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Abstract. In this short communication, we explain how a Multilayered Per-
ceptron (MLP) can be used to compute the Euler number or Genus of a 2-D
binary image. We take as basis the results provided by a mathematical formu-
lation that is known providing exact results in the computation of this important
topological image feature to derive two MLP-based architectures, one useful for
the 4-connected case and one useful for 8-connected case. We present results
with a set of realistic images and compare our proposals in terms of processing
with other approaches reported in literature.

1 Introduction

The Euler number or Euler characteristic is a feature that allows describing the topo-
logical structure of an image or an specific object in an image. As it is known, the Euler
number has been used in many applications: industrial part recognition [1], real-time
thresholding [2], object number calculation, [3], and real-time Malayan license plate
recognition [4], to mention a few.

Mathematically speaking, the Euler number, e, of a digital binary image I(x, y) can
be obtained as follows:

e=o0—h (1)

In this case, o is the number of objects or (binary regions) in the image and 4 is the
number of holes (i.e., isolated regions of the image’s background).

Many methods have been developed to obtain the Euler number of a digital binary
image. Some of these methods, can be found in [5-25].

The algorithm outlined in [5] was one of the first reported in literature. The most
popular algorithm of this method is used by the MATLAB image processing tool. It
calculates the Euler number of a binary image as:

© Springer International Publishing Switzerland 2016
J.F. Martinez-Trinidad et al. (Eds.): MCPR 2016, LNCS 9703, pp. 44-53, 2016.
DOI: 10.1007/978-3-319-39393-3_5



Training a Multilayered Perceptron to Compute the Euler Number 45

_sl—s3—2-x

¢ 4

(2)

In this case:

. . 0 0 00 0 1 1 0
1. sl1sthenumberofmatnces{[1 O}’[O 1],[0 0},[0 O]}’

. . 0 1 1 0 1 1 1 1
2. s3>1sthenumberofmatnces{[1 1}7[1 1],[1 0},{0 1]},and

. . 0 1 1 0
3. x is the number of matrices {L O]’ [0 1}}

As we can see, before using (2), the MATLAB algorithm needs to perform up to 10
comparisons on each image pixel. Time complexity for this method is of O(N?) for a
N x N image, which is linearly dependent on the number of pixels. For image pro-
cessing tasks, where the data could be huge the constant term that is so often hidden in
the big-Oh notation becomes important.

Artificial Neural Networks (ANN), on the other hand, have been successfully used
in many tasks including signal analysis, noise cancellation, model identification, pro-
cess control, object detection, and pattern recognition, and so on. Many ANN models
have been reported in literature, since the very simple Threshold Logic Unit (TLU),
introduced by McCulloch-Pitts [26] at the beginning of the 40’s, passing by the
well-known Perceptron, presented to the world by Rosenblatt in the 50°s [27, 28] until
the so called Morphological Neural Models with and without Dendritic Processing
introduced by Ritter et al. in [29, 30, 31, 32], to mention a few.

In this paper, we show how an MLP can be used to compute the Euler number of a
2-D binary image. By making an analysis of the local results provided by a known
formulation to compute the image Euler number we arrive at the specialized ANN
architecture. We decided to use a MLP for its versatility since many years ago in a
multitude of situations. This is the first, to our knowledge, that a MLP-based archi-
tecture is used to compute the Euler number of a 2-D binary image. It constitutes and
original an interesting option to compute this topological describing feature.

The rest of this paper is organized as follows. In Sect. 2 we describe our proposed
methodology to derive at the end to the specialized MLP based architecture to compute
the Euler number of a 2-D binary image. We devote Sect. 3 to report the experimental
results that validate the applicability of the derived specialized MLP architecture as
well as a comparison with other approaches reported in literature. In short, in Sect. 4
we reach our conclusions and directions for present and future research.

2 Our Proposal

In this section we describe how an MLP can be used to obtain the Euler number of a
2-D digital binary image. We decided it to do so, because as it is known MLPs have
shown to be an excellent options to solve many problems in multiple areas where
pattern classification is required.
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To train a MLP to obtain the Euler number of a 2-D binary image we can proceed
as usual by firstly selecting a set of P training samples, for example: M x N 2-D binary
images: I = {I|, »,...,Ip}. Before training the ANN, suppose we divide set I into ¢
sub-sets of images such that each sub-set has the same Euler number, according to (1).
With this in mind, we could proceed, for example, as illustrated in Fig. 1(a) by pre-
senting, on the one hand, as input to a known Euler number computation method, that
in turn outputs a correct value of e for each image: I,k = 1,2,...,P. As can be
appreciated from this same figure, each image is also presented at the input of the
untrained MLP, that produces a value: ¢, as an estimate of e. The resulting error: E,
could be then used, in an iterative way, to adjust the MLP weights until it is ready to
compute the Euler number of an unknown input image as illustrated in Fig. 1(b).

5| Known equation
to compute e

Set of training Z E
[N P its Euler number

on
traindd MLP

(@

images i | Image for which e
~ i | we want to obtain Trained MLP

(b)

Fig. 1. A first alternative to train a MLP to compute the Euler number of a 2-D binary image.
(a) Training of the MLP. (b) Testing of the MLP.

It is clear that if we apply the above described strategy, we would have several
inconveniences. A first inconvenience would be the following: If we use a three layer
MLP, the number of input neurons would be M x N (the image size); the number of
output neurons would be directly proportional to the number of values NV of
e{...,—3,-2,-1,0,1,2,3,...} needed to be computed for an input image. In short,
the correct number of hidden neurons to obtain the desired values for e would be
certainly very big and rather difficult to find.

A second inconvenience would be that because the Euler number of an image is a
function of the number of its objects and its holes, lots of training images would be
required to reach good training results, this is because we have too many possibilities.
Instead of using an architecture like this, we propose to derive a specialized one as
follows. Let us first consider the following two expressions, introduced in [33] to
compute the Euler number of a 2-D digital binary image in terms of only three com-
parisons. For the case of 4-connected regions (regions where their pixels are allowed to
be connected only by their sides), the authors propose computing the image Euler
number as:
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)

On the other hand, for the case of 8-connected regions (regions where the pixels are
allowed to be connected by their sides and corners), the authors propose to compute e
by means of the following equation:

1 0 1 1 0 1
=+ 0)=#(1 o)+ (7 o) “
As referred in [33], these two equations seem to be the smallest expressions (in
terms of the necessary operations) that allow computing the Euler number of a 2-D

digital binary image, providing exact values as if (1) was used. To appreciate the
validity of (3) and (4), let us consider the four academic examples shown in Fig. 2.

(a) (b) © (@

Fig. 2. Examples to numerically validate the functioning of (3) and (4).

Table 1. Application of (3) and (4) to the four example of Fig. 2.

Image (a) | Image (b) | Image (c) | Image (d)
3|2 4 8 7
42 0 0 1

Table 1 summarizes the results obtained for these four binary images by means of
(3) and (4). In the case of the image (a), all three binary regions, as can be appreciated,
are 4-connected, thus the computed results by (3) and (4) are the same. In the case of
image (b), some of the pixels are only 8-connected and some others are 4-connected,
the reader can see that the obtained results are different by the application of both
equations is different. In the case of image (c), when (3) is applied, all pixels are
considered as disconnected, that is why an “8” is obtained, however when (4) is used a
“0” is obtained due to for this equation the eight pixels as considered as a connected
object with a hole. Finally, in the case of image (d), if 4-connectivity is considered, we
see that we have seven connected regions; that is why by means of (3) we obtain a “7”.
On the other side, if 8-connectivity is considered, as can be appreciated from Fig. 2(d),
all the pixels are taken as connected forming a spiral, thus the value for e in terms of
(4) is “17, as expected.
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Suppose now we want to design two specialized MLP architectures that allow
computing the Euler number of a 2-D binary image, one based on (3) and the other
based on (4). To accomplish this goal, let us represent the four numbers of each of each
of the three terms of (3) and (4) by the four variables: v|, v,, v3 and v4. It is not difficult
to see that the three arrangements used by (3) and (4) are three of the sixteen possi-
bilities depicted in Table 2.

Table 2. Values for (3) and (4).

vi | v2 | v3 | v4 | Results for (3) | Results for (4)
110 1 0/0]0]|O 0
2/0 /001 ]0 0
310 |0 |10 |0 0
41001 1]1 0 0
50 /1 |0]0]|O 0
6/0 1 |0]1]O0 0
710 |1 |1 (0|0 -1
80 |1 |1 |10 0
9|10 |0 |0 |1 1
101 |0 |0 |1 |1 0
11(1 /0|1 /0|0 0
121 (0|1 |10 0
131 /1 ]/0 /0|0 0
14(1 /1 ]/0 1|0 0
151 /1|1 0 |-1 -1
16(1 1|1 ]10 0

Fig. 3. Sketch of the specialized MLP architecture to compute the Euler number of a 2-D binary
image.

From (3) we can also see that the first and third resulting values are both positive
(rows 9 and 10), while the second term is negative (row 15). The remaining combi-
nations, according to Table 2, sixth column, are zero. However, from (4) we can
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appreciate that the first term is positive as shown in row 9, while the second and third
terms are both negative as depicted in rows 7 and 15, respectively. Column 6 sum-
marizes the results for (3), while column 7 resumes the results for (4).

In both cases, we propose to use these 16 values to train a MLP that allows
producing as output one of the three values: {—1,0, 1}, that in turn allow us deter-
mining the Euler number of a 2-D binary image in both cases of 4 and 8 connectivity.
Figure 3 depicts a sketch of the specialized MLP architecture. It has four input neurons,
nine hidden neurons and one output neuron. All activation functions of hidden neurons
were chosen as sigmoidal, however the activation function for the output neuron is a
hyperbolic tangent to approach at the end of training the three desired values:
{=1,0,1}. For adjusting the connections weights among neurons, we have used
standard Backpropagation rule with a learning rate of o = 0.1. All the synaptic weights
were initialized to random values between 0.0 and 1.0. At 5000 iterations good output
values were obtained, but because these three values never correspond to the values of
—1,0, 1, we took output y of the MLP and if y > 0.5 then r = 1, else if y > — 0.5 and
y<0.5 then r = 0 else if y< — 0.5 then r = —1. Training was attained at 0.7442 s.

The reader can easily verify that all 16 values shown in Table 2 are correctly
classified into their corresponding three classes; —1,0, 1, in both cases of 4 and 8
connectivity. This guaranties that at the moment of computing the image Euler number
by means of this specialized ANN, we will obtain a correct value as if (1) was used in
both cases of 4 and 8-connected images.

n " N "
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i
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Fig. 4. Sequential way to apply (5) over an image.

To locally compute the Euler number of a 2-D binary image /(x,y) we proceed
sequentially as illustrated in Fig. 4. As can be seen from this figure, the generated MLP
is displaced from the upper left position down to the right position inside the image,
obtaining each time one of the three values: 1, 0 or 1. At the end of the application of
this very simple procedure, we should obtain the Euler number of any 2-D binary
image I(x,y) as follows:

e =

r(k) (5)

T
k=1

In this case, T is the number of times the trained MLP is applied to image I(x, y);
r(k) = —1,0,1 is the local result output by the MLP applied to a sector of I(x,y).
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3 Experimental Results

To numerically validate the correct functioning of the two derived ANNSs, we first took
100 binary images of 256 x 256 pixels. In the case of the first the 50 images, objects
are 4-connected; in the remaining 50 images objects are 8-connected. Due to space
limitations, results for only 16 of these images are shown in Fig. 5. Table 3 depicts the
values of e for these 16 images by the application of (5) as illustrated in Fig. 4. Only the
results with the MLP for the 4-connected cases are shown in this table. As expected, in
all cases, the correct Euler number for the 16 images was correctly calculated. The
reader can demonstrate that for any other 2-D binary image, the desired e should be
correctly computed.

All the experiments were run on a desktop computer with an Intel (R) Core(TM) i7
950 CPU 3.07 GHZ x 8 cores and 18 GB of RAM; operating system: Windows 7

Ultimate x64.
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Fig. 5. 16 of the binary images used to validate the functioning of the derived MLPs.

Table 3. Values of e for the 16 images shown in Fig. 5.

Image 1 | Image 2 |Image 3 |Image 4 |Image 5 |Image 6 |Image 7 |Image 8
e=1 e=-5 |le=-2 |le=—-6 |e=-3 |e=-2 |e=—-1 |e=3
Image 9 | Image 10 | Image 11 | Image 12 | Image 13 | Image 14 | Image 15 | Image 16
e=1 e=-2 |e=3 e=0 e=—-1 |e=6 e=-5 |e=1
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Table 4. Cpmparisson with other proposals.

Method Average time in seconds over the 100 images
Ref. [14] 14.00
Ref. [22] 18.00
Ref. [5] 20.00
Ref. [17] 73.00

MLP 4-connected case 78.08
MLP 8-connected case | 73.52
Ref. [9] 151.00
Ref. [11] 1647.00

The average time to process an image of 256 x 256 pixels was of 0.7808
(4-connected case) and 0.7352 (8-connected case) seconds, respectively if the MLP is
sequentially applied as depicted in Fig. 4. If (3) or (4) are applied over an image the
average time reduces to 0.1557 and 0.1456 s, respectively. As can be seen more time is
needed to obtain the Euler number of a binary image if the ANN based method is
applied. This is normal due to more processing time is required to attain the same goal.
What we want to show in this paper is that it is possible to compute the binary image
Euler number by means of a Multi-layered Perceptron.

Compared with other standard formulations to compute the Euler number of a 2-D
binary image reported in literature in terms of time, we observe in Table 4 that our
proposals are, of course, not the fastest but neither the slowest. Both MLP-based
proposals are slower that the methods reported in [5, 14, 22, 17] but faster that the
methods reported in [9, 11].

Compared with other ANN implementations, such the one reported in [34] where a
Morphological Neural Network with Dendritic Processing (MNNDP) is trained to
accomplish the same task, the corresponding average times over the set of 100 images
used in this paper were of 402.0 s (MNNDP based implementation) and 75.8 s (MLP
based implementation), respectively.

4 Conclusions and Future Trends

In this paper we have shown that an MLP can be used to correctly determine the Euler
number of a 2-D binary image. Through an analysis of the local operations implied in
the application of known formulations, (3) and (4), we have derived a specialized
architecture.

Although our proposed MLP based implementation is slower that the sequential
implementation of (3) and (4), it constitutes an original and interesting alternative for
the automatic computation of the 2-D binary image Euler number by means of an MLP.

Although our proposed methodology can be adapted to any ANN model, we have
presented results with the MLP in both cases of 4 and 8 connectivity. A parallel work in
this same direction with morphological neural networks is reported in [34].
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Nowadays, we also are working toward the natural extension of our proposal in the
case of 3-D binary images where objects will now be represented by voxels and not by
pixels as usual.

We are also working to obtain an efficient implementation of the MLP to be run a
GPU platform under CUDA. For this we are first implementing or MLP in matrix form.
Because CUDA allows to manage the execution threats in matrix form, each execution
threat can be a value inside a matrix, this way it will not be necessary to iterate over an
image as illustrated in Fig. 4. Each threat will execute over each image pixel the
necessary operations of lecture, its processing until the MLP output. In theory, the
execution time will be equivalent to only iteration of the ANN.
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