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    Chapter 4   
 Apoptotic Caspases in Promoting Cancer: 
Implications from Their Roles in Development 
and Tissue Homeostasis                     

     Catherine     Dabrowska    ,     Mingli     Li    , and     Yun     Fan    

    Abstract     Apoptosis, a major form of programmed cell death, is an important mech-
anism to remove extra or unwanted cells during development. In tissue homeostasis 
apoptosis also acts as a monitoring machinery to eliminate damaged cells in response 
to environmental stresses. During these processes, caspases, a group of proteases, have 
been well defi ned as key drivers of cell death. However, a wealth of evidence is emerg-
ing which supports the existence of many other non-apoptotic functions of these cas-
pases, which are essential not only in proper organism development but also in tissue 
homeostasis and post-injury recovery. In particular, apoptotic caspases in stress-
induced dying cells can activate mitogenic signals leading to proliferation of neigh-
bouring cells, a phenomenon termed apoptosis-induced proliferation. Apparently, such 
non-apoptotic functions of caspases need to be controlled and restrained in a context-
dependent manner during development to prevent their detrimental effects. Intriguingly, 
accumulating studies suggest that cancer cells are able to utilise these functions of 
caspases to their advantage to enable their survival, proliferation and metastasis in 
order to grow and progress. This book chapter will review non-apoptotic functions of 
the caspases in development and tissue homeostasis with focus on how these cellular 
processes can be hijacked by cancer cells and contribute to tumourigenesis.  

  Keywords     Apoptosis   •   Caspase   •   Non-apoptotic function   •   Apoptosis-induced 
 proliferation   •   Development   •   Tissue homeostasis   •   Cancer  

4.1       Introduction 

  Apoptosis   was fi rst identifi ed as a form of cell death by its distinct morphological 
characteristics including cellular shrinkage, chromosome condensation, nuclear 
fragmentation and formation of apoptotic bodies [ 1 ,  2 ]. Studies in  C. elegans  then 
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uncovered that apoptosis is genetically controlled and plays critical roles during 
development to remove unwanted or unnecessary cells [ 3 ,  4 ]. Such function of 
apoptosis further extends to maintenance of tissue homeostasis by eliminating dam-
aged or unfi t cells [ 5 ,  6 ]. Apoptosis has therefore been viewed as a monitoring 
programme to identify and kill potentially harmful cells that may develop into can-
cer. Consistent with this idea, evading apoptosis has been considered as a hallmark 
of cancer [ 7 ,  8 ]. 

 The key components of the  apoptotic machinery   are caspases, a family of cyste-
ine proteases which cleave their substrates leading to cell death [ 9 ,  10 ]. Recently 
however, in addition to their functions in apoptosis, caspases are becoming better 
understood in their multifunctional nature with an increasing number of non- 
apoptotic functions discovered. We acknowledge the abundance of high quality 
reviews which have described with clarity the non-apoptotic functions of caspases 
in the context of development and tissue regeneration [ 11 – 14 ]. This chapter there-
fore focuses on the roles of caspases in sustaining cancers and promoting their 
spread which seems to contradict what we know about their roles in apoptosis. 
There is now certainly a great wealth of evidence to show that the apoptotic cas-
pases actually have multiple functions other than executing cell death, and cancer 
cells can hijack these activities to directly promote their growth, metastasis and 
recurrence after therapy. Here we have synthesised the evidence present in the cur-
rent literature supporting this claim, to highlight that the caspases do indeed have a 
role in progressing cancers. Issues that may exist in current cancer therapies for 
particular patient subsets are also discussed.  

4.2     The Apoptotic Machinery: Functions of the  Apoptotic 
Caspases      

   Apoptosis is an evolutionarily conserved mechanism in multicellular organisms, 
allowing correct pattern formation during development and the removal of cells 
which are detrimental to the health and survival of the organism [ 15 – 18 ]. The path-
ways leading to apoptosis have been elucidated in many organisms, including  C. 
elegans ,  Drosophila  and mammals, which are summarised in Fig.  4.1 . A noticeable 
family of key components in these apoptosis pathways are the caspases. By defi ni-
tion, caspases are cysteine-aspartic acid proteases. They cleave their substrates after 
the aspartic acid residue which features at the end of short tetrapeptide motifs [ 9 , 
 19 ]. In addition to their functions in apoptosis, caspases are also well known for 
their roles in infl ammatory responses [ 20 – 22 ]. For example, there are 18 known 
mammalian caspases among which caspases-2, -3, -6, -7, -8, -9 and -10 function in 
apoptosis and thus have been classifi ed as apoptotic caspases [ 14 ,  23 ]. This review 
focuses on these caspases, especially caspases-3, -7, -8 and -9 due to their reported 
multiple non-apoptotic functions.

   Under normal cellular conditions all apoptotic caspases are present as inactive 
pro-caspases, called zymogens, which consist of a prodomain, a small subunit and 
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a large subunit [ 19 ,  24 ]. They require cleavage in apoptotic cellular conditions to 
become activated. Based on the structure of N-terminal prodomains, apoptotic cas-
pases can be subdivided into the initiator (or apical) and effector (or executioner) 
caspases. The initiator caspases have elongated prodomains which contain either 
the death effector domains (DED, e.g. for caspase 8) or the caspase-recruitment 
domains (CARD, e.g. for caspase 9). In contrast, the effector caspases have small 
prodomains. These caspases also have distinct functions and substrates during the 
process of apoptosis [ 25 – 27 ]. The initiator caspases cleave inactive pro-effector 
caspases and activate them. They are therefore also called apical caspases. In con-
trast, effector caspases, once activated by the initiator caspases, further cleave their 
broad range of cellular proteins leading to execution of cell death. They therefore 
have another name as executioner caspases. For simplicity, terms of initiator and 
effector caspases are used in this review. 

4.2.1      Apoptosis in  C. elegans       

   The caspases were fi rst identifi ed in  C. elegans  in which 131 cells undergo apopto-
sis during development by the action of a simple and linear pathway (Fig.  4.1a ) [ 3 , 
 4 ,  16 ]. Before an apoptotic stimulus is detected by a cell, CED-4, a homologue of 
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the mammalian adaptor protein apoptosis activating factor 1 (Apaf-1), exists as a 
dimer, which is sequestered on the outer leafl et of the outer membrane of the mito-
chondria by contact with a Bcl-2 family member called  CED-9   [ 28 ]. Upon apop-
totic stimulus, Egl-1, a pro-apoptotic BH3-only protein (Bcl-2 homology 3), is 
expressed, binding CED-9, thus releasing CED-4. CED-4 is then free to form a 
tetramer. Once the CED-4 tetramer is assembled, it can cleave and activate the 
 caspase CED-3, which in turn activates other downstream apoptotic effector pro-
teins leading to cell death (Fig.  4.1a ) [ 28 ,  29 ].    

4.2.2     The Intrinsic Apoptosis Pathway  in       Drosophila  
and Mammals 

   Unlike the linear pathway in  C. elegans , apoptotic pathways of extrinsic and intrin-
sic origin have been identifi ed in both  Drosophila  and mammals (Fig.  4.1 ). The 
intrinsic pathway has been extensively studied in  Drosophila  (Fig.  4.1b ). Initially, 
apoptotic stimuli cause the expression of the pro-apoptotic genes of the RHG fam-
ily: mainly  reaper ,  hid  ( head involution defective ) and  grim  [ 30 ,  31 ]. These gene 
products act to relieve the repression exerted by the inhibitors of apoptosis (IAPs) 
[ 32 – 34 ], which, under normal cellular conditions, inhibit activities of the  Drosophila  
initiator caspases such as Dronc [ 35 ,  36 ] and effector caspases such as DrICE and 
Dcp-1 [ 37 ,  38 ]. The major IAP in  Drosophila  is Diap1 which functions as an 
E3-ubiquitin ligase. Under no apoptotic stimuli, it binds to Dronc via its own BIR2 
domain and causes ubiquitin to be tagged to Dronc [ 36 ]. Such ubiquitylation was 
believed to stimulate degradation of Dronc via the proteasome. However, a recent 
genetic analysis suggests that Diap1-mediated ubiquitylation blocks processing and 
activation of Dronc but does not lead to its protein degradation [ 39 ]. When RHG 
proteins antagonise Diap1 by competitively binding to its BIR domains, Diap1 can 
no longer perform its function on inhibiting Dronc [ 36 ,  40 ,  41 ]. From here released 
Dronc, although inactive, can induce formation of the apoptosome by the adapter 
protein Ark [ 42 ,  43 ]. Upon such interaction Dronc can autocleave and become acti-
vated. Activated Dronc further cleaves and activates its downstream effector cas-
pases, mainly DrICE and Dcp-1, leading to apoptosis (Fig.  4.1b ) [ 44 – 46 ]. Notably, 
pro-apoptotic proteins need to localise to the mitochondria and execute their apop-
totic functions in  Drosophila  [ 47 – 54 ]. Two Bcl-2 family members, Debcl and Buffy, 
have been identifi ed in  Drosophila  [ 55 – 59 ]. Debcl is localised to the mitochondria 
and has pro-apoptotic functions, while Buffy may localise to endoplasmic reticula 
to carry out its own anti-apoptotic roles [ 60 ]. 

 In the mammalian intrinsic pathway, the mitochondrion plays a central and more 
decidedly important role (Fig.  4.1c ). The  Bcl-2 family protein  s can be subdivided 
into three groups: the BH3-only proteins (such as Bid, Bad, Bik, Bim, Noxa and 
Puma), the pro-apoptotic Bax subfamily members (such as Bax, Bak and Bok) and 
the anti-apoptotic Bcl-2 family members (such as Bcl-2 and Bcl-XL) [ 61 – 64 ]. In 
response to apoptosis, BH3-only proteins either activate the Bax subfamily members 
or antagonise the anti-apoptotic Bcl-2 members to regulate mitochondrial outer 
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membrane permeabilisation (MOMP) which then leads to release of cytochrome c 
(cyt c). Released cyt c binds to the adaptor protein Apaf-1, via the WD repeat domain 
at the carboxy terminus of Apaf-1, forming the apoptosome. Pro-caspase-9 can in turn 
interact with Apaf-1 in the apoptosome, via their mutual CARD domains [ 65 ]. Pro-
caspase-9 then autocleaves and becomes active [ 66 ]. The activated caspase- 9 further 
cleaves its downstream effector caspases, caspase-3 and -7, to trigger apoptotic cell 
death [ 63 ]. In addition to cyt c, pro-apoptotic proteins such as Smac (or Diablo) and 
HtrA2 (or Omi) are also released from mitochondria during the process of MOMP 
[ 67 – 69 ]. Similar to what happens in  Drosophila , these pro- apoptotic proteins antago-
nise IAPs such as XIAP leading to activation of caspase-9, -3 and -7 and apoptosis. In 
addition to Smac and HtrA2, another mammalian IAP antagonist is ARTS which is 
not released from mitochondria [ 70 ,  71 ]. Similar to the RHG proteins in  Drosophila , 
it is localised to the mitochondrial outer membrane and inhibits XIAP [ 72 ].    

4.2.3     The Extrinsic Apoptosis Pathway  in       Drosophila  
and Mammals 

   In contrast to the intrinsic pathway, the extrinsic pathway is initiated by the binding 
of a death ligand to a death receptor in the cell (Fig.  4.1c ). In mammals, examples 
of the death ligands are tumour necrosis factor (TNF) family members including 
Fas ligand (FasL) and  TNF-related apoptosis-inducing ligand (TRAIL)   [ 73 – 75 ]. 
These ligands bind to their specifi c receptors Fas and DR4/5, forming complexes. 
Once such a ligand–receptor complex is formed, the adaptor protein  Fas-associated 
Death Domain (FADD)   can bind the cytosolic region of Fas and DR4/5. There, 
FADD acts as a platform on to which pro-caspase-8 can bind, by interaction of the 
death effector domain (DED) of FADD with the DED at the extended N-terminus of 
pro-caspase-8, forming the  death-inducing signalling complex (DISC)   [ 76 – 78 ]. 
Due to receptor clustering in the plasma membrane, the pro-caspase-8 monomers 
are brought within close proximity of each other in DISC complexes, and once in 
this newly established close proximity they can autocleave and become activated 
[ 79 ,  80 ]. Upon activation, caspase-8 can then cause the cleavage and activation of 
effector caspases caspase-3 and -7 leading to cell death [ 9 ,  25 ]. Homologues of 
death ligands, receptors and their functions in apoptosis induction have also been 
found in  Drosophila  (Fig.  4.1b ). There is only one TNF homologue, Eiger (Egr), 
identifi ed in  Drosophila  so far [ 81 ,  82 ]. Two TNF receptors including Wengen 
(Wgn) and, more recently, Grindelwald (Grnd) have been reported [ 83 ,  84 ]. 
Activation of Egr triggers both apoptosis and a type of non-apoptotic cell death 
through the Jun N-terminal Kinase (JNK) pathway, a stress-response signalling 
pathway [ 81 ,  82 ,  85 ,  86 ]. For the aspect of apoptosis, JNK induces expression of 
pro-apoptotic genes and activation of the apoptotic machinery [ 82 ,  86 ]. Interestingly, 
in stress-induced apoptosis, the initiator caspase Dronc can activate not only effec-
tor caspases DrICE and Dcp-1 but also JNK which then feedback to the apoptosis 
pathway to further amplify it [ 87 ]. Notably, although different in their nature of 
inducing apoptosis, connections between the extrinsic and intrinsic pathways also 
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exist in mammals. Caspase-8 can act on the pro-apoptotic BH3-only proteins such 
as BID leading to activation of the intrinsic pathway which further ensures a robust 
apoptotic response [ 88 – 90 ].       

4.3     Apoptosis, Development and Non-apoptotic 
Functions  of Caspases      

 Apoptosis and development are interconnected. On the one hand, apoptotic caspases 
were originally identifi ed as key players in the developmental programme [ 3 ]. Their 
apoptotic functions are critical for removal of extra cells produced at the early stage 
of development and elimination of unwanted cells in tissue patterning and morpho-
genesis [ 16 ]. A recent study on Apaf-1 knock-out mice suggests that apoptosis is 
required to remove Fgf8 morphogen-producing cells and terminate Fgf8 production 
at the correct developmental time, thus ensuring proper development of the forebrain 
[ 91 ]. Apoptotic cells can even actively drive epithelial folding during morphogenesis 
[ 92 ] and cell extrusion during tissue repair [ 93 ]. These examples have certainly 
underlined the developmental role of apoptosis. On the other hand, it is also becom-
ing clear that the developmental programme can modulate cellular apoptotic 
responses. Many key components in the apoptosis pathway can be targeted by the 
developmental programme to defi ne distinct cellular susceptibilities to apoptosis. 
For example, in  Drosophila  third instar larvae, a pulse of hormone ecdysone increases 
the whole organismal sensitivity to apoptosis by upregulating the basal level of Ark, 
Dronc and DrICE [ 94 ]. Furthermore, in the developing  Drosophila  eye tissue, mul-
tiple mechanisms were employed to control cellular levels of IAPs as well as pro-
apoptotic proteins [ 95 ,  96 ]. Similarly, in mouse embryos, primed stem cells are very 
sensitive to apoptosis due to their low levels of BIM regulated by microRNAs [ 97 ]. 
Therefore, cellular apoptosis susceptibility can be modulated by developmental pro-
grammes. However, the links between apoptotic caspases and development go far 
beyond death. Increasing evidence is now demonstrating the actual, true multifunc-
tional nature of the caspases with somewhat surprising and fascinating roles in 
diverse cellular processes. These functions include regulating immune responses, 
promoting cell proliferation, and regulating cell differentiation and fate specifi cation 
which have been extensively reviewed elsewhere [ 1 ,  11 ,  13 ,  14 ,  21 ,  25 ,  98 ,  99 ]. Here, 
we highlight some of these non-apoptotic functions, in particular roles of caspases in 
tissue homeostasis, in the context of cancer development.  

4.4     Caspases in Tissue Homeostasis:  Apoptosis-Induced 
Proliferation (AiP)         

        Organisms are constantly exposed to environmental stresses. Damaged cells are fre-
quently removed by apoptosis. Meanwhile, new cells are generated by proliferation 
to compensate for the cell loss thus to maintain tissue homeostasis. For example, up 
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to 60 % of cells in the developing  Drosophila  wing epithelial tissue can be lost in 
response to radiation without affecting fi nal adult wing size and morphology [ 100 ]. 
A similar phenomenon has also been found in the processes of wound healing and 
liver regeneration in mammals [ 101 ]. Apparently, tissue homeostasis is important 
for tissue function to remain optimal and critical to organism survival. Evidence in 
multiple organisms including  Hydra  [ 102 ],  Drosophila  [ 103 – 105 ] and mouse [ 101 ] 
is now demonstrating that apoptotic caspases have non-apoptotic functions to trigger 
compensatory proliferation, a process therefore termed apoptosis- induced prolifera-
tion (AiP) or apoptosis-induced compensatory cell proliferation [ 106 – 109 ]. For sim-
plicity we use the term apoptosis-induced proliferation (AiP) in this review. Recent 
studies in  Drosophila  have provided mechanistic insights into how AiP occurs 
(Fig.  4.2a, b ) [ 103 – 105 ,  110 – 113 ]. Intriguingly, depending on the developmental 
state of the affected tissue, i.e. proliferating versus differentiating tissues, either ini-
tiator or effector caspases drive distinct mechanisms of AiP in  Drosophila  [ 103 ].

4.4.1       The Initiator Caspase-Driven AiP  in  Drosophila       

 The molecular mechanism of AiP was fi rst addressed in  Drosophila  by taking 
advantage of caspase inhibitors [ 104 ,  111 ,  112 ]. P35, a baculovirus inhibitor of 
apoptosis, acts as a peudosubstrate of  Drosophila  effector caspases, e.g. DrICE and 
Dcp-1 [ 114 ]. Expression of P35 thus blocks activity of DrICE and Dcp-1 and execu-
tion of cell death. To determine how stress-induced apoptotic cells may contribute 
to compensatory proliferation, such cells were kept “undead” by P35 (i.e. the apop-
totic machinery is activated but execution of cell death is blocked). Surprisingly, 
“undead” cells stimulate overgrowth of surrounding tissues despite the presence of 
P35 [ 104 ,  111 ,  112 ]. This suggests that dying cells release mitogenic signals to 
induce AiP independent of effector caspases. Further loss-of-function analyses 
revealed that the initiator caspase Dronc, which is not inhibited by P35, actually 
coordinates apoptosis and AiP (Fig.  4.2a ). It appears that, at least in the “undead” 
model of AiP, Dronc activates JNK in dying cells leading to activation of several 
mitogenic signalling pathways including the Wingless (Wg, a homologue of the 
mammalian Wnt) and Decapentaplegic (Dpp, a TGF-β-like homologue of the mam-
malian BMP) signalling pathways which are required for AiP [ 112 ,  115 ].  Drosophila  
homologue of p53 is also required for AiP, probably through its role in a feedback 
regulatory loop including JNK, p53 and pro-apoptotic genes [ 87 ,  113 ]. However, 
one concern of the “undead” model of AiP is that it may not represent what happens 
in the physiological process of AiP [ 115 – 117 ]. For example, it has been suggested 
that Wg and Dpp are not required for AiP when there are no “undead” cells [ 115 ]. 
Nevertheless, a  Drosophila  model of regenerative growth without using P35 has 
identifi ed Wg as an important factor which is induced in response to tissue damage 
and is required for tissue regeneration [ 118 ]. In addition to these, a recent genetic 
screen using both an “undead” model and a P35-independent regenerative model 
has discovered a role of EGFR signalling in AiP and tissue regenerative growth 
[ 110 ]. In this process, JNK transcriptionally induces Spi, one of EGF ligands in 
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  Fig. 4.2    Apoptosis-induced proliferation in  Drosophila  and mammals. Molecular mechanisms of 
apoptosis-induced proliferation (AiP) in proliferating ( a ) versus differentiating (cell cycle exited, 
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 Drosophila , in dying cells which then activates proliferation of neighbouring cells 
via EGFR signalling. JNK can also activate the transcription factor Yorkie (Yki) in 
the Hippo signalling pathway to regulate AiP in developing  Drosophila  wing tissues 
[ 119 ,  120 ]. Interestingly, such a role of Yki in AiP seems to be tissue specifi c as it 
is not required for AiP in proliferating eye tissues [ 110 ].  

4.4.2     The Effector Caspase-Driven AiP in  Drosophila  

 A second form of AiP was identifi ed in the differentiating  Drosophila  eye tissue 
which is a monolayer epithelium with differentiated photoreceptor cells at the api-
cal side and cell cycle exited but unspecifi ed cells at the basal side [ 103 ]. At the late 
third instar larval stage, both types of cells have relatively low susceptibility to 
apoptosis presumably due to their post-mitotic status and protection of survival sig-
nals such as high Diap1 and the EGFR signalling [ 95 ]. Therefore, under apoptotic 
stresses, e.g. expression of the pro-apoptotic gene  hid , these cells do not die imme-
diately. Instead, the stressed photoreceptor neurons release Hedgehog (Hh), another 
evolutionarily conserved growth signalling ligand, to trigger cell cycle re-entry of 
unspecifi ed cells (Fig.  4.2b ). Such an AiP event can be blocked by P35 or double 
mutants of DrICE and Dcp-1 suggesting an effector caspase-driven form of AiP is 
employed in the differentiating eye tissue [ 103 ]. Interestingly, mechanisms of AiP 
seem to be operated in a context-dependent manner. This is best shown in the devel-
oping  Drosophila  eye tissue. The late third larval eye tissue consists of an anterior 
proliferating portion where all cells are actively dividing and a posterior differenti-
ating portion where most of the cells present have exited the cell cycle. The initiator 
caspase-driven AiP appears to be employed in proliferating tissues, while the effec-
tor caspase-driven AiP is employed in differentiating tissues [ 103 ]. However, what 
controls such distinction is not yet known.  

4.4.3     AiP in Other Organisms Including Mammals 

 In addition to  Drosophila , roles of AiP in regeneration have also been implicated in 
other multicellular organisms particularly in  Hydra ,  Xenopus  and mouse [ 101 ,  102 , 
 106 ,  121 ]. In the freshwater  Hydra , both head and foot can regenerate completely 
after bisection at the midgastric area. Massive localised apoptosis was observed for 
the head regenerating tip, but not the foot regenerating counterpart, preceding 
increase of cell proliferation [ 102 ]. Interestingly, ectopic activation of apoptosis at 
the foot regenerating tip resulted in regeneration of head instead of foot. In this 
process, caspases activate Wnt3, a homologue of  Drosophila  Wg, in dying cells 
leading to regenerative proliferation [ 102 ]. This study suggests that apoptosis can 
direct certain regenerative programmes. Similar requirements of caspases in regen-
eration were also reported for  Xenopus  tadpole tail regeneration which is abolished 
by inhibiting caspase-3 [ 121 ]. Notably, in other regeneration models such as 
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planaria and newt, massive apoptosis at the amputation site has been observed 
[ 122 – 124 ]. However, it is not yet clear whether apoptotic caspases actually drive 
release of mitogenic signals such as Wnt, TGF-β and Hh in these processes. More 
recently, roles of AiP in mammals were reported in mouse models of wound healing 
and liver regeneration [ 101 ,  125 ]. The rate of skin wound healing and liver regrowth 
after partial hepatectomy was signifi cantly reduced in caspase-3 or -7 defi cient mice 
due to impaired post-injury cell proliferation. It was further revealed that activated 
caspase- 3 and -7 cleave calcium-independent phospholipase A2 (iPLA2) to increase 
its catalytic ability and promote synthesis of prostaglandin E2 (PGE2). Release of 
PGE2 from the dying cell then induces compensatory proliferation (Fig.  4.2c ) [ 101 ]. 
Although detailed mechanisms on how PGE2 triggers compensatory proliferation 
are not yet revealed, the link between PGE2 and the Wnt signalling cascade has 
been established in both zebrafi sh and mice [ 126 ]. PGE2 binds to EP2, a G-protein 
coupled receptor, leading to activation of β-catenin, a key intracellular transducer of 
Wnt signalling [ 127 – 129 ].          

4.5     Caspases  in Cancer Development  :  Non-apoptotic 
Functions   

   Current cancer therapies such as chemo- and radiotherapies frequently aim to acti-
vate apoptosis of cancer cells. Therefore, activating apoptosis has long been viewed 
as an “anti-cancer” process. However, increasing evidence is now suggesting that 
apoptotic caspases can play oncogenic roles through their non-apoptotic functions 
(Fig.  4.3 ). As discussed earlier the roles of the apoptotic caspases are essential in 
proper organism development and tissue homeostasis. Apparently different func-
tional aspects of caspases needs to be tightly controlled and restrained by cellular 
contexts in order to prevent their detrimental effects. In the context of cancer, these 
non-apoptotic functions of caspases can be hijacked to ensure survival of cancer 
cells and promote their spread. Thus, the multifunctional nature of the apoptotic 
caspases is becoming clinically important.

4.5.1       Caspases Promote Cell Survival and Cell Proliferation 

    The crucial function of caspases in cell survival and  proliferation         has been reported 
during development. Targeted disruption of caspase-8 in mice causes embryonic 
lethality, a feature not shared by the other caspases [ 78 ,  130 ]. Caspase-8 −/−  mouse 
embryos exhibited abnormal phenotypes prior to death, namely hyperaemia, with 
the number of haematopoietic precursors signifi cantly reduced [ 78 ]. This suggests 
that caspase-8 is required for either maintenance or proliferation of haematopoietic 
precursors. As further support for this view, depletion of caspase-8 in lymphoid tis-
sues inhibits antigen-induced T and B lymphocyte proliferation [ 131 – 133 ]. 
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Although it was originally thought that caspase-8 regulates cell proliferation in 
these cases, it is more likely that caspase-8 has pro-survival functions due to its 
inhibitory role on necroptosis, another form of programmed cell death [ 130 ,  134 ]. 
The key factors involved in such regulation are caspase-8, the long isoform of cel-
lular FLICE-like inhibitory protein (FLIP L ), and two kinases, RIPK1 and RIPK3, 
which are required for activation of necroptosis. FLIP L  is structurally similar to 
caspase-8 but without its catalytic activity [ 135 ]. It can bind to pro-caspase-8, form-
ing a heterodimer which prevents caspase-8 from completing its apoptotic functions 
by occupying all binding sites of caspase-8 in the DISC. This consequently prevents 
caspase-8 homodimer formation. Therefore, when the FLIP L  levels are low, homodi-
merisation of pro-caspase-8 occurs which activates caspase-8 for its apoptotic func-
tion. In contrast when FLIP L  levels are high, e.g. triggered by survival signals 
mediated by a transcription factor NFκB, formation of the pro-caspase-8-FLIP L  het-
erodimer does not trigger apoptosis. Instead, it can bind to the RIPK1-containing 
complex to suppress its activation of RIPK3 and necrotic cell death, although the 
underlying mechanism remains unclear [ 134 ]. Hence, the level of FLIP L  is crucial 
for caspase-8-regulated cell survival. Interestingly, an increase in FLIP L  expression 
has been detected in a variety of tumour types, including B-cell chronic lympho-
cytic leukaemia, pancreatic cancer and ovarian cancer, amongst many others [ 136 , 
 137 ]. Down-regulating FLIP L  levels in tumours sensitises the cells to apoptosis 
[ 136 ,  138 ]. This is most likely due to decreased ability for caspase-8-FLIP L  het-
erodimers to form and increased ability of caspase-8 homodimerisation, which can 

  Fig. 4.3    Schematic diagram of non-apoptotic functions of  caspases      that may contribute to various 
aspects of cancer progression       
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then activate caspase-3 and apoptosis. In a study of cervical cancers, high-grade 
tumours were found to have higher expression of FLIP L  [ 137 ]. Moreover, increasing 
grade of lesions was directly associated with increased c-FLIP expression, where 
12.5 % of normal cervical epithelia stained positive for relevant expression of FLIP L  
compared to 82.1 % of squamous cervical carcinomas stained positive for FLIP L  
[ 137 ]. This shows the signifi cance in correlation of uncontrolled caspase-8-FLIP L  
dimer formation and cancer progression. Interestingly, infection by high-risk human 
papillomavirus (HPV), particularly HPV-16, was highly signifi cantly correlated 
with high expression of FLIP L  [ 139 ]. Although the viral infection does not explain 
the cause of high FLIP L  expression in other cancer types, high expression of FLIP L  
was determined to be a marker of early cervical carcinogenesis and therefore has the 
potential to be utilised for early diagnosis [ 137 ,  139 ]. This evidence highlights that 
the caspase-8-FLIP L  heterodimer can be hijacked by cancer cells to promote tumour 
survival, by avoiding the apoptotic functions of caspase-8. 

 In addition to the initiator caspases, the effector caspases have also been impli-
cated in promoting cell survival and cell cycle progression. In cultured cancer cell 
lines with their origin in leukaemia or hepatocellular or cervical carcinoma, cas-
pase- 3 and -7 are found to be required in cell cycle progression through the G1 and 
G2/M checkpoints [ 140 ,  141 ]. Overexpression of the BIR2 domain of XIAP inhib-
its caspase-3 and -7, and when added to cells also induced cell cycle arrest. In con-
trast, inhibition of caspase-9 by expression of the BIR3 domain of XIAP did not 
cause the same effect, which indicates that caspase-3 and -7 have functions indepen-
dent of caspase-9 activity. Although it is not yet clear how caspase-3 and -7 may 
promote cell cycle progression without being cleaved by caspase-9, the  anaphase-
promoting complex/cyclosome (APC/C)  , which regulates degradation of various 
cell cycle regulators through ubiquitylation, failed to form when caspase-3 and -7 
were inhibited [ 140 ]. This suggests that pro-caspase-3 and -7 may contribute to cell 
proliferation. Interestingly, direct substrates of caspases including cell cycle regula-
tors can also promote cell survival or cell cycle progression at least in some circum-
stances. For example, the cyclin-dependent kinase inhibitor P27 Kip1  can be cleaved 
by caspase- 3 which then becomes activated and anti-apoptotic to protect human 
leukemic cells from death [ 142 ]. In addition to this, a more recent study suggested 
that caspase- 3 can act as a sensor to extracellular stresses, therefore determining 
whether the cells live or not [ 143 ]. In this study, caspase-3-knockout mice become 
more sensitive to UV radiation with increased number of cells undergoing necrosis 
compared to the control animals. In response to doxorubicin, an anticancer drug 
inducing apoptosis of cardiomyocytes, the caspase-3-defi cient mice also show sig-
nifi cantly increased number of apoptotic cardiomyocytes which die through cas-
pase-7 instead [ 143 ]. Caspase-3, but not caspase-6 and -7, cleaves the p120 RasGAP 
protein in vitro to activate a kinase, Akt, leading to survival functions of PI3K sig-
nalling [ 144 ,  145 ]. Consistently, Akt activity, indicated by the level of phosphory-
lated Akt, increases in response to stresses such as UV radiation and doxorubicin 
injection. But such increase is strongly reduced in caspase-3-knockout mice. 
Knock-in mice with a RasGAP mutant resistant to caspase-3 cleavage can restore 
their apoptotic sensitivity [ 143 ]. Given these fi ndings of caspases in cell survival 
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and proliferation, could they contribute to tumourigenesis? As discussed later (see 
Sect.   5.3    ), the answer becomes clear by discovering roles of AiP in tumour reoccur-
rence following cytotoxic cancer therapies.     

4.5.2     Caspases and  Metastasis   

  Metastasis is a crucial process to understand in cancer progression as it is the cause 
of approximately 90 % of cancer-related deaths [ 8 ]. It is an incredibly complex pro-
cess consisting of multiple key steps for a cancer cell, or a group of cancer cells, to 
progress through [ 146 ]. These steps include breaking away from a bulk tumour, 
disseminating in the blood or lymph, exiting the circulation, then establishing and 
repopulating at a new site, where a secondary tumour forms. Interestingly, caspases 
have been implicated in aiding some of these steps through their non-apoptotic 
functions in cell migration, angiogenesis and possibly cell dedifferentiation. 

 Caspases have been reported for their functions in controlling cell motility dur-
ing development. In  Drosophila , Dronc, the caspase-9 homologue, is required for 
migration of border cells in the ovary [ 147 ], a process critical for oocyte develop-
ment. In mammals, caspase-8 −/−  mouse embryos die with a circulatory failure sug-
gesting roles of caspase-8 in migration of endothelial cells [ 78 ,  148 ]. Similarly, in 
cancer-specifi c studies, caspase-3 and its downstream targets have been implicated 
in causing tumour cell migration, thus contributing to achieving metastasis. In ovar-
ian cancer cells, caspase-3 has been shown to be involved in the process of initiating 
cell migration via activation of arachidonic acid, the precursor of PGE2, similarly 
as in the context of AiP described earlier (Fig.  4.2c ) [ 128 ,  149 ,  150 ]. Ovarian cancer 
cells have strong migratory responses towards laminin-10/11, a protein component 
of the extracellular matrix. This is probably due to the high levels of β1 integrin in 
ovarian cancer cells, because binding of laminin-10/11 to β1 integrin leads to a 
moderate increase of caspase-3 activity [ 150 ]. Although the intermediate molecules 
determining caspase-3 activation from integrin–laminin binding are unknown, Zhao 
et al. [ 150 ] determined that moderate increase of caspase-3 activity does not lead to 
apoptosis, instead, it cleaves iPLA2 and activates its enzymatic activity to produce 
arachidonic acid and then PGE2. Consistently, pan caspase inhibitors, caspase-
3-specifi c inhibitors or knockdown of iPLA2 inhibits migration of these cells. 
Interestingly, cleaved iPLA2 also activates Akt survival signalling to protect these 
cells from apoptosis [ 150 ]. This further enhances cancer cell migration. Not surpris-
ingly arachidonic acid has also been implicated to be the driving factor of cell 
migration in other cancers including prostate cancers [ 151 ]. Further support for 
roles of caspase-3 in cell migration comes from a study on lung cancer metastasis 
[ 152 ]. In this study, however, a protease-independent function of caspase- 3 was sug-
gested to promote metastasis. The authors used A549 cells, derived from high 
malignancy lung adenocarcinoma cells with high levels of caspase-3, for their study. 
Knockdown of caspase-3 in A549 cells diminishes their metastatic activities in the 
lungs when these cells were injected into nude mice via the tail vein suggesting 
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roles of caspase-3 in promoting metastasis. Consistently, ectopic expression of cas-
pase-3 in MCF-7 cells, derived from caspase-3-defi cient and low malignancy breast 
cancer cells, enhances metastatic ability of these cells. Following these fi ndings, the 
authors then found that high levels of caspase-3 actually lead to high activity of the 
 extracellular signal-regulated kinases (ERK)   which are required for the observed 
lung metastasis. However intriguingly, such increased  ERK   activity and cell migra-
tion are not affected by the caspase inhibitor Z-DEVD-FMK. Furthermore, expres-
sion of protease-dead mutants of caspase-3 in MCF-7 cells still enhances their 
migration through increased  ERK   activities. Although it is not yet clear, the acid 
sphingomyelinase and its downstream signal molecule ceramide were suggested to 
be the molecules linking caspase-3 and ERK [ 152 ]. Interestingly, another mecha-
nism of caspase-3-dependent cell migration has been reported for the “undead” 
cells in  Drosophila  models [ 153 ]. In this case, DrICE, a caspase-3 homologue in 
 Drosophila , activates JNK leading to cell migration and tissue invasion. Therefore, 
cellular contexts may determine how caspase-3 promotes cell motility. 

 Following migration and invasion of cancer cells, angiogenesis is essential to 
further cancer progression, enabling tumour growth above a diameter of 1 mm and 
metastasis [ 146 ]. Knockdown of caspase-8 suppressed vascular endothelial growth 
factor (VEGF)-mediated angiogenic signalling [ 154 ]. Interestingly, such require-
ment of caspase-8 in promoting angiogenesis is not affected by Ac-IETD- cho, a 
caspase-8 inhibitor that maintains high levels of pro-caspase-8. In contrast, the 
same study also showed that caspase-8 is required in TRAIL signalling to antago-
nise angiogenesis which can be inhibited by Ac-IETD-cho [ 154 ]. Therefore, pro- 
caspase- 8 and caspase-8 appear to have distinct functions during angiogenesis 
mediated by VEGF. 

 Another cellular process that can potentially impact on cancer metastasis is cell 
dedifferentiation. Although it is still a subject of debate, existence of “cancer stem 
cells”, a small fraction of stem cell-like cancer progenitor cells, may facilitate or 
even establish the metastatic colonies for cancer progression [ 146 ]. If this is true, 
maintenance and reprogramming, thus dedifferentiation, of cancer cells may be cru-
cial in the process of metastasis which, again, may involve caspases. Notably, both 
caspase-8 and caspase-3 are required for the dedifferentiation of murine fi broblasts 
to form  induced pluripotent stem cells (iPSCs)   in vitro [ 155 ]. Activation of caspase-
 8 and -3 is induced by expression of Oct-4, one of the four transcription factors used 
to programme  iPSCs  . By inhibiting caspase-8 the cells were completely unable to 
develop into  iPSCs  , whereas some could if only caspase-3 was inhibited suggesting 
potential roles of other effector caspases such as caspase-7 in induction of  iPSCs  . 
The authors further showed that the caspases act upon retinoblastoma susceptibility 
protein (Rb), but how from here the phenotype of a pluripotent stem cell is produced 
is unknown although p53 and its downstream cell cycle regulator p21 have been 
implicated in the process [ 155 ]. Interestingly, studies of human tumours in relation 
to their Oct-4 expression showed that tumours expressing high levels of Oct-4 
resulted in increased metastases, shorter survival and furthered disease progression 
in comparison to tumours low in Oct-4 expression [ 156 ]. A recent study further 
sorted murine breast cancer 4T1 cells with either high or low Oct-4 expression and 
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tested their tumourigenic potential in vivo by injecting sorted cells into the mouse 
mammary glands [ 157 ]. The results support that Oct-4 can enhance cancer stem cell 
properties. This fi ts in vitro data and hypotheses theorising on the capacity of cancer 
stem cells in disease progression, though more studies are required in a greater 
range of tumour types.   

4.5.3     Caspases in  Tumour Repopulation      Following Cytotoxic 
Cancer Therapies 

   Cytotoxic therapies exert their anti-tumour properties by inducing apoptosis as a 
result of DNA damage [ 158 ]. As discussed earlier, AiP is a process utilised in non- 
cancerous tissue in order to maintain tissue homeostasis that allows tissue regenera-
tion and recovery from damage. Consequently, this means that cytotoxic therapies 
can potentially induce not only cell death but also the AiP pathway which may in 
fact counteract cancer treatment. Tumours, to some extent, are comparable to stan-
dard developmental tissues [ 159 ], and, conceivably, when damaged they can respond 
in the same way to regenerate and to compensate for the infl icted damage, thus to 
repopulate and reoccur. Recent studies on AiP in cancer models have suggested this 
is the case. In one study, experiments were conducted to fi nd out how caspase-3 is 
responsible for promoting accelerated tumour repopulation following cytotoxic 
therapy in 4T1 murine breast cancer cells [ 160 ]. It was found that the AiP pathway, 
activated in either cancer cells or stromal cells, could become hijacked by cancer 
cells following radiotherapy, causing accelerated tumour repopulation in vitro and 
in vivo, in nude mice. These were also confi rmed with human breast cancer cell 
lines in nude mice [ 160 ]. The results gained in this study were further developed in 
studies on metastatic melanoma, showing that chemotherapy too can result in AiP 
and tumour repopulation [ 161 ]. As in the tissue regeneration mouse model, it is 
PGE2 which is secreted from apoptotic cells and stimulates recipient living cells to 
proliferate in the tumour repopulation model (Fig.  4.2c ) [ 160 ,  161 ]. The authors 
also found that tumours with elevated caspase-3 were more resistant to radiotherapy 
than those with reduced caspase-3 [ 160 ]. This at fi rst seems paradoxical; however, 
with regards to the AiP model, this observation is logical. Higher caspase-3 expres-
sion allows for greater production of PGE2, which in turn stimulates the increased 
growth rate of surviving cells, thus ensuring the maintenance of a larger tumour 
mass. Huang et al. found that the therapy sensitive cells were induced to undergo 
apoptosis, and the release of prostaglandins from the therapy sensitive cells caused 
the therapy-resistant cells to proliferate at an accelerated rate and repopulate the 
treated tumour [ 160 ]. 

 Statistical studies have been conducted to give a measure of how higher expres-
sion of particular caspases in tumours can affect outcome and survival likelihood. 
In a study of breast cancer, 103 out of 137 tumours were deemed to have high levels 
of caspase-3, although some activity was noticed in all of the tumours [ 162 ]. 
Increased caspase-3 level signifi cantly correlated with worsened survival of the 
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patients sampled and, in the tumours sampled, caspase-3 was only found in the 
cytoplasm, not the nucleus where the apoptotic target of caspase-3 resides. This 
suggests a possible mechanistic block preventing the effector caspase-3 from reach-
ing its target molecule, the  inhibitor of caspase-activated DNase (iCAD)  , to free 
caspase-activated DNase (CAD) which can cause DNA fragmentation and subse-
quent cell death [ 162 ]. Another study assessing implications of caspase-3 in gastric, 
ovarian, cervical and colorectal cancers concluded that patients possessing tumours 
which expressed higher caspase-3 had shortened survival time and also found that 
caspase- 3 expression was signifi cantly associated with tumour stage [ 163 ]. Both 
studies concluded that higher caspase-3 expression resulted in worsened prognosis. 
Notably, participants of these studies had not undergone any form of therapy. 
However, these fi ndings of statistical signifi cance were further confi rmed by Huang 
et al. [ 160 ], on patients who had undergone radiotherapy or chemotherapy. 

 Given these new insights of mechanisms causing tumour repopulation following 
cytotoxic therapy, if repopulation is to be prohibited in tumours, then the AiP path-
way needs to be blocked while still allowing caspase-3 to carry out its apoptotic func-
tions. As described for AiP (Fig.  4.2c ), PGE2 is synthesised from arachidonic acid by 
 cyclooxygenases (COX)  . Thus, COX inhibitors in theory should prevent the AiP 
pathway from progressing. This has been shown in practice, where administering a 
COX inhibitor in conjunction with cytotoxic therapy signifi cantly decreases rate of 
tumour repopulation [ 160 ,  161 ]. Therefore, use of a COX inhibitor in conjunction 
with the cytotoxic therapy may benefi t patients possessing tumours with high levels 
of caspase-3. Notably, caspase-3 may not be the only component in the apoptosis 
pathway that can promote cancer tumourigenesis as suggested by studies on lym-
phoma [ 164 ,  165 ]. Further mechanistic understanding of AiP in various cellular con-
texts will be the key to explore its clinical signifi cance. Interestingly, in addition to 
AiP, engulfment of apoptotic cells by macrophages can create a tumour-promotive 
microenvironment by releasing signalling molecules [ 166 – 168 ] and regulating vari-
ous aspects of tumour progression [ 169 ]. Again, caspases play key roles here. 
Activation of iPLA2 by caspase-3 leads to production of  lysophosphatidylcholine 
(LPC)  , as well as PGE2, from dying cells [ 170 ]. LPCs, together with several other 
molecules such as sphingosine-1-phosphates (S1Ps) and the nucleotides ATP and 
UTP, recruit macrophages to engulf apoptotic cells [ 171 ]. Therefore, apoptotic cas-
pases can promote tumourigenesis directly through AiP or indirectly through recruit-
ing macrophages [ 128 ]. This is further discussed in Chap.   3    .       

4.6     Concluding Remarks 

 For many years, the apoptotic function of caspases has been considered, both in 
developmental settings and in a cancer setting, where activation of apoptotic pro-
teins is considered to be essential in causing cell death and reducing tumour burden 
[ 8 ]. While these considerations of caspase function remain valid, increasing evi-
dence suggests that non-apoptotic functions of the apoptotic caspases exist in a 
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context-dependent manner. These functions are crucial in development and tissue 
homeostasis, where caspases have been implicated in stem cell pool maintenance by 
enhancing survival pathways and in AiP for tissue recovery upon cell loss, about 
which we have learned a lot from  Drosophila  models. Intriguingly, a wide range of 
non-apoptotic functions of caspases have been implicated in promoting tumour 
growth, metastasis and recurrence post-cytotoxic therapy (Fig.  4.3 ). It is therefore 
worthwhile to consider not only how to kill the tumour cells, but also how to prevent 
tumour spread and repopulation in cancer treatments. Further understanding of 
molecular mechanisms and cellular contexts leading to various non-apoptotic func-
tions of caspases would certainly be benefi cial.     
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