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Abstract. In this paper, we present an experimental investigation on
the pancake problem. Also called sorting by prefix reversals (SBPR),
this problem is linked to the genome rearrangement problem also called
sorting by reversals (SBR). The pancake problem is a NP-hard problem.
Until now, the best theoretical R-approximation was 2 with an algorithm,
which gives a 1.22 experimental R-approximation on stacks with a size
inferior to 70. In the current work, we used a Monte-Carlo Search (MCS)
approach with nested levels and specific domain-dependent simulations.
First, in order to sort large stacks of pancakes, we show that MCS is a
relevant alternative to Iterative Deepening Depth First Search (IDDFS).
Secondly, at a given level and with a given number of polynomial-time
domain-dependent simulations, MCS is a polynomial-time algorithm as
well. We observed that MCS at level 3 gives a 1.04 experimental R-
approximation, which is a breakthrough. At level 1, MCS solves stacks
of size 512 with an experimental R-approximation value of 1.20.

1 Introduction

The pancake problem is described as follows. A chef prepares a stack of pancakes
that come out all different sizes on a plate. The goal of the server is to order them
with decreasing sizes, the largest pancake touching the plate, and the smallest
pancake being at the top. The server can insert a spatula below a pancake and
flip the substack situated above the spatula. He may repeat this action as many
times as necessary. In the particular version, the goal of the server is to sort
a particular stack with a minimum number of flips. In the global version, the
question is to determine the maximum number of flips f(n) - the diameter - to
sort any stack of n pancakes.

This problem is a puzzle, or a one-player game well-known in artificial intel-
ligence and in computer science under the name of sorting by prefix reversals
(SBPR). Its importance is caused by its similarity with the sorting by rever-
sals (SBR) problem which is fundamental in biology to understand the prox-
imity between genomes of two different species. For example, the SBR distance
between a cabbage and a turnip is three [23]. The SBR problem has been studied
in depth [24] for the last twenty years. The SBR problem can be signed when
the signs of the genes are considered, or unsigned otherwise. Similarly, the pan-
cakes can be burnt on one side, or not. This brings about four domains: one with
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unburnt pancakes, one with burnt pancakes, one with unsigned genes and one
with signed genes.

In the unburnt pancake problem, Gates and Papadimitriou [22] gave the first
bounds of the diameter in 1979, and Bulteau has shown that the problem is NP-
hard in 2013 [11]. Very interesting work have been done between 1979 and today.
The goal of the current work is to provide an experimental contribution to the
unburnt pancake problem. More specifically, we show the pros and cons of two
planning algorithms used in computer games: IDDFS [30] and MCS [13]. Besides,
we define several domain-dependent algorithms: Efficient Sort (EffSort), Alter-
nate Sort (AltSort), Basic Random EFficient algorithm (BREF), Fixed-Depth
Efficient Sort (FDEffSort), and Fixed-Depth Alternate Sort (FDAltSort), and we
re-use the Fischer and Ginzinger’s algorithm (FG) [21]. FG was proved to be a 2-
approximation algorithm that also reaches a 1.22 approximation experimentally.
We show how to use the algorithms above in the MCS framework. We obtain an
experimental approximation of 1.04, which is a significant reduction.

The paper is organized as follows. Section 2 defines the SBR and SBPR prob-
lems. Section 3 sums up the related work in the four domains. Section 4 presents
our work and its experimental results. Section 5 concludes.

2 Definitions

Let N be the size of a permutation π and

[π(1), π(2), ..., π(N − 1), π(N)]

the representation of π. The problem of sorting a permutation by reversals con-
sists in reaching the identity permutation

[1, 2, ..., N − 1, N ]

by applying a sequence of reversals. A reversal ρ(i, j) with i < j is an action
applied on a permutation. It transforms the permutation

[π(1), ..., π(i − 1), π(i), ..., π(j), π(j + 1)..., π(N)]

into
[π(1), ..., π(i − 1), π(j), ..., π(i), π(j + 1)..., π(N)].

The effect of a reversal is reversing the order of the numbers between the two cuts.
A cut is located between two numbers of the permutation. In the above example,
the first cut is between i − 1 and i and the second one is between j and j + 1.

In the pancake problem, each number π(i) corresponds to the size of the pan-
cake situated at position i in a stack of pancakes, and the permutation problem
is seen as a pancake stack to be sorted by decreasing size. One cut is fixed and
corresponds to the top of the stack. The other cut corresponds to the location
of a spatula inserted between two pancakes so as to reverse the substack above
the spatula. For example, the permutation

[π(1), ..., π(i), π(i + 1)..., π(N)]
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has its top on the left and its bottom on the right. After a flip ρ(i) between i
and i + 1, the permutation becomes

[π(i), ..., π(1), π(i + 1)..., π(N)].

In addition, a permutation can be signed or not. In the signed case, a sign is
associated to each number, i.e. the integers of the permutation can be positive or
negative. When performing a reversal, the sign of the changing numbers changes
too. For example, after the reversal ρ(i, j),

[π(1), ..., π(i − 1), π(i), ..., π(j), π(j + 1)..., π(N)]

becomes
[π(1), ..., π(i − 1),−π(j), ...,−π(i), π(j + 1)..., π(N)].

The burnt pancake problem is the signed version of the pancake problem.
In the burnt pancake problem, the pancakes are burnt on one side, and a flip
performs the reversal and changes the burnt side. The goal is to reach the sorted
stack with all pancakes having their burnt side down.

In the literature, the permutations are often extended with two numbers,
N +1 after π(N), and 0 before π(1), and the extended representation of permu-
tation π is

[0, π(1), ..., π(N), N + 1].

The reversal distance of a permutation π is the length of the shortest sequence
of reversals that sorts the permutation.

A basic and central concept in SBR problems is the breakpoint. For 1 ≤ i ≤
N + 1, a breakpoint is situated between i and i − 1 when |π(i) − π(i − 1)| �= 1.
In the following, #bp is the number of breakpoints. Since each breakpoint must
be removed to obtain the identity permutation, and since one reversal removes at
most one breakpoint, #bp is a lower bound of the reversal distance. In the plan-
ning context, #bp is a simple and admissible heuristic. In the pancake problem,
the possible breakpoint between the top pancake and above is not taken into
account. In the signed permutation problem or in the burnt pancake problem a
breakpoint is situated between i and i − 1 when π(i) − π(i − 1) �= 1.

3 Related Work

Since the four domains are closely linked, this section presents them in
order: signed permutation, unsigned permutation, unburnt pancakes, and burnt
pancakes.

3.1 Signed Permutations

The best overview of the genome rearrangement problem to begin with is by
Hayes [24]. Since the genes are signed, the genome rearrangement problem is
mainly connected with the signed permutation problem, but also to the unsigned
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permutation problem. In 1993, Bafna and Pevzner [4] introduced the cycle graph.
In 1995, Hannenhalli and Pevzner [23] devised the first polynomial-time algo-
rithm for signed permutations. Its complexity was in O(n4). The authors intro-
duced the breakpoint graph, and the so called hurdles. This work is the reference.
The follow up consists in several refinements.

In 1996, Berman and Hannenhalli [6], and Kaplan et al. [27] in 1998, enhanced
the result with an algorithm whose complexity was in O(n2). The concept of
fortress was new. In 2001, Bader and colleagues [3] found out an algorithm
that finds the reversal distance in O(n), but without giving the optimal reversal
sequence. In 2002, GRIMM [39], a web site, was developed to implement the
above theories. In 2003, [28] described efficient data structures to cope with
the problem. Then, in 2005, Anne Bergeron [5] introduced a simple and self-
contained theory, which does not use the complexities of the previous algorithms,
and that solves signed permutation problems in quadratic time as well. In 2006,
[37,38] are subquadratic improvements.

3.2 Unsigned Permutations

The basic work in the unsigned permutation problem is [29] in 1992, by
Kececioglu and Sanker. This problem was proved to be NP-hard [12] by Caprara
in 1997. In 1998, Christie [16] described the 3/2-approximation algorithm. Rever-
sal corresponding to red nodes are relevant. Furthermore, the Christie’s thesis
[17] described many approaches for other classes of permutation problems. In
1999 and 2001, [7,8] contain complexity results. In 2003, [2,36] describe evolu-
tionary approaches to the unsigned permutation problem. Particularly, the work
of Auyeung and Abraham [2], performed in 2003, consists in finding out the best
signature of an unsigned problem, with a genetic algorithm. The best signature
is the signature such that the signed permutation reversal distance is minimal.
Computing this distance is performed in linear time [3].

3.3 Unburnt Pancakes

The unburnt pancake problem is the most difficult of the four domains [11].
Related work focused on the diameter of the pancake graph. In 2004, a pancake
challenge was set up. Tomas Rokicki won the challenge and gave explanations
to solve and generate difficult pancake problems [34]. Fischer and Ginzinger
published their 2-approximation algorithm [21].

Bounds on the Diameter. A focus is to bound the diameter of the graph of
the problem in N the size of the pancake stack. The first bounds on the pan-
cake problem diameter were found by Gates and Papadimitriou in 1979 [22]:
(5n + 5)/3 is the upper bound and (17/16)n is the lower bound. To prove the
upper bound, [22] exhibits an algorithm with several cases. They count the
number of actions corresponding to each case and obtain inequalities. They for-
mulate a linear program whose solution proves the upper bound. To prove the
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lower bound, they exhibit a length-8 elementary permutation that can be used
to build length-n permutations with solutions of length (18/16)n on average but
bounded by below by (17/16)n. The Gates and Papadimitriou’s sequence is

GP = [1, 7, 5, 3, 6, 4, 2, 8].

The (15/14)n lower bound was found by Heydari and Sudborough in 1997 [26].
In 2006, the diameter of the 17-pancake graph [1] was computed. In 2009,

a new upper bound was found on the diameter: (18/11)n [15]. In 2010, in the
planning context, the breakpoint heuristic #bp was explicitly used in a depth-
first-search [25]. In 2011, [18] Josef Cibulka showed that 17n/12 flips were nec-
essary to sort stacks of unburnt pancakes on average over the stacks of size n.
Josef Cibulka mentioned a list of interesting concepts: deepness, surfaceness,
biggest-well-placed, second-biggest-well-placed, smallest-not-on-top.

The 2004 Pancake Challenge. In 2004, a pancake challenge was organized
to focus on the resolution of specific problems. In a first stage, the entrants had
to submit pancake problems. In the second stage, the entrants had to solve the
submitted problems. The entry of the winner of the pancake challenge was the
one of Tomas Rokicki [34]. Its entry is described and gives really interesting
ideas.

The Inverse Problem and Backward Solutions. Considering π−1 the
inverse permutation of the original problem π can be helpful. For example, if

π = [5, 3, 6, 1, 4, 2]

then
π−1 = [4, 6, 2, 5, 1, 3].

π−1 and π correspond to two different problems. The one is the forward problem
yielding a forward solution, and the other is the backward problem yielding a
backward solution (BS). Because ππ−1 = Id, the backward solution is the reverse
sequence of the forward solution. The enhancement consists in solving the two
problems simultaneously and comparing the lengths of the two solutions, and
comparing the times to get them. We call it the BS enhancement. For IDDFS,
the two solutions are optimal and share the same length, but the times to solve
them can be very different. For MCS or approximate algorithms, the lengths of
the two sequences can be different, and the idea consists in keeping the shortest
solution. BS works in practice. See Table 3 compared to Table 2.

Difficult Positions. In the diameter estimation context, Tomas Rokicki exhib-
ited two elementary sequences:

S5 = [1, 3, 5, 2, 4]
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and
L9 = [1, 5, 8, 3, 6, 9, 4, 7, 2].

Then, he built L9-based (resp. S5-based) permutations by repeating the L9 (resp.
S5) permutation shifted by 9 (resp. by 5). For example,

L9(2) = [1, 5, 8, 3, 6, 9, 4, 7, 2, 10, 14, 17, 12, 15, 18, 13, 16, 11].

These sequences L9(x) and S5(y) were used to attempt to prove a 11/10 ratio
lower bound on the diameter. Unfortunately, this approach did not work. How-
ever, these ad hoc sequences are hard to solve, and we consider them as hard
problems in the following.

The 2-Approximation Algorithm of Fischer and Ginzinger. Fischer and
Ginzinger designed FG, an algorithm that is a 2-approximation polynomial algo-
rithm [21]. It means that the length LFG of the solution found by FG is inferior to
two times the length of the optimal solution. Since the best lower bound known
today is the number of breakpoints #bp, it means that LFG is proved to be infe-
rior to 2 × #bp. In practice, Fischer and Ginzinger mention an approximation
ratio Rapprox = 1.22. The idea is to classify moves in four types. Type 1 moves
are the ones that remove a breakpoint in one move. Type 2 and type 3 moves
lead a pancake to the top of the stack so as to move it to a correct place at the
next move. Type 4 moves correspond to the other cases. Fischer and Ginzinger
proves that type 2, 3, 4 moves removes a breakpoint in less than 2 moves, and
that type 1 moves remove a breakpoint in one move.

Pancake Flipping Is Hard. In 2012, Laurent Bulteau and his colleagues
proved that the pancake flipping problem is NP-hard [10,11]. He did this by
exhibiting a polynomial algorithm that transforms a pancake problem into a
SAT problem and vice-versa. He gave an important clue to solve the pancake
problem. He considered sequence of type 1 moves only, i.e. moves removing one
breakpoint. He defined efficiently sorted permutations, i.e. permutations that
can be sorted by type 1 moves, or “efficient” moves. He defined deadlock per-
mutations without type 1 move. A sequence of type 1 moves reaches either the
identity permutation and the permutation is efficiently sorted, or deadlock per-
mutations only, and the permutation is not efficiently sorted. To see whether
a permutation is efficiently sortable, a binary tree must be developed. Bulteau
made a polynomial correspondence between the efficiently sortable permutation
problem and the SAT problem, proving by this translation that the former prob-
lem is NP-hard.

Miscellaneous. [33] contains results about the genus of pancake network.

3.4 Burnt Pancakes

Here again, the focus was to bound the diameter too. In 1995, the first bounds
on the diameter and a conjecture [19] were presented: 3n/2 is a lower bound
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and 2(n − 1) a upper bound. The second bounds on the diameter were proved
in 1997 [26]. A polynomial-time algorithm on “simple” burnt pancake problems
[31] was published in 2011. In 2011, Josef Cibulka showed that 7n/4 flips were
necessary to sort stacks of burnt pancakes on average over the stacks of size n
[18]. He also disproved the conjecture by Cohen and Blum [19]. Josef Cibulka
mentioned interesting concepts: anti-adjacency and clan.

4 Our Work

First, this section presents the domain-independent algorithms used in our work.
Secondly, it presents the domain dependent algorithms designed in the purpose
of our work. Thirdly, it presents the settings of the experiments. Then, this
section yields the results of the experiments in order.

4.1 Domain Independent Algorithms

This section describes the algorithms we used to solve pancake problems as
efficiently as possible. There are two basic and general algorithms:

– Iterative Deepening Depth-First Search (IDDFS) [30],
– Monte-Carlo Search (MCS) [13].

We consider IDDFS as an exponential-time algorithm in N [30]. When it
completes, the solution found is optimal. However, for N superior to a thresh-
old, IDDFS needs to much time, and becomes useless actually. However, before
completion, IDDFS yields a lower bound on the optimal length.

MCS [13] is a simulation-based algorithm that gave very good results in
various domains such as general game playing [32], expression discovery [14],
morpion solitaire [35], weak Schur numbers [20] and cooperative path-finding
[9]. MCS is used with a level L. At any time, MCS stores its best sequence found
so far, thus it yields an upper bound on the optimal solution. When used at a
given level L, MCS is a polynomial-time algorithm in N . Let assume that the
level 0 simulations are polynomial-time algorithms. Let T0 be the time used to
perform a complete level 0 simulations. Let us bound T1 the time to complete
a level 1 MCS simulation. To move one step ahead in a level 1 simulation, MCS
launches at most N level 0 simulations, which costs N × T0. Since the length of
level 0 simulation is bounded by 2N , we have T1 ≤ 2N2T0. If T0 is polynomial in
N then T1 is polynomial as well. By induction, a level L MCS is polynomial-time.
The higher L, the higher the polynomial degree.

The threshold effect observed for IDDFS does not appear for a polynomial-
time algorithm. If you obtain solutions for N in time T , and if d is the degree
of the polynomial, you may obtain solutions for N + 1 in time T × (N + 1)d/Nd

which is just a little bit more expensive than T . Therefore, we get two tools to
work with: one is costly but optimal when it completes, IDDFS, and the other
one is approximate but its cost is polynomial-time, MCS.
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4.2 Domain Dependent Algorithms

We have designed several pancake problem dependent algorithms: Efficient
Sort (EffSort), Alternate Sort (AltSort), Basic Random Efficient algorithm
(BREF), Fischer and Ginzinger algorithm (FG) [21], Fixed-Depth Efficient Sort
(FDEffSort), Fixed-Depth Alternate Sort (FDAltSort). We have implemented each
of them and we describe them briefly here.

Since a position has at most two efficient moves, EffSort searches within a
binary tree to determine whether a permutation is efficiently sortable [11] or
not. If the permutation is efficiently sortable, the sequence of efficient moves
is output, and the output permutation is the identity. Otherwise, the longest
sequence of efficient moves is output, and the output permutation is a deadlock
(i.e. a permutation without efficient move).

When a position is a deadlock, the solver has to perform an inefficient move,
i.e. a move that does not lower #bp. A waste move is a move that keeps the #bp
constant. We define two kinds or waste moves: hard or soft. A waste move is
hard if it creates a breakpoint while removing another one. A waste move is soft
otherwise (the set of breakpoints is unchanged). We define a destroying move as
a move that increases #bp.

We designed AltSort. While the output permutation is not sorted, AltSort
iteratively calls EffSort and performs a soft waste move if the output permutation
is a deadlock. When EffSort is successful, AltSort stops. AltSort and EffSort are
inferior to IDDFS. They are exponential time algorithms.

We designed BREF that iteratively chooses and performs an efficient move if
possible. A position may have 0, 1 or 2 efficient moves. On a position with one
efficient move, this move is selected with probability 1. On a position with two
efficient moves, one of them is selected with probability 0.5. Otherwise, BREF
chooses and performs a soft waste move defined above. Most of the times, a
position without efficient moves has a lot of soft waste moves available. In this
case, the move is chosen at random with uniform probability. At the end of
a simulation, the reward is the length of the simulation. BREF is a randomized
version of AltSort. BREF and FG are polynomial-time algorithms. They can serve
as level 0 simulation for MCS.

FDEffSort is the fixed-depth version of EffSort. With depth D, FDEffSort
becomes a polynomial-time algorithm. FDAltSort is the version of AltSort using
FDEffSort. FDAltSort is a polynomial-time algorithm. It can be used as a level 0
simulation for MCS.

4.3 Experimental Settings

The experiments show the effect of using:

– IDDFS or MCS,
– FG and BREF within MCS,
– backward solutions BS in addition to original solutions,
– FDAltSort within MCS.
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There are different classes of test positions: positions randomly generated
for a given size, and difficult positions mentioned by related work, mainly
[22,26,34]. IDDFS may easily solve easy positions of size 60 randomly gener-
ated in a few seconds. However, IDDFS cannot solve some hard positions of size
30. Whatever the size and the problem difficulty, MCS always finds a preliminary
solution quickly. This solution is refined as time goes on to become near-optimal
or optimal.

We mention three indicators to evaluate our algorithms.

– Finding the minimal length Lmin of an optimal solution for a given problem.
– Finding Rapprox as low as possible with a polynomial time algorithm averaged

over a set of 100 problems.
– Limiting the running time of an experiment with 100 problems to one or two

hours.

Rapprox is the ratio of the length L of the actual solution found over Lmin.
Since Lmin is unknown in practice, Lmin is replaced by #bp. Rapprox = L/#bp.
The standard deviation of the Rapprox value that we observed for one problem
generated at random is roughly 0.05. The two-sigma rule says that the standard
deviation over 100 problems is 0.05 × 2/10 = 0.01. The values of Rapprox given
below are 0.01 correct with probability 0.95. On average, the time to solve one
problem is inferior to one minute.

Table 1. IDDFS: In practice, how Rapprox varies in N . L is the average length of
solutions. T is the average time in seconds to sort one stack.

N L Rapprox T

8 6.5 1.09 0

16 14.5 1.05 0

32 31.0 1.03 0

64 63.0 1.02 5

4.4 MCS and IDDFS

The first experiment consists in assessing IDDFS and MCS under reasonable time
constraints: at most one hour. MCS uses BREF as level 0 simulations. When using
IDDFS, Table 1 shows how Rapprox varies in N . First, although IDDFS gives an
optimal result, Rapprox is not 1. This happens because #bp is not the length of
optimal solutions but a lower bound only. Secondly, Table 1 shows that IDDFS
cannot give results in reasonable time for N > 64. For N = 30, IDDFS does
not solve some difficult positions in less than few hours. Thirdly, Table 2 shows
how Rapprox varies in N and in level with MCS. Level 0 simulations can be
launched easily with N = 256. Rapprox is 1.30 for level 0 simulations, 1.28
for level 1 simulations. Then, as the level increases, Rapprox decreases. Level
2 simulations yields Rapprox = 1.22 which equals the value mentioned in [21].
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Table 2. MCS+BREF: How Rapprox varies in N and Level. L(x) is the average length
of solutions at level x. T (x) is the average time in seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3) L(4) R(4) T (4)

8 7.5 1.15 0 7.5 1.19 0 7.0 1.15 0 6.7 1.12 0 6.5 1.08 0.01

16 18 1.30 0 18 1.27 0 16.5 1.18 0 16.0 1.14 0.01 15.5 1.09 0.05

32 38 1.30 0 37.5 1.26 0 37 1.22 0.02 36.5 1.21 0.6

64 82 1.32 0 79.5 1.28 0.01 76 1.24 1.2

128 165 1.30 0.01 163 1.29 0.23

256 339 1.34 0.05 333 1.31 9

Table 3. How Rapprox varies in N and MCS level with the trick of Backward Solutions
(BS). L(x) is the average length of solutions at level x. T (x) is the average time in
seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3) L(4) R(4) T (4)

8 7.0 1.15 0 6.8 1.14 0 6.7 1.12 0 6.7 1.11 0 6.6 1.10 0.01

16 16.5 1.18 0 16.4 1.18 0 15.6 1.12 0 15.4 1.10 0.01 15.3 1.09 0.1

32 37.0 1.22 0 36.4 1.21 0 35.4 1.17 0.05 35.2 1.15 0.8

64 79.5 1.28 0.01 77 1.24 0.02 75.2 1.20 2

128 163 1.29 0.02 159 1.26 0.5

256 335 1.32 0.1

For higher levels, Rapprox = 1.10 showing that high levels of MCS give good
results in reasonable time, and that MCS is a viable alternative to IDDFS even for
difficult positions. When compared to Rapprox = 1.22 of [21], Rapprox = 1.08
is a first breakthrough.

4.5 MCS + BREF + BS

Table 3 shows how Rapprox varies in N and in the MCS level when level 0
simulations are the best of one forward simulation and one backward simulation.
We call this the BS enhancement. Table 3 must be compared to Table 2. One
can observe that the BS enhancement is effective at level 0 indeed, and also at
level 1 and level 2. However, its effect is less visible at higher levels of MCS:
Rapprox = 1.09.

4.6 MCS + FG + BS

Table 4 shows how Rapprox varies in N and in the MCS level when level 0
simulations are the forward and the backward FG simulations. So as to see the
effect of using FG instead of BREF in MCS, Table 4 must be compared to Table 3.
First, the comparison shows that FG is worse than BREF for level 0. FG is on
a par with BREF for level 1. For level 2 and higher levels, FG surpasses BREF:
Rapprox = 1.05.

Table 5 shows how Rapprox varies in N and in the MCS level when level 0
simulations are the forward and the backward randomized FG. Randomized FG
works as follows. If type 1 moves exist, one of them is chosen at random.
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Table 4. How Rapprox varies in N and MCS level with simulations being FG with the
trick of Backward Solutions (BS). L(x) is the average length of solutions at level x.
T (x) is the average time in seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3) L(4) R(4) T (4)

8 7.73 1.28 0 6.85 1.14 0 6.7 1.10 0 6.7 1.10 0.01 6.7 1.10 0.01

16 18.2 1.30 0 16.0 1.14 0 15.1 1.07 0.01 14.9 1.05 0.06 14.8 1.05 0.6

32 39.7 1.29 0 35.2 1.16 0.01 32.6 1.08 0.12 31.6 1.05 4.2

64 82.4 1.32 0.02 74.5 1.20 0.06 68.5 1.10 2.5

128 167 1.33 0.04 155 1.23 0.8

256 336 1.32 0.2

Table 5. How Rapprox varies in N and MCS level with simulations being randomized
FG with the trick of Backward Solutions (BS). L(x) is the average length of solutions
at level x. T (x) is the average time in seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3) L(4) R(4) T (4)

8 8.4 1.40 0 7.0 1.16 0 6.7 1.10 0 6.7 1.10 0.01 6.7 1.10 0.01

16 19.6 1.40 0 16.1 1.14 0 15.2 1.08 0.01 14.9 1.05 0.08 14.8 1.06 0.6

32 43.8 1.45 0 35.1 1.16 0.01 32.4 1.07 0.2 31.5 1.04 4

64 90 1.43 0.02 76.5 1.23 0.1 67.5 1.08 6

128 181 1.43 0.04 160 1.26 1.3

256 356 1.40 0.3

Otherwise, if type 2 moves exist, one of them is chosen at random and so on.
So as to see the effect of using randomized FG instead of FG, Table 5 must be
compared to Table 4. As expected and as shown by the R(0) column of Tables 4
and 5, randomized FG yields a worse Rapprox than direct FG. Randomized FG
is worse than direct FG for level 1. However, when used in higher levels of MCS,
Rapprox with the randomized version is slightly inferior to Rapprox with the
direct version. At level 4, MCS gives Rapprox = 1.05 when using randomized
version of FG as basic simulations.

4.7 MCS + FDAltSort

In a preliminary experiment, not reported here, we assessed MCS using AltSort
directly as level 0 simulations. This did not work well on hard positions because
AltSort is not a polynomial-time algorithm. Consequently some simulations did
not complete quickly. We had to limit the depth at which EffSort searches and
we had to create FDAltSort. (FDEffSort determines whether a permutation is
efficiently sortable at depth D). FDAltSort can be used as a level 0 simulation in
MCS. We assessed MCS using FDAltSort at depth D = 10. For each level, Table 6
displays the variations of Rapprox in N . These results must be compared to the
results of Table 5. At level 0, FDAltSort is better than randomized FG and on
a par with FG. At level 1, level 2 and level 3, FDAltSort is better than the
other algorithms. Launching FDAltSort at level 4 was not interesting. However,
Rapprox achieves 1.04 at its minimal value. Furthermore, the good point here
is that the results are obtained for pancake stack sizes going up to 512 instead
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Table 6. How Rapprox varies in N and MCS level with simulations being FDAltSort
at depth D = 10. L(x) is the average length of solutions at level x. T (x) is the average
time in seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3)

8 6.7 1.12 0 6.6 1.09 0 6.6 1.09 0 6.6 1.09 0

16 16.0 1.15 0 14.8 1.08 0 14.5 1.04 0.01 14.5 1.04 0.04

32 37.3 1.23 0 33.3 1.10 0.02 31.8 1.05 0.1 31.3 1.04 0.8

64 80.4 1.29 0 69.7 1.12 0.05 66.4 1.06 1 65.1 1.04 18

128 164 1.30 0.01 145 1.15 0.3 139 1.10 10.5

256 326 1.28 0.02 300 1.18 1.5

512 647 1.27 0.06 614 1.20 9

of 256 before, and with Rapprox = 1.20. This is a significant improvement.
FDAltSort as simulations are much more efficient than FG or BREF were. We
also tried to incorporate the BS enhancement, but the results were worse.

5 Conclusion and Future Work

In this work, we summed up the state-of-the-art of the permutation sorting by
reversals domain. This domain was studied in depth by researches on the genome.
It remains fascinating as underlined by Hayes [24]. The unsigned permutation
domain is hard [12] but the signed permutation domain has polynomial-time
solver [23]. The pancake problem was less studied. The unburnt pancake problem
is difficult [11] while the complexity of the burnt pancake is unknown.

Our contribution is experimental. It shows how MCS extends the results
obtained by IDDFS on unburnt pancake stacks. On the one hand, IDDFS can
solve some pancake stacks of size 60 [25] in a few minutes but cannot solve some
specific hard pancake stacks [34] of size 30 only. On the other hand, MCS can
solve pancake stacks of significantly higher sizes and the hard pancake stacks of
size 30 not solved by IDDFS. Practically, our MCS solver solves pancake stacks
of size up to 512 with a 1.20 R-approximation, under the best configuration.
MCS may use BREF, FG or FDAltSort with results that are approximately equal
in terms of running time and Rapprox value. Practically, we observed that MCS
approximates the best solutions with a Rapprox ratio of 1.04 for size up to 64,
which is significantly better than the 1.22 value of [21]. Our MCS solver solves
pancake stacks of size 128 or 256 with a R-approximation value roughly situated
between 1.10 and 1.25.

In a near future, we want to study the burnt pancake problem. Furthermore,
the burnt pancake problem is linked to the unburnt pancake problem. A block of
sorted unburnt pancakes can be replaced by one burnt pancake, and the unburnt
pancake problem becomes a mixed pancake problem. Solutions to burnt pancake
problems could be used to solve ending unburnt pancake problems. We want to
investigate in this direction.
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To date, the number of breakpoints remains the simplest and the most effi-
cient heuristic to bound the optimal solution length by below. However, this
admissible heuristic should be refined to better approximate the optimal solu-
tion length. Some hard problems - or stacks - are hard because they contain sub-
stacks whose solution lengths are strictly higher than the number of breakpoints.
As the permutation problems contain concepts such as hurdles or fortresses [6],
and as shown by the work of Josef Cibulka on burnt pancakes, we have to find
out the corresponding concepts to design appropriate heuristic functions for the
pancake problems.
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