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Abstract. As an extension of using image segmentation to do stereo
matching, firstly, by using self-organizing map (som) and K-means algo-
rithms, this paper provides a self-distributed segmentation method that
allocates segments according to image’s texture changement where in
most cases depth discontinuities appear. Then, for stereo, under the fact
that the segmentation of left image is not exactly same with the seg-
mentation of right image, we provide a matching strategy that matches
segments of left image to pixels of right image as well as taking advantage
of border information from these segments. Also, to help detect occluded
regions, an improved aggregation cost that considers neighbor valid seg-
ments and their matching characteristics is provided. For post processing,
a gradient border based median filter that considers the closest adjacent
valid disparity values instead of all pixels’ disparity values within a rec-
tangle window is provided. As we focus on real-time execution, these
time-consumming works for segmentation and stereo matching are exe-
cuted on a massively parallel cellular matrix GPU computing model.
Finaly, we provide our visual dense disparity maps before post process-
ing and final evaluation of sparse results after post-processing to allow
comparison with several ranking methods top listed on Middlebury.

Keywords: Stereo · Image segmentation · SOM · Self-distributed seg-
ments

1 Introduction

Stereo matching from two 2D images is a process to estimate 3D scene but with
acceptable error under the fact that we can not get really true disparity values
for every pixel. Many solutions have been proposed for stereo to meet different
requirements in various artificial intelligence research. These solutions can be cat-
egorized into four basic optimization approaches: local, global, cooperative and
semi-global [1], among which the local methods are usually applied to real-time
applications. Generally, local stereo methods work base on four steps: matching
cost computation, cost aggregation, disparity computation and disparity refine-
ment [2]. The cost aggregation step plays a more important influence on obtain-
ing good results. For example, classical fixed window aggregation method using
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matching cost such as color/grey absolute difference (AD) or mutual information
[3] all suffers poor performance at depth discontinuities and in texture-less areas
[4], leading to consequences like foreground fattening effect.

Researchers believe image segments can contribute border information to
help distinguish background from foreground. Normally, these segments are small
over-segments [5,6] under the assumption that disparity values of pixels within
the same segment are same or vary smoothly. Considering the same match-
ing strategy, even though there are few side-effects at curved surface regions
compared with pixel-based dense matching method, the adavantages of segment-
based techniques are well known: lessening computational complexity, enhancing
noise tolerance [5] and border distinguishment.

Aiming at real-time execution, this paper proposes to use self-distributed
image segmentation as main contribution to a newly proposed cost aggrega-
tion method. And because we train initial segment centers according to tex-
ture changement, our self-distributed segmentation method maybe an interesting
solution to the difficulty cited by Yoon and Kweon [7]: the segmentation-based
stereo methods require precise color segmentation that is difficult when deal-
ing with highly textured images [7]. Our stereo’s cost aggregation strategies are
inspired by another real-time algorithm listed in top 20 methods on Middlebury
[8], wrote by Hirschmüller et al. [9]. Hirschmüller uses selected multiple rectan-
gular windows to compute Sum of Absolute Differences (SAD) for each pixel
and applies only two optimization steps (error disparity filter and border correc-
tion) to get state-of-art results. As far as we can see, the multiple small windows
which Hirschmüller used can be substituted by the segments produced by our
algorithm, because his small windows may across depth discontinuity areas and
introduce errors [9], but most of our segments will not. And through using seg-
ments, we lessen the most heavy computation part of [9] to get acceptable stereo
matching quality for a local stereo method with little complexity.

In most cases, stereo matching processes for each matching unit is same, that
is why people can use CUDA programming [10] to do parallel computing instead
of calculating one unit after another sequentially by CPU. However, that is not
new for stereo, here we not only decompose the input data into parts as usual
but also use a massive cellular matrix model to execute neural networks with
jobs like: training data, spiral search [11], zooming in/out at different levels of
an original image, stereo matching, in a parallel and non-conflict way.

The rest of this paper is organized as follows. Section 2 presents previous work
about different strategies using various image segmentation methods for stereo.
Section 3 provides our proposed approaches including brief introduction of our
cellular matrix model, how we get self-distributed segmentation and the way we
use these segments to do stereo matching. Section 4 includes results visualization
and discussion.

2 Previous Work

Various image segmentation methods have been proposed for stereo matching
and researchers use different strategies to contribute segments to stereo.
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Probabilistic-based methods such as Zitnick and Kang [5] use iterative K-
means algorthm to produce color-based segmentation, which evolve to be SLIC
[12] later. Then a Markov Random Field(MRF) is constructed by using seg-
ments as probability events. Through computing all pixels’ Sum of Squared Dif-
ferences(SSD) within one segment, Zitnick constructs that segment’s matching
probability for the MRF.

Global optimization methods such as Klaus et al. [6] applies Mean shift color
segmentation, but the preliminary disparity values before post processing are
calculated by computing color and gradient SAD of all pixels within a fixed
pixel-level window. Segments are mainly used in post processing steps to refine
each pixel’s disparity value.

Another bottom-up segmentation method proposed by Bruzzone and Carlin
[13] is also used in Xiao et al. [14]. However, Xiao et al. [14] only computes
disparity values of segment’s edge line points, counts their disparities and selects
the most frequently appeared value as disparity for the segment region [14]. In
fact, the edge line points used in [14] may turn out to belong to a slanting surface
or curved surface whose disparity values vary hugely from center pixels to edge
line pixels.

State-of-art local stereo methods such as Gerrits and Bekaert [15] additionally
considers image segmentation information within rectanglar fixed window sup-
port region. The author segments the reference image and considers all window
pixels outside the image segment that contains the pixel under consideration as
outliers and greatly reduces their weight [15]. Tombari et al. [16] does similarly
with Gerrits, the differences are that Tombari segments both reference and tar-
get images and introduces a modified weight function similar to adaptive weight
method presented by Yoon and Kweon [7].

3 Proposed Approach

3.1 Overview

Under the fact that left and right images’ segmentation maps are not exactly
same and problems such as big segments may represent slanting or curved sur-
faces, it can bring matching errors when we only consider the border information
extracted from segments. To tackle these problems when using segmentation to
do stereo matching, we propose following two parts base on the assumption that
objects’ surfaces are piece-wise smooth like people treat a circle as a polygon
with n sides:

– An image self-distributed over-segmentation method that allocates segments
according to texture density or color changement where depth discontinuities
usually appear.

– A stereo cost aggregation strategy that not only uses segments as matching
units but also involves neighboring segments’ matching characteristic to help
detect some occluded regions.
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Fig. 1. Overall algorithm flow of our self-distributed segmentation-based stereo algo-
rithm.

Futher more, we provide an improved gradient border-based median filter
that considers the closest valid disparity values instead of involving all neigh-
boring disparity values within a fixed window. And also, a cellular matrix paral-
lel GPU computing model is provided to execute time-consumming jobs during
processes of segmentation and stereo matching. We provide our algorithm’s over-
all flow chart in Fig. 1.

3.2 Self-distributed Segmentation

We provide a cellular matrix model to execute neural networks and do parallel
CUDA computation, this model contains following basic concepts:

– A concept of low level topological grid (neural network) with the same size as
input image and its node (neuron) contains all attributes of its corresponding
original pixel, as shown in Fig. 2 upper (a), here, too small to show details;

– Extracting nodes with a topological radius r on the low level grid, these nodes
compose a higher level grids named base level shown in Fig. 2 upper (b, c).
Here, each hexagon delimits one cell containing the decomposed low level
nodes for GPU to do parallel jobs;

– Neighborhood search operators that can do local spiral search centered by
each node within different topology radius of different levels’ grid.

To produce self-distributed segments, firstly, we initialize K cluster centers
for each final segment. Actually, these cluster centers are same with hexagonal
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(a) (b) (c)

Fig. 2. Cellular matrix model for GPU parallel computation. Up (a) input left image
of Recycle dataset from Middlebury [8], each pixel corresponds to one node belonging
to the low level hexagonal grid; Up (b) base level with topological radius r = 20; Up
(c) base level with topological radius r = 30; Down (a) gradient information of the
input image; Down (b, c) second higher level grid extracted from Up (b, c) separately,
namely geometric dual level.

nodes on base level shown in Fig. 2 upper (b, c). And the topological radius r
decides the number of nodes, which finally influences stereo matching quality.
Then, we use online-SOM [17] to train these initial cluster centers (neurons),
aiming at allocating more neurons to areas where exists more color changement.
Because the cluster centers are on the base level topological grid, the decom-
position of these nodes for parallel computation should be on geometric dual
level shown in Fig. 2 lower (b, c), in which each dual hexagon can be considered
as a cell Si containing equal number of cluster centers at beginning. And the
learning direction of these cluster centers is controled by randomly determining
which cell can do the training step of SOM by using an activity possibility stated
in Eq. (1).

pi =
Si

max{S1, S2, . . . , Snum} (1)

Here, pi is the activity probability of cell i; Si is sum of initial gradient values
of all the input pixels in cell i; and num is the quantity of cells.

After that, we slightly “exchange” these cluster centers to mean color position
of all its similar color neighbor pixels as K-means does and get cluster center
pixels. Here we only concern color difference when choosing the closest neighbor
pixels for K-means because of the assumption that depth discontinuities always
appear with color changement. Then these neighboring pixels are marked belong
to that cluster center pixel and we get final self-distributed segmentation shown
in Fig. 3(b, d). And the cluster center pixel’s color information can represent
all its subordinate pixels’ color information. Comparing Fig. 3(b, d) with Fig. 2
upper (a), we can figure out that the allocation of self-distributed segments
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(a) r = 3, base level (b) r = 3, segmentation

(c) r = 10, base level (d) r = 10, segmentation

Fig. 3. Self-distributed cluster centers and the final segmentation for stereo matching.
(a, c) Online-som results with topological radius r = 3 and r = 10 separately; (b, d)
final self-distributed segmentation, the white lines indicate borders of these segments.

reflects texture changement of the input image, where higher color changement
regions have more and smaller segments while segments in texture-less regions
can also support our assumptions.

3.3 Stereo Matching by Using Segments

As we use the cluster center pixles as representatives of the self-distributed seg-
ments, the basic strategy that we contribute segments to stereo matching is to
match these cluster center pixels of left image to pixels of right image. Of course,
image denoising step is indispensable to reduce influence of noise pixels. This
strategy works base on the fact that cluster centers pixel has mean color value
of its segment and the segment are very small, just like people treat a circle as
a polygon with n sides.

Then, only considering left image’s segmentation, for each current cluster
center pixel piL which we are dealing with, we spiral search all its neighbor cluster
center pixels pjL within another topological radiu rS . Under the assumption that
depth discontinuity appears with color discontinuity, here we set an empirical
threashold (β) of color AD between piL and its neighbor cluster center pixel pjL
using Eq. (2), to decide njL valid neighbor segments that can contribute to piL’s
aggregation cost in Eq. (4). We also count the number (njR) of valid projection
pixels P

′
jR whose color AD with piL less than the same threashold (β) in the

right image, the bigger the difference between njL and njR, the smaller chance
this candidate disparity value is correct.
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AD(piL, pjL) =

⎡
⎣

∣∣RpiL
− RpjL

∣∣∣∣GpiL
− GpjL

∣∣∣∣BpiL
− BpjL

∣∣

⎤
⎦ (2)

Here pjL is the closest neighbor cluster center pixles surrounding piL in the left
image.

SAD(piL, s) =
∑pnjL

p0

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
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′
jR
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∣∣∣∣∣∣GPjL

(pjx, pjy) − GP
′
jR

(pjx − s, pjy)
∣∣∣∣∣∣BPjL

(pjx, pjy) − BP
′
jR

(pjx − s, pjy)
∣∣∣

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ (3)

Here PjL = (p0, p1...pnjL
) are neighbor valid cluster center pixels of piL, njL

represents the quantity; s is candidate disparity value within the disparity range
given by Middlebury; P

′
jR are the projection pixels of PjL on the right image

with s.
C(piL, s) = β ∗ SAD(piL, s) + (1 − β)

∣∣∣njL − nj′R

∣∣∣ (4)

Here, njR is the quantity of valid neighbor projection pixels P
′
jR in the right

image.
Then, the candidate disparity value that minimize the aggregation cost

C(piL, s) is considered as the preliminary disparity result of piL. We adapt this
disparity value to all the subordinate pixels belong to piL and get disparity map
shown in Fig. 4(c) without post processing steps.

However, only selecting the minimum aggregation cost by Eqs. (2)–(4) can
not solve the occluded region marked in Fig. 4(a), because this region corre-
sponds to nothing correctly in the right image. To detect this kind of occluded
region, at process of computing Eq. (3), we set another threashold (θ) of color AD
between the valid left neighbor cluster center pixels and its candidate projection
pixels on the right image, shown in Eq. (5). This means we check the neighbor
segments’ matching characteristics when we compute the aggregation cost for
piL. Then, our segmentation-based aggregation cost can detect that occluded
region as shown in Fig. 4(d).

(a) (b) (c) (d)

Fig. 4. Preliminary disparity maps with radius parameters r = 5 and rS = 3 before
post-processing. (a) input left image with one kind of occluded region being marked
with black ellipse; (b) input right image; (c) disparity map got by using Eqs. (2)–(4)
for the left image; (d) improved disparity map got by adding Eqs. (5) to Eq. (3), the
occluded region marked in (a) has been detected.
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AD(PjL, P
′
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′
jR
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⎤
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Here, PjL are the neighbor valid cluster center pixels surrounding piL; P
′
jR are

the candidate correspondences of PjL in the right image with candidate disparity
value s.

4 Post Processing and Result Evaluation

As we put emphasis on the quality of preliminary disparity map before post-
processing, we make a comparison of our preliminary dense results with three
top ranking results after post-processing, shown in Fig. 6. We can discern the
smoothness of our results compared with BSM in some regions where disparity
values seem correct and the clear distinguishment of foreground with background
compared with R-NCC. Though our preliminary results before post processing
can not compete with these two methods on Middlebury, our results can be
improved by adding many other optimization steps that have been proved by
many other researchers.

For example, before post-processing, we borrow idea from Hirschmüller
et al. [9] and use his disparity analysis strategy. After left-right cross check
(LRC), we use a gradient border-based median filter as post-processing step,
which can avoid fuzzy borders that usually happen with normal window-based
median filter: we firstly exclude small gradient values from initial gradient image
and get the gradient boundaries similar as Fig. 2 down (a); then we spiral search
neighboring valid disparities surrounding the bad pixel detected by LRC instead
of using fixed rectangle window surrounding that bad pixel; if the searcher
touches the gradient boundaries or bigger than a certain searching radius, it
stops; also we do not fix these bad pixels locating on gradient boundaries. The
final evaluation of our sparse disparity maps (SDSWTA) on Middlebury shows

Fig. 5. Evaluation of our sparse disparity results after post processing (SDSWTA).
This evaluation only concerns the percentage of bad pixel 0.5 without occluded parts
of the left image.
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(a) GT (b) SGBM1 (c) BSM (d) R-NCC (e) SDSWTA

Fig. 6. Comparison of our preliminary dense results before post processing with three
top ranking methods listed on Middlebury. (a) Ground Truth; (b) SGBM1; (c) BSM;
(d) R-NCC; (e) Our method, SDSWTA.
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that our method can reach an interesting accuracy. One of the best evaluations
is shown in Fig. 5.

Three parameters in this paper play important roles to the final results: the
topological radius r for SOM and rS for searching neighboring segments, the
threshold θ to select valid neighbor correspondences.

5 Conclusion

To give an objective assessment of our methods, we provide a self distributed
segmentation method that is suitable for stereo and a matching strategy that
adapts to this segmentation. The aggregation cost may not be suitable for pixel-
based dense matching method, but we have proved that it is adequate for our
segments-based strategy. The reasonable assumption that depth discontinuity
happens with color changement has its drawbacks at cases where the color of
background is very close to the foreground’s. Just as shown in Fig. 4(c, d), match-
ing errors appear near the borders of white wall and white drape in Fig. 4(a, b).
This is a challenging problem for many stereo algorithms.
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