region to illustrate the performance of the ACE
detector.

with a known plume. The data processing workflow consists of the following
steps: (1) band selection, (2) identification of the region containing the chemical
plume, (3) mapping data to the Grassmannian, (4) computing (pseudo)distances
on the Grassmannian using the smallest principal angle, (5) determination of PH
Betti0 and Betti1 barcodes, and, finally, (6) interpretation of the structure in
the data as encoded by the topological invariants. We describe more detail of
steps (1) and (2) below.

Band Selection. We applied the sparse support vector machine (SSVM) algo-
rithm for optimal in situ band selection, i.e. the SSVM identifies wavelengths
that best discriminate the plume from the natural background [5]. In another
approach, we visually choose bands which have the strongest plume signal in data
cubes which have had the background removed and thus, have visible plume.

Plume detection. The location of the chemical plume in the post-burst cubes
is determined using the well-known adaptive-cosine-estimator (ACE) [19]. The
ACE detector is one of the benchmark hyperspectral detection algorithms which
computes the squared cosine of the angle between the whitened test pixel and
the whitened target’s spectral signature. Based on a chosen threshold, an ACE
score indicates if the chemical is present in the test pixel. Figure 3a depicts an
image corresponding to a cube without a plume, and Fig. 3b depicts a cube with
a chemical plume detected by the ACE.

4.1 Experiment on Triethyl Phosphate Movie

We first consider the 561 frame multispectral movie of the data collection event
of chemical Triethyl Phosphate (TEP) being released into the air. The data
consists of the raw, unpreprocessed data including background clutter. It was
determined that the wavelengths {9.53, 8.30, 10.68} (nm) were optimal for dis-
criminating TEP from background using the SSVM band selection algorithm.

234 S. Chepushtanova et al.

In this experiment, we determine Betti0 barcodes using all 561 TEP cubes,
where 4 × 8 × 3 subcubes have been extracted from regions of each data cube
along the plume location region.

The Betti0 barcode in Fig. 4a arises from the 561 Grassmanian points cor-
responding to the left horizon 4 × 8 × 3 region in each data cube, limited by
pixel rows 124 to 127 and pixel columns 34 to 41. This region belongs to the
area when a plume forms and first becomes visible at frame 112 as detected
by the ACE. At scale ε = 1.5 × 10−3, there are 31 bars corresponding to 31
connected components on G(3, 32), with 28 isolated points from frames 111 to
142, one cluster containing frames {134, 135, 137}, one cluster containing frame
519, and another containing all other frames. At scale ε = 2 × 10−3, we have
19 bars corresponding to 19 connected components on G(3, 32), with 18 isolated
frames from 112 to 129, and one cluster containing all the rest. These bars per-
sist for a large range of parameter value (to just beyond 3 × 10−3), indicating a
large degree of separation. At ε = 4 × 10−3, we have 13 clusters with 11 isolated
frames 112, 114 to 118, 120 to 123 and 125, one cluster of frames {119, 124},
and another containing everything else; see also [7]. Cubes following frame 111
are where the plume first occurs with the highest concentration of chemical, and
the composition of the plume changes quickly as time progresses. PH detects
separation of these cubes from pre-plume cubes and those cubes where plume
no longer remains at multiple scales.

Fig. 4. (a) Betti0 barcode generated on 4×8×3 left horizon (plume formation) region
limited by pixel rows 124–127 and columns 34–41, through all 561 TEP cubes, mapped
to G(3, 32). (b) Betti0 barcode generated on 4 × 8 × 3 horizon region limited by pixel
rows 124–127 and columns 75–82, through all 561 TEP cubes, mapped to G(3, 32).

After the plume is released, the plume drifts to the right in the multispectral
movie as time progresses. We now consider a plume patch corresponding to
a horizon region located to the right of the original plume location discussed
above. That is, a 4 × 8 × 3 patch is drawn from pixel rows 124 to 127 and pixel
columns 75 to 82 for each of the 561 data cubes in the TEP movie. This data
is embedded in G(3, 32), and PH is implemented to uncover the structure of
the data. Figure 4b contains the 0-dimensional barcode. Analyzing connected
components as ε varies, we observe that they differ from those found in the
previous experiment, see Fig. 4a. At scale ε = 1.5 × 10−3, we have 52 connected

Persistent Homology on Grassmann Manifolds for Analysis 235

components on G(3, 32) corresponding to 47 isolated points from 119 to 141, 145
to 165, and 170 to 172. The other points are connected into four smaller clusters
{142,143,144}, {166,167}, {168,169}, and {173,174}, and one cluster containing
all the other points. At scale ε = 2 × 10−3, there are 30 connected components
on the Grassmannian, including 25 isolated points from 119 to 127, 129 to 140,
149, and 151 to 156; four clusters each containing {128,136–138}, {141–150},
{157,158}, {162–164}; and one cluster containing all the rest. Further, at scale
ε = 3 × 10−3, the barcode plot has 5 bars that persist over a large range of
values, namely, up to a little beyond 4 × 10−3: 4 isolated points from frame 121
to 124 and one cluster containing all the rest.

We observe that for this region, PH separates points from frame 119 and later,
in contrast to the frames separated from frame 112 in the previous experiment
(Fig. 4a). Note that points corresponding to frames 112 to 118 are “plume-free”
as the plume does not reach this region until frame 119. It is also interesting to
note that points corresponding to frames 121 to 124 are kept isolated for a large
range of scales, i.e. they are far away from each other and the rest of the points.
PH, under the Grassmannian framework, treats these frames as being the most
distinct in this region.

4.2 Experiments Detecting a Loop in Methyl Salicylate Movie

The next two experiments consider the multispectral movie of the data collection
event of chemical Methyl Salicylate (MeS) being released into the air, consisting
of 829 frames. Here we use 3 out of 20 wavelength bands {10.57,10.68,10.94} (nm)
that were determined by visual inspection of a background-removed data cube
where plume was present. These bands, in particular, were selected as strong
plume signal was visible at these corresponding wavelengths. In this movie, the
plume first becomes visible at frame 32.

In the first experiment, we construct a sliding window along the horizon,
where the plume is released, in both a frame with and without a plume present
(frames 32 and 1, respectively) to compare the topological structure of each.
This sliding window is constructed by selecting 4 × 8 × 3 patches of each frame
limited by rows 125–128 and columns 190–245 where each new point samples
8 columns, incrementing by one. Each patch is then embedded into G(3, 32)
and the topological structure is analyzed with PH. In this experiment and the
next, our focus is on the Betti1 information which measures the number of loops
present in the data.

Observe in Fig. 5 that no persistent topological circle is present in the Betti1
barcode of frame 1, while a persistent loop is present in the Betti1 barcode of
frame 32. This is interpreted as follows. In frame 32, where a plume is present,
the sliding window first constructs points in G(3, 32) of the natural background,
then traverses through points that contain plume, finally returning to points of
the natural background. This creates a closed loop in G(3, 32). This behavior is
captured in the topological structure of the plume cube. On the other hand, the
sliding window in frame 1 only has points in G(3, 32) of the natural background,
and thus, no persistent loop is formed in this space.

236 S. Chepushtanova et al.

0.45 0.5 0.55 0.6 0.65

D
im

e
n
s
io

n
 1

(a)

0.4 0.5 0.6 0.7

D
im

e
n
s
io

n
 1

(b)

Fig. 5. Data constructed by sliding a window along the horizon region of a single frame
of the MeS movie, embedded into G(3, 32) and analyzed with PH. (a) Betti1 barcode
of frame 1. (b) Betti1 barcode of frame 32. Observe that a persistent loop is present.

We mention that this experiment was done on background removed frames.
In analysis with raw data, loops were not as prevalent with this framework.
However, the next experiment does in fact use raw data in our analysis.

In the second experiment, we consider the first one hundred frames of the
MeS cubes and focus on a “plume location” patch of size 4 × 8 × 3, limited by
pixel rows 125 to 128 and pixel columns 217 to 224, embedded into G(3, 32) for
each cube.

Figure 6a displays the Betti0 and Betti1 barcodes from applying PH to this
Grassmannian data. A fairly persistent bar appears in the Betti1 barcode that
begins at ε = 0.00979 and ends at ε = 0.0141. This represents a loop through the
data in G(3, 32). All other bars are considered as noise. Let us inspect this loop
further. It begins once all of the data has been connected into a single component
(refer to ε = 0.00979 in the Betti0 barcode). The maximum pairwise distance–
measured by the smallest angle between subspaces–for this data is 0.0308. This
loop persists until just under half this distance.

We conclude the following from this experiment. The first few frames start
with a fixed background. Then, the plume begins to form, spreading through the
plume patch until the plume no longer remains in the 4×8×3 sampled region. The
remaining cubes then return to a fixed background, reflecting periodic behavior
in the data. This collection of cubes traces out a closed loop, encoded in the
Grassmann manifold G(3, 32). PH captures this loop in the persistent Betti1
bar. Figure 6b displays a schematic of one possibility in the equivalence class of
the edges that form this loop. While not all data cubes are present, we notice
that those cubes immediately following 31 connect to one another sequentially.
This is when the chemical is first released and begins to evolve. Cubes before this
frame (where no plume is present) do not follow sequentially and connect with
later cubes which no longer contain plume in the sampled plume patch. That
is, the time dependent information of ‘pre-plume’ and ‘post-plume’ cubes–which
simply contain information about the natural background and not the evolving
plume–is not as important as ‘plume’ cubes.

Persistent Homology on Grassmann Manifolds for Analysis 237

Fig. 6. (a) Betti0 and Betti1 barcodes generated on 4× 8× 3 plume locations limited
by pixel rows 125–128 and columns 217–224, of the first one hundred frames of the MeS
movie, mapped to G(3, 32). (b) Schematic of the edges forming the persistent Betti1
feature.

5 Conclusion

We propose a geometric and topological model for capturing dynamical changes
in hyperspectral movies. The HSI data cubes (or a sequence of pixel patches)
are viewed as a sequence of points on the Grassmann manifold. The tools of
persistent homology are then applied to capture topological novelty in the setting
of the Grassmann manifold. This approach models cubes as points, a technique
that permits the processing of potentially large amounts of data while retaining
basic dynamical structure.

The dynamic structure recorded by the multispectral movie of the gas plume
consisting of the simulant Triethyl Phosphate was illuminated in the Betti0
barcodes. Frames containing the plume were identified as topological singletons,
i.e. isolated points on the manifold for large ranges of scale. Grassmann points
before the release, as well as long after the release, appeared as clusters of points.
At a location to the right of this region, we see that later frames had a similar
behavior, indicating that the geometric model of the Grassmannian allows the
dynamics of the scene to be effectively characterized in a topological sense.

In the next two experiments, we use the Betti1 barcode on the movie of
the release of Methyl Salicylate mapped to the Grassmannian to reveal that a
closed loop is present on the manifold, again reflecting the evolution of the plume.
First, we consider a sliding window of pixels along the plume location region and
observe that a loop is present in a frame with a plume unlike a frame without
a plume. Second, we consider a patch of pixels in each of the first one hundred
frames and observe a closed loop that encompasses frames immediately following
the release of the chemical in a sequential manner. We mention that in other
HSI movies in the LWIR data set, when the amount of chemical released was
not as much as in the MeS cubes, the signal of this loop was not as strong. These
experiments illustrate that the use of the Grassmann manifold together with PH
provide insight into the presence and concentration of chemical contamination
in a hyperspectral movie.

238 S. Chepushtanova et al.

Acknowledgments. This paper is based on research partially supported by the
National Science Foundation grants DMS-1228308, DMS-1322508. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

References

1. Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Exploiting manifold geometry in
hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(3), 441–454 (2005)

2. Björck, Å., Golub, G.H.: Numerical methods for computing angles between linear
subspaces. Math. Comput. 27(123), 579–594 (1973)

3. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
4. Chang, J.-M., Kirby, M., Kley, H., Peterson, C., Draper, B.A., Beveridge, J.R.:

Recognition of digital images of the human face at ultra low resolution via illumi-
nation spaces. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007,
Part II. LNCS, vol. 4844, pp. 733–743. Springer, Heidelberg (2007)

5. Chepushtanova, S., Gittins, C., Kirby, M.: Band selection in hyperspectral imagery
using sparse support vector machines. In: Proceedings of the SPIE, vol. 9088, pp.
90881F–90881F-15 (2014)

6. Chepushtanova, S., Kirby, M.: Classification of hyperspectral imagery on embed-
ded Grassmannians. In: Proceedings of the 2014 IEEE WHISPERS Workshop,
Lausanne, Switzerland, June 2014

7. Chepushtanova, S., Kirby, M., Peterson, C., Ziegelmeier, L.: An application of
persistent homology on Grassmannians manifolds for the detection of signals in
hyperspectral imagery. In: Proceedings of the IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), Milan, Italy, July 2015

8. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data.
In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp.
386–397. Springer, Heidelberg (2009)

9. Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings
in grassmannian spaces. Exp. Math. 5, 139–159 (1996)

10. Cosofret, B.R., Konno, D., Faghfouri, A., Kindle, H.S., Gittins, C.M., Finson, M.L.,
Janov, T.E., Levreault, M.J., Miyashiro, R.K., Marinelli, W.J.: Imaging sensor
constellation for tomographic chemical cloud mapping. Appl. Opt. 48, 1837–1852
(2009)

11. Dabaghian, Y., Memoli, F., Frank, L., Carlsson, G.: A topological paradigm for
hippocampal spatial map formation using persistent homology. PLoS Comput.
Biol. 8(8), e1002581 (2012)

12. Draper, B., Kirby, M., Marks, J., Marrinan, T., Peterson, C.: A flag representation
for finite collections of subspaces of mixed dimensions. Linear Algebra Appl. 451,
15–32 (2014)

13. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogo-
nality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

14. Edelsbrunner, H., Harer, J.: Persistent homology - a survey. Contemp. Math. 453,
257–282 (2008)

15. Ghrist, R.: Barcodes: The persistent topology of data. Bull. Am. Math. Soc. 45(1),
61–75 (2008)

16. Hatcher, A.: AlgebraiC Topology. Cambridge University Press, Cambridge (2002)

Persistent Homology on Grassmann Manifolds for Analysis 239

17. Heath, K., Gelfand, N., Ovsjanikov, M., Aanjaneya, M., Guibas, L.J.: Image webs:
computing and exploiting connectivity in image collections. In: 2010 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 3432–3439. IEEE
(2010)

18. Ma, L., Crawford, M.M., Tian, J.: Local manifold learning-based-nearest-neighbor
for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(11),
4099–4109 (2010)

19. Manolakis, D.: Signal processing algorithms for hyperspectral remote sensing of
chemical plumes. In: IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2008, pp. 1857–1860, March 2008

20. Marrinan, T., Draper, B., Beveridge, J.R., Kirby, M., Peterson, C.: Finding the
subspace mean or median to fit your need. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1082–1089. IEEE (2014)

21. Perea, J.A., Harer, J.: Sliding windows and persistence: An application of topolog-
ical methods to signal analysis. Foundations of Comput. Math., pp. 1–40 (2013)

22. Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., Ringach, D.L.:
Topological analysis of population activity in visual cortex. J. Vis. 8(8), 11 (2008)

23. Adams, H., Tausz, A., Vejdemo-Johansson, M.: JavaPlex: a research software pack-
age for persistent (co)homology. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS,
vol. 8592, pp. 129–136. Springer, Heidelberg (2014)

24. Topaz, C.M., Ziegelmeier, L., Halverson, T.: Topological data analysis of biological
aggregation models. PLoS ONE 10(5), e0126383 (2015). http://dx.doi.org/10.1371

25. Wang, K., Thompson, J., Peterson, C., Kirby, M.: Identity maps and their exten-
sions on parameter spaces: applications to anomaly detection in video. In: Pro-
ceedings Science and Information Conference, pp. 345–351 (2015)

http://dx.doi.org/10.1371

Persistence Based on LBP Scale Space

Ines Janusch(B) and Walter G. Kropatsch

Pattern Recognition and Image Processing Group,
Institute of Computer Graphics and Algorithms, TU Wien, Vienna, Austria

{ines,krw}@prip.tuwien.ac.at

Abstract. This paper discusses the connection between the texture
operator LBP (local binary pattern) and an application of LBPs to
persistent homology. A shape representation - the LBP scale space -
is defined as a filtration based on the variation of an LBP parameter.
A relation between the LBP scale space and a variation of thresholds
used in the segmentation of a graylevel image is discussed. Using the
LBP scale space a characterization of (parts of) shapes is demonstrated
based on simple shape primitives, the observations may also be general-
ized for smooth curves. The LBP scale space is augmented by associating
it with polar coordinates (with the origin located at the LBP center).
In this way a procedure of shape reconstruction based on the LBP scale
space is defined and its reconstruction accuracy is demonstrated in an
experiment. Furthermore, this augmented LBP scale space representa-
tion is invariant to translation and rotation of the shape.

Keywords: LBP · Persistence · Scale space · Filtration · Shape
analysis · Shape reconstruction · Segmentation

1 Introduction

Biasotti et al. note in [1] that a digital model of an object is quantitatively
similar to the object, while a description is only qualitatively similar. The authors
further quote a clear distinction between representation and description:

“An object representation contains enough information to reconstruct (an
approximation to) the object, while a description only contains enough
information to identify an object as a member of some class.” [1, p. 5]

Following this definition we study in this paper a novel shape representation based
on topological persistence and on local binary patterns (LBPs): the LBP scale
space. We show that an approximate reconstruction of the shape is possible using
the LBP scale space. The shape representation is given as a vector of the persis-
tence of LBP types around a center pixel. It may as such also be used to classify
and compare shapes and can thus also be seen as a topological shape descriptor.

Shape description based on topological persistence is for example defined
by the size functions described by Verri et al. [2] which represent the persis-
tent Betti number β0. Carlsson et al. presented persistence barcodes for shape
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 240–252, 2016.
DOI: 10.1007/978-3-319-39441-1 22

Persistence Based on LBP Scale Space 241

description and classification [3]. For shape retrieval the shapes may for example
be compared based on their persistence diagram using the matching distance as
presented by Cerri et al. [4]. Barcodes encode the persistent homology of a data
set in the form of a parametrized version of a Betti number [5]. Barcodes visu-
alize the lifetime for which a features persist and therefore encode multisets of
intervals in R. While a persistence diagram is “a multiset of points (u, v) whose
abscissa and ordinate are, respectively, the level at which a new k-homology
class is created and the level at which it is annihilated through the filtration”
[4, p. 2]. This filtration produces a sequence of nested spaces. While the filtra-
tion grows, topological features appear (birth) or disappear again (death). The
interval between the birth and the death of such a feature, its lifetime, is its
persistence. A filtration is for example given by the level cuts of a Morse func-
tion on a manifold, as it is used to derive a Reeb graph (another topological
shape representation) [6]. The simplest way to obtain a Reeb graph of an image
or a 3D shape is to use a height function as a Morse function. In the same way
persistence diagrams or barcodes can be determined using a filtration based on
a height function. Such topological shape representations based on a filtration
are in general dependent on the filtration. Especially height functions are not
invariant to rotations of the shape and therefore lack in representational power.

The proposed LBP scale space represents a shape based on changes of the
local topology captured by LBPs of increasing radii1. Since the LBP takes a
circle around a center pixel into consideration, this representation is invariant
to translation and rotation of the shape. The LBP scale space can be further
extended by associating polar coordinates with the observed local topology. In
this way the LBP scale space provides the possibility of reconstruction of the
shape (for a discrete LBP scale space up to the sampling of the scale space)
based solely on this shape descriptor.

The rest of the paper is structured as follows: Sect. 2 describes the way in
which the LBP texture operator captures local topology. In Sect. 3 filtrations
using LBPs are presented. The LBP operator is used to derive a shape descriptor
based on its persistence - the LBP scale space. Two experiments were conducted:
a study of the behaviour of the LBP scale space for special shapes (primitives)
and an approach to shape reconstruction based on the LBP scale space. These
experiments and the results are discussed in Sect. 4. Section 5 concludes the paper
and gives an outlook to future work.

2 Capturing Topology Using LBPs

Although originally proposed as a tool of texture classification, LBPs have in
the past also been studied as tool of topological shape and image analysis. For a
given grayscale digital image I, the local-binary-pattern codification of I : LBP(I)
again yields a grayscale digital image. The grayvalues of LBP(I) are now LBP
codes that are used to represent the texture element at each pixel in I. However,
1 Note that our scale space therefore differs from a scale space obtained through

Gaussian smoothing with diverse variances.

242 I. Janusch and W.G. Kropatsch

the LBP codes not only capture local texture information, they also describe the
local topology observed.

2.1 Introduction to LBPs

LBPs were first introduced for texture classification [7] and since then became
popular texture operators. An LBP computation around a pixel p = (x, y) stud-
ies the grayvalues along a subsampled circle of a specific radius r around p. Each
position in a bit pattern (corresponding to the sampling points along the circle)
is set to 1 if the grayvalue at the sampling point (g(xi)) is larger than or equal
to the grayvalue of the center pixel (g(p)) and to 0 otherwise (Fig. 1a and b):

s(xi) =

{
1 if |g(p) − g(xi)| ≥ 0
0, otherwise

(1)

The two parameters P and r determine the LBP computation: P fixes the num-
ber of sampling points along a circle of radius r around the center pixel, for
which the LBP operator is computed [8]. Figure 1c shows different parameter
configurations. By varying r we may examine concentric circles around p, the
LBP is given by c(x, y, r).

2.2 Connected Components of a Graylevel Image

A binary segmentation of a graylevel image is easily obtained as level sets using
a threshold t or an interval around the threshold t:

|g(x, y) − t| ≤ ε (2)

Such a threshold interval is also used in the LBP computation of robust local
binary patterns (RLBPs) [9]:

s(xi) =

{
1 if |g(p) − g(xi) + t| ≥ 0
0, otherwise

(3)

According to Eq. (2) the image is then segmented into several connected com-
ponents Ci, i = 1, ..., n. One such connected component Ca consists of either:

(a) comparison
with neighbours

(b) bit pattern (c) (P,r) = (8,1); (P,r) = (16,2); (P,r) = (8,2) -
according to [8].

Fig. 1. (a) and (b) LBP computation for center pixel p and (c) variations of the para-
meters P (sampling points) and r (radius).

Persistence Based on LBP Scale Space 243

1. grayvalues that are inside the defined interval around t± ε so called plateaus:
g(x, y) ∈ Ca : t − ε ≤ g(x, y) ≤ t + ε,

2. grayvalues that are larger than the threshold interval t + ε so called maxima:
g(x, y) ∈ Ca : g(x, y) > t + ε,

3. or grayvalues that are smaller than the threshold interval t − ε so called
minima:
g(x, y) ∈ Ca : g(x, y) < t − ε.

The input image is thus segmented into connected components, each of them
belonging to one of the mentioned categories: plateau, minimum and maximum.
The connected components (which may have holes) are surrounded by closed
boundaries b(x, y).

2.3 Local Topology Based on LBP Types

In previous work we defined a shape descriptor based on persistence of LBP
types around critical points of a shape [10]. For this purpose we analysed a
binary shape based on LBPs. We computed LBP types which describe the local
topology of the foreground region around the center pixel p. The LBP types
are defined by the number of transitions from 0 to 1, respectively vice versa
(bit-switches) in the LBP code.

– (local) maximum (no bit-switches: the bit pattern contains only 0s),
– (local) minimum (no bit-switches: the bit pattern contains only 1s),
– plateau (no bit-switches: the bit pattern contains only 1s, but all pixels of the

region have the same gray value),
– slope (two bit-switches - compare uniform patterns [8]),
– saddle point (four or more bit-switches) [11].

In a segmented image these bit-switches BS correspond to the intersections of
the boundary of the connected component which holds p and the LBP circle of
radius r:

BS = b(x, y) ∩ c(x, y, r) (4)

Note that the LBP types not necessarily correspond to the types of connected
components as defined in the previous section.

3 LBP Based Persistence

In persistence, those features which persist for a parametrised family of spaces
over a range of parameters are considered signals of interest. Short-lived features
are treated as noise [5]. The persistence of a feature is given as its lifetime, the
span in between the birth and the death of a feature according to a filtration
of a space which is “a filtered space, a nested sequence of subspaces that begins
with the empty and ends with the complete space” [12, p. 5].

244 I. Janusch and W.G. Kropatsch

Fig. 2. Increasing the radius r for a fixed center p shifts the intersections with b along
the boundary b (blue arrows). Varying ε moves the intersections along the LBP circle
(orange arrows). (Color figure online)

3.1 Filtration Based on LBPs

Using LBPs we may perform a filtration either:

1. by varying the radius r of the LBP computation c for a fixed boundary b,
2. or by varying the parameter ε of the segmentation thus varying b, for a fixed r.

Varying the radius r of the LBP computation c corresponds to a movement
along the boundary b (blue arrows in Fig. 2), while varying ε (varying the bound-
ary b) leads to a movement along the circle defined by r and p (orange arrows in
Fig. 2). By continuously increasing the radius r the intersection points are mov-
ing towards or away from each other along the boundary b. For a certain radius
the circle will not intersect the boundary anymore but touch it in one point.
By further increasing the radius a pair of intersections will disappear or,

Fig. 3. Configurations of intersections observed when varying the radius allow assump-
tions about a shape’s connected components.

Persistence Based on LBP Scale Space 245

Fig. 4. Characterisation of shape parts based on the LBP scale space.

ultimately the whole shape will be inside the circle of radius r, this corresponds
to an LBP of type maximum.

The persistence of an LBP type can be measured by the movement of the
intersection points along the boundary b: For a certain radius r the circle of
the LBP computation c intersects the closed boundary b 2n times (apart from
osculation points). These intersections divide the shape in n + 1 regions and
2n boundary segments (in a persistence diagram: a “birth” for each region /
segment). By increasing r the intersection points are moving along b. Once two
intersection points coincide the LBP type changes (in the persistence diagram
the “death” of the respective segment / region).

Assumptions about a connected component’s structure can be made by vary-
ing the radius r of the LBP computation c with fixed center p. By analysing
the configurations of intersections (bit-switches BS) observed when increasing
r a conclusion about characteristics of the shape’s boundary can be drawn (see
Fig. 3). Moreover, further connected components in the vicinity can be detected.
A connected component is divided into several parts that are either covered by
the LBP circle of a certain radius or not. These parts can be characterized as
follows (see also Fig. 4):

1. inside a shape (interior): The shape is simply connected and corresponds to
the bounded connected component of the Jordan curve theorem. Parts inside
a shape are identified by intersection points that are moving closer to each
other along the boundary for increasing LBP radii until they converge in
osculation points.

2. outside a shape (exterior): This connected component is unbounded, indicated
by intersection points that diverge along the boundary for increasing LBP radii.

3. holes: A hole in the foreground connected component can show no intersec-
tions with the LBP circle because it is fully contained inside the LBP circle
or not at all covered by the LBP circle. A hole that is intersected by the LBP
circle needs special consideration: the shape is divided in parts inside and
outside the LBP circle. Since the hole is intersected by the LBP circle, the
hole is reduced to concavities along the boundaries of these individual shape
parts - the topology changes.

246 I. Janusch and W.G. Kropatsch

(a) regular sampling (b) sampling at critical points

Fig. 5. LBP scale space in the (a) a discrete case showing an example sampling scheme
and (b) in the continuous case - the osculation points marked along the red LBP circles
are critical points at which the topology changes. (Color figure online)

3.2 LBP Scale Space

The LBP scale space is a novel shape representation proposed in this paper. For
a chosen pixel or point of a shape or connected component (as LBP center) we
compute the LBP over a range of scales (range of LBP radii). We may start with
a radius of 0 and increase it either continuously or in the discrete case according
to a predefined sampling scheme (for example increasing always by 1 to cover all
integer radii, which corresponds to the full pixel resolution). Figure 5 illustrates
the LBP scale space for regular sampling and sampling at critical points.

We are interested in the local topology captured by the LBPs for varying
radii. We therefore consider the number of bit-switches observed for each of
the LBP radii analysed. This shape representation can be stored as a vector or
matrix (depending on the sampling and whether the radii need to be explicitly
stored as well). The LBP scale space may be used as a shape descriptor for
classification or recognition purposes, as we showed for a similar shape descriptor
in [10]. Moreover, the LBP scale space enables the reconstruction of a shape
based on this representation. For this purpose, we extend the LBP scale space by
polar coordinates. This procedure is discussed in more detail in the experiments
Sect. 4.2.

4 Experiments

The conducted experiments include a thorough study of characteristics of the
proposed LBP scale space on simple shapes (primitives) and an application to
shape representation and reconstruction based on the LBP scale space. As test
dataset for the shape reconstruction we use a dataset of binary shapes.

Persistence Based on LBP Scale Space 247

4.1 Shape Analysis - Special Cases

We study two simple shapes (primitives): we start with the simplest shape - a
circle, before moving on to an already more generalised shape - an ellipse. For
this experiment we study the shape primitives using our LBP scale space with
the center pixel of the LBP computation located inside the shape. Based on the
LBP scale space derived for varying LBP center locations inside the shape, we
categorize parts of the shape according to the LBP scale space. This experiment
is related to a shape descriptor based on the LBP scale space that we presented
in previous work [10], since it may identify locations within the shape which are
well suited as well as parts that may not be suitable at all as centers for this
shape description.

This study although conducted on circles and ellipses is not limited to these
shapes: By computing the medial axis of a shape and splitting the shape into
parts at skeleton branching points we can derive a normalised shape represen-
tation by straightening the skeleton segments. Any shape may therefore be rep-
resented by circles (according to the medial axis) or more general by ellipses. In
addition, we show that some observations made for the shape primitives can be
generalised to smooth curves.

Circle: For a circle with radius rc we can distinguish the following two cases:

1. LBP center coincides with center of the shape (circle):
In this case there are either no intersection points between the LBP circle and
the shape (the LBP radius is smaller or larger than rc) or the whole boundary
of the shape intersects with the LBP circle (the LBP radius equals rc).

2. LBP center at any location within the shape, other than the circle’s center:
We observe one intersection point t1 for the LBP circle with radius equal to
the smallest distance to the boundary and this boundary itself. When increas-
ing the LBP radius we observe two intersection points which move away from
t1 until they converge at the second osculation point of the boundary and the
LBP circle t2. We thus observe the following sequence of number of intersec-
tions: 0-1-2-1-0.

Ellipse: For an ellipse there are four cases to distinguish. We start with the
most general case (1) since all others (2–4) are special cases of it:

1. The LBP center is located inside the ellipse but not on the ellipse’s axes:
We observe one intersection point between the LBP circle and the shape’s
boundary (LBP radius equal to the smallest distance of the LBP center
to the shape boundary). For increasing radii we observe two intersection
points which move away from each other and for further increasing radii three
intersections (one of them a degenerate intersection). Increasing the radius
even further yields four intersections. The intersection points in each case in
pairs move away from each other and towards each other along the shape’s
boundary, until two of them converge. Here we observe three intersections,

248 I. Janusch and W.G. Kropatsch

for increasing radii again two intersections until these two as well converge
in one osculation point for the maximum radius. The sequence of number of
intersections therefore is: 0-1-2-3-4-3-2-1-0.

2. The LBP center is located at the major axis of the ellipse:
The smallest distance to the shape’s boundary is smaller than or equal to the
radius of the circle of curvature for a major apex: In this case we observe one
intersection point between LBP circle and shape’s boundary (at one major
apex). For increasing radii we observe two intersection points which move
away from one major apex towards the other. The intersection points converge
again in the second major apex. Thus, we observe the following sequence of
number of intersections: 0-1-2-1-0.
The smallest distance to the shape’s boundary is larger than the radius of
the circle of curvature for a major apex: We observe two osculation points
of the shape’s boundary with the LBP circle. For increasing radii we observe
four intersection points, which converge pairwisely towards the major apexes.
Once two of them converge in an apex, we observe three intersections. For
further increasing radii we observe two intersections until these two converge
in the second major apex. The sequence of number of intersections is as
follows: 0-2-4-3-2-1-0.

3. the LBP center is located at the minor axis of the ellipse:
We observe one osculation point at a minor apex in which the LBP circle inter-
sects the shape’s boundary. For increasing radii we observe two intersections.
When increasing the radius further a third intersection at the second minor
apex can be observed, followed by four intersections. The intersection points
pairwisely move away from the minor apexes until they converge pairwisely
in the major apexes and only two intersections remain - the maximum LBP
radius is reached. The sequence of number of intersections is: 0-1-2-3-4-2-0.

4. the LBP center coincides with the center of the ellipse:
We observe two osculation points of the shape’s boundary with the LBP circle
located at the minor apexes of the ellipse. For increasing radius four intersec-
tion points are observed which move away from the minor axis towards the
major axis along the shape’s boundary. The intersection points converge in
the major apexes. This yields the following sequence of number of intersec-
tions: 0-2-4-2-0.

Smooth Curves: Some observations made for circles and ellipses in this exper-
iment apply also for smooth curves in general. For a continuously increasing
radius we observe intersection points at the shape’s boundary that move along
the boundary and cover the boundary completely when considering the complete
LBP scale space. Osculation points are degenerate intersection points since two
intersection points coincide at such an osculation point. We can determine the
osculation points as the points along the shape’s boundary for which the LBP cir-
cle’s and the boundary’s tangent in that point coincide. These osculation points
are critical points and describe a birth or death of a component. LBP circles
of radii in the interval in between those radii associated with osculation points

Persistence Based on LBP Scale Space 249

yield true (non-degenerate) intersections. The interval of radii spanned by such
critical points thus describes the lifetime (persistence) of a component.

4.2 Shape Reconstruction

We compute an LBP scale space for a fixed center point inside a shape. The
LBP scale space consists of the intersections (bit-switches see Eq. 4) of the shape
boundary with the LBP circle for radii ranging from 0 to the radius for which no
intersection appears anymore (largest Euclidean distance from the LBP center
to the shape boundary). We further associate angles measured around the LBP
center with the intersections. In this way we obtain polar coordinates of all
intersections and can restore the boundary and thus the shape based on this LBP
scale space. For a discrete LBP scale space the quality of the reconstruction is of
course dependent on the sampling of the LBP radii and the angle measurement
as well as on the chosen center point.

This LBP scale space representation is invariant to translation and rotation
of the shape. The rotation leads only to a change in the angles associated with
the intersection points. All angles measured for a shape are altered by a constant
α which complies with the angle of the rotation applied to the whole shape (for
the discrete case deviations from α may be observed because of the sampling).

We tested the accuracy of the LBP scale space reconstructions on the
Kimia99 dataset [13]. The reconstruction obtained using a discrete LBP scale
space is highly dependent on the chosen LBP center. This is well visible in the
comparison of reconstructions based on different locations of center points (see
Fig. 6).

For the experiments on the whole dataset, we used two different LBP cen-
ters. We defined the LBP center for each shape as (1) the location of minimum
eccentricity [14] and (2) the location of maximum distance transform. We used
a regular sampling scheme of 1 pixel radius increases, thus covering all inte-
ger radii in the range of the LBP scale space of a shape. Based on the LBP
scale space obtained for a shape, we reconstructed the shape again. An input
shape together with the reconstruction based on the LBP scale space is shown in
Fig. 6. For all shapes in the dataset we evaluated the reconstruction quality for
the boundary only and for the whole shape. For this purpose we computed the

(a) (b) (c) (d) (e) (f)

Fig. 6. Reconstructions - green, input - red, matching boundaries - yellow. LBP center -
white: (a) max. distance transform, (b) min. eccentricity, (c)–(f) chosen manually.
(Color figure online)

250 I. Janusch and W.G. Kropatsch

reconstruction error considering the set of pixels: Mb which are the boundary
pixels of the reconstruction matching the boundary pixels of the input shape
respectively Mshape all shape pixels of the reconstruction matching the input
shape - the true positives. We computed the precision using the set of boundary
pixels of the input shape bin and as well as the set of pixels of the whole input
shape shapein:

1. precision boundary: Mb/bin
2. precision shape: Mshape/shapein

Figure 7 shows the precision of the reconstruction of the boundary and the whole
shape for all 99 shapes in the dataset. The precision for the boundary is low, due
to the fact that deviations from the exact position of boundary pixels even by
only 1 pixel in the reconstruction are considered an inaccurate reconstruction.
The boundary precision is at maximum 0.67 for the center at the location of
maximum distance transform (Fig. 7: boundary1) and maximum 0.72 for the
center at the location of minimum eccentricity (Fig. 7: boundary2). Since the
goal of this approach is to reconstruct the whole shape not only its boundary,
we used morphological operations, to close gaps in the boundary and to fill the
shape region. The precision for the whole shape is considerably higher: up to
0.99 for the LBP center at the location of maximum distance transform (Fig. 7:
shape1) and 1.00 for the LBP center at the location of minimum eccentricity
(Fig. 7: shape2). As visible in Fig. 7 the precision of the reconstructed shape is
low for some shapes of the dataset - in these cases the boundary reconstruction
showed larger gaps, which did not allow to reconstruct a connected boundary

Fig. 7. Precision of the reconstructed boundary (boundary 1 and 2) and the recon-
structed shape (shape 1 and 2) for the 99 shapes in the dataset and two different LBP
centers.

Persistence Based on LBP Scale Space 251

that could be filled. In general the reconstruction of the whole shape works well:
a precision of 0.9 is reached for 92 % of the shapes for the LBP center at the
maximum distance transform and for 81 % of the shapes for the LBP center at
the location of the minimum eccentricity.

5 Conclusion and Future Work

The novel shape representation - the LBP scale space - is based on persistence,
studying a shape by creating a filtration using the LBP operator over a range of
scales (radii). The experiments presented in this paper show that the LBP scale
space may be easily augmented using polar coordinates around the LBP center.
Based on this extended shape representation not only classification of a shape
but also a reconstruction is possible.

In future work we would like to perform experiments including noise flawed
input shapes, since we can employ the persistence information to exclude noise
from the reconstruction. The LBP scale space may also be extended to the 3D
space using spheres instead of circles. Of course the intersection points used for
the LBP scale space in 2D are also extended to intersection curves between the
LBP sphere and the 3D shape then. Moreover the presented approach may be
used in future work as a tool of quality control in obtaining binary image seg-
mentations, similar to the MSER (maximally stable extremal regions) approach
[15]. The segmentation is defined by the threshold t as well as the interval defined
by ε. By fixing the LBP parameter r and varying the boundary b we may for
example determine parameters t and ε that yield a segmentation of a given num-
ber of connected components with stable boundaries regarding the persistence
of LBP types when varying the radius r of the LBP computation c slightly.

Acknowledgments. We thank the anonymous reviewers for their constructive
comments.

References

1. Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papa-
leo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of
real functions. ACM Comput. Surv. (CSUR) 40(4), 12 (2008)

2. Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape
analysis. Biol. Cybern. 70(2), 99–107 (1993)

3. Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.J.: Persistence barcodes for
shapes. Int. J. Shape Model. 11(02), 149–187 (2005)

4. Cerri, A., Di Fabio, B., Medri, F.: Multi-scale approximation of the match-
ing distance for shape retrieval. In: Ferri, M., Frosini, P., Landi, C., Cerri,
A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 128–138. Springer,
Heidelberg (2012)

5. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1),
61–75 (2008)

252 I. Janusch and W.G. Kropatsch

6. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analy-
sis and applications. Theoret. Comput. Sci. 392(13), 5–22 (2008)

7. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on featured distributions. Pattern Recogn. 29(1), 51–59
(1996)

8. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer vision using local
binary patterns. Computational Imaging and Vision. Springer, London (2011)

9. Chen, J., Kellokumpu, V., Zhao, G., Pietikäinen, M.: RLBP: robust local binary
pattern. In: Proceedings of the British Machine Vision Conference (2013)

10. Janusch, I., Kropatsch, W.G.: Shape classification according to LBP persistence
of critical points. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI
2016. LNCS, vol. 9647, pp. 166–177. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-32360-2 13

11. Gonzalez-Diaz, R., Kropatsch, W.G., Cerman, M., Lamar, J.: Characterizing con-
figurations of critical points through LBP. In: Computational Topology in Image
Context (2014)

12. Edelsbrunner, H.: Persistent homology: theory and practice (2014)
13. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing shock graphs.

In: International Conference on Computer Vision, vol. 1, pp. 755–762. IEEE Com-
puter Society (2001)

14. Kropatsch, W.G., Ion, A., Haxhimusa, Y., Flanitzer, T.: The eccentricity transform
(of a digital shape). In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS,
vol. 4245, pp. 437–448. Springer, Heidelberg (2006)

15. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from
maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

http://dx.doi.org/10.1007/978-3-319-32360-2_13
http://dx.doi.org/10.1007/978-3-319-32360-2_13

On Some Local Topological Properties
of Naive Discrete Sphere

Nabhasmita Sen, Ranita Biswas(B), and Partha Bhowmick

Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India

nabhasmita.sgsits@gmail.com, biswas.ranita@gmail.com,

bhowmick@gmail.com

Abstract. Discretization of sphere in the integer space follows a partic-
ular discretization scheme, which, in principle, conforms to some topolog-
ical model. This eventually gives rise to interesting topological properties
of a discrete spherical surface, which need to be investigated for its ana-
lytical characterization. This paper presents some novel results on the
local topological properties of the naive model of discrete sphere. They
follow from the bijection of each quadraginta octant of naive sphere with
its projection map called f-map on the corresponding functional plane
and from the characterization of certain jumps in the f -map. As an appli-
cation, we have shown how these properties can be used in designing an
efficient reconstruction algorithm for a naive spherical surface from an
input voxel set when it is sparse or noisy.

Keywords: Discrete sphere · Functional plane · 3D imaging · Digital
topology · Digital geometry

1 Introduction

Sphere is one of the important geometric primitives. It finds numerous appli-
cations in different areas of science and engineering, starting from the age-
old manufacturing industry and ending at today’s rapid prototyping and 3D
imaging. Being non-linear, its discretization in the integer space remains a
well-studied research problem, since the topological properties like gap-freeness,
tunnel-freeness, tiling, surface connectivity, and minimality are associated with
it [1,2,5,9,10,13,21,23,26].

For reconstruction of 2D/3D discrete objects, several techniques can be found
in the literature [16,20]. Since formulation of an appropriate topology ensures
well-composed discrete sets [19], topological properties are used in many tech-
niques to repair/reconstruct discrete surfaces [11,15,18,22,24,25]. However, all
the existing works are related either with discrete triangulated objects in the
Euclidean space or with general voxelized surfaces. To the best of our knowl-
edge, there is no existing work related with topological properties of a specific
voxelized surface such as sphere. In this paper, we present the first study on
some local topological properties of (naive) discrete sphere and show an inter-
esting application of these properties for reconstruction of a spherical surface.
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 253–264, 2016.
DOI: 10.1007/978-3-319-39441-1 23

254 N. Sen et al.

1.1 Motivation and Main Results

Reconstruction of a discrete object, such as sphere, is a pertinent problem in
3D imaging and allied areas. In this paper, we derive and analyze some of the
local topological properties of discrete sphere that provide some insights about
its composition and can be used for related applications such as spherical surface
reconstruction.

At this point, it is worth mentioning that among the different models of dis-
crete sphere, the naive sphere contains the minimum number of voxels ensuring
the separability of its interior and exterior. Hence, it is a subset of any other
valid model of discrete sphere [5]. Further, in topological terms, it is 2-minimal
and marked by its readiness to decomposition in separate parts based on func-
tional plane [6]. These unique points of naive sphere make us choose it as our
model of study.

We first analyze the basic properties of a naive spherical surface. From these
basic properties, we derive its other local topological properties. Since a naive
sphere is 48-symmetric and each of its quadraginta octants (q-octants, in short)
has a unique functional plane [5,6], we use, w.l.o.g., the projection of its 1st q-
octant on its functional plane (i.e., xy-plane). We call this projection as f-map
and analyze it for studying the topology in 3 × 3 neighborhood.

Figure 1 shows an input f -map and the reconstructed f -map by our algorithm
along with the corresponding naive spherical surface in 3D. In the result, each
yellow voxel definitely belongs to the naive sphere and hence called a definite
voxel. Each blue voxel, on the other hand, is a semi-definite voxel, as itself or
its 2-adjacent voxel with a higher z-value belongs to the naive sphere. In this
example, there are 41 voxels in the initial set (taken randomly from a naive
sphere of radius 30). Our algorithm is able to reconstruct 57 definite and 54 semi-
definite voxels for this surface. In practice, especially when the input voxel set is
not sparse, our algorithm runs in a time linear in the area of the reconstructed
surface. This is one of its strong points in comparison with other reconstruction
algorithms that are mostly based on Hough transform.

2 Preliminaries

In this section, we explain some fundamental concepts, and fix some basic
notions, notations, and definitions to be used in the sequel. For more details,
we refer to [17].

For two (real or integer) points p(i, j, k) and p′(i′, j′, k′), we define the
distance between them along each coordinate axis. For the coordinate w ∈
{‘x’,‘y’,‘z’}, it is given by

dw(p, p′) =

⎧
⎨

⎩

|i − i′| if w = ‘x’
|j − j′| if w = ‘y’
|k − k′| if w = ‘z’.

On Some Local Topological Properties of Naive Discrete Sphere 255

27

27

27 27

27

27

27

27

27

27 27 26

26 26

26 26

26

26

26

25

25 25

25 25

25

25

25 25

25

24

24 24

24

24

24

23

23

23 22

28 28

)b()a(

28 28 28 28 28

28 28 28 28 28 27

27 27 27

272727

27 27 27 27 27 27 27

27 27 27 27 27

27 27

26 26

26

26 26

26 26 26

26 26 26 26 26 26

26 26 26 25 25 25 25 25 25

25

25 25

25

25

25 25 25 25 25 25 25

25 25 25 24 24 24 24 24

24 24

24

24

24

24

24 24 24 24

23 23 23 23

23 23 23 23

23

23

23

23

22 22 22

22 22 22 22

22

22

21 21 21

21

(c) (d)

Fig. 1. A snapshot of our work. (a) A small input instance of an incomplete f -map, M .
(b) Representation of M in Z

3. (c) Reconstructed f -map based on topological proper-
ties. (d) Representation of the reconstructed f -map in Z

3.

These inter-point distances, in turn, define the respective x-, y-, and z-
distances between a point p(i, j, k) and a (real) surface Γ as follows.

dw(p, Γ) =
{

min{dw(p, p′) : p′ ∈ Γw(p)} if Γw(p) �= ∅
∞ otherwise

where, Γw(p) = {p′ ∈ Γ : dv(p, p′) = 0 ∀v ∈ {‘x’,‘y’,‘z’} � {w}}.
The above definitions are used to define the isothetic distance between two

points, or between a point and a surface. Between two points p(i, j, k) and
p′(i′, j′, k′), isothetic distance is taken as the Minkowski norm [17], given by

d∞(p, p′) = max{dx(p, p′), dy(p, p′), dz(p, p′)}.

Between a point p(i, j, k) and a surface Γ , it is defined as

d⊥(p, Γ) = min{dx(p, Γ), dy(p, Γ), dz(p, Γ)}.

Next, we define some terms related to voxels and their adjacency. A voxel is
an integer point in 3D space, and equivalently, a 3-cell [17]. Two distinct voxels

256 N. Sen et al.

(a) 3-cell (b) 2-adjacency (c) strict 1-adjacency (d) strict 0-adjacency

Fig. 2. A voxel as 3-cell, and its adjacency.

are said to be 0-adjacent if they share a vertex (0-cell), 1-adjacent if they share
an edge (1-cell), and 2-adjacent if they share a face (2-cell). Figure 2 shows an
illustration. Note that 0-adjacent (resp., 1-adjacent) voxels are not considered
as adjacent while considering 1-neighborhood (resp., 2-neighborhood) connec-
tivity. Thus, for l ∈ {0, 1, 2}, two voxels p(i, j, k) and p′(i′, j′, k′) are l-adjacent if
d∞(p, p′) = 1 and dx(p, p′)+dy(p, p′)+dz(p, p′) � 3−l. In Fig. 3(a), a single voxel
is marked in blue, its 2-neighbors are marked in green, 1-neighbors in yellow,
and 0-neighbors in saffron. Note that the 0-, 1-, and 2-neighborhood notations,
as adopted by us as well as by the authors in [26], correspond respectively to the
classical 26-, 18-, and 6-neighborhood notations used in [12].

For l ∈ {0, 1, 2}, an l-path in a 3D discrete object A (or the discrete space
Z
3) is a sequence of voxels from A such that every two consecutive voxels are

l-adjacent. The object A is said to be l-connected if there is an l-path connecting
any two points of A. An l-component is a maximal l-connected subset of A.

Let B be a subset of a discrete object A. If A � B is not l-connected, then
B is l-separating in A [12]. If such an l-separating set B contains a 3-cell c such
that both A � B and A � (B � {c}) are individually l-separating in A, then c is
said to be l-simple in B w.r.t. A; otherwise, B is l-minimal in A. If a subset B
of A is not l-separating in A, then B has l-gaps. 2-gaps, in particular, are called
tunnels [7]. Figure 3(b) shows how a tunnel is formed in a 2-minimal surface
when any of its voxels is removed.

3 Naive Sphere and Its Topological Properties

There are several models of discrete sphere and hypersphere, which are built with
different topological constraints; see, for example, [14,26], and the references
therein. Our work is focused on the naive model of discrete sphere [2]. A naive
sphere S(r) is a 2-minimal set of 3D integer points (equivalently, voxels) such
that max{d⊥(p,S(r)) : p ∈ S(r)} is minimized. Here S(r) denotes a real sphere of
radius r, considered as a positive integer in our work. Also, its center is an integer
point, which is taken as (0, 0, 0) for simplicity and without loss of generality.

A detailed number-theoretic analysis of naive sphere with integer specifica-
tion and an integer algorithm for its generation can be found in [4]. As shown
in [3,4],

S(r) =
{

p ∈ Z
3 : r2 − max(X) � s < r2 + max(X)

∧ ((
s �= r2 + max(X) − 1

) ∨ (mid(X) �= max(X))
)
}

On Some Local Topological Properties of Naive Discrete Sphere 257

Fig. 3. (a) A naive sphere of radius 15. All voxels are shown in white except p (blue)
and its adjacent voxels (green = 2-adjacent, yellow = 1-adjacent, saffron= 0-adjacent).
(b) A tunnel formed when any voxel is withdrawn from the naive sphere. (c) 16 q-
octants (8 in front, 8 in back) whose functional plane is the xy-plane. (Color figure
online)

where p = (i, j, k), s = i2 + j2 + k2, and X = {|i|, |j|, |k|}.
In this section, we put forward some interesting properties characterizing the

local neighborhood of a voxel in a naive sphere. First, we explain some basic
properties and then we derive some additional properties from the basic ones.
These properties are later used for efficient reconstruction of a sparse or noisy
voxel set generated from a naive spherical surface.

3.1 Basic Properties

As already mentioned, S(r) is a 2-minimal surface that best-approximates S(r).
It does not contain any tunnel, but contains 0- and 1-gaps. A naive sphere is
made up of 48 basic symmetric parts called quadraginta octants, or q-octants in
short [4]. Figure 4(a) shows the first q-octant of S(r) with radius 30.

Given a discrete object A ⊆ Z
3, we say that a coordinate plane, say, xy, is

functional for A, if for every voxel v = (i, j, k) ∈ A there is no other voxel in
A with the same first two coordinates. For a plane in general orientation, the
functional plane (FP) is unique, and it is one of the coordinate planes. For a
sphere, on the contrary, it is not so; rather, for each q-octant, the concept is
analogous with plane. To explain this, we denote by St(r) the tth q-octant of
S(r), where t = 1, 2, . . . , 48. A characterization of the q-octants of S(r) can be
found in [4]. The functional plane of St(r) is the coordinate plane on which its
projection has a bijection with St(r).

Each coordinate plane serves as the FP of 16 specific q-octants. Figure 3(c)
shows the voxels of q-octants whose FP is the xy-plane. For a detailed analysis
on FPs of discrete sphere, we refer to [6].

We define f-map as the projection of a q-octant on its FP. Since the pro-
jection is bijective for naive sphere, the f -map, at each pixel position, holds the
maximum coordinate value of the corresponding voxel. From now on, we refer

258 N. Sen et al.

21

22

23

24

25

25

26

27

27

27

28

28

29

29

29

29

30

30

30

30

30

30

30

30

30

30

30

29

29

29

29

28

28

27

27

27

26

25

25

24

23

22

21

30

30

30

30

29

29

29

29

28

28

27

27

26

26

25

25

24

23

22

21

30

30

29

29

29

29

28

28

28

27

27

26

26

25

25

24

23

22

21

29

29

29

29

29

28

28

28

27

27

26

26

25

24

24

23

22

21

29

29

29

28

28

28

27

27

27

26

25

25

24

23

23

22

21

29

29

28

28

28

27

27

26

26

25

25

24

23

22

22

21

28

28

28

27

27

27

26

26

25

24

24

23

22

21

28

27

27

27

26

26

25

25

24

23

23

22

21

27

27

26

26

25

25

24

24

23

22

21

20

26

26

26

25

25

24

23

23

22

21

20

26

25

25

24

24

23

22

21

20

25

24

24

23

22

22

21

20

24

23

22

22

21

20

19

23

22

21

20

19

21

20

20

19

20

19

18

18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

x

y

)b()a(

Fig. 4. (a) S1(r) and (b) F 1(r) for r = 30. Note that each segment in F 1(r) with
constant f -value is a discrete annulus (shown in white or yellow). (Color figure online)

to this maximum coordinate as f -coordinate. Figure 4(b) shows an example of
the f -map of S1(r). As xy-plane is the FP of S1(r), each position of its f -map
contains the z-value of the corresponding voxel. The voxels with same z-value
form discrete annuli and are shown in alternate colors. We denote the f -map of
S1(r) by F 1(r).

We start with the following theorems on two basic properties of the voxels
in the 1st q-octant, which can be generalized for all other octants as well.

Theorem 1. Unit increment (decrement) in x- or y-value in F 1(r) results in
at most unit decrement (increment) in z-value.

Proof. By [4, Theorem 4], the ith circular arc (voxels with x = i) in S1(r) forms a
1-connected monotone path with increasing y-value and non-increasing z-value.
This ensures the connectivity of each arc corresponding to a column in F 1(r).
Similarly, as the naive surface is 2-separating, for a fixed y-value, unit increment
in x-value results in at most unit decrement in z-value.
�
Theorem 2. Unit increment (decrement) in x-value and unit decrement (incre-
ment) in y-value in F 1(r) results in at most unit increment (decrement) in
z-value.

Proof. The z-coordinate induces discrete annuli in S1(r) (see Fig. 4). The upper
and the lower boundaries of the projection of each such annulus in F 1(r) are
monotone paths, with increasing x-value and non-increasing y-value from left to

On Some Local Topological Properties of Naive Discrete Sphere 259

right. This owes to the fact that in S1(r), the x-value at a point does not exceed
the y-value. So, a unit increment (decrement) in x-value and a unit decrement
(increment) in y-value in F 1(r) points to either the same or the next annulus,
whence the result.
�

p

3 2 1

0

765

4 30

29 29 29

2930

30 30 30

27 26

28

27

27 27 27

27 27

22 20

23

21

22 22 21

22 22

(a) (b) (c) (d)

Fig. 5. 3 × 3 neighborhood of a pixel p in F 1(r). (a) Direction codes w.r.t. p. (b–d)
Examples from F 1(r) of Fig. 4(b).

3.2 Derived Properties

We explain here some local properties in 3 × 3 neighborhood of F 1(r), which
are proved using the basic properties stated in Theorems 1 and 2. For ease of
understanding, for a pixel p in F 1(r), we refer to its 3 × 3 neighborhood using
direction codes, as shown in Fig. 5(a). We refer to the z-value of pixel p in F 1(r)
as f(p), and that of some in the neighborhood of p by f(p + dα), where α is the
direction. For example, in Fig. 5(b), f(p) = 30, f(p + d0) = 29, f(p + d5) = 30.
The set of points in 3 × 3 neighborhood of p and contained in F 1(r) is given
by N(p) = {p} ∪ {p + dα :

(
p + dα ∈ F 1(r)

) ∧ (α = 0, 1, . . . , 7)}. We denote
by f(N(p)) the set of f -values of N(p). With these basic notations, we now
introduce the properties that are true in the 3 × 3 neighborhood of every point
p in the f -map of S1(r) and can be generalized for any other q-octant of S(r).

Theorem 3. If (p + d5) ∈ N(p), then f(p + d5) = max{f(N(p))}; and if (p +
d1) ∈ N(p), then f(p + d1) = min{f(N(p))}.
Proof. Observe that p + d5 has the lowest x- and y-values, and p + d1 has the
highest x- and y-values. By Theorem 1, increase in x- or y-value decreases the
z-value in S1(r). Therefore, z-value is maximum for p + d5, and minimum for
p + d1, whence the proof.
�
Notice that all three examples in Fig. 5 conform to the above theorem.

Theorem 4. min{f(N(p))} � f(p) − 2 and max{f(N(p))} � f(p) + 2.

Proof. By Theorem 1, the maximum change of z-value occurs in a diagonal direc-
tion and it can be 2. So, if we move diagonally from p, then f(p + d1) can be as
low as f(p) − 2, and f(p + d5) can be as high as f(p) + 2.
�
For example, in Fig. 5(d), min{f(N(p))} = f(p) − 2 at p + d1. Note that the
above theorem indicates the occurrence of jump that arises in naive planes [8]
as well as in naive spheres, as shown recently in [6]. A jump is formed when
two voxels are not adjacent on the naive surface but their projections are two
0-adjacent pixels on the functional plane.

260 N. Sen et al.

Theorem 5. If max{f(N(p))} − min{f(N(p))} = 3, then f(p) ∈{
min{f(N(p))} + 1,max{f(N(p))} − 1

}
.

Proof. By Theorem 3, f(p+d5) = max{f(N(p))} and f(p+d1) = min{f(N(p))}.
By Theorem 4, diagonal z-value change is no more than 2. So, with
max{f(N(p))} − min{f(N(p))} = 3, we get f(p) = min{f(N(p))} + 1 or
max{f(N(p))} − 1.
�
The following theorems can be used to get f(p) when a partial information is
available in N(p).

Theorem 6. For 0 � α � 3 and 4 � β � 7, if f(p+ dα) = f(p+ dβ), then each
of these two is equal to f(p).

Proof. From Theorems 1, 2, and 4, it can be inferred that the f -value never
increases from p at directions 0, 1, 2, and 3, and never decreases at directions 4,
5, 6, and 7. Therefore, if f(p+dα) = f(p+dβ), where 0 � α � 3 and 4 � β � 7,
then p also holds the same f -value.
�
Theorem 7. If f(p + dα) = c1, f(p + dβ) = c2, and |c1 − c2| = 2, where
α ∈ {0, 2, 3} and β ∈ {4, 6, 7}, then f(p) = 1

2 (c1 + c2).

Proof. From Theorems 1 and 2, we can infer that from p at directions 0, 2, and
3, the f -value remains same or decrements by one, and at directions 4, 6, and
7, the f -value remains same or increments by one. Therefore, if the difference
between f(p + dα) and f(p + dβ) is two, then f(p) has to lie exactly between
these two values.
�
Theorem 8. If f(p + dα) = c1, f(p + dβ) = c2, and |c1 − c2| = 1, where
α, β ∈ {0, 2, 3}, then f(p) = max(c1, c2); or where α, β ∈ {4, 6, 7}, then f(p) =
min(c1, c2).

Proof. From Theorems 1 and 2, we can infer that from p at directions 0, 2, and
3, the f -value remains same or decrements by one, and at directions 4, 6, and 7,
the f -value remains same or increments by one. Therefore, if α, β ∈ {0, 2, 3} or
α, β ∈ {4, 6, 7}, i.e., both are either towards non-incrementing or towards non-
decrementing directions, and if the difference between f(p + dα) and f(p + dβ)
is unity, then f(p) has to be the maximum of these two values for the non-
incrementing direction (α, β ∈ {0, 2, 3}) and the minimum of these two values
for the non-decrementing direction (α, β ∈ {4, 6, 7}).
�

4 Reconstruction

In this section, we show how the local topological properties of a naive sphere
can be used to reconstruct its surface when holes or noise are present in input
data. The input to the algorithm is a set of integer points/voxels belonging to
the first q-octant of a naive spherical surface. We have also assumed that N(p)

On Some Local Topological Properties of Naive Discrete Sphere 261

)c()b()a(

)f()e()d(

Fig. 6. Demonstration of our algorithm. (a) An input instance containing 145 vox-
els taken from a naive spherical surface. (b) Reconstructed surface after 1st iteration.
(c) Reconstructed surface after 2nd iteration. (d) Reconstructed surface after 3rd iter-
ation. (e) Reconstructed surface after last, i.e., 6th iteration. (f) Reconstructed surface
after inclusion of semi-definite voxels.

always consists of 9 points, i.e., the points in the input set are all taken from
the interior of the q-octant and not from its border. This assumption helps us
to also generate semi-definite voxels around the final definite point set of the
reconstructed naive set.

Note that, while generating the definite voxels to fill the gaps appearing in
the input surface, only Theorems 6 to 8 are used, as these are the only ones which
can definitely predict f(p). Few of the other properties are used to predict the
semi-definite voxels after generation of the final definite result set, and can also
be used to detect noisy voxels in the input set. The steps of the reconstruction
algorithm are as follows.

262 N. Sen et al.

1. Generate the f -map of the input by taking projection on the functional plane.
2. Scan the f -map row-wise (or column-wise) to detect pixels with undefined

f(p), i.e., holes.
3. For each detected hole p, check whether any appropriate pair fits to

Theorems 6 to 8, and get the exact value of f(p) as per that theorem.
4. Repeat steps 2 and 3 as long as new holes are filled.
5. Produce a one-pixel empty boundary to the final f -map.
6. Scan the f -map; for any empty location, select the lowest z-value if there are

two possible values for f(p).
Note that existence of any one of the voxels at directions 0, 2, 3, 4, 6, and 7
ensures that we can get two possible values for f(p). So, every semi-definite
voxel included in this step has a 50 % chance of actually belonging to the
naive spherical surface.

)c()b()a(

Fig. 7. Applying the local topological properties to detect and restore noisy voxels.
(a) An input instance containing noisy voxels in a naive spherical surface. (b) After
removal of noise. (c) Reconstruction with defined and semi-definite voxels.

Each iteration of this algorithm scans through the entire f -map to detect
empty locations, i.e., it scans through total (n + m) number of points, where n
is the number of points in the input set, and m is the number of empty loca-
tions in the f -map. Inclusion of definite voxels at each stage helps to predict the
values for undefined voxels in the next stage; and in the worst case, the holes
may be interconnected in such a way that each iteration is able to produce only
one definite voxel. Therefore, the number of iterations depends on the configu-
ration, size, and shape of the hole regions. The time complexity of the algorithm
therefore varies from O(n + m) in the best case to O((n + m)m) in the worst
case. However, as we have experimented, the number of iterations in practice is
low and the algorithm stops after a small number of iterations, thus practically
giving us a linear time complexity when m is in the order of n/2 or less.

On Some Local Topological Properties of Naive Discrete Sphere 263

In the above-stated experimentation, we have assumed that the input set of
points belongs to a particular q-octant and all definitely belong to a naive sphere
whose radius and center are not known. As the properties stated in the previous
section can easily be generalized to work for other q-octants as well, a set of
points from different q-octants of a naive sphere can be partitioned by their
corresponding functional planes. This can be done by analyzing the projections
on the three coordinate planes. After partitioning by functional planes, each part
can be used for reconstruction based on the local topological properties and their
corresponding f -maps.

We have run the algorithm for multiple input instances and found encourag-
ing results. Figure 6 shows us how the algorithm reconstructs the input surface
step by step. In this example, the input surface contains 145 voxels, all of which
belongs to a particular naive sphere. After six iterations, our algorithm is able
to reconstruct the surface as in Fig. 6(f), which contains 269 definite voxels and
115 semi-definite voxels. Another result shown in Fig. 7 presents how the local
topological properties can effectively be used to discard noisy voxels and restore
the correct ones to reconstruct a naive spherical surface.

5 Concluding Remarks

We have studied various local properties of naive sphere and have demonstrated
a method to utilize these properties for reconstruction of a naive spherical sur-
face containing missing voxels. One point to note is that these properties are not
supposed to work while the input data is very sparse and we are not able to find
any local neighbors of the holes. In that case, some different methodologies like
Hough transform can be employed. Nevertheless, local topological properties in
larger neighborhoods may yield better scope for reconstruction, which we fore-
see interesting and challenging in continuation of the proposed work. Further,
these local properties of naive sphere, as stated in this paper, may also be com-
pared with local properties of other naive discrete surfaces, e.g., naive plane, for
analyzing how they differ across different parameters.

References

1. Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706
(1994)

2. Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Trans. Vis.
Comput. Graph. 3(1), 75–86 (1997)

3. Biswas, R., Bhowmick, P.: On finding spherical geodesic paths and circles in Z
3.

In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp.
396–409. Springer, Heidelberg (2014)

4. Biswas, R., Bhowmick, P.: From prima quadraginta octant to lattice sphere through
primitive integer operations. Theor. Comput. Sci. 624, 56–72 (2016)

5. Biswas, R., Bhowmick, P., Brimkov, V.E.: On the connectivity and smoothness of
discrete spherical circles. In: Barneva, R.P., et al. (eds.) IWCIA 2015. LNCS, vol.
9448, pp. 86–100. Springer, Heidelberg (2015)

264 N. Sen et al.

6. Biswas, R., Bhowmick, P., Brimkov, V.E.: On the polyhedra of graceful spheres
and circular geodesics. Discrete Appl. Math. (in press). doi:10.1016/j.dam.2015.11.
017

7. Brimkov, V.E.: Formulas for the number of (n− 2)-gaps of binary objects in arbi-
trary dimension. Discrete Appl. Math. 157(3), 452–463 (2009)

8. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theoret. Comput. Sci.
283(1), 151–170 (2002)

9. Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points
in a hyperball. Theoret. Comput. Sci. 406(1–2), 24–30 (2008)

10. Chamizo, F., Cristobal, E.: The sphere problem and the L-functions. Acta Math.
Hung. 135(1–2), 97–115 (2012)

11. Chen, L., Rong, Y.: Linear time recognition algorithms for topological invariants
in 3D. In: ICPR 2008, pp. 1–4 (2008)

12. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models
Image Process. 57(6), 453–461 (1995)

13. Fiorio, C., Jamet, D., Toutant, J.-L.: Discrete circles: an arithmetical approach
with non-constant thickness. In: Vision Geometry XIV, SPIE, vol. 6066, p. 60660C
(2006)

14. Fiorio, C., Toutant, J.-L.: Arithmetic discrete hyperspheres and separatingness.
In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp.
425–436. Springer, Heidelberg (2006)

15. Fourey, S., Malgouyres, R.: Intersection number and topology preservation within
digital surfaces. Theoret. Comput. Sci. 283(1), 109–150 (2002)

16. Kazhdan, M.: Reconstruction of solid models from oriented point sets. In: SGP
2005, Article 73 (2005)

17. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

18. Latecki, L., Conrad, C., Gross, A.: Preserving topology by a digitization process.
J. Math. Imaging Vis. 8(2), 131–159 (1998)

19. Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image
Underst. 61(1), 70–83 (1995)

20. Latecki, L.J., Rosenfeld, A.: Recovering a polygon from noisy data. Comput. Vis.
Image Underst. 86(1), 32–51 (2002)

21. Maehara, H.: On a sphere that passes through n lattice points. Eur. J. Comb.
31(2), 617–621 (2010)

22. Malgouyres, R., Lenoir, A.: Topology preservation within digital surfaces. Graph.
Models 62(2), 71–84 (2000)

23. Montani, C., Scopigno, R.: Graphics Gems, pp. 327–334 (1990)
24. Siqueira, M., Latecki, L.J., Tustison, N.J., Gallier, J.H., Gee, J.C.: Topological

repairing of 3D digital images. J. Math. Imaging Vis. 30(3), 249–274 (2008)
25. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D

object and the reconstruction of its digital image. IEEE TPAMI 29(1), 126–140
(2007)

26. Toutant, J.-L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres:
from morphological models to analytical characterizations and topological proper-
ties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)

http://dx.doi.org/10.1016/j.dam.2015.11.017
http://dx.doi.org/10.1016/j.dam.2015.11.017

DIG: Discrete Iso-contour Geodesics
for Topological Analysis of Voxelized Objects

Gurman Bhalla and Partha Bhowmick(B)

Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India
gurman.bhalla@gmail.com, bhowmick@gmail.com

Abstract. Discretized volumes and surfaces—used today in many areas
of science and engineering—are approximated from the real objects in a
particular theoretical framework. After a discretization produces a tri-
angle mesh (2-manifold surface), a well-formed voxel set can be prepared
from the mesh by voxelization of its constituent triangles based on some
digitization principle. Since there exist different topological models of
digital plane, choosing the appropriate model to meet the desired require-
ment appears to be of paramount importance. We introduce here the
concept of discrete iso-contour geodesics (DIG) and show how they can
be constructed on a voxelized surface with the assurance of certain topo-
logical requirements, when the voxelization conforms to the naive model
with judicious inclusion of Steiner voxels from the graceful model, as
and when needed. We also show some preliminary results on its prac-
tical application towards extraction of high-level topological features of
3D objects, which can subsequently be used for various shape-analytic
applications.

Keywords: Digital geometry · Discrete topology · Iso-contour geodes-
ics · Shape analysis · Voxelization

1 Introduction

Voxelization today is not only important in the field of object discretization
and representation but also gaining remarkable progress in additive manufac-
turing through rapid prototyping (RP) techniques like stereo-lithography, 3D
printing, and fused deposition modeling [11,19–21,30]. Hence, the collection of
work related to voxelization, as seen in today’s literature, can be divided into
two categories—one covering the theories and algorithmic solutions for object
discretization and another dealing with different RP techniques using digital
technology. The latter category mostly relies on a digital building matter in the
sense that the building block is a digital unit or voxel, as opposed to the analog
(continuous) material used in conventional RP [6,17,18,28,32].

Whether the subject relates to analytical discretization or relates to phys-
ical manufacturing, the underlying theory or methodology of voxelization has
a strong impact on the consistency or on the solidity of the resultant product.
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 265–276, 2016.
DOI: 10.1007/978-3-319-39441-1 24

266 G. Bhalla and P. Bhowmick

In either case, these characteristics can be analyzed well in the purview of dis-
crete geometry and topology, as a collection of voxels is usually obtained by a
particular process in a certain theoretical framework [23,27]. In our work, we
focus on this with a two-fold objective—first to show how a surface should be
voxelized for its readiness to discrete iso-contour geodesic (DIG) construction
and then to demonstrate the usefulness of DIG in extraction of high-level topo-
logical information from a voxelized object.

1.1 Existing Work

We give here a brief review of the development and the state-of-the art practices
related to voxelization and also to computation of discrete geodesics and iso-
contours.

Voxelization. The early work on physical modeling of a surface or volume
element can be seen in [19,30,31] and in the articles referred to therein. Those
work, however, did not address the topological issues related to voxelization. The
theoretical frameworks along with the topological issues came up gradually in a
later stage. For example, in [9], some of the topological properties were discussed,
which included holes, cavities, simple points, separability, and penetration.

With the growing need for digitization and cutting-edge technology, different
techniques for voxelization have been proposed off and on, taking into account dif-
ferent apparatus, computational models, cost factors, and product requirement.
A low-cost methodology based on z-buffer and multi-view depth information is
developed in [22]. To incorporate an anti-aliasing effect during voxel rendition, a
multi-resolution technique is proposed in [10]. For adding more features available
in graphics workstations, such as texture mapping and frame-buffer blending func-
tions, a hardware-accelerated approach is shown to be effective in [16]. The idea of
exploiting programmable graphics hardware is also used in [13] for voxelization of
a polygonal model after mapping it into three sheet buffers and then synthesizing
into a single worksheet recording the volumetric representation of the target.

Voxelization is also useful for simplification and repair of a polygonal model,
as shown in [29], with 3D morphological operations on the scan-converted voxel
set. Further, with the emergence of GPU functionalities, a variety of applications
with voxelized objects have come up in recent time. For example, in [24], a GPU-
accelerated approach is proposed for creation of multi-valued solid volumetric
models with different solid slice functions and material description in order to
make it useful for different applications like collision detection, medical simu-
lation, volume deformation, 3D printing, and computer art. In [15], a filtering
algorithm is designed to build a density estimate for deduction of normals from
the voxelized model, which is shown to be useful in simulation of translucency
effects and particle interactions. In fact, very recently, many such real-time sim-
ulations and applications are shown to be efficiently realizable when a voxelized
dataset is used; these include urban modeling [34], octree-based sparse voxeliza-
tion for 3D animation [12], fluid simulation with dynamic obstacles [38], discrete
radiosity [25], light refraction and transmittance in complex scenes [7], etc.

DIG: Discrete Iso-contour Geodesics 267

Geodesics. The literature on geodesics and iso-contours, as on today, is pre-
dominantly focused on closed orientable 2-manifold surfaces, i.e., objects with
triangulated-mesh representation in the Euclidean space. Hence, the techniques
are mostly from differential and computational geometry; see, for example,
[1,8,26,33,35–37]. As geodesics find various applications in remeshing, non-rigid
registration, surface parametrization, shape editing and segmentation, the notion
of approximate geodesic distance is also proposed recently in [36] as a practical
alternative for the exact solution [35].

In the domain of voxel complexes, however, no significant work can be found
on discrete geodesics, barring a few [8,12]. In [8], the concept of visibility—a
well-known concept in computational geometry—is defined in the discrete space
based on digital straightness. In [12], as sparse (i.e., highly disconnected) voxel
set is used, the geodesic metric is based on Euclidean norm.

1.2 Our Contribution

As briefed in Sect. 1.1, a multitude of work have been carried out on voxeliza-
tion of 2-manifolds and on geodesics in the Euclidean space. However, geodesics
on voxelized (i.e., 3-manifold) surfaces and their topological properties have not
been studied so far. This motivates us to look into this interesting problem. We
introduce here the concept of discrete iso-contour geodesics (DIG) that can be
constructed on a well-formed voxelized surface and then demonstrate their use-
fulness in shape-analytic applications similar to those in the Euclidean domain.

Henceforth in this paper, a voxelized curve (DIG in our case) or a voxelized
surface means discrete approximation of its real counterpart by a set of voxels
in a certain topological model. In order to ensure that the concerned object
is well-defined in the voxelized space, the connectivity and related topological
issues come up alongside, which are addressed and fixed in this paper.

2 Voxelization of 2-Manifolds

We discuss here some definitions and concepts related to topology of voxel com-
plexes and the underlying metric space, which are relevant to our work, following
the convention as in [23]. For easy understanding and for easily relating the the-
oretical results with the experimental results on voxelized objects, we discuss the
topological concepts in terms of voxels and relations among them, which can be
equivalently represented and explained in graph-theoretic terms as well [23,27].

2.1 Voxel Topology and Metric Space

A voxel is a 3-cell, i.e., an axis-parallel cube-shaped 3-manifold of unit length.
Two voxels are said to be 0-, 1-, or 2-adjacent if they share a vertex (0-cell), an
edge (1-cell), or a face (2-cell), respectively (also called 26-, 18-, 6-neighborhoods
[9]). Note that 0-adjacent (1-adjacent) voxels are not treated as adjacent while
considering 1-adjacency (2-adjacency).

268 G. Bhalla and P. Bhowmick

A voxelized object A means a set of voxels. A k-path (k = 0, 1, 2) in A is a
sequence of voxels from A such that every two consecutive voxels are k-adjacent.
If a k-path exists between every two voxels of A, then A is said to be k-connected.
A k-component is a maximal k-connected subset of A.

A subset A′ of A is k-separating (w.r.t. A) if A � A′ is not k-connected. In
addition, if A�A′ has exactly two k-components and A′ has a voxel v such that
A′

� {v} is still k-separating, then v is called a simple voxel in A′. If now A′

contains no simple voxel, then A′ is k-minimal and so has no tunnel; and if A′

has any tunnel, then it is not 2-separating (see [3] for further details).
The supercover K(X) of a set X ⊆ R

3 is the set of all voxels intersected by
X. The standard and the naive voxelizations of X are 0- and 1-minimal subsets
of K(X). If X is a real plane or its part (such as a triangle in our work), then its
naive set N(X) is functional in at least one coordinate plane and hence has one-
to-one correspondence with its projection on that coordinate plane. For example,
if xy-plane is functional for X, then N(X) has one-to-one correspondence with
its projection on the xy-plane. Some examples are given in Fig. 1.

(a) Naive (b) Standard (c) Graceful

Fig. 1. Instances of three models of digital plane for (a, b, c) = (4, −5, 8), in the domain
x ∈ [−3, 3], y ∈ [−7, 7]. White voxels belong to the naive plane and the blue belong to
(b) standard or (c) graceful. Notice that the xy-plane is functional here only for the
naive plane. (Color figure online)

We define x-, y-, and z-distance between two (real or integer) points, p and
p′, as dx(p, p′) = |i − i′|, dy(p, p′) = |j − j′|, and dz(p, p′) = |k − k′|, respectively,
where dz is not applicable in 2D, p = (i, j) and p′ = (i′, j′) in 2D, and p = (i, j, k)
and p′ = (i′, j′, k′) in 3D. The x-distance between p(i, j, k) and a curve/surface X
is dx(p,X) = dx(p, p′) if ∃ p′(x′, y′, z′) ∈ X such that (y′, z′) = (j, k); otherwise,
dx(p,X) = ∞. The distances dy(p,X) and dz(p,X) are defined in a similar
way. Let D denote the set {dx(·), dy(·)} in 2D and {dx(·), dy(·), dz(·)} in 3D.
Then the isothetic distance between two points p and p′ is the Minkowski norm,
d∞(p, p′) = max{δ : δ ∈ D}, and that between p and a curve/surface X is
d⊥(p,X) = min{δ : δ ∈ D}.

As shown in [2], each voxel of a naive plane (triangle in our case) has an
isothetic distance of at most 1

2 from the corresponding real plane. Hence, the
naive voxelization results in the best possible approximation of a manifold with
the guarantee of one-to-correspondence with the projection (pixel set) on its
functional plane.

DIG: Discrete Iso-contour Geodesics 269

2.2 Homeomorphism of Voxels and 2-Manifolds

Let S be a closed and orientable (2-manifold) surface in the 3D Euclidean
space, such that exactly two 2-manifolds (triangles) are incident on each of its
1-manifolds (edges) and at least three 1-manifolds are incident on each of its
0-manifolds (vertices). To derive a 3-manifold representation (naive voxeliza-
tion) of S in Z

3, we choose a scale factor ξ > 0 and apply an isotropic scaling on
the 0-manifolds of S. Next, for every 2-manifold t ∈ S, we make its naive vox-
elization to obtain N(t, ξ), and hence obtain the naive voxelization of S (scaled
by the factor ξ) as N(S, ξ) =

⋃
t∈S N(t, ξ). Being closed and orientable, S is

a compact surface without any boundary and the outward normal to each 2-
manifold t ∈ S is uniquely determinable, whence the functional plane(s) of each
N(t, ξ) is also fixed.

To define the topological space for S, let v be a voxel in N(S, ξ). Then v is
obtained in the naive voxelization of one or more 2-manifolds in S. So, we define
T (v) = {t : t ∈ S ∧ v ∈ N(t, ξ)} and S = {T (v) : v ∈ N(S, ξ)}. If ΓS denotes
the topology defined on S, then the corresponding topological space becomes
(S, ΓS). Now, to obtain the topological space (V, ΓV) for N(S, ξ), we define V =
{V (v) : v ∈ N(S, ξ)}, where V (v) = N(T (v), ξ) :=

⋃
t∈T (v) N(t, ξ). Henceforth,

for brevity, we denote (S, ΓS) and (V, ΓV) simply by S and V, respectively [14].
We show the homeomorphism of S with V shortly in Theorem 1. For this, we

define a basis BS for S and another BV for V, as follows.

(i) Each β
(i)
S ∈ BS contains (as its element) every set

{
T (v) : (v ∈ N(T (v), ξ))∧

(x(v) = i)
}
, where x(v) denotes the x-coordinate of the center of the voxel v.

(ii) If (β(i)
S , β

(j)
S) ∈ B2

S and β
(i)
S ∩ β

(j)
S �= ∅, then β

(i)
S ∩ β

(j)
S ∈ BS .

(iii) Each β
(i)
V ∈ BV contains every set {V (v) : x(v) = i}.

(iv) If (β(i)
V , β

(j)
V) ∈ B2

V and β
(i)
V ∩ β

(j)
V �= ∅, then β

(i)
V ∩ β

(j)
V ∈ BV .

Theorem 1. The topological spaces S and V are homeomorphic for a sufficiently
large value of ξ.

Proof. Let f : S → V. So, if T (v), T (v′) ∈ S, then f(T (v)) = V (v) ∈ V and
f(T (v′)) = V (v′) ∈ V. As ξ is sufficiently large, T (v) �= T (v′) and V (v) �= V (v′)
for any (v, v′) with v �= v′. So, V (v) = V (v′) ⇐⇒ T (v) = T (v′) ⇐⇒ v = v′,
wherefore f is bijective.

Now, to show that f is continuous, let v be a voxel with x(v) = i. Then
T (v) belongs to an element of β

(i)
S , and f(T (v)) := V (v) belongs to an element

of β
(i)
V , which imply f(β(i)

S) ⊂ β
(i)
V , or, β

(i)
S ⊂ f−1(β(i)

V), whence f−1(β(i)
V) is

an open set, thus showing f continuous. Similarly, g := f−1 : V → S is also
continuous, since V (v) belongs to an element of β

(i)
V and g(V (v)) to an element

of β
(i)
S , or, g(β(i)

V) ⊂ β
(i)
S , or, β

(i)
V ⊂ g−1(β(i)

S), or, g−1(β(i)
S) is an open set. As a

result, there exists a bijective continuous open map from S to V, and hence the
homeomorphism. ��

270 G. Bhalla and P. Bhowmick

3 DIG: Topology and Construction

Given a seed voxel s ∈ N(S, ξ) and a positive integer τ , we define a discrete
iso-contour geodesic (DIG) as the 0-minimal path whose each voxel v has an
intersection with S and a geodesic distance τ from s. We denote this DIG by
Π(S, ξ, s, τ). The geodesic distance dg(s, v) from s to v is given by the length n
of the shortest 0-path 〈vi : (0 � i � n) ∧ vi ∈ K(S, ξ)〉 from s := v0 to v := vn,
K(S, ξ) being the supercover of S.

If a DIG is made of voxels only from the naive voxelization, then it may
not be 0-minimal. However, on replacing some of its voxel pairs by some special
voxels from the graceful triangles corresponding to S, it becomes 0-minimal. In
analogy with other geometric problems, we term these special voxels as Steiner
voxels, since they are added to the naive set to make it graceful. Detailed study
and analysis related to graceful planes may be seen in [4,5]. As shown in [4], a
graceful plane is the thinnest possible voxelized plane on which primitives like
lines, triangles, and arbitrary polygons are always connected sets of voxels. Here
we show its usefulness for construction of DIG as well.

Let t be a 2-manifold in S with its functional plane F (t), and let N(t, ξ) and
G(t, ξ) be the respective naive and graceful planes. Let p and q be two distinct
voxels in N(t, ξ), and p′ and q′ be their respective projections on F (t). Then
p′ �= q′, due to the one-to-one correspondence between N(t, ξ) and its projection
on F (t). Further, if p and q are 0-adjacent (resp., 1- or 2-adjacent) to each other,
then p′ and q′ are also 0-adjacent (resp., 1-adjacent). However, 0-adjacency of
p′ and q′ does not ascertain the connectedness of p and q in N(t, ξ)—a typical
topological characteristic of naive plane that arises due to jump [4]. Figure 2
shows two jump configurations for each functional plane (FP). This is resolved
in G(t, ξ) by inserting a Steiner voxel in between the two voxels forming a jump
in N(t, ξ) so that the two voxels corresponding to two 0-adjacent pixels on the FP
are 0-adjacent in G(t, ξ) as well. The Steiner voxel is chosen from the supercover
K(t, ξ) and hence has an intersection with t. Observe that the tandem formed by
the Steiner voxel and its 2-adjacent jump voxel maps to a single pixel on the FP.

x

y

z

zx zx xy xy yz yzFP =

Fig. 2. Examples of adding a Steiner voxel to a naive triangle. Top: A jump (green
voxel pair) on a naive triangle along with its two common 1-adjacent voxels (white).
Bottom: A tandem made by a jump voxel and a Steiner voxel (blue) added from the
graceful triangle. (Color figure online)

DIG: Discrete Iso-contour Geodesics 271

We have the following lemma.

Lemma 1 (Path Projection). Let t be a 2-manifold in S, and P be a 0-path
in N(t, ξ). Then the projection of P on F (t) is 0-minimal if and only if no voxel
of P forms a tandem with some voxel in G(t, ξ).

Proof. Let p, q, r be three consecutive voxels in P , and p′, q′, r′ be the respective
pixels in the projection P ′ of P on F (t). Clearly, p′, q′, r′ are three distinct pixels
on F (t), since P ⊂ N(t, ξ) and N(t, ξ) has one-to-one correspondence with its
projection on F (t). So, q does not make any tandem with p or r in G(t, ξ). Hence,
p′ and r′ are adjacent if and only if q′ is simple in P ′, or equivalently, q forms a
tandem with some Steiner voxel in G(t, ξ). ��
An example of obtaining a 0-minimal path based on Lemma 1 is shown in Fig. 3.
Notice that here the path is basically a DIG. By Lemma 1, if the projection P ′

of P is not 0-minimal in F (t), then there are one or more tandems. Each such
tandem is formed by pairing a voxel q ∈ N(S, ξ) with a voxel u ∈ G(S, ξ) �

N(S, ξ). These local repairs in the constitution of P result in the desired 0-
minimality of P ′ without breaking the connectedness of P in the voxel topology.
In particular, we have the following lemma.

)b()a(

(c) (d)

Fig. 3. An example showing DIG construction with the seed voxel s shown in red. (a)
Green voxels are at geodesic distance 2 from s. (b) Back projection (green voxels and
one yellow voxel) to the naive plane from the 0-minimal path on the functional plane;
the two green voxels adjacent to the yellow voxel form the jump. (c) Graceful plane
with the Steiner voxels shown in blue. (d) DIG (green voxels) after replacing one of
the jump voxels by a Steiner voxel. (Color figure online)

Lemma 2 (Steiner Repair). Let P be a 0-path in N(t, ξ), P ′ be its projection
on F (t), and q′ be the projection of q ∈ P . If q′ is a simple pixel, then q and
one of its adjacent voxels can be replaced by a single Steiner voxel to ensure the
0-minimality in both P and P ′.

272 G. Bhalla and P. Bhowmick

Proof. As q′ is a simple pixel, its preceding pixel p′ and succeeding pixel r′ in
P ′ are 0-adjacent. Hence, by Lemma 1, one of their pre-images (p or r) forms a
tandem with some Steiner voxel u ∈ G(t, ξ). Let, w.l.o.g., that tandem be (p, u).
Then replacing (p, q) by u ensures the local minimality in both P and P ′. ��
We now introduce the following lemma for the theorem that explains the con-
struction of DIG using N(S, ξ) and the Steiner voxels as needed.

Lemma 3 (Geodesic Distance). For any 2-manifold t in S, the geodesic dis-
tance between two voxels in N(t, ξ) is given by the isothetic distance between
their projections on F (t).

Proof. N(t, ξ) has one-to-one correspondence with its projection on F (t). Hence,
by definitions of isothetic distance and geodesic distance, the proof follows. ��
Let B(S, ξ, s, τ) denote the set of voxels from N(S, ξ) having geodesic distance
τ from s. This is obtained by breadth-first-search in N(S, ξ) with s as the start
vertex in the underlying graph. Let B(S, ξ, s, τ)′ denote the collection of its
piecewise projections on the respective functional planes of the participating 2-
manifolds of S. Let Π(S, ξ, s, τ)′ denote the piecewise projections of Π(S, ξ, s, τ)
in a similar manner. We have now the following theorem.

Theorem 2 (DIG). Π(S, ξ, s, τ)′ is contained in B(S, ξ, s, τ)′ and is 0-minimal
on the respective functional planes.

Proof. Let t be any 2-manifold in S. Let Πt(S, ξ, s, τ) be the portion of
Π(S, ξ, s, τ) corresponding to t. Also, let Πt(S, ξ, s, τ)′(⊆ Π(S, ξ, s, τ)′) be the
piecewise projection of Π(S, ξ, s, τ) on F (t). Each voxel q ∈ Πt(S, ξ, s, τ) has
the geodesic distance dg(s, q) = τ from s. We have two possible cases: either s
belongs to N(t, ξ) or it belongs to the naive set of some other 2-manifold in S.
For the former, dg(s, q) = d∞(p, q) by Lemma 3. For the latter, let p be the voxel
lying on a/the geodesic path from s to q and common to N(t, ξ) and N(t1, ξ),
where t1 is a 2-manifold incident on one of the three 1-manifolds of t. Then,
dg(s, q) = dg(s, p) + d∞(p, q) by Lemma 3. Hence, in either case, if q (along with
one of its adjacent voxels) is replaced by a Steiner voxel u (Lemma 2), then for
u, we have du(s, u) = dg(s, q). This ensures the containment of Πt(S, ξ, s, τ)′ in
B(S, ξ, s, τ)′, and hence the result follows. ��

4 Concluding Remarks

We have tested the algorithm for DIG construction on the naive voxel sets of dif-
ferent objects at different scales. On examining and analyzing these test results,
it becomes evident that a collection of DIG, constructed with regular geodesic
distances of τ, 2τ, 3τ, . . ., from a seed point randomly chosen in N(S, ξ), can aid in
inferring on interesting geometric and topological features and the complexity
of the object. A couple of such empirical observations are presented here.

DIG: Discrete Iso-contour Geodesics 273

See Fig. 4, which shows a collection of DIG, with uniformly changing val-
ues of τ , constructed on a regular icosahedron made of 20 equilateral triangles.
Notice that the DIG for τ = 5 is almost squarish, since it lies in some triangles
whose functional planes are same. As the value of τ increases to 10, 15, . . ., the
functional planes of the concerned triangles gradually vary, thereby changing the
shape of DIG more and more. If the object is more roundish, such as a regular
polyhedron with a larger number of faces, a DIG also becomes more regular and
symmetric. The position of the seed point does not have any significant role,
and neither the orientation of the object S, as far as the scale factor ξ is not
uncompromisingly small.

Fig. 4. A collection of DIG for τ = 5, 10, 15, . . ., constructed by our algorithm on the
naive set of a regular icosahedron (the seed point s is shown in red). (Color figure
online)

The collection of DIG can also be used to detect tunnels in an object, and
hence to compute its genus, which is a strong topological feature commonly
used for shape analysis. Figure 5 shows a typical set of results on the naive

274 G. Bhalla and P. Bhowmick

Fig. 5. Four collections of DIG (shown in green) on the naive set of a ‘mug’. Each
collection is generated with a seed point shown in red. (Color figure online)

voxel set of an object with genus one. With four different seed points widely
varying in position, the final results in all cases lead to the occurrence of a
‘handle’ in the object. This is inferred from the fact that in the handle, the
DIGs can be paired based on their geodesic distances from s. The two DIGs in
every pair are geodesically equidistant from s, and hence implies two articulation
points from the main ‘body’. If the two DIGS in the farthest pair among these
pairs are connected with each other within a geodesic distance of 2τ , then the
connecting part belongs to the handle and hence indicates the occurrence of a
tunnel; otherwise, it signifies two articulated projections connected through the
main body.

The notion of DIG introduced in this paper clearly shows its theoretical merit
as well as practical uses in different tasks and applications related to voxelized
objects. Setting the value of the scale factor ξ for voxelization of a 2-manifold S
in order to ensure its topological equivalence with S through homeomorphism
remains an open problem. We foresee this problem important in the theoretical

DIG: Discrete Iso-contour Geodesics 275

context of DIG construction and also for shape analysis. Apart from genus and
articulation points that are briefly discussed in this paper, many other shape
features like regularity, concavity, convexity, and symmetry can also possibly
be analyzed through DIG constitution in the voxel space, which if done, would
further establish its potential in digital geometry and topology.

References

1. Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Exact geodesics and shortest
paths on polyhedral surfaces. IEEE TPAMI 31, 1006–1016 (2009)

2. Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesic
paths and circles in Z

3. Theoret. Comput. Sci. 605, 146–163 (2015)
3. Brimkov, V.E.: Formulas for the number of (n − 2)-gaps of binary objects in arbi-

trary dimension. Discrete Appl. Math. 157, 452–463 (2009)
4. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theoret. Comput. Sci.

283, 151–170 (2002)
5. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity–a review. Discrete

Appl. Math. 155, 468–495 (2007)
6. Chandru, V., Manohar, S., Prakash, C.E.: Voxel-based modeling for layered man-

ufacturing. IEEE Comput. Graph. App. 15, 42–47 (1995)
7. Chang, H.H., Lai, Y.C., Yao, C.Y., Hua, K.L., Niu, Y., Liu, F.: Geometry-shader-

based real-time voxelization and applications. Vis. Comput. 30, 327–340 (2014)
8. Coeurjolly, D., Miguet, S., Tougne, L.: 2D and 3D visibility in discrete geometry:

an application to discrete geodesic paths. PRL 25, 561–570 (2004)
9. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models

Image Process. 57, 453–461 (1995)
10. Dachille, F., Kaufman, A.E.: Incremental triangle voxelization. In: Graphics Inter-

face Conference, pp. 205–212 (2000)
11. Desimone, J.M., Ermoshkin, A., Samulski, E.T.: Method and apparatus for three-

dimensional fabrication. US Patent 20140361463 (2014)
12. Dionne, O., de Lasa, M.: Geodesic binding for degenerate character geometry using

sparse voxelization. IEEE TVCG 20, 1367–1378 (2014)
13. Dong, Z., Chen, W., Bao, H., Zhang, H., Peng, Q.: Real-time voxelization for

complex polygonal models. In: PG 2004, pp. 43–50 (2004)
14. Edelsbrunner, H., Harer, J.L.: Computational Topology. American Mathematical

Society, Providence (2009)
15. Eisemann, E., Décoret, X.: Single-pass GPU solid voxelization for real-time appli-

cations. In: GI 2008, pp. 73–80 (2008)
16. Fang, S., Fang, S., Chen, H., Chen, H.: Hardware accelerated voxelization. Comput.

Graph. 24, 433–442 (2000)
17. Hiller, J., Lipson, H.: Design and analysis of digital materials for physical 3D voxel

printing. Rapid Prototyping J. 15, 137–149 (2009)
18. Hiller, J., Lipson, H.: Tunable digital material properties for 3D voxel printers.

Rapid Prototyping J. 16, 241–247 (2010)
19. Hull, C.: Apparatus for production of three-dimensional objects by stereolithogra-

phy. US Patent 4575330 (1986)
20. Jee, H.J., Sachs, E.: A visual simulation technique for 3D printing. Adv. Eng.

Softw. 31, 97–106 (2000)

276 G. Bhalla and P. Bhowmick

21. Kamrani, A.K., Nasr, E.A.: Engineering Design and Rapid Prototyping. Springer,
Boston (2009)

22. Karabassi, E.A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based vox-
elization algorithm. J. Graph. Tools 4(4), 5–10 (1999)

23. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

24. Liao, D.: GPU-accelerated multi-valued solid voxelization by slice functions in real
time. In: VRCAI 2008, pp. 18:1–18:6 (2008)

25. Malgouyres, R.: A discrete radiosity method. In: Braquelaire, A., Lachaud, J.-O.,
Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, p. 428. Springer, Heidelberg (2002)

26. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic prob-
lem. SIAM J. Comput. 16, 647–668 (1987)

27. Mukhopadhyay, J., Das, P.P., Chattopadhyay, S., Bhowmick, P., Chatterji, B.N.:
Digital Geometry in Image Processing. CRC, Boca Ration (2013)

28. Nanya, T., Yoshihara, H., Maekawa, T.: Reconstruction of complete 3D models by
voxel integration. J. Adv. Mech. Des. Syst. Manuf. 7, 362–376 (2013)

29. Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using
volumetric techniques. IEEE TVCG 9, 191–205 (2003)

30. Pomerantz, I., Cohen-Sabban, J., Bieber, A., Kamir, J., Katz, M., Nagler, M.:
Three dimensional modelling apparatus. US Patent 4961154 (1990)

31. Prakash, C., Manohar, S.: Volume rendering of unstructured grids–a voxelization
approach. Comput. Graph. 19, 711–726 (1995)

32. Steingart, Robert, C., Tzu-Wei, D.: Fabrication of non-homogeneous articles via
additive manufacturing using three-dimensional voxel-based models. US Patent
8509933 (2013)

33. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact
and approximate geodesics on meshes. ACM TOG 24, 553–560 (2005)

34. Truong-Hong, L., Laefer, D.F., Hinks, T., Carr, H.: Combining an angle criterion
with voxelization and the flying voxel method in reconstructing building models
from lidar data. Comput. Aided Civ. Infrastruct. Eng. 28, 112–129 (2013)

35. Xin, S.Q., Wang, G.J.: Improving Chen and Han’s algorithm on the discrete geo-
desic problem. ACM TOG 28, 104:1–104:8 (2009)

36. Xin, S.Q., Ying, X., He, Y.: Constant-time all-pairs geodesic distance query on
triangle meshes. In: I3D 2012, pp. 31–38 (2012)

37. Ying, X., Wang, X., He, Y.: Saddle vertex graph (SVG): a novel solution to the
discrete geodesic problem. ACM TOG 32, 170:1–170:12 (2013)

38. Zhang, Z., Morishima, S.: Application friendly voxelization on GPU by geometry
splitting. In: Christie, M., Li, T.-Y. (eds.) SG 2014. LNCS, vol. 8698, pp. 112–120.
Springer, Heidelberg (2014)

Solving Distance Geometry Problem
with Inexact Distances in Integer Plane

Piyush K. Bhunre(B), Partha Bhowmick, and Jayanta Mukhopadhyay

Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur, India

kbpiyush@gmail.com, {pb,jay}@cse.iitkgp.ernet.in

Abstract. Given the pairwise distances for a set of unknown points in a
known metric space, the distance geometry problem (DGP) is to compute
the point coordinates in conformation with the distance constraints. It is
a well-known problem in the Euclidean space, has several variations, finds
many applications, and so has been attempted by different researchers
from time to time. However, to the best of our knowledge, it is not
yet fully addressed to its merit, especially in the discrete space. Hence,
in this paper we introduce a novel variant of DGP where the pairwise
distance between every two unknown points is given a tolerance zone
with the objective of finding the solution as a collection of integer points.
The solution is based on characterization of different types of annulus
intersection, their equivalence, and cardinality bounds of integer points.
Necessary implementation details and useful heuristics make it attractive
for practical applications in the discrete space.

1 Introduction

Given the inter-point distances for a finite set of points with unknown coordinates
in a particular metric space, the distance geometry problem (DGP) is to embed
the points in that space so as to satisfy the distance constraints. The basic
problem in the Euclidean space was first introduced by Menger in 1920s, and
later formally established by Blumenthal in 1950s [2,14,17]. The general version
of the problem is as follows. Given a positive integer k and a simple undirected
weighted graph G = (V,E) with weight function w : E �→ R

+, determine if there
is a function f : V �→ R

k such that for all (u, v) ∈ E, ‖f(u) − f(v)‖ = w(u, v),
where ‖ · ‖ denotes the Euclidean norm in k-dimensional space. The problem is
NP-complete for k = 1 (i.e., embedding in real line) and NP-hard for k > 1 [19].
Following are the variations of DGP as per the input distance set.

1. Exact Distances: The point-set embedding should be such that the corre-
sponding distance set exactly matches the input distance set. Here all the
distances are given, and so the distance set is a complete set.

2. Inexact or Bounded Distances: Each pairwise distance in the solution need
not be exact, but lies in an interval.

3. Sparse Distances: The distance set is incomplete; in addition, the distances
could be of exact or of bounded type.

c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 277–289, 2016.
DOI: 10.1007/978-3-319-39441-1 25

278 P.K. Bhunre et al.

The second and the third variations of the problem are more realistic than the
first one, since the exact distances are often not available due to limitations of the
measurement device. The DGP is related to many important research problems,
such as Molecular Distance Geometry Problem and Molecular Conformation
[8,11–13,15,16,20], Sensor Network Localization [4,5,18], and Graph Drawing
[1,3,6,9]. In all these problems, the DGP is dealt in the real space. When the
pairwise distances are exact, it can be solved in polynomial time [7,20]. For
bounded and sparse distances, the scenario becomes complex and difficult to
solve [14,20].

In our work, we have addressed the DGP for inexact or bounded distances in
the integer plane and have devised an efficient technique for solving it whenever a
given input instance admits a feasible solution. Although all the solution points
have integer coordinates, the proposed technique can be extended for finding
solutions in finer grids. To start with, in Sect. 2, we formulate the problem in the
integer plane. In Sect. 3, we present a characterization of digital annulus intersec-
tion for efficient computation of the solution in the integer plane. The proposed
heuristics and algorithm are discussed in Sect. 4. Further research directions and
concluding notes are put in Sect. 5.

2 Preliminaries and Problem Definition in Z
2

We fix here few definitions and notations used in the sequel. A real circle with
center at c ∈ R

2 and radius r is denoted by CR(c, r). A real annulus is defined
as AR(c, a, b) = {p ∈ R

2 : a � ‖c − p‖ � b}, where c ∈ R
2 is the center of the

annulus, and a and b are the respective inner and outer radii. A digital annulus
centered at c ∈ R

2, and with inner and outer radii a and b respectively, is defined
as the set of all integer points in AR(c, a, b), and so given by AZ(c, a, b)={p ∈
Z
2 : a � ‖c − p‖ � b}.

Let P = {p1, p2, . . . , pn} be a set of points with unknown coordinates in Z
2

such that the distance between every two points pi and pj is known to lie in a
given interval [aij , bij]. The objective is to determine the integer coordinates of
all points in P . We consider an alternative form of the distance bounds where
the distance between pi and pj lies in a known interval [dij − ε, dij + ε] for some
ε > 0. We also assume that the given intervals are such that there is at least one
solution to the problem.

To simplify our strategy, we first fix the reference frame with p1 as the origin,
p2 as an integer point on the +x-axis, and p3 lying left of −−→p1p2. With a12 � ‖p1−
p2‖ � b12, we get p2 ∈ AZ(p1, a12, b12), and p3 ∈ AZ(p1, a13, b13)∩AZ(p2, a23, b23)
(Fig. 1a). Now, for i � 4, if we try to embed pi based on its distance intervals
from the previous i − 1 points, then we need to compute

⋂i−1
j=1 AZ(pj , aji, bji),

which is expensive. Hence, as a faster solution, we use
⋂3

j=1 AZ(pj , aji, bji) for
each pi(i � 4) (Fig. 1b). For this, we have the following lemma.

Lemma 1. All the solution points corresponding to pi for i = 4, 5, . . . , n belong
to

⋂3
j=1 AZ(pj , aji, bji), which, if empty, does not yield any solution for P .

Proof. Follows from the problem statement and our consideration. ��

DGP in Integer Plane 279

p1

p3b13

a13

d13

d12 p2

d23

b23

a23

p′
3

p1

p3

d13

d12

p2

d23

a14

b14

b34

a34

b24

a24

p4

d34

d24d14

(a) p3 (or, p′
3 as an alternative) (b) p4

Fig. 1. Embedding of p3 followed by p4 in Z
2.

3 Characteristics of Annulus Intersection

We first provide some basic concepts of discrete geometry in the integer plane.
For more details we refer to [10]. Let p = (i, j) ∈ Z

2. The 4-neighbors of p
in Z

2 is defined as N4(p) = {(i′, j′) ∈ Z
2 : |i − i′| + |j − j′| = 1}, and the

8-neighbors as N8(p) = {(i′, j′) ∈ Z
2 : max(|i − i′|, |j − j′|) = 1}. A subset A of

Z
2 is said to be 4-connected (resp., 8-connected) if either A is singleton or there

exists a sequence of points in A between every two points of A such that every
two consecutive points in that sequence are 4-neighbors (resp., 8-neighbors) of
each other. When A is not connected, its maximally connected subsets are called
connected components.

Let, without loss of generality, p1 and p2 be the farthest pair, and the dis-
tance d12 between them be denoted by d for simplicity. We examine the possible
locations of an unknown point p, which is at a distance d1 and d2 from p1 and
p2 respectively, where a1 � d1 � b1 and a2 � d2 � b2. So, by our supposition,
max(b1, b2) � d. Also, b1 + b2 � d, failing which there will be no such point p.
Then p can be chosen as some point common to the digital annuli AZ(p1, a1, b1)
and AZ(p2, a2, b2) if their intersection is non-empty. When a solution exists, i.e.,
the width of the annulus is sufficiently large, the intersection will be either a
single or a pair of 8-connected components (Fig. 2). We define IZ as the set of
integer points belonging to both AZ(p1, a1, b1) and AZ(p2, a2, b2). The non-empty
intersection IZ is classified as follows.

– Type 1 (a1 + a2 > d): IZ comprises two connected components lying in two
different sides of the line p1p2. (As a degeneracy, it may have a single com-
ponent when a1 + a2 tends to d.)

– Type 2 ((a1 +a2 � d)∧ (a1 + b2 � d)∧ (b1 +a2 � d)): IZ is a single connected
component. (As a degeneracy, it may have two connected components as in
Type 1.)

280 P.K. Bhunre et al.

– Type 3 (((a1 + b2 < d) ∧ (b1 + a2 > d)) ∨ ((b1 + a2 < d) ∧ (a1 + b2 > d))): IZ

is a single connected component.
– Type 4 ((a1 +a2 < d)∧ (a1 + b2 < d)∧ (b1 +a2 < d)): IZ is a single connected

component bounded by the outer circles of the real annuli.

(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4

Fig. 2. Possible types of intersection between two annuli such that no radius exceeds
the distance between the annulus centers.

Note that there can be other types of intersection if max(b1, b2) > d. Hence,
to avoid this, we consider p1 and p2 as the farthest pair. we have the following
lemma related to intersection types.

Lemma 2. Type 3 and Type 4 intersections are computationally equivalent to
Type 2.

Proof. For Type 3 (Fig. 3(a-b)), we can replace AZ(p1, a1, b1) by AZ(p1, a′
1, b1)

with a′
1 = d − b2, whence it gets converted to Type 2, thereby equalizing

AZ(p1, a1, b1) ∩ AZ(p2, a2, b2) to AZ(p1, a′
1, b1) ∩ AZ(p2, a2, b2); similarly, we can

replace AZ(p2, a2, b2) by AZ(p2, a′
2, b2) with a′

2 = d − b1, which also results in
Type 2. In case of Type 4 (Fig. 3c), AZ(p1, a1, b1) and AZ(p2, a2, b2) can be
replaced by AZ(p1, a′

1, b1) and AZ(p2, a′
2, b2) respectively, with a′

1 = d − b2 and
a′
2 = d − b1, thereby again resulting in Type 2. ��

Thus, Type 3 and Type 4 intersections can be converted to their equivalent
Type 2 intersection, which simplifies the associated computation.

3.1 Computing Annulus Intersection in Z
2

We first ensure that an annulus intersection is of Type 1 or of Type 2 or its equiv-
alent. For computing the integer points in IZ := AZ(p1, a1, b1) ∩ AZ(p2, a2, b2),
we first find a seed point s ∈ IR := AR(p1, a1, b1) ∩ AR(p2, a2, b2). The
seed point s is taken as an/the intersection point of the circles CR(p1, a1+b1

2)

DGP in Integer Plane 281

a1

a′
1

b1 b2

a′
2

a2

b1

a1

a′
1

a2

a′
2

b2

)c()b()a(

Fig. 3. Converting Type 3 and Type 4 intersections into equivalent Type 2 intersection
by removing the empty sub-annulus incident on the inner circle (shown dashed and
blue). (Color figure online)

and CR(p2, a2+b2
2). Note that CR(p1, a1+b1

2) and CR(p2, a2+b2
2) intersect at two

points if d′ = a1+b1
2 + a2+b2

2 > d, where d is the distance between p1 and p2. If
d′ = d, then they touch at a single point, and they do not intersect or touch at
all when d′ < d. As the intersection is of Type 1 or Type 2, there always exists a
seed point with minimum distance b1−a1

2 and b2−a2
2 from the boundaries of the

annuli (Fig. 4). This gives us the following lemma.

Lemma 3. If min(b1 − a1, b2 − a2) �
√

2 and the intersection of AZ(p1, a1, b1)
and AZ(p2, a2, b2) is of Type 1 or of Type 2, then there exists an integer point
q0 ∈ AZ(p2, a1, b1) ∩ AZ(p2, a2, b2) and it can be determined in constant time.

Proof. The seed point s belongs to a unit square U whose vertices are integer
points. If the width of each annulus is at least

√
2, then the minimum distance

of s from each annulus boundary is at least
√
2
2 = 1√

2
. Hence, the real circle

CR(s, 1√
2
) is completely enclosed by both the annuli. Since s lies on or inside U ,

at least one vertex of U is within a distance of 1√
2

from s, and so lies on or inside
CR(s, 1√

2
), and hence inside the annulus intersection. ��

By Lemma 3, we get an integer point q0 ∈ IZ. Starting from q0, we get all
other points in IZ as a connected component, using breadth first search (BFS)
in the integer plane.

Henceforth in this paper, for notional and notational simplicity, we consider
2ε as the width of each annulus. So, the digital annulus centered at a point pi is
denoted by AZ(pi, di − ε, di + ε), where di is its mean radius.

Theorem 1. If d := ||p1 − p2|| � max(d1, d2) + ε, then the cardinality of IZ is
O(ε2) for Type 1 intersection and O(ε

√
εd) for Type 2 intersection.

282 P.K. Bhunre et al.

sa1

b1

a2

b2
a2+b2

2

a1+b1
2

p1 p2

s′

s
a1

b1

a2

b2

a2+b2
2

a1+b1
2

p1 p2

s′

(a) Type 1 (b) Type 2

Fig. 4. Finding a seed points s (red) for computing the annulus intersection. (Color
figure online)

Proof. We have d > d1 + ε and d > d2 + ε. If d > d1 + d2 + 2ε, then IZ is
empty. So, d � d1 + d2 + 2ε. Without loss of generality, we take p1 = (0, 0) and
p2 = (d, 0), as illustrated in Fig. 5.

Let I+ = {(x, y) ∈ IR : y � 0}, xmin = min{x : (x, y) ∈ I+}, xmax =
max{x : (x, y) ∈ I+}, ymin = min{y : (x, y) ∈ I+}, and ymax = max{y : (x, y) ∈
I+}. Then there exists a rectangle with edge-lengths w = (xmax − xmin) and
h = (ymax − ymin) such that it encloses I+. Hence, the number of integer points
in I+ is O(wh), and from the symmetry of the problem, the cardinality of IZ is
O(wh). We determine w and h by case analysis.

Case I (IR is Type 1): Here, d � d1 + d2 − 2ε, and IR consists of two connected
components: one lies above and the other lies below the line p1p2 (Fig. 5(a)).
Then xmin is the abscissa of the point of intersection of CR(p1, d1 − ε) and
CR(p2, d2 + ε). By solving the equations x2 + y2 = (d1 − ε)2 and (x − d)2 + y2 =
(d2+ε)2, we get xmin = d2+(d1−ε)2−(d2+ε)2

2d . Similarly, the abscissa of the point of

intersection of CR(p1, d1 + ε) and CR(p2, d2 − ε) gives xmax = d2+(d1+ε)2−(d2−ε)2

2d .
So by using d � max(d1, d2) + ε, we get

w = xmax − xmin =
4ε(d1 + d2)

2d
� 4ε

(
1 − ε

d

)
� 4ε. (1)

By symmetry of the problem, we can interchange x and y to obtain a similar
bound for h as 4ε. Hence, for each of the two components of the annulus inter-
section, there exists an enclosing square of length 4ε. Hence, the cardinality of
IZ becomes O(ε2).

Case II (IR is Type 2): Here, d1+d2−2ε < d, because the inner circles CR(p1, d1−
ε) and CR(p2, d2 − ε) do not intersect or touch each other. By following the
procedure used in Case I, it can be shown that xmax − xmin � 4ε, or, w = O(ε).

DGP in Integer Plane 283

p1 p2 p1 p2

)b()a(

Fig. 5. Cardinality of intersection for annulus width 2ε. (a) Type 1 annulus intersection
is bounded by a rectangle with (axis-parallel) edges of length O(ε) and cardinality
O(ε2). (b) Type 2 annulus intersection is bounded by a rectangle with edges of length
O(ε) and O(

√
εd), and cardinality O(ε

√
εd).

Let c = (cx, cy) be the topmost point of the annulus intersection, and hence it is
the intersection point of the outer real circles of the two annuli. By symmetry,
c′ = (cx,−cy) is the bottommost point, which is the reflection of c with respect to
x-axis. Then solving the equations c2x+c2y = (d1+ε)2 and (d−cx)2+c2y = (d2+ε)2,

we get cx = d2+(d1+ε)2−(d2+ε)2

2d and cy as follows.

c2y = (d1 + ε)2 −
(

d2+(d1+ε)2−(d2+ε)2

2d

)2

= ((d1+d2+2ε)2−d2)(d2−(d1−d2)
2)

4d2

� ((d+4ε)2−d2)(d2−(d1−d2)
2)

4d2 , since d1 + d2 − 2ε < d

= 4ε2
(
1 + d

2ε

) (
1 − (d1−d2

d)2
)

� 4ε2
(

d
2ε + d

2ε

)
, since d � max(d1, d2) + ε, d > d1 + d2 − 2ε, d

2ε > 1

= 4εd =⇒ cy = O(
√

εd). (2)

By Eq. 2, h = O(
√

εd); as w = O(ε), the number of points in IZ is O(ε
√

εd). ��
By Lemma 3 and Theorem 1, we have the following corollary.

Corollary 1. IZ is computable in O(ε2) time for Type 1 and in O(ε
√

εd) time
for Type 2 intersections.

4 Proposed Algorithm and Implementation Issues

The first three points p1, p2, and p3 are known, or are fixed with an appropriate
coordinate system, as explained in Sect. 2. That is, for i = 1, 2, 3, the candidate
solutions are IZ

i = {pi}. For each other point pi, a set of candidate solutions
is obtained as IZ

i :=
⋂3

j=1 AZ(pj , aji, bji). One or more points from IZ

i would

284 P.K. Bhunre et al.

belong to a/the global solution with all n points. In particular, we have the
following theorem on the collection of these sets of candidate solutions.

Theorem 2. If a given set of distance constraints admits a global solution, then
it is always contained in the collection K := {IZ

i : i = 1, 2, . . . , n} whose compu-
tational time is O(ε2n) in the best case and O(ε

3
2 d

1
2 n) in the worst case.

Proof. The containment of global solution in K follows from Lemma 1. For prov-
ing the computational part, we use Corollary 1. For each pi with i = 4, . . . , n,
computation of AZ(p1, a1i, b1i)∩AZ(p2, a2i, b2i) takes O(ε2) time for Type 1 inter-
section and O(ε

√
εd) time for Type 2 intersection. The additional time needed

for validation against AZ(p3, a3i, b3i) is subsumed within the aforesaid time com-
plexity. Summing up this over i from 4 to n, we get the result. ��

By Lemma 3, we always have an integer point qi,0 in IZ

i if we set ε � 1√
2

and IZ

i is of Type 1 or of Type 2, for i = 1, 2, . . . , n. Further, by Theorem 1, if
d � max(d1, d2)+ε, then with ε = 1√

2
, we get |IZ

i | = O(1) for Type 1 intersection

and O(
√

d) for Type 2 intersection. So by Corollary 1, IZ

i can be computed in
O(1) time in the best case and in O(

√
d) time in the worst case. This gives the

following corollary.

Corollary 2. For an appropriately small value of ε (= 1√
2
for definiteness), the

time complexity of the algorithm varies from O(n) to O(n
√

d), where d is the
maximum point-pair distance.

When positions of p1, p2, and p3 are not known, we can choose p1 as the
origin and p2 lying in AZ(p1, a12, b12). There are O(εd) possible choices for p2.
Next, the third point p3 can be chosen from the intersection of AZ(p1, a13, b13)
and AZ(p2, a23, b23). There are O(ε

3
2
√

d) ways to choose p3. The rest of the points
can be computed using the proposed technique. For certain choices of p2 and p3,
a global solution (satisfying all the distance bounds) may not exist. So, we may
need to consider all possible choices of p2 and p3 in order to compute a global
solution. There are O(ε

5
2 d

3
2) possible pairs of possible solutions for p2 and p3

in the worst case. Hence, total time required for computing a global solution
is O(ε4d2n) in the worst case. We also need O(n2) time to verify the distance
bounds for a solution.

4.1 Search for Feasible Solution

By Theorem 2, the collection K contains all feasible solutions. However, it may
contain some infeasible combinations too, alongside. To distinguish the former
from the latter, one has to search at least O(ε2n) possible combinations. These
combinations can be represented in a rooted tree with the root node containing
the solution for p1 and a node at the ith level representing a set of solutions for
pi that satisfies the distance constraints with its predecessor points from pi−1

to p1. The tree traversal is similar to the branch-and-prune technique proposed

DGP in Integer Plane 285

Algorithm 1. DDGA(n, a, b, P1, P2, P3)

1 Create empty list IZ

i of candidate solutions for ith point, for i = 1, 2, · · · , n.

2 IZ

1 ← { P1}, IZ

2 ← { P2}, IZ

3 ← { P3}
3 for i = 4, 2, · · · , n do � set of candidate solutions for ith point

4 IZ

i ← AZ(P1, a1i, b1i) ∩ AZ(P2, a2i, b2i) ∩ AZ(P3, a3i, b3i).

5 ni ← |IZ

i | � number of candidate solutions for ith point

6 N ← ShiftOrigin(
⋃n

i=1 IZ

i) � make sure all points are in [1, N] × [1, N]
7 Create a matrix B[1..N ; 1..N], initialized to 0s � to accumulate votes

8 for i = 1, 2, · · · n do � casting mutual votes of IZ

i and IZ

j

9 for j = i + 1, i + 2, · · · , n do
10 for k = 1, 2, · · · , ni do

11 (αi, βi) ← IZ

i [k] � get the kth point of IZ

i

12 for l = 1, 2, · · · , nj do

13 (αj , βj) ← IZ

j [l] � get the lth point of IZ

j

14 d ← ||(αi, βi) − (αj , βj)|| � distance between the points

15 if aij � d � bij then
16 B[αi, βi] ← B[αi, βi] + 1 � casting a vote for (αi, βi)
17 B[αj , βj] ← B[αj , βj] + 1 � casting a vote for (αj , βj)

18 for i = 4, 5, · · · , n do � find a point in IZ

i having maximum vote

19 (α, β) ← IZ

i [1] � first point in the list IZ

i

20 for k = 2, 3, · · · , ni do � search in IZ

i

21 (αi, βi) ← IZ

i [k]
22 if B[α, β] < B[αi, βi] then
23 (α, β) ← (αi, βi)

24 Pi ← (α, β) � final solution point with maximum vote

25 return {Pi : i = 1, 2, · · · , n}

in [13] and the interval branch-and-prune technique proposed in [12] for finding
an approximate DGP solution in R

2. In our approach, the search is performed
in Z

2, where we need to verify only a finitely many possible points for a valid
solution. A possible solution to the DGP problem corresponds to a path of length
n − 1 from the root to a leaf node. In order to find a solution, in the worst case,
we may need to explore and verify all paths, which would take exponential time
when ε is not small. In such a case, a voting scheme may be adopted as an
efficient heuristic to determine the best solution point in each IZ

i in the sense
that it satisfies the maximum number of distance constraints. For any p ∈ IZ

i

and q ∈ IZ

j , if p and q satisfy the distance constraints, then each of them receives
a mutual vote. In order to compute the vote for all candidate integer points, we
use an accumulator B (implemented as a 2D array), such that for each digital
point (α, β), B(α, β) stores the number of votes received by (α, β). The main
steps are shown in Algorithm 1.

286 P.K. Bhunre et al.

)b()a(

Fig. 6. Visualization of a digital solution to DGP with inexact distances. See Appendix
for the input. (a) p1, p2, and p3 shown in red; the connected components making the
candidate solutions of all other points shown in distinct colors; each point having the
highest vote in a component shown as a blue dot. (b) The votes for all candidate
solutions are treated as intensity values to visualize the accumulator matrix B as an
image. Brighter pixels correspond to higher votes and pixels having highest votes are
marked by colored dots. (Color figure online)

4.2 Improvement of Efficiency

If all the annulus intersections computed during the execution of the algorithm
are of Type 1, then the algorithm has the speediest execution. So, in order to
increase Type 1 intersections, we choose p1 and p2 as the farthest pair. Similarly,
we choose p3 such that min(b13, b23) � min(b1i, b2i), ∀i �= 1, 2. Further, IZ

i can
be computed by following an appropriate ordering of computation of the inter-
section of the three annuli AZ(p1, a1i, b1i), AZ(p2, a2i, b2i), and AZ(p3, a3i, b3i),
so that IZ

i is Type 1 intersection; otherwise, we defer its computation. In par-
ticular, we first run the algorithm for the points that have Type 1 intersection
with respect to p1, p2 and p3, and find the solution by voting scheme. We take
S1 as the list of points whose solutions are found by this, and S2 as the list of
the remaining points, i.e., the ones having Type 2 intersection. The solutions for
the points in S2 are determined by using few suitable points from S1.

4.3 Test Results

The proposed algorithm for solving inexact DGP is implemented and tested on
randomly generated problem instances. Experimentation shows that the algo-
rithm is able to solve inexact DGP efficiently. A solution to a small problem
instance with n = 12 points is visualized in Fig. 6. Notice that only one solu-
tion is reported here; there are, in fact, multiple solutions when a connected
component contains more than one point having the same maximum vote.

DGP in Integer Plane 287

5 Concluding Notes

We have formulated the inexact DG problem in Z
2 and have done a theoretical

analysis in order to solve it efficiently. For a large value of ε, we have proposed an
efficient voting scheme in order to bring down the exponential time complexity
to a low-order polynomial. The idea can be extended for solving inexact DGP in
3D integer space also. Besides, many other issues and possibilities have opened
up, which requires a deeper analysis of the problem in the discrete space. Some
of these, which we foresee as potential research problems, are as follows.

1. The number of worst-case occurrences in the execution of the algorithm can
possibly be minimized by changing the sequence in which the annuli are con-
sidered while computing their intersections. The rationale is that if the centers
of three annuli are well-separated, then their intersection is well-formed, easy
to compute, and lead to speedier execution.

2. In many applications, the distances may not be known for some pairs of
points. We can then apply the algorithm to compute the candidate solutions
for those points whose distances from p1, p2, and p3 are known; then these
partial solutions can be used in a suitable order to find the remaining points.

3. For a small ε, no integer solution may exist for certain points. To handle this,
we can go for a higher resolution by subdividing Z

2 and reporting the solution
point coordinates as rational numbers.

4. We have not commented on the behavior of the heuristic used when ε is large.
As ε increases, uncertainty also increases, and the solution space increases
exponentially and depends on the distribution of the pairwise distances. We
envisage a wide scope of research to analyze this aspect of the problem.

A Appendix

Top matrix: (d)n×n contains actual distances among n = 12 points generated
randomly. An instance of inexact DGP is made with [aij , bij] = [(dij −ε), (dij +ε)
for ε = 2.
Bottom matrix: (d̂)n×n (rounded off to two decimal places) of the embedded

point set; the RMS error
(

=
√∑

i<j(dij − d̂ij)2/
(
n
2

))
between (d)n×n and

(d̂)n×n is 0.7654.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
p1 0 41.77 28.92 30.89 38.19 31.69 23.49 12.27 10.71 23.37 35.63 13.35
p2 41.77 0 24.01 24.42 9.33 10.85 18.57 30.39 38.81 22.94 11.08 30.30
p3 28.92 24.01 0 34.07 27.74 21.04 13.72 17.40 20.75 26.31 13.11 25.00
p4 30.89 24.42 34.07 0 15.54 15.72 20.43 25.68 34.76 8.88 28.00 17.87
p5 38.19 9.33 27.74 15.54 0 7.45 17.54 28.38 37.67 16.28 16.87 25.39
p6 31.69 10.85 21.04 15.72 7.45 0 10.09 21.21 30.36 12.24 12.37 19.61
p7 23.49 18.57 13.72 20.43 17.54 10.09 0 11.82 20.51 12.65 12.76 14.02
p8 12.27 30.39 17.40 25.68 28.38 21.21 11.82 0 9.48 16.85 23.43 9.72
p9 10.71 38.81 20.75 34.76 37.67 30.36 20.51 9.48 0 26.06 30.41 17.48
p10 23.37 22.94 26.31 8.88 16.28 12.24 12.65 16.85 26.06 0 22.86 10.02
p11 35.63 11.08 13.11 28.00 16.87 12.37 12.76 23.43 30.41 22.86 0 26.71
p12 13.35 30.30 25.00 17.87 25.39 19.61 14.02 9.72 17.48 10.02 26.71 0

288 P.K. Bhunre et al.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
p1 0 41.00 29.41 29.41 38.64 31.26 23.19 11.40 10.77 23.26 35.90 13.42
p2 41.00 0 24.04 24.04 7.62 10.77 18.25 30.15 38.33 22.36 10.00 29.61
p3 29.41 24.04 0 34.00 27.78 22.14 14.04 19.10 21.19 27.17 14.21 25.94
p4 29.41 24.04 34.00 0 17.20 14.76 20.02 23.85 33.60 7.62 27.31 16.28
p5 38.64 7.62 27.78 17.20 0 7.62 18.03 28.79 38.01 17.26 15.30 26.02
p6 31.26 10.77 22.14 14.76 7.62 0 10.63 21.19 30.41 11.66 12.65 19.10
p7 23.19 18.25 14.04 20.02 18.03 10.63 0 12.00 20.25 13.15 13.00 14.21
p8 11.40 30.15 19.10 23.85 28.79 21.19 12.00 0 9.90 16.40 24.52 9.06
p9 10.77 38.33 21.19 33.60 38.01 30.41 20.25 9.90 0 26.25 31.06 17.89
p10 23.26 22.36 27.17 7.62 17.26 11.66 13.15 16.40 26.25 0 22.80 9.85
p11 35.90 10.00 14.21 27.31 15.30 12.65 13.00 24.52 31.06 22.80 0 26.93
p12 13.42 29.61 25.94 16.28 26.02 19.10 14.21 9.06 17.89 9.85 26.93 0

References

1. http://www.graphdrawing.org/. Accessed 27 Sept 2015
2. Blumenthal, L.M.: Theory and Application of Distance Geometry. Oxford Univer-

sity Press, Oxford (1953)
3. Brandes, U., Pich, C.: An experimental study on distance-based graph drawing.

In: GD 2008, Revised Papers, pp. 218–229 (2008)
4. Bulusu, N., Estrin, D., Heidemann, J.: Scalable coordination for wireless sensor

networks self-configuring localization systems. In: Proceedings of the ISCTA (2001)
5. Cheng, L., Wu, C., Zhang, Y., Wu, H., Li, M., Maple, C.: A survey of localization

in wireless sensor network. Int. J. Distrib. Sens. Netw., 324–357 (2012)
6. Civril, A., Magdon-Ismail, M., Bocek-Rivele, E.: SDE: graph drawing using spectral

distance embedding. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843,
pp. 512–513. Springer, Heidelberg (2006)

7. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geom-
etry problem with exact inter-atomic distance. J. Global Optim. 22, 365–375 (2002)

8. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular dis-
tance geometry problem with sparse distance data. J. Global Optim. 26, 321–333
(2003)

9. Gibson, H., Faith, J., Vickers, P.: A survey of two-dimensional graph layout tech-
niques for information visualization. Inf. Vis. 12(3–4), 324–357 (2012)

10. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

11. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the dis-
cretizable molecular distance geometry problem. Computational Optimization and
Applications (2012)

12. Lavor, C., Liberti, L., Mucherino, A.: The interval branch-and-prune algorithm for
the discretizable molecular distance geometry problem with inexact distances. J.
Global Optim. 56, 855–871 (2013)

13. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molec-
ular distance geometry problem. Intl. Trans. Oper. Res. 15, 1–17 (2008)

14. Liberti, L., Lavor, C., Mucherino, A.: Euclidean distance geometry and applica-
tions. SIAM Rev. 56, 3–69 (2014)

15. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry
methods:from continuous to discrete. Intl. Trans. Oper. Res. 18, 33–51 (2010)

16. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J.
Global Optim. 15, 219–234 (1999)

17. Mucherino, A., Lavor, C., Liberti, L., Maculan, N.: Distance Geometry: Theory,
Methods, and Applications, 1st edn. Springer, New York (2013)

http://www.graphdrawing.org/

DGP in Integer Plane 289

18. Savvides, A., Han, C.C., Strivastava, M.B.: Dynamic fine-grained localization in
ad-hoc networks of sensors. In: Proceedings of the MobiCom 2001, pp. 166–179
(2001)

19. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In:
Proceedings of the 17th Allerton Conference in Communications, Control & Com-
puting, pp. 480–489 (1979)

20. Sit, A.: Solving distance geometry problems for protein structure determination.
P.h.D thesis, Iowa State University (2010)

Segmentation and Classification
of Geoenvironmental Zones of Interest in Aerial
Images Using the Bounded Irregular Pyramid

Mariletty Calderón, Rebeca Marfil, and Antonio Bandera(B)

Departamento de Tecnoloǵıa Electrónica, Universidad de Málaga,
Campus Universitario de Teatinos, 29071 Málaga, Spain

ajbandera@uma.es

Abstract. The goal of this work is to automatically detect and clas-
sify a set of geoenvironmental zones of interest in panchromatic aerial
images. Focused on a specific area, the zones to be detected are veg-
etation/mangrove, degradation/desertification, interface water-sediment
and plain. These zones are very interesting from a geological point of
view due to their spatial distribution and interrelation, which contribute
to evaluate the natural anthropic impact level. The approach to unsuper-
visedly extract these zones from an input image has two steps. Firstly,
the image is automatically segmented in homogeneous colored regions
using the Bounded Irregular Pyramid (BIP). The BIP is a hierarchy
of successively reduced graphs which produces accurate segmentation
results with a low computational cost. Secondly, each obtained region is
classified using texture features to determine if it belongs to one of the
geoenvironmental zones of interest. As texture features, we have evalu-
ated two variations of the Local Binary Pattern (LBP) descriptor: the
Extended-LBP (ELBP) and the LBP variance (LBPV). Both methods
include a local contrast measure. For classifying the obtained features,
the Support Vector Machine (SVM) has been employed. At this stage, we
have evaluated the use of linear and radial basis function (RBF) kernels.
The whole framework was tested using images obtained from our specific
area of interest: the location of Carenero, Miranda state (Venezuela), in
years 1936 and 1992. They allow to study the variation of the geoenvi-
ronmental zones of interest of this location in this period of time. These
images are low quality images and present significant variations in illu-
mination. This makes difficult the texture classification of their zones.
However, the obtained results show that the proposed approach provides
good results in terms of identification of zones of geoenviromental inter-
est in these images.

Keywords: Aerial image segmentation · Irregular pyramid · Texture
classification

1 Introduction

The study of the anthropic impact produced in a given area is a key issue in
geology. For this purpose, aerial and satellite images are being widely used to
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 290–301, 2016.
DOI: 10.1007/978-3-319-39441-1 26

Segmentation and Classification of Geoenvironmental Zones 291

obtain qualitative and quantitative geologic information [1,2] because they are
non-invasive methods which allow to work in areas of difficult access. To do
that, and depending on the geological features of the area to be studied, differ-
ent geoenvironmental zones and their evolution over the time need to be studied.
However, when the goal of an image processing algorithm is to divide the input
image in a manner similar to human beings, the adopted strategy cannot simply
be the grouping of image pixels into clusters (regions or boundaries) taking into
account low-level photometric properties. Aerial and satellite images are gener-
ally composed of physically disjoint regions whose associated groups of image
pixels may not be visually uniform. Hence, it is very difficult to formulate what
should be recovered as a region or boundary or to segment complex regions from
the image. With the aim of organizing low-level image features into higher level
relational structures, the perceptual organization of the image content is usually
thought as a process of grouping visual information into a hierarchy of levels of
abstraction. Starting from the lower level of the hierarchy (i.e. the input image
or an initial partition), each new layer groups the regions of the level below into
a reduced set of regions. This grouping needs to define a region model (the fea-
tures that describe each image region) and a dissimilarity measure (the metric on
those features). This paper proposes a texture-based automatic system to iden-
tify a predefined set of geonvironmental zones in panchromatic aerial images.
This system is divided in two steps: a pre-segmentation stage that accumulates
local evidences from the original image to a single graph. This graph will encode
a decomposition of the image into superpixels. This initial stage of the clus-
tering process is guided by the principles described by Levinshtein et al. [11].
Thus, blobs represent connected sets of pixels without overlapping among them.
They are compact and their boundaries coincide with the main image edges
when the pre-segmentation stops. Then, a second stage categorizes the previ-
ously obtained blobs into a reduced set of perceptually significant classes. This
stage characterizes every blob using a texture feature and then classifies them
into one of a collection of predefined zones. The performance of the texture-
based classification scheme has been evaluated using the Banja Luka dataset to
measure its ability to deal with real images. After confirming the validity of this
stage, the whole system has been applied to the detection and classification of
vegetation/mangrove, degradation/desertification, interface water-sediment and
plain zones in panchromatic aerial images captured in years 1936 and 1992 in
the location of Carenero, Miranda state (Venezuela).

The rest of the paper is organized as follows: Sect. 2 provides an overview
of the whole approach and describes how both stages are implemented. Experi-
mental results showing the performance of the approach are presented at Sect. 3.
Section 4 draws the conclusions and future work.

2 Proposed Method

Figure 1 provides an overview of the proposed method. In the pre-segmentation
stage, the Bounded Irregular Pyramid [7] has been used for segmenting an equal-
ized version of the input image. Instead of performing image segmentation based

292 M. Calderón et al.

on a single representation of the input image, a pyramid segmentation algorithm
describes the contents of the image using multiple representations with decreas-
ing resolution. In this hierarchy, each representation or level is built by comput-
ing a set of local operations over the level below, being the original image the
level 0 or base level of the hierarchy. Pyramid segmentation algorithms exhibit
interesting properties with respect to segmentation algorithms based on a single
representation. Thus, local operations can adapt the pyramidal hierarchy to the
topology of the image, allowing the detection of global features of interest and
representing them at low resolution levels. The pre-segmentation divides up the
input image into a collection of non-overlapping blobs. These blobs are char-
acterized using two variations of the Local Binary Pattern (LBP) descriptor:
the Extended-LBP (ELBP) and the LBP variance (LBPV) [6]. For classifying
the blobs as belonging to an specific environmental zone, the Support Vector
Machine (SVM) has been employed using linear and radial basis function (RBF)
kernels.

Fig. 1. Overview of the proposed method

2.1 Pre-segmentation Stage

After equalizing the input image, it is divided up into regions using a specific
implementation of the Bounded Irregular pyramid (BIP). The BIP is an irreg-
ular, hierarchical procedure for image segmentation. For obtaining a new level
from the level below, the BIP combines a regular and an irregular decimation
procedures. The final result is the encoding of the image’s content as a hierar-
chy of simple graphs [7]. Using this scheme, the BIP is able to obtain similar
segmentation results to other irregular pyramids but in a faster way. Next, we
describe the properties and metric employed for building the hierarchy and the
decimation process.

Data Structure: Image Features and Metrics. Let Gl = (Nl, El) be a
hierarchy level where Nl stands for the set of regular and irregular nodes and El

for the set of intra-level arcs. Let ξx be the neighborhood of the node x defined
as {y ∈ Nl : (x,y) ∈ El}. It can be noted that a given node x is not a member of
its neighborhood, which can be composed by regular and irregular nodes. Each
node x has associated a vx value given by the averaged brightness of the image
pixels linked to x. Besides, each regular node has associated a boolean value hx:
the homogeneity [7]. Only regular nodes which have hx equal to 1 are considered
to be part of the regular structure. Regular nodes with an homogeneity value

Segmentation and Classification of Geoenvironmental Zones 293

equal to 0 are not considered for further processing. At the base level of the
hierarchy G0, all nodes are regular, and they have hx equal to 1. In order to
divide the image into a set of homogeneous blobs, the graph Gl is transformed in
Gl+1 using a pairwise comparison of neighboring nodes. At the first levels of the
hierarchy, the pairwise comparison function, g(vx1 ,vx2), is true if the Euclidean
distance between the HSV values vx1 and vx2 is under an user–defined threshold
σcolor. When the hierarchy reaches level lm and it is not possible to perform new
mergings, the algorithm automatically changes the metric to add to the process
the edge information. For this end, the roots of the blobs at level lm constitute
the first level of the new multiresolution output. Let Plm be the image partition
at level lm and l > lm ∈ � a level of the hierarchy, this second grouping process
assigns a partition Ql to the couple (Plm , l), satisfying that Qlm is equal to Plm

and that
∃ln ∈ �+ : Ql = Qln , ∀l ≥ ln (1)

That is, the grouping process is iterated until the number of nodes remains con-
stant between two successive levels. In order to achieve the grouping process, a
perceptual pairwise comparison function must be defined. In this case, the pair-
wise comparison function g(vyi

,vyj
) is implemented as a thresholding process,

i.e. it is true if a distance measure between both nodes is under a given thresh-
old σpercep, and false otherwise. The defined distance integrates edge and region
descriptors. Thus, it has two main components: the color contrast between image
blobs and the edges of the original image computed using the Canny detector. In
order to speed up the process, a global contrast measure is used instead of a local
one. It allows to work with the nodes of the current working level, increasing
the computational speed. This contrast measure is complemented with internal
regions properties and with attributes of the boundary shared by both regions.
The distance between two nodes yi ∈ Nl and yj ∈ Nl, ϕα(yi,yj), is defined as

ϕα(yi,yj) =
d(yi,yj) · min(byi

, byj
)

α · cyiyj
+ β · (byiyj

− cyiyj
)

(2)

where d(yi,yj) is the gray-level distance between yi and yj . byi
is the perimeter

of yi, byiyj
is the number of pixels in the common boundary between yi and

yj and cyiyj
is the set of pixels in the common boundary which corresponds to

pixels of the edge detected by the Canny detector. α and β are two constant
values used to control the influence of the Canny edges in the grouping process.
They should be manually tuned depending on the application and environment.

The Decimation Process. The decimation algorithm runs two consecutive
steps to obtain the set of nodes Nl+1 from Nl. The first step generates the
set of regular nodes of Gl+1 from the regular nodes at Gl and the second one
determines the set of irregular nodes at level l+1. This second process employs
a union-find process which is simultaneously conducted over the set of regular
and irregular nodes of Gl which do not present a parent in the upper level l + 1.
The decimation process consists of the following steps:

294 M. Calderón et al.

1. Regular decimation process. The hx value of a regular node x at level l+1
is set to 1 if the four regular nodes immediately underneath {yi} are similar
and their h{yi} values are equal to 1. That is, hx is set to 1 if

{
⋂

∀yj ,yk∈{yi}
g(vyj

,vyk
)} ∩ {

⋂

yj∈{yi}
hyj

} (3)

Besides, at this step, inter-level arcs among regular nodes at levels l and l+1
are established. If x is an homogeneous regular node at level l+1 (hx==1),
then the set of four nodes immediately underneath {yi} are linked to x.

2. Irregular decimation process. Each irregular or regular node x ∈ Nl without
parent at level l+1 chooses the closest neighbor y according to the vx value.
Besides, this node y must be similar to x. That is, the node y must satisfy

{||vx − vy|| = min(||vx − vz|| : z ∈ ξx)} ∩ {g(vx,vy)} (4)

If this condition is not satisfy by any node, then a new node x′ is generated at
level l+1. This node will be the parent node of x. Besides, it will constitute a
root node and the set of nodes linked to it at base level will be an homogeneous
set of pixels according to the defined criteria. On the other hand, if y exists
and it has a parent z at level l+1, then x is also linked to z. If y exists but
it does not have a parent at level l+1, a new irregular node z′ is generated
at level l+1. In this case, the nodes x and y are linked to z′.

This process is sequentially performed and, when it finishes, each node of
Gl is linked to its parent node in Gl+1. That is, a partition of Nl is defined. It
must be noted that this process constitutes an implementation of the union-
find strategy [7].

3. Definition of intra-level arcs. The set of edges El+1 is obtained by defining
the neighborhood relationships between the nodes Nl+1. Two nodes at level
l+1 are neighbors if their reduction windows, i.e. the sets of nodes linked to
them at level l, are connected at level l.

2.2 Texture Classification

Texture Descriptors. The Local Binary Pattern (LBP) descriptor, originally
proposed in [8] is a computational very simple algorithm which main advantage is
its robustness against illumination variations. The original LBP operator forms
labels for the image pixels by thresholding the 3 × 3 neighborhood of each pixel
with the center value and considering the result as a binary number. This binary
number is set to 1 if the neighbor is greater or equal than the central pixel and
it is set to 0 in other case. The histogram of these 28 = 256 different labels
can then be used as a texture descriptor (Fig. 2). This descriptor was extended
(ELBP) in [9] to use circular neighborhoods of different radius.

A formal description of the ELBP operator is shown in the following equation:

LBPP,R(xc, yc) =
P−1∑

p=0

s(gp − gc)2p (5)

Segmentation and Classification of Geoenvironmental Zones 295

Fig. 2. Schematic description of the LBP approach

where (xc, yc) is the central pixel with an intensity value of gc, gp is the intensity
of the neighbor pixel, P is the number of pixels, R the used radius and s(x) is
a function with the form:

s(x) =

{
1 if x ≥ 0,

0 otherwise.
(6)

When a radius different of one is used, the neighbors are located in a circle
with the center in the studied pixel. If a point of the circle does not correspond
to an image pixel, it is interpolated.

In order to include local contrast information into the LBP descriptor and
make it rotation invariant, Guo et al. [6] present the Local Binary Pattern Vari-
ance descriptor (LBPV).

LBPVP,R(k) =
N∑

i=1

M∑

j=1

w(LBPP,R(i, j), k) k ∈ [0,K] (7)

w(LBPP,R(i, j), k) =

{
V ARP,R(i, j) if LBPP,R(i, j) = k,

0 otherwise.
(8)

V ARP,R =
1
P

P−1∑

p=0

(gp − u)2 (9)

u =
1
P

P−1∑

p=0

gp (10)

In this work, we have used the ELBP and the LBPV descriptors to character-
ize all nodes of the highest level of the hierarchy, x ∈ Nlh . The irregular shape is
not a problem as the descriptor is locally computed for each pixel. Furthermore,
contrary to what is done in other works, we divide up the receptive field of x into
a grid of m regions. In each of these regions the descriptor is computed, having
one histogram per region. These m histograms are concatenated, obtaining the
final feature vector associated to the node. Both descriptors are evaluated at
Sect. 3.

296 M. Calderón et al.

Classification. Once the texture of the nodes x ∈ Nlh has been captured, the
final step of the approach aims to categorize these nodes into a set of classes.
To perform this step, the Support Vector Machine (SVM) classifier has been
selected. Given a set of patterns where each pattern belongs to one of two possible
classes, the goal of the SVM is to provide a model for classifying any new pattern.
Basically, this model defines a separating hyperplane in the space of the patterns
that maximizes the margin between the two classes. Training a SVM consists of
finding the optimal hyperplane, that is, the one with the maximum distance from
the nearest training patterns, called support vectors. However, it is not always
possible to find a perfect separation. Otherwise the result of the model cannot
be generalized for other incoming data. This problem is known as overfitting. In
order to deal with it, the SVM uses an internal parameter, C, which controls
the compensation between training errors and the rigid margins.

Whereas the easiest way to make the separation between classes is using a
straight line, a plane or a n-dimensional hyperplane, it often happens that the
sets to discriminate are not linearly separable in that space. To solve this issue,
one solution is to map the original space into a higher-dimensional space, and to
look for this hyperplane within this new space. This mapping is typically per-
formed using a kernel function k(x, y). Thus, the SVM classifier has the following
form:

f(x) = sign(
1∑

i=1

αiyiK(x, xi) + b) (11)

being K(x, xi) the kernel function.
In the proposed work, two different kernel functions have been used: the

polynomial and the Gaussian radial basis function.

K(xi, xj) = (xi ∗ xj)
n Polynomial (12)

K(xi, xj) = exp
(
−γ (xi − xj)

2
)

Gaussian radial basis function (13)

3 Experimental Results

This section includes the verification of the texture description and classification
stages and the validation of the whole system. For the first issue we have used
a publicly available database of aerial images: the Banja Luka database1. The
whole system has been tested using a collection of images from our specific area
of interest, located at Carenero, Miranda state (Venezuela). These images were
taken at 1936 and 1992. This will allow to analyze the anthropic impact produced
in this area.

Banja Luka Database. The Banja Luka database contains 606 images of
128×128 pixels, which were manually classified into 6 classes: houses, ceme-
tery, industry, field, river and trees. The distribution of images in these cate-
gories is highly uneven [3]. Figure 3 shows several images from the database.
1 http://dsp.etfbl.net/aerial/.

http://dsp.etfbl.net/aerial/

Segmentation and Classification of Geoenvironmental Zones 297

Panchromatic versions of these images were used for testing. Table 1 shows the
performance (mean classification accuracy and standard deviation) provided by
different approaches. In these experiments, half of the images were used for
training and the other half for testing. All approaches use SVM with radial basis
function kernel. Gabor descriptors were computed at 8 scales and 8 orientations
for all images, providing 128-dimensional vectors. Gabor (full) employs a Gabor
descriptor composed by the means and standard deviations of all filter responses,
while Gabor (mean) implies to use a descriptor obtained using only mean values.
The Gist descriptor [4] was computed by first filtering the image by a filter bank
of Gabor filters, and then averaging the responses of filters in each block on a 4
× 4 non-overlapping grid. The approach proposed by Lingua et al. [5] is used to
provide the MSIFT results. The BoW descriptor [10] is obtained by computing
SIFT descriptors on a regular grid and vector quantizing them using a codebook
with 1000 codewords. Histogram of codeword occurrences is a 1000-dimensional
BoW image descriptor. It can be noted that the proposed framework provides
better results than these approaches.

Fig. 3. Examples of classes in the Banja Luka database

Carenero Database. This database is formed by panchromatic aerial images
captured in the Carenero zone by the Geographical Institute of Venezuela (Simón
Boĺıvar) in the years 1936 and 1992. Their scale is 1:25.000 and they have
been geocited with dimensions of 675x471 pixels. The goal of this experiment

Table 1. Comparison of classification accuracy for in house dataset Banja Luka

Descriptor Accuracy (%)

Gist 88,75 ± 2,07

MSIFT 84,33 ± 1,70

Gabor(Full) 84,500 -

Gabor(Mean) 80,700 -

MBow 85,23 ± 2,46

Proposed approach (r=1, p=8) 97,5 ± 1,25

298 M. Calderón et al.

is to locate in these images the following zones: vegetation/mangrove, degrada-
tion/desertification, interface water-sediment and plain. For each class, 85 images
of 40x40 pixels was manually obtained for training. Figure 4 shows one example
of each category.

Fig. 4. Categories of texture samples in the Carenero database

The pre-segmentation using the BIP algorithm depends on two threshold
values: σcolor and σpercep. The best results on the Caranero 1936 dataset were
obtained using as threshold values σcolor=80 and σpercep=90. But for Caranero
1992, the best values were σcolor=30 and σpercep=50. There are a significant
difference on their values, but it must be noted that these images were captured
using two different sensors. Similar comments could be given respect to the

Fig. 5. (a) Original image from Carenero 1936, (b) image decomposition provided by
the BIP approach, and (c) blobs associated to interface water-sediment (blue regions),
plain (green regions), desertification (red regions) and the mangrove (yellow regions)
(see text) (Color figure online).

Segmentation and Classification of Geoenvironmental Zones 299

parameters α and β used for weighting the impact between color contrast and
edge information (typical values give more weight to color contrast).

Figure 5 shows the regions obtained by pre-segmenting one of the original
images from Carenero 1936. The size of some of them are large and can be
characterized by the ELBP-LBPV method. Other ones have got a small size and
cannot be correctly characterized. They will remain as unclassified. Figure 5(c)
shows the blobs that have been labeled by the approach as interface water-
sediment (blue regions), plain (green regions), desertification (red regions) and
the mangrove (yellow regions). The classifier uses the SVM model with a RBF
kernel.

The global thematic accuracy, measured as a classification percentage,
reached a value of 92,50 %. Besides, it was counted on the cross validation to
identify the tuning parameters, for the radial gamma kernel (γ), in the linear
kernel degree and C. Table 2 shows the performance (mean classification accu-
racy and standard deviation) for classes on Carenero 1936 and Carenero 1992
databases. Figure 6 shows the average accuracy for all texture classes on the
Carenero 1992 dataset. It should be noted that the results are really good for
several combinations of parameters. There are however problems for classifying
the desertification areas. It can be also noted that there does not exist a pair of
parameters that can provide the best results for all classes.

Table 2. Classification accuracy (mean and standard deviation) for Carenero Equalized
1936 and Carenero Equalized 1992

Carenero 1936 Carenero 1992

x̄ ±σ x̄ ±σ

ELBP + SVM (RBF)

R=1, P=8 92,500 7,916 95,000 5,000

R=2, P=8 90,000 11,666 80,000 16,667

R=2, P=16 76,786 14,880 83,334 11,667

ELBP + SVM (LINEAR)

R=1, P=8 88,095 11,905 93,333 6,667

R=2, P=8 91,694 8,305 83,333 13,333

R=2, P=16 78,125 13,542 83,333 11,667

LBPV + SVM (RBF)

R=1, P=8 85,833 16,859 99,999 –

R=2, P=8 70,833 34,359 88,333 8,388

R=2, P=16 78,125 17,137 91,666 6,382

LBPV + SVM (LINEAR)

R=1, P=8 71,875 29,141 99,999 –

R=2, P=8 61,458 28,336 88,333 8,389

R=2, P=16 51,041 42,542 90,000 6,667

300 M. Calderón et al.

The method is however considering that boundaries of the zones are abrupt,
i.e. that there do not exist gradual transitions between zones. This problem is
present on the images and we will need to work on how to deal with. Other
approaches [13] use the (multiple) indicator kriging for take these gradual tran-
sitions into account. In our case, it will be necessary to include the uncertainty
information within the categorization stage, providing for each region not only
the category but also the probability associated to this process.

Fig. 6. Accuracy values for different geoenvironmental zones (Carenero 1992): veg-
etation/mangrove (V/M), degradation/desertification (D), interface water-sediment
(I/W-S) and plain (P)

4 Conclusion

The main contribution of this paper is the evaluation of a whole framework for
segmentation and classification of the regions composing an aerial image. The
BIP approach is used for pre-segmenting the input image, providing a decom-
position of the scene within uniform blobs. These blobs are arranged as a single
graph, where simple adjacency relationships are encoded on the arcs of the graph.
Then, these blobs are successfully categorized using texture. Regarding to this
last stage, the proposed system is able to obtain better results than other popular
approaches on the large Banja Luka dataset. Furthermore, the whole framework
is able to deal with the automatic decomposition and labeling of complex, real
images. Future work will focus on integrating within the framework the tools
that can allow the user to easily redraw the segmentation and/or classification
results (e.g. changing a provided label or choosing a lower level of decomposi-
tion for a specific region). We have also experience on introducing topological
information within the hierarchical segmentation of natural images, changing
the single graph by a combinatorial map [12]. This topological information will
allow to consider inclusion and complex adjacency relationships, which could
be useful to describe the geological evolution of the analyzed geoenvironmental
area.

Segmentation and Classification of Geoenvironmental Zones 301

Acknowledgments. This paper has been partially supported by the Spanish Minis-
terio de Economı́a y Competitividad TIN2015-65686-C5 and FEDER funds.

References

1. Sulong, I., Mohd-Lokman, H., Mohd-Tarmizi, K., Ismail, A.: Mangrove mapping
using landsat imagery and aerial photographs: Kemaman district, Terengganu,
Malaysia. Environ. Dev. Sustain. 4(2), 135–152 (2002)

2. Hirche, A., Salamani, M., Abdellaoui, A., Benhouhou, S., Valderrama, J.M.:
Landscape changes of desertification in arid areas: the case of south-west Algeria.
Environ. Monit. Assess. 179(1–4), 403–420 (2011)

3. Risojevic, V., Momic, S., Babic, Z.: Gabor descriptors for aerial image classifica-
tion. In: Adaptive and Natural Computing Algorithms, pp. 51–60 (2011)

4. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation
of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

5. Lingua, A., Marenchino, D., Nex, F.: Performance analysis of the SIFT operator
for automatic feature extraction and matching in photogrammetric applications.
Sensors 9(5), 3745–3766 (2009)

6. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP
Variance (LBPV) with global matching. Pattern Recogn. 43, 706–719 (2010)

7. Marfil, R., Bandera, A.: Comparison of perceptual grouping Criteria within an
integrated hierarchical framework. In: Torsello, A., Escolano, F., Brun, L. (eds.)
GbRPR 2009. LNCS, vol. 5534, pp. 366–375. Springer, Heidelberg (2009)

8. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on feature distributions. Pattern Recogn. 19(3), 51–59
(1996)

9. Ojala, T., Pietikäinen, M.: Multirresolution gray-scale and rotation invariant tex-
ture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach.
Intell. 24(7), 971–987 (2002)

10. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use
classification. In: Proceedings of the ACM SIGSPATIAL GIS, pp. 270–279 (2010)

11. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.:
Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal.
Mach. Intell. 31(12), 2290–2297 (2009)

12. Antnez, E., Marfil, R., Bandera, J.P., Bandera, A.: Part-based object detection
into a hierarchy of image segmentations combining color and topology. Pattern
Recogn. Lett. 34(7), 744–753 (2013)

13. Hengl, T., Toomanian, N., Reuter, H., Malakouti, M.: Methods to interpolate soil
categorical variables from profile observations: Lessons from Iran. Geoderma 140,
417–427 (2007)

Author Index

Ardanza-Trevijano, Sergio 113
Arsuaga, Javier 113
Audigane, Pascal 101

Bac, Alexandra 101, 130
Bandera, Antonio 290
Baratè, Adriano 88
Bergomi, Mattia G. 88
Bhalla, Gurman 265
Bhattacharya, Arnab 157
Bhowmick, Partha 253, 265, 277
Bhunre, Piyush K. 277
Biswas, Arindam 157, 170, 180
Biswas, Ranita 253
Bonis, Thomas 19
Borrman, Tyler 113

Calderón, Mariletty 290
Cerri, Andrea 216
Chazal, Frédéric 19
Chepushtanova, Sofya 228
Čomić, Lidija 42

Dahrabou, Asmae 101
Damiand, Guillaume 53
de la Higuera, Colin 65
Di Fabio, Barbara 88
Dutt, Mousumi 157

Ethier, Marc 216

Ferri, Massimo 3
Frosini, Patrizio 216

Garcia, Juan Luis 113
Gonzalez, Georgina 113
Gonzalez-Diaz, Rocio 53
Gonzalez-Lorenzo, Aldo 101, 130

Janodet, Jean-Christophe 65
Janusch, Ines 240
Jimenez, Maria-Jose 193
Juda, Mateusz 77, 130

Karmakar, Nilanjana 170, 180
Kenmochi, Yukiko 30
Kirby, Michael 228
Krčál, Marek 140
Kropatsch, Walter G. 240

Leborgne, Aurélie 204
Lienhardt, Pascal 7

Marfil, Rebeca 290
Mari, Jean-Luc 101, 130
Medrano, Belen 193
Monaghan, David 193
Mukhopadhyay, Jayanta 277

O’Connor, Noel E. 193
Onchis, Darian M. 152
Oudot, Steve 19
Ovsjanikov, Maks 19

Passat, Nicolas 30
Peltier, Samuel 7
Peterson, Chris 228
Pilarczyk, Paweł 140
Pluta, Kacper 30

Real, Pedro 101, 130, 152
Rohmer, Jérémy 101
Romon, Pascal 30

Sarkar, Apurba 157
Seidl, Markus 77
Sen, Nabhasmita 253

Vacavant, Antoine 204
Viseur, Sophie 101

Zeppelzauer, Matthias 77
Ziegelmeier, Lori 228
Zieliński, Bartosz 77

	Preface
	Organization
	Contents
	Invited Speakers
	Progress in Persistence for Shape Analysis (Extended Abstract)
	1 Image Processing
	2 Shape Analysis
	3 Theoretical Progress
	4 Not Only Images
	References

	Homology Computation During an Incremental Construction Process
	1 Introduction
	2 Effective Homology Bases
	3 Application to Simplicial Structures
	4 Application to Cellular Structures
	4.1 A Subclass of Cellular Combinatorial Structures
	4.2 The General Case

	References

	Main Contributions
	Persistence-Based Pooling for Shape Pose Recognition
	1 Introduction
	2 The Bag of Words Pipeline
	3 Introducing 0-dimensional Persistent Homology
	4 Using Persistence Diagrams for Pooling
	5 Experiments
	6 Conclusion
	References

	Bijectivity Certification of 3D Digitized Rotations
	1 Introduction
	2 Digitized Rotations in Three Dimensions
	2.1 Spatial Rotations and Quaternions
	2.2 Digitized Rotations

	3 Bijectivity Certification
	3.1 Set of Remainders
	3.2 Dense Subgroups and Non-injectivity
	3.3 Lipschitz Quaternions and Bijectivity

	4 An Algorithm for Bijectivity Certification
	5 Conclusion
	References

	Morse Chain Complex from Forman Gradient in 3D with Z2 Coefficients
	1 Introduction
	2 Background Notions
	2.1 Forman Gradient
	2.2 Morse Chain Complex

	3 Extraction Algorithm
	3.1 Filtration
	3.2 Boundary Operator
	3.3 Boundary Matrices
	3.4 Analysis

	4 Conclusions
	References

	Parallel Homology Computation of Meshes
	1 Introduction
	2 Preliminary Notions
	2.1 2D Combinatorial Maps
	2.2 Homology Computation

	3 Parallel Algorithm
	3.1 Inner Edge Removals
	3.2 Dangling Edge Removals
	3.3 Non Loop Edge Contraction

	4 Experiments
	5 Conclusion
	References

	Computing the Overlaps of Two Maps
	1 Introduction
	2 Combinatorial Maps
	3 The Overlaps of Two Maps
	4 Properties of the Overlapping Patterns
	5 Finding Connected Overlaps Efficiently
	5.1 A Linear Time and Space Algorithm to Check Whether a Connected Overlap Exists
	5.2 A Quadratic Time and Space Algorithm to Get All the Connected Overlaps
	5.3 Finding the Largest Overlap of Two Maps

	6 Finding Large Disconnected Overlaps Is Intractable
	7 Conclusion and Future Works
	References

	Topological Descriptors for 3D Surface Analysis
	1 Introduction
	2 Topological Approach
	3 Experimental Setup
	4 Results
	5 Conclusion
	References

	Towards a Topological Fingerprint of Music
	1 Introduction
	2 Background on Persistent Homology
	3 Musical Setting
	3.1 The simplicial Tonnetz
	3.2 A Deformed Tonnetz for Music Analysis

	4 A Topological Fingerprint of Music Styles
	4.1 Applications

	5 Discussion and Future Works
	References

	Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO2 Storage Uncertainty Analysis
	1 Introduction
	2 Fluvial Reservoir Modelling and Problematics
	3 Synthetic Data Set
	3.1 3D Cubical Complexes and Homology

	4 Betti Numbers Used as Descriptor
	4.1 Computations and Geological Meanings
	4.2 Statistical Tests

	5 Results and Discussion
	5.1 Kruskal-Wallis Tests
	5.2 Interpretations and Discussions

	6 Conclusion
	References

	Topological Analysis of Amplicon Structure in Comparative Genomic Hybridization (CGH) Data: An Application to ERBB2/HER2/NEU Amplified Tumors
	1 Introduction
	2 Data Sets and Methods
	2.1 CGH Data
	2.2 Simulation Data Set
	2.3 Horlings Data Set
	2.4 Climent Data Set
	2.5 Multidimensional Analysis of CGH Profiles Using Computational Algebraic Topology
	2.6 Testing for Statistical Differences
	2.7 Finding Co-Occurring Aberrations
	2.8 Software for Visualization of Generators

	3 Results
	3.1 Computer Simulations

	4 Discussion
	References

	Fast, Simple and Separable Computation of Betti Numbers on Three-Dimensional Cubical Complexes
	1 Introduction
	2 Preliminaries
	2.1 nD Cubical Complex
	2.2 Homology

	3 The Algorithm
	4 Recursive Version of the Algorithm
	5 Implementation
	6 Validation
	7 Conclusion
	References

	Computation of Cubical Steenrod Squares
	1 Introduction
	2 Topological Preliminaries
	3 The Cubical Formulas for the Steenrod Operations
	4 The Algorithm, Software, and Examples
	References

	On Homotopy Continuation for Speech Restoration
	1 Introduction
	2 Gabor Frames and the 1-minimization
	3 The Homotopy-Continuation Algorithm and Experiments
	4 Conclusions
	References

	Finding Largest Rectangle Inside a Digital Object
	1 Introduction
	2 Definitions and Preliminaries
	3 Procedure to Determine Largest Rectangle
	3.1 Finding Histogram Polygon
	3.2 Finding Largest Rectangle in a Histogram Polygon
	3.3 Reduction Rules
	3.4 Algorithm
	3.5 Demonstration
	3.6 Time Complexity
	3.7 Proof of Correctness

	4 Experimental Results
	5 Conclusion
	References

	Shape Matching of 3D Topologically Segmented Objects
	1 Introduction
	2 Proposed Work
	2.1 Representation of Digital Object as Topological Space
	2.2 Shape Matching Through Segmentation of Topological Spaces

	3 Results and Conclusion
	References

	Construction of an Approximate 3D Orthogonal Convex Skull
	1 Introduction
	2 Definitions and Preliminaries
	3 Proposed Work
	3.1 Slicing and Orthogonal Slabs
	3.2 Concavity in Three Dimensions
	3.3 Resolving the Concavities of a Slab
	3.4 Finding Approximate 3D Orthogonal Convex Skull
	3.5 Algorithm
	3.6 Time Complexity

	4 Experimental Results and Conclusions
	References

	Designing a Topological Algorithm for 3D Activity Recognition
	1 Introduction
	2 Voxel Carving Video Sequences
	3 Persistent Homology for 3D Activity Recognition
	4 Experiments
	5 Conclusions and Future Work
	References

	Robust Computations of Reeb Graphs in 2-D Binary Images
	1 Introduction
	2 Skeleton Extraction
	3 Reeb Graph Computation
	3.1 Reeb Graph Definition
	3.2 Robust Reeb Graph Computation with DECS

	4 Experimental Evaluation
	5 Conclusion and Future Works
	References

	The Coherent Matching Distance in 2D Persistent Homology
	1 Introduction
	2 Mathematical Setting
	2.1 Persistent Betti Numbers
	2.2 2-Dimensional Setting
	2.3 Working Assumptions

	3 The Coherent 2-Dimensional Matching Distance
	3.1 Transporting a Matching Along a Path

	4 Conclusions
	References

	Persistent Homology on Grassmann Manifolds for Analysis of Hyperspectral Movies
	1 Introduction
	2 Persistent Homology
	3 The Geometry of the Grassmann Manifold
	4 Experimental Results
	4.1 Experiment on Triethyl Phosphate Movie
	4.2 Experiments Detecting a Loop in Methyl Salicylate Movie

	5 Conclusion
	References

	Persistence Based on LBP Scale Space
	1 Introduction
	2 Capturing Topology Using LBPs
	2.1 Introduction to LBPs
	2.2 Connected Components of a Graylevel Image
	2.3 Local Topology Based on LBP Types

	3 LBP Based Persistence
	3.1 Filtration Based on LBPs
	3.2 LBP Scale Space

	4 Experiments
	4.1 Shape Analysis - Special Cases
	4.2 Shape Reconstruction

	5 Conclusion and Future Work
	References

	On Some Local Topological Properties of Naive Discrete Sphere
	1 Introduction
	1.1 Motivation and Main Results

	2 Preliminaries
	3 Naive Sphere and Its Topological Properties
	3.1 Basic Properties
	3.2 Derived Properties

	4 Reconstruction
	5 Concluding Remarks
	References

	DIG: Discrete Iso-contour Geodesics for Topological Analysis of Voxelized Objects
	1 Introduction
	1.1 Existing Work
	1.2 Our Contribution

	2 Voxelization of 2-Manifolds
	2.1 Voxel Topology and Metric Space
	2.2 Homeomorphism of Voxels and 2-Manifolds

	3 DIG: Topology and Construction
	4 Concluding Remarks
	References

	Solving Distance Geometry Problem with Inexact Distances in Integer Plane
	1 Introduction
	2 Preliminaries and Problem Definition in Z2
	3 Characteristics of Annulus Intersection
	3.1 Computing Annulus Intersection in Z2

	4 Proposed Algorithm and Implementation Issues
	4.1 Search for Feasible Solution
	4.2 Improvement of Efficiency
	4.3 Test Results

	5 Concluding Notes
	A Appendix
	References

	Segmentation and Classification of Geoenvironmental Zones of Interest in Aerial Images Using the Bounded Irregular Pyramid
	1 Introduction
	2 Proposed Method
	2.1 Pre-segmentation Stage
	2.2 Texture Classification

	3 Experimental Results
	4 Conclusion
	References

	Author Index

