
Tool Support for the Semantic Object
Model

Otto K. Ferstl, Elmar J. Sinz and Dominik Bork

Abstract This chapter introduces tool support for the semantic object model
(SOM). The conceptual design of a multi-view modeling tool is presented after
describing the core concepts of the SOM method and laying the corresponding
methodological foundation. The chapter foremost addresses the modeling enthu-
siast, interested in how to utilize the SOM method with the ADOxx modeling tool.

Keywords Semantic object model ⋅ Multi-view modeling tool ⋅ ADOxx

1 Introduction

The semantic object model (SOM)1 is a comprehensive methodology for modeling
business systems [1–4, 194ff]. SOM is fully object-oriented and designed to capture
business semantics explicitly. The general bases of the SOM methodology are
concepts of systems theory as well as organizational theory.

SOM supports the core phases of business engineering such as analysis, design
and redesign of a business system. A business system is an open, goal-oriented,
socio-technical system. Thus, the analysis of a business system focuses on the
interaction with its environment, goal-pursuing business processes, and resources.
Moreover, the dynamic behavior of a business system requires investigation of
properties such as stability, flexibility and complexity [5].

O.K. Ferstl ⋅ E.J. Sinz (✉)
University of Bamberg, 96045 Bamberg, Germany
e-mail: elmar.sinz@uni-bamberg.de

O.K. Ferstl
e-mail: otto.ferstl@uni-bamberg.de

D. Bork
University of Vienna, 1090 Vienna, Austria
e-mail: dominik.bork@univie.ac.at

1This section is based on [1].

© Springer International Publishing Switzerland 2016
D. Karagiannis et al. (eds.), Domain-Specific Conceptual Modeling,
DOI 10.1007/978-3-319-39417-6_13

291

The backbone of the SOM methodology is an enterprise architecture which uses
different perspectives on a business system via a set of models. These models are
grouped into three model layers referred to as business plan, business process
models and resource models. Each layer describes the business system as a whole,
but with respect to the specific perspective on the model. In order to reduce
complexity, each model layer is subdivided into several views, each focusing on
specific aspects of a model layer. On the meta level, the modeling language of each
layer is defined by a metamodel and derivated view definitions. Thus, the enterprise
architecture provides a modeling framework which helps to define the specific
semantics and to manage the complexity of the model [6]. In this chapter, we
outline the methodological framework of SOM, its modeling language as well as
the conceptualization of an SOM modeling tool based on the ADOxx metamodeling
platform.

In terms of systems theory, a business system is an open, goal-oriented,
socio-technical system [7]. It is open because it interacts with customers, suppliers,
and other business partners transferring goods and services. The business system
and its goods/services are part of a value chain which in general comprises several
consecutive business systems. A corresponding flow of finance runs opposite the
flow of goods and services.

The behavior of a business system is aimed at business goals and objectives.
Goals specify the goods and services to be provided by the system. Objectives (e.g.,
profit and turnover) are defined levels against which business performance can be
measured.

Actors of a business system are humans and machines. Human actors are per-
sons in different roles. Machine actors, in general, are plants, production machines,
vehicles, computer systems, etc. SOM pays specific attention to application systems
which are the machine actors of the information processing subsystem of a business
system (information system). An application system consists of computer and
communication systems running application software. The degree of automation of
an information system is the ratio of tasks carried out by application systems to all
tasks of the information system.

The notion of a business system as open and goal-oriented reflects a perspective
from outside the system. An inside perspective shows a distributed system of
autonomous, loosely coupled components which cooperate in pursuing the system’s
goals and objectives. The autonomous components are business processes [4, 8]
which produce goods and services and deliver them to other business processes.

The cooperation of business processes is coordinated primarily through
process-specific objectives which are derived from the overall objectives of a
business system. This is done by the business system’s management. Within the
degrees of freedom defined by the process-specific objectives, a secondary coor-
dination is done by negotiation between the business processes.

Inside a business process, there are components which also cooperate and have
to be coordinated. This coordination is done by an intra-process management which
controls the activities of the process components by sending instructions to them
and supervising their behavior. In contrast to the coordination between business

292 O.K. Ferstl et al.

processes, the components of a business process are guided closely by the process
management.

The components of a business process as well as the business processes as a
whole take care of functions which are essential to every business system. The
following classification of these functions helps to identify business processes and
their components: (1) input-output-function to implement the characteristic of
openness, e.g., a production system, (2) supply function to provide material
resources and energy, (3) maintenance function to keep the system running,
(4) sensory function to register disturbances or defects inside or outside the system,
(5) managing function to coordinate the subsystems [9].

2 The SOM Enterprise Modeling Method

The SOM methodology2 utilizes an enterprise architecture which consists of three
layers (Fig. 1) [4].

• Enterprise plan: The enterprise plan constitutes a perspective from outside a
business system. It focuses on the global task and the resources of the business
system. The specification of the global task includes the universe of discourse,
the goals and objectives to be pursued, as well as the goods and services to be
delivered. Requirements on resources are derived from the global task and have
to be cross-checked to the capabilities of available resources. Hence, both global
task and resources determine themselves mutually.

PerspectiveModel Layer

Resource layer
from inside a
business system

Task layer from
inside a
business
system

Task layer and
resource layer from
outside a business
system

1st layer

Specification of

Organization
of Personnel

Business
Application
Systems

Machines
or Plants

plan

Business Process
Model

Enterprise
Plan

2nd layer

3rd layer

View Specification

Interaction Schema (IAS)

Task-Event Schema (TES)

Schema of
Task Classes (TAS)

Schema of Conceptual
Classes (COS)

Fig. 1 Enterprise architecture [4]

2This section is based on [1].

Tool Support for the Semantic Object Model 293

The first evaluation of an enterprise plan is done by an analysis of chances and
risks from a perspective outside the business system, and an additional analysis
of the strengths and weaknesses of the business system from an inside per-
spective. Strategies on products and markets, strategic actions, constraints, and
rules serve as guidelines to realize an enterprise plan.

• Business process model: The business process model constitutes a perspective
from inside a business system on its tasks. It specifies main processes and
service processes which consist of tasks and relationships between them. Main
processes contribute directly to the goals of the business system; supporting
processes provide their outcome to main processes or other supporting pro-
cesses. The relationships between business processes follow the client/server
concept. A client process engages other processes for delivering the required
service. Business processes establish a distributed system of autonomous
components. They cooperate in pursuing joint objectives which are derived from
the overall objectives of a business system.

• Specification of resources: In general, personnel, application systems as well as
machines or plants are resources for carrying out the tasks of business processes.
In the following, we focus on information processing tasks and, therefore, omit
machines and plants. Tasks of the information system are assigned to persons or
to application systems classifying a task as non-automated or fully-automated.
A partly-automated task has to be split into sub-tasks which are non-automated
or fully-automated. The assignment of persons or application systems is aimed
at the optimal synergy of person–computer cooperation.

The different layers of the enterprise architecture help to build business systems
in a flexible and manageable way. They cover specific aspects of an overall model
which are outside perspective (enterprise plan), inside perspective (business process
model) and resources. The relationships between the layers are specified explicitly.
Each layer establishes a distributed system of autonomous, loosely coupled com-
ponents. In contrast to a single-layered monolithic model, the multi-layered system
of three models allows local changes without affecting the overall architecture. For
example, it is possible to improve a business process model (inside perspective) yet
retain goals and objectives (outside perspective) or replace actors of one type by
other ones.

Following an outside-in approach, it is advisable to build the three model layers
top down the enterprise architecture. However, the architecture does not force this
direction. There may be good reasons to start from this guideline, e.g., when
analyzing existing business systems. Here it is sometimes difficult to find an
elaborated enterprise plan so modeling starts at the business process layer focusing
on the inside perspective. The enterprise plan may be completed when the other
layers are fully understood. In each case, the effects on other layers have to be
balanced and approved.

The enterprise architecture implies that functionality and architecture of the
business application systems are derived from the business process model. The
relationships between both layers are formaliszd to a high degree. Design decisions

294 O.K. Ferstl et al.

and results at the business process layer are translated automatically into the layer of
application systems. The architecture of the layer of application systems uses the
concept of object-integration to combine conceptual and task classes [10]. Alter-
natively, it is possible to link a business process model to an existing, traditional
application system which follows the traditional concepts of function integration or
data integration. In this case, tasks to be automated are linked to functional units of
the application system.

3 Conceptualization of the SOM Modeling Method

In this section, the language for SOM business process3 models is defined. The
language is specified by a metamodel (Sect. 3.1) and a set of decomposition rules
(Sect. 3.2). Finally, Sect. 3.3 briefly introduces SOM resource modeling.

3.1 The Metamodel for Business Process Modeling

The metamodel for business process modeling shows notions and relationships
between notions (Fig. 2). It is specified as a binary entity-relationship schema.
Relationships between notions are associated with a role name as well as two
cardinalities to denote how many instances of the one notion can be connected to
one instance of the other notion, at least and at most. Within the metamodel, the
notions are represented by entities. Each entity also contains the symbols used for
representation within a business process model.

As introduced in Sect. 2, a business process model specifies a set of business
processes with client/server relationships among each other. A business process
pursues its own goals and objectives which are prescribed and tuned by the man-
agement of a business system. Cooperation between processes is a matter of
negotiation. The term business process denotes a compound building block within a
business process model and, therefore, it is not a basic notion of the language.
A business process consists of at least one business object and one or more business
transactions.

At the initial level of a business process model, a business object (object in short)
produces goods and services and delivers them to customer business processes.
Each business object belongs exclusively to a business process of the universe of
discourse or to the environment of a business system. A business transaction
(transaction in short) transmits a good or service to a customer business process or
receives a good or service from a supplier business process. A transaction con-
necting different business processes belongs to both processes.

3This section is based on [1].

Tool Support for the Semantic Object Model 295

A business process may be refined using the decomposition rules given below in
Sect. 3.2. At a more detailed level of a business process model, each business object
appears in one of two different roles: an operational object contributes directly to
producing and delivering a good/service, while a management object contributes to
managing one or more operational objects using messages. A business transaction
transmits a good/service or a message between two operational objects or a message
between two management objects or between a management object and an oper-
ational object.

A business transaction connects two business objects. Conversely, a business
object is connected with one to many (“*”) in-going or out-going business trans-
actions. From a structural viewpoint, a transaction denotes an interaction channel
forwarding goods, services, or messages. From a behavioral viewpoint, a transac-
tion means an event which is associated with the transmission of a specific good, a
service package, or a message.

A business object comprises one to many tasks, each of them driving one to
many transactions. A transaction is driven by exactly two tasks belonging to dif-
ferent business objects. The tasks of an object share common states and are
encapsulated by the object. These tasks pursue joint goals and objectives which are
attributes of the tasks.

The SOM methodology uses two different concepts of coupling tasks (Fig. 3,
top): loosely coupled tasks belong to different objects and, therefore, operate in

Task-Event Schema (TES)

Interaction Schema (IAS)

2,2

1,1 1,*

1,* 1,* 1,*

2,2
1,*

1,* 2,2

0,* 0,*

Good /
Service

Business
Transaction

Internal Event

Business
Object

Task

External
Event

Environment~
Universe of Discourse~

Negotiation Principle:
Initiating Transaction i~
Contracting Transaction c~
Enforcing Transaction e~

Feedback Control Principle:
Control Transaction r~
Feedback Transaction f~

Time-continuous
Parameterization

2,2

0,*

Objective
Response

triggers couples tightly

couples looselycomprises

connects delivers

Is_a Is_a Is_a

continuously
controls

consists of

consists of

consists of

Fig. 2 Metamodel for SOM business process models [1, p. 344; 11, p. 219]

296 O.K. Ferstl et al.

different states. The tasks are connected by a transaction which serves as an
interaction channel for passing states from one task to the other. A task triggers the
execution of another task by an event (good, service package, or message) riding on
the interaction channel. Tightly coupled tasks belong to the same object and operate
on the same states. The tasks are connected by an internal event which is sent from
one task to trigger the execution of the other. The concept of encapsulating tightly
coupled tasks by an object and loosely coupling the tasks of different objects via
transactions is a key feature of the object-oriented characteristic of the SOM
methodology.

The third type of event is the external event. An external event denotes the
occurrence of an event like “the first day of a month” which is not bound to a
transaction.

Because of its complexity, a business process model is represented in two dif-
ferent views (Fig. 3 bottom and Fig. 2): The interaction schema is the view of the
structure. It shows business objects which are connected by business transactions.
The task-event schema is the view on behavior. It shows tasks which are connected
by events (transactions, internal events, or external events). These two views are
complemented by hierarchical decompositions of business transactions and busi-
ness objects. These additional views specify the relationships between the inter-
action schemas showing a varying level of detail.

3.2 Decomposition Rules

The SOM methodology allows a business process model to be decomposed by
stepwise refinement. Decomposition takes place with the components of the

View on Structure:
Interaction Schema (IAS)

Object 1 Object 2

t1

t2

b c

a d

1

2 e

t3

Object 1 Object 2t1

t2

b

c

a

d

1

2 e
internal
event

task

transaction

loosely coupled tasks
(associated to different objects)

tightly coupled tasks
(associated to one object)

tightly coupled tasks
(associated to one object)

t3

t1 t2

t3

View on Behavior:
Task-Event Schema (TES)

Object 2

Object 1

Fig. 3 Representation of structure and behavior in an SOM business process model

Tool Support for the Semantic Object Model 297

interaction schema specifying the structure of a business process model, i.e.,
business objects, business transactions and goods/services (see the relationship
“consists of” in Fig. 2). The components of the task-event schema which specify
the behavior of a business process model (tasks, events riding on transactions,
internal events and external events) are not decomposed but redefined on subse-
quent decomposition levels of a business process model. The decomposition rules
for business objects and business transactions are shown in Fig. 4. Specific rules for
decomposition of goods/services are not required because of simply decomposing
them into sub-goods/sub-services.

The decomposition of a business process model helps to manage its complexity,
allows separating the management system of a business process from its operational
system, and uncovers the coordination of a business process.

The SOM methodology uses two basic coordination principles within decom-
position [4]:

• Applying the feedback control principle (rule 1), a business object is decom-
posed into two sub-objects and two transactions: a management object O’ and
an operational object O’’ as well as a control transaction Tr from O’ to O’’ and a
feedback transaction Tf in opposite direction. These components establish a
feedback control loop. The management object prescribes objectives or sends
control messages to the operational object via the control transaction. Con-
versely, the operational object reports to the management object via the feed-
back transaction.

Rule Nr. Decomposition rules for business objects:

(1) O ::= { O’, O’’, Tr (O’, O’’), [Tf(O’’, O’)] }

(2) O ::= { O’, O’’, [T(O’, O’’)] }

(3) O ::= { spec O’ }+

(4) O’ | O’’ ::= O

(5) O ::= { O’, { O’’, Po(O’, O’’), [PR(O’’, O’)] }+ }

Decomposition rules for business transactions:

(6) T(O, O’) ::= [[Ti(O,O’) seq] Tc(O’, O) seq] Te(O, O’)

(7) Tx ::= T’x { seq T’’x }+ | T’x { par T’’x }+

(x = i, c, e, r, f)

(8) Tx ::= { spec T’x }+

(x = i, c, e, r, f)

(9) Ti | Tc | Te ::= T

Fig. 4 Decomposition rules for business objects and business transactions (::=replacement, {}
set, {}+list of repeated elements, [] option, | alternative, seq sequential order, par parallel order,
spec specialization)

298 O.K. Ferstl et al.

• Applying the negotiation principle (rule 5), a transaction is decomposed into
three successive transactions: (1) an initiating transaction Ti, where a server
object and its client learn to know each other and exchange information on
deliverable goods/services, (2) a contracting transaction Tc, where both objects
agree to a contract on the delivery of goods/services, and (3) an enforcing
transaction Te, where the objects transfer the goods/services.

The types of transactions resulting from the decomposition are shown in the
metamodel (Fig. 2) as specialized transactions.

Figure 5 illustrates the application of the coordination principles for the
decomposition of SOM business process models. The decomposition of the first
level into the second level is done by applying the negotiation principle. Applying
the feedback control principle leads to the third level.

In addition to the coordination principles given above, a transaction may be
decomposed into sub-transactions of the same type which are executed in sequence
or in parallel (rule 6). Correspondingly, a business object may be decomposed into
sub-objects of the same type (management object or operational object) which may
be connected by transactions (rule 2). Objects, as well as transactions, may be
specialized within the same type (rules 3 and 7). The other rules (4, 8, and 9) are
used for replacement within successive decompositions.

It is important to state that successive decomposition levels of a business process
model do not establish new, different models. They belong to exactly one model
and are subject to the consistency rules defined in the metamodel.

object in role of
management object

object in role
of operational
object

object

initiating transaction

contracting transaction

enforcing transaction

initiating transaction
contracting transaction

enforcing transaction

transaction

control
transaction

feedback
transaction

d
ec

o
m

p
o

si
ti

o
n

Fig. 5 Decomposition of SOM business process models

Tool Support for the Semantic Object Model 299

3.3 Resource Modeling

Tasks which are fully or partly automated and hence are executed by application
systems have to be specified on the resource layer. The creation of the corre-
sponding schemas is initially done by a model-driven approach. As this approach
cannot be described here in detail, only a short synopsis is given. For a detailed
description see [11].

Following the organizational foundation of the SOM method, the focus is on the
concept of task. Tasks at the business process layer are embraced by means of a
common object. These objects are modeled by (object-specific) classes at the
resource layer. Transactions between objects are mapped to (transaction-specific)
classes as well as relationships between classes. Both types of classes result in a
schema of conceptual classes (COS). The tasks at the business process layer are
modeled by (task-specific) classes at the resource layer, leading to the schema of
task classes (TAS).

A task-specific class orchestrates the corresponding sub-schema of conceptual
classes. Task-specific classes at the same level are coordinated by choreography.

4 The SOM Modeling Tool

This section discusses the conceptualization of the theoretical foundation intro-
duced above towards a modeling tool for the SOM method. The tool is based on the
ADOxx metamodeling platform. Section 4.1 denotes SOM multi-view modeling
functionality. Thereafter, Sect. 4.2 briefly discusses model transformation capa-
bilities, enabling the derivation of resource layer models from business process
models with SOM. Section 4.3 then denotes non-functional requirements.

4.1 SOM Multi-view Modeling Functionality

The SOM tool enables modeling of SOM business process models and resource
models (cf. level 2 and level 3 of the SOM enterprise architecture on Fig. 1). On the
different levels, SOM utilizes different ways of carrying out multi-view modeling.
On the business process layer, all views are created following the system-oriented
multi-view modeling approach [12]. Hence, all views are projections onto the
integrated business process metamodel (cf. Fig. 2). Modeling actions, performed by
the modeler on one view are immediately transformed by transition translations
[13] into corresponding changes on all affected views.

300 O.K. Ferstl et al.

On the resource level, both modeling views are kept isolated from each other.
Modeling on this layer follows the diagram-oriented multi-view modeling approach
[12]. However, considering the creation of the resource views, the SOM method
specifies state translations [13] that transform complete business process models
into semantically equivalent schema of task classes and schema of conceptual class
models. These state translations are specified as metamodel mappings. Notions of
the business process metamodel are mapped to notions of the resource layer
metamodel (see Sect. 4.2 for the metamodel mapping and an example model
transformation).

The SOM tool is special when it comes to the way modelers interact with the
tool. Generally, conventional drag and drop modeling is prohibited at most times.
This comes not only from the way multi-view modeling is performed, it is also a
requirement that comes from the formalized specification of the modeling proce-
dure [cf. 14] by means of the decomposition rules (cf. Fig. 4). In order to increase
the utility of the tool, zooming operators were introduced, allowing modellers to
immediately switch between already defined decomposition levels of a business
process. Applying the zooming operator causes only changes on the visualized
SOM views. The integrated model is not affected. Table 1 provides an overview of
the constituents of the multiple SOM modeling views (realized as ADOxx model
types) and aligns the most important tool functionality to them.

Table 1 SOM views realized as ADOxx model types and corresponding tool functionality

SOM view (ADOxx model
type)

Modeling concept Tool functionality

Interaction schema Business object Increase business process
level

Business transaction Decrease business process
level
Auto-layout/smooth edges

Task-event schema Task Define process behavior
Increase business process
level

Business
transaction-internal/external
event Decrease business process

level
Object decomposition
schema

Business object Decompose
object/Transaction

Business transaction revoke decomposition
Transaction
decomposition schema

Decomposition relationship Zoom on selected level
Add/Remove
environmental object
Add/Remove enforcing
transaction

Tool Support for the Semantic Object Model 301

4.2 SOM Model Transformation Functionality

The SOM methodology not only specifies the business process and resource
modeling on the second and third layer of the enterprise architecture, respectively.
Moreover, SOM also defines a metamodel-based model transformation of com-
prehensively specified business process models into initial business application
systems models (i.e., the schema of task classes and the schema of conceptual
classes).

The SOM modeling tool provides the modeler the functionality to automatically
apply these transformations. The hereby created business application systems
models can be further processed with the tool, e.g., combining classes that have
significant functionality and/or data overlaps, normalization or generalization of
classes.

Figure 6 illustrates the metamodel mapping between the business process layer
and the resource layer (cf. the SOM enterprise architecture in Fig. 1). Tasks are
transformed into task-specific classes (rule 1), business objects into object-specific
classes (rule 2), business transactions into transaction-specific classes and inter-
acts_with relationships (rule 3), goods/services are transformed into service-specific
classes, and internal/external events are transformed into interacts_with
relationships.

In Fig. 7, this mapping is exemplified by a simple SOM business process, con-
sisting of a distributor and a customer that are coordinated by three business trans-
actions. This model is transformed into a schema of conceptual classes (Fig. 7 bottom
left) and a schema of task classes for the customer business object (Fig. 7 bottom

Class
(object type)

Relationship

is_a interacts_with is_part_of

Operator

Attribute

Business
Object

Task

Business
Transaction

Good/
Service

Internal
Event

External
Event

object
specific

transaction
specific

service
specific

task
specific

 B
u

si
n

es
s

p
ro

ce
ss

es

 B
u

si
n

es
s

ap
p

lic
at

io
n

 s
ys

te
m

s

Fig. 6 Transforming SOM business processes into SOM business application systems

302 O.K. Ferstl et al.

right). The dashed arrows indicate some of the transformation rules applied to the
business process model. Because of the limited space available here, the resource
layer and the corresponding transformation rules cannot be discussed in more detail.
However, the interested reader is referred to [11, p. 222ff] for an overarching spec-
ification of both, the resource layer of SOM and the transformation rules.

4.3 Non-functional Tool Requirements

From the very beginning, the conceptual design of the SOM modeling tool was
aiming at the best usability, i.e., how to support the modeler in processing multiple
views simultaneously and applying the decomposition rules. In [15], the authors
emphasized the importance of:

• Decoupling the decomposition of business objects and business transactions
from the definition of new business process levels by means of specifying the
relationships between the decomposed objects and transactions;

• providing visual support in the reconfiguration of relationships between busi-
ness objects in different decomposition levels;

• enabling zooming in and out of already defined business process levels; and
• realizing layout algorithms, e.g., “auto-layout” and “smooth-edges” that auto-

matically adjust the visualization of the SOM business process model in its
multiple views after a modeling action has been executed.

Fig. 7 Interaction schema (a), task-event schema (b) and the transformed schema of conceptual
classes (c) and schema of task classes (d)

Tool Support for the Semantic Object Model 303

Consistency is a major requirement for multi-view modeling tools. This holds all
the more for SOM modeling. Because of the multiple modeling views on the
different enterprise architecture layers, modelers are confronted with many
dependencies to be respected. Hence, automatic mechanisms for ensuring consis-
tency need to be provided on tool side.

The SOM modeling tool utilizes the ADOxx event mechanisms to realize this
requirement. Every modeling operation is checked in an according event processing
algorithm. This algorithm determines whether or not the current modeling opera-
tion, performed in a certain view, affects other views. If so, the algorithm executes
semantically equivalent operations (referred to as transition translations [13]) at all
affected views automatically. Hence, without interrupting or confusing the modeler,
consistency between all SOM views is provided automatically by the tool.

5 Case Study: A Product Distribution Process in SOM

In the following section, the application of the SOM modeling tool is demonstrated
by means of a case study, showing the different modeling steps to be applied in
order to transform an initial SOM business process into a precise description of a
distribution of goods/services between a distributor and a customer. One focus of
the SOM method is on business process modeling. Because of the limited space
available here, the following case study will, therefore, concentrate on modeling of
SOM business processes.

For example, Fig. 8 introduces the business process distribution of a trading
company visualized as a screen shot of the SOM modeling tool. At the initial level,
the interaction schema view (bottom left model type) consists of three components,
(1) the business object distributor which provides a service, (2) the transaction
service which delivers the service to the customer (visualized in the transaction
decomposition view on the upper right), and (3) the business object customer itself.
Distributor is an internal object belonging to the universe of discourse while cus-
tomer is an external object belonging to the environment. All business objects are
visualized in the upper right view, the object decomposition view. At this level, the
entire cooperation and coordination between the two business objects is specified
by the transaction service.

Figure 8 (bottom right) shows the corresponding sequence of tasks which is very
simple. The task names in the task-event schema are derived from the name of the
transaction. Here, the task service > (say “send service”) of distributor produces
and delivers the service, the task > service (say “receive service”) of customer
receives it. The arrow service here defines the sequence of the two tasks belonging
to the transaction service which is represented in the interaction schema by an
arrow, too.

Transactions like services connect business objects inside the universe of dis-
course and link business objects to the environment. When modeling a value chain,
the business process model of a trading company includes a second business

304 O.K. Ferstl et al.

process procurement, which receives services from a business object supplier,
belonging to the environment, and delivers services to a distributor.

Example (Fig. 8) will be continued now. For readability reasons, the figures
concentrate on selected views in the following. The surrounding text will describe
the modeling steps performed in all views. As customer and distributor negotiate
about the delivery of a service, the service transaction is decomposed according to
the negotiation principle into the sub-transactions i: price list (initiating), c: order
(contracting), and e: service (enforcing transaction); visualized in the transaction
decomposition schema in Fig. 9a. The corresponding task-event schema (Fig. 9d)
is determined implicitly because the sub-transactions are executed in sequence (as
defined by the negotiation decomposition rule in Fig. 4). The tasks of each business
object are connected by object-internal events.

After this initial step, the resulting business transactions and business objects
need to be further decomposed to more precisely depict the actual distribution of
goods and services:

First, the e: service transaction is decomposed into the sequence e:(seq.) delivery
and e:(seq.) cash up. The cash up transaction is further decomposed according to
the negotiation principle into the sequence c: invoice and e: payment (see Fig. 10a).

Fig. 8 Initial level of the business process distribution process

Tool Support for the Semantic Object Model 305

The initiating transaction is omitted because the business objects already know each
other. The contract of the invoice transaction refers to amount and date of payment,
not to the obligation to pay in principle which is part of the transaction c: order.

Fig. 9 Transaction decomposition schema (a), object decomposition schema (b), interaction
schema (c), and task-event schema (d) on the 2nd level

Fig. 10 Transaction decomposition schema (a) and object decomposition schema (b) on the 3rd
level

306 O.K. Ferstl et al.

Second, the feedback control principle is applied two times to distributor to
(i) uncover the internal management of the business object, and (ii) derive at a
homogeneous mapping between business transactions and business objects. Fol-
lowing the feedback control principle (cf. Fig. 4), this leads to the sub-objects sales
(management object), store (operational object) and finances (operational object).
Sales and store are coordinated by the transactions r: delivery order (control
transaction) and f: delivery report (feedback transaction). Sales and finances are
coordinated by the transactions r: debit and f: payment report (see Fig. 10b).

Figure 11 shows the interaction schema of the third business process level. The
sales sub-object deals with price list, (seq.) invoice and order, the store sub-object is
responsible for delivery. Consequently, the finances sub-object takes care of the
(seq.) payment.

The last step in this case study is to define the behavior of the business process
on its final decomposition level. Because of the different decomposition rules
applied, the sequence of transactions cannot be derived automatically for the final
process. Hence, the modeler is required to define the process behavior in the
task-event schema by utilizing the internal event relationship and consecutively
clicking on the outgoing and incoming task an internal event shall connect. Fig-
ure 12 shows the final task-event schema.

The business process is still initiated by the sales object sending a price list to the
customer. The customer then sends an order back to sales. This initiates a control
transaction delivery order to the store that actually delivers the good or service to
the customer and responds with a feedback transaction (delivery report). After the
report is processed, the sales object initiates two transactions: The sales object sends
an invoice to the customer and it requests a debit to be handled by the finances. On
receiving the customer’s payment, the finances reports by means of a feedback
transaction the payment report back to sales. This concludes the distribution
process.

The complete case study with illustrations of all decomposition levels and views
is available online at the Open Models Laboratory (OMiLAB) project page of

Fig. 11 Interaction schema on the 3rd level

Tool Support for the Semantic Object Model 307

SOM.4 It also features the transformation of the final distribution business process
into initial (i) schema of task classes, (ii) schema of conceptual classes and
(iii) business process modeling and notation (BPMN) (cf. [16]). A comprehensive
discussion on the conceptualization of the SOM method towards a multi-view
modeling tool can be found in [17].

6 Conclusion

The previous sections gave a brief introduction to the SOM methodology for
business systems modeling. A comprehensive enterprise model consists of
sub-models for each layer of the enterprise architecture (see Fig. 1). The
sub-models are balanced carefully within the architectural framework.

Consequently, the conceptualization of these characteristics towards the ADOxx-
based SOM modeling tool was described. An emphasis was on the transformation
of the multiple views of the method into model types and the general way of
carrying out multi-view modeling with the tool.

Finally, method and tool were utilized in a case study illustrating the coordi-
nation of a distributor and a customer in a product or service distribution process.

Modeling, according to the SOM method, is a very knowledge-intensive
endeavour. The sequence of modeling actions the modeler performs significantly
influences the resulting business process model. Hence, modelers may face at some
point that decisions taken (e.g., the chosen decomposition principle or the way the
business transactions are connected to sub-objects after decomposition) end up
requiring a revision. The SOM modeling tool, therefore, provides undo-operators

Fig. 12 Task-event schema on the 3rd level

4The complete distribution business process case study, http://www.omilab.org/web/som/tutorial,
[online] last access: 23.10.2015.

308 O.K. Ferstl et al.

http://www.omilab.org/web/som/tutorial

for almost any modeling action. With “revoke decomposition”, the modeler is
enabled to discard an already performed decomposition completely from all views
in order to revise the decomposition. Moreover, relationships between business
objects and business transactions can be revised independently from the decom-
position itself by applying the “decrease business process level” operator (cf.
Sect. 4.3).

Using the modeling tool in university courses at the University of Bamberg
revealed that besides solid knowledge on the theoretical foundation of the SOM
method, an introduction of the modeling tool is also required. Once students have
this knowledge, the feedback gained after using the tool for solving modeling case
studies was throughout positive. Future work will, therefore, focus on extending the
SOM modeling tool project page5 within the OMiLAB homepage with further
tutorials, videos, a handbook and further FAQ’s answered by the developers.
The SOM modeling tool is freely available on the OMiLAB webpage.6

Tool Download http://www.omilab.org/som.

References

1. Ferstl, O.K., Sinz, E.J.: Modeling of business systems using SOM. In: Bernus, P., Mertins, K.,
Schmidt, G. (eds.) Handbook on Architectures of Information Systems. International
Handbook on Information Systems, vol. 1, pp. 347−367, 2nd edn. Springer (2005)

2. Ferstl, O.K., Sinz, E.J.: Objektmodellierung betrieblicher Informationssysteme im
Semantischen Objektmodell (SOM). WIRTSCHAFTSINFORMATIK 32(6), 566–581 (1990)

3. Ferstl, O.K., Sinz, E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM). WIRTSCHAFTSINFORMATIK
33(6), 477–491 (1991)

4. Ferstl, O.K., Sinz, E.J.: Der Ansatz des Semantischen Objektmodells (SOM) zur Modellierung
von Geschäftsprozessen. WIRTSCHAFTSINFORMATIK 37(3), 209–220 (1995)

5. Bahrami, H.: The emerging flexible organization: perspectives from silicon valley. Calif.
Manage. Rev. 33–52 (1992)

6. Sinz, E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg, P., Pomberger, G.
(eds.) Informatik-Handbuch, pp. 875–887. Hanser-Verlag, München (1997)

7. Ferstl, O.K., Sinz, E.J.: Grundlagen der Wirtschaftsinformatik. Band 1, 3rd edn. Oldenbourg,
München (1998)

8. Ferstl, O.K., Sinz, E.J.: Geschäftsprozeßmodellierung. WIRTSCHAFTSINFORMATIK 35(6)
589–592 (1993)

9. Beer, S.: The Brain of the Firm, 2nd edn. Wiley, Chichester (1981)
10. Ferstl, O.K.: Integrationskonzepte betrieblicher Anwendungssysteme. Fachbericht Informatik

1/92. Universität Koblenz-Landau (1992)
11. Ferstl, O.K., Sinz, E.J.: Grundlagen der Wirtschaftsinformatik, Band 1, 7th edn. Oldenbourg,

München (2013)

5OMiLAB project page of SOM, http://www.omilab.org/web/som, [online] last access: 23.10.
2015.
6Download the SOM modeling tool, http://www.omilab.org/web/som/download, [online] last
access: 23.10.2015.

Tool Support for the Semantic Object Model 309

http://www.omilab.org/som
http://www.omilab.org/web/som
http://www.omilab.org/web/som/download

12. Bork, D., Sinz, E.J.: Bridging the gap from a multi-view modelling method to the design of a
multi-view modeling tool. Enterp. Model. Inf. Syst. Archit. (EMISA) 8(2) 25–41 (2013)

13. Bork, D., Buchmann, R., Karagiannis, D.: Preserving multi-view consistency in diagrammatic
knowledge representation. In: Zhang, et al. (eds.) Proceedings of the 8th International
Conference on Knowledge Science, Engineering and Management. LNAI vol. 9403, pp. 1–6
(2015)

14. Bork, D., Fill, H.-G.: Formal aspects of enterprise modeling methods: a comparison
framework. In: Sprague, R.H.J. (ed.) Proceedings of the 47th Hawaii International Conference
on System Sciences, pp. 3400–3409. IEEE Computer Society Press, Big Island, Hawaii, USA
(2014)

15. Bork, D., Sinz, E.J.: Design of a SOM business process modelling tool based on the ADOxx
meta-modelling platform. In: Lara, et al. (eds.) Pre-Proceedings of the 4th International
Workshop on Graph-Based Tools, University of Twente, Enschede, pp. 90–101 (2010)

16. Puetz, C., Sinz, E.J.: Model-driven derivation of BPMN workflow schemata from SOM
business process models. In: Enterp. Model. Inf. Syst. Archit. 5(2), 57–72 (2010)

17. Bork, D.: A development method for the conceptual design of multi-view modeling tools with
an emphasis on consistency requirements. Ph.D. thesis, University of Bamberg (2015)

310 O.K. Ferstl et al.

	13 Tool Support for the Semantic Object Model
	Abstract
	1 Introduction
	2 The SOM Enterprise Modeling Method
	3 Conceptualization of the SOM Modeling Method
	3.1 The Metamodel for Business Process Modeling
	3.2 Decomposition Rules
	3.3 Resource Modeling

	4 The SOM Modeling Tool
	4.1 SOM Multi-view Modeling Functionality
	4.2 SOM Model Transformation Functionality
	4.3 Non-functional Tool Requirements

	5 Case Study: A Product Distribution Process in SOM
	6 Conclusion
	References

