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Abstract. Recent developments in speech synthesis have produced sys-
tems capable of providing intelligible speech, and researchers now strive
to create models that more accurately mimic human voices. One such
development is the incorporation of multiple linguistic styles in various
languages and accents. HMM-based speech synthesis is of great interest
to researchers, due to its ability to produce sophisticated features with
a small footprint. Despite such progress, its quality has not yet reached
the level of the current predominant unit-selection approaches, that select
and concatenate recordings of real speech. Recent efforts have been made
in the direction of improving HMM-based systems. In this paper, we
present the application of long short-term memory deep neural networks
as a postfiltering step in HMM-based speech synthesis. Our motivation
stems from a desire to obtain spectral characteristics closer to those of
natural speech. The results described in the paper indicate that HMM-
voices can be improved using this approach.
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1 Introduction

Text-to-speech synthesis (TTS) is the technique of generating intelligible speech
from a given text. Applications of TTS have grown from early systems which
aid the visually impaired, to in-car navigation systems, e-book readers, spoken
dialog systems, communicative robots, singing speech synthesizers, and speech-
to-speech translation systems [1].

More recently, TTS systems have moved from the task of producing intel-
ligible voices, to the more difficult challenge of generating voices in multiple
languages, with different styles and emotions [2]. Despite these trends, there are
unresolved obstacles, such as improving the overall quality of the voices. Some
researchers are striving to create TTS systems which try to mimic natural human
voices more closely.

The statistical methods for TTS, which arose in the late 1990s, have grown
in popularity [3], particularly those based on Hidden Markov Models (HMMs).
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HMMs are known for their flexibility in changing speaker characteristics, having
a low footprint, and their capacity to produce average voices. Previously, HMMs
were utilized extensively in the inverse task to TTS of speech recognition. Here
they have proved to be successful at providing a robust representation of the
main events into which speech can be segmented [4], using efficient parameter
estimation algorithms.

More than twenty statistical speech synthesis implementations have been
developed for several different languages from around the world. For example
[5–16], are a few of the recent publications. Every implementation of a new
language, or one of it’s dialects, requires the adaptation of HMM-related algo-
rithms by incorporating their own linguistic specifications, and making a series
of decisions regarding the type of HMM, decision trees, and training conditions.

In this paper, we present our implementation of a statistical parametric
speech synthesis system based on HMM, together with the use of long short-
term memory postfilter neural networks for improving its spectral quality.

The rest of this paper is organized as follows: Sect. 2 provides some details of
an HMM-based speech synthesis system and in Sect. 3, long short-term memory
neural networks are briefly described. Section 4 gives the proposed system and
the experiments carried out in order to test the postfilter. Section 5 presents
and discusses the results and objective evaluations conducted, and finally, some
conclusions are given in Sect. 6.

2 Speech Synthesis Based on HMM

An HMM is a Markov process with unobserved or hidden states. The states
themselves emit observations according to certain probability distributions.

In Fig. 1, a representation of a left-to-right HMM is shown, where there is a
first state to the left from which transitions can occur to the same state or to the
next one on the right, but not in the reverse direction. In this pij represents the
probability of transition from state i to state j, and Ok represents the observation
emitted in state k.

Fig. 1. Left to right example of an HMM with three states

In HMM-based speech synthesis, the speech waveforms can be reasonably
reconstructed from a sequence of acoustic parameters learnt and emitted as
vectors from the HMM states [1]. Typical implementation of this model includes
vectors of observations comprising of the pitch, f0, the mel frequency cepstral
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coefficients, MFCC and their delta and delta features, for an adequate modeling
of the dynamic features of speech. A common tool used to build these HMM-
based speech systems is known as HTS [17], which we also use in this paper.

In order to improve the quality of the results, some researchers have recently
experimented with postfiltering stages, in which the parameters obtained from
HTS voices have been enhanced using deep generative architectures [18–21],
for example restricted boltzmann machines, deep belief networks, bidirectional
associative memories, and recurrent neural networks (RNN).

In the next section, we present our proposal to incorporate long short-term
memory recurrent neural networks in order to improve the quality of HMM-based
speech synthesis.

3 Long Short-Term Memory Recurrent Neural Networks

Among the many new algorithms developed to improve some tasks related to
speech, such as speech recognition, several groups of researchers have exper-
imented with the use of Deep Neural Networks (DNN), giving encouraging
results. Deep learning, based on several kinds of neural networks with many
hidden layers, have achieved interesting results in many machine learning and
pattern recognition problems. The disadvantage of using such networks is they
cannot directly model the dependent nature of each sequence of parameters with
the former, something which is desirable in order to imitate human speech pro-
duction. It has been suggested that one way to solve this problem is to include
RNN [22,23] in which there is feedback from some of the neurons in the network,
backwards or to themselves, forming a kind of memory that retains information
about previous states.

An extended kind of RNN, which can store information over long or short
time intervals, has been presented in [24], and is called long short-term memory
(LSTM). LSTM was recently successfully used in speech recognition, giving the
lowest recorded error rates on the TIMIT database [25], as well as in other
applications to speech recognition [26]. The storage and use of long-term and
short-term information is potentially significant for many applications, including
speech processing, non-Markovian control, and music composition [24].

In a RNN, output vector sequences y = (y1, y2, . . . , yT ) are computed from
input vector sequences x = (x1, x2, . . . , xT ) and hidden vector sequences h =
(h1, h2, . . . , hT ) iterating Eqs. 1 and 2 from 1 to T [22]:

ht = H (Wxhxt + Whhht−1 + bh) (1)

yt = Whyht + by (2)

where Wij is the weight matrix between layer i and j, bk is the bias vector
for layer k and H is the activation function for hidden nodes, usually a sigmoid
function f : R → R, f(t) = 1

1+e−t .
Each cell in the hidden layers of a LSTM, has some extra gates to store values:

an input gate, forget gate, output gate and cell activation, so values can be stored
in the long or short term. These gates are implemented following the equations:
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it = σ (Wxixt + Whiht−1 + Wcict−1 + bi) (3)

ft = σ (Wxfxt + Whfht−1 + Wcfct−1 + bf ) (4)

ct = ftct−1 + it tanh (Wxcxt + Whcht−1 + bc) (5)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) (6)

ht = it tanh (ct) (7)

where σ is the sigmoid function, i is the input gate activation vector, f the
forget gate activation function, o is the output gate activation function, and c
the cell activation function. Wmn are the weight matrices from each cell to gate
vector.

4 Description of the System

Often, the resulting voices from the HTS system have notable differences with the
original voices used in their creation. It is possible to reduce the gap between nat-
ural and artificial voices by additional learning directly applied to the data [18].
In our proposal, we use aligned utterances from natural and synthetic voices
produced by the HTS system to establish a correspondence between each frame.

Given a sentence spoken using natural speech and also with the voice pro-
duced by the HTS, we extract a representation consisting of one coefficient
for f0, one coefficient for energy, and 39 MFCC coefficients, using the system
Ahocoder [27]. The inputs to the LSTM network correspond to the MFCC para-
meters of each frame for the sentences spoken using the HTS voice, while the
output corresponds to the MFCC parameters given by the natural voice for
the same sentence. In this way, we have an exact correspondence given by the
alignment between the vectors from each utterance using the HTS voice and the
natural voice.

Hence, each LSTM network attempts to solve the regression problem of trans-
forming the values of the speech produced by the artificial and natural voices.
This allows a further improvement to the quality of newly synthesized utterances
with HTS, and uses the network as a way of refining these synthetic parameters
to more closely resemble those of a natural voice. Figure 2 outlines the proposed
system.

4.1 Corpus Description

The CMU Arctic databases were constructed at the Language Technologies
Institute at Carnegie Mellon University. They are phonetically balanced, with
several US English speakers. It was designed for unit selection speech synthesis
research.

The databases consist of around 1150 utterances selected from out-of-
copyright texts from Project Gutenberg. The databases include US English male
and female speakers. A detailed report on the structure and content of the data-
base and the recording conditions is available in the Language Technologies
Institute Tech Report CMU-LTI-03-177 [28]. Four of the available voices were
selected: BDL (male), CLB (female), RMS (male) and SLT (female).
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Fig. 2. Proposed system. HTS and Natural utterances are aligned frame by frame

4.2 Experiments

Each voice was parameterized, and the resulting set of vectors was divided into
training, validation, and testing sets. The amount of data available for each voice
is shown in Table 1. Despite all voices uttering the same phrases, the length
differences are due to variations in the speech rate of each speaker.

Table 1. Amount of data (vectors) available for each voice in the databases

Database Total Train Validation Test

BDL 676554 473588 135311 67655

SLT 677970 474579 135594 67797

CLB 769161 538413 153832 76916

RMS 793067 555147 158613 79307

The LSTM networks for each voice had three hidden layers, with 200, 160
and 200 units in each one respectively.

To determine the improvement in the quality of the synthetic voices, several
objective measures were used. These measures have been applied in recent speech
synthesis experiments and were found to be reliable in measuring the quality of
synthesized voices [29,30]:

– Mel Cepstral Distortion (MCD): Excluding silent phonemes, between two
waveforms vtarg and vref it can be measured following Eq. 8 [31]

MCD
(
vtarg, vref

)
=

α

T

T−1∑
t=0

√√√√ D∑
d=s

(
v
targ
d (t) − vref

d (t)
)2

(8)

where α = 10
√
2

ln 10 , T is the number of frames of each utterance, and D the
total number of parameters of each vector.
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– mfcc trajectory and spectrogram visualization: Observation of these figures
allow a simple visual comparison between the similitude of the synthesized
and natural voices.

These measures were applied to the test set after being processed with the
LSTM networks, and the results were compared with those of the HTS voices.
The results and analysis are shown in the following section.

5 Results and Analysis

For each synthesized voice produced with HTS and processed with LSTM net-
works, MCD results are shown in Table 2. It can be seen how this parameter
improved when all voices were processed with LSTM networks.

This shows the ability of these networks to learn the particular regression
problem of each voice.

Table 2. MCD between HTS and natural voices, and between LSTM postfiltering and
natural voices

Database HTS to natural LSTM-pf to natural

BDL 8.46 7.98

CLB 7.46 6.87

SLT 7.03 6.65

RMS 7.66 7.60

Fig. 3. Evolution of MCD improvement in LSTM postfiltering during training epochs
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The best result of MCD improvement with the LSTM postfiltering is CLB
(11.2 %) and the least best was RMS (1 %). Figure 3 shows how MCD evolves
with the training epochs for each voice. All HTS voices, except one, were
improved by the LSTM neural network postfilter for MCD after the first 50
epochs of training.

The differences in the number of epochs required to reach convergence in each
case are notable. This can be explained by the difference in MCD between HTS

Fig. 4. Illustration of enhancing the 5th mel-cepstral coefficient trajectory by LSTM
postfiltering

Fig. 5. Comparison of spectrograms
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and natural voices. The gap between them is variable and the LSTM network
requires more epochs to model the regression function between them.

An example of the parameters generated by the HTS and the enhancement
pursuit by the LSTM postfilter is shown in Fig. 4. It can be seen how the LSTM
postfilter fits the trajectory of the mfcc better than the HTS base system.

In Fig. 5 a comparison of three spectrograms of the utterance “Will we ever
forget it?” for the voices of: (a) Original (b) HTS and (c) LSTM postfilter
enhanced, is shown. The HTS spectrogram usually shows bands in higher fre-
quencies not present in the natural voice, and the LSTM postfilter helps to
smooth it, making it closer to the spectrogram of the original voice.

6 Conclusions

We have presented a new proposal to improve the quality of synthetic voices
based on HMM with LSTM networks. The method shows how to improve an
artificial voice and make it mimic more closely the original natural voice in terms
of its spectral characteristics.

We evaluated the proposed LSTM postfilter using four voices, two masculine
and two feminine, and the results show that all of them were improved for
spectral features, such as MCD measurement, spectrograms, and mfcc trajectory
generation.

The improvement of the HTS voices in MCD to the original voices were
observed from the first training epochs of the LSTM neural network, but the
convergence to a minimum distance took many more epochs. Due to the exten-
sive amount of time required to train each epoch, further exploration should
determine new network configurations or training conditions to reduce training
time.

Future work will include the exploration of new representations of speech
signals, hybrid neural networks, and fundamental frequency enhancement with
LSTM postfilters.
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E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804. Springer, Hei-
delberg (2005)

27. Erro, D., Sainz, I., Navas, E., Hernaez, I.: Improved HNM-based vocoder for sta-
tistical synthesizers. In: InterSpeech, pp. 1809–1812 (2011)

28. Kominek, J., Black, A.W.: The CMU Arctic speech databases. In: Fifth ISCA
Workshop on Speech Synthesis (2004)

29. Zen, H., Senior, A., Schuster, M.: Statistical parametric speech synthesis using
deep neural networks. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2013)

30. Zen, H., Senior, A.: Deep mixture density networks for acoustic modeling in statis-
tical parametric speech synthesis. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2014)

31. Kominek, J., Schultz, T., Black, A.W.: Synthesizer voice quality of new languages
calibrated with mean mel cepstral distortion. In: SLTU (2008)


	LSTM Deep Neural Networks Postfiltering for Improving the Quality of Synthetic Voices
	1 Introduction
	2 Speech Synthesis Based on HMM
	3 Long Short-Term Memory Recurrent Neural Networks
	4 Description of the System
	4.1 Corpus Description
	4.2 Experiments

	5 Results and Analysis
	6 Conclusions
	References


