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Abstract. The object surfaces on the Range images can be easily
treated as elevations, at each point of these surfaces. The Sparse Normal
Detector technique focuses in the extraction of keypoints, from homoge-
neous surface of Range images. Additionally, the contour of the objects in
the scene can be represented through these points. First, the homogene-
ity feature is computed by means of the Sum and Difference Histogram
technique, producing the Homogeneity image. Then, the corresponding
dense normal vectors of the surface formed by this image are computed.
A normal probability density function is used to select the most outstand-
ing dense vectors, yielding the Sparse Normal descriptor. These vectors
form new flat directional surfaces. The final detection of interesting point
is performed using the Sparse Keypoints Detector technique. The exper-
imental test involves a qualitative analysis, using the Middlebury and
DSPLab dataset, and a quantitative evaluation of repeatability.
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1 Introduction

A Range image provides the geometrical information (depth), not only the 2D
information of a RGB image. Moreover, the feature extraction task in Range
images is generally invariant to scale, rotation and illumination [1]. RGB-D
images are acquired by means of a low cost 3D acquisition system, such as
the Microsoft Kinect sensor [14].

On the other hand, the interesting point detection is an essential phase to
develop a local feature extractor [2]. In this phase, the data, (for instance, texture
in intensity images) is obtained to characterize the keypoints. Recently, Steder
et al. [12] have introduced the Normal Aligned Radial Feature (NARF) for 3D
object recognition from a Range image. Some other local detectors and descrip-
tors for 2D or their version for 3D images are: Harris corner detector [5,6], SURF
(Speed Up Robust Feature) [7], and FAST (Features from Accelerated Segment
Test).
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The proposal presented here accomplishes a robust and balanced transfor-
mation from dense to a sparse process. First, the surface of the Homogeneity
image H,, is constructed from the texture features of the Range image. More-
over, the dense normal vectors referred here as Np of the Homogeneity image
are computed. After in the sparse process, a Gaussian distribution is used to
select a set with the more representative normal vectors (Np) at each x-, y-, z-
direction, forming a sparse normal vectors referred here as Ng. Additionally, is
carried out an analysis on the neighborhood of each component of Ng through
the pdf (Probability Density Function), in accordance to describe this particu-
lar region. Afterwards, the interesting points are obtained from each directional
surface highlighting the contour of the objects in the scene. Experimental tests
have been performed with two different datasets: (1) the benchmark Middlebury
proposed by Pal et al. in [3] and Hirsmiller et al. in [8], and (2) our DSPLab
dataset [9]. Finally, a comparative analysis among our proposal and different
proposals for key points detection considered in the-state-of-art demonstrates a
high performance at least in almost all the test.

The main contributions of this study are: first, the use of the homogeneity
texture feature as a local surface descriptor applied to Range images. In partic-
ular, it is proposed to highlight the homogeneous regions because they represent
the smooth curvatures of the Range image. Second, this proposal in the sparse
process allows a transformation from R? to R space, implying a significant reduc-
tion in the cardinality of the descriptor vector (Ng vector). These descriptors
allow the representation of the scene through the separation of the forefront
and the background planes. Finally, objects are defined by their keypoints high-
lighting their contours, with a low computational cost. In this paper, firstly, the
proposed technique is described in Sects. 2 and 3. Section 4 discusses the results
with a deep qualitative and quantitative analysis. Finally, brief conclusions are
discussed in Sect. 5.

2 Methodology

This section describes each phase of our proposal based on the Sparse Normal
Detector (SND) technique. Figurel illustrates a global block diagram of the
proposed strategy. The Range images used are the Middlebury dataset and the
Depth images acquired by a Kinect sensor, in which the income image could con-
tain either controlled conditions or real indoor scenes. In the dense process, the
homogeneity texture feature constructs a dense surface from the Range image,
to highlight the uniform regions. Then, the normal vectors (called dense normal
vectors) of the Homogeneity image are computed. Later, in the sparse process,
M., M, and M, surfaces are built up by selecting the dense normal vectors
in accordance to a Gaussian distribution. This process is called Sparse Normal
descriptor (SN-descriptor), which carries out a transformation from R? to R. The
vectors contained in the M, M, and M, surfaces are the sparse normal vectors,
with which are represented the most distinctive values of these surfaces. Finally,
the interesting points corresponding to each object in the scene are computed
from the sparse vectors, as well as of the pdf information computed.
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Fig. 1. Global diagram of the Sparse Normal Detector technique (SND).
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2.1 Dense Porcess: The Homogeneity Image (H,,)

The Range image is a gray-level image with areas of smooth variation of intensity
representing the depth of different objects. Therefore, in this paper we suggest
that, the extraction of the homogeneity feature is similar to obtain a surface
with a minimal change of energy. Furthermore, the change in the flow obtained
from the homogeneity feature forms geodesic curves that highlight the contour
and the curvature among regions [13]. In this case, the representation of the
geodesic curves is similar to depict the iso-elevation lines (lines that, join of
the points of equal value in height), usually used on topographic maps. On
another hand, the information obtained from the Homogeneity image allows us
represent objects as minimal surfaces (see Fig. 2(c)), with a Gaussian curvature
established as a positive hemisphere [4,11], see Fig.2 top row. Therefore, the
extraction of normal vectors for all the points in such a hemisphere allows a
dense representation of the Range image surface. These vectors are orthogonal
to all tangent vectors in the H,, surface yielding the dense descriptor referred
as Np. The H,, image contains the homogeneity texture feature of the Range
image, and it is obtained using the Sum and Difference of Histograms technique
(SDH) presented in [10]. A window size of 3 x 3 pixels is applied to the SDH,
yielding an range image of K x L size and it is defined in the range 0 to 255 grey
levels. This process is illustrated in the first block of the Fig. 1. Note that, the
equal values of homogeneity are depicted as iso-elevation lines (see first block,
Homogeneity image Fig. 1).

Range Image Homogeneity Image y-Direction

Normal
Surface|

Top View
of Normal
Surface

(a) (b) (c)

Fig. 2. Column (a) depicts the surface of the Range image as a positive hemisphere,
column (b) the H,, surface is shown as a highlight of (a). The surface in y-direction is
formed through sparse vectors. The labelled region is considered a smooth flat.

2.2 Sparse Process: The Sparse Normal Descriptor (SN-Descriptor)

The Sparse Normal descriptor process (referred here as SN-descriptor), divides
the dense normal vectors (N p) into clusters with the most representative values
per surface for each x-, y- and z- direction. This process is illustrated in the
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first step of the Sparse process in Fig. 1. When the surface of H,, is decomposed
in its normal vectors, the homogeneous surface is “broken up”. That is, new flat
surfaces called M, M, and M, are built up at R? space. Hence, components
of each directional surface are referred as sparse normal vectors (Ng). Here, for
every Ng vector on M, M, or M, surfaces are mapping of the H,, surface to R3.
Additionally, the neighborhood corresponding to each Ng vector is associated
with a similar six neighbor connectivity. Then, it is carried out by an analysis of
pdf in this neighborhood, to obtain the mean values with respect to intensity level
(depth or disparity) and homogeneity feature. Finally, this allows to establish a
descriptors set, for every one of the directional surfaces, where each component
of this set is a vector of 1 x m size. Therefore, descriptors are into R space, but,
both are inmerse into R? space.

2.3 Keypoint Detection: SKD Technique

The Sparse Keypoint Detector technique (referred as SKD) is shown in last block
of the Fig. 1. From every one of the directional surfaces, the interesting points
are extracted through of a pdf analysis. This is carried out for each neighbor-
hood corresponding to one of the Ng vector, contained in the M, M, or M,
surfaces. Additionally, it is considered a 95 % confidence interval. Thereby, all
sparse normal vectors form clusters in accordance to similarity values of their
normals corresponding to the same neighborhood. Subsequently, these highlight
vectors belong to the contour of objects in the scene.

Algorithm 1. Pseudo code of Sparse Normal Detector Technique.

Begin

1. Depth Image — Homogeneity Image H,,.
Compute Dense Normal Vectors Np = [Np,, Np,, Np,| from H,,.
3. Normal Vector (Np) — Sparse-Normal vector:
a. [NDx7NDy7NDz] >0
b. Select level of threshold t, and t, from u(Np) + o(Np), for x- and y-
direction, respectively.
c. Select level of threshold t, from p(Np.) or min (Np,).
d. Generate Sparse Normal vectors [Np,, Np,, Np.] using t,, t, and t..
4. Build up M, M, and M, surfaces from [Ng,, Ng,, Ng.].
5. Detect keypomts into M, M, and M,
a. Select level of threshold to tk
b. Sparse-Keypoints = Ng > ty

N

End
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3 Algorithm of the SND Technique

Algorithm 1 explains the computation of the SND technique. The normal vector
Np is computed from the H,, surface (first and second steps of the algorithm).
Vector Np = [Np,, Np,,Np,] contains matrices of K x L size, which contain
dense normal vectors in each one of directions. Moreover, Np vector is not
normalized and its values are in the range [—1,1]. Here, the surface in H,,
is defined as a positive hemisphere surface (see Subsect. 2.1) thus, only the
outward-pointing normal vectors of Np are considered (step 3(a)). This first
selection is used to start the sparse process (steps 3(b-c)).

The sparse normal vectors are formed by selecting the components of Np in
accordance to a Gaussian distribution represented by the t vector (see step 3(d)
of the algorithm). Here, the Ng vector is defined as Ng = [Ng;, Ng,, Ng.].
It is built up from the Np elements that are into the range (0,1). Thus, the
elements of Ng are defined as all the normal vectors of Np selected by the
condition Np; < t, where i is the i-th component of N . Additionally, t is the
vector consisting of three threshold levels in the range of 0 < t < 1, called t,,
t, and t,. As indicated in step 3(b) and 3(c) of the algorithm, the values of t
are computed from the statistical information, mean and standard deviation, by
analyzing each direction of vector Np. That is, t is given by

T u(NDm)—U(NDz)if tu < Np: <1
A ,u(NDy) + (T(NDy) if 0< NDy <ty (2)
Y w(Npy) — o(Npy) if t, < Np, <1
L w(Np2) if maxz(Np,) <1 3)
] max(Np.) —o(Np.) if max(Np,) =1

where t,, is a level of threshold defined within 95 % confidence interval corre-
sponding to mean of all components vectors of N . Therefore, the computation
of the thresholds in Egs. (1) and (2), is determined in accordance to value of t,,.
The Ng vector has enough information to represent the most significant normal
components of the H,, surface, at each x-, y- and z- direction, respectively (see
fourth step). Furthermore, one of the main contributions of this study is the
number of elements contained in the Ng vector, which is established as lower
than those of vector N p by at least 80 % on average, in any of its three directions.
Thus,

If Cgsy= card(Ng;) and Cp, =card(Np,;) then Cg, << Cp,
If Csy= card(Nsy) and Cpy =card(Npy) then Cg, <<Cp, (4)
If Cs,= vcard(Ns.) and Cp, =card(Np,) then Cg, << Cp,

Eq. (4) presents how the cardinality of Ng, and Ng, is closer to 10% with
respect to the cardinality of Np, and Np,, respectively, and this percentage
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appears in virtually all the experimental results. In z-direction, the cardinality
of Ng, is closed to 30 % with respect to the cardinality of Np,. The difference
between the percentages of the sparse normal vectors in x- and y- directions with
respect to z- direction is explained through of the homogeneity level presented
at the H,, image. Therefore, at each direction is possible to form a new surface
that represents the original H,, surface, with a minimal number of descriptors.
Finally in the fifth step, the strategy used to detect the most significant key
points is the Sparse Keypoints Detector (SKD). This strategy uses the data
contained on the M, M, and M, surfaces to rank the sparse key points based
on the statistically defined thresholds ty., tgy, ti., corresponding to each x—,
y—, and z— direction, respectively. These thresholds are defined by:

tre = (Nsz) + 0(Nsz);  try = u(Nsy) +0(Nsy);  trz = u(Nsz)  (5)

The last block of the Fig.1 shows a first example of the interesting points
detected at each directional surface, using the SKD technique.

4 Experimental Results

The experimental tests have been performed using two datasets: the bench-
mark Middlebury provided in [3,8], as well as our DSPLab dataset [9]. The
importance of testing two different datasets is to establish the robustness and
repeatability of our algorithm through offline images obtained under several non-
controlled conditions (changes of intensity, exposure and noise in indoor environ-
ments). The most representative results respect to DSPLab dataset are depicted
in Fig. 3. Also, a qualitative analysis to compare the SKD technique with respect
to other common key point detectors is carried out. Finally, the effectiveness of
the method is tested using a quantitative analysis of the keypoint repeatability.
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Fig. 3. Results of the homogeneity and extraction of the contour using the DSPLab
database. First row, cube-rugby. Second row, white-bottle and last row, flower-cup.
Notice that H,, images (third column) show a slightly loss of information. Last column
shows the key points with which is defined the contour of the objects in the scene.

Figure 4 shows the most meaningful keypoints detected on the H,, surface
using the approach presented in the Sect. 3. Thus, the results using the SKD



122 A. Cruz-Bernal et al.

technique can be compared with those of other techniques proposed in the state-
of-the-art applied to range images (third to sixth column of Fig. 4). In particular,
the applied techniques are NARF, Harris corner, SURF and FAST. The perfor-
mance of the SKD shows a better index of repeatability than the other techniques
(see Fig. 5). Qualitatively, it can be seen that the keypoints retrieve the contour
of all the objects at the scene using e.g., sparse descriptors of the M, surface.

(b) Laundry () Flower-cup (d) White-bottle

"y

A

wr

A

Fig. 4. Comparison between the proposal Sparse Keypoint Detector (SKD) and other
techniques. First row color image. Second row SKD technique. Third row NARF detec-
tor. Fourth row Harris detector. Fifth row SURF detector and sixth row FAST detector.

4.1 Quantitative Analysis

In order to evaluate the quality of the proposed key point detector, an analysis
of its repeatability was carried out. This analysis was applied to the Middlebury
and DSPLab dataset. A Gaussian Filter and salt and pepper noise (S&P) were
used to generate synthetic and diffused images. To this purpose, the Gaussian
filter was generated with a typical mask of 3 x 3 pixels; in addition, the average
level of noise used by the S&P was 5%. The test images contain four types of
noises: salt and pepper noise (S&P), diffuse image (D), salt and pepper com-
bined with diffuse image (S&P+D) and diffuse image combined with salt and
pepper (D+S&P). The repeatability rate is established as the number of inter-
esting points found in the different synthetic images under the same process with
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Fig. 5. Comparative analysis of the keypoints detectors depicted in Fig. 4. Graph (a)
illustrates the results for images Middlebury and (b) DSPLab dataset; (c) presents
the relation between sparse vectors and dense vectors (see Eq. (4)), and (d) show the
performance with respect to time.

respect to the total points initially detected. Thereby, each interesting point of
SKD is associated once to an interesting point in the other image. These points
are first validated by means of the Sum of Squared Differences technique (SSD)
to avoid false positive point detection. Figure 5(a, b) show the results for the Mid-
dlebury and the DSPLab dataset, respectively. In general, the best performance
of the detectors is given for the synthetic images with S&P noise. The worst
results are obtained for the diffuse image and their different combinations. On
average, the repeatability rate is near to 0.5 for the SKD technique (in particular,
M, and M, surfaces), 0.4 for SURF and FAST techniques, and 0.2 with other
techniques. In the case of crowded scenes or similar textures under controlled
indoor conditions, such an images Fig. 4(a, b), the SURF and FAST techniques
present a low performance (close to Zero). It is important to note that under
uncontrolled environmental conditions (see images Fig. 4(c, d) NARF and Harris
techniques have shown a low performance (under to 0.2 in Fig. 5(b)). Figure 5(c)
presents the relation between N g with respect to N p. For each technique in both
datasets, it was obtained the average computation time of 100 executions, see
Fig.5(d). All of our data were obtained by using non-optimized Matlab imple-
mentations on an ordinary Intel(R) Core(TM)2 Duo 3.16 GHz CPU with 4 GB
of RAM.

5 Conclusions

This study presented a novel approach for the contour detection by means of the
interesting points from Range images. Although range images contain crowded
or similar texture, the objects in the scene are separated from the background
and the object contours are depicted using interesting points, with a minimal
loss in the details of the scene. It is important to points out that the quantity of
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the descriptors is less to 6 % and 8 % of the total dense descriptors at x- and y-
directions, respectively. This represents a reduction of near to 90 % in almost all
tested cases. Additionally, the comparison with similar key-point detectors and
the proposal presented here demonstrates that the SKD technique produces the
best results in the detection of interesting points. Finally, the SND technique
could be used in disciplines that imply processing of grey-level images.
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