
Modelling the Process of Process Execution: A Process
Model-Driven Approach to Customising User Interfaces

for Business Process Support Systems

Udo Kannengiesser(✉), Richard Heininger, Tobias Gründer, and Stefan Schedl

Metasonic GmbH, Münchner Straße 29 – Hettenshausen, 85276 Pfaffenhofen, Germany
{udo.kannengiesser,richard.heininger,tobias.gruender,

stefan.schedl}@metasonic.de

Abstract. This paper presents a process-driven approach for developing the user
interfaces (UIs) of business process execution frontends. It allows customising
the UIs to the needs of individual users and processes. The approach is based on
viewing UI behaviour as a process that can be modelled and executed in the same
way as the core process: as a sequence of steps, each of which is associated with
a business object that describes the UI content in terms of the information
displayed to the user. As both the UI process and the core process are run on the
same business process engine, the two processes can interact smoothly using
existing backend functionalities. The approach is demonstrated using a manu‐
facturing scenario where shopfloor workers are provided with simple UIs on
mobile devices to support the execution of a production process.

Keywords: Model-driven design · Customised user interfaces · Business process
support systems · Subject-oriented Business Process Management (S-BPM)

1 Introduction

The design of user interfaces (UIs) is widely regarded as a critical factor for the accept‐
ance of IT systems by users as well as for the acquisition of these systems by potential
buyers. Although many system vendors today employ user experience (UX) designers
to make UI design more effective, the fundamental problem remains that the space of
possible UI designs can be too large to satisfy all users with a single solution. On the
other hand, customising UIs is often tedious and costly, making many vendors opt for
standardising their user interfaces, and limiting any customisations to broad user cate‐
gories such as “simple users” and “advanced users”.

This approach is also followed by most vendors of business process support systems.
They usually have a single UI that has the same look and feel for most of its users.
However, as customers become more demanding and the scope of these systems
becomes broader to include more domains and applications [18], the ability to customise
UIs to wider ranges of user preferences and skills becomes an important competitive
advantage. One example includes workflow management applications in the industry
4.0 domain that seamlessly integrate business processes with shopfloor processes.

© Springer International Publishing Switzerland 2016
R. Schmidt et al. (Eds.): BPMDS/EMMSAD 2016, LNBIP 248, pp. 34–48, 2016.
DOI: 10.1007/978-3-319-39429-9_3



Here, workers with sometimes limited IT skills need to be provided with a very simple
UI in order to adopt and master a given process support system.

This paper addresses the problem of customising the UIs of workflow systems by
focussing on the “process of process execution” – i.e. the sequence of tasks to be
performed, conjointly by a user and a user interface, necessary to execute the actual
business process (called the “core process”). Specifically, the process of process execu‐
tion (here called the “UI process”) is modelled and executed in the same way as the core
process. Each of the tasks in the UI process is associated with data (called business
objects) composing the content and appearance of the UI. The UI process is run on the
same execution engine as the core process, readily allowing for the dynamic intercon‐
nection between the two processes at runtime. The existing method of Subject-oriented
Business Process Management (S-BPM) [6] provides a uniform modelling formalism
for both the UI process and the core process. The approach can be seen as a process
model-driven method for customising UIs to the needs of different users, devices and
core processes to be executed.

The paper is structured as follows: Sect. 2 introduces the relevant foundations of
S-BPM modelling. Section 3 describes how UIs can be modelled as the processes of
(core) process execution. It shows how the S-BPM notation and a tool suite for S-BPM
modelling and execution, the Metasonic Suite (www.metasonic.de/en), can be used for
defining the UI workflow and UI content, and establishing the connection between UI and
core processes. Section 4 demonstrates the use of our approach in a shopfloor scenario
developed within an ongoing EU FP7 research project (www.so-pc-pro.eu). Section 5
concludes the paper with a summary of the approach, including a brief discussion of how
it is the result of applying a “good theory” in practice, in reference to Lewin’s quote that
“nothing is more practical than a good theory” [10].

2 The S-BPM Approach to Business Process Modelling

Subject-oriented Business Process Management (S-BPM) is a method and notational
approach to modelling and executing processes in a decentralised way. In S-BPM,
processes are understood as interactions between process-centric roles (called
“subjects”), where every subject encapsulates its own behaviour specification [6].
Subjects coordinate their individual behaviours by exchanging messages. The S-BPM
approach is based on extensions of the Calculus of Communicating Systems by Milner
[12] and Communicating Sequential Processes by Hoare [7]. Abstract State Machines
(ASM) [1] are used as the underlying formalism to allow instant transformation of
S-BPM models into executable software. S-BPM mostly targets those applications
where a stakeholder-oriented, agile approach to business process management is
preferred over more traditional methods based on global control flow. An increasing
number of field studies demonstrate the benefits of S-BPM [5].

Based on the strong emphasis on the role concept and on the communication between
roles, S-BPM shares some similarities with Role-Activity Diagrams (RAD) [13], UML
communication diagrams, and the DEMO methodology [2]. However, there are also a
number of significant differences with respect to these approaches. For instance, S-BPM

Modelling the Process of Process Execution 35

http://www.metasonic.de/en
http://www.so-pc-pro.eu


has rigorously defined execution semantics, allows asynchronous communication, and
supports end-user involvement in process modelling based on the simplicity of the
S-BPM modelling constructs.

S-BPM models include two types of diagrams: a Subject Interaction Diagram (SID)
specifying a set of subjects and the messages exchanged between them, and a Subject
Behaviour Diagram (SBD) for every subject specifying the details of its behaviour.
SBDs describe subject behaviour using state machines, where every state represents an
action. There are three types of states in S-BPM: “receive states” for receiving messages
from other subjects, “send states” for sending messages to other subjects, and “function
states” for performing actions (typically operating on business objects) without
involving other subjects. Examples of a SID and a SBD are shown in Figs. 1 and 2,
respectively. They represent parts of a production process implemented in a Slovakian
manufacturing company (in this paper referred to as “Company A”) within the EU FP7
project SO-PC-Pro. Here, the SID in Fig. 1 includes subjects that coordinate (via
messages directed to one another) to prepare the actual manufacturing subprocess. The
SBD in Fig. 2 represents the internal behaviour specification of the subject “Work Task
Preparation”. The colours of the different states in the SBD indicate their types: green
for receive states, yellow for function states, and red for send states. State transitions are
represented as arrows, with labels indicating the outcome of the preceding state. For
more details about the S-BPM notation readers may refer to Fleischmann et al. [6].

Fig. 1. Subject Interaction Diagram (SID) of a manufacturing preparation process on the
shopfloor

36 U. Kannengiesser et al.



Fig. 2. Subject Behaviour Diagram (SBD) of the subject “Work Task Preparation” (Color figure
online)

Subjects may be executed by human or computational agents [4]. When executed
by a human worker, parts of the subject may also be automated by associating pieces of
code (called “refinements”) to individual states in the behaviour. These states are marked
in Fig. 2 using a cogwheel icon in their top right corner. Refinements are always triggered
from within the process in which they are defined, irrespective of whether that process
is controlled by a traditional user interface or by another process.

3 Modelling Process Execution as a Process

The process of process execution is often a hybrid set of manual and automated tasks,
the former commonly being guided by a UI. Using S-BPM, this process can be repre‐
sented as a subject where some parts of its behaviour are executed by a human user and
other parts are executed by a computational agent. We call this subject a “UI subject”,

Modelling the Process of Process Execution 37



and the behaviour of that subject accordingly “UI behaviour”. The UI behaviour includes
two aspects:

1. UI workflow: consisting of a sequence of generic steps independent of the specifics
of the underlying core process. For example, a UI workflow may include a particular
ordering of steps such as starting a process, displaying a list of user tasks, and editing
a function state. The UI workflow can be modelled using an SBD for the UI subject.

2. UI content: consisting of the graphical elements (e.g. text fields, buttons, etc.) and
appearance of the UI in terms of the layout, shapes and colours. UI content can be
modelled as a business object within the SBD of the UI subject.

In this Section we describe how the two aspects of UI behaviour can be modelled
and finally connected to the core process, using the commercial S-BPM modelling and
execution tool Metasonic Suite.

3.1 Modelling UI Workflow

UI workflows can be modelled in various ways, depending on the needs of the specific
users and devices, and the kind of core process they are to be connected with. The SBD
in Fig. 3 shows one possible outcome of modelling such a UI workflow. The only types
of states used in the SBD are function states, as the process of process execution is
modelled using a single subject without any communication with other subjects.1

The state “Initialize” is the start state of the SBD, including a refinement to load the
initial user interface. In case of a technical failure occurring in this state, a transition is
followed to the end state “End (init failed)”. In contrast, when the initialization is
successfully completed, the states “Select process” and “Select task” need to be
performed by the user. Depending on the nature of the selected task as either a function
state, a send state or a receive state, the UI behaviour proceeds along separate paths
(“Edit function state”, “Edit send state” and “Edit receive state”), after which the UI
automatically executes the state “Compute next step” to loop back to one of the three
paths. During task execution, the user may also switch back to the task overview and
select a different task (i.e. follow the transition back to “Select task”), and, while doing
that, may also select a different process (“Start process”). Upon termination of the core
process, the UI behaviour reaches its desired “End” state.

3.2 Modelling UI Content

The UI content is composed of two groups of data queried from the associated core
process instance: the business objects handled in that process, and some of the meta-
data needed for process instance management (e.g. subject instance ID and currently
active states). Both groups of data are loaded at runtime from the core process and are
represented in a business object handled by the UI process. The definition of this business

1 This modelling decision is based on the fast response times required for the UI behaviour,
which would not be reached with the current implementation of the Metasonic Suite if
messaging was included.

38 U. Kannengiesser et al.



object can use the existing data types provided by Metasonic’s modelling editor (e.g.
String, Number, Enumeration etc.), but also requires a new data type representing a
placeholder for the business object of the core process. An example is provided in
Fig. 4, showing the definition of a UI business object that contains data elements using
standard data types and a placeholder for the core business object.

Out-of-the-box functionalities of the Metasonic Suite also allow defining custom
views and layouts of the UI business object. Views [6] specify restrictions on the
data elements, including whether an element is visible, hidden, or inactive for a
particular state in a SBD. Views in the Metasonic Suite can be associated with client
rules to define further attributes such as the colour to be used for displaying a data
element. For every view a particular layout can be specified. In addition, the boot‐
strap framework (http://getbootstrap.com) is used for making the layout and shape
of data elements responsive to different screen sizes, supporting conventional
computer screens and mobile devices. All bootstrap functionalities such as CSS
themes can be used to further customise the UI.

Fig. 3. Example of a SBD defining the UI workflow

Modelling the Process of Process Execution 39

http://getbootstrap.com


Fig. 4. Example for the definition of a business object in the UI process, containing a placeholder
for the business object of the core process

3.3 Connecting the UI Process to the Core Process

UI processes can be modelled either generically for any core process, or for a specific
core process. For example, the UI behaviour shown in Fig. 3 is very generic and may
be used for all core processes. Other UI behaviours may be defined to tailor the UI to a
specific core process and turn some of the “fixed” UI components such as generic menu
items and navigation buttons into dynamically generated components that depend on
where you currently are in the core process. For example, the “Next” button that is
normally used in many workflow UIs to proceed from one user task to the next, may be
turned into a set of buttons labelled according to the specific user options defined in the
core process.

The concept of generic and specialised UI processes as well as their interplay is
shown in Fig. 5. Instances of generic UI processes (designed for all core process models)
may be used for providing the UI for instances of any core process. Instances of specific
UI processes can be used for providing the UI only for instances of that core process
they have been designed for. All process instances are run on the same runtime envi‐
ronment, the Metasonic execution engine.

Running core and UI processes on the same platform allows utilising a number of
built-in mechanisms to establish the communication needed between the two processes.
As shown in Fig. 6, the Metasonic frontend executing the UI process uses Java Remote
Method Invocation (RMI) via API calls and connectors to access core process instance
data from the Metasonic backend. That instance data is stored in a DBMS that is queried
using Java Database Connectivity (JDBC). The frontend can be accessed by web
browsers via HTTP.

40 U. Kannengiesser et al.



Fig. 6. Software architecture of the interconnected processes

4 Example: Customising UIs for a Shopfloor Process

This Section illustrates our approach based on a case scenario used in the SO-PC-Pro
project. Parts of the core process in this scenario – a manufacturing preparation process
at Company A – were already introduced in Sect. 2. We will focus on the subject “Work
Task Preparation” whose behaviour (shown in Fig. 2) is to be executed by shopfloor
workers, guided by a UI running on mobile devices. The standard UI provided in the
Metasonic Suite for executing the state “Check task” in this subject is shown in Fig. 7.
As it is not modelled as a UI process, it is always the same no matter who executes the
process or what core process is executed.

Fig. 5. Conceptual model of the interconnections between core process and UI process

Modelling the Process of Process Execution 41



Fig. 7. Standard UI of metasonic flow, showing the data required to execute the function state
“Check task”

In the specific case at Company A this UI was deemed too complex to be used by
shopfloor workers, as many of them had only limited IT skills. Therefore, a UI process
was modelled with the aim to simplify the UI for the workers. The model of this process
is almost identical with the one in Fig. 3; it is a generic UI process that may be used for
any core process. The appearance of the resulting UIs for the consecutive states “Select
process”, “Select task” and “Edit function state” in the UI process (cf. Fig. 3) is shown
in Figs. 8, 9 and 10, respectively. The UI produced for the state “Edit function state”
uses as a header the label of the state “Check task” imported from the core process.

42 U. Kannengiesser et al.



Fig. 8. User interface for the “Select process” state in the generic UI process

Fig. 9. User interface for the “Select task” state in the generic UI process

These UIs contain only those pieces of information and functionality that a worker
would interact with, eliminating all those general menu items, buttons and tabs previ‐
ously displayed in the standard UI that were regarded unnecessary for the workers. The
examples also show that different UIs can be created for different core process steps.

The UI process was later specialised, as shown in Fig. 11, to increase comfort for
workers when navigating in the core process from one state to another. For example,
the resulting UI shown in Fig. 12 includes three new buttons – “Start production”,
“Request CNC Code” and “Write CNC Code myself” – to proceed from “Check task”
along the corresponding transitions in the core process (cf. Fig. 2).

A final design of the workers’ UIs was established after a few iterations in which the
UIs were tested by workers in Company A using real process data. Desired UI adapta‐
tions were fairly easy to be implemented, simply by changing the UI process model
without incurring major programming effort or changes to the core process.

A few technical limitations still exist related to the connection between core process
components and the UI process. So far only (core) function states with one going tran‐
sition can be controlled by the UI process, but not receive states, send states or functions
states with multiple outgoing transitions. Development is already underway to address
these limitations.

Modelling the Process of Process Execution 43



5 Related Work

Process modelling in the context of UI design has been proposed for a number of
purposes, including usability analysis, requirements specification, and model-driven
development [11, 21].

An early approach to modelling user tasks for UIs is the one by Parnas [14] based on
state transition diagrams. These diagrams are fundamentally very similar to our simplified
SBDs that have only function states but no send or receive states. However, the sole
purpose of the models is to represent UI requirements that are then interpreted by human
UI designers. The execution of state transition diagrams for automatically generating and
controlling the behaviour of UI software is not within the scope of his work.

Dubé et al. [3] proposed hierarchically-linked statecharts (HIS) consisting of UML
class diagrams and state machines for specifying the structure and behaviour of UIs,
respectively. In particular, the state machine formalism has been chosen based on its

Fig. 10. UI for the “Check task” state (from the core process) used in the generic UI process

44 U. Kannengiesser et al.



suitability for connecting UI responses with user events such as mouse clicks and key
presses. Every visual element in the UI is defined with its own state machine. There are
a number of similar approaches to model-driven design of UIs, using behavioural
diagrams that are directly or indirectly drawn from UML [15, 16].

Work by Trætteberg and Krogstie [20] aims to realise individualised UIs by means
of a model-based design approach that uses the core process model as a starting point.
A task model representing the user’s tasks is first extracted from the core process model,
and then transformed into a dialog model representing the interaction logic of the UI.
The core process and the task model are both modelled using BPMN, whereas the dialog
model is modelled using the Diamodl notation [19] that is partially based on UML state
charts. This approach requires significant manual work for the individual transforma‐
tions. Transforming core process models into task models involves splitting lanes into
pools to make explicit the data flow between them and annotating the task model with
pre- and post-conditions. Transforming task models into dialog models then requires
additional manual translation effort due to the separate notations used.

Kolb et al. [8] have proposed mappings between task-oriented process models,
represented in BPMN, and the logic and contents of UIs, with the aim to generate UI
components in a model-driven way. Based on that work, Schobel et al. [17] have imple‐
mented a system for designing the UIs of electronic questionnaires using process model‐
ling, and for executing the UI logic on a workflow engine. Other work [9] proposes
state-flow representations of data objects as micro-level processes that can be used for
generating UIs. These approaches do not include modelling the core process separately
from the UI process: There is only one process model that seems to represent both

Fig. 11. Excerpt from the specialised UI process modelled for Company A

Modelling the Process of Process Execution 45



processes at once. While such a tight coupling has advantages regarding UI maintenance
(i.e. if the core process is modified, the UI process is automatically updated accordingly),
it prevents customising UIs independently of the core process (i.e. the ability to model
multiple UI processes for the same core process).

6 Conclusion

The UI design of business process support systems is a critical issue in the execution of
human-centric processes. For a long time, standardised UIs have been favoured based
on the high cost of UI customisation. However, as customer demands become more
heterogeneous, partly driven by the increasing scope of business process management
to cover new domains such as factory and supply chain processes, there is a clear need
for more customised UI solutions. This paper has shown how process modelling can be
leveraged to develop UIs that can be customised fairly easily using existing function‐
alities of a BPM suite and integrated frameworks such as bootstrap. The self-referential
approach of using process modelling for specifying process execution enables using not
only the same technical platform but also the same type of knowledge: the knowledge

Fig. 12. User interface for “Check task”, generated by a specialised UI process that has been
designed only for the manufacturing preparation (core) process in Company A

46 U. Kannengiesser et al.



of process modelling. As a result, developers and integrators of process support systems
can address many UI customisation needs without having to employ dedicated UI design
specialists.

Our approach is an example for the practical application of a “good theory”, using
Lewin’s [10] terms. Here the theory is the S-BPM methodology; it can be seen as “good”
because it includes two concepts whose practical application has been demonstrated in
this paper: the genericity and the formality of S-BPM process models. The concept of
genericity results from the highly abstract modelling constructs in S-BPM: Processes
are modelled independently of their embedding in particular organisations and IT infra‐
structures [4], using only five abstract symbols. This allows modelling any kind of
process, including human-centric (business) processes, computational processes and
manufacturing processes. In this paper we have shown how the process of process
execution, which is often a mixture of human-centric and computational activities, can
be modelled with S-BPM. The other concept, formality, is established by the well-
defined execution semantics of S-BPM. It allows model-driven transformation of graph‐
ical process models into executable software. We have shown that this concept enables
turning the modelled process of process execution directly, i.e. without manual inter‐
vention, into a running software – the UI of a process support system. We expect that
this would be very difficult to be achieved using traditional BPM methodologies such
as BPMN, due to their insufficient formal foundations.

Finally, the application of S-BPM for customising UI design can be seen as an
example of the “eat your own dog food” principle: As a vendor of an S-BPM suite, we
use our own methodology (S-BPM) and our own tool (Metasonic Suite) as a basis for
generating customised UIs for our process execution frontend. The technical extensions
needed for the realisation of this approach have now matured to product-level quality
and will be available on the market with the next feature release (version 5.3) of the
Metasonic Suite.

Acknowledgements. The research leading to these results has received funding from the EU
Seventh Framework Programme FP7-2013-NMP-ICT-FOF(RTD) under grant agreement no
609190 (www.so-pc-pro.eu).

References

1. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, Berlin (2003)

2. Dietz, J.L.G.: DEMO: towards a discipline of organisation engineering. Eur. J. Oper. Res.
128(2), 351–363 (2001)

3. Dubé, D., Beard, J., Vangheluwe, H.: Rapid development of scoped user interfaces. In: Jacko,
J.A. (ed.) HCI International 2009, Part I. LNCS, vol. 5610, pp. 816–825. Springer, Berlin (2009)

4. Fleischmann, A., Kannengiesser, U., Schmidt, W., Stary, C.: Subject-oriented modeling
and execution of multi-agent business processes. In: 2013 IEEE/WIC/ACM International
Conferences on Web Intelligence (WI) and Intelligent Agent Technology (IAT),
pp. 138–145, Atlanta, GA (2013)

5. Fleischmann, A., Schmidt, W., Stary, C.: S-BPM in the Wild: Practical Value Creation.
Springer, Berlin (2015)

Modelling the Process of Process Execution 47

http://www.so-pc-pro.eu


6. Fleischmann, A., Schmidt, W., Stary, C., Obermeier, S., Börger, E.: Subject-Oriented
Business Process Management. Springer, Berlin (2012)

7. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)
8. Kolb, J., Hübner, P., Reichert, M.: Automatically generating and updating user interface

components in process-aware information systems. In: Meersman, R., et al. (eds.) OTM 2012,
Part I. LNCS, vol. 7565, pp. 444–454. Springer, Berlin (2012)

9. Künzle, V., Reichert, M.: A modeling paradigm for integrating processes and data at the micro
level. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I.
(eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 201–215. Springer, Berlin
(2011)

10. Lewin, K.: Field Theory in Social Science: Selected Theoretical Papers. Harper & Brothers,
New York (1951)

11. Limbourg, Q., Vanderdonckt, J.: Comparing task models for user interface design. In: The
Handbook of Task Analysis for Human-Computer Interaction, pp. 135–154. Lawrence
Erlbaum Associates, London (2004)

12. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge University
Press, Cambridge (1999)

13. Ould, M.A.: Business Processes: Modelling and Analysis for Re-Engineering and
Improvement. Wiley, Chichester (1995)

14. Parnas, D.L.: On the use of transition diagrams in the design of a user interface for an inter-
active computer system. In: ACM/CSC-ER, pp. 379–385. ACM Press, New York (1969)

15. Paternó, F.: Towards a UML for interactive systems. In: Nigay, L., Little, M. (eds.) EHCI
2001. LNCS, vol. 2254, pp. 7–18. Springer, Berlin (2001)

16. Pinheiro da Silva, P., Paton, N.W.: User interface modelling with UML. Information
Modelling and Knowledge Bases XII, pp. 203–217. IOS Press, Amsterdam (2001)

17. Schobel, J., Schickler, M., Pryss, R., Reichert, M.: Process-driven data collection with smart
mobile devices. In: Monfort, V., Krempels, K.-H. (eds.) WEBIST 2014. LNBIP, vol. 226,
pp. 347–362. Springer, Switzerland (2014)

18. Sinur, J., Odell, J., Fingar, P.: Business Process Management: The Next Wave. Meghan-Kiffer
Press, Tampa (2013)

19. Trætteberg, H.: Dialog modelling with interactors and UML statecharts - a hybrid approach.
In: Jorge, J.A., Jardim Nunes, N., Falcao e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844,
pp. 346–361. Springer, Heidelberg (2003)

20. Trætteberg, H., Krogstie, J.: Enhancing the usability of BPM-solutions by combining process
and user-interface modelling. In: Stirna, J., Persson, A. (eds.) PoEM 2008. LNBIP, vol. 15,
pp. 86–97. Springer, Heidelberg (2008)

21. van Welie, M., van der Veer, G.C., Eliëns, A.: An ontology for task world models. In:
Markopoulos, P., Johnson, P. (eds.) Design, Specification and Verification of Interactive
Systems 1998. Eurographics, pp. 57–70. Springer, Vienna (1998)

48 U. Kannengiesser et al.


	Modelling the Process of Process Execution: A Process Model-Driven Approach to Customising User Inte ...
	Abstract
	1 Introduction
	2 The S-BPM Approach to Business Process Modelling
	3 Modelling Process Execution as a Process
	3.1 Modelling UI Workflow
	3.2 Modelling UI Content
	3.3 Connecting the UI Process to the Core Process

	4 Example: Customising UIs for a Shopfloor Process
	5 Related Work
	6 Conclusion
	Acknowledgements
	References


