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Abstract. This paper is a continuation and extension in developing the
knowledge-based decision support design system (called HSSDR) which
communicates with the designer via drawings. Graph-based modeling
of conceptualization in the CAD process, which enables the system to
automatically transform design drawings into appropriate graph-based
data structures, is considered. Hierarchical graphs with bonds are pro-
posed as a representation of designs. An ontological commitment between
design conceptualization and internal representations of solutions, which
enables us to capture intended design models, is described. Moreover, the
first-order logic (FOL) of HSSDR is replaced by many-sorted FOL that
makes it possible to define different sorts in specification of functions and
predicates in semantics and design constraint verification.

1 Introduction

This paper is focused on maintaining ontological compatibility between drawings
and their graph-based representations in a CAD process. Design drawings are
created on the basis of the conceptualization characteristic for a given design
domain. Conceptualization concerns objects, concepts, and other entities that
are assumed to exist in the considered domain of discourse, and the relationships
that hold among them.

The drawings by which a CAD system communicates with the designer are
usually converted to some internal data structures. In many CAD programs
those structures are graph-based, because graphs are well-suited to model sub-
components of the designed object and relations between those subcomponents.
An example of such a system is HSSDR (Hypergraph System Supporting Design
and Reasoning) described in [3]. It was developed as a tool for designing floor
layouts and validating their correctness in respect to an adjustable set of rules.

Every action undertaken by the designer modifies a displayed drawing and
this modification is in turn reflected in the HSSDR’s internal data structure in
the form of a hierarchical graph. Every modification done by the designer triggers
a constraint verification round. Design constraints are specified as logic formulas.
Two constraint sets, which verify compliance with fire code regulations and check
if all paths leading to certain important rooms are monitored by cameras, were
considered in [3].
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Experiences gained during implementation and testing of the original version
of HSSDR have suggested two potential improvements. The first one is concerned
with the way of modeling parts of the layout. Areas, rooms and walls were
treated as elements of the domain of discourse, while other objects, like doors and
cameras, as properties (attributes) of these elements. This approach caused the
lack of ontological compatibility between conceptualization and the hypergraph
representation of drawings. This paper proposes a new representation in the form
of hierarchical graphs with bonds, which makes it possible to include all of the
objects as elements of the domain of discourse.

Another proposed improvement concerns the language in which the design
constraints are specified. The FOL is replaced by many-sorted FOL. It allows
for enhanced syntactic checking of the constraints.

This paper is organized as follows: Sect. 2 gives some insights in human-
computer interaction in the context of computer-aided design. Section 3 presents
the current modeling system, while Sect. 4 then proposes its modifications. In
Sect. 5 a new type of hierarchical graphs, so called the graphs with bonds, is
defined. Sections 6 and 7 consider the reasoning mechanism of HSSDR based on
many-sorted FOL language, while reasoning examples are given in Sect. 8. The
paper ends with a conclusion.

2 Human-Computer Interaction in CAD

During the conceptual design the designer has to describe the domain of dis-
course being a subset of his/her cognitive domain. There exists the need to keep
in mind objects, concepts, and other entities that are assumed to exist in the
considered domain of discourse, and the relationships that hold among them.
Conceptualization is one of the most challenging aspects of designing because it
forces designers to considers many disparate factors. According to [2] a concep-
tualization can be defined as follows.

Definition 1. A conceptualization is a pair C = (Δ,Θ), where: Δ is a set called
the universe of discourse, and Θ is a set of relations on Δ.

During the computer aided design process externalization of designer’s con-
ceptualization takes the form of design drawings. They are generated by the
designer with the use of a visual editor and constitute the first type of represen-
tation storing information about design solutions. Design drawings are composed
of transformed basic shapes which are specified on the basis of the conceptual-
ization. The design drawing can be formally defined as follows.

Definition 2. Let F be a set of admissible transformations of the form f :
Rn → Rn. Let S be a finite set of basic shapes being bounded subsets of Rn such
that for each two s, s′ ∈ S and f ∈ F , f(s) = s′ ⇒ s = s′. Let Q ⊂ S × F be a
space configuration.

A design drawing with configuration Q is specified as Z(Q) = ∪(s,f)∈Qf(s).
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In HSSDR the designer can generate an observable world state in the form
of a design drawing (Fig. 1). In each step of the design process the designer
can change his conceptualization, i.e., number of elements of the domain of
discourse Δ and/or relations of Θ on Δ because both the requirements and the
design become more refined as the project proceeds. The conceptualization for
the designer’s world can be represented by the sequence of observable world
states and denoted by W . The conceptualization which includes all entities and
relations defined for W is denoted by CW .

The designer communicates with the design system using a visual design
language, i.e., a set of design drawings. Let us consider the specialized CAD
editor for designing floor layout composed of polygons which are placed on an
orthogonal grid. These polygons represent functional areas or rooms. According
to designer’s convention each line shared by polygons in the drawing is asso-
ciated with one of two relations. Lines with a door symbol on them represent
the accessibility relation among components, while continuous lines shared by
polygons denote the adjacency relation between them. An example of a floor
layout generated by the designer with the use of the editor is shown in Fig. 1.

Fig. 1. The design drawing representing a floor-layout created by the designer in
HSSDR

A majority of visual languages is characterized by a vocabulary being a finite
set of basic shapes and a finite set of rules specifying possible configurations of
these shapes. Basic shapes of visual languages and their spatial relationships
correspond to concepts and relations defined by the conceptualization of the
discourse domain. Each specialized design domain has its own visual language
related to concepts of this domain [4,5].
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3 The Current Modeling System

The Hypergraph System Supporting Design and Reasoning described in [3] is
a system for designing floor layouts using the top-down methodology. HSSDR
communicates with its users by means of a simple visual language of diagrams. It
also checks if the current state of the layout satisfies design constraints specified
as a set of FOL formulas.

A user starts by drawing an outline of an apartment. This outline is then
divided by drawing a polyline. The resulting areas are further divided into sub-
areas. The user continues dividing them, stopping when she reaches the level of
rooms. Doors and cameras can be added either during, or after this process.

HSSDR internally uses a hierarchical hypergraph as its main data structure
(see Fig. 2). Every user action modifying the displayed diagram is reflected in
this hypergraph.

The hypergraph consists of two types of hyperedges: those representing rooms
and areas, and those representing adjacency and accessibility relations. Func-
tional areas and groups of rooms are at higher hierarchy levels, while single
rooms are at the bottom. Graph nodes correspond to walls. Attributes are used
to store rooms positions, as well as wall lengths, number and positions of doors
and cameras, room labels, etc.

Designer

View Controller Reasoning Module

Model

Tests manager

Graph viewer

Layout editor

Graph representation

Controller

Tests

Logic formula analyzer

Relational structure

Fig. 2. The internal architecture of HSSDR

The design constraints are stored in external text files, thus they can be
easily modified or replaced at any time, even in the middle of a design session.
Constraints can refer to elements of the layout (rooms, walls, doors and cameras)
and to a fixed set of relations and functions (adjacency between two rooms, room
type, distance between two doors, etc.). Thanks to the use of widely known FOL
formalisms they are readable by developers, experts and users.

The constraints are logic sentences, and as such can be evaluated as true or
false in context of a specific relational structure [1]. HSSDR defines a structure
which reflects the current state of the hypergraph. Results of evaluation are
presented to the user; all false results are flagged as constraint violations.

An example of such results can be seen in Fig. 3. The text field near the
bottom shows the name of the file and the message associated with the failed
test. The layout element which failed this test is marked red on the diagram.
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Fig. 3. A finished layout which does not fulfill one of design constraints

4 The New System

Experiences gained during implementation and testing of the original version of
HSSDR have pointed to several areas of potential improvement. One of them
was the type of graph used as the main data structure and the way elements
of discourse were modeled in this graph. The original way of representing an
area or a room by a special kind of hyperedge together with its attached nodes
was convenient for representing accessibility and adjacency relations between
areas/rooms, but became problematic when the representation was extended to
include doors and cameras. From an ontological point of view areas and rooms
are treated as elements of the domain of discourse, while other objects as doors
and cameras as properties (attributes) of these elements. In other words, there
does not exist ontological commitment between conceptualization and its repre-
sentation in the form attributed hypergraph. Therefore, this paper proposes a
new model which uses hierarchical graphs with bonds. This type of graphs makes
it possible to include all of the object as elements of the domain of discourse.
Bonds are distinguished graph nodes which can specify arguments of relations
on different levels of detail.

Another proposed improvement concerns the language, in which the design
constraints are specified. The original HSSDR used FOL; it can be replaced by
many-sorted FOL. Introduction of sorts divides the domain of discourse into
subsets: of rooms, of doors, of numbers, of room types, etc. Predicates and
functions used in formulas are annotated with information about sorts of their
arguments and results. This allows for enhanced syntactic checking of formulas.

The new system keeps the name HSSDR, but the first letter now stands
for a hierarchical graph, not for a hypergraph. So, it can refer to any kind of a
hierarchical graph, from graphs described in [7], through hypergraphs used by the
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previous version of HSSDR and B-graphs proposed for the new version, to other
kinds which may be used in the future. For example, multi-hierarchical graphs
seem promising as models for multi-storey buildings and other cases where single
hierarchy based on spatial containment is insufficient.

5 Hierarchical B-Graphs

B-graphs are meant to represent objects and their fragments or elements (known
as bonds) that can be used as arguments of relations. Relations are defined
between bonds. We distinguish two kinds of bonds: engaged and free, which
correspond to arguments of existing and potential relations, respectively. This
distinction of bonds is essential for defining operations on graphs that reflect
modifications of design drawings.

B-graphs used in this paper are hierarchical, because of the need to represent
nested areas. Hierarchy also allows for sub-bonds (for example, a room has walls
as its fragments and one of them has a door – this door is a fragment of the
room, but also is subordinate to the wall). Instead of one set of nodes, B-graphs
have two: a set of object nodes and a set of bond nodes. They also have a set
of edges. Every edge connects bonds belonging to two different objects. HSSDR
needs to store additional information about layout elements, therefore B-graphs
allow for labels and attributes on nodes and edges.

Let Σ be a finite alphabet used to label object nodes, bond nodes and edges.
Let A be a nonempty, finite set of attributes. For every attribute a ∈ A, let Da

be a fixed, nonempty set of its admissible values, known as the domain of a.

Definition 3. A B-graph G is a tuple G = (O,B,E, bd, s, t, ch, lab, atr), where:

– O,B,E are pairwise disjoint finite sets, whose elements are respectively called
object nodes, bond nodes, and edges,

– bd : O → 2B is a function assigning sets of bond nodes to object nodes in such
a way that ∀x ∈ B ∃!y ∈ O : x ∈ bd(y), i.e., each bond belongs to exactly one
object,

– s, t : E → B are functions assigning to edges source and target bond nodes,
respectively, in such a way that ∀e ∈ E ∃x, y ∈ O : s(e) ∈ bd(x) ∧ t(e) ∈
bd(y) ∧ x 
= y,

– ch : O ∪ B ∪ E → 2O∪B∪E is a child nesting function such that:
– ∀x, y, z ∈ O ∪B ∪ E : x ∈ ch(y) ∧ x ∈ ch(z) ⇒ y = z, i.e., a graph element

cannot be nested in two different places,
– ∀x ∈ O ∪ B ∪ E : x /∈ ch+(x), i.e., a graph element cannot be its own

descendant,
– ∀x ∈ B, ∀y ∈ O: x ∈ bd(y) ⇒ x ∈ ch(y)∨ (∃z ∈ B : x ∈ ch(z)∧z ∈ bd(y)),

i.e., a bond must be nested either in its object, or in some other bond
belonging to this object,

– lab : O ∪ B ∪ E → Σ is a labelling function,
– atr : O ∪ B ∪ E → 2A is an attributing function.
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Fig. 4. A part of a graph model corresponding to the layout displayed in Fig. 3

A part of the B-graph being the internal representation of the layout shown in
Fig. 3 is presented in Fig. 4. Bonds without the outgoing edges in Fig. 4 represent
free bonds.

A graph instance is obtained by adding attribute values. Each design drawing
is represented by a corresponding B-graph instance defined as follows.

Definition 4. An instance I of a B-graph G is a pair I = (G, val) where G =
(O,B,E, bd, s, t, ch, lab, atr) and val : O ∪ B ∪ E × A → D, with D =

⋃
a∈A Da,

is a partial function assigning attribute values in such a way that val(x, a) is
defined if and only if a ∈ atr(x) and val(x, a) ∈ Da if defined.

The proposed B-graphs allow for maintaining ontological compatibility
between drawings and their graph-based representations.

Definition 5. Let W denote the designer’s world and CW = (ΔW , ΘW ) be a
conceptualization for W . Let GW = (O,B,E, bd, s, t, ch, lab, atr) be a family of
B-graphs representing world states of W .

An ontological commitment between CW and GW is a mapping �W : ΔW ∪
ΘW → O ∪ B ∪ E, such that for each Cw, where w ∈ W , there exists B-graph
gw ∈ GW such that concepts of ΔW are mapped to object and bond nodes of gw
and relations of ΘW to edges of gw.

6 Many-Sorted First-Order Logic

The explicit specification of design constraints related to the reasoning mech-
anism based on representation of drawings in the form of B-graph instances
must be formal, i.e., the expressions must be defined in a formal language. We
use a many-sorted FOL language which introduces representing distinct kinds
of objects to reason about [6]. The concept of sort allows one to specify for
functions and relations what sorts of their domains and ranges are required.
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The formal description of many-sorted FOL formulas starts with the following
definition of a signature.

Definition 6. A signature σ is a tuple σ = (S,X,C, F, P ), where:

– S = {s1, s2, . . . , sk} is a set of sorts,
– X is a set of variables, which is partitioned into subsets X1 . . . Xk with each

Xi containing variables of sort si,
– C is a set of constant symbols, which is partitioned into subsets C1 . . . Ck with

each Ci containing constants of sort si,
– F is a set of n-ary function symbols the type si1 × · · · × sin → sin+1 , where

n ≥ 0, and each sij ∈ S,
– P is a set of n-ary predicate symbols of the type si1 × · · · × sin , where n ≥ 0,

and each sij ∈ S.

Definitions of σ-terms and σ-formulas are analogous to the definitions of these
concepts for the classic FOL language. A formula where all variables are bound
by quantifiers is known as a sentence. Sentences are either true or false, but
only after all symbols used in formulas are assigned a specific semantics. This
semantic information is provided by a relational structure defined as follows.

Definition 7. For a signature σ, a σ-relational structure R is a map with the
following properties:

– each sort si is mapped to a nonempty set Ai,
– each constant symbol c ∈ Ci is mapped to an element of Ai,
– each function symbol f : si1 × · · · × sin → sin+1 is mapped to a function

fR : Ai1 × · · · × Ain → Ain+1 ,
– each predicate symbol p : si1 ×· · ·× sin is mapped to a subset pR ⊂ Ai1 ×· · ·×

Ain .

7 Reasoning Module of HSSDR

The HSSDR’s reasoning module interprets symbols of the logic language signa-
ture on the basis of B-graphs representing design drawings. This interpretation
should be compatible with the ontological commitment between conceptualiza-
tion and graph structures (Definition 5). On the basis of this assumption the
vocabulary of the reasoning module is defined.

In HSSDR the following sorts are defined: areas, walls, doors, sensors, labels
and numbers. There are constants representing labels (“hall”, “bathroom”, etc.)
and numbers. There are functions: type : areas → labels, width, length :
areas → numbers, doorsDist : doors × doors → numbers (returns a distance
between two pairs of doors in a single room), and standard arithmetic operators,
either numbers × numbers → numbers or numbers → numbers.

Two-argument predicates: adjacent, accessible : areas × areas, doors
InRoom : doors×areas (returns true if the doors are embedded in a wall of the
room), sensorInRoom : sensors × areas, isPassageWatched : doors × doors



372 W. Palacz et al.

(returns true if every path between two pairs of doors in a single room is
watched by one or more sensors), and standard arithmetic comparison oper-
ators: numbers × numbers.

One-argument predicates (i.e., sort subsets): Areas : areas, Rooms : areas,
Walls : walls, Doors : doors, ExternalDoors : doors, and Sensors : sensors.

Only Rooms and ExternalDoors define proper subsets of their sorts. Other
predicates always return true, and thus define sets equal to their whole sorts.
From the formal point of view these predicates are not necessary, and are pro-
vided only because constraint writers sometimes prefer to write constraints with
explicitly specified quantifier ranges, e.g., forall a in Rooms: type(a) = “bank
vault” => exists s in Sensors: sensorInRoom(s, a).

For a given B-graph I representing a layout, the corresponding relational
structure R is constructed as follows:

– Aareas = OI , Awalls = {x ∈ BI : labI(x) = “wall” }, Adoors = {x ∈ BI :
labI(x) = “door”}, Asensors = {x ∈ BI : labI(x) =“sensor”}, Alabels = Σ,
Anumbers = R,

– label and number constants are mapped to themselves,
– typeR(x) = labI(x), widthR(x) = valI(x, “width”), lengthR(x) = valI(x,

“length”), doorsDistR(x, y) is implemented algorithmically,
– arithmetic operators are defined as themselves,
– adjacentR = {(x, y) ⊂ OI ×OI : exists e ∈ EI such that sI(e) ∈ bdI(x), tI(e) ∈

bdI(y), labI(e) = “adjacent”},
– acessibleR = {(x, y) ⊂ OI ×OI : exists e ∈ EI such that sI(e) ∈ bdI(x), tI(e) ∈

bdI(y), labI(e) = “acessible”},
– doorsInRoomR = {(x, y) ⊂ BI × OI : labI(x) = “door”, x ∈ bdI(y)},
– sensorInRoomR = {(x, y) ⊂ BI × OI : labI(x) = “sensor”, x ∈ bdI(y)},
– isPassageWatchedR ⊂ BI × BI is calculated by Java code,
– arithmetic comparisons are defined as themselves,
– AreasR = Aareas, RoomsR = {x ∈ OI : chI(x) ∩ OI = ∅}, WallsR = Awalls,

DoorsR = Adoors, ExternalDoorsR = {x ∈ Adoors: there is no e ∈ EI such
that sI(e) = x}, SensorsR = Asensors.

8 Reasoning Examples

This section provides several examples of tests, written in a form acceptable to
HSSDR.

The following constraint requires at least one bedroom present in the layout:
exists x: type(x) =“Bedroom”. The HSSDR’s reasoning module, when loading
this formula, will recognize x as a variable of an unspecified sort and “Bedroom”
as a constant of the labels sort. Since x is used as an argument of the type
function, it apparently must be of the areas sort. This function produces results
of the labels sort, which means that both sides of the equality sign are of the same
sort. The formula is syntactically correct. The reasoning module uses exhaustive
search when evaluating formulas with quantifiers. In this case, since x is of the
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areas sort, it will loop over all areas (and rooms) currently present in the layout –
that is, over elements of the AreasR set.

The constraint of the form exists r: type(r) > 42 is syntactically invalid,
because results of the type function belong to the labels sort, and cannot be
compared with constants of the numbers sort.

The last example checks if all path leading to secured areas are watched by
sensors. Originally presented in [8], here it was adapted to many-sorted logic.
Results produced by this test can be seen on screenshots in Figs. 3 and 5. At
first, the test fails because a thief can enter through the doors in the dining room
and walk unobserved through kitchen to the office. Adding a second sensor in
the kitchen secures this path. In the similar way the satisfaction of standard
architectural norms can be checked.

Fig. 5. Corrected version of the layout from Fig. 3.

9 Conclusions

This paper presents how graphs can be combined with logic-based knowledge
representation techniques, where knowledge is represented explicitly by symbolic
terms and reasoning is the manipulation of these terms. In the proposed approach
the semantics of logical formulas build over many-sorted signature uses relational
structures based on B-graph instances.

In our future research we shall focus attention on modelling multi-storey
buildings with the use of multi-hierarchical graph representations with bonds.
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