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    Chapter 6   
 Immunogenic Apoptotic Cell Death 
and Anticancer Immunity                     

     Peter     Vandenabeele    ,     Katrien     Vandecasteele    ,     Claus     Bachert    ,     Olga     Krysko    , 
and     Dmitri     V.     Krysko    

    Abstract     For many years it has been thought that apoptotic cells rapidly cleared by 
phagocytic cells do not trigger an immune response but rather have anti- infl ammatory 
properties. However, accumulating experimental data indicate that certain antican-
cer therapies can induce an immunogenic form of apoptosis associated with the 
emission of damage-associated molecular patterns (DAMPs), which function as 
adjuvants to activate host antitumor immune responses. In this review, we will fi rst 
discuss recent advances and the signifi cance of danger signaling pathways involved 
in the emission of DAMPs, including calreticulin, ATP, and HMGB1. We will also 
emphasize that switching on a particular signaling pathway depends on the immu-
nogenic cell death stimulus. Further, we address the role of ER stress in danger 
signaling and the classifi cation of immunogenic cell death inducers in relation to 
how ER stress is triggered. In the fi nal part, we discuss the role of radiotherapy- 
induced immunogenic apoptosis and the relationship of its immunogenicity to the 
fraction dose and concomitant chemotherapy.  
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6.1       Introduction 

 In the human body close to 500 billion cells die each day by apoptosis, and they are 
continuously recognized and removed by the phagocytic system without causing 
infl ammation or scars. The process of  clearing—dying cells   play a critical role in 
development, maintenance of tissue homeostasis, control of immune responses, and 
resolution of infl ammation. Immunological responses elicited by apoptotic cells have 
been studied extensively in the last two decades. Back in the nineties it was shown 
that uptake of apoptotic neutrophils or eosinophils by human monocyte- derived mac-
rophages does not induce secretion of  granulocyte macrophage colony stimulating 
factor (GM-CSF)   or  thromboxane B2   [ 1 ,  2 ]. In later studies it was shown that apop-
totic cells actually inhibit the production of many proinfl ammatory cytokines by 
 antigen-presenting cells   (Fig.  6.1 ) [ 1 ,  3 – 10 ]. Cells undergoing apoptosis are known 
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  Fig. 6.1    Timeline of the key milestones in the development of the  immunogenic cell death   con-
cept. Of note that immunotherapy in the treatment of cancer was fi rst successfully used in 1891 by 
William B. Coley, who injected streptococcal products into patients with inoperable cancer. These 
products became known as Coley’s Toxins. The following references are used to make this fi gure: 
[ 14 – 16 ,  20 ,  25 ,  32 ,  33 ,  42 ,  43 ,  46 ,  92 – 104 ]       
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to modulate their tissue microenvironments either by acting on phagocytes and 
thereby inhibiting immunological and infl ammatory responses and promoting “heal-
ing” signaling pathways and/or by releasing immunomodulatory signals. Indeed, in 
the context of anticancer therapy it is generally accepted that most chemotherapeutic 
drugs elicit apoptotic cell death. Phagocytosis of  apoptotic cells   maintains an anti-
infl ammatory state in the extracellular environment and thereby contributes to an 
immunosuppressive network in a primary tumor site to promote further tumorigene-
sis [ 11 ]. Several studies have confi rmed this notion. It has been shown that apoptotic 
tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of 
 tumor-associated macrophages (TAMs)   in aggressive B cell lymphomas [ 12 ]. It has 
also been demonstrated that radiotherapy induces caspase-3-dependent release from 
apoptotic cells of arachidonic acid and prostaglandin E 2 , which then promote the 
growth of the tumor cells that survive radiation activation [ 13 ]. This correlates with 
observations in cancer patients that tumors with elevated levels of activated caspase-3 
are associated with a poor disease outcome [ 13 ]. All these studies indeed demon-
strate that cancer cells undergoing apoptosis can promote tumor progression. 
However, in the late nineties it was reported that  dendritic cells (DCs)   internalize 
apoptotic cells and process them for presentation to both MHC class I- and class 
II-restricted T cells with an effi ciency that is dependent on the number of apoptotic 
cells [ 14 ]. Later, it was discovered that certain types of anticancer treatments, such as 
chemotherapeutics (e.g., anthracyclines) [ 15 ], γ-irradiation [ 16 ,  17 ], and photody-
namic therapy [ 18 – 21 ] (Table  6.1 ) can induce a specifi c form of apoptosis, which 
was named  immunogenic apoptosis (IA)   due to its immunostimulatory or adjuvant-
like properties (Fig.  6.1 ). When cancer cell lines exposed to lethal doses of inducers 
of immunogenic apoptosis in vitro are used to vaccinate syngenic mice, they protect 
them against a subsequent challenge with live cancer cells of the same type. The 
immunogenicity of apoptotic cancerous cells relies on the spatiotemporal emission 
of specifi c signals called  danger- associated molecular patterns (DAMPs)  , such as 
calreticulin (CRT), ATP, and HMGB-1. Most of these molecules have predominantly 
nonimmunological functions inside the cell but they become immunogenic after they 
are emitted extracellularly.  DAMPs   are derived from different subcellular compart-
ments, including the plasma membrane, nucleus, ER, and cytosol, and they can often 
be modifi ed by the proteolysis and/or oxidation associated with cell death mecha-
nisms [ 22 ,  23 ].  DAMPs   exert their immunostimulatory effects upon their recognition 
by membrane- bound or cytoplasmic pattern-recognition receptors (PRRs, e.g., Toll-
like Receptor-4, TLR4), phagocytic receptors or scavenger receptors (e.g., LDL- 
receptor- related protein, LRP1/CD91), and purinergic receptors (e.g., P 2 RX 7 /P 2 RY 2 ). 
These danger signals, in combination with cancer antigens, induce maturation of 
dendritic cells (DCs) and can lead to an adaptive immune response against tumor 
cells, thereby mediating anticancer immunity. This review covers recent advances in 
our understanding of the molecular mechanisms involved in danger signaling, 
 DAMPs   emission, the role of ER stress, and classifi cation of immunogenic cell death 
inducers in relation to the way  ER stress   is triggered. In the fi nal part, we discuss the 
role of radiotherapy-induced immunogenic apoptosis and the relationship of its 
immunogenicity to the fraction dose and concomitant chemotherapy.
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      Table 6.1    An overview of immunogenic cell death  inducers   and  emission of DAMPs   related to 
the stage of cell death   

 ICD inducers 
 Cellular target 
for ICD inducers 

 Surface exposed 
DAMPs and the 
stage of apoptosis 

 Secreted or 
released DAMPs 
and the stage of 
apoptosis  Refs 

 Type I 
 Mitoxantrone, 
doxorubicin, 
idarubicin, 
oxaliplatin, UVC, 
γ-irradiation 

 Nucleus (DNA 
or DNA proteins 
related to cell 
mitosis 

 Preapoptotic: 
CRT/ERp57 

 Early apoptotic 
secreted: ATP 

 [ 33 ,  42 , 
 46 ] 

 Mid to late 
apoptotic: 
HSP-70 

 Late apoptotic 
passive release: 
HMGB1 

 Cyclophosphamide  Nucleus (DNA)  Preapoptotic: 
CRT 

 Late apoptotic 
passive release: 
HMGB1 

 [ 105 ] 

 Bortezomib  Cytosol (26S 
proteasome, 
CIP2A and 
ERAD 
machinery) 

 Early to mid 
apoptotic: HSP90 

 Late apoptotic 
passive release: 
HMGB1 

 [ 106 – 110 ] 

 Cardiac glycosides  Cell surface 
(Na + /K +  ATPase) 

 Preapoptotic: 
CRT 

 Early to mid 
apoptotic ATP 

 [ 111 ] 

 Late apoptotic 
passive release 
HMGB1 

 Shikonin  Cytosol 
(tumor-specifi c 
pyruvate 
kinase-M2 
protein) 

 Early to mid 
apoptotic: CRT, 
HSP90, GRP78 

 ND  [ 112 ,  113 ] 

 7A7 (EFR-specifi c 
antibody) 

 Cell surface 
receptor (EGFR) 

 Preapoptotic: 
CRT and ERp57 

 ND  [ 114 ] 

 Early to mid 
apoptotic: HSP70 
and HSP90 

 Wogonin  Mitochondria  Early apoptotic: 
CRT 

 Late passive 
release ATP and 
HMGB1 

 [ 115 ] 

 High hydrostatic 
pressure 

 Cellular proteins  Preapoptotic (?): 
CRT, HSP70, 
HSP90 

 Late passive 
release ATP and 
HMGB1 

 [ 116 ] 

 Vorinostat (histone 
deacetylase inhibitor) 

 Nucleus 
(chromatin 
structure)) 

 Early to mid 
apoptotic: CRT 

 Late passive 
release ATP and 
HMGB1 

 [ 117 – 119 ] 

 Bleomycin  Nucleus (DNA)  Early to mid 
apoptotic: CRT 
and ERp57 

 Early apoptotic 
secreted: ATP 

 [ 120 ] 

 Late apoptotic 
passive release: 
HMGB1 

(continued)
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6.2         ER Stress and ROS: Crucial Players in Danger Signaling 

    Immunogenic anticancer  drugs      and treatments can trigger IA in dying cancer cells 
via the combined action of ER stress and ROS production, which activate danger 
signaling pathways and mediate the traffi cking of DAMPs to the extracellular space 
[ 20 ,  24 ,  25 ]. ER stress was proposed to be a crucial component because the emis-
sion of DAMPs (e.g., calreticulin and ATP) and subsequent immunogenicity of cell 
death in vivo was found to be diminished when molecular effectors of the ER stress 
pathway were silenced [ 20 ,  25 ].  Anticancer drugs   that do not induce ER stress (e.g., 
cisplatin) are poor inducers of IA [ 26 ]. Notably, the immunogenicity of drugs such 
as cisplatin could be restored by combining it with thapsigargin or tunicamycin [ 26 ] 

Table 6.1 (continued)

 ICD inducers 
 Cellular target 
for ICD inducers 

 Surface exposed 
DAMPs and the 
stage of apoptosis 

 Secreted or 
released DAMPs 
and the stage of 
apoptosis  Refs 

 Electrical pulses a   Cellular proteins  Early to mid 
apoptotic: CRT 

 Early to mid 
apoptotic ATP 

 [ 121 ] 

 Late apoptotic 
passive release: 
HMGB1 

 Septacidin  Cellular proteins  Early to mid 
apoptotic: CRT 

 Early to mid 
apoptotic ATP 

 [ 122 ] 

 Late apoptotic 
passive release: 
HMGB1 

 Honokiol  Cellular proteins 
(possibly) 

 CRT (stage is 
ND) 

 ND  [ 123 ] 

 Type II 
 Hypericin-based PDT  Endoplasmic 

reticulum 
 Preapoptotic: 
CRT, HSP70 

 Preapoptotic 
secreted ATP 

 [ 19 ,  20 , 
 43 ,  124 ] 

 Late apoptotic 
passive release 
HSP70, HSP90, 
and CRT 

 Oncolytic viruses 
(e.g., CVB3) 

 Endoplasmic 
reticulum 

 Early apoptotic: 
CRT 

 Early apoptotic 
secreted ATP 
late apoptotic 
passive release 
HMGB1 

 [ 125 ,  126 ] 

   CRT  calreticulin,  DAMP  damage-associated molecular pattern,  ND  not determined,  EGFR  epider-
mal growth factor receptor,  ERAD  endoplasmic reticulum-associated degradation,  GRP  glucose- 
regulated protein,  HMGB1  high mobility group protein B1,  HSP  heat shock protein,  ICD  
immunogenic cell death,  PDT  photodynamic therapy,  UVC  ultraviolet C,  CVB3  coxsackievirus B 
  a Combining electric pulses with the chemotherapeutic agent bleomycin was required for HMGB1 
release 
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or by expression of the ER resident protein reticulon-1 [ 27 ]. ROS was also proposed 
to be required for immunogenicity of cell death because antioxidants ( N -Acetyl 
cysteine, glutathione ethyl ester, and  L -histidine) decrease its immunogenicity [ 20 , 
 25 ]. As many immunogenic cell death inducers are diverse both biologically and 
chemically (reviewed in detail in [ 24 ,  28 ]), there seems to be no simple structure–
function relationship that could explain the ability of these agents to induce 
IA. Therefore, we proposed that immunogenic cell death inducers can be classifi ed 
into two categories (Type I and Type II) based on their distinct mode of action in the 
induction of ER stress and apoptosis [ 24 ]. Most of immunogenic cell death  inducers   
(Table  6.1 ) are categorized as type I immunogenic cell death inducers that primarily 
trigger cell death via targeting cytosolic proteins, plasma membranes, or nucleic 
proteins rather than primary targeting ER mechanisms [ 24 ,  29 ,  30 ]. The type II 
immunogenic cell death inducers preferentially target the ER and include hypericin- 
based PDT and oncolytic coxsackievirus B3 (CVB3, Table  6.1 ). Although ER stress 
and ROS are essential in the immunogenicity of cell death, it is still not clear how 
these two signaling modules cooperate to effi ciently induce immunogenic cell 
death. Therefore, further studies to elucidate the precise interplay between the ER 
stress and ROS is required to modulate antitumor immune responses.     

6.3     Main Effectors of Immunogenic Cell Death: CRT, ATP, 
and HMGB1 

    Calreticulin (CRT)   is  an   ER chaperone and its function is usually linked with Ca 2+  
homeostasis [ 31 ]. The role of CRT in the clearance of apoptotic cells was fi rst 
described by Gardai et al. [ 32 ], who showed that CRT acts as a recognition ligand 
(“eat me” signal) on the surface of apoptotic cells by binding and activating LRP1/
CD91 on the engulfi ng cell (Fig.  6.1 ). However, a new life was given to CRT by 
studies showing that CRT exposure is a key determinant of immunogenicity of 
dying cells and anticancer immune responses [ 33 ]. In that study, the authors found 
that anthracyclines induce rapid preapoptotic translocation of CRT to the cell sur-
face and that blockade or knockdown of CRT suppresses the immunogenicity of 
apoptotic cancerous cells in mice. Several signaling pathways triggered by immu-
nogenic cell death inducers have been described (Fig.  6.2 ). One pathway is induced 
by anthracyclines and relies on the phosphorylation of eukaryotic initiation factor 
2a (eIF2a) by the ER stress-sensing kinase, PKR-related ER kinase (PERK), the 
activation of caspase-8, BAX and BAK, the transport of ER-derived vesicles 
through the Golgi apparatus, and the SNAP receptor (SNARE)-dependent exocyto-
sis of these vesicles [ 25 ]. It has also been shown that paracrine signals that involve 
the chemokine CXCL8 contribute to CRT exposure on the cell surface [ 34 ]. The 
second pathway for CRT exposure is more rapid and relies on PERK-mediated traf-
fi cking of ecto-CRT by regulation of the proximal secretory pathway [ 20 ]. In this 
signaling pathway, eIF2a phosphorylation and caspase-8 signaling were not required 
for CRT exposure. Vaccination of mice with cells defi cient in any of the proteins 
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required for CRT exposure or with cells in which CRT was knocked down reduced 
the immunogenicity of the cancer cells [ 20 ,  33 ]. All these results underline the key 
role of CRT exposure on the cell surface to the effi cacy of anticancer therapy. 

    ATP   is involved in various cellular metabolic processes and intracellular 
responses. However, it has become clear that APT is also actively secreted or pas-
sively released from dying cancerous cells, and that it is modulating the immunoge-
nicity of dying cancerous cells (Fig.  6.1 ) [ 22 ,  23 ,  35 ,  36 ] via activation of purinergic 
P 2 X 7  and P 2 X 2  receptors [ 37 ]. The mechanisms of ATP secretion are strongly depen-
dent on the type of immunogenic cell death inducer. Anthracyclines induce ATP 
secretion by a mechanism involving the caspase-dependent activation of pannexin 1 
channels, lysosomal exocytosis, and plasma membrane blebbing [ 36 ,  38 ,  39 ]. 
Moreover, cancer cells undergoing IA in response to anthracycline secrete ATP in 
an autophagy-dependent manner [ 40 – 42 ]. Autophagy-defi cient tumors exposed to 
chemotherapy cannot attract tumor-infi ltrating leukocytes and therefore do not 
induce therapeutic anticancer immune responses [ 42 ]. However, in contrast to 
anthracyclines, hypericin-based PDT-induced  ATP   secretion is independent of 
autophagy [ 43 ] and involves the classical and PERK-regulated proximal secretory 
pathway, as well as PI3K-dependent exocytosis [ 20 ]. All these studies suggest that 
the mechanisms of ATP secretion might vary from one immunogenic cancer cell 
death inducer to another (Fig.  6.2 ). 
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  Fig. 6.2    An overview of the danger signaling pathways involved in surface  CRT   exposure and 
 ATP   secretion and their relation to different apoptotic stages. Signaling pathways responsible for 
surface exposure of CRT and secretion of ATP depend on immunogenic cell death stimuli [ 24 ]       
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  HMGB1   is a broadly expressed and highly abundant nonhistone chromatin- 
binding protein expressed constitutively by all eukaryotic cells, and it has various 
cytosolic and extracellular functions [ 44 ,  45 ]. It was found that the immunogenicity 
of IA also depends on the passive release of HMGB1 from cells undergoing immu-
nogenic death and on its binding to TLR-4 [ 46 ]. Nevertheless, the role of HMGB1 in 
anticancer immunity is complex, and the diversity of HMGB1 extracellular func-
tions can also be partially explained by the posttranslation modifi cations, including 
different redox states and cell death types [ 23 ,  47 ,  48 ].   

6.4     Immunostimulatory Effects of Chemotherapeutics Not 
Related to DAMPs 

 In  addition   to the induction of  danger signaling and modulation of DAMPs   emission 
in cancer cells (discussed earlier), many chemotherapeutics can induce immunos-
timulation by targeting other elements of anticancer immunity [ 36 ]. Chemotherapeutic 
drugs can increase the expression or presentation of  tumor-associated antigens 
(TAA)   on the surface of cancer cells and increase their so-called antigenicity by 
inducing antigen presentation of both dominant and subdominant epitopes. It has 
been shown that the variety of TAA eliciting  cytotoxic T lymphocytes (CTL)   can be 
increased by  cisplatin   and  gemcitabine   [ 49 ]. The authors showed that chemotherapy 
reveals weaker tumor antigens to the immune system, resulting in the induction of 
specifi c CTLs. The antigenicity of cancer cells can be enhanced by increasing the 
expression of MHC class I molecules (e.g., cyclophosphamide, gemcitabine, oxali-
platin, paclitaxel, and γ-irradiation) [ 36 ,  50 ,  51 ]. In addition, some anticancer drugs 
can increase the expression of TAA, including carcinoembryonic antigen (induced 
by 5-fl uorouracil), multiple cancer testis antigens (increased by 5-aza- 20deoxycytidine 
and γ-irradiation), and melanoma-associated antigens (increased by vemurafenib) 
[ 36 ,  50 ,  52 ,  53 ]. It is of interest that subtoxic doses of paclitaxel and doxorubicin 
increased the expression of components of the MHC class I antigen processing 
machinery (calmodulin, LMP2, LMP7, TAP1, and tapasin) in cancer cells [ 54 ]. 
Chemotherapeutic agents also cause immunopotentiation by directly stimulating 
immune cells. It has been shown that low doses of paclitaxel, doxorubicin, mitomy-
cin C, and methotrexate that do not cause cell death up-regulate the ability of DCs to 
present antigens to antigen-specifi c T cells [ 55 ]. Recently, we demonstrated that 
intraperitoneal injection of doxorubicin in mice triggers the signs of acute infl amma-
tory response (accumulation of neutrophils and increased levels of IL6, TNF, and 
MCP-1) [ 56 – 58 ]. Of interest is that the infl ammatory response was signifi cantly 
reduced in mice defi cient in myeloid differentiation primary response gene 88 
(MyD88), TLR-2 or TLR-9 [ 58 ], or tumor necrosis factor receptor-1 (TNFR1) [ 57 ]. 
These studies provide important new insights into how the innate immune system is 
modulated by immunogenic drugs such as doxorubicin (Table  6.1 ). It was also shown 
that the percentage of regulatory T cells among the CD4 +  lymphocytes was decreased 
by  cyclophosphamide  , which allowed a whole tumor cell vaccine or costimulatory 
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receptor OX40 (OX86) immunotherapy to eradicate established tumors in colon car-
cinoma or melanoma models [ 59 ,  60 ]. The number of  myeloid-derived suppressor 
cells (MDSCs)   was reduced by gemcitabine in the spleen of mice bearing large 
tumors but did not affect CD4 and CD8 T cells, NK cells, macrophages, and B cells 
[ 61 – 63 ]. The  bisphosphonate zoledronate  , a drug that has been approved by the FDA 
for the treatment of bone metastases, was shown to induce caspase-1 activation in 
DC-like cells, which then provide mature IL-18 and IL-1β for the activation of IL-2-
primed NK cells [ 64 ]. All these data suggest that some chemotherapeutics can 
directly stimulate immune cell functions and that their therapeutic effi cacy could be 
at least partly explained by their ability to modulate the host immune system.  

6.5     Radiotherapy-Induced Immunogenic Cell Death: 
Fraction Dose and Concomitant Chemotherapy 

   Together with surgery and chemotherapy,       gamma-irradiation (RT) is important in 
the treatment of cancer. For decades, its main antitumor activity was believed to 
result from a direct and local cytotoxic effect on malignant cells within the irradi-
ated area [ 65 ]. Nowadays, there is growing evidence for the occurrence of immune- 
mediated systemic effects resulting from local RT. Clinical proof of principle for 
such abscopal effects is provided by regression of distant metastases after local 
RT. Abscopal effects have been observed with various dose and fractionation regi-
mens in melanoma (3 × 8 Gy to 3 × 18 Gy) [ 66 – 68 ] and lung adenocarcinoma 
(5 × 6 Gy) [ 69 ]. The necessity of combining RT with immunotherapy (in these cases 
CTLA4 blockade) to achieve these abscopal effects indicates that proimmunogenic 
effects are often dampened by the immune-suppressive microenvironment that 
characterizes cancer [ 70 – 73 ]. 

 As for other immunogenic agents [ 74 ], radiation-induced immunogenic cell 
death is characterized, in cell cultures, by preapoptotic exposure on the extracellular 
surface of the “eat-me” signal CRT [ 25 ,  75 ,  76 ] and emission of ATP [ 75 ,  77 ,  78 ], 
and by late-apoptotic release of the “fi nd-me” signal HMGB-1 [ 46 ,  75 ,  77 ,  79 ]. 
Animal and clinical experimental evidence supporting the ability of RT to induce 
immunogenic cell death remains scarce [ 77 ], and the clinical relevance of these 
pathways to the therapeutic effi cacy of RT has yet to be validated. 

 Induction of immunogenic cell death is most likely highly dependent on total 
dose and fractionation. Golden et al. showed, in cell cultures, that the clinically used 
single doses between 2 and 20 Gy (1 × 2–20 Gy) effectively induce the signals for 
each individual component of immunogenic cell death in a dose-dependent manner 
[ 75 ]. Gameiro et al. showed the same, albeit with a clinically irrelevant single dose 
of 100 Gy [ 77 ]. Demaria et al. overviewed the literature and found immunogenic 
cell death to be often detected in tumor cell cultures exposed to mid-to-high doses of 
RT (1 × >5–10 Gy) [ 80 ]. They initiated animal experiments using three RT regimens 
(1 × 20 Gy, 3 × 8 Gy and 5 × 6 Gy) combined with  CTLA-4 antibody treatment   in 
syngeneic mice with breast and colorectal carcinoma. While anti-CTLA-4 treatment 
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on its own and its combination with a single-dose RT were not able to induce an 
abscopal effect, the fractioned regimens did [ 81 ]. This could explain why a single 
8-Gy fraction treatment of bone metastases in prostate cancer patients failed to 
induce an abscopal effect when combined with anti-CTLA-4 treatment [ 82 ], whereas 
the above described clinical trials succeeded [ 66 – 69 ]. 

 In addition to the induction of immunogenic cell death, other components up- or 
downregulated in response to RT are involved in antitumor immunity [ 71 ]. Tumor 
cell surface expression of MHC Class I molecules increases and CD47 (a “don’t 
eat-me” signal for DCs) decreases in a dose-dependent manner in cell cultures [ 83 – 85 ]. 
Additionally, it was shown in a murine model that RT (2 × 12 Gy) increases the 
expression on tumor cell surface of RAE-1, a ligand for natural killer cell group 2D 
[ 86 ]. Distinct radiation fraction doses also have a direct effect on the irradiated 
tumor microenvironment. Clinical observations showed that immune-suppressing 
Treg cells are more radioresistant than CD8 +  T cells [ 87 ,  88 ]. In a xenotransplant 
mouse model, a lower RT dose (1 × 2 Gy) reprograms macrophages toward an 
iNOS+/M1 phenotype, allowing them to recruit tumor-specifi c T cells [ 89 ]. 

 The above-mentioned data support the growing consensus that hypofractionated 
regimens (a limited number but >1 fraction high doses per fraction) are more effec-
tive at inducing the proimmunogenic effects of RT than single high doses or normo-
fractionation (2 Gy per fraction or “×” times × 2 Gy) [ 90 ]. The hypofractionated 
regimens are mostly used to treat small (often oligo-) metastatic lesions, whereas 
for treatment of the primary tumor, normofractionation combined with chemother-
apy is often the standard treatment. Concomitant use of both treatments has been 
shown to be superior to sequential chemo-RT in numerous clinical trials. It should 
be considered that concomitant chemo-RT causes a tumor cell death that is both 
qualitatively and quantitatively different from that achieved by each therapy alone 
[ 83 ]. Frey et al. showed that combining 5-FU, oxaliplatin, and irinotecan with RT 
could induce immunogenic cell death in colorectal cancer cells [ 91 ]. Golden et al. 
designed a cell culture assay to examine the effect on immunogenic cell death when 
combining RT (1 × 2 Gy) with paclitaxel and found that all three components of 
immunogenic cell death (i.e., CRT, ATP, and HMGB1; discussed earlier) to be 
increased signifi cantly when chemotherapy and RT were used together as compared 
to separate treatments [ 75 ,  83 ]. Animal and clinical experiments are awaited to vali-
date these interesting fi ndings.    

6.6     Conclusions 

 Only one decade ago, apoptotic cell death was presented as anti-infl ammatory and 
tolerogenic, or even as a silent mode of cell death. However, insights over the last 
decade increasingly support the view that under specifi c conditions certain types 
and regimens of anticancer therapy can induce an immunogenic form of apoptosis 
that can be benefi cial for the induction of anticancer immunity and long-lasting 
remission in cancer patients. Many questions remain regarding what determines the 
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difference between immunogenic aspects of apoptosis and the danger signaling 
 subroutines in the various types of cancers. Deeper insight into the molecular mech-
anisms of immunogenicity of apoptotic cells will lead to novel experimental immu-
notherapies for cancer, and is therefore a challenging research area. This work 
highlights the need for careful preclinical testing of the immunological effects of 
chemotherapies, alone and in combination with partner cytotoxic agents and immu-
notherapies, before proceeding to clinical investigations.     
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