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Abstract. We propose a holonic multiagent simulator that can simulate
any complex urban environment. We focus on traffic simulation within
any geographic area on earth, subject to any weather conditions. We
adopt an agent-based approach for the different beahviors of the vehi-
cles, drivers, and pedestrians. The proposed driving behavioral models
can realistically emulate driving behaviors of humans. The resulting sim-
ulator can handle all the complexities of such environments in accordance
with the laws of physics.
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1 Introduction

Multiagent systems have inspired an increasing number of researchers from differ-
ent domains. The need for adequate tools for the simulation of complex systems
has motivated much of the agent-related research. The main goal of a multi-
agent system is to model the real world in terms of autonomous agents that
can purposely interact with their external environment [18]. An agent can basi-
cally gather information from the environment using sensors, while attempting
to execute its objectives using effectors [16].

In the context of complex adaptive systems simulation, it is possible to use
a multiagent system to reduce the complexity of the simulation by breaking it
into several subtasks. For instance, simulating a complex system could be divided
into parallel simulations that can handle different subdomains.

Traffic in an open environment is an example of complex adaptive system. It
is therefore practical to adopt a multiagent approach for such simulation. Multi-
agent traffic simulation has been extensively studied since traffic and transporta-
tion management require autonomic, collaborative, and reactive agents [1]. It is
therefore possible to implement automated traffic control management systems
thanks to the fact that agents can operate without centralized control. Further-
more, multiagent systems can connect to distributed subsystems, and can be
extended to large-scale multiagent simulation.
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In this paper, we propose a multiagent simulator that is suitable for com-
plex adaptive systems. In particular, we focus on simulating traffic as well as
the weather conditions that affect its environment. An inherent feature of com-
plex systems is their hierarchical structure and the nested levels of detail that
compose them. Therefore, adopting a multiagent agent approach for complex sys-
tems modeling will have to acknowledge this organization. Holonic multiagent
systems [6] are a practical way for a recursive modeling of autonomous agents,
by allowing a dynamic reorganisation of the whole system. Our main motivation
is to build a scalable holonic simulator that can emulate traffic as well as any
environmental factor that effects traffic flow, routing, and even CO2 emission.
Being able to simulate weather is a novel way to approach traffic simulation since
it allows the reproduction of real-world scenarios like traffic in natural disaster
situations. Such simulator can become a testbed for general-purpose computa-
tional intelligence and can be used for the benchmarking of routing algorithms.
Additionally, our multiagent approach to behavioral modeling ensures the repro-
duction of realistic driving behaviors. To this end, we will model our simulator
in terms of multiple independent layers. Each layer processes a particular aspect
of the simulation through the interactions of its internal elements, or simply,
agents. A layer will therefore be represented by a complex network of inter-
acting agents that can communicate within that layer and possibly with other
layers. The idea behind our simulation architecture is to adopt a holonic multia-
gent architecture coupled to a behavioral-based agent simulation. This is in fact
a way to refine both the microscopic and the macroscopic aspects found in many
traffic simulators. In fact, the availability of data collected via sensors and mobile
devices allows us to better model human behaviors. For instance, this allows for
the analysis of driver behaviors and the underlying decision-making mechanisms
[3,13–15]. As a result, we can build large-scale simulations by embedding the
social interactions and by elaborating fine-grained human behaviors [10]. The
resulting multiagent social simulation [2] is well suited to any social context due
to its ability to simulate pro-active behaviors, parallel computations [12], and
dynamic micro scenarios [7,9]. It is within this perspective that we propose our
holonic multiagent simulator.

The paper is structured as following. In Sect. 2, we provide the architecture
of the simulator. In Sect. 3, we cover the behavioral models used by the different
agents. In Sect. 4, we provide the results. In Sect. 5, we conclude and highlight
the future work.

2 Simulator Architecture

2.1 Description

Our idea is to represent the whole complex system as a superposition of layers, as
shown in Fig. 1. Each layer operates autonomously with all its internal threads,
agents, graphical objects, etc. The holonic aspect resides in the fact that the
content of each layer is a hierarchy in itself and that all the components of the
layers can interact according to the dynamics of the simulation. For instance, the
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Fig. 1. Multilayered representation of a complex system

vehicles (Vehicles layer) are driven by drivers (Drivers layer) according to traffic
lights (Synch layer), while interacting with routes, map, sensors and possibly
pedestrians (Walkers). The whole is affected by the weather layer that embodies
the physical conditions (precipitations) that affect the whole system.

We note that the layers should be as independent as possible so that the
complexity of the simulation does not affect the communication between the
different layers. Additionally, there should be a separation between the vehicles
and the map in the sense that the way the vehicles navigate their space?should
not be?specific to one particular Geographic Information System (GIS). In the
following we adopt OpenStreetMap [8] as referential.

2.2 Architecture

The architecture of the simulator is illustrated in Fig. 2. As mentioned in the
previous section, we should lower the coupling between the layers of the simu-
lator. Specifically, there should be independence between the actual simulation
(Behavioral Models and Physical Engine) and the corresponding Open-
StreetMap rendering. This is important when the renderer is complex, that is,
when we are not only rendering vehicles, but rendering pedestrians, weather data,
snow, etc. This separation obeys the Dependency Inversion Principle in the sense
that physical simulation acts as a high-level, abstract, objective, mathematical
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Fig. 2. Architecture

representation of the phenomena we want to simulate, while the OpenStreetMap
rendering is one possible way of rendering the simulation. The renderer could
easily be exchanged by another one. In the following, we provide a brief descrip-
tion of the components of the architecture.

Physics Engine and Behavioral Models. The Physics Engine component
provides an approximate simulation of the physics that underly traffic, motion
and the interactions between the agents. This component performs the simula-
tion in real-time before rendering the result. The Behavioral Models describe the
scenarios that govern the motion of the vehicles and the pedestrians.

Traffic Tier is composed of the following agent components:

1. Walker. Pedestrians are implemented as artificial agents that perform ran-
dom walks. In particular, an agent performs mobility generation within a
closed polygon, or as a random itinerary on the map. Additionally, such agents
can predict collisions with other agents.

2. Driver. A vehicle is driven by an agent that can also perform collision detec-
tion, traffic lights and lanes assessment.

3. Vehicle. A vehicle is in fact an agent that modulates the forces acting on
a graphical vehicle object. Such forces include the acceleration, direction,
location, friction, velocity, and breaking.

4. Synchronization. We distinguish a set of agents that update the states of
the traffic lights according to the intervals Δr, Δo, and Δg.

5. Sensors. A sensor network is built on top of the map and allows the detections
of the vehicles motion.
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Weather Manager. The weather simulation is in fact the generation of precip-
itation as if it is detected by a weather surveillance radar (WSR). Additionally,
it is possible to download this data in real-time and render it directly onto the
map. The weather radars are capable of detecting the motion of rain droplets in
addition to the intensity of the precipitation. Both types of data can be analyzed
to determine the structure of storms and their potential to cause severe weather.

The simulation of the weather is a mapping between a precipitation vector
field onto the geographic tiles, represented as weather clusters. This mapping is
computed dynamically since the tiles are loaded as a function of the simulation
location.

OpenStreetMap Rendering. The rendering of the geographic map relies
on downloading and updating a hierarchy of OpenStreetMap tiles. Such tiles
correspond to a specific area of the map and are loaded dynamically, depend-
ing on where the simulation is being run. Herein, we use two different maps.
The first map (core map) is assigned to the physics engine and is used to run
the simulation in real-time so that the result is later rendered onto the second
map. The second map represents a real-world referential (OpenStreetMap in
our case). The mapping from the core map to the OpenStreetMap map converts
absolute references into latitude/longitude references. This conversion is required
since it is difficult to manipulate latitudes and longitudes within a small area
due to floating-point inaccuracies (E.g. manipulating vectors with latitudes in
{136.892649, 136.909015, 136.909011}). To this end, we use the conversion func-
tion (1), where x and y are the coordinates in the core map, x′ and y′ are
the latitude and longitude, w and h are the dimensions of the core map, and
x− (resp. y−) and x+ (resp. y+) are the minimal and maximal latitudes (resp.
longitude).

x′ ← x − x−
x+ − x−

× (h − 1) (1a)

y′ ← y − y−
y+ − y−

× (w − 1) (1b)

3 Behavioral Modeling

The behavioral models govern the agents mobility as well as the range of actions
allowed within the simulator. We distinguish three types of behavioral models
for drivers, pedestrians, and vehicles.

3.1 Driving Behavioral Model

The main feature that reflects the driving behavior of a human is the veloc-
ity. However, we also need to look at how this velocity changes as function
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of the turns. In fact, turns are important indicators of the driver’s mastery and
control of the steering wheel (with angle λ) and its physical effect on the vehicle.
We can look at the turning angle θ comprised between the velocity and the direc-
tion of the current itinerary. For instance, driving in a straight line corresponds
to θ = 0 while a right turn corresponds to θ = π/2.

Let us assume that the minimal and maximal velocities of the vehicle are
respectively v− and v+, and that v fluctuates in [v−, v+]. This interval refers
to the driver’s spectrum of physically allowed velocities. A behavioral model is
therefore a specific way of mapping the turning angle θ to a specific velocity v ,
illustrated in function (2).

vθ : [0, π] → [v−, v+] (2)

Figure 3 shows three behavioral models. Model v1 corresponds to what is
perceived as a reckless driver since he barely decelerates when performing right
turns. Model v2 shows a conservative driver since he decelerates drastically when
reaching right turns. Finally, v3 shows a standard driver. We assume that a
behavior is invariant beyond π (U-turn), and thus, choose to limit the angular
interval to [0, π].

Fig. 3. Behavioral models v1, v2, and v3

3.2 Pedestrian Behavioral Model

A pedestrian (walker) is modeled as an agent that moves within a closed polyg-
onal space. The polygonal space is in fact a block on the map.

3.3 Vehicle Behavioral Model

For a vehicle, the act of moving from point A to point B is reduced to the
execution of set of operations that could be summarized as following.
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1. Updating the forces that act upon the vehicle.
2. Updating the acceleration a .
3. Updating the velocity v .
4. Updating the direction d .
5. Updating the location x of the vehicle.

These actions are described as following:

Updating direction d according to (3). Here, λ is the steering wheel angle,
L is the vehicle wheelbase, tr is the turning radius, um is the number of units
per meter, p is the simulation step, αd is the angle of direction d , and αs is the
angular speed.

tr ← L/sin(λ × π

3
) (3a)

αs ← (‖v‖ × um)/tr (3b)

d ← αd + αs × p × 180
π

(3c)

Updating velocity v according to (4), with a being the acceleration.

v ← d × ‖v‖ + a × p (4)

In case |αv − αd | > π
2 , v is nullified. αv being the angular velocity.

Setting direction as function of θ as in (5).

θ′ ← θ × π

180
(5a)

d ← (
cos(θ′), sin(θ′)

)
(5b)

Updating acceleration based on Newton’s second law (
∑

f = ma) as in (6).
The motive force of the vehicle is Fm, the friction force is F f , and m is the
vehicle’s mass.

a ← Fm + F f

m
(6)

Updating all the forces, which requires updating the friction force whenever
the driver breaks. This is done according to (7). amax is the maximal accelera-
tion.

F f ← d × −amax (7)

Updating the location x according to (8).

x ← x + v × um × p (8)
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4 Results

The interface of the simulator is shown in Fig. 4. The default view is the Open-
StreetMap view. However, it is possible to show different perspectives that illus-
trate the superposed weather and traffic simulations as shown in Fig. 5. The
user can macroscopically switch between the views (Aerial view, OpenStreetMap
view, Grid view) of the simulation by altering the opacity of the layer.

Fig. 4. Simulator main interface

The separation between the layers allows the simulations to be scalable in the
number of vehicles and pedestrians, despite the complexity of their behaviors.
Furthermore, running the physical simulations within one monolithic compo-
nents allows us to render all the results faster than if each layer had to perform
complex physical computations separately. The simulator can additionally gen-
erate rich datasets relative to the vehicles, the pedestrians, the drivers’ actions,
and the weather effect of the simulation map.

5 Related Work

In the context of traffic simulation, the multiagent approach is well suited to
build traffic simulators and reproduce the dynamic and complex phenomena
that are hard to express using purely mathematical models. In the mathematical
approach, we tend to reproduce the vehicles streams from car-following dynamics
obtained empirically from data collected at different operating road sections [11].
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(a) Weather Simulation: Aerial View (b) Weather Simulation: OpenStreetMap
View

(c) Macroscopic Traffic View (d) Microscopic Traffic View

Fig. 5. Weather and traffic views

However, such mathematical approaches are only suited for simple traffic analysis
since they are not realistic and do not offer accurate traffic flow for high density
traffic.

As opposed to this mathematical approach, we find the behavioral approach,
which is more coherent with the multiagent paradigm. Such approach relies on
the interaction between various agents, such as vehicles, drivers, pedestrians,
traffic lights, sensors, and so forth. The simulation is therefore an emergent
phenomena of all these interactions. An example of such multiagent behavioral
simulator is Archsim [5]. Such simulator allows a realistic coupling between the
driving simulation and the traffic simulation. Another similar approach attempts
to realistically model road junctions [4]. This approach is based on opportunistic
individual behaviors that can detect critical circumstances.

Another family of simulators rely on Stochastic Cell Transmission Model
(SCTM) [17], and has been proposed as a macro traffic simulation model of high
accuracy. SCTM can represent the uncertainty of the traffic states as well as
the changing travel demand and supply conditions. So far, SCTM has only been
applied to freeways and simple networks that are one-to-one origin-destination
networks.
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6 Conclusion

We proposed a holonic multiagent simulator that can reproduce traffic as well as
the weather conditions of the underlying geographic area. The proposed architec-
ture ensures a low coupling of the different hierarchies of the multiagent system,
which allows a realistic reproduction of traffic as well as the behaviors of the
drivers and pedestrians.

As future directions, we think of distributing the multiagent system so that
the different simulations are assigned to different clusters. This would allow us to
add more computational intelligence by improving the behavioral models of the
pedestrians and adding argumentation between the vehicles. Another direction is
to adopt a 3D renderer instead of the 2-dimensional OpenStreetMap rendering.
Most importantly, we think of deploying different routing algorithms on the
simulator and evaluating the evolution of traffic congestion.
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