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Abstract. Recommender systems help consumers to find products
online. But because many content-based systems work with insufficient
data, recent research has focused on enhancing item feature informa-
tion with data from the Linked Open Data cloud. Linked Data rec-
ommender systems are usually bound to a predefined set of item fea-
tures and offer limited opportunities to tune the recommendation model
to individual needs. The paper addresses this research gap by intro-
ducing the prototype SKOS Recommender (SKOSRec), which produces
scalable on-the-fly recommendations through SPARQL-like queries from
Linked Data repositories. The SKOSRec query language enables users to
obtain constraint-based, aggregation-based and cross-domain recommen-
dations, such that results can be adapted to specific business or customer
requirements.

Keywords: Linked Data · Recommender systems · Query-based
recommender systems

1 Introduction

Recommender systems (RS) are on the forefront of decision support systems
within e-commerce applications [1,2]. Among the most known examples of rec-
ommender systems are the ones used by well-established e-commerce retailers
such as Amazon1 or Netflix2. Here, users receive personalized suggestions for
items of the product catalog. But both content-based and collaborative filtering
systems suffer from certain shortcomings, such as rating sparsity or limited con-
tent analysis [1]. To address the problem of data sparsity, the Linked Open Data
(LOD) movement gave rise to the type of Linked Data recommender systems
(LDRS). These systems tackle drawbacks of traditional approaches by enriching
existing recommender systems with information from public data sources. But
even though current LDRS show promising results, they do not yet take full
advantage of the potential that LOD offers. The paper addresses this research
gap through:
1 http://www.amazon.de.
2 http://www.netflix.com.
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– Identification of central problems of different types of recommender systems
(Sect. 2).

– Overview of current challenges for RS in e-commerce applications and how
they can be addressed with the help of Linked Data technologies (Sect. 3).

– Technical description of the SKOSRec prototype, that implements these ideas
(Sect. 4).

– Evaluation of the systems’ key components (Sect. 5).
– Discussion of the main findings and of the practical implications of the app-

roach (Sect. 6).

2 Related Work

2.1 Recommender Systems

Upon the presentation of the first systems in the 1990s, the area of recommender
systems has been an established research field. The most common recommen-
dation algorithms apply some form of collaborative filtering technique, where
users are referred to preferred items of like-minded peers [3–5]. In contrast
to that, content-based systems derive recommendations from feature informa-
tion for items in the user profile [1,6,7,9,10]. Thus, similar items are detected.
Content-based and collaborative filtering systems suffer from certain shortcom-
ings. Even though both paradigms can be combined in hybrid systems [7], many
of the problems still remain.

One of the main issues on the operational side is the data sparsity problem,
where user preferences are rare. It mostly occurrs, when new users or items are
added to the system (cold start problem), but it can also arise when the amount
of feedback information is simply not enough to derive meaningful recommen-
dations. Especially in content-based systems, users can receive unfitting recom-
mendations due to incomplete or ambiguous item feature information (limited
content analysis) [1].

2.2 Linked Data Recommender Systems

Recently, researchers have started to utilize Linked Data information sources
to address the problem of insufficient item feature information. The LOD cloud
comprises data on almost any kind of subject and offers general purpose informa-
tion (e.g. DBpedia3) as well as data from special domains [8]. LOD resources are
usually identified through URIs. Thus, the LOD cloud provides less ambiguous
information than text-based item descriptions [9]. Experiments on historic data
showed that LDRS are at least competitive with classical systems and sometimes
even outperform them in terms of accuracy [9–12,21].

But even though LDRS achieve considerable results, they do not yet take full
advantage of the LOD cloud. Current approaches require a considerable amount
3 http://wiki.dbpedia.org/.

http://wiki.dbpedia.org/
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of pre-processing, such as the selection and extraction of item features. Once a
set of item features has been selected, the recommendation model is ‘hard wired’
into the system and can not be adapted to changing user or business demands.

2.3 Query-Based Recommender Systems

Due to the fact that most LDRS and non-LDRS are not capable of customiza-
tions, there have been efforts to enable systems to produce query-based rec-
ommendations. In the field of non-LDRS this is achieved through enhancing
relational databases with recommendation functionalities [13]. For instance,
the REQUEST system integrates the personalization process with OLAP-like
queries, such that the selection of items/users can be based on certain condi-
tions and aggregations. Thus, recommendation models are adaptable to different
requirements at runtime [14,15]. But as information on user preferences is usu-
ally sparse, this information becomes even sparser when only certain items or
users are selected. This often leads to unreliable recommendation results [15].

The issue of data sparsity could be addressed through content-based
approaches that enhance item feature information with LOD resources. To date,
there are only a few systems that consider user preferences in conjunction with
Linked Data technologies, such as SPARQL queries [16–19]. With these systems,
expressive user preferences can be formulated. But we argue that the potential
of LOD is not yet fully exploited for recommendation tasks. Query-based LDRS
either follow a fixed workflow of similarity detection and SPARQL graph pattern
matchings [16,17] or face long execution times when processing a large number
of triple statements [18].

Therefore, the main goal of the paper is the development of a system that
flexibly integrates user preferences with SPARQL elements at reasonable compu-
tational cost and hat provides novel and meaningful recommendations in update-
intensive environments, where local databases do not provide sufficient data.

3 LOD for Flexible Recommendations in e-Commerce

The following aspects give an overview of current challenges of RS applications
in the e-commerce sector and describe how they can be addressed with the help
of Linked Open Data:

– Comprehensiveness: As stated in the previous sections, e-commerce RS
have to deal with the issues of data sparsity and low profile overlap among
users. Especially small sites do not have a customer base that is big enough to
provide enough ratings [2]. That is why the integration of Linked Data sources
into recommender systems could help to overcome existing limitations on the
data side. The LOD cloud comprises billions of triple statements ranging from
general purpose data to information sources from domains, such as media or
geography. These datasets can be of value in multimedia retailing or online
travel agencies [8].
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– Adaptability: RS of e-commerce sites usually do not offer functionalities
where customers can restrict recommendation results to specific criteria. But
to achieve deeply personalized results, it would be desirable to apply pre- or
postfiltering on the product catalog [2,13]. For instance, think of a customer
of a media streaming site who, in spite of his/her purchasing history, wants
to provide the information that he/she is strongly interested in European
movies. Above that, in areas like tourism, user preferences depend on many
factors, such as context, travel companions or travel destination preferences
[20]. In addition to that, not only consumers could profit from customization
functionalities, but also marketing professionals and administrators [2,15]. For
instance, marketing campaigns could be fit to special holiday occassions of the
year to promote long-tail items. These aspects require data-rich applications,
that can be accessed with expressive queries.

– On-the-fly recommendations: Current RS usually rely on pre-computed
recommendation results. But the aspect of adapatability is strongly tied to the
aspect of just-in-time recommendations. As customer and business require-
ments can not be foreseen, recommendation models should be configurable
at runtime, such that a user can select the right data when it is actually
needed [21]. To enable flexible recommendations results from Linked Open
Data repositories, efficient strategies for processing large numbers of triple
statements have to be identified.

4 The SKOS Recommender

In this section we present SKOSRec, a system prototype that addresses the
previously identified challenges of RS in e-commerce applications.

4.1 Scalable On-the-Fly Recommendations

Most LDRS identify similar items through their features. But considering the
large amount of information, using all known features of a resource leads to poor
scalability and long processing times. Thus, in the context of LDRS it was pro-
posed to select certain item features (properties) for the recommendation model
[9,10,22–24]. But due to the large amount of information in the LOD cloud, the
selection process can be error-prone and time consuming. Thus we propose to
perform similarity computation on URI annotations that are part of commonly
used vocabularies, such as the Simple Knowledge Organization System (SKOS).
SKOS vocabularies have become a de-facto standard for subject annotations,
since a majority of Linked Data sets are annotated with SKOS concepts. We
implemented a system, called SKOS Recommender that uses its own SPARQL-
like query language (SKOSRec) to produce flexible on-the-fly recommendations.
For identifying similar items the systems relies on SKOS concepts, but can be
extended to other URI resources from the LOD cloud. The system uses Apache
Jena4 and can be applied on local as well remote SPARQL endpoints. The fol-
lowing section summarizes the general workflow of the SKOSRec system.
4 https://jena.apache.org/.

https://jena.apache.org/
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1. Parsing: Parse the SKOSRec query.
2. Compiling: Decompose the query into the preferred input resource r (e.g. a

movie) and a SPARQL graph pattern P .
3. Resource retrieval: Retrieve relevant resources from SKOS annotations of

r in conjunction with P .
4. Similar resources: Score and rank the resources according to their condi-

tional similarity with the input resource p.
5. Recommendation: Output the final recommendation results.

In the following, we will now rigorously define keywords in italics by using
the notation for SPARQL semantics that was introduced by [25].

Definition 1 (SKOS annotations). Let AG be the annotation graph of an
RDF dataset D (AG ⊂ D), where resources are directly linked to concepts c of
a SKOS system via a predefined property (e.g. dct:subject). All nodes of the AG
are IRIs and the annotations of an input resource r are defined as follows:

annot(r) = {c ∈ AG |∃ < r, subject, c >} (1)

Upon retrieval of input resource annotations, similarity calculation does not
have to be performed on the whole item space.

Definition 2 (Relevant resources). The mapping Ω of relevant resources and
their annotations is obtained by retrieving all resources Pr that share at least one
SKOS concept with resource r. In addition to that, relevant resources are joined
with a SPARQL graph pattern P , so that resources are excluded when certain
user requirements are defined.

Pr = (r, subject, ?c) AND (?x, subject, ?c) (2)

Ω = {μ(?x)|μ ∈ �P �D} �� �Pr�AG (3)

After querying all relevant resources and their annotations, similarity values
can be calculated. They are based on the Information Content (IC) of the shared
features of two resources. This idea was introduced by [23], but is expanded to
the case when the item space is restricted to match a user defined graph pattern.

Definition 3 (Conditional similarity). Let annot(r) be the set of SKOS fea-
tures of resource r and annot(q) the set of SKOS features of resource q and
q ∈ {μ(?x)|μ ∈ Ω}, then their similarity can be derived from the IC of their
shared concepts C = {annot(r) ∩ annot(q)}

sim(r, q) = ICcond(C) (4)

Definition 4 (Conditional Information Content). The IC of a set of
SKOS annotations is defined through the sum of the IC of each concept c ∈
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{μ(?c)|μ ∈ Ω}, where freq(c) is the frequency of c among all relevant resources
and n is the maximum frequency among these resources.

ICcond(C) = −
∑

c∈C

log

(
freq(c)

n

)
(5)

The retrieval of relevant resources and concept annotations can lead to
long processing times, especially in cases when concepts are frequently used
in a dataset. Hence, the number of records from SPARQL endpoints should be
reduced. By knowing the length of the top-n recommendation list, it can be
calculated which resources can be omitted without influencing the final rank-
ing. This is the case when the maximum potential score for a certain number of
shared features is smaller than the minimum potential score for a higher number
of shared features. By this means, it is determined how many annotations have
to be shared at least with an input resource (cut value) (see Eqs. 6 and 7).

Ωcut = {μcut(?x)|μcut ∈ Fcount(?c)(Ω) > cut} (6)

Ωreduced = Ω �� Ωcut (7)

4.2 Expressive SPARQL Integration

In the course of this paper, we are only able to give a short overview of the
SKOSRec query language. Central to the idea of customizable on-the-fly rec-
ommendations is that both item similarity computation and querying of LOD
resources can be flexibly integrated in a single query language. Even though there
already exist some language extensions that combine SPARQL with imprecise
parts [16,17], they do not take full advantage of the expressiveness of the RDF
data model. Hence, we propose the SKOSRec query language that extends ele-
ments of the SPARQL 1.1 syntax (see underlined clauses in Listing 1) [26]. It
enables flexible and powerful combinations of graph pattern matchings and sub-
querying with recommendation results. The ‘RECOMMEND’ operator issues
the process of similarity calculation based on the input resource and potential
user defined graph patterns, whereas the ‘AGG’ construct ensures that certain
resources are exluded from the result set.

Listing 1. Grammar of SKOSRec
RecQuery ::= Prologue SelectPart? SimProjection

Aggregation? ItemPart*
SelectPart ::= SelectQuery
SimProjection ::= RECOMMEND Var ItemLimit
Aggregation ::= AGG IRIref
ItemLimit ::= TOP INTEGER
ItemPart ::= PREF (DECIMAL )? (VarPart | IRIPart)
IRIPart ::= IRIref (ConceptSim )? (WherePart )?
VarPart ::= Var (ConceptSim )? (WherePart)
ConceptSim ::= C-SIM Relation DECIMAL
Relation ::= ( < | > | <= | >= | = )
WherePart ::= BASED ON WhereClause ()
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The central contributions of the new language are summarized below.

– Recommendations for an input profile: Whereas recommendations can
be generated from both user and item data [16], we argue that the integra-
tion of local customer information and LOD resources is not feasible. An
e-commerce retailer might avoid such a solution because of privacy concerns
and additional costs and would rather prefer to obtain recommendations from
outsourced repositories.

– Graph pattern matching for preference information: The SKOSRec
language allows expression of preferences for variables that are contained in
graph patterns. Thus, users can formulate vague preferences.

– Subquerying with recommendation results: In some areas it might be
helpful to reuse recommendation results as a SPARQL-like subquery. Thus,
triple stores can be powerfully navigated.

5 Experiments

We conducted several experiments to evaluate the viability of our approach. The
goal of the evaluation was to find out, whether it is possible to get meaningful
recommendation results with highly expressive queries from existing LOD repos-
itories at reasonable computational cost. For this purpose, we issued SKOSRec
queries from different target domains (movies, music, books and travel) (Table 1)
to a local virtuoso server containing the DBpedia 3.9 dataset.

5.1 Scalable On-the-Fly Recommendations

The effectiveness of the optimization approach presented in Sect. 4.1 (Eqs. 6 and
7) was examined on 4 different datasets, where each dataset comprised 100 ran-
domly selected DBpedia resources from the target domains. The performance
test was carried out on an Intel Core i5 2500, clocked at 3.30 GHz with 8 GB
of RAM. Evaluation results showed that, even though our approach imposes
overhead that leads to slightly increased computational cost for smaller datasets
(e. g. Fig. 4), it considerably reduces processing times for a growing number of
triple statements for bigger datasets (Table 2, Figs. 1, 2 and 3).

Table 1. Overview of the target domains

Movie Book Music Travel

rdf:type dbo:Film dbo:Book Schema:MusicGroup dbo:Place

# items 90,063 31,172 86,013 725,546

# annotions p. item (∅) 7.207 4.410 6.060 2.422
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Fig. 1. Movie domain
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Fig. 2. Book domain
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Fig. 3. Music domain
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Fig. 4. Travel domain

Table 2. Results of the performance test

Domain Exec. time in ms (∅) # records (∅)

Regular Optimized Regular Optimized

Movie 9,961 1,921 23,542 20,535

Book 303 92 1,206 837

Music 4,145 501 7,662 501

Place 218 73 621 134

5.2 Expressive SPARQL Integration

As former research on LDRS has already shown that the application of SKOS
annotations leads to good precision and recall values in comparison to standard
RS algorithms [9,10], we followed an explorative approach. We investigated,
whether it is possible to formulate highly expressive SKOSRec queries that pro-
duce meaningful recommendation results from the DBpedia dataset. We issued
advanced queries to showcase the viability of our language in several usage sce-
narios of the target domains.
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Conditional Recommendations. This query template generates highly indi-
vidual or business relevant recommendations. In the example depicted below,
a marketer wants to obtain query results that are personalized and promote
Christmas movies at the same time.
PREFIX dct: <http :// purl.org/dc/terms/>
PREFIX skos: <http ://www.w3.org /2004/02/ skos/core#>
PREFIX dbc: <http :// dbpedia.org/resource/Category:>

RECOMMEND ?movie TOP 3
PREF <r1> <r2>
WHERE {
?movie dct:subject ?c .
?c skos:broader* dbc:Christmas_films .

}

Input (r1, r2) Output
The Devil Wears Prada Love Actually
Bridget Jones’s Diary The Family Stone

Scrooge
The Terminator Ben-Hur
Raiders of the Lost Ark Die Hard

Trancers

Aggregation-Based Recommendations: Roll Up. When user preferences
can be derived from their sublevel entities, the roll-up template might improve
recommendations. Think of a travel agency intending to suggest city trips. Two
customers would receive similar trip recommendations once they have been to the
same cities even though they have visited different points of interest (POI). The
example shows that it can be reasonable to instantiate the process of similarity
calculation on sublevel entities to better fit recommendations to customer needs.
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX yago: <http :// dbpedia.org/class/yago/>
PREFIX dbr: <http:dbpedia.org/resource >

SELECT DISTINCT ?place (count(?place) as ?count)
WHERE {
?sight ?locatedIn ?place .
?place rdf:type yago:City108524735 .

}
GROUP BY ?place
ORDER BY DESC(COUNT(?place))
LIMIT 5
RECOMMEND ?sight TOP 1000
AGG <http :// dbpedia.org/resource/Berlin >
PREF <r1> ... <r5>

Input (r1 ... r5) Output
Checkpoint Charlie Moskau
East Side Gallery East Berlin
Berlin Wall Hamburg
DDR Museum Trieste
Stasi Museum Warschau
Re:publica Vancouver
Berghain London
Friedrichshain Amsterdam
E-Werk Paris
Bauhaus Archive Montreal
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Aggregation-Based Recommendations: Drill Down. Sometimes cus-
tomers find it hard to concretize their preferences. They might have a vague
understanding of what they like, but could not tell why. In this example a user
knows that somehow he/she likes movies directed by Quentin Tarantino. A drill-
down query would find the most similar films to those that were directed by him
and aggregate the results, such that related directors and their movies would be
recommended.
PREFIX dbo: <http :// dbpedia.org/ontology/>
PREFIX dbr: <http :// dbpedia.org/resource/>

SELECT DISTINCT ?director ?movie WHERE {
?movie dbo:director ?director .

}
RECOMMEND ?movie TOP 3
AGG dbr:Quentin_Tarantino
PREF ?prefMovie BASED ON {
?prefMovie dbo:director dbr:Quentin_Tarantino

}

?director ?movie
Robert Rodriguez From Dusk till Dawn
Frank Miller Sin City
Robert Rodriguez Sin City
Tony Scott True Romance

Cross-Domain Recommendations. Even though, standard collaborative fil-
tering algorithms sometimes generate recommendations that are from a differ-
ent domain than the items in a user profile, marketers cannot directly control
the outputs. In contrast to that, the SKOSRec language enables explicit cross-
domain querying. The following example shows that suggestions for novels (e. g.
Beat novels) can be obtained by examining the user preference for a music group
(e. g. The Beatles).
PREFIX dct: <http :// purl.org/dc/terms/>
PREFIX skos: <http ://www.w3.org /2004/02/ skos/core#>
PREFIX dbc: <http :// dbpedia.org/resource/Category:>
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX dbo: <http :// dbpedia.org/ontology/>
PREFIX dbr: <http :// dbpedia.org/resource/>

SELECT ?book (COUNT(?book) as ?count) WHERE {
?book dct:subject ?c .
?c skos:broader {,2} dbc:Novels . {
SELECT ?book WHERE {
?book ?p1 ?o . ?o ?p2 ?band . ?book rdf:type dbo:Book . }}}

GROUP BY ?book
ORDER BY DESC(COUNT(?book))
RECOMMEND TOP 10
PREF dbr:The_Beatles

Output (?book)
On the road
One Flew Over the Cuckoo’s Nest
Sometimes a Great Notion



Flexible On-the-Fly Recommendations 53

6 Conclusion

This paper demonstrated how Linked Open Data technologies can be utilized
for highly flexible on-the-fly recommendations in e-commerce applications. For-
mer LDRS calculated user preference predictions offline and thus prevented cus-
tomizations and frequent updates of data sources as well as recommendation
models. Although there have been efforts to enable user restrictions at runtime
in query-based recommender systems, most of them either do not scale to large
item spaces or do not handle data sparsity issues that arise when restricting
the set of potential products to certain criteria. Above that, existing query-
based LDRS do not yet take full advantage of the expressiveness that RDF and
SPARQL graph patterns offer.

The SKOSRec prototype addresses this research gap by offering a powerful
combination of similar resource retrieval and SPARQL graph pattern matchings
from Linked Open Data repositories. Thus, individual and/or business prefer-
ences can be flexibly integrated. With the SKOSRec query language at hand,
e-commerce retailers could define various recommendation workflows that can be
adapted to specific usage contexts. For instance, the marketing department could
use campaign templates and end users could enter their preferences through a
user interface.
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