
Space-Consistent Game Equivalence Detection
in General Game Playing

Haifeng Zhang(B), Dangyi Liu, and Wenxin Li

Peking University, Beijing, China
{pkuzhf,ldy,lwx}@pku.edu.cn

Abstract. In general game playing, agents play previously unknown
games by analyzing game rules which are provided in runtime. Since
taking advantage of experience from past games can efficiently enhance
their intelligence, it is necessary for agents to detect equivalence between
games. This paper defines game equivalence formally and concentrates
on a specific scale, space-consistent game equivalence (SCGE). To detect
SCGE, an approach is proposed mainly reducing the complex problem to
some well-studied problems. An evaluation of the approach is performed
at the end.

1 Introduction

According to human experience, exploiting equivalence between a new problem
and a studied problem provides a bridge for knowledge transfer, which efficiently
enhances the understanding of the new problem. Therefore, for the aim of arti-
ficial intelligence, it is important to enable computer to recognize equivalence.
Particularly, as a typical application of AI, it is necessary for game-playing agents
to grasp the ability of detecting equivalence between games.

The main work of this paper is to discuss classification of game equivalence,
define concepts of it formally and propose an approach to detect it. Since detect-
ing the general equivalence between games is difficult, a narrowed scale of game
equivalence, space-consistent game equivalence, is defined firstly. Then, an app-
roach is proposed for agents to automatically detect space-consistent game equiv-
alence, which intends to achieve an acceptable efficiency by defining a grounded
rule graph and transferring the complex problem to the well-studied problems,
i.e. graph isomorphism and SAT.

This paper discusses game equivalence in the domain of General Game Play-
ing (GGP) [2], which sets up a framework for agents to play previously unknown
games by being provided game rules in runtime. This framework obliges agents
to take over the responsibility of analyzing game rules from human beings. The
games in GGP are turn-based, synchronized and of complete information, which
are described in the Game Description Language (GDL) [5].

The work of this paper can be applied to knowledge transfer between equivalent
or similar games. For example, [4] introduces a method of value function transfer
for speeding up reinforcement learning, based on the technique of game equivalence
detection. It can also be applied to detect symmetry of games, as [8] does.
c© Springer International Publishing Switzerland 2016
T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 165–177, 2016.
DOI: 10.1007/978-3-319-39402-2 12

166 H. Zhang et al.

The following section provides background on GGP and introduces defini-
tions of game. Section 3 discusses game equivalence and its narrowness. Section 4
introduces the proposed approach to detect game equivalence, which is evaluated
in Sect. 5. Section 6 concludes the work of this paper.

2 General Game Playing

In the domain of General Game Playing, games are modeled as finite state
machines. In this paper, the definitions of game derive from [9].

Definition 1 (Game). Let Σ be a countable set of ground (i.e., variable-free)
symbolic expressions (terms), S a set of states, and A a set of actions. A (dis-
crete, synchronous, deterministic) game is a structure (R, s0, T, L, u,G), where

– R ⊆ Σ finite (the roles);
– s0 ∈ S (the initial state);
– T ⊆ S finite (the terminal states);
– L ⊆ R × A × S finite (the legality relation);
– u : (R → A) × S → S finite (the update function);
– G ⊆ R × N × S finite (the goal relation).

Here, A ⊆ Σ and S ⊆ 2Σ. The legality relation (r, a, s) ⊆ L defines action a
to be a legal action for role r in state s. The update function u takes an action
for each role and (synchronously) applies the joint actions to a current state,
resulting in the updated state. The goal relation (r, n, s) ⊆ G defines n to be the
utility for role r in state s.

In General Game Playing, rules of games are described in the GDL, which
is a Prolog-like language using prefix syntax. Some keywords of the GDL are
defined in Table 1. As a demonstration of the GDL, the rules of Tic-tac-toe are
provided in Listing 1.1.

Table 1. GDL Keywords

(role r) r is a player

(init p) Proposition p holds in the initial state

(true p) Proposition p holds in the current state

(legal r a) Player r has legal action a in the current state

(does r a) Player r does Action a

(next p) Proposition p holds in the next state

terminal The current state is terminal

(goal r n) Utility of player r in current terminal state is n

Space-Consistent Game Equivalence Detection in General Game Playing 167

1 (role xplayer) (role oplayer)
2 (init (cell 1 1 b)) (init (cell 1 2 b))...(init (cell 3 3 b))
3 (init (control xplayer))
4 (<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b)) (true (control ?w)))
5 (<= (legal xplayer noop) (true (control oplayer)))
6 (<= (legal oplayer noop) (true (control xplayer)))
7 (<= (next (cell ?m ?n x)) (does xplayer (mark ?m ?n)) (true (cell ?m ?n b)))
8 (<= (next (cell ?m ?n o)) (does oplayer (mark ?m ?n)) (true (cell ?m ?n b)))
9 (<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w)) (distinct ?w b))

10 (<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k)) (true (cell ?m ?n b)) (or (distinct ?m ?j)
(distinct ?n ?k)))

11 (<= (next (control xplayer)) (true (control oplayer)))
12 (<= (next (control oplayer)) (true (control xplayer)))
13 (<= (row ?m ?x) (true (cell ?m 1 ?x)) (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
14 (<= (column ?n ?x) (true (cell 1 ?n ?x)) (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
15 (<= (diagonal ?x) (true (cell 1 1 ?x)) (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
16 (<= (diagonal ?x) (true (cell 1 3 ?x)) (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
17 (<= (line ?x) (or (row ?m ?x) (column ?m ?x) (diagonal ?x))
18 (<= open (true (cell ?m ?n b)))
19 (<= (goal xplayer 100) (line x))
20 (<= (goal xplayer 50) (not (line x)) (not (line o)) (not open))
21 (<= (goal xplayer 0) (line o))
22 (<= (goal oplayer 100) (line o))
23 (<= (goal oplayer 50) (not (line x)) (not (line o)) (not open))
24 (<= (goal oplayer 0) (line x))
25 (<= terminal (or (line x) (line o) (not open)))

Listing 1.1. Rules of Tic-tac-toe

Here, the symbol <= is the implication operator. Tokens starting with a
question mark are variables. The first line declares two roles of the game. Lines
2–3 define the initial state. Lines 4–6 define legal actions for roles. In order to
describe an asynchronous turn-based game, an extra action noop is provided to
players during their opponents’ turns. Lines 7–12 define the update function. For
example, Line 7 implies that (cell 1 1 x) holds in the next state if xplayer does
the action (mark 1 1) and (cell 1 1 b) holds in the current state. Lines 13–18
define several auxiliary propositions describing properties of the current state. It
is convenient to use these propositions in the following rules. Lines 19–24 define
the goal relation of the game, while Line 25 defines the terminal states.

Except the keywords and logical words, which are printed italic, all tokens are
game-specific and can be replaced by other tokens without changing the meaning
of the game. Auxiliary propositions and variables are used for convenience and
compactness, which can be eliminated without changing the meaning of the
game.

Provided a GDL description, a game is defined as follows.

Definition 2 (Game for GDL). Let D be a valid GDL game description,
whose signature determines the set of ground terms Σ. The game for D is the
game (R, s0, T, L, u,G), where

– R = {r ∈ Σ|D |= (role r)}
– s0 = {p ∈ Σ|D |= (init p)}
– T = {s ∈ S|D ∪ strue |= terminal}
– L = {(r, a, s) ∈ R × A × S|D ∪ strue |= (legal r a)}

168 H. Zhang et al.

– u(j : R → A, s) = {p ∈ Σ|D ∪ jdoes ∪ strue |= (next p)}
– G = {(r, n, s) ∈ R × N × S|D ∪ strue |= (goal r n)}

Here, S is defined as 2P where P = {p| (true p) ∈ Σ}, A as {a| (legal r a)
∈ Σ}, strue as {(true p) |p ∈ s} and (j : R → A)does as {(does r j(r)) |r ∈ R}.

3 Game Equivalence

Two games looking different in rules may be identical in nature. [7] points out
that Tic-tac-toe is identical to Number Scrabble1. In fact, filling the numbers
of Number Scrabble into the cells of Tic-tac-toe as Fig. 1 reveals the mapping
between them.

Fig. 1. Mapping between Tic-tac-toe and Number Scrabble. Picking a number corre-
sponds to marking a cell, and collecting three numbers summing up to 15 corresponds
to drawing a line.

Essentially, two games are equivalent exactly if the state machines described
them are identical. Corresponding to the definition of game, game equivalence
is defined as follows.

Definition 3 (Game Equivalence). Game Γ = (R, s0, T, L, u,G) and Game
Γ ′ = (R′, s′

0, T
′, L′, u′, G′) (Σ and Σ′ are their grounds sets, S and S′ state sets,

A and A′ action sets, respectively) are equivalent iff there is a bijection set σ =
(σR : R ↔ R′, σS : S ↔ S′, σA : A ↔ A′) s.t.

– σS(s0) = s′
0

– (∀t) t ∈ T ⇔ σS(t) ∈ T ′

– (∀r, a, s) (r, a, s) ∈ L ⇔ (σR(r), σA(a), σS(s)) ∈ L′

– (∀j : R → A,∀scur, snext ∈ S)
u(j, scur) = snext ⇔ u′(j′, σS(scur)) = σS(snext), where j′ : R′ → A′ satisfies
j′(σR(r)) = σA(j(r))

– (∀r, n, s) (r, n, s) ∈ G ⇔ (σR(r), n, σS(s)) ∈ G′

The bijection set σ is called a game equivalence between Γ and Γ ′.

1 Number Scrabble is a game for two players taking turns to pick numbers from a
pool of 1–9, whose goals are collecting three numbers summing up to 15 before the
opponent achieving it.

Space-Consistent Game Equivalence Detection in General Game Playing 169

Previous works successfully detect some kinds of game equivalence. [4] pro-
poses a rule graph to detect game equivalence caused by rules reordering and
tokens scrambling. Based on it, [8] enhances the rule graph to handle arguments
reordering. However, more kinds of equivalence exist, such as:

– auxiliary propositions elimination, e.g. replacing (<= (p0) (p1)) (<= (p1)
(p2)) by (<= (p0) (p2));

– logical conversion, e.g. replacing (<= (consequence) (not (or (condition1)
(condition2)))) by (<= (consequence) (not (condition1)) (not (condition2)));

– arguments re-encoding, e.g. replacing (true (cell 1..3 1..3 x)) by (true (cell
1..9 x)).

In general, game equivalence is caused by the uncertainty of transformation
from a state machine to a GDL description. A state machine can be transformed
into different but equivalent propositional nets, which can be further transformed
into different but equivalent GDL descriptions. Figure 2 demonstrates a reason-
able sequence of transformation steps.

According to Fig. 2, each kind of game equivalence is caused by one of the
steps. As to the mentioned ones, rules reordering is caused by Step 8, tokens
scrambling and arguments reordering are caused by Step 7, auxiliary propositions
elimination is caused by Step 5, arguments re-encoding is caused by Step 3, and
logical conversion is caused by Step 2.

Fig. 2. Transformation steps from state machine to GDL rules. Each step can yield
different targets from a single source, except for Step 4 which decomposes a propnet
into certain rules.

This paper considers the steps after the encoding state machine in Fig. 2.
The encoded state machines derived from a particular state machine share the
same propositions. These propositions form a state space, which is also shared
by the encoded state machines. To describe it, space-consistent game equivalence
is defined.

170 H. Zhang et al.

Definition 4 (Space-Consistent Game Equivalence (SCGE)). A game
equivalence σ = (σR, σS , σA) is a space-consistent game equivalence for two
games Γ and Γ ′ iff there is a bijection σP : P ↔ P ′ (where P = {p|p ∈ s, s ∈ S},
P ′ likewise, i.e. P and P ′ contains propositions forming the states) satisfying
(∀s ∈ S) p ∈ s ⇔ σP (p) ∈ σS(s). Here, S is the set of states of Γ . P and P ′ are
called state spaces. The SCGE σ can be written as (σR, σP , σA), since σS can
be determined by σP .

SCGE for GDL is defined as follows, which rewrites the definition of SCGE
in the context of GDL without changing the meaning.

Definition 5 (Space-Consistent Game Equivalence for GDL). Let D
and D′ be valid GDL game descriptions, whose signatures determine the sets
of ground terms Σ and Σ′ respectively. A space-consistent game equivalence σ
= (σR : R ↔ R′, σP : P ↔ P ′, σA : A ↔ A′) for D and D′ satisfies:

– D |= pinit ⇔ D′ |= (σP (p))init

– D ∪ strue |= terminal ⇔ D′ ∪ (σS(s))true |= terminal
– D ∪ strue |= (legal r a) ⇔ D′ ∪ (σS(s))true |= (legal σR(r) σA(a))
– D ∪ strue ∪ {(does r j(r)) |r ∈ R} |= (next p) ⇔ D′ ∪ (σS(s))true ∪ {(does

r j′(r)) |r ∈ R′} |= (next σP (p))
– D ∪ strue |= (goal r n) ⇔ D′ ∪ (σS(s))true |= (goal σR(r) n)

Here, pinit is defined as (init p), strue as {(true p) |p ∈ s} and σS(s) as
{σP (p)|p ∈ s}. j : R → A and j′ : R′ → A′ satisfy that (∀r ∈ R) j′(σR(r)) =
σA(j(r)).

SCGE covers the kinds of game equivalence caused by Step 2 and after in
Fig. 2. It narrows the concept of game equivalence by building a bijection between
P and P ′ which determines the bijection between S and S′, instead of building
bijection between S and S′ directly. For an example of space-inconsistent game
equivalence which is caused by Step 1, replacing (true (cell 1 1 b)) in Tic-tac-toe
by (not (or (true (cell 1 1 o)) (true (cell 1 1 x))) doesn’t change the game, but
reduces the state space of the game.

For solving the whole problem of game equivalence detection, comparing state
machines directly is a method with a very high complexity. However, comparing
propositional nets covers the kinds of game equivalence caused by Step 3 and
after, whose complexity is logarithmic to the corresponding state machines in
most cases. Since logical conversion is a quite common situation of game equiv-
alence, Step 2 should be also taken into consideration. This is the significance of
SCGE detection.

4 Space-Consistent Game Equivalence Detection

Based on the definition of SCGE for GDL, a brute force approach to detect
it is enumerating all σs mapping roles, actions and propositions of states, then

Space-Consistent Game Equivalence Detection in General Game Playing 171

checking whether all pairs of mapped terms are equivalent to each other. Specifi-
cally speaking, it consists of three phases. The first phase is generating the logical
implications between keyword-propositions, which is related to the propositional
net. The second phase is enumerating all possible σs mapping R to R′, P to P ′

and A to A′ so that all keyword-propositions are mapped in accordance. The
third phase is verifying whether mapped keyword-propositions are equivalent to
each other by comparing the logical implications generated in the first phase.

The brute force approach takes exponential time due to bijection enumer-
ation and logical implication comparison. Therefore, Space-Consistent Game
Equivalence Detection Approach (SCGEDA, or GEDA for short) is proposed. It
transfers the problem to two well-studied problems, i.e. graph isomorphism and
boolean satisfiability, to achieve the state-of-the-art efficiency.

The GEDA consists of three phases as the brute force approach does:

– rule grounding, which is to generate all logical implications between grounded
keyword-propositions;

– graph building and mapping, which is to build a dependency graph of keyword-
propositions and inspect graph isomorphisms to map keyword-propositions;

– logical equivalence verifying, which is to verify whether the mapped logical
implications are equivalent.

In addition, an analysis of complexity and some efficient improvements are
to be introduced.

4.1 Rule Grounding

The aim of this phase is to transfer GDL rules to equivalent rules that only
contain logical implications of keyword-propositions. An example of grounded
rule is displayed as follows:

(<= (goal xplayer 100)
(or (and (true (cell 1 1 x)) (true (cell 1 2 x)) (true (cell 1 3 x)))

(and (true (cell 2 1 x)) (true (cell 2 2 x)) (true (cell 2 3 x)))
(and (true (cell 3 1 x)) (true (cell 3 2 x)) (true (cell 3 3 x)))
(and (true (cell 1 1 x)) (true (cell 2 1 x)) (true (cell 3 1 x)))
(and (true (cell 1 2 x)) (true (cell 2 2 x)) (true (cell 3 2 x)))
(and (true (cell 1 3 x)) (true (cell 2 3 x)) (true (cell 3 3 x)))
(and (true (cell 1 1 x)) (true (cell 2 2 x)) (true (cell 3 3 x)))
(and (true (cell 1 3 x)) (true (cell 2 2 x)) (true (cell 3 1 x))))).

To achieve it, several procedures are taken.

1. Calculate ranges of arguments, such as
(true (cell {1,2,3} {1,2,3} {x,o})).

2. Replace variables by constants according to ranges of arguments, e.g. replace
(<= (diagonal ?x)

(true (cell 1 1 ?x)) (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))

by

172 H. Zhang et al.

(<= (diagonal x)
(true (cell 1 1 x)) (true (cell 2 2 x)) (true (cell 3 3 x)))

(<= (diagonal o)
(true (cell 1 1 o)) (true (cell 2 2 o)) (true (cell 3 3 o))).

(The consistency of variables is ensured. If a distinct-proposition is contained
in a rule, its logical value is computed and applied to the rule during this
procedure.)

3. Eliminate auxiliary propositions stage by stage, e.g. replace line by row, col-
umn and diagonal before replacing row, column and diagonal by true.

4. Remove non-state-relative propositions and role-propositions from premises
of rules, because their values are always true.

5. Remove the rules which use auxiliary propositions as consequences, because
they are no longer of use.

6. Merge the rules which use the same propositions as consequences so that one
proposition acts as the consequence in only one rule. For example, the rule
with (goal xplayer 100) printed above is merged from eight partial ones with
(goal xplayer 100).

After rule grounding, all rules are in the form of
(<= (consequence) Func(condition1, condition2, condition3...)),

where consequence and conditions are keyword-propositions. Keywords in con-
sequence include role, init, next, legal, goal and terminal, while true and does
are the keywords in conditions. Particularly, role- and init-propositions depend
on no propositions as conditions, next-propositions depend on true- and does-
propositions and the remaining consequences only depend on true-propositions.
Func is a logical function connecting conditions by and, or and not, which is
called the reasoning function of the consequence.

After this phase, rules of equivalent games are normalized except the reason-
ing functions.

4.2 Graph Building and Mapping

In this phase, the grounded rules excluding the reasoning functions are modeled
as a so-called ground graph, which is mainly a dependency graph of keyword-
propositions. Thus, the number of enumerated bijections between propositions is
determined by the number of isomorphisms between the graphs, which is much
smaller than completely enumeration.

Definition 6 (Ground Graph). A ground graph G = (V,E, l) for grounded
rules GR is a directed labeled graph with the following properties:

– (∀p, p is a keyword-proposition appearing in GR with a keyword k as its pred-
icate) p ∈ V and l(p) = k;

– (∀n ∈ N, n ∈ [0, 100]) n ∈ V and l(n) = n;
– (∀vs, vt ∈ V, r ∈ GR, vs is a condition of r and vt is the consequence of

r) (vs, vt) ∈ E;

Space-Consistent Game Equivalence Detection in General Game Playing 173

– (∀pinit, ptrue ∈ V) (pinit, ptrue) ∈ E;
– (∀pnext, ptrue ∈ V) (pnext, ptrue) ∈ E;
– (∀adoes,r, rrole ∈ V) (adoes,r, rrole) ∈ E;
– (∀alegal,r, rrole ∈ V) (alegal,r, rrole) ∈ E;
– (∀rgoal,n, rrole ∈ V) (rgoal,n, rrole) ∈ E;
– (∀adoes,r, alegal,r ∈ V) (adoes,r, alegal,r) ∈ E;
– (∀rgoal,n, n ∈ V) (rgoal,n, n) ∈ E;

Here, pinit, ptrue, pnext, adoes,r, rrole, alegal,r and rgoal,n express (init p),
(true p), (next p), (does r a), (role r), (legal r a), (goal r n) respectively. (∀n ∈
N, n ∈ [0, 100]) represents all possible utilities in a valid GDL description.

Thus, a ground graph has two types of nodes, which are proposition-nodes
and integer-nodes. It also has two types of edges, which are logical-dependency-
edges and consistency-maintaining-edges. It only reserves logical dependencies of
propositions and discards reasoning functions. Figure 3 displays a brief structure
of a ground graph.

Fig. 3. Brief structure of ground graph. The solid ellipses stand for sets of nodes, while
the solid rectangles stand for particular nodes.

After two ground graphs are built, they are tested for isomorphism. An iso-
morphism between directed labelled graphs iso : V ↔ V ′ satisfies (1) (∀v ∈
V) l(v) = l′(iso(v)); (2) (∀vs, vt ∈ V) (vs, vt) ∈ E ⇔ (iso(vs), iso(vt)) ∈ E′.

Therefore, according to the definition of ground graph, an isomorphism
between two ground graphs satisfies that (1) proposition-nodes map to
proposition-nodes containing the same predicates and integer-nodes map to
integer-nodes with the same value; (2) for two mapped propositions, their
logically dependent propositions are also mapped; Since init-propositions are
mapped, the initial states are equivalent; the consistencies between next- and
true-propositions, does-, legal-, goal-propositions and role-propositions, does-
and legal-propositions respectively are maintained; the mapped goal-propositions
have the same utility.

After this phase, if an isomorphism is built, the two games may be equivalent.
The remaining uncertainty is the reasoning functions of each proposition ,which
is to be considered in the next phase.

174 H. Zhang et al.

Since a game may have symmetries [8], there may be several game equiva-
lences between two games. In general, detecting one of them is sufficient for appli-
cations such as knowledge transfer. However, in this phase all isomorphisms of
ground graphs need to be found, because any of them may cause an equivalence
between games. Thus, for each isomorphism, the following phase is applied.

4.3 Logical Equivalence Verifying

In this phase, the unnormalized part of grounded rules, the reasoning functions,
is handled.

By rule grounding, reasoning functions of all keyword-propositions are clear.
By the last phase, mappings between keyword-propositions of two games are pro-
vided, so the reasoning functions are mapped in accordance. Moreover, propo-
sitions as conditions are also mapped. In other words, variables of reasoning
functions are mapped. So, the actual problem is verifying the logical equiva-
lence of two mapped logical functions, provided the consistent variable list. For
example, there are two grounded rules (<= (p1) Func(p2, p3)) and (<= (q1)
Func2(q2, q3)) of two games respectively, px maps qx respectively, then the
problem is checking if Func(x, y) equals Func2(x, y).

For solving this problem, the naive approach that compares the truth tables
of two logical functions takes exponential time. However, the problem can be
transferred to the well-studied boolean satisfiability problem (SAT) to achieve a
state-of-the-art efficiency. For example, testing whether logical functions f1 and
f2 are equivalent can be transferred to testing whether (((not f1) and f2) or
(f1 and (not f2))) is unsatisfiable. By using a SAT solver, the equivalence of
two reasoning functions can be judged. So the remaining work is to verify the
equivalence of all mapped reasoning functions in sequence with the SAT solver.
Only if the verification is passed, the two games are equivalent and the SCGE
σ can be obtained from the isomorphism of ground graphs.

4.4 Complexity

Let n be the number of reasoning functions, l the number of terms in the longest
reasoning function.

For the first phase, the complexity is O(nl), since the cost of grounding
process is linear to the length of results.

The complexity of the second phase is at most NP-complete about n, since
graph isomorphism is a special case of the NP-complete subgraph isomorphism
problem [3].

The bottleneck is the third phase, which costs O(m ∗ n ∗ NP − complete(l)),
where m denotes the number of maps generated by the second phase and NP −
complete(l) is the complexity of SAT problem [3].

The overall complexity is high. However, the approach is more efficient in
practice than in theory.

Space-Consistent Game Equivalence Detection in General Game Playing 175

Table 2. ConnectFour series games tested with their modified versions. Node No. and
Edge No. express the scale of ground graph. Fun is the number of logical functions to be
verified. Bij is the number of bijections generated by Phase 2 with heuristic grouping.
Retry is the number of bijections verified by Phase 3 to find the first equivalence.

Game Phase 1 Node No. Edge No. Phase 2 Fun Bij Retry Phase 3

ConnectFour 0.107 s 217 2093 0.021 s 103 16 7 5.369 s

ConnectFourSuicide 0.100 s 217 2093 0.020 s 103 16 14 19.967 s

ConnectFourLarge 0.302 s 465 4717 0.144 s 223 64 5 8.986 s

ConnectFourLarger 1.841 s 1649 17533 9.322 s 807 1024 7 46.214 s

4.5 Improvements

There are several improvements which can be applied to the GEDA, listed by
order of importance as follows.

Heuristically grouping nodes of ground graph. The number of isomorphisms of
ground graphs can be huge. For example, the number of automorphisms of Tic-
tac-toe’s ground graph is 9!, since all 9 cells of the board are equivalent when dis-
carding the information expressed by reasoning functions. However, the 9 cells
can be grouped into 4 corner-cells, 4 border-cells and 1 center-cell by counting the
numbers they are possible to form a line, which are 3, 2 and 4 respectively. This
dramatically reduces the number of automorphisms to 4!4!1!. In general, analyz-
ing the symmetry of the reasoning functions helps to group the elements of state
space, so as the corresponding nodes of ground graph. Since the structure of rea-
soning function can be arbitrary, it is a heuristic grouping. However, it works for
most occasions, because the symmetric structure is usually used by default.

Caching bad reasoning functions. Mapped reasoning functions have different pos-
sibilities to be equivalent for some reasons such as the different complexities.
Caching the bad reasoning functions helps to prune early during verification.

Simplifying ground graph. Integer-nodes of ground graphs can be removed by
adding a phase after graph mapping to verify the equivalence of utilities. Cor-
responding true- and next-proposition-nodes, legal- and does-proposition-nodes
can be merged respectively. The init-proposition-nodes can be replaced by a
single init-node.

Generating propositional net. Since grounded rules may need exponential space,
it is more efficient to generate a propositional net and dynamically compute
reasoning functions.

5 Evaluation

As introduced in Sect. 3, Tic-tac-toe is equivalent to Number Scrabble. The
different part of Number Scrabble’s rules is provided in Listing 1.2. The auxiliary
propositions defined in Lines 3–4 represent the winning conditions. The goal- and
terminal-propositions are dependent on the winning conditions. The state space

176 H. Zhang et al.

1 (sum15 1 5 9) (sum15 1 6 8) (sum15 2 4 9) (sum15 2 5 8)
2 (sum15 2 6 7) (sum15 3 4 8) (sum15 3 5 7) (sum15 4 5 6)
3 (<= (win x) (sum15 ?a ?b ?c) (true (cell ?a x)) (true (cell ?b x)) (true (cell ?c x)))
4 (<= (win o) (sum15 ?a ?b ?c) (true (cell ?a o)) (true (cell ?b o)) (true (cell ?c o)))
5 (<= (goal xplayer 100) (win x))
6 (<= (goal xplayer 50) (not (win x)) (not (win o)) (not open))
7 (<= (goal xplayer 0) (win o))
8 (<= (goal oplayer 100) (win o))
9 (<= (goal oplayer 50) (not (win x)) (not (win o)) (not open))

10 (<= (goal oplayer 0) (win x))
11 (<= terminal (or (win x) (win o) (not open)))

Listing 1.2. Partial rules of Number Scrabble

consists of (cell [1,9] {x,o,b}) and (control {xplayer,oplayer}), which is consistent
with Tic-tac-toe. Therefore, the GEDA can work on it.

Table 3. Self-mapping numbers of some games. Brute Force enumerates all permu-
tations of the elements of state space. GEDA+ stands for the GEDA with heuristic
grouping. Goal stands for the number of symmetries of a game in nature.

Game Brute force GEDA GEDA+ Goal

Tic-tac-toe 27! 9! 4!4!1! 8

Blocker 48! 16! 4!4!4!4! 4

Breakthrough 128! 2 2 2

Peg jumping 66! 8 8 8

Connect four 96! 8! 2!2!2!2! 2

By the phase of rule grounding, 68 grounded rules are generated for each
game.

In the phase of graph building and mapping, two ground graphs are built.
Each ground graph has 59 nodes with the improvement of graph simplification.
To generate isomorphisms of them, NAUTYv2.5 [6] is applied. As mentioned
above, 9! isomorphisms are found between them, which can be reduced to 4!4!1!2!
by the improvement of nodes grouping. The 2! is caused by the permutation of
the 2 groups with 4 nodes. In fact, enumerating these isomorphisms by an agent
corresponds to repeatedly trying filling the numbers in the cells by human.

For the phase of logical equivalence verifying, MiniSAT [1] is applied as a SAT
solver. Since MiniSAT only accepts inputs in Conjunctive Normal Form (CNF),
Tseitin transformation [10] is used to transfer the logical functions to CNF.

As a result, the equivalence of Tic-tac-toe and Number Scrabble is detected
by the GEDA in 9.73 s on average over 10 experiments, running on a laptop with
an Intel i5 CPU.

Since game equivalence happens rarely in nature, some manual examples are
tested. Four ConnectFour series games are modified with some logical conver-
sions. Each game is tested if it is equivalent with its modified version by the
GEDA with improvements. Table 2 shows the results.

Space-Consistent Game Equivalence Detection in General Game Playing 177

In practice, the number of enumerated bijections primarily determines the
running time of a game equivalence detection approach. Table 3 displays a com-
parison of the enumerated self-mapping numbers of some games using different
approaches, which simulate the bijection numbers between equivalent games.
It reveals that the performance of the GEDA is close to the optimal for some
games, while for some other games it is still unsatisfactory.

Taking into consideration that it usually takes negligible time to reject
inequivalent games, the GEDA has potential to be applied in real applications.

6 Conclusion

This work makes progress toward detecting game equivalence automatically by
an agent. First, it discusses the classification of game equivalence and defines
the SCGE, which covers more complex game equivalences than the previous
works. Second, it proposes the GEDA, which solves the problem of detecting
the SCGE by using a grounded rule graph and transferring the problem to well-
studied problems to achieve state-of-the-art efficiency. It works well for some
small games, while there is still room for further improvement.

This work benefits knowledge transfer between equivalent games, and can be
easily extended to similar games by relaxing some conditions. Based on this work,
solutions which standardize state spaces of equivalent games can be proposed
for space-inconsistent game equivalence detection in the future.

References

1. Een, N., Sörensson, N.: MiniSat: a SAT solver with conflict-clause minimization.
SAT 5 (2005)

2. Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI
competition. AI Mag. 26(2), 62–72 (2005)

3. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
Springer, New York (1972)

4. Kuhlmann, G., Stone, P.: Graph-based domain mapping for transfer learning in
general games. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin,
S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701,
pp. 188–200. Springer, Heidelberg (2007)

5. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: game description language specification (2008)

6. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60,
94–112 (2014)

7. Pell, B.: Strategy generation and evaluation for meta-game playing. Ph.D. thesis,
University of Cambridge (1993)

8. Schiffel, S.: Symmetry detection in general game playing. In: AAAI (2010)
9. Schiffel, S., Thielscher, M.: A multiagent semantics for the game description

language. In: Filipe, J., Fred, A., Sharp, B. (eds.) ICAART 2009. CCIS, vol. 67,
pp. 44–55. Springer, Heidelberg (2010)

10. Tseitin, G.S.: On the complexity of proof in prepositional calculus. Zapiski Nauch-
nykh Seminarov POMI 8, 234–259 (1968)

	Space-Consistent Game Equivalence Detection in General Game Playing
	1 Introduction
	2 General Game Playing
	3 Game Equivalence
	4 Space-Consistent Game Equivalence Detection
	4.1 Rule Grounding
	4.2 Graph Building and Mapping
	4.3 Logical Equivalence Verifying
	4.4 Complexity
	4.5 Improvements

	5 Evaluation
	6 Conclusion
	References

