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Abstract. In this paper, a new method based on an efficient improve-
ment combination of Event-Related Desynchronization (ERD), Event-
Related Synchronization (ERS) and lateral activity of sensorimotor cor-
tex features is presented to analyze both left and right hand motor
imagery tasks. Our proposal uses delta, theta, alfa and beta rhythms
to BCI system. From the spectral power, an efficient combination of
ERD/ERS/laterality features was used. Because electroencephalogram
signals are non-stationary type and highly vary over time and frequency,
a detailed time-frequency analysis is applied. Features coming from time-
frequency analysis, where eight frequency bands ranging from 0 to 32 Hz
were chosen. Features vectors are classified by Gaussian classifier and
the final performance is evaluated in cross-validation scheme. This novel
approach was tested using the BCI competition IV data set 1. The detec-
tion of the left and right hand motor imagery task was very good, with
a result of 96.4 % using BCI-Competition -IV. When comparing results
from others competing methods reported in the literature, our approach
resulted the best and useful to create a self-paced BCI-system.
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1 Introduction

There is a channel for communicating the brain and the external environment
based on EEG signals. This channel is the so-called Brain Computer Interface
(BCTI), which offers an effective help for people with motor disabilities [1] such
as amyotrophic lateral sclerosis [2] or spinal cord injury [3]. Several studies have
shown that the motor imagery area (contralateral and ipsilateral sensorimotor
cortex, respectively) provides information about imagery movements of hands,
feet and tongue. In this way, signals are manifested as ERD/ERS (event-related
desynchronization/synchronization) [2,4-6]. Due to the fact that the ERD/ERS
patterns are opposite, imaginary movements of each hand and foot are suitable
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to be classified [3,7] u and 8 rhythms registered on the sensorimotor area can be
modified by executing either imaginary or observed hand and foot movements.
Also, ¢ and 3 rhythms may be used to support EEG-based BCI systems (BCls)
[8]. The selection of adequate EEG features in motor imagery movements is cru-
cial, since it determines the accuracy of the classification. Therefore, for attain-
ing good BCI systems, the choice of appropriate and reliable features coming
from EEG signals constitutes a very important issue. This is how, in frequency
domain, Pregenzer showed the importance of an appropriate preselection of EEG
spectral components for accomplishing good classification results [9]. Pregenzer
used different frequency bands and resolutions coming from Morlet wavelets,
combined with Fisher criteria in order to classify two clases: the left and the right
hand motor imagery, obtaining upto 90 % of good classification. In order to set up
a realistic comparison between different methods for processing and classifying
EEG signals, the BCI Competition was proposed. Specifically, Data Set I for BCI
Competition IV [10] was focused on a benchmark to classify two mental tasks:
right-hand imaginary movement and left-hand imaginary movement. With this
benchmark, signals obtained with EEG were provided and in addition, they were
obtained following the same scheme used by the other competition participants.
Also, the rules and requirements were laid down. For the present work, the chief
functional blocks are shown in Fig. 1. The first module “EEG signal acquisition”
reads and transmits EEG signals from an Epoc-Emotiv device to a computer.
The second block “signal processing” selects C3 and C4 channel and normalizes
amplitudes. The third block develops a time-frequency transformation through
a Short-Time Fourier Transform. The fourth block decomposes an EEG signal
into 8 frequency bands. The next block “ERS/ERD detection” constitutes the
core of our proposal, detecting «, 0 and p rhythms over 8 band frequencies.
Finally, the “classification motor imagery” block senses 2 mental imagery move-
ments and no-control activity calculating the difference between C3 and C4. The
rest of the paper is structured as follows. In Sect. 2, Event-Related Desynchro-
nization/Synchronization is related to alfa,beta and mu rhythms. Materials and
Methods are presented in Sect.3. Section4 shows and discusses experimental
results. Finally, conclusions and future works are given in Sect. 5.

2 Event-Related Desynchronization/Event-Related
Synchronization for Brain-Computer Interface

Motor imagery affects the frequency band in the interval of 0.1-32 Hz. Authors
typically reference two specific bands: the p band (8-12Hz.) and the § band
(1624 Hz.) [3,7,8,11]. The motor imagery process has two leading steps, the first
one is related to the Event-Related Desynchronization (ERD), which affects both
the p and the 8 bands (decrease in activity); the second one event is related to
the Event-Related Synchronization (ERS), which particularly affects the 5 band.
In this study, we address for the first time the use of the whole band frequency
from 0 to 32 Hz., instead of only the 1 and the 8 bands. Our proposal is based on
searching the best representative frequency interval in order to efficiently detect
motor imagery self-paced cues.
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Fig. 1. General functional blocks of the EEG-based BCI system

3 Materials and Methods

3.1 Materials

This study reports results based on data from two sources: the first one con-
stituted by the BCI Competition IV data sets I, provided by the Berlin Group
[10]. Those data were selected because they present an asynchronous approach,
which is suitable for our main purpose. The second one consists of the EEG
recordings, which comes from an EPOC headset provided by Emotiv Systems!,
which is owned by our own laboratory.

BCI Competition IV Data Sets I

The BCI Competition IV Data Sets I contain the EEG signal recorded from 9
healthy people performing motor imagery tasks. The EEG data were recorded
from 59 channels, at a rate of 100 samples per second and per subject. The
classes of mental task are: (i) imaginary movement of the left hand, (ii) imag-
inary movement of the right hand and (iii) imaginary movement of any foot.
Calibration data were recorded as follows: an arrow was displayed on a com-
puter screen indicating the class of the motor imagery task to be performed, the
arrow was presented for a period of 4, during which the subject was supposed
to imagine the performance of the movement. Periods of time were interleaved
with 2s of blank screen and with 2s of a cross in the center of the screen. The
cross was superimposed to the cue, so it was displayed for 6s.

3.2 Time-Frequency Representation

General EEG recorded data are represented by the array X (1), where X €
RN=M N represents the number of available channels, M represents the number
of samples per channel, z,; represents ¢ channel where ¢ € 1...N. Each signal is
processed in one-second window.

! Emotiv System, http://emotiv.com/.
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Giving that the EEG signal is non-stationary type, one sample shift is taken
from one window to the next one (one-second window each time).

The mean of the signal for each channel T, is subtracted from every z;
row to eliminate the offset and to produce z.;. The spectral power P,; of each
channel is calculated using the Short-Fourier Transform (SFT) (.%#). In order to
reduce high frequency artifacts due to windowing process, a blackman window
is used (2) to calculate the SFT. In order to get real power spectrum P, the
spectral power is multiplied by its complex conjugate (#*) (3).

Flahy = . TaWsiackmanlnle 7" (2)
P = F{in} - F {7} (3)

The whole EEG frequencies (between 0 and 32 Hz.) associated to the delta
(6), theta (0), alpha («) and beta (8) rhythms, constitute the most important
part of the spectral power P.; since the purpose is to detect ERD/ERS com-
plexes.

3.3 Feature Extraction

From the power representation P,.; (3), ranging from 0 to 32Hz., we compose
eight cumulative power values as: PL = Y P, € (0 —4]Hz., P2 = Y. P, €
(4—8|Hz., P2 =P, € (8—12|Hz, PL =3 P, € (12— 16| Hz., P5 =
S P € (16—20|Hz., PS =Y P, € (20—24] Hz., PT, = S P,; € (24— 28] Hz.,
P3 =3P, € (28 — 32] Hz. (see Fig.2), each of them associated to the delta
(6), theta (0), alpha («) and beta (§) rhythms.

3.4 Event-Related Desynchronization/Event-Related
Synchronization Detection

In this article, any reference to ERD/ERS refers to the frequency combination
at a giving time, rather than the sequential-spatial distributed ERD/ERS phe-
nomenon [6]. Motor imagery tasks are detected through out ERD/ERS signals;
three states were monitored from eight different frequency bands at the same
time: attenuation (related to ERD), enhancement (related to ERS) and laterality
(related to C4 — C3 difference).
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Fig. 2. Interval frequency division of 8 bands

3.5 Imagery Movement Detection

Starting from the spectral power chl (for j = 1,2,3...8), some bands were atten-
uated (ERD) and others were enhanced (ERS) (performing imagery movements
of hands and feets). Another parameter that was analyzed was the lateral activ-
ity (motor imagery movement: left or right hand), called laterality (defined as
the difference between the C4 and the C3 channel).

For each P’; signal a low-pass FIR filter was applied in order to eliminate arti-
facts and to get a flat signal. Filtered Pgl gives us better conditions to determine:
(1) attenuated signal (ERD) or enhanced signal (ERS).

The main task was sensing when the frequency band is higher or lower than
upper threshold or bottom threshold; and also sensing if the difference between
two channels (C4—C3) was higher or lower than a lateral threshold.

One event happens if the signal P/, combinations were turned on (enhancing
event) and one of its were turned off (attenuating event).

At the end, each i—channel results with an attenuating event, an enhancing
event, and a lateral event, T%, T¢. and T!, respectively. The eight-dimension
T%%" threshold defines a particular motor imagery movement (left or right hand
imagery movement).

3.6 Classification

The whole power spectral P, was used to build a describing feature vector.
The feature vector was conformed by slopes (gradient) of P.; for a given time,
particularly, around motor imagery event. In order to obtain invariance from
one person to other person in the feature vector, whole power espectral matriz
was centered-reduced (zero mean value and one standard deviation). The slope
was estimated by the difference between left and right power spectral values
VP(k)SE at a given k time (see Eq.4).

VPR = (P(k+ D5 = Pk - 1)57) (4)

ci ct
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From VP(k)CF, we have conformed four histograms according to four
orientations: h_.1 = > slopes € [0°,45°), h.2 == > slopes € [45°,90°), h_3
== > slopes € [—45°,0°) and h4d == > slopes € (—90°,—45°). The his-
tograms are then weighted with the magnitude of the gradient. Finally, four
histograms are obtained for each channel and each band associated to imagery
movements. _

The final feature descriptor vector d was conformed by histograms (8 bands
multiplied by 4 histograms). A 32-dimension vector is used for classification. A
Gaussian classifier (see Eq.5) was used in cross-validation mode (50 % — 50 %)

to evaluate the classification performance.

p(j/classi) = (2m) 73|z, "2 exp[—é(ﬁfmda“i)Tzi—l(ﬁ’fmclassi)] (5)

4 Results and Discussions

Proposed pattern recognition methodology for motor imagery detection was
applied for offline motor imagery detection with well-known BCI Competition
IV data setl. To evaluate motor imagery (intention of movement), a detection
rate and an associated noise are calculated from (6) and (7), where TP stands
for True Positives, F' P for False Positives and F'IN for False Negatives.

TP
Detection Rate = m . (6)
TP
Miss Detection Rate = 1 — TP FP) (7)

4.1 Offline Motor Imagery Detection

ERD/ERS/laterality analysis is based on the EEG activity during and after a
motor imagery activity. First, the BCI Competition IV Data Sets I was ana-
lyzed (five subjects were taken: BCICIV_calib_ds1b, BCICIV _calib_dslc, BCI-
CIV_calib_ds1d, BCICIV_calib_dsle and BCICIV_calib_dslg). From Data set I
(59 channels at 100 samples per second; healthy people), only the C3 and the
C4 channels were selected, electrodes corresponding to the sensory-motor area
(27" and 31%¢ channels from BCI Competition IV data set 1). In order to
analyze the EEG recordings and the ERD/ERS/laterality complexes there in
contained, the EEG recordings are transformed to a time-frequency representa-
tion (spectrogram through Short-Time Fourier Transform). Figure 3 exemplifies
the detection of the imagery motor originated from the BCICIV _calib_dslb
database. There, the initial points, indicating the beginning of the intention of
movement, are shown. The initial points provided by the database are marked as
(> marks) and the the initial points originated from our methodology are marked
as (x). Also, it is indicated the false positive points and the true positive points.
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The signals coming from two different channels are drawn together in two
colors: red and blue. Red color indicates C3 channel whereas the blue color
indicates C4 channel. In order to illustrate in a clearer manner the detec-
tion of the imagery motor, Fig.3(b) depicts an amplification of a region of
the last Fig. (3(a)). There, it is indicated how the two types of initial points,
just described, coincide. Figure 3 shows motor imagery cues detected with our
proposal (* marks) and with database competition (>> marks). The thresholds
Ta., T¢, and T!, were estimated experimentally and the values were: T%, =
[0.20,0,0,0,0,0,0,0], T¢ = [5,0.02,0.005,0.005,0.0005,0.0005, 0.0005, 0.0005],
and T', = [0.003,0.005,0.007,0.007,0.0005,0.0003, 0.0003, 0.0003] for an atten-
uating event, an enhancing event, and a lateral event, respectively. Above thresh-
olds were used for the five people under analysis. Our methodology detects up to
99 % (mean of 96.4 %) of the imagery movements for the five evaluated dataset
coming from the BCI Competition IV data. The Miss Classification represents
the detection of False Positives and it was around 0.116, as shown in Table 1.

Table 1. Imagery movement detection and miss detection for BCI competition IV
dataset I.

Data set Detection rate | Miss detection rate
BCICIV _calib_ds1b | 99 % 0.1

BCICIV _calib_dslc | 97 % 0.2

BCICIV _calib_ds1d | 95 % 0.1

BCICIV _calib_dsle | 98 % 0.1

BCICIV _calib_dslg | 93 % 0.08

Mean 96.4 % 0.116

Using the BCI-Competition-IV data [10], we compared the detection perfor-
mance of our proposal vs. five competitive methods reported in the literature (see
Table 2). The five previous methods were: (a) Common Spatial Pattern (CSP),
(b) Discriminative Common Spatial Pattern (DCSP) [12], (c¢) Local Temporal
Common Spatial Pattern (LTCSP) [13], (d) Spectrally and Temporally Weighted
Classification Method (STWCM) [14] and Time-series discrimination using fea-
ture relevance analysis in motor imagery classification (TSDFRAMI) [15]. As you
can see in Table 2, our methodology proved a significant improvement on detect-
ing the intention of movement for the right or left arm when it was applied on
the data base provided by BCI-Competition IV. Further, when it was compared
with the most competitive methods, it provided an improvement by going from
92.86 % (Time-series discrimination using feature relevance analysis in motor
imagery classification (TSDFRAMTI)) to 96.4 %, i.e. 3.54 % of improvement over
the best existing method for detecting imagery movements.
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Table 2. Detection performance of the most competitive methods in detection of motor
imagery for BCI competition IV: Common Spatial Pattern (CSP), Discriminative Com-
mon Spatial Pattern (DCSP), Local Temporal Common Spatial Pattern (LTCSP),
Spectrally and Temporally Weighted Classification Method (STWCM), Time-series
discrimination using feature relevance analysis in motor imagery classification (TSD-
FRAMI) and the proposed method.

CSP | DCSP | LTCSP | STWCM | TSDFRAMI | Our proposal (BCI-competition)
1% |73% | 88% 88 % 92.86 % 96.4 %

5 Conclusion and Future Work

A new methodology to detect and to classify imagery movements was proposed.
It is based on an efficient improvement of the combination of attributes origi-
nating from the Event-Related Desynchronization (ERD), Event-Related Syn-
chronization (ERS) and the lateral activity of the sensorimotor cortex. These
attributes were calculated by analyzing time-frequency spectrograms ranging
from 0 to 32 Hz due to the non-stationarity of EEG signals.

Our approach shows its efficiency by using only two channels (C3 and C4)
taken from sensorimotor cortex region, instead of using the whole 59 channels.
With these two channels it is possible to detect the activity of the imagery motor
(activity of control) or no-activity (activity of no-control) as well as classify left
and right motor imagery.

Also, our methodology proved a significant improvement on detecting the
intention of movement for the right or left arm when it was applied on the data
base provided by BCI-Competition IV. Further, when it was compared with the
most competitive methods, it provided an improvement by going from 92.86 %
(Time-series discrimination using feature relevance analysis in motor imagery
classification (TSDFRAMI)) to 96.4 %, i.e. 3.54 % of improvement over the best
existing method for detecting imagery movements.

These results suggest that our approach may be utilize as an efficient switch
between activity of control and activity of no-control. Activity of control repre-
sents wanting to make a movement with the hands while activity of no-control
stands for no intention of any activity, useful to create a asynchronous self-paced
BClI-system.

Future work most be focus on the way to automatically determine the fol-
lowing thresholds: T'¢,, T, and T',, for each person and each kind of test. The
authors plan to improve the learning phase (time reduction) by parallel process-
ing, as well as real-time implementation of the whole proposal BCI-asynchronous
system. The goal will be to implement control mobile device i.e. tablet, cellphone;
by motor imagery.
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