JGOMAS 2.0: A Capture-the-Flag Game
Using Jason Agents and Human Interaction

Luis Hernandez, Sergio Esparcia®™), Vicente Julian, and Carlos Carrascosa

Departamento de Sistemas Informéticos y Computacién (DSIC),
Universitat Politecnica de Valéncia, Camino de Vera s/n, Valencia, Spain
{lhernand,sesparcia,vinglada,carrasco}@dsic.upv.es

Abstract. Over the last few years educators have increasingly incorpo-
rated game simulations into higher education computer science curricula.
Experiences have proved that students respond enthusiastically to these
courses. According to this, this paper presents an evolved version of the
JGOMAS simulator, which is a simulation game where students design
and implement different types of agents and strategies in order to win
the game. This new version allows students to practice different technolo-
gies related to the multi-agent paradigm as coordination, cooperation or
decision-making.

Keywords: Multi-Agent Systems + Simulation games - Education

1 Introduction

The use of game design elements for teaching and learning computer science
subjects has provided a number of advantages in recent years [1]. Develop-
ing computer games involves many aspects of computing, including computer
graphics, artificial intelligence (AI), human-computer interaction, security, dis-
tributed programming, simulation... In this sense, there is a growing evidence of
the effective use of games and game elements across Higher Education contexts
and concretely in Computer Science degrees.

During different academic years, the toolkit JGOMAS 1.0 [2] has been used as
a part of the learning process of students in a subject named Intelligent Systems
of the Bachelor’s Degree of Computer Science Engineering in the Universitat
Politécnica de Valéncia. JGOMAS 1.0 is a simulation game where students can
design and implement different types of agents and test different coordination
strategies in order to win the game. Moreover, the toolkit allows the students
to organize competitions between the developed teams. During the last years,
the use of this toolkit notably improved the motivation of the students due
to their interest in new areas such as behavior design, artificial intelligence, or
the creation of multiplayer games. All these areas are covered by the JGOMAS
toolkit.

Nevertheless, the first version of JGOMAS has different aspects that may
be improved: (i) the user may observe the evolution of the game from different

© Springer International Publishing Switzerland 2016
J. Bajo et al. (Eds.): PAAMS 2016 Workshops, CCIS 616, pp. 173-184, 2016.
DOI: 10.1007/978-3-319-39387-2_15



174 L. Hernandez et al.

points of view (several render engines may be attached to the same game),
but cannot interact with the game to dynamically change its evolution. The
experience can be dramatically improved including some kind of immersion of
the students during the simulation; (ii) JGOMAS 1.0 is based on the JADE
platform [3] and all their agents are implemented as JADE agents. This is not a
problem by itself, but the use of any Al approach or sophisticated coordination
techniques must be implemented from scratch. This problem can be solved by
integrating existing, more complex, agent architectures into the toolkit; and
(iii) current supported renders do not allow an optimal user experience since
they do not support complex graphics.

Taking into account all these aspects, this paper presents an evolution of the
JGOMAS toolkit. This new version allows students to work with heterogeneous
teams of agents, being able to deal not only with JADE agents but also with
JASON [4] agents. This new agent architecture allows students to create agents
with a more sophisticated decision-making engine. Moreover, the toolkit has
introduced the human in the execution cycle, so a student may interact with his
team in a transparent way for the agents, which see him as other agent. Finally,
a new render based on UNITY' has been also implemented.

The rest of the paper is structured as follows: Sect. 2 presents the background
of the proposal; Sect.3 introduces the new version of the JGOMAS toolkit;
finally, some conclusions are commented in Sect. 4.

2 Background

This section describes the two works that are the background for the proposal of
this paper. First, the Jason agent programming language is described. Second,
JGOMAS, the framework for teaching agent programming, is described.

2.1 Jason

Jason [4] is an agent programming language based on AgentSpeak [5]. This lan-
guage is based on the BDI (Beliefs-Desires-Intentions) architecture for defining
cognitive software agents. In this approach, an agent is an entity composed of a
set of beliefs, representing the current state of an agent and knowledge about the
environment in which it is situated, a set of goals, which corresponds to tasks
the agent has to perform/achieve, and a set of plans which are courses of actions,
either internal or external, triggered by events, and that agents can dynamically
compose, instantiate and execute to achieve goals. Jason extends AgentSpeak
with different features, being the most important one the addition of speech-act
based inter-agent communications. Other new features include: strong negation;
handling of plan failures; support for developing Environments; support for MAS
organizations and agents that reason about them; a library of essential “internal
actions”; or an IDE in the form of a jEdit or Eclipse plugin.

! http://unity3d.com/.


http://unity3d.com/

JGOMAS 2.0: A Capture-the-Flag Game Using Jason Agents 175

2.2 JGOMAS

JGOMAS (Game Oriented Multi-Agent System based on JADE) [2] is a Multi-
Agent System (MAS) for social simulation based on JADE [6] that has been
developed to meet different purposes. Its main purpose is to serve as a starting
point for studying the feasibility of the integration between Multi-Agent Systems
(MAS) and Computer Graphics, including applications such as Virtual Reality.

Thus, JGOMAS adds a 3D rendering engine that depicts in real-time the exe-
cution of the MAS running in the background. This can be used to qualitatively
evaluate and validate the implementation of the MAS.

As a test for the developed MAS, a capture-the-flag (CTF) game has been
developed. In this kind of games, two teams compete against each other. Each
team has a base, with a flag located inside it. The objective of the teams is to
capture the flag from the base of the opponent and to bring it to its own base to
score a point or to win the game. This type of game was firstly introduced in 1984
by the game Bannercatch, and is now a standard multiplayer mode for the first-
and third-person shooters since it was made popular when it was first introduced
as a modification to the Quake videogame. It is intuitive to implement a CTF
game using a MAS because a player (i.e. a member of the team) can be modeled
as an agent. Moreover, it is also interesting for studying agent cooperation, since
each player has to collaborate with his teammates to achieve the objective of
the game.

However, the JGOMAS version of CTF is slightly different. The two repre-
sented teams are the Allies and the Axis, each one having a base, but only the
Axis have a flag. The objective of the Allies is to reach the Axis base, capture
the flag and get it to their own base. If they reach the base within the established
game limit, the Allied team wins. The objective of the Axis is to defend their
base from the Allies. If the time expires and the Allies did not captured the flag,
the Axis wins the game.

A domain like CTF enables a simple and entertaining way to establish a
testbed either for algorithms and optimizations individually on each agent and
for competitive and cooperative strategies, within and between teams.

After working with this first version of JGOMAS in both research and educa-
tion domains, some aspects have been detected to be improved. These improve-
ments will enhance the user experience and the possibilities offered by the second
version of JGOMAS. The following section describes JGOMAS 2.0.

3 JGOMAS 2.0

3.1 Agents Description

As has been stated in the previous section, JGOMAS is primarily composed
of two subsystems. On the one hand, there is a multi-agent system with
two different kinds of agents. One of these types of agents handles the game
logic, while the others belong to one of the two teams, and play the game.



176 L. Hernandez et al.

Actually, this subsystem is a layer that runs on top of a multi-agent plat-
form (specifically, JADE) and can take advantage of all the services provided
by JADE.

JGOMAS 2.0, which is the current version of the JGOMAS platform allows
the use of Jason agents to form teams of agents.

On the other hand, a new ad-hoc Render Engine to display a 3D virtual envi-
ronment has been developed. According to the specific requirements of graphic
applications (e.g., high computational cost for short periods), this engine has
been designed as an external module (not as an agent). It has been written in
UNITY 3D (Fig.1 shows an example of a JGOMAS game displayed with this
new render engine).

Fig. 1. JGOMAS render engine view

Figure 2 shows a JGOMAS architecture where all components and their rela-
tionships can be seen: the JADE platform as support for JGOMAS Multi-Agent
System, which is comprised of agents, one of them acting as a controller for other
agents, and as an interface for the Render Engine.

The Multi-Agent System JGOMAS can be viewed as a kernel (basic package),
which provides an interface for the Render Engine to connect to the current
game.

Agent Taxonomy. The following taxonomy of agents within JGOMAS accord-
ing to their functionality may be established:



JGOMAS 2.0: A Capture-the-Flag Game Using Jason Agents 177

oF JADE Avs

Fig. 2. JGOMAS 2.0 architecture

— Internal agents: are those which form themselves the JGOMAS management
platform. Their behaviors are predefined, and the user cannot change them.
These agents are JADE agents, and there exist the following types:

e Manager: This is a special agent. Its main objective is to coordinate the
current game. In addition, it answers requests from other agents. Another
task that it is responsible for is to connect the game with the Render
Engine.

e Pack: There are three different types of packs, the medic packs (used to
give health to agents), ammo packs (used to give ammunition to agents)
and the objective pack, i.e. the flag to capture. All these agents are dynam-
ically created and destroyed with the exception of the flag (there exists
only one flag throughout the game and cannot be destroyed).

— External agents: They are the players. They have a predefined set of basic
behaviors that the user can modify or even add new ones. These agents are
developed in JADE or Jason. An agent can play a unique role in the cur-
rent game. There are three roles defined, but the user can define new, each
providing a unique service. Thus, these agents (also known as troop agents),
specialize in the following three roles:

e Soldier: provides a backup service (the agent goes to help its teammates).

e Medic: provides a medic service (the agent goes to give medic packs).

e FieldOps: provides an ammo service (the agent goes to give ammo packs).

External agents are integrated into the virtual environment, allowing the
interaction between them (through the perception of nearby peers and enemies)
which can lead to cooperation and coordination with teammates. Also, since
agents are located in this virtual environment, they must take into account the
features of the terrain where they are located (mainly walls). All the commu-
nication that takes place between the agents in the platform is performed by
passing messages according to protocols established by the FIPA ACL [7].



178 L. Hernandez et al.

Maps. JGOMAS uses different maps to define the virtual environment. These
maps, by default, are of size 256 x 256, so that the position of the agents is given
by its coordinates (x, y, z), where x, z take values between 0 and 255, whilst,
in the maps supplied, y is always equal to 0 (these maps do not have height).
Each agent has partial access to the map where the game is played, since despite
having access to static information about it, can only perceive objects that are
at a certain distance (within the “cone of vision”).

Tasks. A task is something that an agent has to perform in a particular position
of the virtual environment. There are various types of tasks, according to the
different actions that an agent can perform in the virtual environment, being
the main ones:

— TASK_GIVE_MEDICPAKS: A medic must generate packets of medicine in a
particular place (the position of the agent which requested it and which has
agreed to go to give them).

— TASK_GIVE_AMMOPAKS: A fieldops must generate packets of ammo in a
particular place (the position of the agent which requested it and which has
agreed to go to give them).

— TASK_GIVE_BACKUP: A soldier should go to help a teammate to a partic-
ular place (the position of the agent which requested it and which has agreed
to give it go).

— TASK_GET_OBJECTIVE: The agent, from the ALLIED team, must go to
the starting position of the flag for it. If it manages to grab the flag, this task
becomes going back to their home base.

— TASK_GOTO_POSITION: The agent must go to a specific location.

A task is associated to its type, the agent that causes the task (the agent itself
or the agent which requested it), the position where it should be performed,
priority and any possible additional contents. Always the task with the highest
priority is launched. Users can redefine the priority of each type of task. Only
the agent can add tasks to the list of active tasks, not the user. In Jason, a plan
is used to add a task: add_task

ladd_task(task(TaskPriority, TaskType, Agent, Position, Content)),
or
ladd_task(task(TaskType, Agent, Position, Content))

Such objectives trigger the plan creating the task. The second one assigns
the priority defined by the agent.

Execution Loop. Each JGOMAS external agent executes a Finite-State
Machine (FSM) as the one in Fig. 3:

— STANDING: The agent does not have any triggered task.
— GO_TO_TARGET: The agent has triggered a task and it is moving to the
position where it has to do it.



JGOMAS 2.0: A Capture-the-Flag Game Using Jason Agents 179

Default

Fig. 3. FSM defining JGOMAS external agents behavior

— TARGET_REACHED: The agent has reached the position where it has to
perform the triggered task, and it is performing the actions related to it.

Interface (API). The interface (API) for working with JGOMAS is composed
of .asl files written in Jason that contain the different agents (each one with
its own beliefs, goals, and behaviors). Inside these files, jgomas.asl includes the
non-modifiable behaviors of the agent. To modify the behavior of the agent the
files with a name following the pattern jasonAgent. TEAM_TYPFE.asl have to be
modified, where TEAM refers to the side of the agent (ALLIED, AXIS), and
TYPE is the type of the agent (SOLDIER, MEDIC, FIELDOPS).
Regarding agent beliefs, the main ones are:

— tasks(task_list): Contains the list of active tasks of the agent.

— fovObjects(object_list): Contains the list of objects currently seen by the
agent.

— state(current state): This belief is used to indicate the state of the
agent in its state machine: standing, selecting which task to do or waiting;
go_to_target, going to its next target; target_reached, it has reached the target;
quit, has to finish.

— my_health(X): Stores the health of the agent. The initial, and maximum,
value is 100. When this value reaches 0, the agent dies.

— my_ammo (X): Stores the amount of bullets of the agent. The initial value is
100.

— my_position(X,Y,Z): Stores the last position known by the agent.

The different plans of the agents that can be modified by the users are:

— Iperform_look action: This objective is invoked when the agent looks
around and updates the list of surrounding objects fovObjects(L). It would
be necessary to implement the plan associated to the creation of this event
to be able to look what is around.



180 L. Hernandez et al.

— Iperform aim action: This objective is triggered if there is an enemy to
aim, which can be used to take a decision about what to do with the aimed
agent. A simple implementation of the plan is available.

— !get_agent_to_aim: This objective is invoked after /perform_look_action, and
it would be used to decide if there is any enemy to aim. A simple implemen-
tation that can be extended or modified of the associated plan is available.

— !perform no_ammo_action: This objective is triggered when the agent shoots
and has no ammo. It is necessary to implement the associated plan to take a
decision. For example, to run away.

— Iperform_injury_action This objective is triggered when the agent is shot.
It is necessary to implement the plan associated to the creation of this event
to take a decision. For example, run away if the agent has a low life value.

— !performThresholdAction: This objective is triggered when the agent has
less life or bullets than the thresholds
my_ammo_threshold(X) and my_health_threshold(X).

A simple implementation of the associated plan is available, which asks for
help to medics or fieldops of its team.

— Isetup_priorities: This objective is triggered during agent initialization to
fix agent task priorities. Each agent has its own priorities. A simple implemen-
tation is available. It is interesting to modify it to add new tasks or modify
the priorities to have agents that behave in a different way.

— lupdate_targets: This objective can be used to update the tasks and its
priorities. It is invoked when the agent changes to the standing state and has
to choose a new task among the available ones. It is necessary to implement
the plan associated to the creation of this event.

Communication. In JGOMAS 2.0, communication is used by agents for regis-
tering services and for promoting coordination between them. It is necessary to
highlight that an agent plays only one role during the whole game. For example,
if an agent Al is created as a soldier of the type Soldier and belong to the AXIS
team, it will be for the rest of the game.

Each role has different features and offers specific basic services that can be
improved. Indicating the role and the basic services offered by an agent is carried
out at the initialization, using a process known as Registration. Nevertheless, an
agent can add new services during the development of the game.

Registration. A role has to register a service to allow other roles to request it.
Registration is carried out using the internal action: .register(‘‘JGOMAS’’,
4 ‘type ) )

Once an agent has registered a service, it is possible for an agent of its same
team to check which agents of its team offer a specific service.

Coordination. JGOMAS is provided with mechanisms that allow agent coordi-
nation. It can be of one of these two types:

— No communication (implicit): It is achieved by sensing the environment.
When an agent looks around itself the objective !perform_look_action is



JGOMAS 2.0: A Capture-the-Flag Game Using Jason Agents 181

triggered. By rewriting the associated plan it can be decided what to do
according to the perception.
— With communication (explicit): In this case it is used the message passing
using the following internal action:
.send msg with_conversation_id (Rec, Perf, Cont, ConvId)

where:

e Rec: receiver of the message (could be a list)

e Perf: performative (tell, untell, achieve...)

e Cont: content

e ConvId: Conversation Id (used in JADE)

3.2 Immersing the Human in JGOMAS

One of the new features of JGOMAS is the interaction with the user. Now, a
user can take the control of an agent and give orders directly. The motivations
for this interaction are:

— Improve the ability to test the behavior of JGOMAS agents, test strategies,
etc. The direct control of an agent allows the user to perform specific actions
(like shooting a particular agent or follow a certain path) and see the reaction
of the other agents (both enemies and friends) to these decisions. In previous
versions, it was necessary that the game reaches this situation by its own
evolution to assess its performance.

— From an educational point of view, involvement of the students in the develop-
ment of agents increases. The students can now validate their designs easier.

This user-JGOMAS interaction is achieved by means of the UNITY engine
used in this release. UNITY has allowed not only the improvement in the ren-
dering as discussed above but also to develop the user-JGOMAS interface. Aside
from allowing rendering the game, the UNITY render engine gives support to
program all aspects of the game including game management, artificial intelli-
gence, etc. In our case, these aspects are developed by JGOMAS code in Java in
the JADE architecture or in Jason to implement the agents. However, UNITY
can be used for the interface between user and JGOMAS. This way, the user will
interact with UNITY which will contact with JGOMAS to communicate user
decisions. This communication is done through the JGOMAS messaging system
as UNITY is seen as another agent for JGOMAS.

As stated above, the user gives commands via the interface to the agent, but
the agent retains its properties. The agent can be any Jason-based agent of the
system, and the user does not control it. It sends orders to the agent that are
translated to FIPA-ACL messages. These messages are received by the agent
and translated into the highest priority intentions, so it may seem that the user
controls it, but if the user stops to send orders to the agent, it will still work.

The game may have multiple users each one controlling an agent. One conse-
quence of this is an increasing immersion of the user. The user does not know if
the agents he is fighting against (or collaborating with) are under the control of



182 L. Hernandez et al.

AGENT:A2 SOLDIER ALLIED A2 SELECTED
HEALTH:92

AMMO:92

ANGLE:1.570796

P0OS:21.2065 28.5

Fig. 4. Human immersed in one JGOMAS soldier

another user or not. Also it can be considered double immersion because it also
acts on the system side: the agents do not know which agents are under com-
puter control or under the control of external users. The agents act according to
their beliefs and perceptions and the subsequent reasoning based on them, not
considering the nature of the other agents. To make this interaction, the user
selects an agent by means of the mouse. The user can take the control of this
agent by pressing the key B. From that moment the user can control the agent
through a series of keyboard commands and the view is centered in this agent’s
viewpoint (see Fig.4). Table1 summarizes user commands. The choice of the
keys did not follow naming criteria but the keyboard layout.

One of the most interesting options with respect to validation is the action
associated to the P key. This key sends a message from the user-controlled agent
to another agent. The user only has to implement the Jason code as the receiving
agent wants to respond to that message. Another option to note is the activation
of the first-person camera that further enhances the user’s immersion in the
game.



JGOMAS 2.0: A Capture-the-Flag Game Using Jason Agents 183

Table 1. User commands

Key | Action

Control agent selected

Move agent in the current direction
Turn the agent to the left

Turn the agent to the right

Turn the agent 180 degrees

Shot

Call for medical

Call for ammo
Call for backup

Select the upper camera

Toggle to the first person camera

Toggle to the third person camera

Show controlled agent info

wlalzlzknxal<lx o= ~w

Send a message to another agent

4 Conclusions and Future Work

This paper has presented JGOMAS 2.0, which is a simulation game where stu-
dents design and implement a group of agents and test different coordination
strategies in order to win the game. This new version improves different aspects
regarding the first version. Concretely includes the possibility to develop Jason
agents allowing students to integrate BDI-oriented strategies in the decision-
making of the agents. Moreover, the new version has introduced the human in
the execution process allowing the student to interact with his/her developed
team. This interaction includes sending messages or participating as another
member of the team. As future work, emotional states will be included in the
agent’s model. These emotional states will change according to changes in the
environment and the agent’s personality. Emotional values may be used by the
students in order to improve the decision making of the agent’s team during the
game.

Acknowledgments. Work partially supported by Spanish Government through the
project iHAS (grant TIN2012-36586C03-01).

References

1. Overmars, M.: Teaching computer science through game design. Computer 37(4),
81-83 (2004)

2. Barella, A., Valero, S., Carrascosa, C.: JGOMAS: New approach to Al teaching.
IEEE Trans. Educ. 52(2), 228-235 (2009)



184

L. Hernandez et al.

Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley Series in Agent Technology. John Wiley & Sons, New York (2007)
Bordini, R.H., Hubner, J.F., Wooldridge, M.J.: Programming Multi-Agent Systems
in AgentSpeak using Jason. J. Wiley, Chichester, Hoboken (2007)

Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42-55. Springer, Heidelberg (1996)

Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with
JADE. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS, vol. 1986,
pp. 89-103. Springer, Berlin Heidelberg (2001)

O’Brien, P.D., Nicol, R.C.: Fipa towards a standard for software agents. BT Tech-
nol. J. 16(3), 51-59 (1998)



	JGOMAS 2.0: A Capture-the-Flag Game Using Jason Agents and Human Interaction
	1 Introduction
	2 Background
	2.1 Jason
	2.2 JGOMAS

	3 JGOMAS 2.0
	3.1 Agents Description
	3.2 Immersing the Human in JGOMAS

	4 Conclusions and Future Work
	References


