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Preface

These joint proceedings contain the papers of the Computer Games Workshop (CGW
2015) and the General Intelligence in Game-Playing Agents (GIGA 2015) workshop,
which were both held in Buenos Aires, Argentina. These workshops took place on July
26 and 27, 2015, respectively, in conjunction with the 24th International Conference on
Artificial Intelligence (IJCAI 2015). These two workshops reflect the large interest in
AI research for games.

The Computer and Games Workshop series is an international forum for researchers
interested in all aspects of artificial intelligence (AI) and computer game playing.
Earlier workshops took place in Montpellier, France (2012), Beijing, China (2013), and
Prague, Czech Republic (2014). For the fourth edition of the Computer Games
Workshop, 16 submissions were received in 2015. Each paper was sent to two
reviewers. In the end, 10 papers were accepted for presentation at the workshop, of
which eight made it into these proceedings. The published papers cover a wide range of
topics related to computer games. They collectively discuss eight abstract games:
Chinese checkers, Go Fish, Lost Cities, Morpion Solitaire, Phantom Domineering,
Phantom Go, Settlers of Catan, and Surakarta. Additionally, one paper is on a roguelike
game and one paper is on the Pancake Problem.

The GIGA workshop series has been established to become the major forum for
discussing, presenting, and promoting research on general game playing (GGP). It aims
at building intelligent software agents that can, given the rules of any game, auto-
matically learn a strategy for playing that game at an expert level without any human
intervention. The workshop intends to bring together researchers from subfields of AI
to discuss how best to address the challenges and further advance the state of the art of
general game-playing systems and generic artificial intelligence. Following the inau-
gural GIGA Workshop at IJCAI 2009 in Pasadena (USA), follow-up events took place
at IJCAI 2011 in Barcelona (Spain) and IJCAI 2013 in Beijing (China). This fourth
workshop on General Intelligence in Game-Playing Agents received 11 submissions.
Each paper was sent to two reviewers. In the end, 10 papers were accepted for pre-
sentation at the workshop, of which four made it into these proceedings. The accepted
papers cover topics such as general video game playing, advanced simulation-based
methods, heuristics, and learning.

In all, 44 % of the submitted papers for both workshops were selected for these
proceedings. Here we provide a brief outline of the 12 contributions, in the order in
which they appear in the proceedings. They are divided into two parts: the first eight
belong to the Computer Games Workshop and the last four to the GIGA Workshop.



Computer Games Workshop

“Challenges and Progress on Using Large Lossy Endgame Databases in Chinese
checkers,” written by Nathan Sturtevant, discusses using large endgame databases to
improve the performance of minimax and Monte Carlo tree search (MCTS)-based
agents in Chinese checkers. Several challenges are faced in how to properly integrate
the endgame databases and how to correct errors that occur because of the compression
that is used when storing the endgame data. Experimental results suggest that minimax-
based approaches are able to do a better job of using the endgame data than MCTS
approaches.

“Sequential Halving for Partially Observable Games,” authored by Tom Pepels,
Tristan Cazenave, and Mark Winands, investigates sequential halving as a selection
policy in the following four partially observable games: Go Fish, Lost Cities, Phantom
Domineering, and Phantom Go. Additionally, H-MCTS is studied, which uses
sequential halving at the root of the search tree, and UCB elsewhere. Experimental
results reveal that H-MCTS performs the best in Go Fish, whereas its performance is on
par in Lost Cities and Phantom Domineering. Sequential halving as a flat Monte Carlo
search appears to be the stronger technique in Phantom Go.

“An Experimental Investigation on the Pancake Problem,” by Bruno Bouzy, dis-
cusses the pancake problem. It is an NP-hard problem and linked to the genome
rearrangement problem also called sorting by reversals (SBR). To date, the best the-
oretical R-approximation was 2 with an algorithm, which gives a 1.22 experimental
R-approximation on stacks with a size smaller than 70. In this paper a Monte Carlo
search (MCS) approach with nested levels and specific domain-dependent simulations
is used. The paper shows that MCS is an alternative to iterative deepening depth first
search for sorting large stacks of pancakes. At a given level and with a given number of
polynomial-time domain-dependent simulations, MCS is a polynomial-time algorithm
as well. MCS at level 3 gives a 1.04 experimental R-approximation, which is a
breakthrough. At level 1, MCS solves stacks of size 512 with an experimental
R-approximation value of 1.20.

“485 – A New Upper Bound for Morpion Solitaire,” a joint collaboration by Henryk
Michalewski, Andrzej Nagórko, and Jakub Pawlewicz, shows a new upper bound of
485 moves for the 5T variant of the Morpion Solitaire game. This is achieved by
encoding Morpion 5T rules as a linear program and solving 126,912 instances of this
program on special octagonal boards. To show the correctness of this method, the rules
of the game have been analyzed and the potential of a given position has been used. By
solving continuous-valued relaxations of linear programs on these boards, an upper
bound of 586 moves is obtained. Further analysis of original, not relaxed, mixed-
integer programs leads to an improvement of this bound to 485 moves. However, this is
achieved at a significantly higher computational cost.

“Multi-Agent Retrograde Analysis,” by Tristan Cazenave, proposes a new predator–
prey game. This domain is modeled as a board game where three predators are trying to
capture a prey. Each agent has five possible moves: going up, down, left, right, or
staying in the same location. The game terminates if the prey is on the same location as
a predator or if the prey cannot move to an empty location. Small boards up to 9�9
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have been solved using retrograde analysis. The outcome is that the predator–prey
game is always lost for the prey when there are at least three predators.

“The Surakarta Bot Revealed,” by Mark Winands, presents the ideas behind the
agent SIA, which won the Surakarta tournament at the ICGA Computer Olympiad five
times. The paper first describes SIA’s ab-based variable-depth search mechanism.
Enhancements such as multi-cut forward pruning and realization probability search
improve the agent considerably. Next, features of the static evaluation function are
discussed as well. Experimental results indicate that features, which reward distribution
of the pieces and penalize pieces that clutter together, give a genuine improvement in
the playing strength.

“Learning to Trade in Strategic Board Games,” written by Heriberto Cuayáhuitl,
Simon Keizer, and Oliver Lemon, describes a data-driven approach for automatic
trading in the game of Settlers of Catan. Their experiments are based on data collected
from human players trading in text-based natural language. The performance of
Bayesian networks, conditional random fields, and random forests have been compared
in the task of ranking trading offers, and are evaluated both in an offline setting and
online while playing the game against a rule-based baseline. Experimental results show
that agents trained from data from average human players can outperform rule-based
trading behavior, and that the random forest model achieves the best results.

“Argumentative AI Director Using Defeasible Logic Programming,” a joint effort by
Ramiro Agis, Andrea Cohen, and Diego Martínez, presents a novel implementation of
an AI director that uses argumentation techniques to decide dynamic adaptations in the
level generation of a roguelike game called HermitArg. The architecture of the game
introduces smart items with defeasible information to be analyzed in a dialectical
process.

GIGA Workshop

“On the Cross-Domain Reusability of Neural Modules for General Video Game
Playing,” written by Alex Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto
Miikkulainen, considers a general approach to knowledge transfer in which an agent
learning with a neural network adapts how it reuses existing networks as it learns in a
new domain. This approach is domain-agnostic and requires no prior assumptions
about the nature of task relatedness or mappings. The method’s performance and
applicability are analyzed in high-dimensional Atari 2600 general video game playing.

“The GRL System: Learning Board Game Rules with Piece-Move Interactions,”
written by Peter Gregory, Henrique Coli Schumann, Yngvi Björnsson, and Stephan
Schiffel, studies the problem of learning formal models of the rules of board games,
using as input only example sequences of the moves made in playing those games. This
work is distinguished from previous work in this area in that the interactions are learned
between the pieces in the games. A previous game rule acquisition system is supple-
mented by allowing pieces to be added and removed from the board during play, and
using a planning domain model acquisition system to encode the relationships between
the pieces that interact during a move.
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“Creating Action Heuristics for General Game Playing Agents,” authored by Michal
Trutman and Stephan Schiffel, investigates an approach that learns online heuristics
that guide the simulations of MCTS in GGP. This approach generates heuristics that
estimate the usefulness of actions by analyzing the game rules as opposed to the
simulation results. Experimental results show the potential of this approach.

“Space-Consistent Game Equivalence Detection in General Game Playing,” by
Haifeng Zhang, Dangyi Liu, and Wenxin Li, discusses that GGP agents can efficiently
enhance their intelligence by taking advantage of experience from past games. The
authors argue that it is necessary for agents to detect equivalence between games. This
paper defines game equivalence formally and concentrates on a specific scale, space-
consistent game equivalence (SCGE). To detect SCGE, an approach is proposed
mainly reducing the complex problem to some well-studied problems. An evaluation
of the approach is performed at the end.

These proceedings would not have been produced without the help of many persons.
In particular, we would like to mention the authors and reviewers for their
help. Moreover, the organizers of IJCAI 2015 contributed substantially by bringing the
researchers together.

March 2016 Tristan Cazenave
Mark H.M. Winands

Stefan Edelkamp
Stephan Schiffel

Michael Thielscher
Julian Togelius
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Challenges and Progress on Using Large Lossy
Endgame Databases in Chinese Checkers

Nathan R. Sturtevant(B)

Department of Computer Science, University of Denver, Denver, CO, USA
sturtevant@cs.du.edu

Abstract. A common evaluation function for playing Chinese Checkers
with two or more players has been the single-agent distance across the
board. This is an abstraction of a perfect heuristic, because it ignores the
interactions between the players in the game. Previous work has studied
these heuristics for smaller versions of the game, including 6-piece data
for a board with 49 locations and 81 locations which have 13.98 million
and 324.5 million combinations respectively. The single-agent solution
to the full game of Chinese Checkers has 81 locations and 10 pieces per
player. This results in 1.88 trillion possible positions and is stored using
500 GB of disk space. In this paper we report results from a preliminary
study on how to best use the data to improve the play of a Chinese
Checkers program.

1 Introduction

Endgame databases have been a key component of game-playing programs in
games like Checkers [23] and Chess [15], where they contain precise information
that is easier to pre-compute than it is to summarize in heuristics or machine-
tuned evaluation functions. Endgame databases are most useful when a game
converges to simpler positions that may take a long time to resolve. In this case,
the size of the endgame databases are small relative to the size of the game, and
the computation associated with the endgame database would be non-trivial to
reproduce at runtime. For instance, work on 7-piece chess endgame databases
has discovered a position where 549 moves are required for mate [1]. These lines
of play would not be discovered by programs that just attempt to find the best
move from the same position, as the depth of search required is far beyond what
could be found by normal time controls during a competitive game. Similarly,
work on Checkers databases helped prove that a well-studied position from 1800,
once assumed to be a win, was actually a draw [22]. Databases have also been
successfully built for games like Chinese Chess [7].

Endgame databases are not universally useful, however, particularly when
there are many possible endgame positions and when the resolution of each posi-
tion is simple. In games such as card games, for example, endgame databases are
essentially useless. There are 52!

44!24 = 1.9 trillion combinations of two cards that
4 players can have at the end of a trick-based card game (assuming a standard
52 card deck), but there are at most 16 ways to play out each possible hand.
c© Springer International Publishing Switzerland 2016
T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-39402-2 1



4 N.R. Sturtevant

In this case it will likely be faster to compute the result at runtime than to
look the result up in the endgame database.

The game of Chinese Checkers is unique because the game decomposes into a
single-agent game as it nears completion. This means that a single-agent heuristic
can be used as an endgame database. That is, we can solve the single-agent
version of the game to provide perfect distances to the end of the game once
players’ pieces have separated. But, there is also significant information about
piece formation encoded in a full single-agent solution that is helpful for playing
the game before it decomposes into a single agent game [25].

Work in the game of Chinese Checkers has often used a smaller board con-
taining 49 locations, instead of the more common 81 location board, in order to
facilitate the use of the single-agent solution both as a heuristic during search
and as an endgame database [16,20,25]. We recently co-authored a study [18]
looking at larger games, in particular the 81 location board with 6 pieces. But,
nobody has studied the use of endgame databases in the full game with 81
locations and 10 pieces per player.

We recently built the single-agent solution [24] with 1.88 trillion positions,
and requiring 500 GB of disk storage, far more than is found on typical machines.
Furthermore, to save space, the data is stored modulo 15, using 4 bits per state.
This means that additional work must be done to accurately recover the true
distance of any given state. If there are errors in the recovery process, queries to
the database may occasionally return incorrect values.

The goal of this paper is to study initial approaches for using this data to
improve performance in Chinese Checkers. We use the data to create players
based on minimax and MCTS search, comparing performance and uses of the
data. We find that accuracy in retrieving values from the database is a primary
concern, and that more work is needed to ensure accuracy of the database values.
Preliminary experimental results suggest that minimax-based players perform
better than MCTS-based players with using large endgame databases.

2 Background

In this section we cover a few important background details for this paper,
including information about the game of Chinese Checkers and the algorithms
that we will use to play the game.

2.1 Chinese Checkers

Chinese Checkers is a game played by 2–6 players on a star-shaped board shown
in Fig. 1(a). In the two-player version of the game the players start with their
pieces on the top and bottom of the board. The goal is for the players to get
their pieces to the other side of the board. Legal movement is shown in Fig. 1(b).
Pieces can either move in steps to one of the 6 adjacent locations, such as from
location (c) to (d), or they can move in jumps, as shown by the move from (e) to
(f). Jumps can only be taken when a piece is adjacent to another piece, and
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the location opposite to the adjacent piece is free; jumps can be taken over any
piece regardless of ownership. Jumps can also be chained together, so the piece
at (e) can move directly to (g) by taking two jumps as part of the same turn.
Note that a variation on these jumping rules is sometimes played where pieces
can jump more than one space at a time across the board [28].

Fig. 1. Chinese Checkers board (a) and legal moves (b).

Most rules that we have seen for the game are ambiguous about some options
for play, so we have introduced several conventions that simplify the game for
computer play. First, we consider the game to be won by a player if a player’s
goal area is filled with pieces and at least one of them belongs to that player.
This prevents a player from blocking their opponent’s goal to prevent a win. Fur-
thermore, if a state in the game is repeated, we consider this a loss by repetition
for the player that moved into the repeated state.

Single Agent Chinese Checkers: The single-agent version of Chinese Check-
ers has 81!

10!71! = 1, 878, 392, 407, 320 possible states. The Chinese Checkers board
is symmetric around the x (horizontal) axis, so we can use the same single-agent
solution for both players by flipping the board around the horizontally axis. The
board is also symmetric around the y (vertical) axis, so the number of states
which must be stored can be reduced. We use a quick, but slightly imperfect,
scheme for computing symmetry: A state is not stored if (1) the first piece from
the top of the board is on the right hand side of the board (excluding the center
line) or (2) the first piece is on the center line of the board and the second piece
is on the right hand side of the board. Using this scheme the number of stored
states can be reduced to 1,072,763,999,648. (A perfect scheme would consider
all pieces instead of just the first two; it would be slower to compute but use
slightly less space.)
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We use a write-minimizing breadth-first search [24] to generate and store the
distance from each of these states to the goal state.1 To save space and make the
search more efficient we store the solution using only 4 bits per entry. This results
in 16 values per entry, but one value is needed to mark unseen states during the
search, so the resulting data stores the depth of each state modulo 15. As a
result, states at depth 0 and 15 both have the same value in the database: 0. We
discuss the consequences of this compression later in the paper.

In Fig. 2(a) we show, given the location of the first piece on the board, the size
of the data needed to store the single-agent distances for all board configurations
with a given first piece location. The locations are labeled in Fig. 2(b) - the top
of the board is location 0, and the middle row starts with location 36.

The full data, with the first piece in position 0, requires 500 GB to store. The
position in Fig. 2(c) has the first piece in position 1; if we only lookup positions
with the first piece in location 1 or higher, we will only need 433 GB of storage.
The board in Fig. 2(d) has the first piece in position 17. If we want to lookup
all positions with the first piece in position 17 or higher, we need to store the
data for positions 15 and higher, requiring 61.5 GB. This is due to the symmetry
used for lookups: Our symmetry rules prevent us from storing positions where
the first piece is in location 20. Instead, a symmetric lookup is used; flipping
such a position around the y-axis moves this piece into location 15. Thus, we
always store full rows of the single-agent data to ensure that symmetric lookups
are always possible.

Fig. 2. The size of the single-agent data for various points on the board.

2.2 Minimax and Alpha-Beta Pruning

Minimax is the basic algorithm that was used to build expert-level programs for
games like Chess [5] and Checkers [22]. It relies on an evaluation function that
1 Due to symmetry either the start or the goal state can be used, although the choice

influences whether subsets of data can be efficiently loaded.
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maps states to numerical values which estimate the true value of a state. A large
number of enhancements have been proposed to minimax search to improve
performance [21].

We build a basic minimax program that is enhanced with iterative deepening,
alpha-beta pruning, the history heuristic and transposition tables. The base
evaluation function is just the distance of a player’s pieces across the board,
but we have also used TD(λ) [27] with linear regression to learn an evaluation
function. A complete description of the details of our approach is outside the
scope of this paper, but it is worth noting that this is not the first use of learning
in Chinese Checkers, although it is the first use of TD(λ) that we could find in
the literature. Samadi et al. report using learning in their program without
further detail [19]. Hutton [11] trained genetic algorithms on training data for
mid-game play.

2.3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is an alternate to minimax which has been
used successfully in a broad range of other games such as Go [9], Hex [10],
Hearts [26], and Amazons [14]. MCTS algorithms build an in-memory tree and
then sample the leaves of the tree (e.g. with random playouts to the end of the
game) as an alternate to evaluating states with an evaluation function. The tree
grows with each playout, and is non-uniformly biased towards better parts of
the search space. In many cases a good evaluation function for moves is needed,
to ensure that playouts are reasonable and finite. Similarly with minimax, there
are numerous enhancements that have been proposed for MCTS [4]. But, unlike
minimax enhancements, it is still an open question of which enhancements are
redundant relative to each other.

The primary enhancement we use here is forward pruning [14] as well as
dynamic early termination [3]. We also use epsilon-greedy playouts [26] and
enhanced playout policies to improve play.

We have experimented with slowing the growth of the MCTS tree [18], with
initializing states with offline values [8], but current results are inconclusive.
Other approaches that would be worth considering in the future include implicit
minimax backups [13] and progressive bias [6].

3 Lossy Chinese Checkers Endgame Database

As mentioned previously, the single-agent data for Chinese Checkers is stored
modulo 15, but the maximum distance between any two states in the single-
agent Chinese Checkers state space is 33 moves [24]. The majority of positions
(99.21 %) in the game are between 15 and 29 moves from the goal, but since every
game terminates with a position at depth 0, a significant portion of positions
seen in practice will be between 0 and 14 moves from the goal.

This creates the need for a classifier that will take a state and the stored
depth as input and return the true distance to the goal as output. A simple
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Fig. 3. Chinese Checkers board at depth 18 which must be classified.

lower bound on the number of moves to reach the goal can be computed by
(1) the number of pieces that are not yet in the goal area and (2) the number
of blank horizontal lines between the goal area and the farthest piece from the
goal. This is related to observations made by Bell [2], modified for our purposes
here. In particular, it is impossible for the furthest back piece on the board to
skip rows when moving towards the goal in the single-agent game, since it either
must step through each row between it and the goal, or it will jump over another
piece en route to the goal.

Unfortunately, this estimate alone is not enough for a perfect predictor. Other
factors such as non-adjacent pieces can be used to improve the classifier, but not
with 100 % accuracy. We show a sample board that must be classified in Fig. 3.
In this board position there are 8 pieces outside of the goal area. Furthermore,
there are 8 empty rows between the goal and the furthest removed piece. Thus,
no solution can exist which does not take at least 16 moves to reach the goal. The
single-agent solution data says this position is at depth 3. Given the lower bound,
the state is either 18 or 33 moves from the goal. In this case, the lower bound is
nearly perfect. Our classifier currently mis-classifies this position, thinking that
it will take more work to get the pieces split on either side of the board (just
outside the goal) into the goal area.

To measure the accuracy of our predictor we sampled every 100,000 states
(approximately) for the first 64.112 % of the full state space. We looked up the
predicted depth of each state as well as the predicted depth of its neighbors
to determine whether the prediction accuracy is correct. If a state and one or
more of its neighbors differ by more than 1 step, the predictor must be incorrect.
Overall, we looked at approximately 10 million states and their neighbors. When
there is an error, on average 3.8 neighbors of the same parent show the error.
Overall, 1 in 1800 parents has a child with a heuristic error. This is very small
as a percentage, but in a search that expands millions of nodes, it is very likely
that the search will encounter nodes with incorrect depth values.
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4 Combining with Alpha-Beta Search

The first player we create is a traditional player using minimax with alpha-beta
pruning [17]. This player is enhanced using iterative deepening, transposition
tables and the history heuristic [21]. Moves are partially randomized to avoid
identical play on repeated games. Only forward moves are allowed, as this sig-
nificantly improves performance over considering all possible moves.

We implement two evaluation functions for this player. In the first each player
just attempts to minimize the number of rows between their pieces and the goal.
The second evaluation function is trained with self-play using linear regression
and TD(λ). This evaluation function learns a weight for each location on the
board for each player; it is strictly more expressive than the simple distance eval-
uation, since the distance evaluation function can be implemented by weighting
each location according to its distance to the goal. This approach learns a total
of 162 weights, one for each position on the board for each player.

We then integrate the single-agent data as an endgame database into this
code base. It is important to note a key difference between endgame databases
here and in traditional programs. Because we can use the single-agent data
both as a heuristic and as an endgame database, we should not terminate the
search immediately once a lookup is available. If the players’ pieces are not
adequately separated, the single-agent data is only a heuristic. This data gets
more accurate the closer we get to the end of the game. Thus, using it at the
end of a deeper search will improve performance. In practice, we don’t have
to modify our program to use the exact values when the game decomposes; it
does not hurt the minimax search to lookahead further than the beginning of
the endgame database, because the result of the minimax computation stays the
same.

4.1 Experimental Results

We experiment primarily with the 1.1 GB database beginning at location 36 and
the 61.5 GB database beginning at location 15. We have a 16-core 2.6 GHz AMD
Opteron server with 64 GB of RAM, so this is the largest database we can load
into memory. At leaves of the tree, if both players are able to use the database
lookup, then difference in distances for each player is used as the evaluation
function. If only one or neither player is able to use the database lookup, then
both players use the regular evaluation function.

We present the results in Table 1. M indicates that the player is using the
minimax algorithm to play. We use subscripts to indicate whether the database is
being used as part of the evaluation function. The number used as the subscript
is the first piece in the loaded database. Superscripts are used to indicate the
evaluation function that is used. T for the trained evaluation function, and D
for the distance-based evaluation function. So, the player labeled MT

36 is using
minimax and a trained evaluation function in conjunction with the endgame
database starting at location 36 on the board.
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Each set of players is matched up 200 times - 100 times as the first player
and 100 times as the second player. In experimental results we refer to players
as Player 1 and Player 2 only for the simplicity of distinguishing player types
and win rates, not for indicating which player went first. We record and report
the win/loss percentage for each player. One player is better than another with
95 % confidence if it wins 114 games (57 %); 118 games (59 %) are needed for
99 % confidence. Players are allowed 1 s per move. While the exact search depth
depends on the player, the average search depth is over 6 ply in practice. All
further experiments use this same setup.

Table 1. Minimax win rates.

Player 1 Player 2 P1 Win % P2 Win %

MT MD 76.0 % 24.0 %

MT
36 MT 63.0 % 37.0 %

MD
36 MD 67.5 % 32.5 %

MT
36 MD

36 80.0 % 20.0 %

MD
15 MD 18.5 % 81.5 %

MD
15* MD 52.5 % 47.5 %

MD
15* MD

36 62.5 % 37.5 %

In the first half of the table we compare results using the database starting at
piece location 36. The trained player soundly beats the regular distance player2,
both players are significantly stronger with the database than without, and the
trained player beats the distance player by a significant margin when using
the database. However, when the larger database is used (MD

15 vs MD), the
performance drops significantly. We hypothesized that this was the result of
the errors in computing exact distances in the database: The games that are
won by this player exhibit strong play. In games that are lost, however, the
player with the database exhibits pathological play: the program moves to a
seemingly random configuration of the board and then does its best to preserve
that configuration. This is clearly a result of imperfect recovery of distances from
the database.

To measure this, we implemented an alternate version of minimax that tracks
the database values during play by looking the distance up from disk after every
move by each player. Since the change in the optimal number of moves to the
goal between a parent and child state (i.e. from applying a single action) cannot
be large,3 we use this to maintain more accurate distance estimates. The single-
agent distance of the current board configuration for each player is updated incre-
mentally through the game, starting at the optimal single-agent distance of 27.
2 In our original implementation the algorithms were indistinguishable. Improving the

efficiency of our TD learning, by taking advantage of the binary features, significantly
improved the performance of the TD player.

3 It can change by more than one because we may jump over an opponent’s piece, which
is not accounted for in the single-agent data.
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We assume that the distance from two adjacent states to the goal will never
increase by more than 5 or decrease by less than 10.

It is too expensive to perform a disk access for every node in the search tree,
but once the start position for each player is within the in-memory database,
these distances can also be incrementally maintained within the minimax tree
during search. Thus, at the leaves of the tree, accurate distances can be used.
The player that uses this improved distance estimation is in the last two line of
Table 1 - MD

15*. When played against a regular minimax player, this program is
not significantly stronger than not using the databases. However, when played
against a player using the small endgame databases, the program wins 62.5 % of
games. Analysis of the games indicates that there are likely still small errors in
the database distance lookups, as we have found positions where the program
does not take clearly winning moves. But, this data point clearly indicates that
errors in retrieving accurate endgame data are the reason for the poor play, since
improving this accuracy significantly improves play.

We are working to build better classifiers that will improve the accuracy in
estimating true distances from the database given the modulo distance.

5 Combining with MCTS

Next we integrate the endgame data into a MCTS approach. Our MCTS player
is based on UCT [12]. We use the UCB1 rule to select the best node in the
tree for exploration. Sampling outside of the tree is done using epsilon-greedy
playouts [26]. Playouts are cutoff at depth 10, where a static evaluation function
is used to evaluate the state [14]. (Experiments with different cutoff depths
indicated that this depth produced robust performance across other parameter
settings.) Like in our minimax program, we restrict the program to only taking
forward moves. Our playouts are also biased – unless the epsilon-greedy rule
takes precedence (ε = 0.05), the largest forward move is always taken during
each playout step.

We first began by replacing the heuristic evaluation at depth 10 with the
value from the database, assuming that both players’ lookups were available
in the database. Although this basic approach seemed like it should improve
performance, we needed to make a few changes to make this successful. First,
we immediately cut off a playout once both players’ pieces have separated so that
a perfect evaluation is possible. Second, we use the database for the evaluation
function if it is available for both players, otherwise we use the basic heuristic
evaluation. Third, we must be more careful to account for the player to move
when performing evaluations, since the player to move at the leaves of the tree
is non-uniform. If there is a tie in distances to the goal, the player with the first
move will win.

This first rule is particular important. Without it, our program plays poorly
despite a perfect evaluation function. It appears that this occurs primarily
because the random playouts corrupt the perfect leaf values and because it takes
some time for the MCTS tree to converge its playout values to the perfect val-
ues after every move is sampled. While the need to immediately use the perfect
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values once they are available seems obvious, this is not needed in the minimax
program. Similarly, because all leaf nodes are at the same depth, there is no
need to account for the player to move in the evaluation function of a minimax
player, since the bonus would be added equally to all nodes.

Besides the approach just described, there are several other ways to use the
endgame databases in MCTS: Similar to our previous analysis [18], performing
random playouts until both players separate to get a more accurate evaluation
function did not work well in practice. Also, using the data directly from disk is
too slow and results in very poor performance, even though we have the data on
a SSD for fast access. We experimented with other playout depths, and distances
in the range 10–20 provided the best performance. Slowing the growth of the
MCTS tree by growing the tree more slowly as done in our previous work [18]
did not have a significant impact on performance.

5.1 Experimental Results

We now compare the performance of MCTS (UCT) implementations using the
single-agent database as an evaluation function. Results are in Table 2. U des-
ignates a player using UCT. As before, the subscript indicates the first piece in
the endgame database that is used by the player during play. In this experiment
all players use the distance-based evaluation as the base evaluation function. As
before, 1 s is allowed for each move.

Table 2. MCTS/UCT win rates.

Player 1 Player 2 P1 Win % P2 Win %

UD
36 UD 49.0 % 51.0 %

UD
28 UD

36 57.0 % 43.0 %

UD
15 UD 74.5 % 25.5 %

UD
15 UD

36 63.5 % 36.5 %

In the first line we see that adding the endgame database starting at position
36 does not significantly improve or degrade performance over the basic player.
But, using the endgame database starting at piece 28 wins over the endgame
database starting at piece 36. Similarly, using the endgame database starting at
15 wins significantly over just using the distance evaluation and over the database
starting at piece 36. We did not compare the database starting at location 15
with the database starting at location 28 due to memory constraints, although
sharing the database between players would allow this comparison.

Our results suggest that MCTS does a better job than minimax of tolerating
errors in the single-agent data, as performance improves as we use the larger
databases, even without the correction procedures needed for minimax. However,
we need to be more careful about when and how we use the endgame data in
MCTS.
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6 Comparing Minimax and MCTS

Given that we have successfully improved the performance of our two indepen-
dent approaches using endgame databases, we now compare the performance
across techniques. We begin with a baseline comparison without using endgame
databases, shown in the top two lines of Table 3.

Table 3. Minimax versus UCT.

Player 1 Player 2 P1 Win % P2 Win %

UD MD 77.5 % 22.5 %

UD MT 63.0 % 37.0 %

MD
36 UD

36 60.5 % 39.5 %

MD
36 UD

15 90.5 % 9.5 %

Without the endgame databases, UCT beats both the regular and trained min-
imax player by a significant margin. But, as shown in the bottom half of the table,
when minimax is given the database, it outperforms UCT by a significant margin.

Furthermore, the UCT player with the database starting at location 15 does
worse than the player with the database at location 36 against minimax. This
result suggests that the UCT player does well against other UCT players, but
does not necessarily do well against other player types. We expect that improving
the accuracy of the UCT endgame estimates could further improve performance.

But, we also note that one of the strengths of UCT is that it gets long-term
strategic information about a game from its playouts. Adding endgame databases
seems to duplicate this strength. Minimax, on the other hand, does well in local
tactics because of the full search, but misses out on longer-term strategies. Thus,
endgame databases seem to have the potential to complement the performance
of minimax more than UCT.

Further experiments and implementations will be needed to understand this
difference in performance more deeply and to clearly isolate the factors that
influence performance with endgame databases.

We note that these results are different than in our preliminary study, where
minimax performed worse that UCT [18]. There are several notable differences
between this work. First, our minimax implementation here is much stronger
than in previous work. Second, we are using more pieces on the board, where
there is more congestion. Third, we are using better time controls for our exper-
iments, using only time instead of node counts. Finally, we have error in our
database lookups in this work, while our previous work had no error.

7 Conclusions and Future Work

This paper describes the first work in using large endgame databases in Chinese
Checkers. Several challenges are faced in how to properly integrate the endgame
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databases and how to correct errors that occur because of the compression that
is used when storing the endgame data. Currently, minimax-based approaches
are able to do a better job of using the endgame data than MCTS approaches,
but with further study this could still change.

The addition of opening books and further search enhancements could improve
either player, particularly since the programs do not take the moves that advance
their pieces most quickly across the board at the beginning of the game. (The
endgame database can be used for this purpose as an opening book as well.)

Improving our classifier is also an important step to improving performance.
Currently our classifier uses relatively simple rules to estimate the true distance
to the goal given the modulo distance. Using linear or logistic regression to train
a classifier could result in better performance. We should also be able to enhance
our UCT player to improve its own estimates during playouts.

Another important step is to measure the robustness of both minimax and
MCTS to errors in the evaluation function to see which approach is more tolerant
to the type of errors that occur in our evaluation function.

Finally, we need to understand more deeply why our UCT player is able to
beat other UCT players by a significant margin, but not minimax players. This
is related to the quality of our classifier, but also to a fundamental understanding
of the strengths of each approach.

Acknowledgments. This paper benefited from research by a summer student, Evan
Boucher, who worked on the problem of determining the true distance of a state from
the goal given the modulo distance.
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Abstract. This paper investigates Sequential Halving as a selection pol-
icy in the following four partially observable games: Go Fish, Lost Cities,
Phantom Domineering, and Phantom Go. Additionally, H-MCTS is stud-
ied, which uses Sequential Halving at the root of the search tree, and
UCB elsewhere. Experimental results reveal that H-MCTS performs the
best in Go Fish, whereas its performance is on par in Lost Cities and
Phantom Domineering. Sequential Halving as a flat Monte-Carlo Search
appears to be the stronger technique in Phantom Go.

1 Introduction

Partially observable games introduce the complexity of uncertainty in game-
play. In partially observable games, some element of the game is not directly
observable. The unknown element can be introduced by hiding certain parts of
the current state to the player (e.g., hiding the rank of piece in Stratego), in game
theory this is also called imperfect information. Other than in fully observable
games, we cannot directly search for sequences of actions leading to promising
moves using the partially visible state. In this paper we discuss four different
partially observable games: Go Fish and Lost Cities, which are card games with
imperfect information, and the so-called phantom games: Phantom Domineering
and Phantom Go.

Different approaches have been suggested for handling partial observability in
Monte-Carlo Tree Search (MCTS) in such domains. Such as Determinized UCT
[13] where a random game state is sampled before the search (i.e., determinized),
and multiple trees are maintained per determinization. The recently introduced
Information Set MCTS [13] maintains information sets of states reachable in
the current determinization in the tree, as such re-using statistics over multiple
determinizations in the tree.

In this paper we investigate the effects of using Sequential Halving [16] as a
selection policy in partially observable games. We continue to study the Hybrid
MCTS [20] algorithm, introduced as a method of minimizing simple and cumu-
lative regret simultaneously during search.

c© Springer International Publishing Switzerland 2016
T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 16–29, 2016.
DOI: 10.1007/978-3-319-39402-2 2
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The paper is structured as follows. First, in Sect. 2, we give a brief overview
of MCTS. Next, in Sect. 3 we discuss Sequential Halving, and how it may be
applied to MCTS in partially observable games. After this we describe the test
domains in Sect. 4. Finally, we show the experimental results in Sect. 5, and
discuss our conclusions and directions for future research in Sects. 6 and 7.

2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a best-first search method based on random
sampling by Monte-Carlo simulations of the state space of a domain [12,17]. In
game play, this means that decisions are made based on the results of randomly
simulated play-outs. MCTS has been successfully applied to various turn-based
games such as Go [22], Lines of Action [26], and Hex [1]. Moreover, MCTS has
been used for agents playing real-time games such as the Physical Traveling
Salesman [21], real-time strategy games [4], and Ms Pac-Man [19], but also in
real-life domains such as optimization, scheduling, and security [6].

In MCTS, a tree is built incrementally over time, which maintains statistics
at each node corresponding to the rewards collected at those nodes and number
of times they have been visited. The root of this tree corresponds to the current
position. MCTS performs iteratively simulations until a computational threshold
is reached, i.e., a set number of simulations, an upper limit on memory usage,
or a time constraint.

Each MCTS simulation consists of two main steps, (1) the selection step,
where moves are selected and played inside the tree according to the selection
policy until a leaf is expanded, and (2) the play-out, in which moves are played
according to a simulation policy, outside the tree. At the end of each play-out
a terminal state is reached and the result is back-propagated along the selected
path in the tree from the expanded leaf to the root.

2.1 UCT

During the selection step, a policy is required to explore the tree to decide on
promising options. For this reason, the Upper Confidence Bound applied to Trees
(UCT) [17] was derived from the UCB1 [3] policy. In UCT, each node is treated
as a multi-armed bandit problem whose arms are the moves that lead to different
child nodes. UCT balances the exploitation of rewarding nodes whilst allowing
exploration of lesser visited nodes. Consider a node p with children I(p), then
the policy determining which child i to select is defined as:

i∗ = argmaxi∈I(p)

{
vi + C

√
ln np

ni

}
, (1)

where vi is the score of the child i based on the average result of simulations
that visited it, np and ni are the visit counts of the current node and its child,
respectively. C is the exploration constant to tune. UCT is applied when the
visit count of p is above a threshold T , otherwise a child is selected at random.
UCB1 and consequently, UCT incorporate both exploitation and exploration.
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Fig. 1. Example of three determinizations within a single tree. The selected deter-
minization is 2. All unreachable nodes in determinization 2 will not be selected.

2.2 MCTS in Partially Observable Games

To deal with games having imperfect information, determinization can be applied
in the MCTS engine. The principle behind determinization is that, at the start
of each simulation at the root, the hidden information is ‘filled in’, ensuring it
is consistent with the history of the current match.

Determinization has been called “averaging over clairvoyance” [23], where
players never try to hide or gain information, because in each determinization,
all information is already available. Despite these shortcomings, it has produced
strong results in the past, for instance in Monte-Carlo engines for the trick-based
card game Bridge [15], the card game Skat [8], Scrabble [24], and Phantom Go [9].

Determinization in the MCTS framework has been applied in games such as
Scotland Yard [18] and Lord of the Rings: The Confrontation [13]. It works as
follows. For each MCTS simulation starting at the root the missing information
is filled in a random manner. The determinization is used throughout the whole
simulation. Next, there are two approaches to build and traverse the search tree.

The first approach is by generating a separate tree for each determinization
[13]. After selecting a determinization at the root node, the corresponding tree
is traversed. Based on majority voting [18] the final move can be selected. Each
candidate move receives one vote from each tree where it is the move that was
played most often. The candidate move with the highest number of votes is
selected as the best move. If more moves are tied, the move with the highest
number of visits over all trees is selected. The concept of separate-tree deter-
minization is similar to root parallelization.

The second approach is using single-tree determinization [11,13,18]. When
generating the tree, all possible moves from all possible determinizations are
generated. When traversing the tree, only the moves consistent with the current
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determinization are considered. An example is given in Fig. 1. The advantage of
this technique is that information is shared between different determinizations,
increasing the amount of usable information. This type of determinization is also
named Single-Observer Information Set Monte-Carlo Tree Search [13].

3 Sequential Halving and MCTS in Partially
Observable Games

In this section we describe our approach to applying Hybrid MCTS [20]
(H-MCTS) to partially observable games. H-MCTS is based on the concept
of minimizing simple regret near the root, and cumulative regret in the rest of
the tree. Simple regret is defined as the regret of not recommending the optimal
move. Whereas cumulative regret is the sum over the regret of having selected
suboptimal moves during sampling.

In their analysis of the links between simple and cumulative regret in multi-
armed bandits, Bubeck et al. [7] found that upper bounds on cumulative regret
lead to lower bounds on simple regret, and that the smaller the upper bound on
the cumulative regret, the higher the lower bound on simple regret, regardless of
the recommendation policy, i.e., the smaller the cumulative regret, the larger the
simple regret. As such, no policy can give an optimal guarantee on both simple
and cumulative regret at the same time. Since UCB gives an optimal upper
bound on cumulative regret, it cannot also provide optimal lower bounds on
simple regret. Therefore, a combination of different regret minimizing selection
methods in the same tree is used in H-MCTS.

This section is structured as follows, first we discuss Sequential Halving,
a novel simple regret minimizing algorithm for multi-armed bandits, in Sub-
sect. 3.1. Next, in Subsect. 3.2 we discuss how a hybrid search technique may be
used in partially observable games.

3.1 Sequential Halving

Non-exploiting selection policies have been proposed to decrease simple regret
at high rates in multi-armed bandits. Given that UCB1 [3] has an optimal rate
of cumulative regret convergence, and the conflicting limits on the bounds on
the regret types shown in [7], policies that have a higher rate of exploration than
UCB1 are expected to have better bounds on simple regret. Sequential Halving
(SH) [16] is a novel, pure exploration technique developed for minimizing simple
regret in the multi-armed bandit (MAB) problem.

In many problems there are only one or two good decisions to be identified,
this means that when using a pure exploration technique, a potentially large
portion of the allocated budget is spent sampling suboptimal arms. Therefore,
an efficient policy is required to ensure that inferior arms are not selected as
often as arms with a high reward. Successive Rejects [2] was the first algorithm
to show a high rate of decrease in simple regret. It works by dividing the total
computational budget into distinct rounds. After each round, the single worst
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Algorithm 1. Sequential Halving [16].
Input: total budget T , K arms
Output: recommendation JT

1 S0 ← {1, . . . , K}, B ← �log2 K� − 1

2 for k=0 to B do

3 sample each arm i ∈ Sk, nk =
⌊

T
|Sk|�log2 |S|�

⌋
times

4 update the average reward of each arm based on the rewards
5 Sk+1 ← the �|Sk|/2� arms from Sk with the best average
6 return the single element of SB

arm is removed from selection, and the algorithm is continued on the reduced
subset of arms. Sequential Halving [16], was later introduced as an alternative
to Successive Rejects, offering better performance in large-scale MAB problems.

SH divides search time into distinct rounds, during each of which, arms are
sampled uniformly. After each round, the empirically worst half of the remaining
arms are removed until a single one remains. The rounds are equally distributed
such that each round is allocated approximately the same number of trials (bud-
get), but with smaller subset of available arms to sample. SH is detailed in
Algorithm 1.

3.2 Hybrid MCTS for Partially Observable Games

Hybrid MCTS (H-MCTS) has been proposed by Pepels et al. in [20]. The
technique uses recursive Sequential Halving, or SHOT [10] to minimize sim-
ple regret near the root as depicted in Fig. 2. The hybrid technique has shown
to improve performance in several domains, including Amazons, Atari Go and
Breakthrough. Previous algorithms that use MCTS with simple regret minimiz-
ing selection methods showed similar improvements in recommended moves in
Markov Decision Processes [14,25].

In this paper we apply H-MCTS to partially observable games. The problem
with these domains is that, when using multiple determinizations during search,
revisiting nodes may result in different playable moves. This is not a problem
when using selection methods such as UCT, which are greedy and select moves
based on the current statistics. However, because SH is a uniform exploration
method, in order to guarantee its lower bound on simple regret it must be able to
revisit the same node a predetermined number of times. In other words, available
moves should not change in between visits of the algorithm, or its specifically
designed budget allocation is no longer valid.

In all partially observable games, the current player always has knowledge
over the current set of moves that he can play given a fully observable deter-
minization. Therefore, at the root of the search tree, moves are consistent
between visits. As such, SH can be used to uniformly explore moves at the
root without problems. When using multiple determinizations in a single tree,
as in IS-MCTS, however, it is no longer possible to use SH deeper in the tree.
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Fig. 2. Example rounds of H-MCTS with a budget limit B = 150. Sequential Halving
is applied only at the root. On all other plies, UCT in the form of IS-MCTS is applied.

Each time a node is visited it may have a different subset of children based on
the determinization (as depicted in Fig. 1). However, when using determinized
UCT with a finite set of individual trees per determinization, SH can be used to
select nodes deeper than the root, such an investigation is a possible direction
for future research.

The approach is detailed in Algorithm2. At the root, budget is allocated
according to SH. For each sample, the appropriate IS-MCTS implementation
can be used [13]. For this paper, based on the test domains (Sect. 4), we use
single observer IS-MCTS.

4 Test Domains

In this section we discuss the partially observable games which are used in the
experiments in Sect. 5. First, we describe the two card games: Go Fish and Lost
Cities. Next, the phantom games Phantom Domineering and Phantom Go are
explained.

Algorithm 2. Sequential Halving and Information Set MCTS.
Input: total budget T , K moves
Output: recommendation JT

1 S0 ← {1, . . . ,K}, B ← �log2 K� − 1

2 for k=0 to B do
3 for each move i ∈ Sk do

4 nk ←
⌊

T
|Sk|�log2 |S|�

⌋
5 for n=0 to nk do
6 select a new determinization d at random
7 sample move i using IS-MCTS and determinization d
8 update the average of i reward based on the sample
9 Sk+1 ← the �|Sk|/2� moves from Sk with the best average

10 return the single element of SB
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4.1 Card Games

In both Go Fish and Lost Cities, cards are drawn from a randomly shuffled deck,
limiting the possible predictions of future states. Moreover, in both games, moves
available to the opponent are either partially or completely invisible. However,
whenever a move is made, it becomes immediately known to both players. As
these games progress, more information regarding the actual game state becomes
available to both players.

Go Fish is a card game which is generally played by multiple players. The
goal is to collect as many ‘books’ of 4 cards of equal rank. All players hide their
cards from each other, and only finished books of four cards are placed face-up
on the table. Each turn, a player may ask a single other player for a specific
rank. If the questioned player has any cards of the requested rank in his hand,
he gives them to the requesting player, which may consequently make a new
request. If the questioned player does not possess a card of the requested rank,
the questioning player must ‘go fish’, drawing a card from the stack, and the
turn moves to the next player. The game ends when there are no more cards on
the stack, and the player with the most finished books wins the game.

In our implementation, the game was slightly modified to allow it to be
played by two players. Both players receive seven cards in hand at the start of
the game. Moreover, the finished books are not similarly rewarded. Books of
numbered cards give a score of one, whereas books of face cards assign a score
of two, a book of aces gives a score of three. As a result, when the game ends,
the player with the highest score wins.

The game state is determinized by removing from the non-visible player’s
all card drawn from the deck, shuffling the deck and re-drawing the non-visible
player’s hand. This means that whenever a card was obtained from the opponent
it is no longer treated as invisible, because it cannot be anywhere else than in
the opponent’s hand or visible on the table in a finished book.

Lost Cities is a two-player card game, designed in 1999 by Reiner Knizia.
The goal of the game is to achieve the most profitable set of expeditions to
one or more of five lost cities. Players start expeditions by placing numbered
cards on them, each player can start up to five expeditions regardless of the
opponent’s expeditions. Each card in the game has a color and a number, the
colors represent one of the five expeditions, the numbers representing the score
gained. Next to these cards, colored investment cards cumulatively double the
score awarded for an expedition. The deck consists of 60 cards, nine numbered
cards per color, and three investment cards per color.

Placing a card on an empty expedition ‘initializes’ it with a cost of 20. Or,
when an investment card is played, with a score of 20×Ic, where Ic is the number
of investment cards played on expedition c. These cards can only be played on an
expedition when no other cards have been played on it. For example, playing the
‘red 5’ card starts the red expedition with a cost of 20 and a score of 5 resulting
in a -15 score for the player. With a single investment card on this expedition,
the score will be 30. Playing more cards on the expedition leads to higher scores.
However, only increasing cards may be placed on top of others. In this example,
the card ‘red 3’ can no longer be played, whereas the ‘red 8’ card can be played.
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Each turn, players may either play or discard a card, and draw a card from
the draw pile or one of the discard piles. Discarding a card places it on top of
one of the colored discard piles which are accessible to both players. The game
ends when no cards are left on the draw pile, the player with the highest score
wins the game.

In Lost Cities, interaction between players is limited. However, players have
to carefully choose their expeditions partly based on their opponent’s choices.
Moreover, players must be careful not to discard cards which may benefit their
opponent, but at the same time take care that they can draw cards beneficial to
their chosen expeditions.

As in Go Fish, the game state is determinized by removing the non-visible
player’s hand, shuffling the deck and re-drawing the non-visible player’s hand.

4.2 Phantom Games

Next, we describe two so-called phantom games, Phantom Domineering and
Phantom Go. Phantom games are modified versions of fully observable games,
in which part of the game state is made invisible to the players. Both games
are otherwise fully deterministic, i.e., no roll of the dice, or drawing cards. Con-
sequently, whenever a player makes a move it may be rejected, the player may
move again until his move is no longer rejected. Playing a move that is rejected is
always beneficial, since it provides the player with new information of the actual
game state.

Phantom Domineering is based on the combinatorial game Domineering,
which is generally played on a square board with two players. Each turn players
block two adjacent positions on the board, one player plays vertically, and the
other horizontally. The game ends when one of the players cannot make move.
As with most combinatorial games, the first player unable to make a move loses
the game, and draws are not possible.

In Phantom Domineering, players can only directly observe their own pieces
on the board. For both players, their opponent’s pieces are hidden, and can
only be observed indirectly by performing rejected moves. A unique property in
Phantom Domineering is that rejected moves do not provide immediate infor-
mation about the opponent’s moves. In games where moves consist of occupying
single positions, a rejected move can immediately reveal an opponent’s move. In
Phantom Domineering, however, a rejected move means that either one of the
two positions is blocked, or both. Therefore, when determinizing, all opponent’s
stones are first replaced such that they match the rejected moves, after this, all
remaining stones are placed randomly on the board.

Phantom Go is a version of Go played in which the opponent’s stones are
not revealed. When a move is illegal it is usually because there is an opponent’s
stone on the chosen intersection. In this case a referee publicly announces that
the player made an illegal move and the same player may move again. The
Chinese rules are used for scoring games. Phantom Go is played by humans at
Go congresses and is enjoyed by spectators who can see both players’ boards as
well as the complete referee board.
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During determinization opponent stones are placed on illegal moves. The
remaining opponent stones are placed randomly on the determinized board [9].
The principle of our engine, GoLois, is to perform one play-out per deter-
minization. For each possible move, a large number of determinizations followed
by play-outs is performed. The move with the highest average is then chosen.
Using this approach, GoLois won the gold medal in 5 of the 6 Phantom Go
tournaments held during the last Computer Olympiads.

5 Experiments and Results

In this section we show the results of the experiments performed on four, par-
tially observable two-player games. H-MCTS and the games were implemented
in two different engines. Go Fish, Lost Cities and Phantom Domineering are
implemented in a Java based engine. Phantom Go is implemented in the C++
based engine GoLois.

Lost Cities relies heavily on a heuristic play-out strategy which prevents
obvious bad moves such as starting an expedition without a chance of making
a profit. These heuristics improve play over a random play-out by up to 40%.

Table 1. Win rates with respect to the row player. Minimum of 1,000 games per
experiment, 10,000 simulations per move.

Go Fish
H-MCTS SH MCTS UCB

H-MCTS - 60.9%± 2.9 54.3%± 1.9 62.3%± 2.9
SH 39.1 %± 2.9 - 44.0 %± 3.0 51.3 %± 2.0
MCTS 45.7 %± 1.9 56.0%± 3.0 - 55.0%± 3.1
UCB 37.7 %± 2.9 48.7 %± 2.0 45.0 %± 3.1 -

Lost Cities
H-MCTS SH MCTS UCB

H-MCTS - 46.1 %± 3.1 54.1%± 3.1 47.1 %± 3.1
SH 53.9%± 3.1 - 55.6%± 1.9 50.1 %± 1.9
MCTS 45.9 %± 3.1 44.4 %± 1.9 - 45.3 %± 3.1
UCB 52.9 %± 3.1 49.9 %± 1.9 54.7%± 3.1 -

8 × 8 Phantom Domineering
H-MCTS SH MCTS UCB

H-MCTS - 45.1 %± 3.1 59.9%± 3.0 59.5%± 3.0
SH 54.9%± 3.1 - 55.1%± 3.1 58.6%± 3.1
MCTS 41.1 %± 3.0 44.9 %± 3.1 - 49.4 %± 3.1
UCB 40.5 %± 3.0 41.4 %± 3.1 51.6 %± 3.1 -
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Table 2. Win rates with respect to the row player. Minimum of 1,000 games per
experiment, 25,000 simulations per move.

Go Fish
H-MCTS SH MCTS UCB

H-MCTS - 62.2%± 2.9 55.2%± 3.0 61.8%± 2.9
SH 42.2 %± 3.0 - 42.2 %± 3.0 51.7 %± 3.1
MCTS 44.9 %± 3.0 57.9%± 3.0 - 59.0%± 3.0
UCB 38.2 %± 2.9 48.3 %± 3.1 41.0 %± 3.1 -

Lost Cities
H-MCTS SH MCTS UCB

H-MCTS - 48.6 %± 1.9 52.7%± 1.9 44.9 %± 3.0
SH 51.4 %± 1.9 - 57.6%± 3.1 52.8 %± 3.1
MCTS 47.4 %± 1.9 42.4 %± 3.0 - 43.7 %± 1.9
UCB 55.1%± 3.1 47.3 %± 3.1 56.3%± 1.9 -

8 × 8 Phantom Domineering
H-MCTS SH MCTS UCB

H-MCTS - 48.9 %± 3.1 53.0 %± 3.1 54.5%± 3.1
SH 51.1 %± 3.1 - 56.1%± 3.1 51.8 %± 3.1
MCTS 47.0 %± 3.1 43.9 %± 3.1 - 51.3 %± 3.1
UCB 45.6 %± 3.1 48.7 %± 3.1 51.3 %± 3.1 -

In Phantom Domineering, an ε-greedy play-out strategy selects moves based
on the number of available moves for the opponent and the player to move. It
chooses the move that maximizes their difference. For both Go Fish and Phantom
Go, moves are selected uniformly random during play-outs.

In the next subsection, we run experiments on the test domains using a set
of different algorithms:

– H-MCTS selects moves according to Sequential Halving at the root and UCT
in all other parts of the tree, according to Algorithm2. In all domains, single
observer IS-MCTS [13] is used.

– SH selects among available moves according to Sequential Halving
(Algorithm 1), and samples the moves by play-out immediately. As such, no
search is performed.

– MCTS selects moves using UCT from root to leaf. As in H-MCTS, single
observer IS-MCTS is used.

– UCB selects among available moves according to the UCT selection method
(Eq. 1) and samples the move immediately by play-out. As such, no search is
performed. The method is similar to using the UCB1 algorithm for MABs.
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Table 3. Experimental results for Phantom Go. SH vs. UCB with varying C constant.
1,000 games, win rates with respect to SH.

C Phantom Go
10,000 25,000
Simulations Simulations

SH vs. UCB 0.1 69.6%± 2.9 70.6%± 2.9
0.2 58.8%± 3.1 58.6%± 3.1
0.3 58.1%± 3.1 54.3%± 3.1
0.4 58.0%± 3.1 53.0 %± 3.1
0.5 57.1%± 3.1 55.3%± 3.1
0.6 59.1%± 3.1 51.9 %± 3.1
0.7 60.3%± 3.1 56.7%± 3.1
0.8 61.5%± 3.1 58.6%± 3.1
0.9 64.5%± 3.0 57.8%± 3.1

In all experiments, and for all algorithms, a new determinization is uniformly
selected for each simulation. For each individual game, the C constant, used by
UCT (Eq. 1) was tuned. MCTS, UCB, and H-MCTS use the same value for the
C constant in all experiments.

5.1 Results

For each table, the results are shown with respect to the row algorithm, along
with a 95 % confidence interval. For each experiment, the players’ seats were
swapped such that 50 % of the games are played as the first player, and 50 %
as the second, to ensure no first-player or second-player bias. Because H-MCTS
cannot be terminated any-time we present only results for a fixed number of
simulations. In each experiment, both players are allocated a budget of either
10,000, or 25,000 play-outs. In all tables, significantly positive results are bold-
faced.

Tables 1 and 2 show the comparative results for search performed with 10,000
and 25,000 simulations per move, respectively. For most experiments in these
tables, 1,000 games were played. However, in some cases where results were
close to confidence bounds, 1,500 extra games were played. First, results show
that only in Go Fish did performing search improve performance over flat Monte-
Carlo sampling, in both Lost Cities and Phantom Domineering performing search
did not improve performance. This coincides with previous results for Phantom
Go, for which it was determined that search could did not perform better than
UCB sampling.

In all games, using H-MCTS improves performance over MCTS when
sampling 10,000 simulations per move. In the 25,000 case, MCTS and UCB’s
performances appear to recover in Lost Cities and Phantom Go. In Go Fish,
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performance is stable with respect to the number of simulations. For the games
where performing search does not improve performance over single-ply sampling,
SH is either on par or outperforms UCB.

In all cases, in both experimental setups, SH or H-MCTS either outperforms
MCTS and UCB significantly, or does not negatively impact performance. In
Phantom Domineering, sampling using SH improves performance over UCB by
up to 8.6 %. A significant improvement when considering that no knowledge or
heuristics were introduced in the search. Moreover, SH improves the performance
of the award-winning engine GoLois by up to 7.1 % over UCB, as shown in
Table 3. In this table we detail the results over different C constants for UCB,
showing that without tuning any parameter, SH is able to outperform UCB
in all cases. UCB’s performance similarly somewhat recovers when given more
simulations. However, in all but two cases (when C = 0.4 or C = 0.6), SH still
significantly outperforms UCB with 25,000 simulations per move.

6 Conclusions

This paper has investigated Sequential Halving as a selection policy in partially
observable games. In the MCTS framework, Sequential Halving was applied at
the root of the search tree, and UCB1 elsewhere, leading to a hybrid algorithm
called H-MCTS. Experimental results revealed that H-MCTS performed the best
in Go Fish, whereas its performance is on par in Lost Cities and Phantom Dom-
ineering. In Phantom Go, Sequential Halving as a flat Monte-Carlo Search was
the best algorithm for 10,000 play-outs. For 25,000 play-outs, it was still compet-
itive but the difference with the alternative approach UCB was not statistically
significant. Even in cases where Sequential Halving was not better it still has
the advantage that it is parameter free.

A possible cause for concern when using UCT in partially observable domains
is that the statistics in the tree may become conditioned on a set of determiniza-
tions. When a new determinization is used for each sample, the current statistics
of each node are biased towards previous determinizations and may not neces-
sarily hold for other determinizations in the future. A uniform selection method
such as Sequential Halving may circumvent this possible problem, since selection
is not based on the current statistics of each node. Rather, nodes are explored
uniformly regardless of their statistics and are only removed from selection after
being sampled equally often as their siblings.

7 Future Research

Based on the results in this paper and previous work [20], H-MCTS and Sequen-
tial Halving have shown promising result in both fully and partially observable
games. This leads to several directions for future research. We propose an investi-
gation into SHOT and H-MCTS in partially observable games by using a limited
set of determinizations, and a single tree per determinization. Because in these
cases it is possible to use Sequential Halving at internal nodes other than the
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root. For future work in H-MCTS in general, the All-Moves-As-First (AMAF)
[5] heuristic is considered, a popular method used in MCTS to improve early
estimation of nodes. For partially observable domains in specific, we intend to
investigate non-uniform selection of determinizations.
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Abstract. In this paper, we present an experimental investigation on
the pancake problem. Also called sorting by prefix reversals (SBPR),
this problem is linked to the genome rearrangement problem also called
sorting by reversals (SBR). The pancake problem is a NP-hard problem.
Until now, the best theoretical R-approximation was 2 with an algorithm,
which gives a 1.22 experimental R-approximation on stacks with a size
inferior to 70. In the current work, we used a Monte-Carlo Search (MCS)
approach with nested levels and specific domain-dependent simulations.
First, in order to sort large stacks of pancakes, we show that MCS is a
relevant alternative to Iterative Deepening Depth First Search (IDDFS).
Secondly, at a given level and with a given number of polynomial-time
domain-dependent simulations, MCS is a polynomial-time algorithm as
well. We observed that MCS at level 3 gives a 1.04 experimental R-
approximation, which is a breakthrough. At level 1, MCS solves stacks
of size 512 with an experimental R-approximation value of 1.20.

1 Introduction

The pancake problem is described as follows. A chef prepares a stack of pancakes
that come out all different sizes on a plate. The goal of the server is to order them
with decreasing sizes, the largest pancake touching the plate, and the smallest
pancake being at the top. The server can insert a spatula below a pancake and
flip the substack situated above the spatula. He may repeat this action as many
times as necessary. In the particular version, the goal of the server is to sort
a particular stack with a minimum number of flips. In the global version, the
question is to determine the maximum number of flips f(n) - the diameter - to
sort any stack of n pancakes.

This problem is a puzzle, or a one-player game well-known in artificial intel-
ligence and in computer science under the name of sorting by prefix reversals
(SBPR). Its importance is caused by its similarity with the sorting by rever-
sals (SBR) problem which is fundamental in biology to understand the prox-
imity between genomes of two different species. For example, the SBR distance
between a cabbage and a turnip is three [23]. The SBR problem has been studied
in depth [24] for the last twenty years. The SBR problem can be signed when
the signs of the genes are considered, or unsigned otherwise. Similarly, the pan-
cakes can be burnt on one side, or not. This brings about four domains: one with
c© Springer International Publishing Switzerland 2016
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unburnt pancakes, one with burnt pancakes, one with unsigned genes and one
with signed genes.

In the unburnt pancake problem, Gates and Papadimitriou [22] gave the first
bounds of the diameter in 1979, and Bulteau has shown that the problem is NP-
hard in 2013 [11]. Very interesting work have been done between 1979 and today.
The goal of the current work is to provide an experimental contribution to the
unburnt pancake problem. More specifically, we show the pros and cons of two
planning algorithms used in computer games: IDDFS [30] and MCS [13]. Besides,
we define several domain-dependent algorithms: Efficient Sort (EffSort), Alter-
nate Sort (AltSort), Basic Random EFficient algorithm (BREF), Fixed-Depth
Efficient Sort (FDEffSort), and Fixed-Depth Alternate Sort (FDAltSort), and we
re-use the Fischer and Ginzinger’s algorithm (FG) [21]. FG was proved to be a 2-
approximation algorithm that also reaches a 1.22 approximation experimentally.
We show how to use the algorithms above in the MCS framework. We obtain an
experimental approximation of 1.04, which is a significant reduction.

The paper is organized as follows. Section 2 defines the SBR and SBPR prob-
lems. Section 3 sums up the related work in the four domains. Section 4 presents
our work and its experimental results. Section 5 concludes.

2 Definitions

Let N be the size of a permutation π and

[π(1), π(2), ..., π(N − 1), π(N)]

the representation of π. The problem of sorting a permutation by reversals con-
sists in reaching the identity permutation

[1, 2, ..., N − 1, N ]

by applying a sequence of reversals. A reversal ρ(i, j) with i < j is an action
applied on a permutation. It transforms the permutation

[π(1), ..., π(i − 1), π(i), ..., π(j), π(j + 1)..., π(N)]

into
[π(1), ..., π(i − 1), π(j), ..., π(i), π(j + 1)..., π(N)].

The effect of a reversal is reversing the order of the numbers between the two cuts.
A cut is located between two numbers of the permutation. In the above example,
the first cut is between i − 1 and i and the second one is between j and j + 1.

In the pancake problem, each number π(i) corresponds to the size of the pan-
cake situated at position i in a stack of pancakes, and the permutation problem
is seen as a pancake stack to be sorted by decreasing size. One cut is fixed and
corresponds to the top of the stack. The other cut corresponds to the location
of a spatula inserted between two pancakes so as to reverse the substack above
the spatula. For example, the permutation

[π(1), ..., π(i), π(i + 1)..., π(N)]



32 B. Bouzy

has its top on the left and its bottom on the right. After a flip ρ(i) between i
and i + 1, the permutation becomes

[π(i), ..., π(1), π(i + 1)..., π(N)].

In addition, a permutation can be signed or not. In the signed case, a sign is
associated to each number, i.e. the integers of the permutation can be positive or
negative. When performing a reversal, the sign of the changing numbers changes
too. For example, after the reversal ρ(i, j),

[π(1), ..., π(i − 1), π(i), ..., π(j), π(j + 1)..., π(N)]

becomes
[π(1), ..., π(i − 1),−π(j), ...,−π(i), π(j + 1)..., π(N)].

The burnt pancake problem is the signed version of the pancake problem.
In the burnt pancake problem, the pancakes are burnt on one side, and a flip
performs the reversal and changes the burnt side. The goal is to reach the sorted
stack with all pancakes having their burnt side down.

In the literature, the permutations are often extended with two numbers,
N +1 after π(N), and 0 before π(1), and the extended representation of permu-
tation π is

[0, π(1), ..., π(N), N + 1].

The reversal distance of a permutation π is the length of the shortest sequence
of reversals that sorts the permutation.

A basic and central concept in SBR problems is the breakpoint. For 1 ≤ i ≤
N + 1, a breakpoint is situated between i and i − 1 when |π(i) − π(i − 1)| �= 1.
In the following, #bp is the number of breakpoints. Since each breakpoint must
be removed to obtain the identity permutation, and since one reversal removes at
most one breakpoint, #bp is a lower bound of the reversal distance. In the plan-
ning context, #bp is a simple and admissible heuristic. In the pancake problem,
the possible breakpoint between the top pancake and above is not taken into
account. In the signed permutation problem or in the burnt pancake problem a
breakpoint is situated between i and i − 1 when π(i) − π(i − 1) �= 1.

3 Related Work

Since the four domains are closely linked, this section presents them in
order: signed permutation, unsigned permutation, unburnt pancakes, and burnt
pancakes.

3.1 Signed Permutations

The best overview of the genome rearrangement problem to begin with is by
Hayes [24]. Since the genes are signed, the genome rearrangement problem is
mainly connected with the signed permutation problem, but also to the unsigned



An Experimental Investigation on the Pancake Problem 33

permutation problem. In 1993, Bafna and Pevzner [4] introduced the cycle graph.
In 1995, Hannenhalli and Pevzner [23] devised the first polynomial-time algo-
rithm for signed permutations. Its complexity was in O(n4). The authors intro-
duced the breakpoint graph, and the so called hurdles. This work is the reference.
The follow up consists in several refinements.

In 1996, Berman and Hannenhalli [6], and Kaplan et al. [27] in 1998, enhanced
the result with an algorithm whose complexity was in O(n2). The concept of
fortress was new. In 2001, Bader and colleagues [3] found out an algorithm
that finds the reversal distance in O(n), but without giving the optimal reversal
sequence. In 2002, GRIMM [39], a web site, was developed to implement the
above theories. In 2003, [28] described efficient data structures to cope with
the problem. Then, in 2005, Anne Bergeron [5] introduced a simple and self-
contained theory, which does not use the complexities of the previous algorithms,
and that solves signed permutation problems in quadratic time as well. In 2006,
[37,38] are subquadratic improvements.

3.2 Unsigned Permutations

The basic work in the unsigned permutation problem is [29] in 1992, by
Kececioglu and Sanker. This problem was proved to be NP-hard [12] by Caprara
in 1997. In 1998, Christie [16] described the 3/2-approximation algorithm. Rever-
sal corresponding to red nodes are relevant. Furthermore, the Christie’s thesis
[17] described many approaches for other classes of permutation problems. In
1999 and 2001, [7,8] contain complexity results. In 2003, [2,36] describe evolu-
tionary approaches to the unsigned permutation problem. Particularly, the work
of Auyeung and Abraham [2], performed in 2003, consists in finding out the best
signature of an unsigned problem, with a genetic algorithm. The best signature
is the signature such that the signed permutation reversal distance is minimal.
Computing this distance is performed in linear time [3].

3.3 Unburnt Pancakes

The unburnt pancake problem is the most difficult of the four domains [11].
Related work focused on the diameter of the pancake graph. In 2004, a pancake
challenge was set up. Tomas Rokicki won the challenge and gave explanations
to solve and generate difficult pancake problems [34]. Fischer and Ginzinger
published their 2-approximation algorithm [21].

Bounds on the Diameter. A focus is to bound the diameter of the graph of
the problem in N the size of the pancake stack. The first bounds on the pan-
cake problem diameter were found by Gates and Papadimitriou in 1979 [22]:
(5n + 5)/3 is the upper bound and (17/16)n is the lower bound. To prove the
upper bound, [22] exhibits an algorithm with several cases. They count the
number of actions corresponding to each case and obtain inequalities. They for-
mulate a linear program whose solution proves the upper bound. To prove the
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lower bound, they exhibit a length-8 elementary permutation that can be used
to build length-n permutations with solutions of length (18/16)n on average but
bounded by below by (17/16)n. The Gates and Papadimitriou’s sequence is

GP = [1, 7, 5, 3, 6, 4, 2, 8].

The (15/14)n lower bound was found by Heydari and Sudborough in 1997 [26].
In 2006, the diameter of the 17-pancake graph [1] was computed. In 2009,

a new upper bound was found on the diameter: (18/11)n [15]. In 2010, in the
planning context, the breakpoint heuristic #bp was explicitly used in a depth-
first-search [25]. In 2011, [18] Josef Cibulka showed that 17n/12 flips were nec-
essary to sort stacks of unburnt pancakes on average over the stacks of size n.
Josef Cibulka mentioned a list of interesting concepts: deepness, surfaceness,
biggest-well-placed, second-biggest-well-placed, smallest-not-on-top.

The 2004 Pancake Challenge. In 2004, a pancake challenge was organized
to focus on the resolution of specific problems. In a first stage, the entrants had
to submit pancake problems. In the second stage, the entrants had to solve the
submitted problems. The entry of the winner of the pancake challenge was the
one of Tomas Rokicki [34]. Its entry is described and gives really interesting
ideas.

The Inverse Problem and Backward Solutions. Considering π−1 the
inverse permutation of the original problem π can be helpful. For example, if

π = [5, 3, 6, 1, 4, 2]

then
π−1 = [4, 6, 2, 5, 1, 3].

π−1 and π correspond to two different problems. The one is the forward problem
yielding a forward solution, and the other is the backward problem yielding a
backward solution (BS). Because ππ−1 = Id, the backward solution is the reverse
sequence of the forward solution. The enhancement consists in solving the two
problems simultaneously and comparing the lengths of the two solutions, and
comparing the times to get them. We call it the BS enhancement. For IDDFS,
the two solutions are optimal and share the same length, but the times to solve
them can be very different. For MCS or approximate algorithms, the lengths of
the two sequences can be different, and the idea consists in keeping the shortest
solution. BS works in practice. See Table 3 compared to Table 2.

Difficult Positions. In the diameter estimation context, Tomas Rokicki exhib-
ited two elementary sequences:

S5 = [1, 3, 5, 2, 4]
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and
L9 = [1, 5, 8, 3, 6, 9, 4, 7, 2].

Then, he built L9-based (resp. S5-based) permutations by repeating the L9 (resp.
S5) permutation shifted by 9 (resp. by 5). For example,

L9(2) = [1, 5, 8, 3, 6, 9, 4, 7, 2, 10, 14, 17, 12, 15, 18, 13, 16, 11].

These sequences L9(x) and S5(y) were used to attempt to prove a 11/10 ratio
lower bound on the diameter. Unfortunately, this approach did not work. How-
ever, these ad hoc sequences are hard to solve, and we consider them as hard
problems in the following.

The 2-Approximation Algorithm of Fischer and Ginzinger. Fischer and
Ginzinger designed FG, an algorithm that is a 2-approximation polynomial algo-
rithm [21]. It means that the length LFG of the solution found by FG is inferior to
two times the length of the optimal solution. Since the best lower bound known
today is the number of breakpoints #bp, it means that LFG is proved to be infe-
rior to 2 × #bp. In practice, Fischer and Ginzinger mention an approximation
ratio Rapprox = 1.22. The idea is to classify moves in four types. Type 1 moves
are the ones that remove a breakpoint in one move. Type 2 and type 3 moves
lead a pancake to the top of the stack so as to move it to a correct place at the
next move. Type 4 moves correspond to the other cases. Fischer and Ginzinger
proves that type 2, 3, 4 moves removes a breakpoint in less than 2 moves, and
that type 1 moves remove a breakpoint in one move.

Pancake Flipping Is Hard. In 2012, Laurent Bulteau and his colleagues
proved that the pancake flipping problem is NP-hard [10,11]. He did this by
exhibiting a polynomial algorithm that transforms a pancake problem into a
SAT problem and vice-versa. He gave an important clue to solve the pancake
problem. He considered sequence of type 1 moves only, i.e. moves removing one
breakpoint. He defined efficiently sorted permutations, i.e. permutations that
can be sorted by type 1 moves, or “efficient” moves. He defined deadlock per-
mutations without type 1 move. A sequence of type 1 moves reaches either the
identity permutation and the permutation is efficiently sorted, or deadlock per-
mutations only, and the permutation is not efficiently sorted. To see whether
a permutation is efficiently sortable, a binary tree must be developed. Bulteau
made a polynomial correspondence between the efficiently sortable permutation
problem and the SAT problem, proving by this translation that the former prob-
lem is NP-hard.

Miscellaneous. [33] contains results about the genus of pancake network.

3.4 Burnt Pancakes

Here again, the focus was to bound the diameter too. In 1995, the first bounds
on the diameter and a conjecture [19] were presented: 3n/2 is a lower bound
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and 2(n − 1) a upper bound. The second bounds on the diameter were proved
in 1997 [26]. A polynomial-time algorithm on “simple” burnt pancake problems
[31] was published in 2011. In 2011, Josef Cibulka showed that 7n/4 flips were
necessary to sort stacks of burnt pancakes on average over the stacks of size n
[18]. He also disproved the conjecture by Cohen and Blum [19]. Josef Cibulka
mentioned interesting concepts: anti-adjacency and clan.

4 Our Work

First, this section presents the domain-independent algorithms used in our work.
Secondly, it presents the domain dependent algorithms designed in the purpose
of our work. Thirdly, it presents the settings of the experiments. Then, this
section yields the results of the experiments in order.

4.1 Domain Independent Algorithms

This section describes the algorithms we used to solve pancake problems as
efficiently as possible. There are two basic and general algorithms:

– Iterative Deepening Depth-First Search (IDDFS) [30],
– Monte-Carlo Search (MCS) [13].

We consider IDDFS as an exponential-time algorithm in N [30]. When it
completes, the solution found is optimal. However, for N superior to a thresh-
old, IDDFS needs to much time, and becomes useless actually. However, before
completion, IDDFS yields a lower bound on the optimal length.

MCS [13] is a simulation-based algorithm that gave very good results in
various domains such as general game playing [32], expression discovery [14],
morpion solitaire [35], weak Schur numbers [20] and cooperative path-finding
[9]. MCS is used with a level L. At any time, MCS stores its best sequence found
so far, thus it yields an upper bound on the optimal solution. When used at a
given level L, MCS is a polynomial-time algorithm in N . Let assume that the
level 0 simulations are polynomial-time algorithms. Let T0 be the time used to
perform a complete level 0 simulations. Let us bound T1 the time to complete
a level 1 MCS simulation. To move one step ahead in a level 1 simulation, MCS
launches at most N level 0 simulations, which costs N × T0. Since the length of
level 0 simulation is bounded by 2N , we have T1 ≤ 2N2T0. If T0 is polynomial in
N then T1 is polynomial as well. By induction, a level L MCS is polynomial-time.
The higher L, the higher the polynomial degree.

The threshold effect observed for IDDFS does not appear for a polynomial-
time algorithm. If you obtain solutions for N in time T , and if d is the degree
of the polynomial, you may obtain solutions for N + 1 in time T × (N + 1)d/Nd

which is just a little bit more expensive than T . Therefore, we get two tools to
work with: one is costly but optimal when it completes, IDDFS, and the other
one is approximate but its cost is polynomial-time, MCS.
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4.2 Domain Dependent Algorithms

We have designed several pancake problem dependent algorithms: Efficient
Sort (EffSort), Alternate Sort (AltSort), Basic Random Efficient algorithm
(BREF), Fischer and Ginzinger algorithm (FG) [21], Fixed-Depth Efficient Sort
(FDEffSort), Fixed-Depth Alternate Sort (FDAltSort). We have implemented each
of them and we describe them briefly here.

Since a position has at most two efficient moves, EffSort searches within a
binary tree to determine whether a permutation is efficiently sortable [11] or
not. If the permutation is efficiently sortable, the sequence of efficient moves
is output, and the output permutation is the identity. Otherwise, the longest
sequence of efficient moves is output, and the output permutation is a deadlock
(i.e. a permutation without efficient move).

When a position is a deadlock, the solver has to perform an inefficient move,
i.e. a move that does not lower #bp. A waste move is a move that keeps the #bp
constant. We define two kinds or waste moves: hard or soft. A waste move is
hard if it creates a breakpoint while removing another one. A waste move is soft
otherwise (the set of breakpoints is unchanged). We define a destroying move as
a move that increases #bp.

We designed AltSort. While the output permutation is not sorted, AltSort
iteratively calls EffSort and performs a soft waste move if the output permutation
is a deadlock. When EffSort is successful, AltSort stops. AltSort and EffSort are
inferior to IDDFS. They are exponential time algorithms.

We designed BREF that iteratively chooses and performs an efficient move if
possible. A position may have 0, 1 or 2 efficient moves. On a position with one
efficient move, this move is selected with probability 1. On a position with two
efficient moves, one of them is selected with probability 0.5. Otherwise, BREF
chooses and performs a soft waste move defined above. Most of the times, a
position without efficient moves has a lot of soft waste moves available. In this
case, the move is chosen at random with uniform probability. At the end of
a simulation, the reward is the length of the simulation. BREF is a randomized
version of AltSort. BREF and FG are polynomial-time algorithms. They can serve
as level 0 simulation for MCS.

FDEffSort is the fixed-depth version of EffSort. With depth D, FDEffSort
becomes a polynomial-time algorithm. FDAltSort is the version of AltSort using
FDEffSort. FDAltSort is a polynomial-time algorithm. It can be used as a level 0
simulation for MCS.

4.3 Experimental Settings

The experiments show the effect of using:

– IDDFS or MCS,
– FG and BREF within MCS,
– backward solutions BS in addition to original solutions,
– FDAltSort within MCS.
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There are different classes of test positions: positions randomly generated
for a given size, and difficult positions mentioned by related work, mainly
[22,26,34]. IDDFS may easily solve easy positions of size 60 randomly gener-
ated in a few seconds. However, IDDFS cannot solve some hard positions of size
30. Whatever the size and the problem difficulty, MCS always finds a preliminary
solution quickly. This solution is refined as time goes on to become near-optimal
or optimal.

We mention three indicators to evaluate our algorithms.

– Finding the minimal length Lmin of an optimal solution for a given problem.
– Finding Rapprox as low as possible with a polynomial time algorithm averaged

over a set of 100 problems.
– Limiting the running time of an experiment with 100 problems to one or two

hours.

Rapprox is the ratio of the length L of the actual solution found over Lmin.
Since Lmin is unknown in practice, Lmin is replaced by #bp. Rapprox = L/#bp.
The standard deviation of the Rapprox value that we observed for one problem
generated at random is roughly 0.05. The two-sigma rule says that the standard
deviation over 100 problems is 0.05 × 2/10 = 0.01. The values of Rapprox given
below are 0.01 correct with probability 0.95. On average, the time to solve one
problem is inferior to one minute.

Table 1. IDDFS: In practice, how Rapprox varies in N . L is the average length of
solutions. T is the average time in seconds to sort one stack.

N L Rapprox T

8 6.5 1.09 0

16 14.5 1.05 0

32 31.0 1.03 0

64 63.0 1.02 5

4.4 MCS and IDDFS

The first experiment consists in assessing IDDFS and MCS under reasonable time
constraints: at most one hour. MCS uses BREF as level 0 simulations. When using
IDDFS, Table 1 shows how Rapprox varies in N . First, although IDDFS gives an
optimal result, Rapprox is not 1. This happens because #bp is not the length of
optimal solutions but a lower bound only. Secondly, Table 1 shows that IDDFS
cannot give results in reasonable time for N > 64. For N = 30, IDDFS does
not solve some difficult positions in less than few hours. Thirdly, Table 2 shows
how Rapprox varies in N and in level with MCS. Level 0 simulations can be
launched easily with N = 256. Rapprox is 1.30 for level 0 simulations, 1.28
for level 1 simulations. Then, as the level increases, Rapprox decreases. Level
2 simulations yields Rapprox = 1.22 which equals the value mentioned in [21].
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Table 2. MCS+BREF: How Rapprox varies in N and Level. L(x) is the average length
of solutions at level x. T (x) is the average time in seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3) L(4) R(4) T (4)

8 7.5 1.15 0 7.5 1.19 0 7.0 1.15 0 6.7 1.12 0 6.5 1.08 0.01

16 18 1.30 0 18 1.27 0 16.5 1.18 0 16.0 1.14 0.01 15.5 1.09 0.05

32 38 1.30 0 37.5 1.26 0 37 1.22 0.02 36.5 1.21 0.6

64 82 1.32 0 79.5 1.28 0.01 76 1.24 1.2

128 165 1.30 0.01 163 1.29 0.23

256 339 1.34 0.05 333 1.31 9

Table 3. How Rapprox varies in N and MCS level with the trick of Backward Solutions
(BS). L(x) is the average length of solutions at level x. T (x) is the average time in
seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3) L(4) R(4) T (4)

8 7.0 1.15 0 6.8 1.14 0 6.7 1.12 0 6.7 1.11 0 6.6 1.10 0.01

16 16.5 1.18 0 16.4 1.18 0 15.6 1.12 0 15.4 1.10 0.01 15.3 1.09 0.1

32 37.0 1.22 0 36.4 1.21 0 35.4 1.17 0.05 35.2 1.15 0.8

64 79.5 1.28 0.01 77 1.24 0.02 75.2 1.20 2

128 163 1.29 0.02 159 1.26 0.5

256 335 1.32 0.1

For higher levels, Rapprox = 1.10 showing that high levels of MCS give good
results in reasonable time, and that MCS is a viable alternative to IDDFS even for
difficult positions. When compared to Rapprox = 1.22 of [21], Rapprox = 1.08
is a first breakthrough.

4.5 MCS + BREF + BS

Table 3 shows how Rapprox varies in N and in the MCS level when level 0
simulations are the best of one forward simulation and one backward simulation.
We call this the BS enhancement. Table 3 must be compared to Table 2. One
can observe that the BS enhancement is effective at level 0 indeed, and also at
level 1 and level 2. However, its effect is less visible at higher levels of MCS:
Rapprox = 1.09.

4.6 MCS + FG + BS

Table 4 shows how Rapprox varies in N and in the MCS level when level 0
simulations are the forward and the backward FG simulations. So as to see the
effect of using FG instead of BREF in MCS, Table 4 must be compared to Table 3.
First, the comparison shows that FG is worse than BREF for level 0. FG is on
a par with BREF for level 1. For level 2 and higher levels, FG surpasses BREF:
Rapprox = 1.05.

Table 5 shows how Rapprox varies in N and in the MCS level when level 0
simulations are the forward and the backward randomized FG. Randomized FG
works as follows. If type 1 moves exist, one of them is chosen at random.
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Table 4. How Rapprox varies in N and MCS level with simulations being FG with the
trick of Backward Solutions (BS). L(x) is the average length of solutions at level x.
T (x) is the average time in seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3) L(4) R(4) T (4)

8 7.73 1.28 0 6.85 1.14 0 6.7 1.10 0 6.7 1.10 0.01 6.7 1.10 0.01

16 18.2 1.30 0 16.0 1.14 0 15.1 1.07 0.01 14.9 1.05 0.06 14.8 1.05 0.6

32 39.7 1.29 0 35.2 1.16 0.01 32.6 1.08 0.12 31.6 1.05 4.2

64 82.4 1.32 0.02 74.5 1.20 0.06 68.5 1.10 2.5

128 167 1.33 0.04 155 1.23 0.8

256 336 1.32 0.2

Table 5. How Rapprox varies in N and MCS level with simulations being randomized
FG with the trick of Backward Solutions (BS). L(x) is the average length of solutions
at level x. T (x) is the average time in seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3) L(4) R(4) T (4)

8 8.4 1.40 0 7.0 1.16 0 6.7 1.10 0 6.7 1.10 0.01 6.7 1.10 0.01

16 19.6 1.40 0 16.1 1.14 0 15.2 1.08 0.01 14.9 1.05 0.08 14.8 1.06 0.6

32 43.8 1.45 0 35.1 1.16 0.01 32.4 1.07 0.2 31.5 1.04 4

64 90 1.43 0.02 76.5 1.23 0.1 67.5 1.08 6

128 181 1.43 0.04 160 1.26 1.3

256 356 1.40 0.3

Otherwise, if type 2 moves exist, one of them is chosen at random and so on.
So as to see the effect of using randomized FG instead of FG, Table 5 must be
compared to Table 4. As expected and as shown by the R(0) column of Tables 4
and 5, randomized FG yields a worse Rapprox than direct FG. Randomized FG
is worse than direct FG for level 1. However, when used in higher levels of MCS,
Rapprox with the randomized version is slightly inferior to Rapprox with the
direct version. At level 4, MCS gives Rapprox = 1.05 when using randomized
version of FG as basic simulations.

4.7 MCS + FDAltSort

In a preliminary experiment, not reported here, we assessed MCS using AltSort
directly as level 0 simulations. This did not work well on hard positions because
AltSort is not a polynomial-time algorithm. Consequently some simulations did
not complete quickly. We had to limit the depth at which EffSort searches and
we had to create FDAltSort. (FDEffSort determines whether a permutation is
efficiently sortable at depth D). FDAltSort can be used as a level 0 simulation in
MCS. We assessed MCS using FDAltSort at depth D = 10. For each level, Table 6
displays the variations of Rapprox in N . These results must be compared to the
results of Table 5. At level 0, FDAltSort is better than randomized FG and on
a par with FG. At level 1, level 2 and level 3, FDAltSort is better than the
other algorithms. Launching FDAltSort at level 4 was not interesting. However,
Rapprox achieves 1.04 at its minimal value. Furthermore, the good point here
is that the results are obtained for pancake stack sizes going up to 512 instead
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Table 6. How Rapprox varies in N and MCS level with simulations being FDAltSort
at depth D = 10. L(x) is the average length of solutions at level x. T (x) is the average
time in seconds to sort one stack at level x.

N L(0) R(0) T (0) L(1) R(1) T (1) L(2) R(2) T (2) L(3) R(3) T (3)

8 6.7 1.12 0 6.6 1.09 0 6.6 1.09 0 6.6 1.09 0

16 16.0 1.15 0 14.8 1.08 0 14.5 1.04 0.01 14.5 1.04 0.04

32 37.3 1.23 0 33.3 1.10 0.02 31.8 1.05 0.1 31.3 1.04 0.8

64 80.4 1.29 0 69.7 1.12 0.05 66.4 1.06 1 65.1 1.04 18

128 164 1.30 0.01 145 1.15 0.3 139 1.10 10.5

256 326 1.28 0.02 300 1.18 1.5

512 647 1.27 0.06 614 1.20 9

of 256 before, and with Rapprox = 1.20. This is a significant improvement.
FDAltSort as simulations are much more efficient than FG or BREF were. We
also tried to incorporate the BS enhancement, but the results were worse.

5 Conclusion and Future Work

In this work, we summed up the state-of-the-art of the permutation sorting by
reversals domain. This domain was studied in depth by researches on the genome.
It remains fascinating as underlined by Hayes [24]. The unsigned permutation
domain is hard [12] but the signed permutation domain has polynomial-time
solver [23]. The pancake problem was less studied. The unburnt pancake problem
is difficult [11] while the complexity of the burnt pancake is unknown.

Our contribution is experimental. It shows how MCS extends the results
obtained by IDDFS on unburnt pancake stacks. On the one hand, IDDFS can
solve some pancake stacks of size 60 [25] in a few minutes but cannot solve some
specific hard pancake stacks [34] of size 30 only. On the other hand, MCS can
solve pancake stacks of significantly higher sizes and the hard pancake stacks of
size 30 not solved by IDDFS. Practically, our MCS solver solves pancake stacks
of size up to 512 with a 1.20 R-approximation, under the best configuration.
MCS may use BREF, FG or FDAltSort with results that are approximately equal
in terms of running time and Rapprox value. Practically, we observed that MCS
approximates the best solutions with a Rapprox ratio of 1.04 for size up to 64,
which is significantly better than the 1.22 value of [21]. Our MCS solver solves
pancake stacks of size 128 or 256 with a R-approximation value roughly situated
between 1.10 and 1.25.

In a near future, we want to study the burnt pancake problem. Furthermore,
the burnt pancake problem is linked to the unburnt pancake problem. A block of
sorted unburnt pancakes can be replaced by one burnt pancake, and the unburnt
pancake problem becomes a mixed pancake problem. Solutions to burnt pancake
problems could be used to solve ending unburnt pancake problems. We want to
investigate in this direction.
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To date, the number of breakpoints remains the simplest and the most effi-
cient heuristic to bound the optimal solution length by below. However, this
admissible heuristic should be refined to better approximate the optimal solu-
tion length. Some hard problems - or stacks - are hard because they contain sub-
stacks whose solution lengths are strictly higher than the number of breakpoints.
As the permutation problems contain concepts such as hurdles or fortresses [6],
and as shown by the work of Josef Cibulka on burnt pancakes, we have to find
out the corresponding concepts to design appropriate heuristic functions for the
pancake problems.

References

1. Asai, S., Kounoike, Y., Shinano, Y., Kaneko, K.: Computing the diameter of 17-
pancake graph using a PC cluster. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.)
Euro-Par 2006. LNCS, vol. 4128, pp. 1114–1124. Springer, Heidelberg (2006)

2. Auyeung, A., Abraham, A.: Estimating genome reversal distance by genetic algo-
rithm. In: The 2003 Congress on Evolutionary Computation (CEC 2003), vol. 2,
pp. 1157–1161. IEEE (2003)

3. Bader, D., Moret, B., Yan, M.: A linear-time algorithm for computing inversion
distance between signed permutation with an experimental study. In: WADS, pp.
365–376 (2001)

4. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. In: FoCS
(1993)

5. Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory.
DAM 146(2), 134–145 (2005)

6. Berman, P., Hannenhalli, S.: Fast sorting by reversal. In: 7th Symposium on Com-
binatorial Pattern Matching, pp. 168–185 (1996)

7. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for
sorting by reversals. Technical report, 41, DIMACS (2001)

8. Berman, P., Karpinski, M.: On some tighter inapproximability results. Technical
report, 23, DIMACS (1999)

9. Bouzy, B.: Monte-Carlo fork search for cooperative path-finding. In: Cazenave, T.,
Winands, M.H.M., Iida, H. (eds.) Workshop on Computer Games (CGW 2013),
vol. 408, pp. 1–15. CCIS (2013)

10. Bulteau, L.: Algorithmic aspects of genome rearrangements. Ph.D. thesis, Univer-
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Abstract. In previous research an upper bound of 705 was proved on
the number of moves in the 5T variant of the Morpion Solitaire game.
We show a new upper bound of 485 moves. This is achieved in the fol-
lowing way: we encode Morpion 5T rules as a linear program and solve
126912 instances of this program on special octagonal boards. In order
to show correctness of this method we analyze rules of the game and use
a concept of a potential of a given position. By solving continuous-valued
relaxations of linear programs on these boards, we obtain an upper bound
of 586 moves. Further analysis of original, not relaxed, mixed-integer pro-
grams leads to an improvement of this bound to 485 moves. However,
this is achieved at a significantly higher computational cost.

1 Introduction

The Morpion Solitaire is a paper-and-pencil single-player game played on a
square grid with the initial configuration of 36 dots depicted in Fig. 1. In the
5T variant of the Morpion Solitaire game1, in each move the player puts a dot
on an unused grid position and draws a line that consists of four consecutive
segments passing through the dot. The line must be horizontal, vertical or diag-
onal. None of the four segments used in the line may appear as a segment of any
other line. The goal is to find the longest possible sequence of moves.

The problem is notoriously difficult for computers. For 34 years, in the
Morpion 5T game the longest known sequence was one of 170 moves discovered
by C.-H. Bruneau in 1976 (see2 [1]). The record was finally broken by Christo-
pher D. Rosin, who presented in [6] a configuration of 177 moves, obtained using
a Monte Carlo algorithm called Nested Rollout Policy Adaptation (NRPA). In
2011 (see [1]) he improved his record to 178, which is the best result known
today. The webpage [1] maintained by Christian Boyer, contains an extensive
and up-to-date information about records in all Morpion Solitaire variants.

As the Morpion 5T game is played on a potentially infinite grid, a priori
it is not clear whether the maximal sequence should be finite at all. An upper
bound of 705 was shown in [2]. In the present paper we show a new upper bound
1 We refer to this variant as the Morpion 5T game. For an overview of other variants

see the webpage [1] or the paper [2].
2 Regarding this and other records we refer to the webpage [1] for a detailed description

and further references.
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Fig. 1. Initial position ofMorption 5Ton the left and a position with 3moves on the right.

of 485. We base our approach on the observation that a Morpion 5T game may
be expressed as a mixed-integer linear programming problem.

We observed (see Sect. 2.1) that the bound obtained by a continuous-valued
linear relaxation of the Morpion 5T game significantly depends on the size of the
grid on which the game is played. On big grids the bound may be well over the
upper bound of 705 (in fact, we do not know if it is finite). On the other hand
on smaller grids we obtained useful bounds. For example, on a grid limited to a
regular octagon3 with sides of length 10, we obtain a linear relaxation bound of
543. By a geometric reasoning, using the notion of potential and careful analysis
of the rules of Morpion 5T game, we show that every Morpion 5T position
must be contained in one of 126912 octagonal grids with small boundaries (see
Lemma 4 for a precise formula). The maximum bound of 586.82 is obtained
on a grid which is an octagon with sides of lengths 10, 8, 10, 12, 10, 8, 10, 12 (see
Fig. 5).

In fact, the picture is more complicated. To state a linear problem for Mor-
pion 5T we need not only to consider the shape of the octagonal grid but also a
position of the initial cross inside. This makes the number of cases to consider
larger by two orders of magnitude. To get around this difficulty we consider vari-
ants of Morpion Solitaire called Morpion 5T+ and Morpion 5T++ (see [1]). In
the later variant the position of the initial cross inside of the grid is not relevant.
Every Morpion 5T game is also a Morpion 5T+ game and every Morpion 5T+
game is a Morpion 5T++ game. The difference between 5T and 5T+ is that the
line drawn in a move needs not to pass through the dot placed in this move. The
difference between 5T+ and 5T++ is that one may place more than one dot in
a single move, as long as in the final position the number of dots is equal to the
number of moves plus 36. That is, we may borrow dots in 5T++ as long as the
balance at the end is correct. In Morpion 5T++ we start with an empty board.

The upper bound of 705 moves proved in [2] is also valid in the Morpion
5T++ game. The longest known sequence of moves in Morpion 5T+ was found

3 This is a graph that plays a role in the proof of the 705 bound in [2].
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by Marc Bertin in 1974 and consists of 216 moves (see [1]). The longest known
sequence of moves in the Morpion 5T++ game was found by Christian Boyer in
2011 (see [1]). The sequence consists of 317 moves.

The associated mixed-integer linear problems are much easier to solve in the
case of 5T++ variant and we have a benefit of much smaller number of cases to
consider. However, the limit on the size of the grid pertains to the 5T variant,
so our new upper bound of 485 is valid for the 5T variant only.

The paper is organized as follows. In Sect. 2 we formulate the linear problem
(LP0)–(LP3). In Sect. 3 we calculate that the number of instances, which must
be treated by the solver, is 126912. In Sect. 4 we consider consequences of the
relaxation of the original problem (LP0)–(LP3). This allows to show an upper
bound of 586 moves in the Morpion 5T game. In Sect. 5 we push the result of
Sect. 4 in order to obtain an upper bound of 485 moves. This is done at a con-
siderable increase in the computation time. In Sect. 6 we explain the correctness
of algorithms used in previous Sections. The correctness result boils down to
an observation how, in terms of potential, a given board relates to the smallest
octagon containing this board (see Theorem 1).

We note that modern LP solvers have no problem in finding the record
sequence of 317 moves for the 5T++ variant, but despite considerable computa-
tional effort we were not able to break this record. The current upper bound of
485 can be improved with more computational resources. However, we believe
that the best approach would be to find better limitations on the size of grids.

It is also possible to write linear programs that solve the Morpion 5D variant
of the Morpion Solitaire (see [1] for description of the rules and current lower and
upper bounds). On larger grids we obtain objective 144 for the relaxed problem,
as the standard potential-based argument applies to the relaxed case as well (see4

[2]). The upper bound of 121 moves in the Morpion 5D game was proved in [4].
Using variants of the Morpion 5D game and a different strategy of limiting grids,
we were able to prove that an upper bound in the Morpion 5D game is below
100. We also proved that the best possible result in the symmetric Morpion 5D
game is 68. These results will be presented in a separate publication.

2 Linear Relaxation

A lattice point on a plane is a point with integer coordinates. A lattice graph is
a graph with vertices in lattice points and edges consisting of pairs (p, q), where
p and q are two different neighboring points, that is p �= q and p = (n,m) and
q = (n ± i,m ± j) for some i, j = 0, 1. We call such edges the lattice edges.

A move in a lattice graph G = (V,E) is a set of four consecutive parallel
lattice edges. We let M(G) to be the set of all moves in a graph G. We start with
the following observation, which simply rephrases the rules of Morpion 5T++
formulated in the Introduction.

Lemma 1. A graph G = (V,E) is a Morpion 5T++ position graph if and only
if it satisfies the following conditions
4 In fact, applying additional argumentation, in [2] is shown a bound of 141 moves.
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(M1) G is a lattice graph,
(M2) 4 · #V − #E = 144,
(M3) The set E of edges of G can be decomposed into a collection of disjoint

moves.

Let B = (VB , EB) be a fixed lattice graph that we shall call the board. In
applications, it will be a sufficiently large octagonal lattice graph with a full set
of edges. Below we define linear constraints that describe all subgraphs of B that
satisfy conditions (M1)–(M3) of Lemma 1.

We define the following set of structural binary variables, that is variables
assuming values 0, 1:

{dotv : v ∈ VB} ∪ {mvm : m ∈ M(B)}. (LP1)

For each e ∈ EB and v ∈ e we declare the following constraints:∑
m∈M(B),e∈m

mvm ≤ dotv . (LP2)

∑
v∈VB

dotv = 36 +
∑

m∈M(B)

mvm . (LP3)

The following two lemmas describe correspondence between binary-valued solu-
tions of a mixed integer programming problem (LP1)–(LP3) and subgraphs of
B that are Morpion 5T++ positions.

Lemma 2. Let G = (VG, EG) be a subgraph of B and a Morpion 5T++ position
obtained by a sequence M of moves. If

dotv =
{

0 if v �∈ VG

1 if v ∈ VG
and mvm =

{
0 if v �∈ M
1 if v ∈ M ,

then conditions (LP1), (LP2) and (LP3) hold.

Proof. If dotv = 0, then there is no move passing through v, hence the left hand
side of (LP2) is equal to 0. If dotv = 1, then condition (LP2) means that every
segment e played in the game can appear in exactly one move. Condition (LP3)
means that the number of dots placed is higher by 36 than the number of moves
made.

Lemma 3. Assume that a set of variables defined by condition (LP1) satisfies
conditions (LP2) and (LP3). Let G = (VG, EG) be a graph with a set of vertices

VG = {v ∈ VB : dotv = 1}
and a set of edges

EG = {e ∈ EB : ∃m∈M(B) e ∈ m,mvm = 1}.

Then G is a Morpion 5T++ position and a subgraph of G.
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Proof. We will show that G satisfies conditions (M1)–(M3) of Lemma 1.
By the definition of EG, if e ∈ EG then there exists m ∈ M(B) such that

mvm = 1. By (LP2), if mvm = 1, then dotv = 1 for each v ∈ VB such that
v ∈ e ∈ m. It means that graph G contains vertices of its edges, therefore it is a
well defined subgraph of B, hence it is a lattice graph and it satisfies (M1).

From (LP2) follows, that the moves mvm must be disjoint in the sense,
that they cannot contain the same edge twice. This implies condition (M3)
of Lemma 1. From disjointness and condition (LP3) follows condition (M2) of
Lemma 1.

We consider a linear relaxation of the MIP problem (LP1)–(LP3). We let
structural variables to be real-valued, subject to bounds

0 ≤ dotv,mvm ≤ 1. (LP4)

In the relaxation we maximize the objective function∑
m∈M(B)

mvm (LP0)

Clearly, an optimal solution to the linear programming problem (LP0)–(LP4)
gives an upper bound for the length of a Morpion 5T++ game on a board B.

2.1 The Problem of the Infinite Grid

Observe that any lattice graph that consists of 9 vertex-disjoint moves has 45
vertices and 36 edges and satisfies conditions (M1)–(M3) of Lemma 1, hence it
is a Morpion 5T++ position graph and consequently Morpion 5T++ positions
can have arbitrarily large diameter in the plane R

2.
The following table summarizes solutions of the linear relaxation of Morpion

5T++ on square n × n boards (where n is the number of edges on the side)
(Fig. 2).

Fig. 2. The top row contains the length n of the edge of a given square and the bottom
row contains solutions to the relaxed problem (LP0)–(LP4) on the n× n board.

We do not know whether the objective function (LP0) is bounded or not
on the infinite grid. However, the bound of 705 moves derived in [2] holds for
Morpion 5T++. This shows that we get no useful upper bound for positions
satisfying (M1)–(M3) using our linear relaxation method. To get a bound, we
have to use another properties of Morpion 5T positions to bound the size of the
board. This will be done in the next Section.
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3 Bounding the Board

Let G = (V,E) be a lattice graph. Following [2] we define the potential of G

potential(G) = 8 · #V − 2 · #E.

In this Section it will appear that the missing constraint which makes the original
linear problem (LP0)–(LP4) accessible to modern LP solvers is an additional
bound on the shape and potential of the board (see Theorem 1), which in turn,
thanks to Lemma 4, will imply a bound on the size of relevant boards. In order
to formulate the bound we need some new geometric notions.

A half–plane graph is a full lattice graph with a vertex set of all lattice points
〈x, y〉 such that

ax + by + c ≥ 0

where a, b ∈ {−1, 0, 1} with a �= 0 or b �= 0 and c ∈ Z.
An octagonal hull of a lattice graph G = (VG, EG), denoted hull(G), is

an intersection of all half–plane graphs containing G. We call octagonal hulls
octagons.

Every octagon has eight edges. We may describe octagon by giving lengths
of its edges. We start with the top edge and continue clockwise. For example,
octagon depicted in Fig. 3 has edges of lengths 3, 3, 0, 1, 6, 0, 3, 1. We call every
diagonal edge of length 0 a corner of an octagon. Corners are opposite if they
correspond to parallel edges of the octagon.

Fig. 3. The octagonal hull of green
points. The green point marked with the
letter C is a corner of the octagon hull.
(Color figure online)

In the next two Sections we will
obtain an upper bound of 586 and
respectively 485 moves for Morpion 5T
game solving 126912 instances of the lin-
ear problem (LP0)–(LP4) described in
Sect. 2. The following Theorem shows
that the penalty, measured in extra
potential, paid for solving such problems
only on octagonal hulls is relatively small.
In turn, thanks to Lemma 4, the bound
on the potential allows to limit the size
of octagons. Thus we can focus atten-
tion on 126912 relatively small octagonal
instances of linear programs. The number
126912 will be deduced in Theorem 2 later in this Section.

Theorem 1. Let G be a Morpion 5T position graph.

1. If hull G does not contain any corner, then

potential(hull(G)) ≤ potential(G)

2. If it does not contain opposite corners, then

potential(hull(G)) ≤ potential(G) + 2
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3. If it contains at least two opposite corners, then

potential(hull(G)) ≤ potential(G) + 4.

We define modifier(hull(G)) as 0 in case 1, 2 in case 2 and 4 in case 3.

We postpone the proof of Theorem 1 until Sect. 6.

3.1 The Set of Boards

In this Subsection we describe a set of octagonal boards that contain every
possible Morpion 5T position. As this set is quite large, we will use symmetry
to limit its size.

Fig. 4. The octagon (3, 3, 0, 1, 6, 0, 3, 1). The top 6 figures represent potential associated
with 3a1 = 3 · 3 = 9, 4a2 = 4 · 3 = 12, 4a4 = 4 · 1 = 4, 3a5 = 3 · 6, 3a7 = 3 · 3 = 9,
4a8 = 4 · 1 = 4. The bottom figure represents missing 8 edges of the potential.

We say that a graph G is non-degenerated if it contains three vertices that
are not on a single diagonal line.

Lemma 4. Let G be a non-degenerated octagon with edges of length
a1, a2, a3, a4, a5, a6, a7, a8 with a1 denoting the length of the top edge. The fol-
lowing equations hold.

potential(G) = 8 + 3a1 + 4a2 + 3a3 + 4a4 + 3a5 + 4a6 + 3a7 + 4a8. (O1)

a8 = a2 + a3 + a4 − a7 − a6. (O2)

a1 = a4 + a5 + a6 − a8 − a2. (O3)
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If G contains the starting cross of Morpion 5T game, then

a1 + a2 + a3 ≥ 10 (O4)

a8 + a1 + a2 ≥ 10 (O5)

a2 + a3 + a4 ≥ 10 (O6)

Using rotation by multiple of 90 degrees and a reflection along the y-axis we can
always obtain a graph that satisfies

a1 ≥ a3, a1 ≥ a5, a1 ≥ a7 (O7)

a8 ≥ a2 (O8)

Proof. Condition (O1) follows from distribution of potential visualized in Fig. 4.
Conditions (O2), (O3) are elementary geometric properties of octagons. We will
verify them on the example presented in Fig. 4. Indeed,

a8 = 1.

On the other hand

a2 + a3 + a4 − a7 − a6 = 3 + 0 + 1 − 3 − 1 = 1.

Similarly,
a1 = 3

and
a4 + a5 + a6 − a8 − a2 = 1 + 6 + 0 − 1 − 3 = 3.

Properties (O4), (O5) and (O6) follows from the observation that in order
to embed the starting cross of Morpion 5T (see Fig. 1), the projections of the
octagon in diagonal, horizontal and vertical directions must be of length at
least 10.

Property (O7) can be guaranteed through rotation by a multiple of 90
degrees. Then property (O8) can be guaranteed through reflection along the
y–axis. This reflection preserves property (O7).

Theorem 2. Let O denote the set of octagons O that satisfy constraints (O1)–
(O8) of Lemma 4 and the constraint given by the equality potential(O) = 288 +
modifier(O). The number of elements of O is 126912 and the octagon with the
largest number of vertices is an equilateral octagon with sides of length 10. This
octagon contains 741 vertices.

Proof. Every octagon O with potential(O) < 288 + modifier(O) is included in
an octagon O′ with potential(O′) = 288 + modifier(O′). Hence we can ignore in
our calculations octagons with potential(O) < 288+modifier(O). The number of
relevant octagons was calculated using the script octagons.cpp (see the reposi-
tory [5]). The script generates all instances of octagons satisfying constraints of
this Theorem.
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As a corollary we obtain the bound presented in [2].

Corollary 1 ([2])The number of moves in a Morpion 5T game is bounded by 705.

Proof. We list all octagons in O and check how many dots can placed in a fixed
octagon, given the starting 36 dots. The best result consists of 705 new dots for
the equilateral octagon with sides of length 10.5

Let us notice, that this Corollary is weaker than the one obtained in [2],
because the above method applies to Morpion 5T, but not to Morpion 5T++
game.

4 Linear Relaxation Bound

Theorem 3. Let objB denote the value of optimal solution of a linear program-
ming problem (LP0)–(LP3). If B satisfies conditions (O1)–(O8) of Lemma 4, then

objB ≤ 586.82353.

Fig. 5. The record illustrating maximal solution of the relaxed problem. This solution
is obtained for the octagon (10, 8, 10, 12, 10, 8, 10, 12). Since this is a relaxed problem
(LP0)–(LP4), the grayness in the Figure indicates the value of the move, that is a
number between 0 and 1.

5 This proof does not rely on linear optimization. We just go over a finite list of
octagons.



485 – A New Upper Bound for Morpion Solitaire 53

The maximum value is obtained for the octagon

B = (10, 8, 10, 12, 10, 8, 10, 12).

The record solution can be found in Fig. 5. All 126912 relaxed problems were
solved by gurobi optimization software (see [3]) within 24 hours on a single core
of a Linux machine equipped with Intel R© Xeon R© CPU X3220@2.40GHz with
8GB of RAM.
Proof. The proof is a calculation of objB for all octagons satisfying conditions
(O1)–(O8) of Lemma 4. The source code of the program generator.cpp gener-
ating the relevant linear programs can be found in the repository [5].

Corollary 2. The number of moves in a Morpion 5T game is bounded by 586.

5 MIP Bound: 485

Fig. 6. The vertical axis shows
the number of cases and the hor-
izontal axis shows the computa-
tion time in seconds.

Let us notice that results obtained in Theorem
3 can be naturally strengthened through longer
computations. In practice, we were able to target
the objective 485.

From Sect. 4 we know all 126912 instances
and their performance under relaxed (LP0)–
(LP4) linear problem. Apparently, out of all
126912 problems, 42889 instances have the
relaxed bound bigger or equal to 485. These are
exactly the instances which must be treated by
direct computations if we want to reduce the
bound to 485. The total computation time for
this target was approximately 310 days using the optimization software gurobi
(see [3]) on a single core of a Linux machine equipped with Intel R© Xeon R© CPU
X3220@2.40GHz with 8GB of RAM. The graph 6 shows on the logarithmic scale
the distribution of the computation time among 42889 instances6.

6 Geometry of the Problem

In this Section we will show a proof of Theorem 1. The key technical ingredient
is Lemma 10. Let M = M(G) be the set of all possible moves in a graph G.
A lattice graph with a vertex set V is full if its edge set is maximal, i.e.

E = {(u, v) : u, v ∈ V, u �= v, |ux − vx| ≤ 1, |uy − vy| ≤ 1}.

A graph G = (V,E) is 1-connected if a full lattice graph with a vertex set V
is connected. A boundary of a lattice graph G = (V,E) is a set

B(G) = {〈u, v〉 ∈ Z
2 × Z

2 : u ∈ V, (u, v) �∈ E}.

Observe that elements of B(G) are directed edges with start points in V such
that the corresponding undirected edge is not in E. Let us notice, that
6 In fact, a half of the instances required less than 100 s to reach the limit of 485 and

9 instances required the computation time longer than 18000 s.
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potential(G) = #B(G).

where potential(G) is the number defined at the beginning of Sect. 3. Here we
will analyze the potential more closely and divide it into external and internal
potentials.

An edge e = 〈u, v〉 ∈ B(G) is an external edge if u + k · (v − u) �∈ V for every
k ≥ 1. Let Bex(G) denote the set of all external edges of G.

An edge e ∈ B(G) is an internal edge if it is not an external edge. Let Bint(G)
denote the set of all internal edges of G.

The external potential potentialex(G) is the cardinality of the set Bex(G).
The internal potential potentialint(G) is the cardinality of the set Bint(G).

Lemma 5. If G is a Morpion position graph, then potential(G) = 288.

Proof. From the definition of potential at the beginning of Sect. 3 we have

potential(G) = 8#V − 2#E.

The number 288 for Morpion position graphs follows from property (M2) in
Lemma 1.

In the proof of Theorem 1 we need some additional definitions.
Definition 1. Let L denote the

L = {la,b,c : (a, b) ∈ D, c ∈ Z}.

where
la,b,c = {(x, y) ∈ Z

2 : ax + by + c = 0}
A line la,b,c ∈ L is called diagonal if 〈a, b〉 ∈ {−1, 1}2. A graph G = (V,E) is
degenerated if there exists a line l ∈ L such that V ⊂ l.

Definition 2. A line l ∈ L is a gap line for graph G if l is diagonal, does not
contain any vertices of G, but there are vertices of G on both sides of l. We let
gap(G) be the number of gap lines of a graph G.

Lemma 6. If a lattice graph G = 〈V,E〉 is an octagon, then for every l ∈ L the
intersection V ∩ l is 1–connected and potential(G) = potentialex(G).

Proof. For every la,b,c ∈ L the intersection in R
2 of {(x, y) ∈ R

2 : ax+by+c = 0}
with the convex hull of G in R

2 is an interval in R
2 and the lattice points of this

interval are 1–connected and coincide with V ∩ l.

Lemma 7. If G is not degenerated, then gap(hull(G)) = 0.

Proof. Fix a diagonal line l. We will show that l is not a gap line for hull(G).
Take vertices u, v ∈ hull(G) on both sides of l. Since G is non-degenerated, we
may assume that u and v are not on a same line perpendicular to l (first we
select arbitrary two points on both sides of l and if they are located on the same
line then from degeneracy we can find another either on the side of u or on the
side of v).

From the definition, hull(G) contains the intersection of all half-planes
that contain u and v, hence it contains a parallelogram with the following
characteristics:
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Fig. 7. Every line parallel to l with
u and v on different sides must
contain one of the vertices marked
with black squares.

– opposite vertices of the parallelogram are u
and v,

– a pair of edges of parallelogram is horizon-
tal (or vertical)

– another pair of edges is diagonal (see
Fig. 7).

We start from the vertex v and mark the
black dots along the horizontal/vertical edge.
Then along the diagonal edge we mark “the
staircase” as in Fig. 7. Notice, that l passes
through one of the black dots of the staircase.

Indeed, since u and v are not on a line perpendicular to l, if l intersect the
parallelogram between two points on the diagonal edge, then l necessarily pass
through a black dot between these two points.

If l intersects one of the horizontal/vertical edges of the parallelogram, then
l passes through one of the black dots located on the edge. Hence l has a non–
empty intersection with hull(G) and it follows that l is not a gap line for hull(G).

The following Lemma provides a sufficient condition for a line in L to be a
gap line.

Lemma 8. Let G be a 1-connected, bounded and non-degenerated lattice graph
and l ∈ L. If l does not contain a vertex of G and contains a vertex of hull(G),
then l is a gap line for G.

Proof. Every half-plane graph that contains l must contain at least one vertex
of G, since l has a vertex in hull(G) (otherwise the opposite half-plane with l
removed would contain whole G and hence also hull(G), so hull(G) would be
disjoint from l). Therefore both half-planes that have l as a boundary contain
vertices of G. Since G is disjoint with l, there are vertices of G on both sides of l.
In order to prove that l is a gap line it is enough to verify that l is diagonal.

Indeed, observe that horizontal and vertical lines disconnect the grid Z
2 into

two 1-connected components. Since G contains vertices on both sides of l and is
1-connected, the line l must be diagonal, hence it is a gap line for G.

The above Lemma 8 along with Lemma 7 shows a characterization of gap
lines among lines in L.

Lemma 9. If G is a 1-connected, non–degenerated lattice graph, then

potential(hull(G)) = potentialex(G) + 2 gap(G).

Proof. In this proof it will be convenient to mark as e the set consisting of two
vertices at the ends of a given edge e. Observe that for any graph Γ and any
line l ∈ L

#{e : e ∈ Bex(Γ ), e ⊂ l} (*)

is 0 iff VΓ ∩ l = ∅ and 2 otherwise. By Lemma 6,
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potential(hull(G)) = potentialex(hull(G)).

We have
potentialex(hull(G)) =

∑
l∈L

#(l ∩ Bex(hull(G)))

and
potentialex(G) =

∑
l∈L

#(l ∩ Bex(G)).

By (*) and by Lemma 8, for a given l ∈ L either #(l∩Bex(hull(G))) = #(l∩
Bex(G)) or l is a gap line for G and #(l ∩ Bex(hull(G))) = 2, #(l ∩ Bex(G)) = 0.
Hence

potential(hull(G)) = potentialex(G) + 2 gap(G).

The main technical difficulty in the Section is the following geometric Lemma.
This Lemma together with Lemma 9 finish the proof of Theorem 1.

Lemma 10. If G is a position of the Morpion 5T then

2 gap(G) ≤ potentialint(G) + modifier(hull(G)).

The notion of modifier was defined in Theorem 1.

Proof. Let G = (V,E). Let L(G) denote the set of all gap lines of G. Let l ∈ L(G).
The two halfplanes bounded by l decompose the set V of vertices of G into two
disjoint subsets, one of which contains all dots of the initial cross. If the other set
contains only a single vertex, then we say that l is a singular gap line. Otherwise
we say that l is a non-singular gap line. If l is a singular gap line, then we let vl

denote the single vertex of V separated from the initial cross by line l and call
vl the singular vertex of l.

Fig. 8. Green vertices belong to the
graph, red vertices do not belong to
the graph. From the dotted arrows
we will choose 2 to compensate for
the gap line l. (Color figure online)

Let m1,m2, . . . ,mn be a sequence of the
Morpion 5T moves that lead to a posi-
tion G. Let l be a singular gap line
and let mk be a move that puts the
singular vertex vl on board. Since there
are no other vertices in the halfplane
bounded by l that contains vl, no move in
sequence m1,m2, . . . requires dot vl and the
sequence m1,m2, . . . ,mk−1,mk+1, . . . ,mn is
a valid move sequence. Likewise m1,m2, . . . ,
mk−1,mk+1, . . . ,mn,mk is valid. Hence we
may modify our sequence so that the moves
that put singular dots on board are at the
very end of the move sequence.

Let m1,m2, . . . ,mk,mk+1, . . . ,mn be a
sequence of Morpion 5T moves that lead to a
position G such that moves m1,m2, . . . ,mk

put non-singular dots on board and moves
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mk+1, . . . ,mn put singular dots on board. Let H = (VH , EH) be a Morpion 5T
position obtained by the sequence m1,m2, . . . ,mk. We will show that

2 gap(H) ≤ potentialint(H).

Observe that H has no singular gap lines as removing a singular vertex cannot
make a non-singular vertex singular.

Let l ∈ L(H). Since l is non-singular and H is obtained as a position in
Morpion 5T game, there are two edges e1l , e

2
l ∈ EH that cross l. Consider labeling

of dots as in Fig. 8. Note that d1l and d2l are picked on l between e1l and e2l (and
they may be the same point when e1l and e2l are next to each other).

We will construct a map that assigns to each ei
l (i = 1, 2, l ∈ L(H)) one edge

from the list

(ui
l, d

i
l), (v

i
l , d

i
l) (∗∗i

l)

in such a way that the following conditions are satisfied.

1. The assigned edges realize the internal potential of H, i.e. they belong to
Bint(H).

2. We do not assign the same edge twice.

First we’ll show that at least one edge from the edge list (∗∗i
l) belongs to

Bint(H). Without a loss of generality we may assume that i = 1. Consider two
half-lines starting at d1l in directions (u1

l , d
1
l ) and (v1

l , d1l ) (the dotted arrows in
Fig. 8). They disconnect the grid of lattice points into two 1-connected compo-
nents. Both components contain vertices of H (e.g. v1

l and v2
l are in different

components). Since H, as a Morpion 5T position, is 1-connected, there must be
a vertex of H on at least one of those half-lines. Since d1l does not belong to
VH (as d1l ∈ l and l is disjoint from VH as a gap line), at least one of the edges
(u1

l , d
1
l ), (v

1
l , d1l ) belongs to Bint(H).

Second, we’ll show how to pick edges from the edge list (∗∗i
l) in such a way

that the assignment is unique (one-to-one).
Consider edge e1l that crosses a gap line l. There may be only one gap line

m such that the edge lists (∗∗1m) or (∗∗2m) overlap with the edge list (∗∗i
l). We

consider four cases about how edges e2l , e1m, e2m are placed around ei
l (Fig. 9).

Case 1. If both e1m and e2m are vertex disjoint from e1l , then we assign to e1l
any edge from (∗∗1l ) that belongs to Bint(H).

Case 2. Exactly one of e1m and e2m has a common vertex with e1l . Without a
loss of generality we may assume that e1m has a common vertex u1

l = u1
m with

e1l . We must be careful to not assign edge (u1
l , d

1
l ) to both edges e1l and e1m. We

assign (v1
l , d1l ) to e1l and (v1

m, d1m) to e1m.
Case 3. Both e1m and e2m have a common vertex with e1l but e2l is vertex

disjoint from e1m and e2m. Assume that v1
m and u2

m are vertices of e1m and e2m
that are disjoint from ei

l. We assign (v1
m, d1m) to e1m, (u2

m, d2m) to e2m and (u1
l , d

1
l )

to e1l .
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Fig. 9. Two gap lines l and m intersecting at a point d1l . Four figures relate to four
cases in the proof. The top left is related to Case 1, the top right to Case 2, the bottom
left to Case 3 and the bottom right to Case 4.

Case 4. Edges e1l , e2l , e1m, e2m form a small “diamond” (they pairwise intersect)
with d1l = d2l = d1m = d2m inside. Assuming that the vertices are labeled in such
a way that uj

k are disjoint, we assign (uj
k, dj

k) to ej
k.

This concludes the argument that 2 gap(H) ≤ potentialint(H).
We will now show that the singular moves mk+1, . . . ,mn add at least 2 ·

(n − k) − modifier(hull(G)) to the internal potential of the position (i.e.
potential(G) − potential(H) ≥ 2 · (n − k) − modifier(hull(G))).

First, observe that there are at most 4 singular moves, that is n − k ≤ 4.
This is because there are two diagonal directions and two sides of a line where
the initial cross may be.

Assume that move mi (i > k) places a singular vertex vi. Let l1i , l2i be half-
lines starting from vi in the direction of the gap line created by move mi (the
dashed lines in Fig. 10). There are two possibilities.

Case I. At least one of the half-lines l1i , l2i contain a vertex of the position
graph. Let ui denote this vertex. If so, then placing of vi creates two new edges
of internal potential (one starting in vi in the direction of ui and another one in
ui in the direction of vi). The new gap line is compensated.

Case II. Neither of the half-lines l1i and l2i contain a vertex of the position
graph. Observe that this is possible only for at most two of the singular moves
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Fig. 10. Two cases appearing in the analysis of the corners. The figure on the left
relates to Case I and the figure on the right to Case II.

and each of those moves must create a corner in the hull of G. Moreover, if there
are two such moves, the corners are opposite corners of hull(G).

This concludes the proof of the Lemma.
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Abstract. We are interested in the optimal solutions to multi-agent
planning problems. We use as an example the predator-prey domain
which is a classic multi-agent problem. We propose to solve it on small
boards using retrograde analysis.

1 Introduction

The predator-prey problem is a classic multi-agent problem. It was introduced
in [3]. There are four predators and one prey and the goal of the predators is
to capture the prey. In this seminal work the predators can occupy the same
location and the prey moves randomly. In a posterior work the agents could not
occupy the same location [18]. Richard Korf proposed a simple pursuit strat-
egy using attraction between the predators and the prey and repulsion between
predators [10].

The predator-prey problem has been used to test multiple agent based algo-
rithms. For example it has been use to analyze a general model of multi-agent
communication with a message board, using a genetic algorithm to evolve multi-
agent languages [9]. It has also been used to test genetic algorithms with Lamar-
ckian learning operators in multi-agent environments [7].

Genetic programming has also been used to co-evolve predators and preys
populations [8]. In this work the authors acknowledge that the approach fails and
claim that a simple prey algorithm is able to evade capture from the predators’
algorithms. Another work evolving multi-agent teams for the predator-prey game
is presented in [11].

In a system evolving neural networks in separate subpopulations for different
agents, it was advocated that the learning is easier than with a single controller
and that communication is unnecessary and even detrimental in the predator-
prey problem [22].

Another line of work is the development of almost optimal algorithms for
the prey [12]. These algorithms were tested on twenty maps of the commercial
computer game Baldur’s Gate and the best one achieved up to 98 % optimality,
while being reasonably fast.

The other topic we address in this paper is retrograde analysis. Retrograde
analysis computes the optimal solution to a large number of game states start-
ing from terminal positions and going up towards deeper positions. It was
first used in Chess and Checkers and related to dynamic programming [1].

c© Springer International Publishing Switzerland 2016
T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 60–70, 2016.
DOI: 10.1007/978-3-319-39402-2 5
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Chess endgames have been completely solved up to 6 pieces using retrograde
analysis [19,20]. The 6-piece endgame table requires 1.2 TB. Endgame tables
have also been instrumental in solving Checkers [17]. Awari was completely
solved thanks to retrograde analysis [13] leading to an optimal and instanta-
neous player. Retrograde analysis has also been applied to many other games
such as Nine Men’s Morris [6], Go [4], Fanorona [15], Chinese Chess [5] or Chinese
Dark Chess [14] among others.

Games can also be solved by search. A standard algorithm for solving games
is iterative deepening αβ with a transposition table [16]. Search was used to
solve Checkers [17], small board Go [21] and small board Atari Go [2].

The outline of the paper is to present the predator-prey game in the next
section, then to present retrograde analysis and search, followed by experimental
results.

2 The Predator-Prey Game

In the predator-prey game we have designed, three predators are trying to cap-
ture a prey. In our implementation there are five possible moves for each agent:
going up, down, left, right or staying on the same location. Predators cannot
occupy the same location and when a prey moves to a predator location it is
captured.

A state is terminal either if the prey is on the same location as a predator or
if the prey is blocked by the predators and cannot move to an empty location.

A state is legal if no two predators are on the same location.
In previous work, moves by the predators and the prey can be either simulta-

neous or sequential. We have chosen sequential moves with the prey moving after
the predators. When the prey is the second player he can choose the move the
most beneficial to him knowing the future locations of the predators. It should
be better for the prey but the evaluation must be made only after the prey move
so as to simulate simultaneous moves. If the predator moves to the location of
the prey, the prey can still escape since it can still move and that the evaluation
of a state is only made after the move of the prey.

In our implementation it is possible for the prey to swap locations with
a neighbor predator. It could also be possible to forbid such swaps. Enabling
swaps as we do should be beneficial to the prey.

Overall when we had to make choices for the design of the game we chose
the design the most beneficial to the prey.

3 Retrograde Analysis

In order to store the results of retrograde analysis in a table we have to design
a bijection between the states of the problem and the indices in the table. We
call the index associated to a state its code. A simple way to compute a code is
to number each agent and each cell on the board and to compute the code of a
board as:
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code =
∑

agent
cell(agent) × MaxCellagent

In this formula the agent variable is an integer between 0 and 3 that represents
an agent. Agent 0 is the prey and agents 1, 2 and 3 are the predators. The
function cell(agent) returns an integer that represents the location of the agent
on the board, each cell is associated to an integer between 0 and MaxCell − 1.

Using the previous code we consider that each agent is different from the
other ones. However we could consider that two predators can exchange their
locations and that it is still the same state. In this case the total number of
states and the greatest possible code are quite reduced [15], thus reducing the
size of the retrograde analysis table.

For this paper, we kept things simple and in our experiments we used the
simple code considering each agent different from the other ones.

The overall algorithm that performs retrograde analysis is given in Algo-
rithm4. It calls two subsequent algorithms. The initialization algorithm that is
given in Algorithm 1 and which initializes the table with terminal states, and
the step algorithm that is given in Algorithm2 and which computes the states
won by the predators in currentDepth moves by the prey. The step algorithm
performs a one ply search in order to discover the states won at currentDepth
given the states won in less than currentDepth. This one-ply search algorithm is
given in Algorithm 3.

In the algorithms the constant MaxAgent is set to 4 and represents the num-
ber of agents including the prey. When the agent variables reaches MaxAgent it
means that either all the agents have been placed in the initialization algorithm
or that all the predators have moved in the step and the one step lookahead
algorithms.

In Algorithm 3 the predators try to minimize the depth to the capture and
the prey tries to maximize it. The unknown states are initialized to ∞ in the
init algorithm. If the prey can escape to an unknown state then the algorithm
returns ∞ and the predators have to keep trying other moves.

The table can be used to decide the predators’ moves that win in the smallest
number of steps. It can also be used to decide the prey move that will take the
most number of steps before capture. In some Chess endgames, even in lost
states, computers using an endgame table can lure grandmasters and keep them
away from victory as the human players do not always play optimal moves.

4 Search

The worst branching factor for 4 agents and vertical and horizontal moves is
54 = 625. A simple depth 8 problem for size 5 × 5 can already visit at most
6258 = 2.33 × 1022 leaves. In practice the exact number of leaves should be less
but still quite a large number. It would be clearly more than the state space size
of a 5 × 5 problem which is 345,000. The state space complexity of the problem
is far lower than its game tree complexity.
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Algorithm 1. The initialization algorithm
init (agent)
if agent = MaxAgents then

if board is legal then
nbStates ← nbStates + 1
depth [board.code ()] ← ∞
if board is terminal then

depth [board.code ()] ← 0
nbStatesDepth [0] ← nbStatesDepth [0] + 1

end if
end if

else
for cell in possible locations on board do

board.cell [agent] ← cell
init (agent + 1)

end for
end if

Algorithm 2. The step algorithm computing the next depth of retrograde
analysis

step (agent)
if agent = MaxAgents then

if depth [board.code ()] = ∞ then
if board is legal then

if min (1) = currentDepth - 1 then
depth [board.code ()] ← currentDepth
nbStatesDepth [currentDepth] ← nbStatesDepth [currentDepth] + 1

end if
end if

end if
else

for cell in possible locations on board do
board.cell [agent] ← cell
step (agent + 1)

end for
end if

A possible solution to avoid searching again the already visited states is to
use iterative deepening search with a transposition table as a search algorithm.
It avoids searching again the same state multiple times and it could significantly
decrease the search time as there are many transpositions in the predator-prey
problem.

We have implemented a perfect transposition table. A perfect transposition
table is a table that has exactly one entry per possible state. When a state has
been searched the result can be stored in the corresponding entry and it can be
reused when reaching the state again. We use the code of the board as the index
in the transposition table.
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Algorithm 3. The one step lookahead algorithm
min (agent)
if agent = MaxAgents then

return max ()
end if
mini ← min (agent + 1)
for move in possible moves for agent do

make move for agent
eval ← min (agent + 1)
undo move for agent
if eval < mini then

mini ← eval
end if

end for
return mini

max ()
if board is illegal then

return ∞
end if
maxi ← depth [board.code ()]
for move in possible moves for the prey do

make move for the prey
eval ← depth [board.code ()]
undo move for the prey
if eval > maxi then

maxi ← eval
end if

end for
return maxi

Algorithm 4. The overall algorithm for retrograde analysis
nbStates ← 0
nbStatesDepth [0] ← 0
init (0)
currentDepth ← 1
while true do

nbStatesDepth [currentDepth] ← 0
step (0)
if nbStatesDepth [currentDepth] = 0 then

break
end if
currentDepth ← currentDepth + 1

end while



Multi-agent Retrograde Analysis 65

The search algorithm for the predator-prey game is given in Algorithm5. It
uses a perfect transposition table and two functions. The minTT function tries
all the possible combinations of the predators’ moves and selects the one leading
to the capture of the prey if it exists. If no combination enables the capture in
depth steps it returns false. The maxTT function tries all possible moves for the
prey and selects the one that avoids capture. If all possible moves lead to capture
it stores the result in the transposition table and returns true.

The TT table contains the depth of the search that solved the state. It
contains ∞ if the state was not solved. If a state has already been solved with
a smaller or equal depth, the algorithm returns true. The other table is the
depthTT table, it contains the maximum search depth performed for the state.
If a state has already been searched with a greater or equal depth, the search is
cut as it is not necessary to search it again.

5 Experimental Results

The experiments were run on a 1.9 GHz computer running Linux and the algo-
rithms were written in C++.

The retrograde analysis algorithm was used to compute the depth to mate
of every state for various board sizes. The number of states for each depth to
mate is given in Table 1 for board sizes ranging from 4 × 4 to 9 × 9.

Table 2 gives the total number of states, the maximum code used and the
time to perform retrograde analysis for 4 × 4 to 9 × 9 boards.

We wrote an algorithm similar to the initialization algorithm in order to
verify that all states are won for the predators. It is run after the retrograde
analysis is finished and verifies that the depth to mate is finite for every possible
state. We have found that it is the case for all the board sizes we solved.

A 7 × 7 state with maximum depth 12 is the following state:

o....xx
......x
.......
.......
.......
.......
.......

The iterative deepening search for this state evolves as indicated in Table 3.
The times indicated are the cumulative times, the times for all inferior depth.
The time to solve the corresponding 9 × 9 problem with search at depth 16 is
1714.53 s. This is only to solve one problem when retrograde analysis can be
computed offline in 1,900 s for size 7 × 7 and for all problems and results in
instantaneous and optimal moves.

In order to illustrate the predators’ strategies, we give an example of the solu-
tion to the 7 × 7 problem above of maximum depth 12, with the prey randomly
choosing among the moves leading to a maximum depth state:
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Algorithm 5. The search algorithm
minTT (depth, agent)
if agent = MaxAgents then

return maxTT (depth − 1)
end if
if minTT (depth, agent + 1) then

return true
end if
for move in possible moves for agent do

make move for agent
eval ← minTT (depth, agent + 1)
undo move for agent
if eval = true then

return true
end if

end for
return false

maxTT (depth)
if board is illegal then

return false
end if
if prey is blocked then

return true
end if
if depth = 0 then

return false
end if
if TT [board.code ()] ≤ depth then

return true
end if
if depthTT [board.code ()] ≥ depth then

return false
end if
if depthTT [board.code ()] < depth then

depthTT [board.code ()] = depth
end if
if the prey is not on the same location as a predator then

if not minTT (depth, 1) then

return false
end if

end if
for move in possible moves for the prey do

make move for the prey
if the prey is not on the same location as a predator then

if not minTT (depth, 1) then
undo move for the prey
return false

end if
end if
undo move for the prey

end for

TT [board.code ()] ← depth
return true
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Table 1. Number of states for each depth to mate and for different board sizes.

Depth 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9

0 10,440 42,000 129,408 332,856 751,560 1,537,800

1 2,712 4,920 7,464 10,344 13,560 17,112

2 3,960 5,976 7,560 8,616 9,672 10,728

3 10,200 16,056 20,808 24,792 26,760 28,728

4 19,584 42,840 48,960 57,888 64,752 68,352

5 6,864 79,752 119,040 128,616 138,912 150,912

6 0 83,928 240,864 273,600 283,416 298,080

7 0 68,760 367,896 531,000 584,280 580,128

8 0 768 387,816 888,696 1,122,336 1,131,336

9 0 0 211,848 1,218,600 1,927,536 2,067,480

10 0 0 576 1,170,576 3,021,264 3,533,112

11 0 0 0 755,424 3,478,080 5,575,200

12 0 0 0 15,648 3,005,280 7,666,608

13 0 0 0 0 1,551,816 8,301,696

14 0 0 0 0 19,752 6,625,848

15 0 0 0 0 0 3,816,432

16 0 0 0 0 0 55,968

17 0 0 0 0 0 0

o....xx o....x. o....x. ....x.. ...x... ..x....
......x .....xx ....xx. o..xx.. ..xx... .xx....
....... ....... ....... ....... o...... .......
....... ....... ....... ....... ....... o......
....... ....... ....... ....... ....... .......
....... ....... ....... ....... ....... .......
....... ....... ....... ....... ....... .......

12 11 10 9 8 7

.x..... ....... ....... ....... ....... .......

.x..... .x..... ....... ....... ....... .......

..x.... .x..... .x..... ....... ....... .......

.o..... .ox.... .xx.... .x..... x...... x......

....... ....... .o..... oxx.... xx..... .......

....... ....... ....... ....... o...... xx.....

....... ....... ....... ....... ....... o......
6 5 4 3 2 1
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Table 2. Number of states, maximum code and time to solve with retrograde analysis
in seconds for different sizes

Size Number of states Maximum code Time to solve

4 × 4 53, 760 65, 536 3.82

5 × 5 345, 000 390, 625 56.16

6 × 6 1, 542, 240 1, 679, 616 386.75

7 × 7 5, 416, 656 5, 764, 801 1, 900.91

8 × 8 15, 998, 976 16, 777, 216 8, 618.76

9 × 9 41, 465, 520 43, 046, 721 27, 002.54

Table 3. Times for searching a 7 × 7 depth 12 state with iterative deepening and a
perfect transposition table.

Depth Time

1 0.006094

2 0.006181

3 0.007001

4 0.013914

5 0.046882

6 0.162278

7 0.492648

8 1.453308

9 4.410059

10 12.724911

11 91.924769

12 164.675883

6 Conclusion

Retrograde analysis of the predator-prey problem is tractable in time and mem-
ory until 9 × 9 boards. It results in instantaneous decisions and optimal multi-
agent strategies.

A result from this research is that the predator-prey game is always lost for
the prey even when there are only 3 predators, when the prey knows the moves
of the predators before moving and when the prey is allowed to swap locations
with a neighbor predator. The maximum number of moves by the prey before
capture is 14 for size 8 × 8 and 16 for size 9 × 9.

Another result is that iterative deepening search with a perfect transposi-
tion table is slow even for small board sizes. It cannot compete with retrograde
analysis with respect to solving time.
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In future work we will explore the use of abstraction so as to solve boards
of large sizes, learning of agents strategies, and compression of tables. Another
line of research is to solve a continuous version of the game.

There are multiple possibilities for learning using endgame tables. For exam-
ple, learning an evaluation function for a depth one search, learning the move
to make for an agent or learning a move ordering heuristic with an evaluation
of states or with an evaluation of moves.

Another line of research is to analyze endgames of multi-agent games with a
much larger state space.
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Abstract. The board game Surakarta has been played at the ICGA
Computer Olympiad since 2007. In this paper the ideas behind the
agent SIA, which won the competition five times, are revealed. The
paper describes its αβ-based variable-depth search mechanism. Search
enhancements such as multi-cut forward pruning and Realization Proba-
bility Search are shown to improve the agent considerably. Additionally,
features of the static evaluation function are presented. Experimental
results indicate that features, which reward distribution of the pieces
and penalize pieces that clutter together, give a genuine improvement in
the playing strength.

1 Introduction

Since 2007 the board game Surakarta has been played six times at the ICGA
Computer Olympiad, a multi-games event in which all of the participants are
computer programs. The Surakarta agent SIA won the gold medal at the 12th,
13th, 15th, 17th, and 18th ICGA Computer Olympiad. It did not lose a single
game in each tournament it participated.

In this paper the αβ-search based agent SIA is discussed in detail. It presents
SIA’s variable-depth search mechanism [9] that contains quiescence search [12],
multi-cut forward pruning [2] and Realization Probability Search [13]. Also, the
features of the static evaluation function are described and assessed.

The article is organized as follows. First, in Sect. 2 the game of Surakarta is
briefly discussed. Next, SIA’s αβ-search engine is introduced in Sect. 3. In Sect. 4
its variable-depth search mechanism is described. Subsequently, the evaluation
function is proposed in Sect. 5. The experimental results are presented in Sect. 6.
Finally, Sect. 7 gives conclusions and an outlook on future research.

2 Surakarta

Surakarta is a board game for two players (i.e., Black and White). It is played on a
6× 6 board where eight loops extend out from it (see Fig. 1). The four small loops
form together the inner circuit, whereas the four large loops form the outer circuit.

Players take turns moving one of their own pieces. In non-capturing moves, a
piece travels – either orthogonally or diagonally – to a neighboring intersection.

c© Springer International Publishing Switzerland 2016
T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 71–82, 2016.
DOI: 10.1007/978-3-319-39402-2 6
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Fig. 1. Initial Surakarta position.

In a capturing move, a piece travels along a line, traveling over at least one loop,
until it meets one of the opponent pieces. The captured piece is removed, and
the capturing piece takes its place. The first player to capture all opponent’s
pieces wins. Draws can occur by repetition of moves or stalemate (cf. [6]). In
this article, if a position with the same player to move occurs for the third time,
the game is drawn. Additionally, if in the last fifty moves no capture was made,
the game is scored as a draw as well.

Self-play experiments by SIA revealed that the game has an average branch-
ing factor of approximately 22 and an average game length of around 54 ply.
The game-tree complexity is estimated to be about 1072. Taking symmetry into
account, its state-space complexity is 1015.

3 SIA

SIA performs an αβ depth-first iterative-deepening search in the PVS framework
[10]. A two-deep transposition table [3] is applied to prune a subtree or to narrow
the αβ window. At all interior nodes that are more than 2 ply away from the
leaves, it generates all moves to perform Enhanced Transposition Cutoffs (ETC)
[11]. For move ordering, the move stored in the transposition table (if applicable)
is always tried first, followed by two killer moves [1]. These are the last two moves
that were best, or at least caused a cutoff, at the given depth. Thereafter follow
the capture moves. All the remaining moves are ordered decreasingly according
to the relative history heuristic [16].

4 Variable-Depth Search

The αβ algorithm [8] is still the standard search procedure for playing material-
based board games such as chess and checkers. The playing strength of programs
employing αβ search depends greatly on how deep they search critical lines
of play. Therefore, over the years, many techniques for augmenting αβ search
with a more selective tree-expansion mechanism have been developed, so called
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variable-depth search techniques [9]. Promising lines of play are explored more
deeply (search extensions), at the cost of other less interesting ones that are cut
off prematurely (search reductions or forward pruning).

In the Surakarta engine SIA the following techniques are employed: quies-
cence search [7,12], multi-cut [2], and Realization Probability Search (RPS) [13].
They are described in Subsects. 4.1, 4.2, and 4.3, respectively.

4.1 Quiescence Search

When the αβ search reaches the depth limit, a static evaluation function should
be applied in the leaf node reached. This approach can have disastrous conse-
quences because of the approximate nature of the evaluation function. Therefore
a more sophisticated cut-off may be required. The evaluation function should
only be applied to positions that are quiescent.

At the leaf nodes of the regular search, a quiescence search is performed to
get more accurate evaluations. In SIA an extended version of quiescence search
is implemented [12]. This type of a quiescence search limits the set of moves to
be considered and uses the evaluations of interior nodes as lower/upper bounds
of the resulting search value. As capture moves are responsible for swings in the
evaluation function in Surakarta, only captures are considered for this part of
the search.

4.2 Multi-cut

Multi-cut pruning is a forward-pruning technique [2], which has been applied in
chess and Lines of Action [15]. Before examining a node to full depth, the first M
child nodes are searched to a depth reduced with a factor R. If at least C child
nodes return a value larger than or equal to β, a cutoff occurs. However, if the
pruning condition is not satisfied, the search continues as usual, re-exploring the
node under consideration to a full depth d. In general the behavior of multi-cut
is as follows. The higher M and R are and the lower C is, the higher the number
of prunings is.

An enhanced version of multi-cut [15] is used in SIA. First, when at a reduced
depth a winning value is found, the search is stopped and the winning value is
returned. Second, if the multi-cut does not succeed in causing a cutoff, the moves
causing a β-cutoff at the reduced depth are tried first in the normal search. Third,
multi-cut is used in all nodes, except in the expected principal variation (so-called
PV nodes). The idea is that it is too risky to prune forward there, because a
possible mistake causes an immediate change of the principal variation. For all
other nodes (so-called CUT and ALL nodes [9]), multi-cut is performed with the
following parameter settings: C = 3 for a CUT node, C = 2 for an ALL node,
M = 10 and R= 2 for both node types. The pseudo code in the PVS framework
is given in Fig. 2.
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Fig. 2. Pseudo code for multi-cut

4.3 Realization Probability Search

One successful member of the family of variable-depth search techniques is Real-
ization Probability Search (RPS), introduced by Tsuruoka et al. [13] in 2002.
Using this technique his program, Gekisashi, won the 2002 World Computer
Shogi Championship, resulting in the algorithm gaining a wide acceptance in
computer Shogi. It has been successfully applied in the Lines-of-Action engine
MIA as well [14].

The RPS algorithm is an approach of using fractional-ply extensions. The
algorithm uses a probability-based approach to assign fractional-ply weights to
move categories, and then uses re-searches to verify selected search results.

First, for each move category one must determine the probability that a move
belonging to that category will be played. This probability is called the transition
probability. This statistic is obtained from game records of matches played by
expert players. The transition probability for a move category c is calculated as
follows:

Pc ← nplayed(c)

navailable(c)
(1)

where nplayed(c) is the number of game positions in which a move belonging to
category c was played, and navailable(c) is the number of positions in which moves
belonging to category c were available.
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Originally, the realization probability of a node represented the probability
that the moves leading to the node will be actually played. By definition, the
realization probability of the root node is 1. The transition probabilities of moves
were then used to compute the realization probability of a node in a recursive
manner (by multiplying together the transition probabilities on the path lead-
ing to the node). If the realization probability would become smaller than a
predefined threshold, the node would become a leaf. Since a probable move has
a large transition probability while an improbable has a small probability, the
search proceeds deeper along probable move sequences than improbable ones.

Instead of using the transition probabilities directly, they can be transformed
into fractional plies [13]. The fractional ply FP of a move category is calculated
by taking the logarithm of the transition probability in the following way:

FP ← logK(Pc) (2)

where K is a constant between 0 and 1. A value of 0.25 is a good setting for K in
Surakarta. Note that this setting is probably domain dependent, and a different
value could be more appropriate in a different game or even game engine.

The fractional-ply values are calculated off-line for all the different move cat-
egories, and used on-line by the search (as shown in Fig. 3 [14]). In the case
where FP is larger than 1 it means the search is reduced while in the case FP
is smaller than 1 the search is extended. By converting the transition probabil-
ities to fractional plies, move weights now get added together instead of being
multiplied. This has the advantage that RPS is used alongside multi-cut, which
measures depth similarly.

However, setting the depth of the move based on its FP values runs into
difficulties because of the horizon effect. Move sequences with high FP values
(i.e., low transition probability) get terminated quickly. Thus, if a player expe-
riences a significant drop in its positional score as returned by the search, it is
eager to play a possibly inferior move with a higher FP value, simply to push
the inevitable score drop beyond its search horizon.

To avoid this problem, RPS is instructed to perform a deeper re-search for a
move whose value is larger than the current best value (i.e., the α value). Instead
of reducing the depth of the re-search by the fractional-ply value of the move
(as is generally done), the search depth is decreased only by a small predefined
FP value, called minFP. It is set equal to the lowest move category value.

Apart from how the ply depth is determined, and the re-search, the algorithm
is otherwise almost identical to PVS [10]. Figure 4 shows a C-like pseudo-code.
Because the purpose of the preliminary search is only to check whether a move
will improve upon the current best value, a null-window may be used.

RPS is applied in SIA in the following way. First, moves are classified as
captures or non-captures. Next, moves are further subclassified based on the
origin and destination of the move’s from and to squares. The board is divided
into four different regions: the corners, the 6× 6 outer rim (except corners), the
4× 4 inner rim, and the central 2× 2 board. In total 20 move categories can
occur in the game according to this classification. The transition probabilities
have been collected by letting SIA play 1000 games against itself. The final FP
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Fig. 3. Fractional-ply example for a nominal search depth of 3 [14].

values of the move categories are capped between 0.5 and 4.0 (inclusive). They
are shown in Table 1.

When looking at the transition probabilities, capture moves are in general
preferred above non-capture moves. Although moving away from a corner is also
strongly encouraged. Interestingly, when a move is a non-capture it is better to
move towards the center. In case of a capture move, the opposite is true.

5 Evaluation Function

In this section the relevant features of the static evaluation function are enumer-
ated and explained. The evaluator consists of the following five features: mater-
ial, mobility, player to move, quads, and distribution. The choice of features that
fully cover the description of a position is most relevant. It is better to have all
features correct and all the initial weights wrong than to have the initial weights
correct and miss one of the (important) features. The description of the features
follows below; relevant examples and clarifications are given, adequate references
to further details are supplied. It is followed by some information about the use
of caching.

Material. Analogous to piece-square tables in chess, each piece obtains a value
dependent on its board square in SIA. Especially, pieces at the corner are eval-
uated less. The relative values are given in the following matrix:⎡

⎢⎢⎢⎢⎢⎢⎣

3 10 10 10 10 3
10 11 10 10 11 10
10 10 10 10 10 10
10 10 10 10 10 10
10 11 10 10 11 10
3 10 10 10 10 3

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig. 4. Pseudo code for Realization Probability Search.

Mobility. Having more moves than the opponent may imply that you have more
“freedom” that can be correlated with success. The computational requirements
of the mobility feature are not high if only non-capture moves are considered.
For each line configuration (represented as a bit vector) the mobility can be
precomputed and stored in a table. During the search, the index scheme can be
updated incrementally and in the evaluation function only a few table lookups
have to be done.

An advantage of this feature that it is fast to evaluate. A disadvantage of
this implementation is that capture moves are not taken into account. This is
partially mitigated by the quiescence search as only leaf nodes are evaluated that
cannot start a capture sequence anymore. Still, it could be that the non-moving
player has several possibilities to capture. Quiescence search is therefore not able
to completely assess the capturing potential of one of the players.
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Table 1. Move categories together with their transition probabilities and FP values.

Capture Destination Target Transition Probability FP value

No Corner Outer Rim 30.4 % 0.85

No Corner Inner Rim 48.4 % 0.52

No Outer Rim Corner 1.6 % 2.97

No Outer Rim Outer Rim 12.9 % 1.47

No Outer Rim Inner Rim 17.0 % 1.27

No Inner Rim Corner 0.8 % 3.45

No Inner Rim Outer Rim 6.7 % 1.94

No Inner Rim Inner Rim 6.7 % 1.95

No Inner Rim Center 11.5 % 1.55

No Center Inner Rim 2.7 % 2.60

No Center Center 7.4 % 1.88

Yes Outer Rim Outer Rim 64.3 % 0.50

Yes Outer Rim Inner Rim 59.0 % 0.50

Yes Outer Rim Center 51.9 % 0.50

Yes Inner Rim Outer Rim 63.4 % 0.50

Yes Inner Rim Inner Rim 58.6 % 0.50

Yes Inner Rim Center 49.4 % 0.50

Yes Center Outer Rim 50.9 % 0.50

Yes Center Inner Rim 47.2 % 0.54

Yes Center Center 42.7 % 0.61

Player to Move. The player-to-move feature is based on the basic principle
of the initiative. It rewards the moving side. Having the initiative is mostly an
advantage in Surakarta like in many other games.

Since SIA is using variable-depth search (because of quiescence search, the
multi-cut, and RPS) not all leaf nodes are evaluated at the same depth. There-
fore, leaf nodes in the search tree may have a different player to move, which is
compensated in the evaluation function. This is done by giving a small bonus to
the side to move.

Distribution. The distribution feature is based on the principle of spreading the
pieces over the board to increase the potential to attack pieces of the opponent.
In SIA this is done in a way which is primitive but effective. First the maximum
number m of pieces of a player in a row or column is determined. The distribution
is calculated as follows:

distribution =
25 × n

max(2,m)
(3)
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Fig. 5. Six different quad types.

where n is the number of pieces of a player. In such a way this feature prevents
that there are too many pieces on one line. It is connected to the following
feature, quads, that penalizes solid formations.

Quads. The quads feature prevents that pieces are cluttered together. The
heuristic is based on the use of quads, an Optical Character Recognition method.
A quad is defined as a 2× 2 array of squares [5]. Taking into account rotational
equivalence, there are six different quad types, depicted in Fig. 5. The values of
each quad type is given in Table 2. Quads with 1 or 2 pieces receive a bonus,
whereas quads with 4 pieces get a penalty.

Table 2. Quad values.

Quad types Q1 Q2 Q3 Q4 Qd

Values 5 5 0 −5 10

Caching Features. It is possible in SIA’s evaluation function to cache compu-
tations of certain features, which can be used in other positions. The material,
quads, and distribution features are independent of the position of the other side.
They are stored in an evaluation cache table. In the current evaluation function
this gives a speed-up of at least 30% in the number of nodes investigated per
second.

6 Experiments

In this section the main components of SIA are tested. Different versions of
SIA played at least 1000 games against each other, playing both colors equally.
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To prevent that games were repeated, a random factor was included in the
evaluation function. Draws were considered half wins to each player to ensure
the winning percentages sum to 100%. All experiments were performed on an
Intel Xeon 5355 2.66 GHz computer. The engine has been implemented in Java.
The remainder of this section is organized as follows. First, the variable-depth
search techniques are tested in Subsect. 6.1. Next, the features of the evaluation
function are assessed in Subsect. 6.2. Finally, SIA’s performance on the ICGA
Computer Olympiads is briefly discussed in Subsect. 6.3.

6.1 Variable-Depth Search Experiments

In the first series of experiments SIA is instantiated using the various combinations
of variable-depth search introduced in Sect. 4. A three-tuple (RPS,Multi-Cut,
QuiescenceSearch) is to represent the parameter setting used in each particular
player instance. E.g., for the instantiation SIA(off ,multi,quiescence), RPS is disabled,
multi-cut and quiescence search are enabled.

For these experiments, the thinking time was limited to 5 s per move. The
variable-depth search techniques were initially tested in an incremental way
starting first with quiescence search, adding next multi-cut, and finally incorpo-
rating RPS. The first three rows of Table 3 show the results for them. It reveals
that every search enhancement makes more or less the same contribution by
increasing the winning percentage to approximately 70% for each addition. In
the fourth row it was validated whether multi-cut does give an additional benefit
to the RPS framework. By winning 63.5% of the games multi-cut is a genuine
improvement. In the last row the results are given when SIA with all the enhance-
ments played against the default fixed-depth version. All techniques combined
lead to a 95% winning percentage. In the next experiment this combination is
used.

6.2 Evaluation Function Results

In the last series of experiments four different evaluation functions competed with
each other in a round-robin tournament. They are called Material, Mobility,
Distribution, and Sia. The Material evaluator consists out of the piece-
square table and a small random factor. The Mobility evaluator includes the
former and incorporates the mobility and the player-to-move feature. Next, Dis-
tribution includes the distribution feature. Last, Sia adds the quads feature
and represents the evaluation function discussed in Sect. 5. The weights of the
features were partially tuned by TD-learning, partially manually. In these exper-
iments, the thinking time was limited to 1 s per move.

The results of the round-robin tournament are given in Table 4. Each match
data point represents the result of 1,000 games, with both colors played equally.
The table shows that every added feature is a genuine improvement. Spreading
the pieces over the board improves the performance of the play as the results of
the Distribution and Sia evaluators indicate.
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Table 3. Winning percentage of testing various combinations of variable-depth search
techniques. 95% confidence intervals are given.

win %

SIA(off ,off ,quiescence) SIA(off ,off ,off ) 73.9 ± 1.5

SIA(off ,multi,quiescence) SIA(off ,off ,quiescence) 70.2 ±1.4

SIA(RPS,multi,quiescence) SIA(off ,multi,quiescence) 75.3 ± 2.3

SIA(RPS,multi,quiescence) SIA(RPS,off ,quiescence) 63.5 ± 1.0

SIA(RPS,multi,quiescence) SIA(off ,off ,off ) 95.2 ± 0.8

Table 4. Winning percentage of testing different evaluation functions. 95 % confidence
intervals are given. Each data point is based on a 1000-game match.

Material Mobility Distribution Sia

Material - 42.9 ± 3.1 38.2 ± 3.0 32.2 ± 2.9

Mobility 57.1 ± 3.1 - 40.6 ± 3.0 35.8 ± 3.0

Distribution 61.8 ± 3.0 59.4 ± 3.0 - 46.7 ± 3.1

Sia 67.8 ± 2.9 64.2 ± 3.0 53.3 ± 3.1 -

6.3 Computer Olympiad Results

Since 2007 SIA has participated in the Surakarta tournaments at the 12th, 13th,
15th, 17th, and 18th ICGA Computer Olympiad. In the competition each agent
receives 30 min of thinking time for the whole game, playing an equal number of
games for each color. In these five tournaments SIA played a grand total of 32
games against 7 different opponents, winning all of them. This achievement is a
validation of the approach to Surakarta proposed in this paper.

7 Conclusion and Future Research

This paper discussed the main components of the Surakarta agent SIA. Results
showed that its variable-depth search mechanism improved the search consider-
ably. Besides the classic quiescence search, multi-cut forward pruning and Real-
ization Probability Search gave a boost in the game playing performance. Next,
the evaluation function was described. Beside standard features such as material
and mobility, features that helped to spread the pieces over the board gave a
genuine increase in performance.

For future research adding a feature to determine who controls a circuit would
lead potentially to an increase in playing performance. Next, endgame databases
could help to improve the strength of the agent and ultimately help to solve the
game. So far all endgame databases up to 8 pieces have been generated. Self-
play results reveal that it takes on average 40 ply to reach them, which is too
deep for a single search. If a 10-piece database or 12-piece database would be
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generated, it would take 34 or 30 ply, respectively. Larger databases would need
several Terabytes of hard drive. An alternative is to use smaller databases and
distribute the search over several cores as in done in Job-Level αβ search [4].

Acknowledgments. Special thanks go to the anonymous referees whose comments
helped to improve this paper.
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Abstract. Automated agents in multiplayer board games often need to
trade resources with their opponents—and trading strategically can lead
to higher winning rates. While rule-based agents can be used for such a
purpose, here we opt for a data-driven approach based on examples from
human players for automatic trading in the game “Settlers of Catan”.
Our experiments are based on data collected from human players trad-
ing in text-based Natural Language. We compare the performance of
Bayesian Networks, Conditional Random Fields, and Random Forests in
the task of ranking trading offers, and evaluate them both in an offline
setting and online while playing the game against a rule-based baseline.
Experimental results show that agents trained from data from average
human players can outperform rule-based trading behavior, and that the
Random Forest model achieves the best results.

1 Introduction

Board games with trading strategies aim not only at entertaining people, but
also at training them with trading skills. Popular board games of this kind
include Airlines Europe, Crude, Last Will, Settlers of Catan, and Power Grid,
among others [22]. While these games can be played between humans, they
can also be played between computers and humans. The trading behaviors of
computer games are usually based on heuristics or optimization methods. The
former include carefully tuned rules, and the latter include methods such as
Monte-Carlo Tree Search [27] and Reinforcement Learning [23]. However, their
application is not trivial due to the complexity of the games, i.e. due to their
large state-action spaces. On the one hand, unique situations in the game can be
described by a number of variables (e.g. resources available) so that enumerating
them would result in very large state spaces. On the other hand, the action space
can also be large due to the wide range of unique negotiations (e.g. givable and
receivable resources). While one can aim for optimizing the whole game via
compression of the search space, one can also aim for a specialized solution. The
latter is the focus of this paper by focusing on learning to trade only, rather than
learning to play the whole game. In addition, while previous work has focused
on optimizing negotiation strategies [23,27], our proposed approach focuses on
learning human-like trading.

The rest of the paper describes our proposed approach based on statistical
inference for ranking trading negotiations, i.e. the exchange of some resource(s)
c© Springer International Publishing Switzerland 2016
T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 83–95, 2016.
DOI: 10.1007/978-3-319-39402-2 7
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Fig. 1. Example board of the game “Settlers of Catan” using the JSettlers inter-
face [29].

for some other(s). To do that, we use Bayesian networks, Conditional Random
Fields, and Random Forests—all trained on data from human examples in the
game of Settlers of Catan. We compare our proposed agents against a carefully
tuned rule-based agent as a baseline, and show that our learning agents can
achieve competitive performance in terms of winning rates.

2 The Game: Settlers of Catan

The game of Settlers of Catan is a multiplayer board game, where players take
the role of settlers on the fictitious island of Catan—see Fig. 1. Between two
and four players attempt to settle on the island by building settlements and
cities connected by roads. To build, players need the following resources: clay,
ore, sheep, wheat and wood. Each player gets points for example by building a
settlement (1 point) or a city (2 points). A game consists of a sequence of turns,
and each game turn starts with the roll of a die that can make the players obtain
or lose resources (depending on the number rolled and resources on the board).
The player in turn can trade resources with the bank or other players, and can
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make use of available resources to build roads, settlements or cities. This game
is highly strategic because players often face decisions about what resources to
request and what resources to give away, which are influenced by what they need
to build, for example: a road requires 1 clay and 1 wood. A player can extend
build-ups on locations connected to existing pieces, i.e. road, settlement or city,
and all settlements and cities must be separated by at least 2 roads. The first
player to win 10 victory points wins and all others lose—see the following link
for the full set of rules: http://www.catan.com/service/game-rules.

3 The Data and Task

We used a set of 32 logged games from 56 different players, annotated as
described in [1]. They correspond to 2512 trading negotiation events (also
referred to as ‘training instances’) denoted as D = {(x1, y1), .., (xN , yN )}, where
xi are vectors of features and yi are class labels (i.e. givable resources). An exam-
ple trading negotiation in the game of Settlers of Catan in natural language is
“I’ll give anyone sheep for clay”, which can be represented as follows, including
the agent’s available resources:

Give(Sheep, all) ∧ Receive(Clay, all) ∧ Resources(clay = 0, ore = 0, sheep = 4,

wheat = 1, wood = 0) ∧ Buildups(roads = 2, settlements = 0, cities = 0).

From this illustrative example, yi=sheep and xi = {0, 0, 4, 1, 0, 2, 0, 0, 1,
0, 0, 0, 0} based on features 1–13 in Table 1. Although this representation may
look simple at first sight, it has support for 88 × 25 × 5 = 2.6 billion possible
(and unique) negotiation events. Notice that not all of them are valid or legal
at every point in time in the game. Choosing the most human-like (in our case)
trading negotiation can be seen as a ranking task, where we focus on computing
a score representing the importance of each trading negotiation (similar to the
one above) available for choosing the best choice, i.e. the most human-like as
seen in the data. In this way, the quality of our learning agents will depend on
the quality of the examples provided.

To rank such trading negotiation alternatives, we train a set of statistical
classifiers based on the feature set described in Table 1. Our set of features include
the resources available (features 1–5), the build-ups (features 6–8) with a default
minimum of 0 and maximum value of 7, the receivable resources in binary form
to reduce data sparsity (features 9–13), and the givable resource considered as
the class prediction (feature 14).

It has to be noted that the feature set listed in Table 1 was chosen for giving
the best results from a pool of feature sets. Other feature sets that we explored
include smaller domains (only binary features), larger domains (non-binary fea-
tures), smaller and larger sets of features, and multiple givables, among others.

4 Trading Agents

We cast trading in interactive board games as a classification task, where we
compared the following statistical classifiers with the aim of finding the best

http://www.catan.com/service/game-rules
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Table 1. Feature set for learning trading negotiations from examples.

No. Feature Domain Description

1 hasClay {0...7} Number of clay resources available

2 hasOre {0...7} Number of ore resources available

3 hasSheep {0...7} Number of sheep resources available

4 hasWheat {0...7} Number of wheat resources available

5 hasWood {0...7} Number of wood resources available

6 hasRoads {0...7} Number of roads built so far

7 hasSettlements {0...7} Number of settlements built so far

8 hasCities {0...7} Number of cities built so far

9 recClay Binary 1 if clay resources will be received, 0 otherwise

10 recOre Binary 1 if ore resources will be received, 0 otherwise

11 recSheep Binary 1 if sheep resources will be received, 0 otherwise

12 recWheat Binary 1 if wheat resources will be received, 0 otherwise

13 recWood Binary 1 if wood resources will be received, 0 otherwise

14 givable Resource Givable={Clay, Ore, Sheep, Wheat, Wood}

predictor of human-like trades: Bayesian Networks, Conditional Random Fields,
and Random Forests.

4.1 Learning to Trade with Bayesian Networks

A Bayesian network represents a joint probability distribution based on a
directed acyclic graph, where each node is associated with a probability function
and connections represent dependencies. The joint probability distribution over
the set of random variables x= {x1, ..., xn} is defined by

P (x) =
n∏

i=1

P (xi|pa(xi)), (1)

where pa(.) denotes the set of parent random variables, and every variable is
associated with a conditional probability distribution P (xi|pa(xi)). Two main
tasks are involved in the creation of our Bayesian network: parameter learning
and structure learning. Parameter learning involves the estimation of conditional
probability distributions (discrete in our case) from data D = {xi, yi} with fea-
ture vectors xi and labels yi, where we used maximum likelihood estimation
with smoothing. Structure learning involves inducing the dependencies of ran-
dom variables based on the K2 algorithm, see [5] for details.

Once the Bayes net has been trained, we use the junction tree algorithm [6]
for probabilistic inference in order to compute the probabilities of trades. The
most probable human-like trade is selected according to

y∗ = arg max
y∈Y

P (y|evidence(y)), (2)
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Fig. 2. Bayesian network for predicting human-like trades in board games, where nodes
correspond to random variables (contextual information) and arrows represent their
dependencies.

where the contextual information of givable y is defined by evidence(t) = {f1 =
val1, ..., fn = valn} with features fi shown in Fig. 2.

4.2 Learning to Trade with Conditional Random Fields

Here, we cast trading in interactive board games as a sequence labeling task, in
which a sequence of game environment inputs is labeled with appropriate givable
resources to support trades. The task is therefore to find a mapping between
(observed) features—including available resources, build-ups, and receivables as
shown in Table 1—and a (hidden) sequence of givables.

We use the linear-chain Conditional Random Field (CRF) model for pre-
dicting human-like trades in the game of Settlers of Catan, see Fig. 3. This
model defines the posterior probability distribution of labels (givables in our
case) y={y1, . . . , y|y|} given features x={x1, . . . , x|x|}, as

P (y|x) =
1

Z(x)

T∏
t=1

exp

{
K∑

k=1

θkΦk(yt, yt−1,xt)

}
, (3)

where Z(x) is a normalization factor over all available vectors of contextual
information x such that the sum of all labelings is one. The parameters θk are
weights associated with feature functions Φk(.), which are real values describing
the label state y at time t based on the previous label state yt−1 and features
xt. For example: from Eq. 3, Φk might have the value Φk = 1.0 for the transition
from “Give(Sheep)” to “Give(Clay)”, and 0.0 elsewhere. The parameters θk are
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Fig. 3. Conditional Random Field (CRF) for predicting human-like trades in board
games, where empty nodes correspond to the labeled sequence (givables: Clay, Ore,
Sheep, Wheat, Wood), shaded nodes to game features, and squares represent relation-
ships between labels and features.

set to maximize the conditional likelihood of sequences of givables in the training
data set. They are estimated using the gradient descent algorithm.

After training, labels can be predicted for new sequences of observations. The
most likely trading offer is expressed as:

y∗ = arg max
y

Pr(y|x), (4)

which is computed using the Viterbi and A∗ search algorithms, see [19] for details.

4.3 Learning to Trade with Random Forests

This agent is trained using an ensemble of trees as shown in Fig. 4, which are used
to vote for the class prediction at test time [3]. A random forest is an ensemble
learning method that constructs a set of random decision trees at training time,
and uses them to generate the most popular class. Random forests are attractive
due to their ability to offer better generalization (i.e. less overfitting to data)
than other techniques such as decision trees [17]. We compute the probability
distribution of a human-like trade as:

P (givable|evidence) =
1
Z

∏
b∈B

Pb(givable|evidence), (5)

where givable refers to the class prediction, evidence refers to observed features
1–13, Pb(.|.) is the posterior distribution of the bth tree, and Z is a normalization
constant—see [7] for further details. Assuming that Y is a set of givables at a
particular point in time in the game, extracting the most human-like trading
offer (givable y∗) and collected evidence (context of the game), is defined as

y∗ = arg max
y∈Y

Pr(y|evidence). (6)
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Fig. 4. Random forest for predicting human-like trades, where non-leaf nodes represent
contextual information (e) and leaf nodes represent the class prediction (givables)—
adapted from [4].

5 Experiments and Results

We first describe the evaluation metrics used to assess the performance of the
statistical classifiers described above. An offline evaluation is then described to
report performance on held-out data, and finally an online evaluation is described
to assess performance while playing the game of Settlers of Catan using a bench-
mark framework.

5.1 Evaluation Metrics

The evaluation metrics that we use to assess the predictive power of human-
like trading include classification accuracy and precision-recall. The former is
computed as

Accuracy =
tp + tn

tp + tn + fp + fn
; (7)

and the latter as
F-measure =

2 × precision × recall

precision + recall
, (8)

where
precision =

tp
tp + fp

, (9)

recall =
tp

tp + fn
, (10)

and tp=true positives, tn=true negatives, fp=false positives, and fn=false neg-
atives.
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Table 2. Precision-Recall results of human trading negotiations in Settlers of Catan.

Classifier Accuracy (%) Precision Recall F-Measure

Majority Baseline 23.43 0.055 0.234 0.089

Conditional Random Field 62.08 0.623 0.623 0.623

Bayesian Network 63.90 0.640 0.639 0.635

Random Forest 65.72 0.657 0.657 0.656

In addition, to assess the agent’s performance while playing the game we
consider the following game-related metrics (in terms of averages): percentage
of winning rate, victory points, offers made, successful offers, and pieces built.

5.2 Offline Evaluation

Table 2 shows the classification results of our statistical classifiers using the fea-
tures listed in Table 1 trained on the data described in Sect. 3. This evaluation
is based on 10-fold cross validations. The first thing that can be noted is that
predicting human trades is a difficult task because our best classifier, the Ran-
dom Forest, achieves a classification accuracy of 65.7 %. A second thing to notice
is that our statistical classifiers (Bayes Nets, CRFs, and Random Forest) sub-
stantially outperform a majority baseline. These results motivate future work on
learning agents with improved performance.

5.3 Online Evaluation

We also evaluated the statistical classifiers described in Sect. 4 using the JSettlers
interface [29], where we use a baseline rule-based negotiator1 as the opponent.
Their integration is illustrated in Fig. 5. We refer to this evaluation as ‘online’
because the agents were used in the actual game to rank realistic trading negoti-
ations. Although this evaluation had the GUI turned off, in games with human
players the GUI would simply have been turned on. This means that all games
were run using four automated agents: one statistical vs. three rule-based. We
evaluate each classifier with 10,000 games in order to obtain significant compar-
isons due to the randomness exhibited in the game. Such a number of games has
shown to produce meaningful comparisons [16].

Table 3 shows the results of this online evaluation. It can be observed that the
baseline agents obtain a winning rate of 25 % because four players of the same
kind play against each other. It can also be observed that not all agents using the
trained classifiers outperform the rule-based agents resulting in higher winning
rates, more victory points, and more pieces built, but not necessarily more offers.

1 The baseline agent (referred to as ‘rule-based’) included the following parame-
ters in all agents, see [16] for further details: TRY N BEST BUILD PLANS:0,
FAVOUR DEV CARDS:-5.
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Fig. 5. High-level integration of statistical classifiers with the JSettlers interface [29]

We can also note that the best results are obtained by the Random Forest
classifier. These results extend the previous section and reveal that classifiers
with higher accuracy also achieved higher win rates.

We also note that the training data was not collected from particularly expe-
rienced or expert players of the game—and so we can expect that training on a
corpus of expert-player trades would have achieved still better performance.

Table 3. Game results when comparing statistical classifiers against three rule-based
traders, i.e. four players in each game—each line shows average results over 10,000
games.

Comparison between trained
statistical trader vs opponent

Wining
rate
(%)

Victory
points

Offers
made

Successful
offers

Pieces
built

Rule-based vs rule-based 25.00 6.40 147.57 137.95 8.33

Conditional Random Field vs
rule-based

23.31 6.20 141.39 131.89 7.96

Bayesian Network vs rule-based 24.20 6.20 141.59 131.72 7.98

Random Forest vs rule-based 27.62 6.54 145.61 135.84 8.50

6 Related Work

Machine learning techniques for strategic board games have received little atten-
tion so far. Notable exceptions have applied Reinforcement Learning to board
games:
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– [28] proposes reinforcement learning with multilayer neural networks for train-
ing an agent to play the game of Backgammon. He finds that trained agents
with such an approach are able to match and even beat human performance.

– [23] proposes hierarchical reinforcement learning for automatic decision mak-
ing on object-placing and trading actions in the game of Settlers of Catan.
He incorporates built-in knowledge for learning the behaviors of the game
quicker, and finds that the combination of learned and built-in knowledge is
able to beat human players.

– More recently, [11] used reinforcement learning in non-cooperative dialogue,
and focused on a small 2-player trading problem with 3 resource types, and
without using any real human dialogue data. This work showed that explicit
manipulation moves (e.g. “I really need sheep”) can be used to win when
playing against adversaries who are gullible (i.e. they believe such statements)
but also against adversaries who can detect manipulation and can punish the
player for being manipulative [10]. Strategies for beating opponent models in
trading have also been explored recently [12].

Some supervised learning techniques have also been applied to board games
such as decision trees [13], preference learning [25], and deep neural networks
[21]. Since statistical inference has been ignored in previous work, with some
exceptions such as [21], we argue that it can play an important role in training
strategic agents with human-like behavior. In addition and to the best of our
knowledge, the Random Forest classifier has not been applied to strategic board
games before, and our results report that it represents a state-of-the-art method
for learning trading negotiations.

Other forms of machine learning that can be explored include not only
direct but also inverse reinforcement learning to learn from trial and error,
semi-supervised learning to learn from labeled and unlabeled data, unsupervised
learning to learn from unlabeled data, multi-agent systems to learn behaviors
considering the strategies of opponents, transfer learning so that agents do not
have to be trained from scratch, active learning to learn to ask what to do in
uncertain situations while playing the game, among others—see [8,13,24] for an
overview. Another direction to explore in strategic games includes a combina-
tion of planning and learning, which has shown more promising results than any
of them in isolation [21]. A further direction includes the joint optimization of
game behavior and the corresponding verbalizations [9,20].

Other related work has been carried out in the context of automated non-
cooperative dialogue systems, where an agent may act to satisfy its own goals
rather than those of other participants [14,15,18]. The game-theoretic under-
pinnings of non-cooperative behavior have also been investigated [2]. Such auto-
mated agents are of interest when trying to persuade, argue, or debate, or in the
area of believable characters in video games and educational simulations [15,26].
Another arena in which non-cooperative dialogue behavior has been investigated
is in negotiation [30], where hiding information (and even outright lying) can be
advantageous.



Learning to Trade in Strategic Board Games 93

7 Conclusions and Future Work

This paper presents an approach for learning to trade in strategic board games
based on training examples collected from human players. To do that, we train
three statistical classifiers (Bayesian Network, Conditional Random Field, and
Random Forest) in a supervised manner, and then apply statistical inference
in order to compute probabilistic scores for each trading negotiation available
at a particular point in the game. Those scores are used to rank the available
trading negotiations, where the top choice (i.e. the most human-like) is used in
the game. In an offline evaluation, the statistical classifiers show that there is still
substantial room for improvement, where the best classification score (65.7 %)
was obtained by the Random Forest. In an online evaluation, the same ranking of
classifiers was observed—Random Forest obtaining the best results. Our results
are encouraging for training classifiers with improved performance in order to
incorporate highly strategic behavior in trading.

Future directions include:

– training statistical agents that take into account richer contextual information
such as features from other players, and training them to play multiple games;

– exploring other forms of machine learning, as mentioned above; and
– evaluating trained agents against human players.
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Abstract. In this work we present a novel implementation of an AI
Director that uses argumentation techniques to decide dynamic adapta-
tions in the level generation of a roguelike game called HermitArg. The
architecture of the game introduces smart items with defeasible infor-
mation to be analyzed in a dialectical process.

1 Introduction

The use of adaptive elements in a game level is a novel technique intended
to improve the user experience. This can be achieved by including an overseer
agent, usually called AI Director [2,6,14], whose goal is to keep the user inter-
ested from the beginning to the end while providing a fair and balanced level of
challenge. The Director agent monitors player activity data, and then it adjusts
some game parameters to provide a different experience that fits perfectly with
what the player is capable of. For instance, in the game Left 4 Dead (by Valve
Corporation), the AI Director decides where weapons, ammo and useful items
are spawned. It also decides when and where a desperate horde of angry zom-
bies (an infected rush) starts. Adaptive games also contribute to player retention
since the challenge of the game is adjusted as the user plays. Player retention
is the ability to keep the user interested in the game for a long period of time.
It is an important feature of game development today, especially in long-life
games, like massively-multiplayer online role playing games (MMORPGs). The
reasons why players decide to return to a game are different for every player and
game genre, but undoubtedly it implies that the challenge imposed by the ludic
component of the game is still active and attractive. There is now a modest,
yet growing research activity about player retention through several artificial
intelligent formalisms, but none of them integrating argumentation techniques.

Defeasible Argumentation is a form of reasoning where arguments for and
against a proposition are produced and evaluated to verify the acceptability of
that proposition. An argument is a tentative piece of reasoning supporting a
claim. The main idea in argumentation systems is that any proposition will be
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T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 96–111, 2016.
DOI: 10.1007/978-3-319-39402-2 8



Argumentative AI Director Using Defeasible Logic Programming 97

accepted as true if there exists an argument supporting it, and this argument is
acceptable according to an analysis considering all its counter-arguments. Argu-
mentation is suitable to deal with incomplete and contradictory information in
dynamic domains. In particular, Defeasible Logic Programming (DeLP) [5], is a
logic programming paradigm based on argumentation that allows for the rep-
resentation of strict and defeasible knowledge to construct arguments providing
reasons to defeasible claims. It is a concrete argumentation formalism with a
solid implementation (see e. g., [3,15]).

In this work we present an implementation of an Argumentative AI Direc-
tor that uses argumentation to decide dynamic adaptations of a roguelike game
called HermitArg. This Director uses Defeasible Logic Programming to represent
information about the state of the game, in order to argue about the complexity
of the next level. We also define an architecture to customize the game by pro-
viding a level item with a piece of defeasible knowledge about the adaptability
of such an item. Hence, the Director will evaluate the adaptation of this smart
item by contrasting this defeasible information with the whole knowledge base.

This work is organized as follows. We first review DeLP, the argumentation
formalism used by the AI Director proposed in this paper. In Sect. 3 we present
HermitArg and explain the general behavior of its AI Director. Section 4 explains
how the AI Director uses the argumentation formalism presented in Sect. 2 as
part of its decision making process. In Sect. 5 we present the design and imple-
mentation of our Argumentative AI Director. Section 6 discusses related work.
In Sect. 7 we present conclusions and comment on future lines of work.

2 Defeasible Logic Programming (DeLP)

In the last decades, argumentation has evolved as an attractive paradigm for
conceptualizing common-sense reasoning [12]. As a result, several approaches
were proposed to model argumentation on an abstract basis [4], using classi-
cal logics [1], or using logic programming [5], among others. Next, we include
a short explanation of Defeasible Logic Programming (DeLP), the structured
argumentation system of [5], which will be used as a knowledge representation
and reasoning formalism for the Argumentative AI Director proposed in this
paper.

Similarly to Logic Programming, DeLP represents information using facts and
(strict) rules. In addition, DeLP has the declarative capability of representing
weak information in the form of defeasible rules, and a defeasible argumenta-
tion inference mechanism for warranting the entailed conclusions. Thus, knowl-
edge in DeLP will be represented through facts, strict rules, and defeasible
rules, defined as follows. Facts are ground literals representing atomic informa-
tion, or the negation of atomic information using strong negation “∼” (e. g.,
chicken(tina) or ∼dog(tina)). Strict Rules are denoted L0 ← L1, . . . , Ln, where
L0 is a ground literal and {Li}i>0 is a finite set of ground literals (e. g.,
bird(tina) ← chicken(tina)). Defeasible Rules are denoted L0 —< L1, . . . , Ln,
where L0 is a ground literal and {Li}i>0 is a set of ground literals
(e. g., f lies(tina) —< bird(tina) or ∼flies(tina) —< chicken(tina)).
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Syntactically, the only difference between strict and defeasible rules is the
kind of arrow they use (respectively, “ ← ” and “ —< ”). However, while strict
rules represent non-defeasible information, defeasible rules represent tentative
information that may be used if nothing could be posed against them. That
is, a defeasible rule “Head —< Body” expresses that “reasons to believe in the
antecedent Body give reasons to believe in the consequent Head”.

A Defeasible Logic Program (DeLP program, for short) P is a set of facts,
strict rules and defeasible rules. When required, P will be noted as (Π,Δ), dis-
tinguishing the subset Π of facts and strict rules, and the subset Δ of defeasible
rules. Strict and defeasible rules are ground, however, following the usual con-
vention [9], examples will use “schematic rules” with variables denoted with an
uppercase letter.

Strong negation could appear in the head of program rules, and can be used to
represent contradictory knowledge. Therefore, from a program P complementary
literals could be derived, however, the set Π used to represent non-defeasible
information must be non-contradictory (i. e., no pair of complementary literals
could be derived from Π). For the treatment of contradictory knowledge, DeLP
incorporates a defeasible argumentation formalism. This formalism allows for
the identification of the pieces of knowledge that are in contradiction, and a
dialectical process is used for deciding which information prevails as warranted.
The dialectical process involves the construction and evaluation of arguments
that either support or interfere with the query under analysis.

Briefly, an argument for a literal h, denoted 〈A, h〉, is a minimal set of defea-
sible rules A ⊆ Δ such that A∪Π is non-contradictory and there is a derivation
for h from A∪Π. Intuitively, a literal h will be warranted from P if there exists
an undefeated argument A supporting h. To establish if 〈A, h〉 is an undefeated
argument, counter-arguments that could be defeaters for 〈A, h〉 are considered.
Then, a counter-argument will be a defeater if it is preferred to the attacked
argument 〈A, h〉, according to an argument comparison criterion.

In this work we will adopt generalized specificity [5], a comparison criterion
that prefers more precise or more direct arguments. When comparing two argu-
ments 〈A1, h1〉 and 〈A2, h2〉 the comparison criterion performs an analysis of
their activation. Briefly, a set of literals S activates an argument 〈A, h〉 if the
literal h can be derived from the set Πr ∪ S ∪ A, where Πr is the set of program
strict rules. Then, 〈A1, h1〉 is more specific than 〈A2, h2〉 if every set of literals
H that non-trivially activates 〈A1, h1〉 also activates 〈A2, h2〉, and there exists
a set of literals H ′ that non-trivially activates 〈A2, h2〉 but H ′ does not acti-
vate 〈A1, h1〉. Notwithstanding this, as explained by the authors in [5], DeLP’s
comparison criterion is modular and thus, it could be easily changed.

Since defeaters are arguments, there may be defeaters for them, defeaters
for those defeaters, and so on. Thus, exhaustive sequences of arguments called
argumentation lines are constructed, where each argument defeats its predeces-
sor in the line, and no (sub)arguments can be reintroduced in the same line.
All argumentation lines starting with 〈A, h〉 are then grouped together into a
dialectical tree rooted in 〈A, h〉. Then, starting from the leaves up to the root,
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Fig. 1. General setup of a level in HermitArg.

each node (argument) in the tree will be marked as defeated (D) or undefeated
(U) as follows. Leaves represent arguments for which no defeaters can be added
to the corresponding argumentation line and thus, they will be marked U. If an
inner node has at least one child marked U, then it is marked D; otherwise, it will
be marked U (for a detailed explanation of DeLP’s dialectical process see [5]).
Finally, a literal h will be warranted if there exists an argument 〈A, h〉 that is
marked U in the dialectical tree rooted in it.

Given a DeLP program P, it is possible to make queries in order to find out
whether the literals represented by those queries are warranted or not. Conse-
quently, a query Q could have one of the following answers: YES, if the literal
Q is warranted from P; NO, if the literal Q (i. e., the complement of Q with
respect to the strong negation “∼”) is warranted from P; UNDECIDED, if nei-
ther Q nor Q is warranted from P; and UNKNOWN, if Q does not belong to
the signature of the program P.

3 HermitArg: An Argumentative AI Director Case Study

HermitArg is a turn-based roguelike game developed in Unity 2D in which the
player controls a hermit that has to escape from a cave. As the game goes by, the
player will venture deeper into the cave, which is designed as a labyrinth with
several floors. Each level in the game corresponds to a different floor of the cave,
where the player has to fight monsters, break walls and avoid obstacles in order
to reach the exit. Along the way, he can pick up food and booze to recover health
and open chests containing power-ups to increase his chances of defeating the
enemies. Figure 1 shows a screenshot of HermitArg, distinguishing the hermit
and its corresponding health, walls, different kinds of enemies and chests.

HermitArg implements an AI Director whose task is to procedurally gen-
erate every new level depending on the player’s status and performance in the
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previous one. As mentioned before, the goal of an AI Director is to keep the user
interested from the beginning to the end of the game, while providing a fair and
balanced level of challenge. Thus, using player activity data, the AI Director will
automatically and dynamically change difficulty, scenarios, and behavior in the
game. For instance, if the hermit is about to die or badly hurt, the AI Director
will include more food and reduce the amount of enemies (with respect to the
standard values) in the next level. On the other hand, if the player managed to
kill all enemies and is fully or almost fully recovered, it means that he had a
really good performance in that level and, consequently, the next level will be
harder than usual.

Over the past 7 years, since Valve released Left 4 Dead, the notion of AI
Director has not only gained traction in the video game industry but also estab-
lished itself as one of the best practices for building a high quality gameplay.
As a result, this concept was also implemented in other games such as Saints
Row IV (Dev. Volition, Pub. Deep Silver) and Darkspore (Dev. Maxis, Pub.
Electronic Arts). However, none of the existing games so far have incorporated
an argumentative mechanism to aid the AI Director’s decision making process.

The singularity of HermitArg’s AI Director is that it uses DeLP as a knowl-
edge representation and reasoning formalism. Briefly, in order to build a new
level, it creates a knowledge base composed of the game’s decision mechanics
and relevant state in the form of a DeLP program (i. e., a set of facts, strict
rules and defeasible rules). Then, the AI Director will perform different queries
on the knowledge base in order to decide how to generate the next level.

The alternative results of the queries performed by the AI Director may lead
to different courses of action, requiring the modification of different parameters
in the game. Among these parameters, we can distinguish the amount of food
and booze dropped on the floor, as well as the quantity of enemies to be faced.
In particular, these parameters are initialized with standard values, which may
be adapted as a result of the Director’s decision making process. In the case
of food & booze, the standard count equals the level number minus 2 (or zero,
in the first two levels); on the other hand, the standard value for enemy count
coincides with the level number. Then, once the final values are obtained, the
Director proceeds to the generation of the new level following these parameters.

4 DeLP Entities and AI Director’s Reasoning Process

Every element of the game considered during the AI Directors’s decision making
process is referred to as a DeLP Entity. A DeLP Entity is composed of four
attributes: a set of possible facts, a set of strict rules, a set of defeasible rules and
a set of associated queries. These rules and facts will be added to the Director’s
knowledge base, which will then be queried by the different DeLP Entities before
the creation of a new level. On the one hand, the resulting knowledge base will
be such that it contains every rule (strict and defeasible) from every entity in
the game. On the other hand, each entity will be responsible for determining
the conditions under which each of its own facts will be added to the knowledge
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Fig. 2. Description of DeLP Entity Inventory.

base, as well as the conditions for making each query and specifying the actions
to be performed depending on their results.

For instance, let us consider two of the main DeLP Entities in HermitArg. The
first one, called Inventory, models information about the different power-ups and
items the player has, such as recovery or revival items. The second entity, called
Player, models different aspects of the hermit’s status and performance. Figures 2
and 3 illustrate a simplified version of these DeLP Entities in HermitArg.

It can be noted that the Inventory entity has no associated queries. Hence,
the information modelled by its strict rules and facts will be used in the resolution
of queries from other entities. The fact “revivalAbility(player)” will be added
into the Director’s knowledge base if and only if the player has any revival
items in the inventory. On the other hand, as shown in Fig. 2, the conditions
associated with the facts “highRecovery(player)”, “mediumRecovery(player)”
and “lowRecovery(player)” are exclusionary. Thus, the Director’s knowledge
base will only include one of these, modelling the highest recovery capability of
the player. Finally, the strict rules express that if the player has reached the
minimum threshold of recovery items, then it has the ability to recover.

Differently from the inventory, all attributes of the DeLP Entity Player
are specified. The conditions associated with the facts “fullHealth(player)”,
“highHealth(player)”, “mediumHealth(player)”, “lowHealth(player)” and
“veryLowHealth(player)” are exclusionary. Thus, the Director’s knowledge base
will only include one of these, modelling the current health level of the player.
On the other hand, the fact “experienced(player)” represents that the player
is at an advanced level of the game. Thus, this fact will only be added to the
Director’s knowledge base when the current level is higher than 10. The strict
rules express that if the player’s health is over 50 %, then it has no risk of dying.
The first six defeasible rules give defeasible reasons to believe that the player’s
life is at risk (respectively, not at risk) when its health level drops below 50 %.
In particular, when having low health, the player may be saved from dying if
it will revive or has, at least, the amount of recovery items required to reach a
low recovery level. In contrast, when its health is very low, it may only be saved
by reviving, or by having the amount of recovery items required to reach a high
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Fig. 3. Description of DeLP Entity Player.

recovery level. Then, the last two defeasible rules respectively provide reasons for
and against the player’s revival: the former expresses that the player will revive
if it has the ability to do so; whereas the latter expresses that, even though the
player has the ability to revive, it will not revive when being at an advanced
state of the game. Finally, the query associated with the Player entity allows
the AI Director to increase or decrease the difficulty of the next level, depending
on whether the player was dying at the end of the previous level or not.

It could be noted that the query of the Player entity has no associated con-
dition. This is because the AI Director will be interested in knowing whether the
player was dying or not before creating every new level. In contrast, for instance,
let us suppose that the Player entity also specifies the query “tooStrong(player)”
related to the player’s high killing performance in the last level, where a pos-
itive answer leads the Director to significantly increase the amount of enemies
while dramatically reducing the amount of food & booze in the following level.
Taking this into account, the AI Director may only be interested in asking that
query under specific circumstances, such as if the player completed the previous
level without being close to dying. Otherwise, if that query is asked even though
the player was close to death, and the answer is positive, then it would most
likely mean that the player will get killed in the next level (as a result of hav-
ing to face a greater amount of monsters and having less chances of recovery).
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The following example presents a concrete scenario of HermitArg, illustrating
how the AI Director’s knowledge base is obtained.

Fig. 4. HermitArg’s scenario where the player is about to complete level 6.

Example 1. Let us consider the scenario depicted in Fig. 4, where the player
is about to complete level 6 having a 30% of health, no recovery items and
one revival item (the Bucket List) in its inventory. Since the hermit’s health
ranges between 25%–50% of its total, the DeLP Entity Player will add the fact
“lowHealth(player)” to the AI Director’s knowledge base. Also, since the hermit
has no recovery power-ups but has a revival item, the DeLP Entity Inventory will
add the fact “revivalAbility(player)”. Finally, since the current level is 6, the
fact “experienced(player)” will not be added to the knowledge base. Thus, the
AI Director’s knowledge base (state of the game at the end of level 6) is:

P6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lowHealth(player)
∼dying(X) ← mediumHealth(X)
∼dying(X) ← highHealth(X)
∼dying(X) ← fullHealth(X)
dying(X) —< lowHealth(X)
∼dying(X) —< lowHealth(X), recovery(X)
∼dying(X) —< lowHealth(X), willRevive(X)
dying(X) —< veryLowHealth(X)
∼dying(X) —< veryLowHealth(X), highRecovery(X)
∼dying(X) —< veryLowHealth(X), willRevive(X)
willRevive(X) —< revivalAbility(X)
∼willRevive(X) —< revivalAbility(X), experienced(X)
revivalAbility(player)
recovery(X) ← highRecovery(X)
recovery(X) ← mediumRecovery(X)
recovery(X) ← lowRecovery(X)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

After generating the knowledge base, it is time for the AI Director to ask,
when corresponding, the queries associated to the DeLP Entities and perform
certain actions depending on their results. The following example illustrates the
dialectical process carried out in order to answer a DeLP query.
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Fig. 5. Screenshot of HermitArg, illustrating the beginning of level 7.

Example 2. Given the scenario described in Example 1, the AI Director
will make the query “dying(player)” before generating level 7. In order
to resolve this query, we have to consider all the arguments built from
the AI Director’s knowledge base P6 whose conclusion is “dying(player)”.
In this case, the only argument built from P6 meeting that criterion is
〈A1, dying(player)〉, with A1 = {dying(player) —< lowHealth(player)}.
Then, we search for possible counter-arguments for 〈A1, dying(player)〉,
i. e., arguments whose conclusion is “∼dying(player)”. The only argu-
ment built from P6 meeting that criterion is 〈A2,∼dying(player)〉,
with A2 = {(willRevive(player) —< revivalAbility(player)),
(∼dying(player) —< lowHealth(player), willRevive(player))}. Now we have
to determine whether the attack from 〈A2,∼dying(player)〉 succeeds, in
which case 〈A2,∼dying(player)〉 will be a defeater of 〈A1, dying(player)〉.
As mentioned in Sect. 2, we will adopt generalized specificity as the argu-
ment comparison criterion. Therefore, since 〈A2,∼dying(player)〉 is preferred
to 〈A1, dying(player)〉 because of being more precise, 〈A2,∼dying(player)〉
is a defeater of 〈A1, dying(player)〉. Given that the only counter-argument
of 〈A2,∼dying(player)〉 is 〈A1, dying(player)〉, 〈A2,∼dying(player)〉 has no
defeaters. Hence, the only argumentation line starting with 〈A1, dying(player)〉
is [〈A1, dying(player)〉, 〈A2,∼dying(player)〉], which also corresponds to the
dialectical tree rooted in 〈A1, dying(player)〉. Analogously, the only argumen-
tation line starting with 〈A2,∼dying(player)〉 (thus, the dialectical tree rooted
in 〈A2,∼dying(player)〉) is [〈A2,∼dying(player)〉]. As a result, argument
〈A2,∼dying(player)〉 will be marked U on its dialectical tree and therefore, the
answer to the query “dying(player)” is NO.

As it is shown in the preceding example, the AI Director got a negative
answer to the query “dying(player)”, meaning that the player completed level 6
without risk of dying. Thus, the Director will follow the course of action leading
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to increase the difficulty of the next level, by reducing the available food and
increasing the amount of enemies. The generation of level 7 is illustrated in Fig. 5,
where the AI Director’s knowledge base used to answer the query is visible.
Observe that the amount of food & booze dropped on the floor in level 7 is
4, as a result of the AI Director’s action (see Fig. 3) of subtracting 1 from the
standard value of 5 (i. e., the level number minus 2). Similarly, the AI Director
increased the standard count of enemies (i. e., the level number) by 1, resulting
in 8 enemies to be faced in level 7.

Let us now consider a new scenario, similar to the one described in Example 1,
where the only difference is that the player is about to complete level 12 instead
of level 6. In this case, the AI Director will build its knowledge base and perform
the corresponding queries before creating level 13. In particular, the knowledge
base P12 will be such that it contains every rule and fact belonging to P6 plus
the fact “experienced(player)”, because the player is about to complete a level
higher than 10 (i. e., P12 = P6 ∪ {experienced(player)}).

When resolving the query “dying(player)” using P12, there exists a
new counter-argument for 〈A2,∼dying(player)〉: 〈A3,∼willRevive(player)〉,
with A3 = {∼willRevive(player) —< revivalAbility(player), experienced(player)}.

In particular, 〈A3,∼willRevive(player)〉 attacks the intermediate conclu-
sion “willRevive(player)” of argument 〈A2,∼dying(player)〉. Hence, the
attacked sub-argument of 〈A2,∼dying(player)〉 is 〈A4, willRevive(player)〉,
with A4 = {willRevive(player) —< revivalAbility(player)}. Then, since by
generalized specificity 〈A3,∼willRevive(player)〉 is preferred to the attacked
sub-argument 〈A4, willRevive(player)〉, it holds that 〈A3,∼willRevive(player)〉
is a defeater for 〈A2,∼dying(player)〉. Moreover, since the only counter-
argument for 〈A3,∼willRevive(player)〉 is 〈A4, willRevive(player)〉, argument
〈A3,∼willRevive(player)〉 is undefeated. As a result, the dialectical tree
rooted in 〈A1, dying(player)〉 will correspond to the argumentation line
[〈A1, dying(player)〉, 〈A2,∼dying(player)〉, 〈A3,∼willRevive(player)〉].
Finally, argument 〈A1, dying(player)〉 will be marked U in its dialectical tree
and, consequently, the answer to the query “dying(player)” will be YES.

As the preceding example shows, the smallest change in a scenario (in this
case, the level number) may lead to different answers for the same query (thus,
different actions of the AI Director), reflecting the defeasible nature of the infor-
mation being represented within the AI Director’s knowledge base.

5 Argumentative AI Director: Design
and Implementation

In Unity, a DeLP Entity is represented by any Prefab or GameObject composed
by a custom script that extends the DeLP Entity script. The DeLP Entity script
is an abstract class that models the notion of DeLP Entity presented in Sect. 4.
Thus, its attributes will be the sets of facts, strict rules, defeasible rules and
queries of the entity. These attributes are initialized from the Inspector, allowing
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Fig. 6. Initialization of the Player Entity’s attributes using the Inspector.

the user to abstract from their internal representation in the knowledge base.
For instance, Fig. 6 illustrates how the Player Entity’s attributes are initialized.

The DeLP Entity script will also be in charge of handling insertions and
queries to the knowledge base. As explained in Sect. 4, a DeLP Entity may asso-
ciate some conditions to its facts and queries, and also determines the actions
to be performed depending on the queries’ answers. Then, these conditions and
actions will be specified within the custom script that implements the corre-
sponding DeLP Entity script’s abstract methods.

The knowledge base is part of another class implementing the singleton design
pattern, allowing it to be globally accessible and restricting its instantiation to
exactly one object. In the case of HermitArg, this is the same class containing a
reference to every DeLP Entity, and is in charge of calling their methods before
generating a new level. The classes involved within the design of HermitArg’s
AI Director are illustrated in Fig. 7.

In order to avoid involving the AI Director in unnecessary aspects, the meth-
ods used to handle and support the knowledge base are implemented inside the
Java class DeLPHandler. This class provides us with the following methods:

– addFact : Adds a fact to the knowledge base.
– addStrictRule: Adds a strict rule to the knowledge base.
– addDefeasibleRule: Adds a defeasible rule to the knowledge base.
– empty : Empties the knowledge base.
– query : Makes a query to the knowledge base and returns a string with the

corresponding answer: {YES, NO, UNDECIDED, UNKNOWN }.
– toString : For displaying purposes.

The above mentioned methods were implemented using the DeLP library pro-
vided by Tweety [15]. Briefly, Tweety is an open source project for scientific
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Fig. 7. Class diagram of HermitArg’s AI Director.

experimentation on logical aspects of artificial intelligence and, particularly,
knowledge representation. It provides a unified framework for implementing and
testing knowledge representation formalisms, ranging from propositional logic to
computational models of argumentation. Each formalism has a dedicated Java
library that provides implementations for both syntactic and semantic constructs
of the given formalism, as well as reasoning capabilities.

In particular, some of the classes provided by Tweety’s DeLP library, which
were used to implement the higher level methods of the DeLPHandler class, are:
DefeasibleLogicProgram, which models a DeLP program; DelpReasoner, which
implements the dialectical process carried out for the resolution of queries; Gen-
eralizedSpecificity, which implements the homonym argument comparison cri-
terion; StrictRule, which models a strict rule; DefeasibleRule, which models a
defeasible rule; and DelpFact, which represents a literal modelling a fact. Finally,
the resulting .JAR file encapsulating the implementation of the DeLPHandler
is converted into a .DLL file, allowing for its use within the Unity project.



108 R.A. Agis et al.

6 Related Work

In the last decade, there has been keen interest in addressing the problem of
adaptivity in computer games in order to make games more challenging and
appealing. In [10] the authors remark that different kinds of computer games
may have different purposes of adaptivity (i. e., the principles that steer the
adaptation engine). For instance, adaptive entertainment games have typically
only been considering one dimension to engage fun: challenge, meaning that the
difficulty of performing game tasks must be in balance with the skills of the
player avoiding undesirable “too easy” or “too hard” situations. In contrast,
for educational or training games, the motivation for steering adaptability is to
improve the effectiveness of the knowledge transfer between the game and its
players. Since HermitArg is an entertainment game, its AI Director focuses on
providing a fair and balanced level of challenge by adjusting the level of diffi-
culty. Focusing on player-centered game adaptivity, our approach adjusts game
elements depending on the individual performance of the player. Moreover, given
that HermitArg is a basic roguelike game, the AI Director does not adjust level
difficulty depending on the player’s actions per se, but as a result of the overall
behavior throughout the previous level. In contrast, for instance, in interactive
narrative games each one of the player’s actions and decisions have a direct
impact on the direction or outcome of the storyline.

As mentioned in [13], a key challenge in interactive narrative systems is to
maintain a coherent story progression while keeping users engaged. Hence, they
implement an experience manager that drives the narrative forward by interven-
ing in the fictional world, typically by directing computer-controlled characters
in how to respond to the user’s actions. Keeping the coherence goal in mind,
the use of an Argumentative AI Director (experience manager) in this kind of
games has a clear advantage. Argumentation systems are designed to deal with
potentially contradictory information, and their underlying defeasible reasoning
process provides the means to resolve those inconsistencies. Thus, the use of
argumentation may come in handy for dealing with the boundary problem [11].

Another interesting approach to adaptive entertainment games is proposed
in [7]. There, the authors present Polymorph, a 2-D platformer game that gen-
erates levels, as the user plays, driven by a dynamic difficulty adjustment to the
player’s skills and experience. A statistical model of difficulty and a model of the
player’s current skill level are used, through mass data collection and machine
learning techniques, to select the appropriate level segments to generate for each
user in order to avoid difficulty-related player frustration and boredom. It could
be noted that, since the approach of [7] relies on human players’ data collection
for building the statistical model, adding a new game mechanic would make
the old data obsolete. In contrast, by using an Argumentative AI Director, the
incorporation of new elements in the game would only require to characterize
new DeLP Entities and specify the facts, rules and queries associated with them.
In addition, as mentioned by the authors in [7], their approach does not capture
all aspects of level challenge because it focuses on the micro-level of compo-
nent combinations (short segments of level and enemies) rather than level-wide
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patterns or the introduction of new mechanics. On the other hand, as mentioned
before, our argumentative AI Director accounts for every aspect associated with
the difficulty of the levels before generation of the next level.

A case study for a prototype of an adaptive first-person shooter gaming envi-
ronment is presented in [8]. Player actions are recognized through a finite state
machine approach, by which discrete actions reveal the player skill level. Adap-
tation mechanisms try to make the game harder for players identified as experts
and easier for beginners in order to significantly increase player engagement, sat-
isfaction, and ultimately enhance the game experience provided. Currently the
recognition algorithm is composed from a variety of functionally independent
mechanisms that are each executed in response to particular player initiated
actions. For instance, the “Kill Zone Counter” mechanism enables the NPC
populace to recognize when the player stands and snipes from a particular point
using minimal movement to overcome NPCs, allowing the game to dispatch
NPCs through an alternative route providing more of a challenge to the player.
In [8] the authors say it would be interesting to develop a further level of function
that observes the activation of each of these particular component mechanisms
and attempts to autonomously weight each in relation to player progression
throughout the level. This goal could be achieved by adding an Argumentative
AI Director to the game, in which each DeLP Entity is in charge of executing
its corresponding mechanisms and adding certain facts to the knowledge base
depending on the new player status. Then, defeasible rules associated with each
DeLP Entity could be used to argue whether the executed mechanism caused
the desired effect and later adjust the corresponding parameters.

7 Conclusions and Future Work

In this paper we have presented a novel implementation of an AI Director for
HermitArg, a roguelike video game developed in Unity 2D. Differently from
other AI Directors in similar games, the decision making of our AI Director is
supported by a defeasible argumentation process. For this purpose, we use the
knowledge representation and reasoning formalism of DeLP.

Before generating a new level, the AI Director builds a knowledge base in the
form of a DeLP program, representing information about the status of different
entities in the game (player, inventory, etc.) at the end of the previous level.
Then, the Director performs some queries on the knowledge base, which are
resolved using DeLP’s dialectical process, and adopts a different course of action
depending on the obtained answers. Specifically, these answers may lead the
Director to increase or decrease the difficulty of the following level, in order to
provide a fair and balanced level of challenge while keeping the player interested.

The use of defeasible logic allows the formalization of smart items in the
game scenario. A smart item, or technically DeLP Entity, is a level object with
an associated set of logic rules, stating defeasible conditions about the adapt-
ability of such an object. The abstraction of smart items leads to a modular
design about the overall knowledge regarding a single level. This modular design
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adopted by HermitArg’s AI Director has two main advantages. On the one hand,
since the sets of facts and rules associated with each DeLP Entity is a DeLP
program on its own, the resulting AI Director’s knowledge base is a combination
of such programs. This allows the AI Director to abstract from the presence (or
absence) of the different entities at each moment in the game, by simply asking
the available entities to incorporate their DeLP programs into the knowledge
base. At any case, this would only affect the resolution of queries, as explained
below. For instance, let us suppose that the Player is not allowed to access the
Inventory at a given point in the game. Then, the DeLP program corresponding
to the Player entity would be added to the Director’s knowledge base, whereas
the one associated with the Inventory would not. The resulting knowledge base
would still be a valid DeLP program. However, since some rules of the Player
entity make use of information added by the Inventory entity, it would not be
possible to build the arguments that contain them. As a result, the answer to
the queries of the Player entity may change. On the other hand, the modular
design and the high level of sophistication of DeLP’s defeasible argumentation
formalism allow for the specification of complex rules within each entity. Then,
since the resolution of queries is carried out by the DeLP reasoner, the AI Direc-
tor can abstract from the level of complexity of the dialectical process, which
may involve the consideration of a wide range of arguments and conflicts.

Future work has several directions. We are interested in applying the notion
of argumentative AI Director to first-person shooter games such as Doom 3 or
Quake III Arena. Because of the fast-paced environment of these games, the
incorporation of an argumentation formalism like DeLP into their AI Director
poses a great challenge. In that way, for instance, AI Director will have to con-
stantly update and query the knowledge base in order to decide the actions
required to dynamically adapt and change scenarios depending on the player’s
performance. A small bot testing the use argumentation in very dynamic sce-
narios was developed using TORCS: The Open Car Racing Simulator and the
libraries for Demolition Derby 2012. We are also working on the use of DeLP in
the creation of bots that use argumentation to decide about their actions, using
a knowledge base obtained by crowdsourcing and the analysis of contradictory
and incomplete game logs.
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Abstract. We consider a general approach to knowledge transfer in
which an agent learning with a neural network adapts how it reuses
existing networks as it learns in a new domain. Networks trained for a
new domain are able to improve performance by selectively routing acti-
vation through previously learned neural structure, regardless of how or
for what it was learned. We consider a neuroevolution implementation of
the approach with application to reinforcement learning domains. This
approach is more general than previous approaches to transfer for rein-
forcement learning. It is domain-agnostic and requires no prior assump-
tions about the nature of task relatedness or mappings. We analyze the
method’s performance and applicability in high-dimensional Atari 2600
general video game playing.

1 Introduction

The ability to generally apply any and all available previously learned knowl-
edge to new tasks is a hallmark of general intelligence. Transfer learning is the
process of reusing knowledge from previously learned source tasks to bootstrap
learning of target tasks. For reinforcement learning (RL) agents, transfer is par-
ticularly important, as previous experience can help to efficiently explore new
environments. Knowledge acquired during previous tasks also contains informa-
tion about the agent’s task-independent decision making and learning dynamics,
and thus can be useful even if the tasks seem completely unrelated.

Existing approaches to transfer learning for reinforcement learning have suc-
cessfully demonstrated transfer of varying kinds of knowledge [24], but they tend
to make two fundamental assumptions that restrict their generality: (1) some
sort of a priori human-defined understanding of how tasks are related, (2) sepa-
rability of knowledge extraction and target learning. The first assumption limits
the applicability of the approach by restricting its use only to cases where the
agent has been provided with this additional relational knowledge, or, if it can be
learned, cases where task mappings are useful. The second assumption implies
further expectations about what knowledge will be useful and how it should
be incorporated before learning on the target task begins, preventing the agent
from adapting the way it uses source knowledge as it gains information about
the target domain.

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-39402-2 9
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We consider General ReUse Of Static Modules (GRUSM), a general neural
network approach to transfer learning that avoids both of these assumptions,
by augmenting the learning process to allow learning networks to selectively
route through existing neural modules (source networks) as they simultane-
ously develop new structure for the target task. Unlike previous work, which
has dealt with mapping task variables between source and target, GRUSM is
task-independent, in that no knowledge about the structure of the source task
or even knowledge about where the network came from is required for it to be
reused. Instead of using mappings between task-spaces to facilitate transfer, it
searches directly for mappings in the solution space, that is, connections between
existing source networks and the target network. GRUSM is motivated by studies
that have shown in both naturally occurring complex networks [14] and artificial
neural networks [21] that certain network structures repeat and can be useful
across domains, without any context for how exactly this structure should be
used. We are further motivated by the idea that neural resources in the human
brain are reused for countless purposes in varying complex ways [1].

In this paper, we consider an implementation of GRUSM based on the
Enforced Subpopulations (ESP) neuroevolution framework [6]. We validate our
approach first in a simple boolean logic domain, then scale up to the Atari
2600 general game playing domain. In both domains, we find that GRUSM-ESP
improves learning overall, and tends to be most useful when source and target
networks are more complex. In the Atari domain, we show that the effectiveness
of transfer coincides with an intuitive high-level understanding of game dynam-
ics. This demonstrates that even without traditional transfer learning assump-
tions, successful knowledge transfer via general reuse of existing neural modules
is possible and useful for RL. In principle, our approach and implementation nat-
urally scale to transfer from an arbitrary number of source tasks, which points
towards a future class of GRUSM agents that accumulate and reuse knowledge
throughout their lifetimes across a variety of diverse domains.

The remainder of this paper is organized as follows: Sect. 2 provides back-
ground on transfer learning and related work, Sect. 3 describes our approach in
detail, Sect. 4 analyzes results from experiments we have run with this approach,
and Sect. 5 discusses the implications of these results and motivations for future
work.

2 Background

Transfer learning encompasses machine learning techniques that involve reusing
knowledge across different domains and tasks. In this section we review exist-
ing transfer learning methodologies and discuss their advantages and shortcom-
ings to motivate our approach. We take the following two definitions from [16].
A domain is an environment in which learning takes place, characterized by the
input and output space. A task is a particular function from input to output to
be learned. In sequential-decision domains, a task is characterized by the val-
ues of sensory-action sequences corresponding to the pursuit of a given goal.
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A taxonomy of types of knowledge that may be transferred are also enumerated
in [16]. As our approach reuses the structure of existing neural networks, it falls
under ‘feature representation transfer’.

2.1 Transfer Learning for RL

Reinforcement learning (RL) domains are often formulated as Markov decision
processes in which the state space comprises all possible observations, and the
probability of an observation depends on the previous observation and an action
taken by a learning agent. However, many real world RL domains are non-
Markovian, including many Atari 2600 games.

Five dimensions for characterizing the generality and autonomy of algorithms
for transfer learning in RL are given in [24]: (1) restrictions on how source and
target task can differ; (2) whether or not mappings between source and target
state and action variables are available to assist transfer; (3) the form of the
knowledge transferred; (4) restrictions on what classes of learning algorithms
can be used in the source and/or target tasks; (5) whether or not the algorithm
autonomously selects which sources to reuse.

Some of the most general existing approaches to transfer for RL automatically
learn task mappings, so they need not be provided beforehand, e.g., [22,23,25].
These approaches are general enough to apply to any reinforcement learning task,
but as the state and action spaces become large they become intractable due to
combinatorial blowup in the number of possible mappings. These approaches
also rely on the assumption that knowledge for transfer can be extracted based
on mappings between state and action variables, which may miss useful internal
structure these mappings cannot capture.

2.2 General Neural Structure Transfer

There are existing algorithms similar to our approach in that they enable general
reuse of existing neural structure. They can apply to a wide range of domains
and tasks in that they automatically select source knowledge and avoid inter-task
mappings. Knowledge-Based Cascade Correlation [20] uses a technique based on
cascade correlation to build increasingly complex networks by inserting source
networks chosen by how much they reduce error. Knowledge Based Cascade
Correlation is restricted in that it is only designed for supervised learning, as
the source selection depends heavily on an immediate error calculation. Also,
connectivity between source and target networks is limited to the input and
output layer of the source. Subgraph Mining with Structured Representations
[21] creates sparse networks out of primitives, or commonly used sub-networks,
mined from a library of source networks. The subgraph mining approach depends
on a computationally expensive graph mining algorithm, and it tends to favor
exploitation over innovation and small primitives rather than larger networks as
sources.

Our approach is more general in that it can be applied to unsupervised and
reinforcement learning tasks, and makes fewer a priori assumptions about what



118 A. Braylan et al.

kind of sources and mappings should work best. Although we only consider an
evolutionary approach in this paper, GRUSM should be extensible to any neural
network-based learning algorithm.

3 Approach

This section introduces the general idea behind GRUSM, then provides an
overview of the ESP neuroevolution framework, before describing our partic-
ular implementation: GRUSM-ESP.

3.1 General ReUse of Static Modules (GRUSM)

The underlying idea is that an agent learning a neural network for a target
task can selectively reuse knowledge from existing neural modules (source net-
works) while simultaneously developing new structure unique to a target task.
This attempts to balance reuse and innovation in an integrated architecture.
Both source networks and new hidden nodes are termed recruits. Recruits are
added to the target network during the learning process. Recruits are adaptively
incorporated into the target network as it learns connection parameters from the
target to the recruit and from the recruit to the target. All internal structure of
source networks is frozen to allow learning of connection parameters to remain
consistent across recruits. This forces the target network to transfer learned
knowledge, rather than simply overwrite it. Connections to and from source net-
works can, in the most general case, connect to any nodes in the source and
target, minimizing assumptions about what knowledge will be useful.

A GRUSM network or reuse network is a 3-tuple G = (M,S, T ) where M is a
traditional neural network (feedforward or recurrent) containing the new nodes
and connections unique to the target task, with input and output nodes corre-
sponding to inputs and outputs defined by the target domain; S is a (possibly
empty) set of pointers to recruited source networks S1, ...,Sk; and T is a set of
weighted transfer connections between nodes in M and nodes in source networks,
that is, for any connection ((u, v), w) ∈ T , (u ∈ M ∧ v ∈ Si) ∨ (u ∈ Si ∧ v ∈ M)
for some 0 ≤ i ≤ k. This construction strictly extends traditional neural net-
works so that each Si can be a traditional neural network or a reuse network of
its own. When G is evaluated, we evaluate only the network induced by directed
paths from inputs of M to outputs of M , including those which pass through
some Si via connections in T . Before each evaluation of G, all recruited source
network inputs are set to 0, since at any given time the agent is focused only on
performing the current target task. The parameters to be learned are the usual
parameters of M , along with the contents of S and T . The internal parameters
of each Si are frozen in that they cannot be rewritten through G.

The motivation for this architecture is that if the solution to a source task
contains any information relevant to solving a target task, then the neural net-
work constructed for the source task will contain some structure (subnetwork
or module) that will be useful for a target network. This has been shown to be
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true in naturally occurring complex networks [1], as well as cross-domain arti-
ficial neural networks [21]. Unlike in the subgraph mining approach to neural
structure transfer [21], this general formalism makes no assumptions as to what
subnetworks actually will be useful. One perspective that can be taken with this
approach is that a lifelong learning agent maintains a system of interconnected
neural modules that it can potentially reuse at any time for a new task. Even
if existing modules are unlabeled, they may still be useful, simply due to the
fact that they contain knowledge of how the agent can successfully learn. Fur-
thermore, recent advances in reservoir computing [12] have demonstrated the
power of using large amounts of frozen neural structure to facilitate learning of
complex and chaotic tasks.

The above formalism is general enough to allow for an arbitrary number of
source networks and arbitrary connectivity between source and target. In this
paper, to validate the approach and simplify analysis, we use at most one source
network and only allow connections from target input to source hidden layer and
source output layer to target output. This is sufficient to show that the imple-
mentation can successfully reuse hidden source features, and analyze the cases
in which transfer is most useful. Future refinements are discussed in Sect. 5. The
current implementation, described below, is a neuroevolution approach based
on ESP.

3.2 Enforced Subpopulations (ESP)

Enforced Sub-Populations (ESP) [6] is a neuroevolution technique in which dif-
ferent elements of a neural network are evolved in separate subpopulations rather
than evolving the whole network in a single population. ESP has been shown
to perform well in a variety of reinforcement learning tasks, e.g., [6–8,13,19]. In
standard ESP, each hidden neuron is evolved in its own subpopulation. Recombi-
nation occurs only between members of the same subpopulation, and mutants in
a subpopulation derive only from members of that subpopulation. The genome
of each individual in a subpopulation is a vector of weights corresponding to the
weights of connections from and to that neuron, including node bias. In each
generation, networks to be evaluated are randomly constructed by inserting one
neuron from each subpopulation. Each individual that participated in the net-
work receives the fitness achieved by that network. When fitness converges, i.e.,
does not improve over several consecutive generations, ESP makes use of burst
phases. In initial burst phases each subpopulation is repopulated by mutations
of the single best neuron ever occurring in that subpopulation, so that it reverts
to searching a δ-neighborhood around the best solution found so far. If a second
consecutive burst phase is reached, i.e., no improvements were made since the
previous burst phase, a new neuron with a new subpopulation may be added [5].

3.3 GRUSM-ESP

We extend the idea of enforced sub-populations to transfer learning via GRUSM
networks. For each reused source network Si the transfer connections in T
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Fig. 1. The GRUSM-ESP architecture. Reused subnetworks of sources are boxed.
Edges between input and source and between source and output denote full connectiv-
ity between these layers. The genome in each subpopulation encodes weight information
for the connections from and to the corresponding recruit.

between Si and M evolve in a distinct subpopulation. At the same time new
hidden nodes can be added to M and evolve within their own subpopulations
in the manner of standard ESP. In this way, the integrated evolutionary process
simultaneously searches the space for how to reuse each potential source net-
work and how to innovate with each new node. Specifically, the GRUSM-ESP
architecture (Fig. 1) is composed of the following elements:

– A pool of potential source networks. In the experiments in this paper, each
target network reuses at most one source at a time.

– Transfer genomes defining a list of transfer connections between the source
and target networks. Each potential source network in the pool has its own
subpopulation for evolving transfer genomes between it and the target net-
work. Each connection in T is contained in some transfer genome. In our
experiments, the transfer connections included are those such that the tar-
get’s inputs are fully connected to the source’s hidden layer, and the source’s
outputs are fully connected into the target’s outputs. Therefore, the transfer
genome only encodes the weights of these cross-network connections.

– A burst mechanism that determines when innovation is necessary based on
a recent history of performance improvement. New hidden recruits (source
networks or new single nodes) added during the burst phase evolve within
their own subpopulations in the manner of classic ESP.

All hidden and output neurons use a hyperbolic tangent activation function.
Networks include a single hidden layer, and can include self-loops on hidden
nodes; they are otherwise feedforward. The particulars of the genetic algorithm
in our implementation used to evolve each subpopulation mirror those described
in [5]. This algorithm has been shown to work well within the ESP framework,
though any evolutionary algorithm could potentially be substituted in its place
.
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Table 1. Median number of generations for task completion for all N-bit parity source-
target setups.

4 Experiments

We evaluate GRUSM-ESP on two domains: a simple n-bit parity domain mirror-
ing that used to evaluate knowledge transfer in [21], and the more complex Atari
2600 video game playing domain. We first train scratch networks that do not
reuse existing networks, that is, S is the empty set. We then reuse each scratch
network in training GRUSM networks for different tasks. We compare perfor-
mance between scratch and transfer, and between source-target setups. Results
demonstrate the ability of GRUSM-ESP to selectively reuse source structure.

4.1 N-Bit Parity

GRUSM-ESP was initially evaluated under the boolean logic domain using N -
bit parity. The N -bit parity problem has a long-standing history serving as a
benchmark for basic neural network performance. The N -bit parity function
is the mapping defined on N -bit binary vectors that returns 1 if the sum of
the N binary values in the vector is odd, and 0 otherwise. This function is
deceptively difficult for neural networks to learn since a change in any single
input bit will alter the output. Although N -bit parity is not fully cross-domain
in the stronger sense for which our approach applies, the input feature space does
differ as N differs, and it is useful for validation of the approach and connection
with previous work.

Performance is measured in number of generations to find a network that
solves N -bit parity within ε = 0.1 mean squared error. In this experiment,
networks were trained from scratch with ESP for N = [2, 3, 4]. Then, each of
these networks was used as a source network for each N -bit parity target domain
with N = [3, 4, 5]. ESP, without transfer, was used as a control condition for each
target task. A total of 10 trials were completed for each condition.

In this experiment, transfer learning was able to outperform learning from
scratch for all three target tasks when using some source task (Table 1). For 3-bit
and 4-bit parity, transfer learning always outperformed learning from scratch for
all three possible sources. For the more complex 5-bit parity target task, transfer
from the 4-bit network outperformed learning from scratch, while transfer from
the simpler tasks did not. This may be due to the significantly greater complexity
required for 5-bit parity over 2- or 3-bit parity. The limited frozen structure may
become a burden to innovation after the initial stages of evolution. The more
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complex 4-bit parity networks have more structure to select from, and thus may
assist in innovation over a longer time frame.

4.2 Atari 2600 Game Playing

Our next experiment evaluated in the Atari 2600 game platform using the Arcade
Learning Environment (ALE) simulator [2]. This domain is particularly popu-
lar for evaluating RL techniques, as it exhibits sufficient complexity to challenge
modern approaches, contains non-Markovian properties, and entertained a gener-
ation of human video game players. We used GRUSM-ESP to train agents to play
eight games (Asterix, Bowling, Boxing, Breakout, Freeway, Pong, Space Invaders,
and Seaquest) both from scratch and using transferred knowledge from existing
game-playing source networks. Neuroevolution techniques are quite competitive
in the Atari 2600 domain [9], and ESP in particular has yielded state-of-the-art
performance for several games [3].

Each source network was trained from scratch on a game using standard ESP
(GRUSM-ESP with an empty reuse set). Each source network was then used by
a target network for an evolutionary run for each other game. Each run lasted
200 generations with 100 evaluations per generation. Each individual i achieves
some score i(g) in its game g. Let min(g) be the min over all max scores achieved
in a single generation by any run of g. Let the fitness of i be i(g)−min(g). This
ensures that fitness is always positive (in both boxing and pong, raw scores can
be negative). The fitness of an evolutionary run at a given generation is the
highest fitness achieved by an individual by that generation.

We ran a total of 176 trials split across all possible setups: training using each
other game as a source, and training from scratch. We use the ε-repeat action
approach as suggested in [10] to make the environment stochastic in order to
disable the algorithm from finding loopholes in the deterministic nature of the
simulator. We use the recommended ε = 0.251. Parameters were selected based
on their success with standard ESP.

To interface with ALE, the output layer of each network consists of a 3× 3
substrate representing the 9 directional movements of the Atari joystick in addi-
tion to a single node representing the Fire button. The input layer consists of
a series of object representations manually generated as previously described in
[9], where the location of each object on the screen is represented in an 8× 10
input substrate corresponding to the object’s class. The number of object classes
for the games used in our experiments varies between one and four. Although
object representations are used in these experiments, pixel-level vision could also
be learned from scratch below the neuroevolution process, e.g., via convolutional
networks, as in [11].

Domain Characterization. Each game can be characterized by generic binary
features that determine the requirements for successful game play, in order to

1 https://github.com/mgbellemare/Arcade-Learning-Environment/tree/dev.

https://github.com/mgbellemare/Arcade-Learning-Environment/tree/dev


On the Cross-Domain Reusability of Neural Modules 123

Fig. 2. (left) Lattice of games ordered by features, and (right) vector of features for
each game (indicated in black). Every path from none to g contains along its edges each
complexity feature of g exactly once. Features: v = vertical movement, h= horizontal
movement, s = shooting, d = delayed reward, p= long-term planning.

place the games within a unified framework. We use binary features based on
the existence of the following: (1) horizontal movement (joystick left/right),
(2) vertical movement (joystick up/down), (3) shooting (fire button); (4) delayed
rewards; and (5) the requirement of long-term planning. Intuitively, more com-
plex games will possess more of these qualities. A partial ordering of games by
complexity defined by these features is shown in Fig. 2. The assignment of fea-
tures (1), (2) and (3) is completely defined based on game interface [2]. Freeway
and Seaquest are said to have delayed rewards because a high score can only
be achieved by long sequences of rewardless behavior. Only Space Invaders and
Seaquest were deemed to require long-term planning [15], since the long-range
dynamics of these games penalize reflexive strategies, and as such, agents in
these games can perform well with a low decision-making frequency [3]. Aside
from their intuitiveness, these features are validated below based on their ability
to characterize games by complexity and predict transferability. For a simple
metric of complexity, let cmplx(g) be the number of the above features game
g exhibits.

Atari 2600 Results. There are many possible approaches to evaluating success
of transfer [24]. For comparing performance across games, we focus on time to
threshold. To minimize threshold bias, for each game we chose the threshold to
be the min of the max fitness achieved across all trials. Given this threshold,
the average time to threshold in terms of generations may be vastly different,
depending on the average learning curve of each game. These learning curves are
quite irregular, as illustrated in Fig. 3. For each game we measure time in terms
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of percent of average time to threshold, and the success rate is the proportion
of trials that have achieved the threshold by that time.

Fig. 3. Distributions of fitness for each game by generation over all trials. Mean (black),
standard error (dark gray) and standard deviation (light gray) are shown at each
generation.

Figure 4 plots success over time for different groups of trials. The top plot
compares the success rate of all transfer trials to scratch trials. It shows what
we would expect from transfer overall: networks that reuse frozen structure from
previous games are able to take advantage of that structure to bootstrap learn-
ing. This works initially, but eventually scratch catches up, as it becomes more
difficult to innovate with a single frozen structure. When trials are grouped by
target (lower left pane), we can see that some games are better targets for trans-
fer than others. As demonstrated in Fig. 4, more complex games (with respect to
our game features) are generally better targets than less complex. It is less clear
what we can draw from grouping trials by source (lower right pane). There is a
tighter spread than with targets, though there may still be a tendency towards
more complex games being better sources. This may be counter-intuitive, as
we might expect simpler games to be easier to reuse. However, more complex
games have networks with more complex structure from which a target network
can, through the evolutionary process, select some useful subnetwork that fits
its needs. Similarly, a complex domain will be more likely to be a good target,
since it requires a wider variety of structure to be successful, so sources have a
higher chance of satisfying some of that requirement.

For comparing performance within a target game, we need not resort to
threshold normalization, and can instead focus on raw max fitness. For refer-
ence, average and best fitness for both transfer and scratch are given in Table 2.
Note that previously published approaches to Atari game-playing use fully deter-
ministic environments, making direct score comparisons difficult (see [3] for a
comparison of ESP to other approaches in deterministic environments).

The max fitness transfer effectiveness (MFTE) of a source-target setup is
the log ratio between its average max fitness and the average max fitness of
that game from scratch. The digraphs in Fig. 5 each contain the directed edge
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Fig. 4. Success rate (proportion of trials that have reached the target threshold) by
percent of average number of generations to threshold of target game with trials (allow-
ing comparisons across games with different average times to threshold) grouped by
(1) scratch vs. transfer, (2) target game, (3) source game.

Table 2. For both transfer (t) and scratch (s) runs, average fitness and best fitness of
GRUSM-ESP.

game min(g) bestt bests avgt avgs

seaquest 160 1510 300 475.0 262.0

space invaders 310 1520 1320 1076.0 1160.0

boxing −12 111 107 98.6 104.1

bowling 30 237 231 219.9 201.9

asterix 650 3030 2150 1989.0 2016.7

freeway 21 13 11 10.7 10.7

pong −21 42 42 21.8 20.3

breakout 0 51 37 25.4 31.3
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Fig. 5. Transferability graphs illustrating the most successful source-target pairs. Each
graph includes a directed edge from g1 to g2 ⇐⇒ the MFTE (max fitness transfer
effectiveness; defined above) for g2 reusing g1 is greater than (a) 0.5, and (b) 1.0,
respectively.

Table 3. A total ordering of games by complexity score and degree (total, in (−), and
out (+)) in the transferability digraph with edge cutoff 0.5 (Fig. 5(a)).

game g cmplx(g) deg(g) deg−(g) deg+(g)

seaquest 5 8 4 4

space invaders 3 7 4 3

boxing 3 6 4 2

bowling 2 5 3 2

asterix 2 5 2 3

freeway 2 4 2 2

pong 1 4 1 3

breakout 1 1 0 1

from g1 to g2 only when MFTE is above a specified threshold. These graphs
indicate that the more complex games serve a more useful role in transfer than
less complex. Consider the total ordering of games by cmplx(g) given in Table 3.
This ordering corresponds exactly to that induced by the degree sequence (by
both total degree and in-degree) [4] of the graph with edge cutoff 0.5. However,
for out-degree, the correlation with respect to the ordering is less clear. This
reflects Fig. 4, in which there is more spread in success when grouped by target
(in-degree) vs. source (out-degree).

We see that we can predict MFTE by the feature characterizations we pro-
vided. The feature characterizations allow us to consider all trials in the same
feature space. A linear regression model trained on a random half of the setups
yielded weight coefficients for the source and target features that successfully
predicted the MFTE of setups in the test set (Fig. 6). The slope was found to be
statistically significant with a p-value < 0.01. The most significant features were
vertical movement and long-term planning in the source domain, with respec-
tive coefficients of 0.73 and 0.89. The ability to use the game features to predict
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Fig. 6. Feature-based linear prediction versus actual MFTE (max fitness transfer effec-
tiveness) on out-of-sample setups.

MFTE can be used to inform source selection. It is also encouraging that the
effectiveness of transfer with GRUSM-ESP correlates with a high-level intuition
of inter-game dynamics.

5 Discussion

Our results show that GRUSM-ESP, an evolutionary algorithm for general trans-
fer of neural network structure, can improve learning in both boolean logic and
Atari game playing by reusing previously developed knowledge. However, we find
that the improvement in learning performance in the target domain depends
heavily on the source network. Some source-target pairs do not consistently out-
perform training from scratch, indicating negative transfer from that source.
This highlights the importance of source selection in transfer learning.

Specifically with the Atari game playing domain, we observe an issue of
source knowledge quality. Some of the source networks that were trained from
scratch do relatively well on games whereas others do not. One problem is that
the measure of knowledge in source networks is ill-defined. As alluded to in
[25], there could be an optimal point in a source’s training at which to transfer
knowledge to a target, after which the source network has encoded knowledge
too specific to its own task, which does not generalize as well to other tasks,
and makes useful knowledge difficult to extract. Future analysis will investigate
topological regularities of source networks and transfer connections, to further
address what and how knowledge is successfully reused.

Another future area of work will involve increasing the flexibility in the com-
bined architecture by (1) relaxing the requirement for all transfer connections to
be input-to-hidden and output-to-output, and (2) allowing deeper architectures
for the source and target networks. This will promote reuse of subnetworks of
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varying depth and flexible positioning of modules. However, as networks become
large and plentiful, maintaining full connectivity between layers will become
intractable, and enforcing sparsity will be necessary.

Having shown that our algorithm works with certain target-source pairs, a
next step will involve pooling multiple candidate sources and testing GRUSM-
ESP’s ability to exploit the most useful ones. GRUSM-ESP extends naturally
to learning transfer connections for multiple sources simultaneously. By starting
with limited connectivity and adding connections to sources that show promise
(while removing connections from ones that are not helping), adaptive multi-
source selection may be integrated into the evolutionary process. Methods for
adapting this connectivity online have yet to be developed.

Although our initial experiments only scratched the surface, they are encour-
aging in that they show general transfer of neural structure is possible and useful.
They have also helped us characterize the conditions under which transfer may
be useful. It will be interesting to investigate whether the same principles extend
to other general video game playing domains, such as [17,18]. This should help
us better understand how subsymbolic knowledge can be recycled indefinitely
across diverse domains.

6 Conclusion

We consider a framework for general transfer learning using neural networks.
This approach minimizes a priori assumptions of task relatedness and enables
a flexible approach to adaptive learning across many domains. In both the
Atari 2600 and N-bit parity domains, we show that a specific implementation,
GRUSM-ESP is able to successfully boost learning by reusing neural structure
across disparate tasks. The success of transfer is shown to correlate with intu-
itive notions of task dynamics and complexity. Our results indicate that general
neural reuse – a staple of biological systems – can effectively assist agents in
increasingly complex environments.
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Abstract. Many real-world systems can be represented as formal state
transition systems. The modeling process, in other words the process of
constructing these systems, is a time-consuming and error-prone activity.
In order to counter these difficulties, efforts have been made in various
communities to learn the models from input data. One learning app-
roach is to learn models from example transition sequences. Learning
state transition systems from example transition sequences is helpful in
many situations. For example, where no formal description of a transi-
tion system already exists, or when wishing to translate between different
formalisms.

In this work, we study the problem of learning formal models of the
rules of board games, using as input only example sequences of the moves
made in playing those games. Our work is distinguished from previous
work in this area in that we learn the interactions between the pieces in
the games. We supplement a previous game rule acquisition system by
allowing pieces to be added and removed from the board during play,
and using a planning domain model acquisition system to encode the
relationships between the pieces that interact during a move.

1 Introduction

Over the last decade, or ever since the advent of the General Game-Playing
(GGP) competition [7], research interest in general approaches to intelligent
game playing has become increasingly mainstay. GGP systems autonomously
learn how to skilfully play a wide variety of (simultaneous or alternating) turn-
based games, given only a description of the game rules. Similarly, General Video-
Game (GVG) systems learn strategies for playing various video games in real-
time and non-turn-based settings.

In the above mentioned systems the domain model (i.e., rules) for the game
at hand is sent to the game-playing agent at the beginning of each match, allow-
ing legitimate play off the bat. For example, games in GGP are described in a
language named Game Description Language (GDL) [12], which has axioms for
describing the initial game state, the generation of legal moves and how they alter
c© Springer International Publishing Switzerland 2016
T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 130–148, 2016.
DOI: 10.1007/978-3-319-39402-2 10
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the game state, and how to detect and score terminal positions. Respectively,
video games are described in the Video Game Description Language (VGDL)
[18]. The agent then gradually learns improved strategies for playing the game at
a competitive level, typically by playing against itself or other agents. However,
ideally one would like to build fully autonomous game-playing systems, that is,
systems capable of learning not only the necessary game-playing strategies but
also the underlying domain model. Such systems would learn skilful play simply
by observing others play.

Automated model acquisition is an active research area spanning many
domains, including constraint programming and computer security (e.g. [1,2,
16]). There has been some recent work in GGP in that direction using a sim-
plified subset of board games, henceforth referred to as Simplified Game Rule
Learner (SGRL) [3]. In the related field of autonomous planning, the LOCM
family of domain model acquisition systems [4–6] learn planning domain mod-
els from collections of plans. In comparison to other systems of the same type,
these systems require only a minimal amount of information in order to form
hypotheses: they only require plan traces, where other systems require state
information.

In this work we extend current work on learning formal models of the rules
of (simplified) board games, using as input only example sequences of the moves
made in playing those games. More specifically, we extend the previous SGRL
game rule acquisition system by allowing pieces to be added and removed from
the board during play, and by using the LOCM planning domain model acquisi-
tion system for encoding and learning the relationships between the pieces that
interact during a move, allowing modeling of moves that have side effects (such
as castling in chess). Our work is thus distinguished from previous work in this
area in that we learn the interactions between the pieces in the games.

The paper is structured as follows: the next section provides necessary back-
ground material on LOCM and SGRL, followed by a description of the combined
approach. After this, a system for capturing game is described. This is followed
by empirical evaluation and overview of related work, before concluding and
discussing future work.

2 Background

In this section we provide background information about the LOCM and SGRL
model acquisition systems that we base the present work on.

2.1 LOCM

The LOCM family of domain model acquisition systems [5,6] are inductive rea-
soning systems that learn planning domain models from only action traces. This
is large restriction, as other similar systems require extra information (such as
predicate definitions, initial and goal states, etc.). LOCM is able to recover
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domain information from such a limited amount of input due to assumptions
about the structure of the output domain.

A full discussion of the LOCM algorithm is omitted and the interested reader
is referred to the background literature [5,6,8] for more information. However,
we discuss those aspects of the system as relevant to this work. We use the well-
known Blocksworld domain as an example to demonstrate the form of input
to, and output gained from, LOCM. Although a simple domain, it is useful as it
demonstrates a range of features from both LOCM and LOCM2 that are relevant
to this work.

The input to the LOCM system is a collection of plan traces. Suppose, in the
Blocks-world domain, we had the problem of reversing a two block tower, where
block A is initially placed on block B. The following plan trace is a valid plan
for this problem in the Blocksworld domain:

(unstack A B)
(put-down A)
(pick-up B)
(stack B A)

Each action comprises a set of indexed object transitions. For example, the
unstack action comprises a transition for block A (which we denote as unstack.1 )
and another for block B (which we denote as unstack.2 ). A key assumption in the
LOCM algorithm is that the behavior of each type of object can be encoded in
one or more DFAs, where each transition appears at most once. This assumption
means that for two object plan traces with the same prefix, the next transition
for that object must exit from the same state. Consider plan trace 1 and 2 below:

1: (unstack A B)
1: (put-down A)

2: (unstack X Y)
2: (stack X Z)

In the first plan trace, block A is unstacked, before being put down on to
the table. In the second plan trace, X is unstacked from block Y before being
stacked on to another block, Z. The assumption that each transition only exists
once within the DFA description of an object type means that the state that is
achieved following an unstack.1 transition is the same state that precedes both
a put-down.1 and a stack.1 transition.

The output formalism of LOCM represents each object type as one or
more parametrized DFAs. Figure 1 shows the output DFAs of LOCM for the
Blocksworld domain. In this figure, we have manually annotated the state names
in order to highlight the meanings of each state. The edges in the LOCM state
machines represent object transitions, where each transition is labeled with an
action name and a parameter position.

LOCM works in two stages: firstly to encode the structure of the DFAs,
secondly to detect the state parameters.
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Fig. 1. State machines learned by LOCM in the Blocksworld planning domain. State
labels are manually annotated to aid comprehension.

Blocks are the only type of object in Blocksworld, and are represented by
the two state machines at the bottom of Fig. 1. Informally, these machines can
be seen to represent what is happening above and below the block, respectively.
In each planning state, a block is represented by two DFA states (for exam-
ple, a block placed on the table with nothing above it would be represented
by the ‘clear’ and ‘on table’ DFA states). Each of the block DFAs transition
simultaneously when an action is performed, so when the previously discussed
block is picked up from the table (transition pick up.1) both the top and bottom
machines move to the ‘held’ state.

The machine at the top of Fig. 1 is a special machine known as the zero
machine (this refers to an imaginary zeroth parameter in every action) and this
machine can be seen as encoding the structural regularities of the input action
sequences. In the case of Blocksworld, the zero machine encodes the behavior
of the gripper that picks up and puts down each block. Relationships between
objects are represented by state parameters. As an example, in the ‘Bottom of
Block’ machine, the state labelled ‘on top of’ has a block state parameter which
represents the block directly underneath the current block.



134 P. Gregory et al.

Fig. 2. A DFA, Drook, describing the movements of a rook in chess

2.2 The SGRL System

The SGRL approach [3] models the movements of each piece type in the game
individually using a deterministic finite automata (DFA). One can think of the
DFA representing a language where each word describes a completed move (or
piece movement pattern) on the board and where each letter in the word —
represented by a triplet (Δx,Δy, on)— describes an atomic movement. The
triplet is read in the context of a game board position and a current square,
with the first two coordinates telling relative board displacement from the cur-
rent square (file and rank, respectively) and the third coordinate telling the
content of the resulting relative square (the letter e indicates an empty square,
w an own piece, and p an opponent’s piece). For example, (0 1 e) indicates
a piece moving one square up the board to an empty square, and the word
(0 1 e) (0 1 e) (0 1 p) a movement where a piece steps three squares up (over two
empty squares) and captures an opponent’s piece. Figure 2 shows an example
DFA describing the movements of a rook, and Fig. 3 shows an example of how
moves on a chess and chess variant relate to micro-moves.

There are pros and cons with using the DFA formalism for representing
legitimate piece movements. One nice aspect of the approach is that well-known
methods can be used for the domain acquisition task, which is to infer from
observed piece movement patterns a consistent DFA for each piece type (we
are only concerned with piece movements here; for details about how terminal
conditions and other model aspects are acquired we refer to the original paper).
Another important aspect, especially for a game-playing program, is that state-
space manipulation is fast. For example, when generating legal moves for a piece
the DFA is traversed in a depth-first manner. On each transition the label of
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Fig. 3. A chess and a chess variant example. The left hand board shows an example
of chess where potential moves are shown for the pawn on d4, advancing to d5 or
capturing on c5. The former move yields the one-step piece-movement pattern (0, 1, e)
and the latter (−1, 1, p). The knight move b1–d2 and the bishop move c1–g5 yield the
piece-movement patterns (2, 1, e) and (1, 1, e)(1, 1, e)(1, 1, e)(1, 1, e), respectively. The
cannon in Chinese chess slides orthogonally, but to capture it must leap over exactly
one piece (either own or opponent’s) before landing on the opponent’s piece being
captured. This is shown in the right hand board. Assuming the piece on d3 moves like
a cannon, the move d3–b3 yields the piece-movement pattern (−1, 0, e)(−1, 0, e), the
move d3–h3 the pattern (+1, 0, e)(+1, 0, e)(+1, 0, w)(+1, 0, p), and the move d3–d7 the
pattern (0,+1, e)(0,+1, p)(0,+1, e)(0,+1, p)

an edge is used to find which square to reference and its expected content. If
there are no matching edges the search backtracks. A transition into a final DFA
state s generates a move in the form of a piece movement pattern consisting of
the edge labels that were traversed from the start state to reach s. A special
provision is taken to detect and avoid cyclic square reference in piece-movement
patterns.

Unfortunately, simplifying compromises were necessary in SGRL to allow
the convenient domain-learning mechanism and fast state-space manipulation.
One such is that moves are not allowed to have side effects, that is, a piece
movement is not allowed to affect other piece locations or types (with the only
exception that a moving piece captures the piece it lands on). These restrictions
for example disallow castling, en-passant, and promotion moves in chess. We
now look at how these restrictions can be relaxed.

3 The GRL System

In this section, we introduce a board-game rule learning system that combines
the strengths of both the SGRL and LOCM systems. One strength of the SGRL
rule learning system is that it uses a relative coordinate system in order to gen-
eralize the input gameplay traces into concise DFAs. A strength of the LOCM
system is that it can generalize relationships between objects that undergo simul-
taneous transitions.
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One feature of the SGRL input language is that it represents the distinction
between pieces belonging to the player and the opponent, but not the piece
identities. This provides a trade-off between what it is possible to model in the
DFAs and the efficiency of learning (far more games would have to be observed
to learn if the same rules had to be learned for every piece that can be moved
over or taken, and the size of the automata learned would be massive). In some
cases, however, the identities of the interacting pieces are significant in the game.

We present the GRL system that enhances the SGRL system in such a way as
to allow it to discover a restricted form of side-effects of actions. These side-effects
are the rules that govern piece-taking, piece-production and composite moves.
SGRL allows for limited piece-taking, but not the types such as in checkers
where the piece taken is not on the destination square of the piece moving.
Piece-production (for example, promotion in chess or adding men at the start
of Nine Men’s Morris) is not at all possible in SGRL. Composite moves, such as
castling in chess or arrow firing in Amazons also cannot be represented in the
SGRL DFA formalism.

3.1 The GRL Algorithm

The GRL algorithm can be specified in three steps:

1. Perform an extended SGRL analysis on the game traces (we call this extended
analysis SGRL+). SGRL is extended by adding additional vocabulary to the
input language that encodes the addition and removal of pieces from the
board. Minor modifications have to be made to the consistency checks of
SGRL in order to allow this additional vocabulary.

2. Transform the game traces and the SGRL+ output into LOCM input plan
traces, one for each game piece. Within this step, a single piece move includes
everything that happens from the time a player picks up a piece until it is the
next player’s turn. For example, a compound move will have all of its steps
represented in the plan trace.

3. Use the LOCM system to generate a planning domain model for each piece
type. These domain models encode how a player’s move can progress for each
piece type. Crucially, unlike the SGRL automata, the learn domains refer
to multiple piece types, and the relationships between objects through the
transitions.

The output of this procedure will be a set of planning domains (one for each
piece) which can generate the legal moves of a board game. By specifying a
planning problem with the current board as the initial state, then enumerating
the state space of the problem provides all possible moves for that piece. We
now describe these three stages in more detail.

3.2 Extending SGRL Analysis for Piece Addition and Deletion

The first stage of GRL is to perform an extended version of the SGRL analysis.
The input alphabet has been extended in order to include vocabulary to encode
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Fig. 4. The Game of Amazons is a two-player game typically played on a 10×10 board,
shown here on an 8 × 8 board, in which each player has four pieces. The board on the
left shows the initial setup of the game. On each turn, a player moves a piece as the
queen moves in chess, before firing an arrow from the destination square, again in the
move pattern of the queen in chess. The final square of the arrow is then removed from
the game, thus after each move, one square is removed from the game. This can be
seen on the right hand board: the queen moves from C8 to C2, before firing an arrow
from C2 to A4 (A4 now cannot be transited). The loser is the first player unable to
make a move.

piece addition and removal. To this end, we add the following two letters as
possible commands to the DFA alphabet:

1. The letter ‘a’ which means that the piece has just been added at the specified
cell (the relative coordinates of this move will always be (0, 0)). The piece
that is picked up now becomes the piece that is ‘controlled’ by the subsequent
micro-moves.

2. The letter ‘d’ which means that the square has a piece underneath it which
is removed from the game. This is to model taking pieces in games like peg
solitaire or checkers.

The order in which these new words in the vocabulary are used is significant.
An ‘a’ implies that the piece underneath the new piece remains in place after
the move, unless it is on the final move of the sequence of micro-moves (this is
consistent with the more limited piece-taking in SGRL, where pieces are taken
only at the end of a move, if the controlled piece is another piece’s square). For
example, the following sequences both describe white pawn promotion in chess:

(0 1 e) (0 0 a) (0 0 d)
(0 1 e) (0 0 a)

Adding this additional vocabulary complicates the SGRL analysis in two
ways: firstly in the definition of the game state, and secondly in the consistency
checking of candidate DFAs. There is no issue when dealing with the removal of
pieces and state definitions. There is, however, a small issue when dealing with
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piece addition. A move specified in SGRL input language is in the following
form:

(12 (0 1 e) (0 0 a) (0 1 e))

This move specifies that the piece on square 12 moves vertically up a square,
then a new piece appears (and becomes the controlled piece), which subsequently
moves another square upwards. The issue is that for each distinct move, in SGRL,
the controlled piece is defined by the square specified at the start of the move (in
this case square 12). If a piece appears during a move, then SGRL+ needs to have
some way of knowing which piece has appeared, in order to add this sequence to
the prefix tree of the piece type. To mitigate this problem, we require all added
pieces to be placed in the state before they are added, and as such they can now
be readily identified. This approach allows us to learn the DFAs for all piece
types, including piece addition.

The consistency algorithm of SGRL verifies whether a hypothesized DFA is
consistent with the input data. One part of this algorithm that is not discussed in
prior work is the generateMoves function, that generates the valid sentences (and
hence the valid piece moves) of the state machine. There are two termination
criteria for this function: firstly the dimensions of the board (a piece cannot
move outside of the confines of the board), secondly on revisiting squares (this
is important in case cycles are generated in the hypothesis generation phase).
This second case is relaxed in GRL slightly since squares may be visited more
than once due to pieces appearing and/or disappearing. However, we still wish to
prevent looping behavior, and so instead of terminating when the same square
is visited, we terminate when the same square is visited in the same state in
the DFA.

With these two changes to SGRL analysis we have provided a means to
representing pieces that appear and that remove other pieces from the board.
However, the state machines do not tell us how the individual piece movement,
additions and removals combine to create a complete move in the game. For
this task, we employ use of the LOCM system, in order to learn the piece-move
interactions.

3.3 Converting to LOCM Input

We use the LOCM system to discover relationships between the pieces and the
squares, and to do this we need to convert the micro-moves generated by the
SGRL+ DFAs to sequences of actions. To convert these, we introduce the fol-
lowing action templates (where X is the name of one of the pieces):

appearX ( square )
removeX ( square )
moveX ( squareFrom, squareTo )
moveOverX ( squareFrom, squareVia, squareTo )
moveAndRemoveX ( squareFrom, squareTo )
moveAndRemoveX ( squareFrom, squareVia, squareTo )
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Fig. 5. The LOCM State Machines learned for the Queen piece in Amazons. The zero
machine at the top of the figure shows the higher-level structure of the Queen’s move.
The Queen moves for a certain number of moves, then an arrow appears, and the arrow
moves for a certain number of moves.

These action templates mirror the input language of the extended SGRL+
system detailed above. Each plan that is provided as input to LOCM is a
sequence of micro-moves that define an entire player’s turn. When LOCM learns
a model for each piece type, the interactions between the pieces and the squares
they visit are encoded in the resultant domain model.

The input actions, therefore, encode the entire (possibly compound and with
piece-taking side-effects) move. As an example from the Amazons (see Fig. 4)
game, the following plan trace may be generated from the example micro-move
sequence, meaning a queen is moved from A1 to B1, and then an arrow appears,
and is fired to square C1:

Micro-move Sequence:
(0 (1 0 e) (0 0 a) (1 0 e))

Equivalent Plan Trace:
moveQueen ( A1, B1 )
appearArrow ( B1 )
moveArrow ( B1, C1 )

In all plan traces for the Queen piece in the Amazons game, the destination
square of the Queen will always be the square in which the Arrow appears, and
from which the Arrow piece begins its movement. Once the LOCM analysis is
complete, this relationship is detected, and the induced planning domain will
only allow arrows to be fired from the square that the queen moves to.

Figure 5 shows the actual LOCM state machines learned for the Queen piece
from a collection of game traces. The top state machine represents the zero
machine, which describes the general plan structure. The machine underneath
represents one of the squares on the board. The parameters of the zero machine
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Fig. 6. The PDDL Action for appear a, representing the arrow appearing in the Ama-
zons game.

represent the current square underneath the controlled piece. As can be seen
from the generated PDDL action for appear a (shown in Fig. 6), this parameter
ensures that the arrow appears at the same location that the queen ended its
move on. It also ensures that the moves are sequenced in the correct way: the
Queen piece moves, the Arrow piece appears and finally the Arrow piece moves
to its destination. The machine at the bottom of Fig. 5 encodes the transitions
that a square on the board goes through during a Queen move. Each square
undergoes a similar transition path, with two slightly different variants, and
to understand these transitions it is important to see the two options of what
happens on a square once a queen arrives there. The first option is that the
Queen transits the square, moving on to the next square. The second option
is that the Queen ends its movement; in this case, the Arrow appears, before
transiting the square. These two cases are taken into account in the two different
paths through the state machine.

As another example, consider the game of Checkers. The state machines
generated by LOCM for the Pawn piece type are shown in Fig. 7. There are two
zero machines in this example, which in this case means that LOCM2 analysis
was required to model the transition sequence, and there are separable behaviors
in the move structure. These separable behaviors are the movement of the Pawn
itself and of the King, if and when the Pawn is promoted. The top machine
models the alternation between taking a piece and moving on to the next square
for both Pawns and Kings, the bottom machine ensures that firstly a King cannot
move until it has appeared, and secondly that a Pawn cannot continue to move
once it has been promoted.

3.4 Move Generation

We now have enough information to generate possible moves based on a current
state. The GRL automata can be used in order to generate moves, restricted by
the LOCM state machines, where the LOCM machines define the order in which
the pieces can move within a single turn.

The algorithm for generating moves is presented here as Algorithm1. The
algorithm takes as input an SGRL+ state, a LOCM state and a square on the
board. A depth-first search is then performed over the search space, in order to
generate all valid traces. A state in this context is a triple of a board square,
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an SGRL+ piece state and a LOCM state. Lines 2 to 3 define the termination
criteria (a state has already been visited), lines 4 to 5 define when a valid move
has been defined (when each of the SGRL+ and LOCM DFAs are in a terminal
state), and lines 6 to 7 define the recursion (in these lines, we refer to a state as
being consistent. Consistency in this sense means that the state is generated by
a valid synchronous transition in both the SGRL+ and LOCM DFAs.

This completes the definition of the GRL system: an extended SGRL learns
DFAs for each piece type, the LOCM system learns how these piece types com-
bine to create entire moves, and then the move generation algorithm produces
the valid moves in any given state. Next, we provide an evaluation of GRL, and
detail the cost of each element of the system.

4 Game Trace Generation

One important aspect of learning game rules from traces is where our observa-
tions come from. The main results presented in this work are based on example
traces generated from simulations of games generated from existing correct and
complete rule sets. This is important because we can reliably evaluate the cor-
rectness of the learned rules if we have the true rules to test against. This is the
main purpose of this work: to demonstrate the effectiveness of GRL in learning
game rules, wherever the example traces come from.

However, to use the GRL system in the real world, we need to produce game
traces from observations of real games. In this section we describe a visual tool
for generating game traces. This tool allows the generic setup of a board game,
and then allows the user to play out games in order to build a collection of game
traces. The creation of a set of rules follows the following pattern:

1. Setting the game up. This consists of providing a name for the game,
and specifying the number of piece types that are involved in the game per
player and the dimensions of the board. For example, checkers is played on an
8× 8 board, with two piece types (pawns and queens). Following this stage, a
graphical view of the board is generated with a collection of piece prototypes
to interact with for the next stage.

2. Constructing the initial state of the game. This stage requires the
user to define the initial configuration of pieces graphically, by dragging the

Algorithm 1. Function to generate legal moves for a player from a combination
of SGRL+ and LOCM DFAs.
1: function GenerateMoves(sq,SL,SP)
2: if Visited 〈sq, SL, SP〉 then
3: return
4: if terminal(SL) and terminal(SP) then
5: add the current micro-move path to moves.
6: for all consistent next states 〈sq′, S′

L, S
′
P 〉 do

7: GenerateMoves(sq′, S′
L,S′

P)
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Fig. 7. The LOCM State Machines learned for the Pawn piece in the game of Checkers.
The state machine incorporates the possibility of the Pawn being promoted into a King,
and then subsequently can take other pieces.

piece prototypes to the square(s) that they start from. This completes the
configuration of the board: the next stage is actually playing the game.

3. Playing the initial game (Fig. 8). The first game is played as a two player
game, with the user playing both white and black moves. Within each turn,
the player can move as many pieces as he or she chooses, add pieces to the
board, and remove pieces from the board. These movements are interpreted as
micro-moves, and after the user signals that the move has ended, these micro-
moves become the representation for that ‘turn’ in the game. The exact way
in which these micro-moves are calculated is explained below. After the user
signals that the game is over, and which player (if any) has won the game, the
GRL algorithm is used to learn an initial approximation of the game rules.
This initial model learning seeds the next stage:

4. Model refinement training. Once an approximation on a set of rules exists,
the user takes turns to play games for white and black pieces. The computer
will make random moves for the opposing color during play. At the end of each
game, all previous game traces are combined with the current game trace to
learn a refined set of rules using the GRL system. After each game, the moves
that the user has made can expand upon those in the current model. In the
next game, the roles are reversed, with the computer controlling the opposite
color than previously. Thus, with each game, the user both refines the moves
for one of the colors and also observes informally whether or not the model
appears to capture the true rules of the game. This stage is repeated until
the user feels that the rules learned appear sufficiently close to the true game
rules.
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Fig. 8. Visual Game Trace Generator. This figure shows the gameplay screen for the
game of checkers. White pieces are those with white borders, the piece type is denoted
by the color in the center of the piece. Play proceeds by dragging the pieces, and the
end of each turn and game is signaled by the options on the right hand side of the
frame. (Color figure online)

4.1 Computing Micro-Move Representations

During each turn that a user makes, he or she may move pieces on the board, add
pieces to the board and remove pieces from the board. These moves are broken
down into micro-moves, in order to provide input to the GRL algorithm. All of
these operations are performed using a mouse-driven point and click interface.
Game pieces can be dragged using the mouse into their new positions. These new
positions may not be adjacent to the square that the piece was lifted from, and
so the question of how we formulate the micro-moves is important. One option
would be to simply take the absolute move and encode this (left pane of Fig. 9).
However, this has the consequence that important constraints on moves can be
missed, as it appears that the piece can jump over whatever was in the way of
it. Another option would be to track the mouse cursor as it dragged the piece
to its destination, making each newly visited square part of the move (center
pane of Fig. 9). This idea places a high burden on the user to move the mouse
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Fig. 9. Three different ways of generating micro-moves for the same piece move from
visual mouse-dragged input. On the left, the exact move is encoded in one micro-
move (3,3,e). The center option is to track the mouse movement of the user, which
gives the messier (0,1,e),(1,1,e),(0,1,e),(0,1,e),(1,-1,e),(1,0,e). The option
on the right, which we use, is to visit all squares on the shortest path between the start
and the destination square: (1,1,e),(1,1,e),(1,1,e).

in an efficient way, in order to preserve the particular micro-move pattern. The
method that we actually employ is to find the shortest path between the source
and destination squares and encode this as the micro-move sequence (right hand
pane of Fig. 9). If there is more than one shortest path, we encode all such paths.

When a piece is taken following a piece move, it is assumed that this piece
transited the location of the taken piece. Thus we find the shortest path from
the start to the taken piece’s location and then on to the destination. When
a piece is added to the board during a move, it begins a new element of a
compound move, as described in Sect. 3. Taking these three elements (moving,
adding and removing pieces) together, we have a method for computing entire
micro-move sequences that then are accumulated to construct each game trace.
We present this system in order to show how the GRL system can be used on
concrete observations of game play. In future, we also intend to learn terminal
states such that the computer attempts to beat the user, rather than simply
making random moves. This may also give an indication of when learning has
been effective enough, as a good guide to this could be when the computer player
can beat the user.

5 Empirical Evaluation

In this section, we provide an evaluation of the GRL system. In order to perform
this evaluation, we learn the rules of Amazons, Peg Solitaire and Checkers. We
also provide evaluation for the three games Breakthrough, Breakthrough Check-
ers, and Breakthrough Chess as used in the SGRL evaluation [3] in order to
demonstrate that performance is not adversely affected due to the changes in
GRL, in the alphabet and consistency algorithm. We report on the time taken
in the extended SGRL+ phase, and the LOCM phase, to show the balance of
time taken in each phase. We generate two forms of game traces for each game:
one has a single move per turn (for these we generate 1000 game traces) and the
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Table 1. Learning time in seconds to learn models for each of the pieces in the problem
set with all moves known. (Using all moves only affects the time for the SGRL+
element, as LOCM does not accept input when all moves are known).

Game Piece Element Player1 Player2

Amazons Queen SGRL+ 8.1 35.2

LOCM 20.9 30.0

Arrow SGRL+ 9.3 10.8

LOCM – –

Checkers Pawn SGRL+ <0.01 <0.01

LOCM 260.4 275.3

King SGRL+ <0.01 <0.01

LOCM 52.9 47.0

Peg Solitaire Peg SGRL+ <0.01 –

LOCM 8.8 –

BT Pawn SGRL+ <0.01 <0.01

CheckerBT Checker SGRL+ 0.16 0.17

ChessBT Pawn SGRL+ <0.01 <0.01

King SGRL+ <0.01 <0.01

Knight SGRL+ <0.01 <0.01

Bishop SGRL+ 3.3 3.4

Rook SGRL+ 3.9 3.8

Queen SGRL+ 12.3 12.5

other enumerates all possible moves (for these we generate 50 game traces). This
method of evaluation is consistent with that chosen in the prior evaluation of
GRL. All experiments are run on Mac OSX 10.10, running on an Intel i7 4650U
CPU, with 8GB system RAM.

Table 1 shows the results of GRL on our benchmark problems. We show the
time taken for each element of GRL to learn its model. We report both the
time taken to learn the model for the first and second players (reported under
‘Player1’ and ‘Player2’). In the case of Peg Solitaire, there is only one player,
which explains the missing data. The missing data in the LOCM element for
Amazons A piece is because an arrow piece in Amazons never starts a move
itself and hence has no plan trace data. We first observe that the Breakthrough,
Breakthrough Checkers and Breakthrough Chess results are not significantly
different to the results for SGRL. Therefore the modifications made to the SGRL
algorithm are not adversely affecting performance. We do not report LOCM
time here, since these games do not require the LOCM analysis, as SGRL+ is
sufficient to represent them. It is notable that the time taken to learn the LOCM
models is significantly larger than the time to learn the SGRL+ individual piece
models. The main cause of this difference is that the input plan traces are for
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Table 2. Learning time in seconds to learn models for each of the pieces in the problem
set with only a single move known per state. Results marked with a (*) returned an
incorrect DFA.

Game Piece Element Player1 Player2

Amazons Queen SGRL+ 51.2* 54.9

LOCM 20.9 30.0

Arrow SGRL+ 86.2* 34.6*

LOCM – –

Checkers Pawn SGRL+ <0.01 <0.01

LOCM 260.4 275.3

King SGRL+ <0.01 <0.01

LOCM 52.9 47.0

Peg Solitaire Peg SGRL+ <0.01 <0.01

LOCM 8.8 –

BT Pawn SGRL+ <0.01 <0.01

CheckerBT Checker SGRL+ 1.2* 3.1*

ChessBT Pawn SGRL+ <0.01 <0.01

King SGRL+ <0.01 <0.01

Knight SGRL+ <0.01 <0.01

Bishop SGRL+ 43.2 41.0

Rook SGRL+ 52.4 50.0

Queen SGRL+ 145.3 140.4

every turn of the game, rather than the entire game trace. Because of this,
LOCM has 25,000 input traces for the Queen piece in Amazons and 11,000 for
the Pawn piece in Checkers, for example. The time required to parse and analyze
this number of plans is necessarily time consuming.

Table 2 shows the results of learning when only a single move per turn is
known. Learning times are increased, as it takes longer to find consistent DFAs
in the SGRL+ phase. Note that on several occasions, SGRL+ returns incorrect
solutions. In these cases, there is simply insufficient input data. GRL is still
effective in the majority of cases, however, and does not degrade the performance
of SGRL on the previous game data.

6 Related Work

Within the planning literature there are several domain model acquisition
systems, each with varying levels of detail in their input observations. The
Opmaker2 system [13,17] learns models in the target language of OCL [14] and
requires a partial domain model, along with example plans as input. The ARMS
system [19], can learn STRIPS domain models with partial or no observation
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of intermediate states in the plans, but does at least require predicates to be
declared. The LAMP system [20] can target PDDL representations with quan-
tifiers and logical implications.

As for domain model acquisition in board games, an ILP approach exists
for inducing chess variant rules from a set of positive and negative examples
using background knowledge and theory revision [15]. Furthermore, [10] presents
a system that learns games such as Connect4 and Breakthrough from video
demonstrations using minimal background knowledge. Rosie [11] is an agent
implemented in Soar that learns game rules (and other concepts) for simple
board games via restricted interactions with a human. As for general video-
game playing, a neuro-evolution algorithm showed good promise playing a large
set of Atari 2600 games using little background knowledge [9].

7 Conclusions and Future Work

In this work, we presented a system capable of inducing the rules of more complex
games than the current state-of-the-art system. This can help in both construct-
ing the rules of games, or replacing the current move generation routine of an
existing general game playing system (for fitting games). GRL improves SGRL
by allowing piece addition, removal and structured compound moves. This was
achieved by combining two techniques for domain-model acquisition, one rooted
in game playing and the other in autonomous planning.

However, there remain interesting classes of board game rules that cannot be
learned by GRL. One interesting rule class is that of a state-bound movement
restriction. Games that exhibit this behavior allow only a subset of moves to
occur in certain contexts: examples of this are check in chess (where only the
subset of moves that exit check are allowed) and the compulsion to take pieces
in certain varieties of checkers (thus restricting the possible moves to the subset
that take pieces when forced). An approach to learning these restrictions could
be developed given knowledge of all possible moves at each game state in the
game.

Learning the termination criteria of a game is also an important step, if the
complete set of rules of a board game is to be learned. This requires learning
properties of individual states, rather than state transition systems. However,
many games have termination criteria of the type that only one player (or no
players) can make a move. For this class of game, and others based on which
moves are possible, it should be possible to extend the GRL system to learn how
to detect terminal states.
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Abstract. Monte-Carlo Tree Search (MCTS) is the most popular search
algorithm used in General Game Playing (GGP) nowadays mainly
because of its ability to perform well in the absence of domain knowl-
edge. Several approaches have been proposed to add heuristics to MCTS
in order to guide the simulations. In GGP those approaches typically
learn heuristics at runtime from the results of the simulations. Because
of peculiarities of GGP, it is preferable that these heuristics evaluate
actions rather than game positions. We propose an approach that gen-
erates heuristics that estimate the usefulness of actions by analyzing the
game rules as opposed to the simulation results. We present results of
experiments that show the potential of our approach.

Monte-Carlo Tree Search (MCTS) with UCT (Upper Confidence bounds applied
to Trees) [11] has seen wide-spread success in recent years and is the state-of-
the-art in General Game Playing (GGP) [9] today. One reason for the success of
MCTS in GGP is that MCTS can find good moves even in the absence of domain
knowledge in the form of evaluation functions or heuristics. However, that does
not mean that MCTS cannot benefit from heuristics, if they are available. In
fact, there are several examples, such as [5] or [21] in GGP and [13] in game
specific settings that show how heuristics can be used in MCTS to improve the
performance of a game player. In General Game Playing, a program is presented
with the rules of a previously unknown game and needs to play this game well
without human intervention. Thus, the main problem of using domain knowledge
in the form of heuristics in a General Game Playing program is, that the program
must generate or learn the heuristics automatically for the game at hand.

Heuristics used in search come traditionally in the form of a state evaluation
function, that is, an evaluation of non-terminal states in a game. Especially in
GGP, it seems advantageous to evaluate actions instead of states. In perfect-
information turn-taking games, there is no difference between the value of an
action in a given state and the value of the state that is reached by executing
that action. However, games in GGP can have simultaneous moves in which
case the successor state depends on the actions of all players. Even in the case
of turn-taking games, evaluating an action directly instead of the successor state
c© Springer International Publishing Switzerland 2016
T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 149–164, 2016.
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reached by that action saves the time needed to compute one state update.
In GGP, this time is often significant [18], unless dominated by the time for
computing the heuristics. Both reasons make it beneficial to evaluate actions
instead of states, especially in the context of MCTS. Previous approaches to
generate action heuristics in GGP are very limited in the sense that the learned
heuristics are very simple and often ignore the context (state) in which an action
is executed.

In the current work, we are exploring whether more accurate action heuristics
can be generated by analyzing the rules of a game instead of learning them from
simulation results. The paper is organized as follows: In the next section we
give a brief background of the game description language and MCTS. Then we
introduce our approach to generate action heuristics and, finally, we evaluate the
approach and discuss the results.

1 Preliminaries

1.1 Game Description Language

Games in GGP are described in the so-called Game Description Language (GDL)
[14]. A game description in GDL is a logic program with a number of predefined
predicates and restrictions to ensure finiteness of derivations. The rules in the
program can be used to compute an initial state, legal moves, successor states,
terminality of states and goal values of the players. Thus, they are sufficient
to simulate the game. GDL permits to describe a large range of determinis-
tic perfect-information simultaneous-move games with an arbitrary number of
adversaries. Turn-based games can be modeled by only allowing a move with
no effect for players that do not have a turn (a noop move). Predefined pred-
icates have a game-specific semantic, such as for describing the initial game
state (init), detecting (terminal) and scoring (goal) terminal states, and for
generating (legal) moves and successor states (next). Each game state can be
represented by the set of facts that hold in the state (e.g., cell(1, 1, b)).

The following figure shows a partial GDL description for a variant of the
game Tic Tac Toe, where the goal was reduced to build any of the two diagonal
lines on the board.

1 role(xplayer ). role(oplayer ).

2 init(cell(1, 1, b)) ... init(cell(3, 3, b)).

3 init(control(xplayer )).

4 legal(W, mark(X, Y)) :-

5 true(cell(X, Y, b)), true(control(W)).

6 legal(oplayer , noop) :- true(control(xplayer )).

7 ...

8 next(cell(M, N, x)) :-

9 does(xplayer , mark(M, N)), true(cell(M, N, b)).

10 next(control(oplayer )) :- true(control(xplayer )).

11 ...

12 diagonal(X) :- true(cell(1, 1, X)),
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13 true(cell(2, 2, X)), true(cell(3, 3, X)).

14 goal(xplayer , 100) :- diagonal(x).

15 goal(xplayer , 0) :- diagonal(o).

16 terminal :- diagonal(x).

17 ...

1.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search works by running complete simulations of a game, that
is, repeatedly playing a simulation of a game starting at the current state and
stopping when a terminal state is reached. The simulations are used to gradually
build a game tree in memory. The nodes in this tree store the average reward
(goal value) achieved by executing a certain action in a certain state. When the
deliberation time is up, the player plays the best move in the root node of the
tree. Each simulation consists of four steps:

1. Selection: selecting the actions in the tree based on their average reward until
a leaf node of the tree is reached,

2. Expansion: adding one or several nodes to the tree,
3. Playout: playing randomly from the leaf node of the tree until a terminal

state is reached,
4. Back-Propagation: updating the values of the nodes in the tree with the

reward achieved in the playout.

2 Related Work

The most common modification of MCTS algorithm is MCTS with UCT [11]
allowing to set a trade-off between exploration and exploitation. One of the first
attempts to enrich MCTS/UCT with a heuristic was a progressive bias added
to the UCT formula to direct search according to possibly expensive heuristic
knowledge in Go [1].

There are two ways to create heuristics. First, offline heuristics rely on game
analysis and feature detection before the game starts. Once the heuristic is gen-
erated, it is used throughout the game. On the other hand, online heuristics are
learned and improved during game play.

Several ways were suggested of how to automatically generate heuristic
offline. While [12] try to build a heuristic upon detecting common game fea-
tures like a game board, game pieces or quantities; [22] look for more generic
and game independent concepts. [2] uses game properties like termination, con-
trol over the board and payoff as components in his evaluation function. In [19]
fuzzy logic is used to evaluate the goal condition in an arbitrary state and the
value is used as a measure of how close the state is to a goal state. The approach
is further improved by using feature discovery and was used in Fluxplayer,
when winning the GGP competition in 2006.
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A different approach relies on learning a heuristic online from simulations
of the game. The first notable enhancement of MCTS was Rapid Action Value
Estimation (RAVE) [8], a method to speed up the learning process of action
values inside the game tree. A similar technique to learn state and move knowl-
edge was based on which state fluents mostly occur in the winning states and
which moves lie on the winning paths [20]. The state-of-the-art has also been
greatly advanced by Move-Average Sampling Technique (MAST) [5]. MAST is
a control scheme used in the playout phase of MCTS which learns the general
value of an action independent from the context the action is used in. This and
other control schemes such as Features-to-Action Sampling Technique (FAST)
[7], early cutoffs and unexplored action urgency [4] were used by Cadiaplayer,
a successful player that won the GGP competition three times. Recently, the
MAST concept was made more accurate by using sequences of actions of given
length (N-grams) instead of just single actions [21]. It has also been shown, that
is possible to get more information from the playouts by assessing the lengths
of simulations and evaluating the quality of the terminal state reached [16].

As it was shown in [3], MCTS converges slowly to the true Minimax value
and therefore different combinations of Minimax and MCTS were suggested.
While [3] use a different operator for backing up the values through the tree
instead of just averaging them; [23] introduce MCTS Solver, an αβ-search-like
approach to prove correct values of fully expanded parts of the game tree in
Lines of Actions. Recently, [13] experiment with calculating approximate Mini-
max backups from heuristic values to further improve node selection in Kalah,
Breakthrough and Lines of Action. However, the heuristic is currently built on
game specific knowledge.

3 Generating Action Heuristic

Our idea for generation of an action heuristic is to create an action-based version
of the state evaluation function described in [19], which uses fuzzy logic to eval-
uate the degree of truth of a goal condition. Turning it into an action heuristic
is achieved by taking the goal condition, regressing it one step and filtering it
according to an action a of a player p. This yields a new condition which – when
satisfied in the current game state – allows player p to achieve the goal condition
by executing action a.

3.1 Regression

Our definition of regression is based on regression in the situation calculus as
defined in [17]. Similar to situation formulas in situation calculus, we define a
state formula in a game as any first-order formula over the predicate, function
and constant symbols of the game description with the exception of the does
predicate and any predicate depending on does.

Thus, the truth value of a state formula can be determined in any state
independently on the actions that players choose in that state. For example,
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goal(xplayer, 100) is a state formula in our Tic Tac Toe game, because goal
may not depend on does according to GDL restrictions. For the purpose of
this paper, we only consider variable-free state formulas and game descriptions.
Generalizing the proposed algorithm to non-ground game descriptions should be
straightforward.

The regression of a variable-free state formula F by one step, denoted as
R[F ], is defined recursively as follows:

– R[true(X)] = F1 ∨ F2 ∨ . . . ∨ Fn

where Fi are the bodies of all rules of the following form in the game descrip-
tion: next(X) :– Fi

– R[distinct(a1, a2)] = distinct(a1, a2)
– If F is any atom p(a1, a2, . . . , an) other than true or distinct, then

R[F ] = R[F1] ∨ R[F2] ∨ . . . R[Fn]

where Fi are the bodies of all rules with head p(a1, a2, . . . , an).
– If F is a non-atomic formula then the regression is defined as follows:

R[F1 ∨ F2] = R[F1] ∨ R[F2]
R[F1 ∧ F2] = R[F1] ∧ R[F2]

R[¬F ] = ¬R[F ]

Note, that the regression of a state formula is not a state formula in general.
On the contrary, replacing true(X) with the next(X) during the regression,
introduces dependencies on the does predicate and thus the executed moves.
These dependencies will be used in the following section to define a heuristic
function for each action.

3.2 Algorithm

Based on the previous definition, we propose the following algorithm to generate
a heuristic function for each action a of a player p. The algorithm consists of
following steps:

1. Compute R[goal(p, 100)], the regression of goal(p, 100).1 R[goal(p, 100)] rep-
resents a condition on a state and actions of players that – when fulfilled –
allow to reach a goal state for player p.

2. R[goal(p, 100)] contains conditions on actions of players. However, we want
a formula that indicates when it is a good idea for player p to execute action
a. To obtain such a formula, we restrict R[goal(p, 100)] to those parts that
are consistent with does(p, a). In practice this is achieved by replacing all
occurrences of does(r, b) for any r and b in R[goal(p, 100)] as follows:

1 In the current implementation, we take into consideration only the highest valued
goal for each player. Combining different goals could be done similar to the way
described in [19], but would make the heuristics more expensive to compute.
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(a) In case p = r and a = b, the occurrence of does(r, b) is replaced with the
boolean constant true.

(b) In case p = r, but a �= b, the occurrence of does(r, b) is replaced with the
boolean constant false.

(c) In case p �= r, the condition is on an action for another player. In that case,
the replacement depends on whether or not the game is turn-taking2. If
the game has simultaneous moves, does(r, b) is replaced with the unknown
value in three-valued logic. This represents, that we are not sure, which
action the opponent decides to play. In case of a turn-taking game, if b is
a noop action, the does(r, b) is replaced with true, otherwise with false
(because r must do a noop action if p is doing a non-noop action such as a).

3. The formula is simplified according to laws of three-valued logic. In partic-
ular, any boolean values introduced by the previous replacement step are
propagated up and the formula is partially evaluated.

3.3 Tic Tac Toe

Let us demonstrate, how the algorithm works on the simplified version of the
game Tic Tac Toe, where the goal was reduced to build only some of the two
diagonal lines. The grounded and expanded version of the goal for the player
xplayer is(

true(cell(1, 1, x)) ∧ true(cell(2, 2, x)) ∧ true(cell(3, 3, x))
) ∨

∨ (
true(cell(1, 3, x)) ∧ true(cell(2, 2, x)) ∧ true(cell(3, 1, x))

)
(1)

Assume, we are computing the heuristic function for the action mark(1, 1)
for the role xplayer. The regression of the goal above will replace all occur-
rences of true(X) with the bodies of the respective next rules. For example, for
true(cell(1, 1, x)), the grounded game description contains following next rules
with matching arguments:

next(cell(1, 1, x)) :- true(cell(1, 1, b)),

does(xplayer , mark(1, 1)).

next(cell(1, 1, x)) :- true(cell(1, 1, x)).

To regress true(cell(1, 1, x)), we replace it with the disjunction of the bodies
of the next rules:(

true(cell(1, 1, b)) ∧ does(xplayer,mark(1, 1))
) ∨ true(cell(1, 1, x)) (2)

does(xplayer,mark(1, 1)) in (2) is further replaced with boolean true,
because both role and action match the ones we are interested in right now.(

true(cell(1, 1, b)) ∧ T
) ∨ true(cell(1, 1, x)) (3)

2 We detect whether a game is turn-taking and also which action is the noop action,
using a theorem prover [10] or using random simulation in case theorem proving does
not yield an answer. The cost of this is negligible compared to, e.g., grounding the
game rules.
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The formula (3) can be simplified, which yields (4) as the final replacement
for true(cell(1, 1, x)):

true(cell(1, 1, b)) ∨ true(cell(1, 1, x)) (4)

Going back to the goal condition (1), the next part of the formula to be
regressed is true(cell(2, 2, x)). The matching next rules are:

next(cell(2, 2, x)) :- true(cell(2, 2, b)),

does(xplayer , mark(2, 2)).

next(cell(2, 2, x)) :- true(cell(2, 2, x)).

This time, the does(xplayer,mark(2, 2)) is replaced with boolean false,
because the role matches, but the action does not. This yields formula (5), which
can be simplified to (6). This equals the term we have started with, meaning
that true(cell(2, 2, x)) stays in the formula untouched.(

true(cell(2, 2, b)) ∧ F
) ∨ true(cell(2, 2, x)) (5)

true(cell(2, 2, x)) (6)

We repeat the same steps for any other true keywords in the goal (1). As
in the previous case, each term is replaced by the term itself and nothing in
the formula is changed. The final heuristic formula for xplayer taking action
mark(1, 1) is: (

true(cell(2, 2, x)) ∧ true(cell(3, 3, x)) ∧
∧ (true(cell(1, 1, b)) ∨ true(cell(1, 1, x)))

) ∨
∨ (

true(cell(3, 1, x)) ∧ true(cell(2, 2, x)) ∧ true(cell(1, 3, x))
)

(7)

As can be seen, this condition describes a situation in which xplayer taking
action mark(1, 1) would lead to a winning state. Thus, a boolean evaluation
of such conditions for all legal moves in a state is equivalent to doing 1-ply
lookahead.

3.4 Evaluation

Using the algorithm above, the heuristic formula is constructed for any role and
any potentially legal move during the start clock. During game play, the formula
for each legal action is evaluated against the current game state s using fuzzy
logic as described in [19], but with different t-norm and t-co-norm, as the original
ones proved to be too slow. For non-atomic formulas the evaluation function is
defined as

eval(f ∧ g, s) = �(eval(f, s), eval(g, s))
eval(f ∨ g, s) = ⊥(eval(f, s), eval(g, s))

eval(¬f, s) = 1 − eval(f, s)
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where � and ⊥ are the product t-norm and t-co-norm:

�(a, b) = a · b

⊥(a, b) = a + b − a · b

All remaining atoms of the heuristic formula are of the form true(X), these
are evaluated as

eval(true(f), s) =

{
p if f is true in s

1 − p otherwise

We used p = 0.97 for our experiments.
Thus, our action heuristics can be defined as H(s, r, a) = eval(Fr,a, s), where

Fr,a is the heuristic formula constructed for role r and action a.
In essence, a higher value of the evaluation means, that more prerequisites

are satisfied for a particular action to lead to a goal state.
The heuristic values for each legal action in the initial state of the aforemen-

tioned version of the game Tic Tac Toe are shown in the following table.

The heuristic function was evaluated in the initial game state (empty board).
We can see, that the action with the highest value, is to take the middle cell
(mark(2, 2)), followed by 4 actions taking one of the corner cells. Indeed, this
corresponds with the fact that marking the middle cell as the first action leads
to the most options for winning the game.

In [15,19], we described methods for improving the fuzzy evaluation by using
additional knowledge about the game for the evaluation of the atoms. The same
methods can be used for the action heuristics presented here. For the experiments
presented in the next section, we restricted ourselves to using only very limited
additional knowledge especially selected for not increasing the time for evaluating
the heuristics significantly. In particular, we only use knowledge about persistent
fluents as defined in [10].

A fluent is persistent true if, once it holds in a state, it will persist to hold
in all future states. For example, cell(1, 1, x) is persistent true in Tic Tac Toe.
A fluent is persistent false if, once it does not hold in a state, it will never hold
in any future state. For example, cell(1, 1, b) is persistent false in Tic Tac Toe.

Information like this can be detected in some, but not all of the games we
tested. In case we could (automatically) infer this knowledge, we modify the
evaluation function as follows:
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eval(true(f), s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if f is true in s and
f is persistent true

p if f is true in s and
f is not persistent true

0 if f is false in s and
f is persistent false

1 − p otherwise

4 Search Controls

In this section we recapitulate three ways, how an action heuristic can be utilized
in the MCTS player to control different part of the search. All methods are
described in [7]. While the first method uses the heuristic to guide the random
playouts, in the second one it controls the search tree growth in the selection
phase. The last approach presented is a combination these two concepts. We will
use these methods later together with our own heuristics.

4.1 Playout Heuristic

In the standard MCTS with UCT, actions are selected uniformly at random
during the playout phase. However, if we have any information on which actions
are good, it is better to bias the action selection in favor of more promising
moves [5]. This can be accomplished using the Gibbs (Boltzmann) distribution:

P (s, r, a) =
eH(s,r,a)/τ∑
a′ eH(s,r,a′)/τ

where P (s, r, a) is the probability that the action a will be chosen by role r
in the current playout state s and H(s, r, a) is the action heuristic function.
The parameter τ is temperature and specifies how random actions are chosen.
Whereas the high values makes it rather uniform; τ → 0 means that more valued
actions are chosen more likely. Based on trial and error testing, good values for
τ lie somewhere between 0.5 and 2. We used τ = 1 in our tests.

One drawback of this method is, that the heuristic function must be evalu-
ated for all legal moves in every playout state within the simulation, which is
sometimes too costly.

4.2 Tree Heuristic

An action heuristic commonly used in the game tree is Rapid Action Value
Estimation (RAVE) [8]. It keeps a special value QRAV E(s, r, a), which is an
average outcome of simulations, where action a was taken by role r in any state
on the path below s.
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In our case, instead of QRAV E , we use the value H(s, r, a) provided by the
action heuristic described earlier. Initially, only the heuristic is used to give an
estimate of the action value, but as the sampled action value Q(s, r, a) becomes
more reliable with more simulations executed, it should be more trusted over the
heuristic H(s, r, a). This is achieved by using a weighted average as in RAVE:

Q(s, r, a)′ := β(s) × H(s, r, a) + (1 − β(s)) × Q(s, r, a)

with

β(s) =

√
k

3 × N(s) + k

The equivalence parameter k controls, how many simulations are needed for
both estimates to have equal weights. The N(s) function returns number of visits
of the state s.

Before use, all heuristic values H(s, r, a) are normalized and scaled into the
range 0 to 100 which is the range of possible game outcomes. We use k = 20 in
our tests, as it turned out to work best with the heuristic function we use.

4.3 Combined Heuristic

Both of the previous control schemes can be combined together and a heuristic
can be used to guide the action selection both during the random playouts and
in the game tree. As was shown in [6], this combination has a synergic effect,
when they used RAVE as a tree heuristic and MAST as a playout heuristic. In
our case, we use the action heuristic we developed in both control schemes with
the same parameters as mentioned above.

5 Results

We run two sets of experiments. First, we matched players using the three afore-
mentioned concepts of the action heuristic (playout, tree and combined heuristic)
against a pure MCTS/UCT player with constant number of simulations per turn.
Then, we matched playout, tree and combined heuristic against MAST, RAVE
and MAST+RAVE players, respectively. We did not match MAST against our
tree heuristic, because they operate in different stages of MCTS and the results
are not comparable. Similarly for playout heuristics vs. RAVE. Constant time
per turn was used in this experiment. We set temperature τ = 10 for MAST and
equivalence parameter k = 1000 for RAVE as recommended in [6].

Each set consists of 300 matches per game with each control scheme. The
tests were run on Linux with multicore Intel(R) Xeon(R) 2.40 GHz processor
with 4 GB memory limit and 1 CPU core assigned to each agent. Rules for all
the games tested can be found in the game repository at games.ggp.org.
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Table 1. Tournament using playout, tree and combined heuristic against pure MCTS
player with fixed number of simulations.

Game No heur. vs. Playout h. No heur. vs. Tree h. No heur. vs.
Combined h.

battle 90.2× 80.9 (±2.4) 87.3×95.1 (±2.1) 91.6× 84.9 (±2.0)

bidding-tictactoe 19.2×80.8 (±3.5) 42.8×57.2 (±3.0) 19.7×80.3 (±3.6)

blocker 61.0× 39.0 (±5.5) 48.0× 52.0 (±5.7) 67.3× 32.7 (±5.3)

breakthrough 51.3× 48.7 (±5.7) 47.3× 52.7 (±5.7) 48.7× 51.3 (±5.7)

checkers-small 94.3× 5.7 (±2.4) 50.2× 49.8 (±4.4) 96.0× 4.0 (±1.9)

chinesecheckers2 81.0× 69.0 (±2.8) 75.3× 74.6 (±2.8) 85.7× 64.3 (±2.6)

chinook 76.0× 32.0 (±5.1) 54.7× 56.3 (±5.6) 76.0× 37.0 (±5.2)

connect4 81.2× 18.8 (±4.1) 56.8× 43.2 (±5.4) 86.7× 13.3 (±3.6)

crisscross 75.3× 49.8 (±4.0) 62.3× 62.8 (±4.2) 74.3× 50.8 (±4.0)

ghostmaze2p 28.7×71.3 (±3.1) 19.5×80.5 (±3.3) 30.8×69.2 (±3.4)

9BoardTicTacToe 26.7×73.3 (±5.0) 32.3×67.7 (±5.3) 22.7×77.3 (±4.7)

pentago 2008 22.7×77.3 (±4.5) 35.5×64.5 (±5.1) 21.2×78.8 (±4.3)

sheep and wolf 74.7× 25.3 (±4.9) 51.7× 48.3 (±5.7) 78.7× 21.3 (±4.6)

skirmish 70.1× 69.0 (±1.1) 79.4× 77.3 (±1.5) 78.4× 75.0 (±1.5)

5.1 Playing Strength

Table 1 shows the average scores reached by the pure MCTS and the heuristic
agent along with a 95 % confidence interval. We allowed 10000 simulations per
turn and the time spent on evaluating the heuristic was measured.

The game with the strongest position of the combined scheme is Bidding Tic
Tac Toe with a score 80 (±3.5) against 20; it is also good in Nine Board Tic
Tac Toe, Pentago and Ghost Maze. On the other hand, it is particularly bad
in Checkers and Connect4, but closer look reveals, that this is only because of
the playout heuristic, while the tree heuristic has not much influence in these
games. The playout heuristic follows the similar trend as the combined scheme.
The tree heuristic is also significantly better in Battle and there is no game with
totally hopeless result as there was with the playout heuristic.

It is also worth mentioning, how the results in the combined control scheme
are connected to the playout and the tree heuristic. It seems, the influence of
the playout heuristic on the overall result is much higher. Especially, when it
is useless or even misleading, then the combined result is dragged down by it
(Checkers, Connect4). It seems that the playout heuristic is more vulnerable,
while the tree heuristic control scheme can recover when the heuristic is mis-
leading. Thus, it is essential for the playout heuristic to be good, if it is used.

Bidding Tic Tac Toe is a game, where two players are bidding coins in order
to mark a cell with an objective to build a line of three symbols as in Tic Tac
Toe. However, the key property of this game is the bidding part – by doing
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Table 2. Tournament against MAST and RAVE player with constant time per turn.

Game MAST vs. Playout h. RAVE vs. Tree h. MAST+RAVE
vs.
Combined h.

battle 95.0× 83.7 (±1.8) 87.9×96.1 (±2.0) 94.1× 80.1 (±1.8)

bidding-tictactoe 26.2×73.8 (±4.2) 41.1×58.9 (±3.1) 26.5×73.5 (±4.4)

blocker 60.0× 40.0 (±5.5) 50.8× 49.2 (±5.7) 59.3× 40.7 (±5.6)

breakthrough 45.7× 54.3 (±5.6) 50.0× 50.0 (±5.7) 52.3× 47.7 (±5.7)

checkers-small 95.0× 5.0 (±2.1) 51.0× 49.0 (±4.3) 95.0× 5.0 (±2.0)

chinesecheckers2 96.4× 53.3 (±1.8) 74.8× 75.2 (±2.8) 95.1× 54.5 (±1.7)

chinook 84.0× 30.7 (±4.7) 52.0× 59.0 (±5.6) 86.3× 28.0 (±4.5)

connect4 83.3× 16.7 (±4.0) 52.8× 47.2 (±5.5) 83.0× 17.0 (±3.9)

crisscross 62.8× 62.3 (±4.24) 62.3× 62.8 (±4.2) 62.5× 62.5 (±4.2)

ghostmaze2p 31.3×68.7 (±3.4) 20.2×79.8 (±3.2) 33.3×66.7 (±3.5)

9BoardTicTacToe 34.3×65.7 (±5.4) 35.3×64.7 (±5.4) 31.3×68.7 (±5.3)

pentago 2008 21.2×78.8 (±4.4) 42.3×57.7 (±5.3) 20.3×79.7 (±4.2)

sheep and wolf 77.0× 23.0 (±4.8) 53.7× 46.3 (±5.6) 76.3× 23.7 (±4.8)

skirmish 80.5× 79.7 (±1.5) 79.7× 77.6 (±1.5) 84.8× 75.3 (±1.)

wrong bids, the game can be easily lost, even when the markers are placed in
good positions on the board. The action heuristic does not help in any way with
the bidding, it only helps to arrange the markers in a line. In spite of this, all the
heuristic agents still have a significant advantage in this game. One explanation
is that when a player wins a bid, it can actually use its move well which makes
especially the playouts more reliable.

Table 2 shows results for matches played against MAST, RAVE and MAST+
RAVE. Although MAST and MAST+RAVE outperform the playout and the
combined heuristic in most of the games, they still hold their good position in
Pentago or Nine Board Tic Tac Toe. The heuristic performs surprisingly well
against RAVE with no significant loss. By comparing Tables 1 and 2, we see
that our action heuristics perform well against MAST and RAVE in exactly the
same games in which they did well against a pure MCTS/UCT player. This
suggests, that our approach is complementing MAST and RAVE by improving
performance in games in which MAST and RAVE do not seem to have much
positive effect.

In general, it can be said, that the heuristic player performs very well in
Tic Tac Toe-like games, as they contain many persistently true fluents and the
heuristic is built in such a way, that it leads the player to the goal directly.
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Table 3. Percentage of the game time spent on evaluating the action heuristic and
relative number of simulations compared to the non-heuristic player.

Game Time spent on heuristic Relative number of simulations

Playout Tree Combi. Playout Tree Combi.

battle 44.6 % 0.0 % 44.3 % 67.2 % 99.3 % 66.9 %

bidding-tictactoe 15.8 % 0.2 % 15.5 % 125.4 % 103.2 % 125.2 %

blocker 45.3 % 0.1 % 42.8 % 65.0 % 95.9 % 70.2 %

breakthrough 53.4 % 0.1 % 53.2 % 46.3 % 104.4 % 46.2 %

checkers-small 22.9 % 0.1 % 22.9 % 80.6 % 103.0 % 81.4 %

chinesecheckers2 8.3 % 0.1 % 8.4 % 91.9 % 101.0 % 91.1 %

chinook 9.2 % 0.0 % 9.2 % 129.6 % 102.7 % 131.4 %

connect4 56.1 % 1.6 % 55.0 % 91.2 % 115.8 % 96.7 %

crisscross 5.5 % 0.6 % 6.0 % 100.4 % 99.8 % 103.2 %

ghostmaze 44.4 % 0.7 % 43.3 % 70.7 % 102.9 % 74.9 %

9BoardTicTacToe 47.4 % 0.6 % 46.3 % 174.7 % 103.6 % 176.4 %

pentago 2008 69.4 % 0.3 % 69.3 % 52.2 % 100.2 % 52.2 %

sheep and wolf 14.1 % 0.1 % 14.1 % 84.4 % 103.0 % 84.1 %

skirmish 26.3 % 0.1 % 26.2 % 72.2 % 100.5 % 73.0 %

5.2 Time Spent on Evaluating the Heuristic

Table 3 shows how much time during the game time was spent on evaluating
the heuristic and the time needed to generate the heuristic functions for each
game. These numbers do not include the time required for grounding the game
description. However, most general game players use grounded game descriptions
for reasoning nowadays, such that grounding needs to be done anyway.

The time required to generate the action heuristic as shown in Table 4, is
relatively small for the games tested, except for Checkers with almost 15 s and
Battle with 13 s. However, the time spent on evaluating the heuristic is more
important. While it is almost negligible for tree heuristic, it ranges from 5 to
70 % depending on the game for playout and combined heuristic. The table also
shows ratio between the time needed to run 10000 game simulations by the pure
and the heuristic players. Surprisingly, the heuristic player can sometimes run
significantly more simulations than its non-heuristic counterpart, because the
heuristic makes the simulations effectively shorter and thus taking less time. A
good example of this behavior is in Nine Board Tic Tac Toe, where about 50 %
of the game time is spent on evaluating the heuristic, but still with about three
quarters more simulations done. Moreover, the combined heuristic player won
77 % of the matches against pure MCTS/UCT.

An idea, how to make the evaluation faster is to investigate pruning of the
heuristic formula. It seems that some parts of it are triggered only in some
relatively rare game states and do not contribute much to the overall result.
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Table 4. Cost of generating the action heuristic.

Game Cost of generation

battle 13.0 s

bidding-tictactoe 0.2 s

blocker 0.2 s

breakthrough 3.5 s

checkers-small 14.8 s

chinesecheckers2 0.1 s

chinook 2.5 s

connect4 1.6 s

crisscross 2.7 s

ghostmaze 0.2 s

9BoardTicTacToe 4.0 s

pentago 2008 1.2 s

sheep and wolf 3.4 s

skirmish 6.8 s

Also evaluation of state fluents that are changing wildly from state to state (like
control fluent) has probably a little influence on the playing strength.

5.3 Testing with Other Games

We have been able to generate action heuristic for 113 games out of 127 available
on the Tiltyard server3. Of those 14 games that failed we were not able to ground
the game rules in 5 cases. Others failed mostly because the goal condition was
particularly complex.

A game that showed to be most problematic is Othello, because the grounded
version of the goal is extremely big. Other games that failed include different
versions of Chess, Amazons and Hex. On the other hand, there are some games,
where the grounded game description is still rather big, but the goal condition
itself is relatively simple. In this case, we are able to generate the action heuristic
successfully. Examples of such games are Breakthrough or Skirmish.

6 Conclusion

We have presented a general method of creating action heuristic in General Game
Playing based on regression and fuzzy evaluation. We used the heuristics in three
different search control schemes for MCTS and demonstrated the effectiveness by
comparing it with a pure MCTS/UCT, RAVE and MAST players. The combined

3 tiltyard.ggp.org.

http://tiltyard.ggp.org
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heuristic agent outperforms these players in well-known games like Bidding Tic
Tac Toe, Pentago or Nine Board Tic Tac Toe; however it shows significant loss
ratio in Checkers and Connect 4.

At least partly this behavior can be explained by the fact that Tic Tac Toe-
like games typically contain many persistent fluents which we use to improve
the heuristics. Thus, one idea for improving the quality of the heuristics in other
games is to use more feature discovery techniques, such as the ones described
in [12,19] or [15]. Another idea would be to regress the goal condition by more
than one step. In both cases care has to be taken to not increase the evaluation
time too much.

There are still certain issues to be addressed. Notably, the playout heuristic
seems to be prone to be misleading. As it has the most influence on the overall
performance, this behavior should be further investigated.

Future work should also investigate pruning of the heuristic formula to only
include the most relevant features in order to reduce evaluation time.

References

1. Chaslot, G.M.J.B., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.,
Bouzy, B.: Progressive strategies for Monte-Carlo tree search. In: Proceedings of
the 10th Joint Conference on Information Sciences (JCIS 2007), pp. 655–661. World
Scientific Publishing Co. Pte. Ltd (2007)

2. Clune, J.: Heuristic evaluation functions for general game playing. In: AAAI 2007,
pp. 1134–1139. AAAI Press (2007)

3. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

4. Finnsson, H.: Generalized Monte-Carlo tree search extensions for general game
playing. In: Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

5. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing.
In: AAAI 2008, pp. 259–264. AAAI Press (2008)

6. Finnsson, H., Björnsson, Y.: Learning simulation control in general game playing
agents. In: AAAI 2010, pp. 954–959. AAAI Press (2010)

7. Finnsson, H., Björnsson, Y.: Cadiaplayer: search-control techniques. KI 25(1), 9–16
(2011)

8. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceed-
ings of the 24th International Conference on Machine Learning. ACM International
Conference Proceeding Series, vol. 227, pp. 273–280 (2007)

9. Genesereth, M.R., Love, N., Pell, B.: General game playing: overview of the AAAI
competition. AI Mag. 26(2), 62–72 (2005)

10. Haufe, S., Schiffel, S., Thielscher, M.: Automated verification of state sequence
invariants in general game playing. Artif. Intell. 187–188, 1–30 (2012)
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Abstract. In general game playing, agents play previously unknown
games by analyzing game rules which are provided in runtime. Since
taking advantage of experience from past games can efficiently enhance
their intelligence, it is necessary for agents to detect equivalence between
games. This paper defines game equivalence formally and concentrates
on a specific scale, space-consistent game equivalence (SCGE). To detect
SCGE, an approach is proposed mainly reducing the complex problem to
some well-studied problems. An evaluation of the approach is performed
at the end.

1 Introduction

According to human experience, exploiting equivalence between a new problem
and a studied problem provides a bridge for knowledge transfer, which efficiently
enhances the understanding of the new problem. Therefore, for the aim of arti-
ficial intelligence, it is important to enable computer to recognize equivalence.
Particularly, as a typical application of AI, it is necessary for game-playing agents
to grasp the ability of detecting equivalence between games.

The main work of this paper is to discuss classification of game equivalence,
define concepts of it formally and propose an approach to detect it. Since detect-
ing the general equivalence between games is difficult, a narrowed scale of game
equivalence, space-consistent game equivalence, is defined firstly. Then, an app-
roach is proposed for agents to automatically detect space-consistent game equiv-
alence, which intends to achieve an acceptable efficiency by defining a grounded
rule graph and transferring the complex problem to the well-studied problems,
i.e. graph isomorphism and SAT.

This paper discusses game equivalence in the domain of General Game Play-
ing (GGP) [2], which sets up a framework for agents to play previously unknown
games by being provided game rules in runtime. This framework obliges agents
to take over the responsibility of analyzing game rules from human beings. The
games in GGP are turn-based, synchronized and of complete information, which
are described in the Game Description Language (GDL) [5].

The work of this paper can be applied to knowledge transfer between equivalent
or similar games. For example, [4] introduces a method of value function transfer
for speeding up reinforcement learning, based on the technique of game equivalence
detection. It can also be applied to detect symmetry of games, as [8] does.
c© Springer International Publishing Switzerland 2016
T. Cazenave et al. (Eds.): CGW 2015/GIGA 2015, CCIS 614, pp. 165–177, 2016.
DOI: 10.1007/978-3-319-39402-2 12
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The following section provides background on GGP and introduces defini-
tions of game. Section 3 discusses game equivalence and its narrowness. Section 4
introduces the proposed approach to detect game equivalence, which is evaluated
in Sect. 5. Section 6 concludes the work of this paper.

2 General Game Playing

In the domain of General Game Playing, games are modeled as finite state
machines. In this paper, the definitions of game derive from [9].

Definition 1 (Game). Let Σ be a countable set of ground (i.e., variable-free)
symbolic expressions (terms), S a set of states, and A a set of actions. A (dis-
crete, synchronous, deterministic) game is a structure (R, s0, T, L, u,G), where

– R ⊆ Σ finite (the roles);
– s0 ∈ S (the initial state);
– T ⊆ S finite (the terminal states);
– L ⊆ R × A × S finite (the legality relation);
– u : (R → A) × S → S finite (the update function);
– G ⊆ R × N × S finite (the goal relation).

Here, A ⊆ Σ and S ⊆ 2Σ. The legality relation (r, a, s) ⊆ L defines action a
to be a legal action for role r in state s. The update function u takes an action
for each role and (synchronously) applies the joint actions to a current state,
resulting in the updated state. The goal relation (r, n, s) ⊆ G defines n to be the
utility for role r in state s.

In General Game Playing, rules of games are described in the GDL, which
is a Prolog-like language using prefix syntax. Some keywords of the GDL are
defined in Table 1. As a demonstration of the GDL, the rules of Tic-tac-toe are
provided in Listing 1.1.

Table 1. GDL Keywords

(role r) r is a player

(init p) Proposition p holds in the initial state

(true p) Proposition p holds in the current state

(legal r a) Player r has legal action a in the current state

(does r a) Player r does Action a

(next p) Proposition p holds in the next state

terminal The current state is terminal

(goal r n) Utility of player r in current terminal state is n
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1 (role xplayer) (role oplayer)
2 (init (cell 1 1 b)) (init (cell 1 2 b))...(init (cell 3 3 b))
3 (init (control xplayer))
4 (<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b)) (true (control ?w)))
5 (<= (legal xplayer noop) (true (control oplayer)))
6 (<= (legal oplayer noop) (true (control xplayer)))
7 (<= (next (cell ?m ?n x)) (does xplayer (mark ?m ?n)) (true (cell ?m ?n b)))
8 (<= (next (cell ?m ?n o)) (does oplayer (mark ?m ?n)) (true (cell ?m ?n b)))
9 (<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w)) (distinct ?w b))

10 (<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k)) (true (cell ?m ?n b)) (or (distinct ?m ?j)
(distinct ?n ?k)))

11 (<= (next (control xplayer)) (true (control oplayer)))
12 (<= (next (control oplayer)) (true (control xplayer)))
13 (<= (row ?m ?x) (true (cell ?m 1 ?x)) (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
14 (<= (column ?n ?x) (true (cell 1 ?n ?x)) (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
15 (<= (diagonal ?x) (true (cell 1 1 ?x)) (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
16 (<= (diagonal ?x) (true (cell 1 3 ?x)) (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
17 (<= (line ?x) (or (row ?m ?x) (column ?m ?x) (diagonal ?x))
18 (<= open (true (cell ?m ?n b)))
19 (<= (goal xplayer 100) (line x))
20 (<= (goal xplayer 50) (not (line x)) (not (line o)) (not open))
21 (<= (goal xplayer 0) (line o))
22 (<= (goal oplayer 100) (line o))
23 (<= (goal oplayer 50) (not (line x)) (not (line o)) (not open))
24 (<= (goal oplayer 0) (line x))
25 (<= terminal (or (line x) (line o) (not open)))

Listing 1.1. Rules of Tic-tac-toe

Here, the symbol <= is the implication operator. Tokens starting with a
question mark are variables. The first line declares two roles of the game. Lines
2–3 define the initial state. Lines 4–6 define legal actions for roles. In order to
describe an asynchronous turn-based game, an extra action noop is provided to
players during their opponents’ turns. Lines 7–12 define the update function. For
example, Line 7 implies that (cell 1 1 x) holds in the next state if xplayer does
the action (mark 1 1) and (cell 1 1 b) holds in the current state. Lines 13–18
define several auxiliary propositions describing properties of the current state. It
is convenient to use these propositions in the following rules. Lines 19–24 define
the goal relation of the game, while Line 25 defines the terminal states.

Except the keywords and logical words, which are printed italic, all tokens are
game-specific and can be replaced by other tokens without changing the meaning
of the game. Auxiliary propositions and variables are used for convenience and
compactness, which can be eliminated without changing the meaning of the
game.

Provided a GDL description, a game is defined as follows.

Definition 2 (Game for GDL). Let D be a valid GDL game description,
whose signature determines the set of ground terms Σ. The game for D is the
game (R, s0, T, L, u,G), where

– R = {r ∈ Σ|D |= (role r)}
– s0 = {p ∈ Σ|D |= (init p)}
– T = {s ∈ S|D ∪ strue |= terminal}
– L = {(r, a, s) ∈ R × A × S|D ∪ strue |= (legal r a)}
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– u(j : R → A, s) = {p ∈ Σ|D ∪ jdoes ∪ strue |= (next p)}
– G = {(r, n, s) ∈ R × N × S|D ∪ strue |= (goal r n)}

Here, S is defined as 2P where P = {p| (true p) ∈ Σ}, A as {a| (legal r a)
∈ Σ}, strue as {(true p) |p ∈ s} and (j : R → A)does as {(does r j(r)) |r ∈ R}.

3 Game Equivalence

Two games looking different in rules may be identical in nature. [7] points out
that Tic-tac-toe is identical to Number Scrabble1. In fact, filling the numbers
of Number Scrabble into the cells of Tic-tac-toe as Fig. 1 reveals the mapping
between them.

Fig. 1. Mapping between Tic-tac-toe and Number Scrabble. Picking a number corre-
sponds to marking a cell, and collecting three numbers summing up to 15 corresponds
to drawing a line.

Essentially, two games are equivalent exactly if the state machines described
them are identical. Corresponding to the definition of game, game equivalence
is defined as follows.

Definition 3 (Game Equivalence). Game Γ = (R, s0, T, L, u,G) and Game
Γ ′ = (R′, s′

0, T
′, L′, u′, G′) (Σ and Σ′ are their grounds sets, S and S′ state sets,

A and A′ action sets, respectively) are equivalent iff there is a bijection set σ =
(σR : R ↔ R′, σS : S ↔ S′, σA : A ↔ A′) s.t.

– σS(s0) = s′
0

– (∀t) t ∈ T ⇔ σS(t) ∈ T ′

– (∀r, a, s) (r, a, s) ∈ L ⇔ (σR(r), σA(a), σS(s)) ∈ L′

– (∀j : R → A,∀scur, snext ∈ S)
u(j, scur) = snext ⇔ u′(j′, σS(scur)) = σS(snext), where j′ : R′ → A′ satisfies
j′(σR(r)) = σA(j(r))

– (∀r, n, s) (r, n, s) ∈ G ⇔ (σR(r), n, σS(s)) ∈ G′

The bijection set σ is called a game equivalence between Γ and Γ ′.

1 Number Scrabble is a game for two players taking turns to pick numbers from a
pool of 1–9, whose goals are collecting three numbers summing up to 15 before the
opponent achieving it.
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Previous works successfully detect some kinds of game equivalence. [4] pro-
poses a rule graph to detect game equivalence caused by rules reordering and
tokens scrambling. Based on it, [8] enhances the rule graph to handle arguments
reordering. However, more kinds of equivalence exist, such as:

– auxiliary propositions elimination, e.g. replacing (<= (p0) (p1)) (<= (p1)
(p2)) by (<= (p0) (p2));

– logical conversion, e.g. replacing (<= (consequence) (not (or (condition1)
(condition2)))) by (<= (consequence) (not (condition1)) (not (condition2)));

– arguments re-encoding, e.g. replacing (true (cell 1..3 1..3 x)) by (true (cell
1..9 x)).

In general, game equivalence is caused by the uncertainty of transformation
from a state machine to a GDL description. A state machine can be transformed
into different but equivalent propositional nets, which can be further transformed
into different but equivalent GDL descriptions. Figure 2 demonstrates a reason-
able sequence of transformation steps.

According to Fig. 2, each kind of game equivalence is caused by one of the
steps. As to the mentioned ones, rules reordering is caused by Step 8, tokens
scrambling and arguments reordering are caused by Step 7, auxiliary propositions
elimination is caused by Step 5, arguments re-encoding is caused by Step 3, and
logical conversion is caused by Step 2.

Fig. 2. Transformation steps from state machine to GDL rules. Each step can yield
different targets from a single source, except for Step 4 which decomposes a propnet
into certain rules.

This paper considers the steps after the encoding state machine in Fig. 2.
The encoded state machines derived from a particular state machine share the
same propositions. These propositions form a state space, which is also shared
by the encoded state machines. To describe it, space-consistent game equivalence
is defined.
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Definition 4 (Space-Consistent Game Equivalence (SCGE)). A game
equivalence σ = (σR, σS , σA) is a space-consistent game equivalence for two
games Γ and Γ ′ iff there is a bijection σP : P ↔ P ′ (where P = {p|p ∈ s, s ∈ S},
P ′ likewise, i.e. P and P ′ contains propositions forming the states) satisfying
(∀s ∈ S) p ∈ s ⇔ σP (p) ∈ σS(s). Here, S is the set of states of Γ . P and P ′ are
called state spaces. The SCGE σ can be written as (σR, σP , σA), since σS can
be determined by σP .

SCGE for GDL is defined as follows, which rewrites the definition of SCGE
in the context of GDL without changing the meaning.

Definition 5 (Space-Consistent Game Equivalence for GDL). Let D
and D′ be valid GDL game descriptions, whose signatures determine the sets
of ground terms Σ and Σ′ respectively. A space-consistent game equivalence σ
= (σR : R ↔ R′, σP : P ↔ P ′, σA : A ↔ A′) for D and D′ satisfies:

– D |= pinit ⇔ D′ |= (σP (p))init

– D ∪ strue |= terminal ⇔ D′ ∪ (σS(s))true |= terminal
– D ∪ strue |= (legal r a) ⇔ D′ ∪ (σS(s))true |= (legal σR(r) σA(a))
– D ∪ strue ∪ {(does r j(r)) |r ∈ R} |= (next p) ⇔ D′ ∪ (σS(s))true ∪ {(does

r j′(r)) |r ∈ R′} |= (next σP (p))
– D ∪ strue |= (goal r n) ⇔ D′ ∪ (σS(s))true |= (goal σR(r) n)

Here, pinit is defined as (init p), strue as {(true p) |p ∈ s} and σS(s) as
{σP (p)|p ∈ s}. j : R → A and j′ : R′ → A′ satisfy that (∀r ∈ R) j′(σR(r)) =
σA(j(r)).

SCGE covers the kinds of game equivalence caused by Step 2 and after in
Fig. 2. It narrows the concept of game equivalence by building a bijection between
P and P ′ which determines the bijection between S and S′, instead of building
bijection between S and S′ directly. For an example of space-inconsistent game
equivalence which is caused by Step 1, replacing (true (cell 1 1 b)) in Tic-tac-toe
by (not (or (true (cell 1 1 o)) (true (cell 1 1 x))) doesn’t change the game, but
reduces the state space of the game.

For solving the whole problem of game equivalence detection, comparing state
machines directly is a method with a very high complexity. However, comparing
propositional nets covers the kinds of game equivalence caused by Step 3 and
after, whose complexity is logarithmic to the corresponding state machines in
most cases. Since logical conversion is a quite common situation of game equiv-
alence, Step 2 should be also taken into consideration. This is the significance of
SCGE detection.

4 Space-Consistent Game Equivalence Detection

Based on the definition of SCGE for GDL, a brute force approach to detect
it is enumerating all σs mapping roles, actions and propositions of states, then
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checking whether all pairs of mapped terms are equivalent to each other. Specifi-
cally speaking, it consists of three phases. The first phase is generating the logical
implications between keyword-propositions, which is related to the propositional
net. The second phase is enumerating all possible σs mapping R to R′, P to P ′

and A to A′ so that all keyword-propositions are mapped in accordance. The
third phase is verifying whether mapped keyword-propositions are equivalent to
each other by comparing the logical implications generated in the first phase.

The brute force approach takes exponential time due to bijection enumer-
ation and logical implication comparison. Therefore, Space-Consistent Game
Equivalence Detection Approach (SCGEDA, or GEDA for short) is proposed. It
transfers the problem to two well-studied problems, i.e. graph isomorphism and
boolean satisfiability, to achieve the state-of-the-art efficiency.

The GEDA consists of three phases as the brute force approach does:

– rule grounding, which is to generate all logical implications between grounded
keyword-propositions;

– graph building and mapping, which is to build a dependency graph of keyword-
propositions and inspect graph isomorphisms to map keyword-propositions;

– logical equivalence verifying, which is to verify whether the mapped logical
implications are equivalent.

In addition, an analysis of complexity and some efficient improvements are
to be introduced.

4.1 Rule Grounding

The aim of this phase is to transfer GDL rules to equivalent rules that only
contain logical implications of keyword-propositions. An example of grounded
rule is displayed as follows:

(<= (goal xplayer 100)
(or (and (true (cell 1 1 x)) (true (cell 1 2 x)) (true (cell 1 3 x)))

(and (true (cell 2 1 x)) (true (cell 2 2 x)) (true (cell 2 3 x)))
(and (true (cell 3 1 x)) (true (cell 3 2 x)) (true (cell 3 3 x)))
(and (true (cell 1 1 x)) (true (cell 2 1 x)) (true (cell 3 1 x)))
(and (true (cell 1 2 x)) (true (cell 2 2 x)) (true (cell 3 2 x)))
(and (true (cell 1 3 x)) (true (cell 2 3 x)) (true (cell 3 3 x)))
(and (true (cell 1 1 x)) (true (cell 2 2 x)) (true (cell 3 3 x)))
(and (true (cell 1 3 x)) (true (cell 2 2 x)) (true (cell 3 1 x))))).

To achieve it, several procedures are taken.

1. Calculate ranges of arguments, such as
(true (cell {1,2,3} {1,2,3} {x,o})).

2. Replace variables by constants according to ranges of arguments, e.g. replace
(<= (diagonal ?x)

(true (cell 1 1 ?x)) (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))

by
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(<= (diagonal x)
(true (cell 1 1 x)) (true (cell 2 2 x)) (true (cell 3 3 x)))

(<= (diagonal o)
(true (cell 1 1 o)) (true (cell 2 2 o)) (true (cell 3 3 o))).

(The consistency of variables is ensured. If a distinct-proposition is contained
in a rule, its logical value is computed and applied to the rule during this
procedure.)

3. Eliminate auxiliary propositions stage by stage, e.g. replace line by row, col-
umn and diagonal before replacing row, column and diagonal by true.

4. Remove non-state-relative propositions and role-propositions from premises
of rules, because their values are always true.

5. Remove the rules which use auxiliary propositions as consequences, because
they are no longer of use.

6. Merge the rules which use the same propositions as consequences so that one
proposition acts as the consequence in only one rule. For example, the rule
with (goal xplayer 100) printed above is merged from eight partial ones with
(goal xplayer 100).

After rule grounding, all rules are in the form of
(<= (consequence) Func(condition1, condition2, condition3...)),

where consequence and conditions are keyword-propositions. Keywords in con-
sequence include role, init, next, legal, goal and terminal, while true and does
are the keywords in conditions. Particularly, role- and init-propositions depend
on no propositions as conditions, next-propositions depend on true- and does-
propositions and the remaining consequences only depend on true-propositions.
Func is a logical function connecting conditions by and, or and not, which is
called the reasoning function of the consequence.

After this phase, rules of equivalent games are normalized except the reason-
ing functions.

4.2 Graph Building and Mapping

In this phase, the grounded rules excluding the reasoning functions are modeled
as a so-called ground graph, which is mainly a dependency graph of keyword-
propositions. Thus, the number of enumerated bijections between propositions is
determined by the number of isomorphisms between the graphs, which is much
smaller than completely enumeration.

Definition 6 (Ground Graph). A ground graph G = (V,E, l) for grounded
rules GR is a directed labeled graph with the following properties:

– (∀p, p is a keyword-proposition appearing in GR with a keyword k as its pred-
icate) p ∈ V and l(p) = k;

– (∀n ∈ N, n ∈ [0, 100]) n ∈ V and l(n) = n;
– (∀vs, vt ∈ V, r ∈ GR, vs is a condition of r and vt is the consequence of

r) (vs, vt) ∈ E;
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– (∀pinit, ptrue ∈ V ) (pinit, ptrue) ∈ E;
– (∀pnext, ptrue ∈ V ) (pnext, ptrue) ∈ E;
– (∀adoes,r, rrole ∈ V ) (adoes,r, rrole) ∈ E;
– (∀alegal,r, rrole ∈ V ) (alegal,r, rrole) ∈ E;
– (∀rgoal,n, rrole ∈ V ) (rgoal,n, rrole) ∈ E;
– (∀adoes,r, alegal,r ∈ V ) (adoes,r, alegal,r) ∈ E;
– (∀rgoal,n, n ∈ V ) (rgoal,n, n) ∈ E;

Here, pinit, ptrue, pnext, adoes,r, rrole, alegal,r and rgoal,n express (init p),
(true p), (next p), (does r a), (role r), (legal r a), (goal r n) respectively. (∀n ∈
N, n ∈ [0, 100]) represents all possible utilities in a valid GDL description.

Thus, a ground graph has two types of nodes, which are proposition-nodes
and integer-nodes. It also has two types of edges, which are logical-dependency-
edges and consistency-maintaining-edges. It only reserves logical dependencies of
propositions and discards reasoning functions. Figure 3 displays a brief structure
of a ground graph.

Fig. 3. Brief structure of ground graph. The solid ellipses stand for sets of nodes, while
the solid rectangles stand for particular nodes.

After two ground graphs are built, they are tested for isomorphism. An iso-
morphism between directed labelled graphs iso : V ↔ V ′ satisfies (1) (∀v ∈
V ) l(v) = l′(iso(v)); (2) (∀vs, vt ∈ V ) (vs, vt) ∈ E ⇔ (iso(vs), iso(vt)) ∈ E′.

Therefore, according to the definition of ground graph, an isomorphism
between two ground graphs satisfies that (1) proposition-nodes map to
proposition-nodes containing the same predicates and integer-nodes map to
integer-nodes with the same value; (2) for two mapped propositions, their
logically dependent propositions are also mapped; Since init-propositions are
mapped, the initial states are equivalent; the consistencies between next- and
true-propositions, does-, legal-, goal-propositions and role-propositions, does-
and legal-propositions respectively are maintained; the mapped goal-propositions
have the same utility.

After this phase, if an isomorphism is built, the two games may be equivalent.
The remaining uncertainty is the reasoning functions of each proposition ,which
is to be considered in the next phase.
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Since a game may have symmetries [8], there may be several game equiva-
lences between two games. In general, detecting one of them is sufficient for appli-
cations such as knowledge transfer. However, in this phase all isomorphisms of
ground graphs need to be found, because any of them may cause an equivalence
between games. Thus, for each isomorphism, the following phase is applied.

4.3 Logical Equivalence Verifying

In this phase, the unnormalized part of grounded rules, the reasoning functions,
is handled.

By rule grounding, reasoning functions of all keyword-propositions are clear.
By the last phase, mappings between keyword-propositions of two games are pro-
vided, so the reasoning functions are mapped in accordance. Moreover, propo-
sitions as conditions are also mapped. In other words, variables of reasoning
functions are mapped. So, the actual problem is verifying the logical equiva-
lence of two mapped logical functions, provided the consistent variable list. For
example, there are two grounded rules (<= (p1) Func(p2, p3)) and (<= (q1)
Func2(q2, q3)) of two games respectively, px maps qx respectively, then the
problem is checking if Func(x, y) equals Func2(x, y).

For solving this problem, the naive approach that compares the truth tables
of two logical functions takes exponential time. However, the problem can be
transferred to the well-studied boolean satisfiability problem (SAT) to achieve a
state-of-the-art efficiency. For example, testing whether logical functions f1 and
f2 are equivalent can be transferred to testing whether (((not f1) and f2) or
(f1 and (not f2))) is unsatisfiable. By using a SAT solver, the equivalence of
two reasoning functions can be judged. So the remaining work is to verify the
equivalence of all mapped reasoning functions in sequence with the SAT solver.
Only if the verification is passed, the two games are equivalent and the SCGE
σ can be obtained from the isomorphism of ground graphs.

4.4 Complexity

Let n be the number of reasoning functions, l the number of terms in the longest
reasoning function.

For the first phase, the complexity is O(nl), since the cost of grounding
process is linear to the length of results.

The complexity of the second phase is at most NP-complete about n, since
graph isomorphism is a special case of the NP-complete subgraph isomorphism
problem [3].

The bottleneck is the third phase, which costs O(m ∗ n ∗ NP − complete(l)),
where m denotes the number of maps generated by the second phase and NP −
complete(l) is the complexity of SAT problem [3].

The overall complexity is high. However, the approach is more efficient in
practice than in theory.
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Table 2. ConnectFour series games tested with their modified versions. Node No. and
Edge No. express the scale of ground graph. Fun is the number of logical functions to be
verified. Bij is the number of bijections generated by Phase 2 with heuristic grouping.
Retry is the number of bijections verified by Phase 3 to find the first equivalence.

Game Phase 1 Node No. Edge No. Phase 2 Fun Bij Retry Phase 3

ConnectFour 0.107 s 217 2093 0.021 s 103 16 7 5.369 s

ConnectFourSuicide 0.100 s 217 2093 0.020 s 103 16 14 19.967 s

ConnectFourLarge 0.302 s 465 4717 0.144 s 223 64 5 8.986 s

ConnectFourLarger 1.841 s 1649 17533 9.322 s 807 1024 7 46.214 s

4.5 Improvements

There are several improvements which can be applied to the GEDA, listed by
order of importance as follows.

Heuristically grouping nodes of ground graph. The number of isomorphisms of
ground graphs can be huge. For example, the number of automorphisms of Tic-
tac-toe’s ground graph is 9!, since all 9 cells of the board are equivalent when dis-
carding the information expressed by reasoning functions. However, the 9 cells
can be grouped into 4 corner-cells, 4 border-cells and 1 center-cell by counting the
numbers they are possible to form a line, which are 3, 2 and 4 respectively. This
dramatically reduces the number of automorphisms to 4!4!1!. In general, analyz-
ing the symmetry of the reasoning functions helps to group the elements of state
space, so as the corresponding nodes of ground graph. Since the structure of rea-
soning function can be arbitrary, it is a heuristic grouping. However, it works for
most occasions, because the symmetric structure is usually used by default.

Caching bad reasoning functions. Mapped reasoning functions have different pos-
sibilities to be equivalent for some reasons such as the different complexities.
Caching the bad reasoning functions helps to prune early during verification.

Simplifying ground graph. Integer-nodes of ground graphs can be removed by
adding a phase after graph mapping to verify the equivalence of utilities. Cor-
responding true- and next-proposition-nodes, legal- and does-proposition-nodes
can be merged respectively. The init-proposition-nodes can be replaced by a
single init-node.

Generating propositional net. Since grounded rules may need exponential space,
it is more efficient to generate a propositional net and dynamically compute
reasoning functions.

5 Evaluation

As introduced in Sect. 3, Tic-tac-toe is equivalent to Number Scrabble. The
different part of Number Scrabble’s rules is provided in Listing 1.2. The auxiliary
propositions defined in Lines 3–4 represent the winning conditions. The goal- and
terminal-propositions are dependent on the winning conditions. The state space
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1 (sum15 1 5 9) (sum15 1 6 8) (sum15 2 4 9) (sum15 2 5 8)
2 (sum15 2 6 7) (sum15 3 4 8) (sum15 3 5 7) (sum15 4 5 6)
3 (<= (win x) (sum15 ?a ?b ?c) (true (cell ?a x)) (true (cell ?b x)) (true (cell ?c x)))
4 (<= (win o) (sum15 ?a ?b ?c) (true (cell ?a o)) (true (cell ?b o)) (true (cell ?c o)))
5 (<= (goal xplayer 100) (win x))
6 (<= (goal xplayer 50) (not (win x)) (not (win o)) (not open))
7 (<= (goal xplayer 0) (win o))
8 (<= (goal oplayer 100) (win o))
9 (<= (goal oplayer 50) (not (win x)) (not (win o)) (not open))

10 (<= (goal oplayer 0) (win x))
11 (<= terminal (or (win x) (win o) (not open)))

Listing 1.2. Partial rules of Number Scrabble

consists of (cell [1,9] {x,o,b}) and (control {xplayer,oplayer}), which is consistent
with Tic-tac-toe. Therefore, the GEDA can work on it.

Table 3. Self-mapping numbers of some games. Brute Force enumerates all permu-
tations of the elements of state space. GEDA+ stands for the GEDA with heuristic
grouping. Goal stands for the number of symmetries of a game in nature.

Game Brute force GEDA GEDA+ Goal

Tic-tac-toe 27! 9! 4!4!1! 8

Blocker 48! 16! 4!4!4!4! 4

Breakthrough 128! 2 2 2

Peg jumping 66! 8 8 8

Connect four 96! 8! 2!2!2!2! 2

By the phase of rule grounding, 68 grounded rules are generated for each
game.

In the phase of graph building and mapping, two ground graphs are built.
Each ground graph has 59 nodes with the improvement of graph simplification.
To generate isomorphisms of them, NAUTYv2.5 [6] is applied. As mentioned
above, 9! isomorphisms are found between them, which can be reduced to 4!4!1!2!
by the improvement of nodes grouping. The 2! is caused by the permutation of
the 2 groups with 4 nodes. In fact, enumerating these isomorphisms by an agent
corresponds to repeatedly trying filling the numbers in the cells by human.

For the phase of logical equivalence verifying, MiniSAT [1] is applied as a SAT
solver. Since MiniSAT only accepts inputs in Conjunctive Normal Form (CNF),
Tseitin transformation [10] is used to transfer the logical functions to CNF.

As a result, the equivalence of Tic-tac-toe and Number Scrabble is detected
by the GEDA in 9.73 s on average over 10 experiments, running on a laptop with
an Intel i5 CPU.

Since game equivalence happens rarely in nature, some manual examples are
tested. Four ConnectFour series games are modified with some logical conver-
sions. Each game is tested if it is equivalent with its modified version by the
GEDA with improvements. Table 2 shows the results.
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In practice, the number of enumerated bijections primarily determines the
running time of a game equivalence detection approach. Table 3 displays a com-
parison of the enumerated self-mapping numbers of some games using different
approaches, which simulate the bijection numbers between equivalent games.
It reveals that the performance of the GEDA is close to the optimal for some
games, while for some other games it is still unsatisfactory.

Taking into consideration that it usually takes negligible time to reject
inequivalent games, the GEDA has potential to be applied in real applications.

6 Conclusion

This work makes progress toward detecting game equivalence automatically by
an agent. First, it discusses the classification of game equivalence and defines
the SCGE, which covers more complex game equivalences than the previous
works. Second, it proposes the GEDA, which solves the problem of detecting
the SCGE by using a grounded rule graph and transferring the problem to well-
studied problems to achieve state-of-the-art efficiency. It works well for some
small games, while there is still room for further improvement.

This work benefits knowledge transfer between equivalent games, and can be
easily extended to similar games by relaxing some conditions. Based on this work,
solutions which standardize state spaces of equivalent games can be proposed
for space-inconsistent game equivalence detection in the future.
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