The Surakarta Bot Revealed

Mark H.M. Winands®

Games and Al Group, Department of Data Science and Knowledge Engineering,
Maastricht University, Maastricht, The Netherlands
m.winands@maastrichtuniversity.nl

Abstract. The board game Surakarta has been played at the ICGA
Computer Olympiad since 2007. In this paper the ideas behind the
agent SIA, which won the competition five times, are revealed. The
paper describes its af-based variable-depth search mechanism. Search
enhancements such as multi-cut forward pruning and Realization Proba-
bility Search are shown to improve the agent considerably. Additionally,
features of the static evaluation function are presented. Experimental
results indicate that features, which reward distribution of the pieces
and penalize pieces that clutter together, give a genuine improvement in
the playing strength.

1 Introduction

Since 2007 the board game Surakarta has been played six times at the ICGA
Computer Olympiad, a multi-games event in which all of the participants are
computer programs. The Surakarta agent SIA won the gold medal at the 128,
13th) 15t 170 and 18" ICGA Computer Olympiad. It did not lose a single
game in each tournament it participated.

In this paper the a-search based agent SIA is discussed in detail. It presents
SIA’s variable-depth search mechanism [9] that contains quiescence search [12],
multi-cut forward pruning [2] and Realization Probability Search [13]. Also, the
features of the static evaluation function are described and assessed.

The article is organized as follows. First, in Sect. 2 the game of Surakarta is
briefly discussed. Next, SIA’s a-search engine is introduced in Sect. 3. In Sect. 4
its variable-depth search mechanism is described. Subsequently, the evaluation
function is proposed in Sect. 5. The experimental results are presented in Sect. 6.
Finally, Sect. 7 gives conclusions and an outlook on future research.

2 Surakarta

Surakarta is a board game for two players (i.e., Black and White). It is played on a
6 x 6 board where eight loops extend out from it (see Fig. 1). The four small loops
form together the inner circuit, whereas the four large loops form the outer circuit.

Players take turns moving one of their own pieces. In non-capturing moves, a
piece travels — either orthogonally or diagonally — to a neighboring intersection.
© Springer International Publishing Switzerland 2016

T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 71-82, 2016.
DOI: 10.1007/978-3-319-39402-2_6

72 M.H.M. Winands

Fig. 1. Initial Surakarta position.

In a capturing move, a piece travels along a line, traveling over at least one loop,
until it meets one of the opponent pieces. The captured piece is removed, and
the capturing piece takes its place. The first player to capture all opponent’s
pieces wins. Draws can occur by repetition of moves or stalemate (cf. [6]). In
this article, if a position with the same player to move occurs for the third time,
the game is drawn. Additionally, if in the last fifty moves no capture was made,
the game is scored as a draw as well.

Self-play experiments by SIA revealed that the game has an average branch-
ing factor of approximately 22 and an average game length of around 54 ply.
The game-tree complexity is estimated to be about 1072. Taking symmetry into
account, its state-space complexity is 10'°.

3 SIA

SIA performs an o depth-first iterative-deepening search in the PVS framework
[10]. A two-deep transposition table [3] is applied to prune a subtree or to narrow
the a8 window. At all interior nodes that are more than 2 ply away from the
leaves, it generates all moves to perform Enhanced Transposition Cutoffs (ETC)
[11]. For move ordering, the move stored in the transposition table (if applicable)
is always tried first, followed by two killer moves [1]. These are the last two moves
that were best, or at least caused a cutoff, at the given depth. Thereafter follow
the capture moves. All the remaining moves are ordered decreasingly according
to the relative history heuristic [16].

4 Variable-Depth Search

The «f algorithm [8] is still the standard search procedure for playing material-
based board games such as chess and checkers. The playing strength of programs
employing a3 search depends greatly on how deep they search critical lines
of play. Therefore, over the years, many techniques for augmenting a8 search
with a more selective tree-expansion mechanism have been developed, so called

The Surakarta Bot Revealed 73

variable-depth search techniques [9]. Promising lines of play are explored more
deeply (search extensions), at the cost of other less interesting ones that are cut
off prematurely (search reductions or forward pruning).

In the Surakarta engine STA the following techniques are employed: quies-
cence search [7,12], multi-cut [2], and Realization Probability Search (RPS) [13].
They are described in Subsects. 4.1, 4.2, and 4.3, respectively.

4.1 Quiescence Search

When the af search reaches the depth limit, a static evaluation function should
be applied in the leaf node reached. This approach can have disastrous conse-
quences because of the approximate nature of the evaluation function. Therefore
a more sophisticated cut-off may be required. The evaluation function should
only be applied to positions that are quiescent.

At the leaf nodes of the regular search, a quiescence search is performed to
get more accurate evaluations. In STA an extended version of quiescence search
is implemented [12]. This type of a quiescence search limits the set of moves to
be considered and uses the evaluations of interior nodes as lower/upper bounds
of the resulting search value. As capture moves are responsible for swings in the
evaluation function in Surakarta, only captures are considered for this part of
the search.

4.2 Multi-cut

Multi-cut pruning is a forward-pruning technique [2], which has been applied in
chess and Lines of Action [15]. Before examining a node to full depth, the first M
child nodes are searched to a depth reduced with a factor R. If at least C' child
nodes return a value larger than or equal to 3, a cutoff occurs. However, if the
pruning condition is not satisfied, the search continues as usual, re-exploring the
node under consideration to a full depth d. In general the behavior of multi-cut
is as follows. The higher M and R are and the lower C is, the higher the number
of prunings is.

An enhanced version of multi-cut [15] is used in SIA. First, when at a reduced
depth a winning value is found, the search is stopped and the winning value is
returned. Second, if the multi-cut does not succeed in causing a cutoff, the moves
causing a [-cutoff at the reduced depth are tried first in the normal search. Third,
multi-cut is used in all nodes, except in the expected principal variation (so-called
PV nodes). The idea is that it is too risky to prune forward there, because a
possible mistake causes an immediate change of the principal variation. For all
other nodes (so-called CUT and ALL nodes [9]), multi-cut is performed with the
following parameter settings: C'=3 for a CUT node, C' =2 for an ALL node,
M =10 and R =2 for both node types. The pseudo code in the PVS framework
is given in Fig. 2.

74 M.H.M. Winands

//Forward-pruning code
if (node.node_type != PV_NODE && depth > 2){
next = firstSuccessor(node);
c=0,m=0;
while(next '= null && m < M){
value = -PVS(next, -beta, -alpha, depth-1-R);
if (value >= beta){
ct++;
//Keep track of the moves causing a cut-off at d-R
storeCut0ffNode (next) ;
if (value >= WIN_SCORE)
return value;
else if(c >= C)
return beta;

}

m++;

>

next = nextSibling(next);
}

//Re-order moves
putCutO0ffNodesInFront () ;

Fig. 2. Pseudo code for multi-cut

4.3 Realization Probability Search

One successful member of the family of variable-depth search techniques is Real-
ization Probability Search (RPS), introduced by Tsuruoka et al. [13] in 2002.
Using this technique his program, GEKISASHI, won the 2002 World Computer
Shogi Championship, resulting in the algorithm gaining a wide acceptance in
computer Shogi. It has been successfully applied in the Lines-of-Action engine
MIA as well [14].

The RPS algorithm is an approach of using fractional-ply extensions. The
algorithm uses a probability-based approach to assign fractional-ply weights to
move categories, and then uses re-searches to verify selected search results.

First, for each move category one must determine the probability that a move
belonging to that category will be played. This probability is called the transition
probability. This statistic is obtained from game records of matches played by
expert players. The transition probability for a move category c is calculated as

follows: n
P, — played(c) (1)

Navailable(c)
where n,4yed(c) is the number of game positions in which a move belonging to

category ¢ was played, and ngyailabie(c) 18 the number of positions in which moves
belonging to category c were available.

The Surakarta Bot Revealed 75

Originally, the realization probability of a node represented the probability
that the moves leading to the node will be actually played. By definition, the
realization probability of the root node is 1. The transition probabilities of moves
were then used to compute the realization probability of a node in a recursive
manner (by multiplying together the transition probabilities on the path lead-
ing to the node). If the realization probability would become smaller than a
predefined threshold, the node would become a leaf. Since a probable move has
a large transition probability while an improbable has a small probability, the
search proceeds deeper along probable move sequences than improbable ones.

Instead of using the transition probabilities directly, they can be transformed
into fractional plies [13]. The fractional ply FP of a move category is calculated
by taking the logarithm of the transition probability in the following way:

FP — logk(P.) (2)

where K is a constant between 0 and 1. A value of 0.25 is a good setting for K in
Surakarta. Note that this setting is probably domain dependent, and a different
value could be more appropriate in a different game or even game engine.

The fractional-ply values are calculated off-line for all the different move cat-
egories, and used on-line by the search (as shown in Fig.3 [14]). In the case
where FP is larger than 1 it means the search is reduced while in the case FP
is smaller than 1 the search is extended. By converting the transition probabil-
ities to fractional plies, move weights now get added together instead of being
multiplied. This has the advantage that RPS is used alongside multi-cut, which
measures depth similarly.

However, setting the depth of the move based on its FP values runs into
difficulties because of the horizon effect. Move sequences with high FP values
(i.e., low transition probability) get terminated quickly. Thus, if a player expe-
riences a significant drop in its positional score as returned by the search, it is
eager to play a possibly inferior move with a higher FP value, simply to push
the inevitable score drop beyond its search horizon.

To avoid this problem, RPS is instructed to perform a deeper re-search for a
move whose value is larger than the current best value (i.e., the a value). Instead
of reducing the depth of the re-search by the fractional-ply value of the move
(as is generally done), the search depth is decreased only by a small predefined
FP value, called minFP. It is set equal to the lowest move category value.

Apart from how the ply depth is determined, and the re-search, the algorithm
is otherwise almost identical to PVS [10]. Figure 4 shows a C-like pseudo-code.
Because the purpose of the preliminary search is only to check whether a move
will improve upon the current best value, a null-window may be used.

RPS is applied in STA in the following way. First, moves are classified as
captures or non-captures. Next, moves are further subclassified based on the
origin and destination of the move’s from and to squares. The board is divided
into four different regions: the corners, the 6 x 6 outer rim (except corners), the
4 x 4 inner rim, and the central 2 x 2 board. In total 20 move categories can
occur in the game according to this classification. The transition probabilities
have been collected by letting SIA play 1000 games against itself. The final FP

76 M.H.M. Winands

Fig. 3. Fractional-ply example for a nominal search depth of 3 [14].

values of the move categories are capped between 0.5 and 4.0 (inclusive). They
are shown in Table 1.

When looking at the transition probabilities, capture moves are in general
preferred above non-capture moves. Although moving away from a corner is also
strongly encouraged. Interestingly, when a move is a non-capture it is better to
move towards the center. In case of a capture move, the opposite is true.

5 Evaluation Function

In this section the relevant features of the static evaluation function are enumer-
ated and explained. The evaluator consists of the following five features: mater-
ial, mobility, player to move, quads, and distribution. The choice of features that
fully cover the description of a position is most relevant. It is better to have all
features correct and all the initial weights wrong than to have the initial weights
correct and miss one of the (important) features. The description of the features
follows below; relevant examples and clarifications are given, adequate references
to further details are supplied. It is followed by some information about the use
of caching.

Material. Analogous to piece-square tables in chess, each piece obtains a value
dependent on its board square in STA. Especially, pieces at the corner are eval-
uated less. The relative values are given in the following matrix:

3 10101010 3
10111010 11 10
10 10 10 10 10 10
10 10 10 10 10 10
1011101011 10
3 10101010 3

The Surakarta Bot Revealed 7

RPS(node, alpha, beta, depth){
//Transposition table lookup, omitted

if (depth <= 0)

return quiescenceSearch(node, alpha, beta);
//Do not perform forward pruning in a potential principal variation
if (node.node_type != PV_NODE){

//Multi-cut code, omitted

if (forward_pruning condition holds) return beta;

}
next = firstSuccessor(node);
while(next != null){
alpha = max(alpha, best);
decDepth = FP(next);
//Preliminary Search Null-Window Search Part
value = -RPS(next, -alpha-1, -alpha, depth-decDepth);
//Re-search
if (value > alpha)
value = -RPS(next, -beta, -alpha, depth-minFP);

if (value > best){

best = value;

if (best >= beta) goto Done;
}
next = nextSibling(next);

}

Done: //Store in Transposition table, omitted

Fig. 4. Pseudo code for Realization Probability Search.

Mobility. Having more moves than the opponent may imply that you have more
“freedom” that can be correlated with success. The computational requirements
of the mobility feature are not high if only non-capture moves are considered.
For each line configuration (represented as a bit vector) the mobility can be
precomputed and stored in a table. During the search, the index scheme can be
updated incrementally and in the evaluation function only a few table lookups
have to be done.

An advantage of this feature that it is fast to evaluate. A disadvantage of
this implementation is that capture moves are not taken into account. This is
partially mitigated by the quiescence search as only leaf nodes are evaluated that
cannot start a capture sequence anymore. Still, it could be that the non-moving
player has several possibilities to capture. Quiescence search is therefore not able
to completely assess the capturing potential of one of the players.

78 M.H.M. Winands

Table 1. Move categories together with their transition probabilities and F'P values.

Capture | Destination | Target Transition Probability | FP value
No Corner Outer Rim | 30.4 % 0.85
No Corner Inner Rim |48.4% 0.52
No Outer Rim | Corner 1.6 % 2.97
No Outer Rim | Outer Rim | 12.9 % 1.47
No Outer Rim | Inner Rim | 17.0% 1.27
No Inner Rim | Corner 0.8% 3.45
No Inner Rim | Outer Rim | 6.7% 1.94
No Inner Rim |Inner Rim | 6.7% 1.95
No Inner Rim | Center 11.5% 1.55
No Center Inner Rim | 2.7% 2.60
No Center Center 7.4% 1.88
Yes Outer Rim | Outer Rim | 64.3 % 0.50
Yes Outer Rim | Inner Rim | 59.0 % 0.50
Yes Outer Rim | Center 51.9% 0.50
Yes Inner Rim | Outer Rim | 63.4 % 0.50
Yes Inner Rim | Inner Rim |58.6 % 0.50
Yes Inner Rim | Center 49.4% 0.50
Yes Center Outer Rim | 50.9 % 0.50
Yes Center Inner Rim |47.2% 0.54
Yes Center Center 42.7% 0.61

Player to Move. The player-to-move feature is based on the basic principle
of the initiative. It rewards the moving side. Having the initiative is mostly an
advantage in Surakarta like in many other games.

Since SIA is using variable-depth search (because of quiescence search, the
multi-cut, and RPS) not all leaf nodes are evaluated at the same depth. There-
fore, leaf nodes in the search tree may have a different player to move, which is
compensated in the evaluation function. This is done by giving a small bonus to
the side to move.

Distribution. The distribution feature is based on the principle of spreading the
pieces over the board to increase the potential to attack pieces of the opponent.
In STA this is done in a way which is primitive but effective. First the maximum
number m of pieces of a player in a row or column is determined. The distribution
is calculated as follows:

25 xn

distribution = ez (m) (3)

The Surakarta Bot Revealed 79

0@

+C_>

Qo Q Q
A quad with no A quad with one A quad with two

pieces piece pieces

O O
O

o
"l0I0

O
O
Qs

Qa
A quad with three A quad with four A quad with two
pieces pieces diagonally-adjacent
pieces

Fig. 5. Six different quad types.

where n is the number of pieces of a player. In such a way this feature prevents
that there are too many pieces on one line. It is connected to the following
feature, quads, that penalizes solid formations.

Quads. The quads feature prevents that pieces are cluttered together. The
heuristic is based on the use of quads, an Optical Character Recognition method.
A quad is defined as a 2 x 2 array of squares [5]. Taking into account rotational
equivalence, there are six different quad types, depicted in Fig. 5. The values of
each quad type is given in Table2. Quads with 1 or 2 pieces receive a bonus,
whereas quads with 4 pieces get a penalty.

Table 2. Quad values.

Quad types | Q1 | Q2 | Q3| Q4 | Qq
Values 5 |5 |0 |—=510

Caching Features. It is possible in STA’s evaluation function to cache compu-
tations of certain features, which can be used in other positions. The material,
quads, and distribution features are independent of the position of the other side.
They are stored in an evaluation cache table. In the current evaluation function
this gives a speed-up of at least 30 % in the number of nodes investigated per
second.

6 Experiments

In this section the main components of SIA are tested. Different versions of
SIA played at least 1000 games against each other, playing both colors equally.

80 M.H.M. Winands

To prevent that games were repeated, a random factor was included in the
evaluation function. Draws were considered half wins to each player to ensure
the winning percentages sum to 100 %. All experiments were performed on an
Intel Xeon 5355 2.66 GHz computer. The engine has been implemented in Java.
The remainder of this section is organized as follows. First, the variable-depth
search techniques are tested in Subsect. 6.1. Next, the features of the evaluation
function are assessed in Subsect.6.2. Finally, STA’s performance on the ICGA
Computer Olympiads is briefly discussed in Subsect. 6.3.

6.1 Variable-Depth Search Experiments

In the first series of experiments STA is instantiated using the various combinations
of variable-depth search introduced in Sect.4. A three-tuple (RPS, Multi-Cut,
QuiescenceSearch) is to represent the parameter setting used in each particular
player instance. E.g., for the instantiation SIA (o muiti, quiescence) s RP'S is disabled,
multi-cut and quiescence search are enabled.

For these experiments, the thinking time was limited to 5s per move. The
variable-depth search techniques were initially tested in an incremental way
starting first with quiescence search, adding next multi-cut, and finally incorpo-
rating RPS. The first three rows of Table 3 show the results for them. It reveals
that every search enhancement makes more or less the same contribution by
increasing the winning percentage to approximately 70 % for each addition. In
the fourth row it was validated whether multi-cut does give an additional benefit
to the RPS framework. By winning 63.5 % of the games multi-cut is a genuine
improvement. In the last row the results are given when SIA with all the enhance-
ments played against the default fixed-depth version. All techniques combined
lead to a 95 % winning percentage. In the next experiment this combination is
used.

6.2 Evaluation Function Results

In the last series of experiments four different evaluation functions competed with
each other in a round-robin tournament. They are called MATERIAL, MOBILITY,
DisTRIBUTION, and SIA. The MATERIAL evaluator consists out of the piece-
square table and a small random factor. The MOBILITY evaluator includes the
former and incorporates the mobility and the player-to-move feature. Next, Dis-
TRIBUTION includes the distribution feature. Last, S1A adds the quads feature
and represents the evaluation function discussed in Sect.5. The weights of the
features were partially tuned by TD-learning, partially manually. In these exper-
iments, the thinking time was limited to 1s per move.

The results of the round-robin tournament are given in Table4. Each match
data point represents the result of 1,000 games, with both colors played equally.
The table shows that every added feature is a genuine improvement. Spreading
the pieces over the board improves the performance of the play as the results of
the DISTRIBUTION and SIA evaluators indicate.

The Surakarta Bot Revealed 81

Table 3. Winning percentage of testing various combinations of variable-depth search
techniques. 95 % confidence intervals are given.

win %
SIA(oﬁ,Dﬂ,quiﬁscence) SIA(Dﬁ,oﬁ,oﬁ) 73.9+£1.5
SIA(off,multz,quiescence) SIA(off,oﬁ,quiescence) 70.2 £1.4

SIA(RPS,multi,quiescence) SIA(oﬁ,multi,quiescence) 75.3+2.3

SIA(RPS,multi,quiescence) SIA(RPS,ojj‘,quiesccnce) 63.5£1.0

SIA(RPS,multi,quiescence) SIA(off,oﬁ,oﬁ) 95.2+0.8

Table 4. Winning percentage of testing different evaluation functions. 95 % confidence
intervals are given. Each data point is based on a 1000-game match.

MATERIAL | MOBILITY | DISTRIBUTION | S1A
MATERIAL - 429+ 3.1 138.2+£3.0 32.2+2.9
MoBILITY 57.1£3.1 |- 40.6 + 3.0 35.8£3.0
DiISTRIBUTION | 61.8 3.0 |59.4 + 3.0 |- 46.7 = 3.1
S1A 67.8+2.9 |64.24+3.0|53.3+3.1 -

6.3 Computer Olympiad Results

Since 2007 SIA has participated in the Surakarta tournaments at the 12t%, 13t
150, 17" and 18" ICGA Computer Olympiad. In the competition each agent
receives 30 min of thinking time for the whole game, playing an equal number of
games for each color. In these five tournaments SIA played a grand total of 32
games against 7 different opponents, winning all of them. This achievement is a
validation of the approach to Surakarta proposed in this paper.

7 Conclusion and Future Research

This paper discussed the main components of the Surakarta agent SIA. Results
showed that its variable-depth search mechanism improved the search consider-
ably. Besides the classic quiescence search, multi-cut forward pruning and Real-
ization Probability Search gave a boost in the game playing performance. Next,
the evaluation function was described. Beside standard features such as material
and mobility, features that helped to spread the pieces over the board gave a
genuine increase in performance.

For future research adding a feature to determine who controls a circuit would
lead potentially to an increase in playing performance. Next, endgame databases
could help to improve the strength of the agent and ultimately help to solve the
game. So far all endgame databases up to 8 pieces have been generated. Self-
play results reveal that it takes on average 40 ply to reach them, which is too
deep for a single search. If a 10-piece database or 12-piece database would be

82

M.H.M. Winands

generated, it would take 34 or 30 ply, respectively. Larger databases would need
several Terabytes of hard drive. An alternative is to use smaller databases and
distribute the search over several cores as in done in Job-Level a3 search [4].

Acknowledgments. Special thanks go to the anonymous referees whose comments
helped to improve this paper.

References

10.
11.

12.

13.

14.

15.

16.

. Akl, S.G., Newborn, M.M.: The principal continuation and the killer heuristic. In:

1977 ACM Annual Conference Proceedings, pp. 466-473. ACM, New York (1977)
Bjornsson, Y., Marsland, T.A.: Multi-cut alpha-beta pruning in game-tree search.
Theoret. Comput. Sci. 252(1-2), 177-196 (2001)

Breuker, D.M., Uiterwijk, JJW.H.M., van den Herik, H.J.: Replacement schemes
and two-level tables. ICCA J. 19(3), 175-180 (1996)

Chen, J.C., Wu, I.C., Tseng, W.J., Lin, B.H., Chang, C.H.: Job-Level Alpha-Beta
Search. IEEE Trans. Comput. Intell. AT Games 7(1), 28-38 (2015)

Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans.
Comput. 20(5), 551-561 (1971)

Handscomb, K.: Surakarta. Abstr. Games 4(1), 8 (2003)

Kaindl, H., Horacek, H., Wagner, M.: Selective search versus brute force. ICCA J.
9(3), 140-145 (1986)

. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4),

293-326 (1975)

Marsland, T.A., Bjornsson, Y.: Variable-depth search. In: van den Herik, H.J.,
Monien, B. (eds.) Advances in Computer Games 9, pp. 9-24. Universiteit
Maastricht, Maastricht (2001)

Marsland, T.: A review of game-tree pruning. ICCA J. 9(1), 3-19 (1986)
Schaeffer, J., Plaat, A.: New advances in alpha-beta searching. In: Proceedings of
the 1996 ACM 24th Annual Conference on Computer Science, pp. 124-130. ACM,
New York (1996)

Schriifer, G.: A strategic quiescence search. ICCA J. 12(1), 3-9 (1989)

Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree search algorithm based
on realization probability. ICGA J. 25(3), 132-144 (2002)

Winands, M.H.M., Bjornsson, Y.: Enhanced realization probability search. New
Math. Nat. Comput. 4(3), 329-342 (2008)

Winands, M.H.M., van den Herik, H.J., Uiterwijk, J.W.H.M., van der Werf, E.C.D.:
Enhanced forward pruning. Inf. Sci. 175(4), 315-329 (2005)

Winands, M.H.M., van der Werf, E.C.D., van den Herik, H.J., Uiterwijk, J.W.H.M.:
The relative history heuristic. In: van den Herik, H.J., Bjornsson, Y., Netanyahu,
N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 262-272. Springer, Heidelberg (2006)

	The Surakarta Bot Revealed
	1 Introduction
	2 Surakarta
	3 SIA
	4 Variable-Depth Search
	4.1 Quiescence Search
	4.2 Multi-cut
	4.3 Realization Probability Search

	5 Evaluation Function
	6 Experiments
	6.1 Variable-Depth Search Experiments
	6.2 Evaluation Function Results
	6.3 Computer Olympiad Results

	7 Conclusion and Future Research
	References

