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Abstract. In this paper we propose a novel yet simple scheme for crim-
inal detection. Rather than tracking the criminal that committed a par-
ticular crime, the police will rank the houses suspected to host criminals
according to patterns on citizens’ tips. We show that this strategy will
provably identify the desired houses under reasonable assumptions. This
will aid detectives decide where to focus their efforts. We also give related
problems of great interest to the community where the same ideas may
be applied with similar results. We complement our theoretical findings
with experiments that illustrate the effectiveness of this approach.
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1 Introduction

When there is a major criminal in a neighborhood (drug dealer, kidnapper,
serial killer), the police work can be compared to finding a needle in a haystack.
The community wants to help, but the number of calls can be overwhelming
and the citizens’ noblest intentions to contribute can be translated to countless
unsubstantiated clues. More importantly, the police cannot follow up all the tips
from the community because of limited resources. But what if instead of treating
tips as unrelated data, we group them and analyze them to identify patterns?

Recent years have shown us that the active collaboration of a large commu-
nity, also known as crowdsourcing, can play a decisive role at solving challeng-
ing tasks [1,2]. Examples include finding a lost boat in thousands of satellite
images [3], studying migration patterns of birds [4], searching for anomalous
archaeological patterns to locate the lost tomb of Genghis Khan [5], propagating
information to bring relief in natural disasters [6], tracking stolen vehicles using
social media [7], and aiding the transparency and accountability of the justice
system [8].

In this paper we formalize the idea of crowdsourcing criminal detection: using
the citizens’ tips to rank the houses in a community according to the likelihood
that they accommodate a criminal. We show that if reasonable assumptions are
met, the strategy will provably succeed at locating houses hosting criminals.
We extend the model to incorporate major drawbacks like geographic proxim-
ity, personal resentment or prejudice, and we will present other settings where
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similar strategies may be applied with very promising results. We complement
our theoretical findings with experiments that illustrate our approach and show
its effectiveness.

Organization of the Paper. In Sect. 2 we introduce our model and our main
results, which we prove in Sect. 3. In Sect. 4 we present experiments that support
our theory. In Sect. 5 we give a brief discussion of our findings, along with simple
generalizations and other settings where our ideas may be applied.

2 Model and Main Results

Suppose there is a criminal that lives in one of the n + 1 houses of a city. The
goal is to identify h�, the house that hosts the criminal. The police receives m
tips from the citizens, and each tip suggests one house suspected to be h�. In
the end we will select the most suggested house, ĥ.

Let H = {h1, h2, . . . , hn, h�} denote the set of all houses. Suppose that if a
citizen provides a tip, he will independently suggest h� with probability p�, and
hj with probability pj . We will assume without loss of generality that p1 ≥ p2 ≥
· · · ≥ pn. This way, h1 is the most suspicious (with highest probability of being
suggested) among the innocent houses. Intuitively, p� models the accuracy of
the citizens’ perception and p1 models their level of prejudice or other sources
of inaccuracy.

Our main result is presented in the following theorem. It essentially states
that as long as p� (the citizens’ accuracy) is slightly larger than p1 (the level of
prejudice), then with high probability the most suggested house will indeed be
the one hosting the criminal.

Theorem 1. Let ε > 0 be given and suppose

p� ≥ p1 +
√

2
m log

(
n
ε

)
. (1)

Then ĥ = h� with probability at least 1 − ε.

The proof of Theorem 1 is given in Sect. 3. Equivalently, Theorem 1 states
that as long as we have enough tips to overcome the gap between p� and p1, we
will identify h� with high probability. This result is related to survey sampling.
For a fixed n, the gap between p� and p1 is O(1/

√
m). A conservative two-sample

test for difference in proportions q1 and q2 states that one is able to distinguish
between the two proportions if their confidence intervals do not overlap. The
width of each confidence interval is O(1/

√
m) for m the sample size.
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2.1 Geographic Dependency

In practice, it is more likely that citizens perceive suspicious activities on houses
that they frequently see, e.g., neighboring houses or houses on their way to work.
We can model this by weighting the inherent probabilities {p1, p2, . . . , pn, p�} by
the exposure that citizens have to the houses, e.g., by the distances between
citizens and houses.

To this end we introduce the matrix G that encodes the information of the
geographic dependency. Essentially, G will specify the proximity of each citizen
to each house, and this will determine the probability that each citizen perceives
suspicious activities in each house. More precisely, let G ∈ R

m×(n+1). If citizen
i lives in house j, then Gij := 0. Otherwise, Gij denotes how close citizen i is
from house j. Intuitively, if citizen i does not live in house j, then the closest
citizen i is to house j, the larger Gij . The setup in the previous section is the
particular case where all entries in G are equal.

Example 1. Consider a street with n + 1 houses. Suppose there is one citizen
living in each house, and that each reported one tip to the police, such that
m = n + 1. Suppose we measure the geographic dependency between citizen i
and house hj using the number of houses between hi and hj , such that

G = n + 1 −

⎡
⎢⎢⎢⎢⎢⎣

n + 1 1 2 3
1 n + 1 1 2 · · ·2 1 n + 1 1
3 2 1 n + 1

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

.

In this case, the closer hi is to hj , the more likely it is that citizen i notices
suspicious activities in house hj .

Let p be the diagonal matrix with diagonal elements taking the values in
{p1, p2, . . . , pn, p�}. Let the (i, j)th entry of P := Gp (with normalized rows)
denote the probability that citizen i suggests hj (given that citizen i provided a
tip). In particular, we use Pi� to denote the probability that citizen i suggests
h�. In order to present our next result, let us introduce the set of γ-perceptive
citizens, defined as

Cγ := { i : Pi� − Pij ≥ γ ∀ j} .

Intuitively, Cγ is the set of citizens that are at least γ more likely to suggest h�

than any other house.
The next theorem is a generalization of Theorem 1. It states that if there are

enough tips from sufficiently perceptive citizens, then with high probability the
most suggested house will indeed be the one hosting the criminal.
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Theorem 2. Let ε > 0 be given. For any k ∈ N define γk as:

γk := m−k
k +

√
2
k log

(
n
ε

)
. (2)

Assume without loss of generality that each citizen provided one tip. If there
is a k ∈ N such that the set Cγk

has at least k elements, then ĥ = h� with
probability at least 1 − ε.

The proof of Theorem 2 is given in Sect. 3. Notice the double dependency on
k in Theorem 2. First, k determines the number of perceptive citizens required,
that is, the number of citizens in Cγk

. And second, it determines how perceptive
each of them must be, which is given γk. The larger k, the more perceptive
citizens are required, but the less perceptive each needs to be.

Also notice that r := m−k
k represents the ratio of non-perceptive citizens

versus perceptive citizens (that provided tips). So in words, Theorem 2 states
that as long as there is a group Cγk

of k perceptive citizens that are more likely
to suggest h� over any other house by a little more than r, then with high
probability we will identify h�. This little more is given by

√
2/k log(n/ε). In a

nutshell, Theorem 2 requires to have enough citizens that provide tips (at least k)
with sufficient accuracy (at least γk).

Finally, observe that γk is monotonically decreasing. This implies that Cγk+1

allows citizens with less perception than Cγk
, which in turn implies

Cγ1 ⊂ Cγ2 ⊂ Cγ3 ⊂ · · · .

So the question is: as k grows and γk shrinks, will Cγk
grow enough to contain

at least k citizens? This will depend on P, which in turn depends on p and G.
Fortunately, given p and G, we can iteratively test whether Cγk

has at least k
elements. If so, by Theorem 2 we will identify h� with high probability. See Fig. 1
to build some intuition.

We point out that Theorem 2 considers the worst-case scenario in which all
non-perceptive citizens may even be providing tips collaboratively and adversar-
ially to confuse the police. More about this is discussed in Sect. 5.

2.2 Tipping Prior

The matrix P determines how the vote of each citizen would be distributed if he
provided a tip. In this section we add one simple layer to our model to account
for the distribution of citizens that provide tips. To this end, observe that

Pij = P(citizen i suggests hj | citizen i provides a tip)

by definition. Letting πi denote the probability that citizen i provides a tip, it
follows that:

P(citizen i suggests hj) = Pij πi.



Crime Detection via Crowdsourcing 317

Fig. 1. Theorem 2 asks for a set Cγk with at least k citizens, such that each of these
citizens has a gap between Pi� and any Pij at least as large as γk. If such set exists, then
with high probability we will identify h�. Notice that γk is monotonically decreasing.
This implies that Cγ1 ⊂ Cγ2 ⊂ · · · . So the question is: as k grows and γk shrinks,
will Cγk grow enough to contain at least k citizens? In this figure, Cγ3 only contains 2
citizens (represented with points). It follows that |Cγ3 | = 2 < 3 = k, and so Cγ3 is not
large enough to satisfy the conditions of Theorem 2. On the other hand, Cγ4 contains 5
citizens. This time |Cγ4 | = 5 > 4 = k, and so Cγ4 satisfies the conditions of Theorem 2.
Since there is a set that satisfies these conditions, namely Cγ4 , we conclude that with
high probability we will identify h�.

It is then clear that the number of citizens that suggest hj , and hence the
outcome of our procedure, will depend on πi. This probability can be modeled
in different ways. For instance, it is reasonable to assume that citizens are more
likely to provide a tip if they live near h�. In this case, we can model πi as

(i) πi ∝ 1/di�, or

(ii) πi ∝ exp (−d2i�).

where di� denotes the distance between citizen i and h�. For example, (ii) cor-
responds to a gaussian decay in πi as citizens get far from h�.

We point out that G does not capture this information. Without taking into
account πi, this model could yield very poor performance. To see this, suppose
that citizen i is so far from h�, that Pi� is much smaller than Pij for some
houses hj neighboring citizen i. But this does not mean that citizen i suspects
of any of these houses. In fact, citizen i may not suspect criminal activities in
any house. In this case, citizen i is unlikely to provide a tip, which equates to πi

being small. But if we ignore πi, and still ask this citizen to provide a tip, it is
very likely (because Pi� is very small) that he suggests some of his neighboring
houses, contaminating the information provided to the police.

3 Proofs

3.1 Proof of Theorem 1

Let N� and Nj denote the number of suggestions that h� and hj receive. We want
to show that with high probability, the criminal lives in ĥ, the most suggested
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house. So union bounding over H\h�, we have that

P
(
ĥ �= h�

)
= P

( n⋃
j=1

{N� ≤ Nj}
)

≤
n∑

j=1

P
(
N� ≤ Nj

)
. (3)

Let Zj := 1
m (N� − Nj) such that P(N� ≤ Nj) = P(Zj ≤ 0). Letting

Zij :=

⎧⎨
⎩

1 if ith citizen suggested house h�

−1 if ith citizen suggested house hj

0 otherwise,
(4)

it is clear that Zj = 1
m

∑m
i=1 Zij . Since citizens suggest independently, the Zij ’s

are i.i.d. random variables with mean p� − pj . Using Hoeffding’s inequality [9]
we obtain

P
(
Zj ≤ 0

)
= P

(
E[Zj ] − Zj ≥ (p� − pj)

) ≤ e− m
2 (p�−pj)

2 ≤ e− m
2 (p�−p1)

2
,

where the last inequality follows because p1 ≥ pj ∀j by assumption. Going back
to (3), we have that

(3) =
n∑

j=1

P
(
Zj ≤ 0

) ≤
n∑

j=1

e− m
2 (p�−p1)

2
< ne− m

2 (p�−p1)
2 ≤ ε,

where the last inequality follows by (1). �

3.2 Proof of Theorem 2

Let Cγk
be a set satisfying the conditions of Theorem 2. We start as before:

P
(
ĥ �= h�

)
= P

( n⋃
j=1

{N� ≤ Nj}
)

≤
n∑

j=1

P
(
N� ≤ Nj

)
. (5)

In the worst case scenario, all citizens will most likely suggest the same
house (other than h�), which we will assume without loss of generality to be h1

(equivalently, Pi1 ≥ Pij ∀i, j). It follows that P(N� ≤ Nj) ≤ P(N� ≤ N1) ∀j,
which further implies

(5) ≤ nP
(
N� ≤ N1

)
= nP

(
Z1 ≤ 0

)
, (6)

where the last inequality follows by letting Z1 := 1
m (N� − N1). Defining Zij as

in (4), we can write

Z1 =
1
m

m∑
i=1

Zi1 =
1
m

∑
i∈Cγk

Zi1 +
1
m

∑
i/∈Cγk

Zi1.
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In the worst case scenario, all the non-perceptive citizens will suggest h1,
whence Zi1 = −1 for every i /∈ Cγk

. Then

Z1 ≥ 1
m

∑
i∈Cγk

Zi1 − m − k

m
,

which implies

P
(
Z1 ≤ 0

) ≤ P

⎛
⎝ 1

m

∑
i∈Cγk

Zi1 ≤ m − k

m

⎞
⎠ = P

⎛
⎝1

k

∑
i∈Cγk

Zi1 ≤ m − k

k

⎞
⎠ .

(7)

Letting Z ′
1 := 1

k

∑
i∈Cγk

Zi1 we obtain

(7) = P

(
Z ′
1 ≤ m − k

k

)
= P

(
E[Z ′

1] − Z ′
1 ≥ E[Z ′

1] − m − k

k

)
, (8)

and by Hoeffding’s inequality [9],

(8) ≤ e− k
2 (E[Z

′
1]− m−k

k )2 ≤ ε

n
,

where the last inequality follows because E[Z ′
1] = 1

k

∑
i∈Cγk

(Pi� − Pi1); by the
definition of Cγk

, every term of this sum, is at least γk, which implies E[Z ′
1] is

lower bounded by γk. We thus conclude that P(Z1 ≤ 0) ≤ ε
n . Substituting this

in (6), we obtain the desired result. �

4 Experiments

In this section we present a series of experiments to study the behavior of our
detection scheme for different geographic dependency matrices G, which together
with the inherent suspiciousness level of the houses p, determines the likelihood
that citizens perceive suspicious activities. We will test the following cases of G:

(a) Constant. This is equivalent to the most basic setup described at the begin-
ning of Sect. 2, where each citizen suggests each house independently and
identically according to p.

(b) Difference. Setup described in Example 1, where the geographic depen-
dency is given by the number of houses in between.

(c) Euclidian. Same setup as in Example 1, but with the geographic depen-
dency given by the inverse distance, measured in number of houses, i.e.,

G =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1/2 1/3
1 0 1 1/2 · · ·
1/2 1 0 1
1/3 1/2 1 0

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

.
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In each trial, we first generate a vector with independent entries selected
uniformly at random according to the uniform distribution on (0, 1)n+1. Next we
normalize and sort this vector to obtain p� ≥ p1 ≥ p2 ≥ · · · ≥ pn. The location
of h� in the street (and the rest of the houses) is selected uniformly at random.
In each trial, m citizens will provide a tip. The citizens that provide tips will
be distributed independently over the n + 1 houses (sample with replacement)
according to two tipping priors:

(i) πi := P(citizen i provides a tip) = same for every i,

(ii) πi := P(citizen i provides a tip) = exp (− d2i�
400

),

where di� denotes the distance (measured in number of houses) between hi

and h�, and 400 represents a variance of roughly 20 houses before the expo-
nential decay. Setting (i) corresponds to the basic model where all citizens are

Fig. 2. Left: Phase transition diagram of the success rate at identifying h� as a function
of the number of tips m and the gap between p� and p1, for four different settings. The
gray level at each pair (m, p� − p1) indicates the success rate over 10, 000 replicates:
brightest gray represents 100% accuracy; darkest gray represents 0 %. Each (m, p�−p1)
pair was selected randomly. For each m, all pairs above the black point have at least
95 % accuracy. The curve is the best exponential fit to these points. These curves
represent the discriminant between at least 95% accuracy (above curve) and less than
95 % accuracy (below curve). Intuitively, if we are above the curve, i.e., if we have
enough tips, and enough gap between p� and p1, we will likely identify h�. Right:
Comparison of the discriminants at 95 % accuracy for the four settings in the left. The
lower the curve the better, because then fewer tips and gap are required to identify h�.
The Euclidian setting with prior (i) requires more tips and gap, which means identifying
h� is more difficult. Prior (i) corresponds to the basic model where all citizens are
equally likely to provide tips. Prior (ii) corresponds to the more realistic model where
citizens near h� are more likely to provide tips. Under this model, identifying h� requires
fewer tips and gap. This can be appreciated by comparing the two Euclidian settings.
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equally likely to provide tips. As discussed in Sect. 2.2, setting (ii) corresponds to
the more realistic scenario where citizens near h� are more likely to provide tips.

Each citizen that provides a tip will suggest a house suspected to host crimi-
nal activities according to P. Recall that a citizen living in house hi will suggest
house hj with probability Pij . Since P = Gp, this probability depends on the
house where the citizen lives through the geographic dependency matrix G. We
will then select the most suggested house, and we will verify whether it corre-
sponds to h�. We repeat this experiment 10, 000 replicates for different values of
m and {p1, . . . , pn, p�}. The results are summarized in Fig. 2.

As predicted by our theory, h� can be consistently identified as long as there
are enough tips, and there is enough gap between p� and p1. Observe that vis-à-
vis, under prior (i), the Euclidian setting demands more tips and gap than the
rest of the settings. This is because the Euclidian matrix G has a faster decay
with distance. We can interpret this as houses being farther apart from one an
other. This suggests, in accordance to intuition, that it is easier to find h� in
denser areas, like highly populated cities, where people are close.

5 Conclusions and Discussion

In this paper we introduce a simple model to identify houses hosting criminals.
We prove that under reasonable assumptions, a crowdsourcing strategy will suc-
ceed at this task with large probability. Our experiments support our theoretical
findings. We now give some simple generalizations to the models described in
Sect. 2, along with other settings where our ideas may be easily extended.

Increasing our Odds. Recall that p� and p1 denote the underlying probabilities
that a citizen suggests h� and h1, where h1 is the most suspicious among the
innocent houses. As shown by Theorems 1 and 2, the gap between p� and p1,
and the number of citizens that provide tips (m) will determine whether our
strategy will work. These quantities can be influenced in our favor through media
campaigns to promote participation (to increase m), to encourage citizens to
be more aware (to increasing p�) and to avoid unfounded suggestions, bias or
prejudice (to restrict p1).

Organized Crime. It is also possible that the city has not only one, but sev-
eral criminals. Moreover, these criminals could be organized and determined to
collaborate in an optimal way to avoid detection. In this case, it is in the crim-
inals’ best interest to suggest the most suspicious innocent house, h1. This can
be modeled by letting the rows of P corresponding to criminals take the value
1 in the column corresponding to h1, and zeros elsewhere. In fact, Theorem 2 is
shown assuming that all the citizens not in Cγk

will suggest h1. Recall that Cγk

denotes the set of perceptive citizens that are at least γk more likely to suggest
h� than any other house.

This implies that Theorem 2 follows regardless of whether the citizens not
in Cγk

are criminals or not. We thus conclude that as long as there are enough
honest citizens (at least k) with sufficient accuracy (at least γk), then with high
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probability we will find a house hosting a criminal. Hence, we can easily gen-
eralize our model to include several criminals’ houses. The pattern of identified
houses can help detect criminal networks.

Observe that one implicit requirement of Theorem 2 is that the set Cγk

contains at least half of the citizens. This can be seen mathematically because if
k ≤ m

2 , then m−k
k ≥ 1, whence (1) requires that γk > 1, which implies Cγk

= ∅.
In other words, Theorem 2 requires that there are more perceptive citizens than
not. This is precisely because Theorem 2 is considering this worst-case adversarial
scenario. If there are more organized criminals than honest citizens, then with
high probability, h1 will have more suggestions than h�.

Detecting Corruption. Of course, none of the ideas discussed above will work
if the police force is corrupt. Fortunately, the same ideas can be adapted to detect
patterns of corruption, or equivalently, to find the most honorable policemen.
Consider, for an example, the following scenario. Suppose a citizen runs a light
and is caught by a policeman. It is the policeman duty to assign a ticket and
report it in the system. But if the policeman is corrupt, he will take a bribe and
there will be no record of this transaction.

Suppose instead that citizen i runs a light, and is caught by a policeman. An
other citizen i′ sees that a policeman (who can be identified by the police car) is
interacting with the first citizen, and he reports this to the system (anonymously,
through a website, a cell phone app, text message, phone call, etc.). Citizen i′

does not know the nature of the interaction between the policeman and citizen
i, yet he reports that an interaction occurred.

If many citizens report that there was an interaction between a certain police-
man, but there is no report of a fine in the system, this would suggest that the
policeman took a bribe. If there are many cases suggesting that a particular
policeman took bribes, it is likely he did. This would also allow us to identify the
most honorable policemen: the ones whose interactions with citizens (reported
by citizens) match the fines in the system (reported by the policeman). We can
then analyze the hierarchical structure of the corrupt policemen to determine
patterns of corruption in higher levels. This will be the case of future study.
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2. Estellés-Arolas, E., González-Ladrón-de, G.F.: Towards an integrated crowdsourc-
ing definition. J. Inf. Sci. 38, 189–200 (2012)

3. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the World-
Wide Web. Commun. ACM 54, 86 (2011)

4. Sullivan, B., Wood, C., Iliff, M., Bonney, R., Fink, D., Kelling, S.: eBird: A citizen-
based bird observation network in the biological sciences. Biol. Conserv. 142(10),
2282–2292 (2009)

5. Lin, A.Y.-M., Huynh, A., Lanckriet, G., Barrington, L.: Crowdsourcing the
unknown: The satellite search for Genghis Khan. PLoS ONE 9(12), e114046 (2014)



Crime Detection via Crowdsourcing 323

6. Goodchild, M.F., Glennon, J.A.: Crowdsourcing geographic information for disas-
ter response: a research frontier. Int. J. Digit. Earth 3, 231–241 (2010)

7. Featherstone, C.: Identifying vehicle descriptions in microblogging text with the
aim of reducing or predicting crime. In: International Conference on Adaptive
Science and Technology (ICAST), pp. 1–8 (2013)

8. Byrne Evans, M., O’Hara, K., Tiropanis, T., Webber, C.: Crime applications and
social machines: crowdsourcing sensitive data. In: Proceedings of the 22nd Inter-
national Conference on World Wide Web, pp. 891–896. ACM (2013)

9. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)


	Crime Detection via Crowdsourcing
	1 Introduction
	2 Model and Main Results
	2.1 Geographic Dependency
	2.2 Tipping Prior

	3 Proofs
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 2

	4 Experiments
	5 Conclusions and Discussion
	References


