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Abstract. In this paper we present experimental results on rule sets
induced from 12 data sets with many missing attribute values. We use
two interpretations of missing attribute values: lost values and attribute-
concept values. Our main objective is to check which interpretation of
missing attribute values is better from the view point of complexity of rule
sets induced from the data sets with many missing attribute values. The
better interpretation is the attribute-value. Our secondary objective is to
test which of the three probabilistic approximations used for the exper-
iments provide the simplest rule sets: singleton, subset or concept. The
subset probabilistic approximation is the best, with 5 % significance level.
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1 Introduction

The basic ideas of rough set theory are standard lower and upper approxima-
tions. A probabilistic approximation with a probability α is an extension of the
standard approximation. For α = 1, the probabilistic approximation is reduced
to the lower approximation; for very small α, it is reduced to the upper approx-
imation. Research on theoretical properties of probabilistic approximations was
initiated in [1] and then was continued in, e.g., [2–5].

Incomplete data sets are analyzed using special approximations such as sin-
gleton, subset and concept [6,7]. Probabilistic approximations, for incomplete
data sets and based on an arbitrary binary relation, were introduced in [8]. The
first experimental results using probabilistic approximations were published in
[9]. In experiments reported in this paper, we used three kinds of probabilistic
approximations: singleton, subset and concept.

In this paper, we consider two interpretations of missing attribute values, lost
values and attribute-concept values. Lost values indicate that the original values
were erased, and as a result we should use only existing, specified attribute val-
ues for data mining. Attribute-concept values may be replaced by any specified
attribute value for a given concept.
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Experimental research on comparing different approaches to mining incom-
plete data was initiated in [10], where results of experiments on data sets with
35 % missing attribute values, using two interpretations of missing attribute val-
ues: lost values and “do not care” conditions, were presented.

Research on mining incomplete data with lost values and attribute-concept
values, using different experimental setups, was presented in [11–14]. Results
of initial research [10,12] show that the quality of rule sets, evaluated by an
error rate computed by ten-fold cross validated, does not differ significantly with
different combinations of missing attribute and probabilistic approximation type.
On the other hand, for data sets with many lost values and attribute-concept
values, experiments described in [13] show that the error rate was smaller for
lost values.

In [11,14], complexity of rule sets induced from data with lost values and
attribute-concept values was investigated. The results were not quite decisive,
though the number of rules was always smaller for data sets with attribute-
concept values, the results for the total number of rule conditions were not so
conclusive.

Therefore the main objective of this paper is research on complexity of rule
sets, in terms of the number of rules and total number of rule conditions, induced
from data sets with many lost values and attribute-concept values using the
Modified Learning from Examples Module version 2 (MLEM2) system for rule
induction. The results of this paper show that the number of rules and the total
number of conditions are always smaller for attribute-concept values than for
lost values.

In our previous research [11,14], results on the best choice of probabilistic
approximations (singleton, subset or concept) were not conclusive. So our sec-
ondary objective is to check which probabilistic approximation (singleton, subset
or concept) is the best from the point of view of rule complexity. As results of
our paper show, the best choice is the subset probabilistic approximation.

This paper starts with a discussion on incomplete data in Sect. 2 where we
define approximations, attribute-value blocks and characteristic sets. In Sect. 3,
we present singleton, subset and concept probabilistic approximations for incom-
plete data. Section 4 contains the details of our experiments. Finally, conclusions
are presented in Sect. 5.

2 Incomplete Data

We assume that the input data sets are presented in the form of a decision table.
An example of a decision table is shown in Table 1. Rows of the decision table
represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 1, U = {1, 2, 3, 4, 5, 6, 7}. Independent variables are
called attributes and a dependent variable is called a decision and is denoted
by d. The set of all attributes will be denoted by A. In Table 1, A = {Wind,
Temperature, Humidity}. The value for a case x and an attribute a will be
denoted by a(x).
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In this paper, we distinguish between two interpretations of missing attribute
values: lost values, denoted by “?” and attribute-concept values, denoted by “−”
[15,16]. Table 1 presents an incomplete data set affected by both lost values and
attribute-concept values.

Table 1. A decision table

Case Attributes Decision

Wind Temperature Humidity Trip

1 low ? low yes

2 ? high − yes

3 high − low yes

4 − high ? yes

5 high low − no

6 low high ? no

7 ? ? high no

One of the most important ideas of rough set theory [17] is an indiscernibility
relation, defined for complete data sets. Let B be a nonempty subset of A. The
indiscernibility relation R(B) is a relation on U defined for x, y ∈ U as defined by

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y))

The indiscernibility relation R(B) is an equivalence relation. Equivalence
classes of R(B) are called elementary sets of B and are denoted by [x]B . A subset
of U is called B-definable if it is a union of elementary sets of B.

The set X of all cases defined by the same value of the decision d is called
a concept. For example, a concept associated with the value yes of the decision
Trip is the set {1, 2, 3, 4}. The largest B-definable set contained in X is called
the B-lower approximation of X, denoted by appr

B
(X), and defined as follows

∪{[x]B | [x]B ⊆ X}.

The smallest B-definable set containing X, denoted by apprB(X) is called
the B-upper approximation of X, and is defined by

∪{[x]B | [x]B ∩ X �= ∅}.

For a variable a and its value v, (a, v) is called a variable-value pair. A block
of (a, v), denoted by [(a, v)], is the set {x ∈ U | a(x) = v} [18]. For incomplete
decision tables the definition of a block of an attribute-value pair is modified in
the following way.

– If for an attribute a there exists a case x such that a(x) = ?, i.e., the corre-
sponding value is lost, then the case x should not be included in any blocks
[(a, v)] for all values v of attribute a,
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– If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., a(x) = −, then the corresponding case x
should be included in blocks [(a, v)] for all specified values v ∈ V (x, a) of
attribute a, where V (x, a) is defined by

{a(y) | a(y) is specified , y ∈ U, d(y) = d(x)}
For the data set from Table 1, we have V (2,Humidity) = {low}, V (3, Tem-

perature) = {high}, V (4,Wind) = {low, high} and V (5,Humidity) = {high}.
For the data set from Table 1 the blocks of attribute-value pairs are:

[(Wind, low)] = {1, 4, 6},
[(Wind, high)] = {3, 4, 5},
[(Temperature, low)] = {5}, and
[(Temperature, high)] = {2, 3, 4, 6},
[(Humidity, low)] = {1, 2, 3},
[(Humidity, high)] = {5, 7}.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) =? then the set K(x, a) = U , where U is the set of all cases,
– If a(x) = −, then the corresponding set K(x, a) is equal to the union of all

blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is nonempty.
If V (x, a) is empty, K(x, a) = U .

For Table 1 and B = A,

KA(1) = {1},
KA(2) = {2, 3},
KA(3) = {3},
KA(4) = {3, 4, 6},
KA(5) = {5},
KA(6) = {4, 6}, and
KA(7) = {5, 7}.

First we will quote some definitions from [19]. Let X be a subset of U . The
B-singleton lower approximation of X, denoted by apprsingleton

B
(X), is defined by

{x | x ∈ U,KB(x) ⊆ X}.

The B-singleton upper approximation of X, denoted by apprsingleton
B (X), is

defined by
{x | x ∈ U,KB(x) ∩ X �= ∅}.

The B-subset lower approximation of X, denoted by apprsubset
B

(X), is
defined by

∪ {KB(x) | x ∈ U,KB(x) ⊆ X}.
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The B-subset upper approximation of X, denoted by apprsubset
B (X), is

defined by
∪ {KB(x) | x ∈ U,KB(x) ∩ X �= ∅}.

The B-concept lower approximation of X, denoted by apprconcept
B

(X), is
defined by

∪ {KB(x) | x ∈ X,KB(x) ⊆ X}.

The B-concept upper approximation of X, denoted by apprconcept
B (X), is

defined by

∪ {KB(x) | x ∈ X,KB(x) ∩ X �= ∅} = ∪ {KB(x) | x ∈ X}.

For Table 1 and X = {5, 6, 7}, all A-singleton, A-subset and A-concept lower
and upper approximations are:

apprsingleton
A

(X) = {5, 7},
apprsingleton

A (X) = {4, 5, 6, 7},
apprsubset

A
(X) = {5, 7},

apprsubset
A (X) = {3, 4, 5, 6, 7},

apprconcept
A

(X) = {5, 7},
apprconcept

A (X) = {4, 5, 6, 7}.

Fig. 1. Number of rules for the breast
cancer data set

Fig. 2. Number of rules for the echocar-
diogram data set

Fig. 3. Number of rules for the hepati-
tis data set

Fig. 4. Number of rules for the image
segmentation data set
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Fig. 5. Number of rules for the lym-
phography data set

Fig. 6. Number of rules for the wine
recognition data set

Fig. 7. Total number of conditions for
the breast cancer data set

Fig. 8. Total number of conditions for
the echocardiogram data set

Fig. 9. Total number of conditions for
the hepatitis data set

Fig. 10. Total number of conditions for
the image data set

3 Probabilistic Approximations

In this section definitions of singleton, subset and concept approximations are
extended to the corresponding probabilistic approximations. A B-singleton prob-
abilistic approximation of X with the threshold α, 0 < α ≤ 1, denoted by
apprsingleton

α,B (X), is defined by
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Fig. 11. Total number of conditions for
the lymphography data set

Fig. 12. Total number of conditions for
the wine recognition data set

{x | x ∈ U, Pr(X | KB(x)) ≥ α},

where Pr(X | KB(x)) = |X ∩ KB(x)|
|KB(x)| is the conditional probability of X given

KB(x) and |Y | denotes the cardinality of set Y . A B-subset probabilistic approx-
imation of the set X with the threshold α, 0 < α ≤ 1, denoted by apprsubset

α,B (X),
is defined by

∪{KB(x) | x ∈ U, Pr(X | KB(x)) ≥ α}.

A B-concept probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprconcept

α,B (X), is defined by

∪{KB(x) | x ∈ X, Pr(X | KB(x)) ≥ α}.

Note that if α = 1, the probabilistic approximation is the standard lower
approximation and if α is small, close to 0, in our experiments it is 0.001, the
same definition describes the standard upper approximation.

For Table 1 and the concept X = [(Trip, no)] = {4, 5, 6}, there exist the
following distinct probabilistic approximations:

apprsingleton
1.0,A (X)= {5, 7},

apprsingleton
0.5,A (X)= {5, 6, 7},

apprsingleton
0.333,A (X)= {4, 5, 6, 7},

apprsubset
1.0,A (X)= {5, 7},

apprsubset
0.5,A (X)= {4, 5, 6, 7},

apprsubset
0.333,A(X)= {3, 4, 5, 6, 7},

apprconcept
1.0,A (X)= {5, 7},

apprconcept
0.5,A (X)= {4, 5, 6, 7}.

4 Experiments

Our experiments are based on six data sets that are available on the University
of California at Irvine Machine Learning Repository. Basic information about
these data sets is presented in Table 2.
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Table 2. Data sets used for experiments

Data set Number of Percentage of
missing attribute values

Cases Attributes Concepts

Breast cancer 277 9 2 44.81

Echocardiogram 74 7 2 40.15

Hepatitis 155 19 2 60.27

Image segmentation 210 19 7 69.85

Lymphography 148 18 4 69.89

Wine recognition 178 13 3 64.65

For every data set a set of templates was created. Templates were formed
by replacing incrementally (with 5 % increment) existing specified attribute val-
ues by lost values. Thus, we started each series of experiments with no lost
values, then we added 5 % of lost values, then we added additional 5 % of lost
values, etc., until at least one entire row of the data sets was full of lost val-
ues. Then three attempts were made to change configuration of new lost values
and either a new data set with extra 5 % of lost values were created or the
process was terminated. Additionally, the same templates were edited for fur-
ther experiments by replacing question marks, representing lost values by “−”s,
representing attribute-concept values.

For any data set there was some maximum for the percentage of missing
attribute values. For example, for the Breast cancer data set, it was 44.81 %. In
our experiments we used only such incomplete data sets, with as many missing
attribute values as possible. Note that for some data sets the maximum of the
number of missing attribute values was less than 40 %, we have not used such
data for our experiments.

For rule induction we used the Modified Learning from Examples Module
version 2 (MLEM2) rule induction algorithm, a component of the Learning from
Examples based on Rough Sets (LERS) data mining system [18]. Results of our
experiments are presented in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.

Our main objective was to select the better interpretation of missing attribute
values: lost values or attribute-concept values in terms of complexity measured
by the number of rules and the total number of conditions in rule sets. For any
data set we compared the size of the rule set and the total number of conditions
in the rule set for two interpretations of missing attribute values with the same
type of probabilistic approximation. Our results show that the number of rules
was always smaller for attribute-concept values than for lost values. Similarly,
the total number of conditions was always smaller for attribute-concept values
than for lost values.

Our secondary objective was to find the best kind of probabilistic approx-
imations (singleton, subset or concept). Here the answer is more complicated.
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For any data set we compared all three kinds of probabilistic approximations
assuming the same type of missing attribute values using multiple comparisons
based on Friedman’s nonparametric test. As a result, the smallest number of
rules is accomplished by subset approximations for eight out of 12 data sets (5 %
significance level). For four data sets (echocardiogram, hepatitis, image segmen-
tation and wine recognition, all with attribute-concept values), the difference is
not statistically significant. The total number of conditions is also the smallest
for subset approximations except two data sets (echocardiogram and hepatitis,
both with attribute-concept values).

5 Conclusions

As follows from our experiments, the number of rules and the total number of
conditions is always smaller for attribute-concept values than for lost values.
Additionally, the best probabilistic approximation that should be used for rule
induction from data with many missing attribute values is subset probabilistic
approximation.
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