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Abstract. This paper is aimed at proposing some new formal system of
a fuzzy logic – suitable for representation the “before” relation between
temporal intervals. This system and an idea of the integral-based app-
roach to the representation of the Allen’s relations between temporal
intervals is later used for a specification of a class of solutions of the so-
called Simple Temporal Problem under Uncertainty and it extends the
classical considerations of R. Dechter and L. Khatib in this area.
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1 Introduction

In [2] R. Dechter introduced the so-called Simple Temporal Problem as a restric-
tion of the framework of Temporal Constraint Satisfaction Problems, tractable in
polynomial time. In order to address the lack of expressiveness in standard STPs,
Khatib in [10] proposed some extended version of STP – the so-called Simple
Temporal Problem with Preferences (STPP). The lack of flexibility in execution
of standard STPs was a motivation factor to introduce the so-called Simple Tem-
poral Problem under Uncertainty (STPU) in [14]. In order to capture both the
possible situations of acting with preferences and under uncertainty, the Simple
Temporal Problem with Preferences under Uncertainty (STPPU) was described
in [13]. Due to – [2] – The Simple Temporal Problems(STPs) is a kind of such
a Constraints Satisfaction Problem, where a constraint between time-points Xi

and Xj is represented in the constraint graph as an edge Xi → Xj , labeled by
a single interval [aij , bij ] that represents the constraint aij ≤ Xj − Xi ≤ bij .
Solving an STP means finding an assignment of values to variables such that
all temporal constraints are satisfied. Due to [14] – The Simple Temporal Prob-
lem under Uncertainty extends STP by distinguishing contingent events, whose
occurrence is controlled by exogenous factors often referred to as “Nature”.

Independently of this research path, H-J. Ohlbach proposed in [11] a new
integral-based approach to the fuzzy representation of the well-known Allen rela-
tionsbetween temporal intervals1– initially introducedbyJ.Allen in [1].This paper
1 Such as “before”, “after”, “during”.
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analysis combines both researchpaths. In fact,we intend to propose a new-integral-
based fuzzy logic system – capable of expressing the chosen relation “before” in
terms of Ohlbach’s integrals – in this paper. The chosen “before” relation was cho-
sen as some operationally “nice” and paradigmatic example among all Allen’s rela-
tions, which can be modeled in a similar way. This system is conceived as some
extension of the Fuzzy Integral Logic of Pavelka-Hajek from [4] – developed in [8]
and –for Allen’s relations in [9]. This manouvre is dictated by the second main
paper purpose: to demonstrate how the integral-based approach to the modelling
of Allen’s relations allows us to differentiate a potential class of STPU-solutions.
Although the specification of a class of the STPU-solutions was made by means
of some analytic tools, the introduced formalism supports this analysis, it consti-
tutes its foundation and ensures – thanks the completeness theorem – a coherence
between a description of STPU-problems in terms of the proposed formalism and
the proposed semantics. An algebraic approach to some unique temporal problems
such as scheduling with defects was proposed in [3].

1.1 Paper’s Motivation and Formulation of an Initial Problem

The main motivation factor of the current analysis is a lack of an approach
to the STPU-solving – capable of elucidating of an “evolution” of solutions.
In particular, there is no integral-based approach – in spite of integral-based
representation of Allen relations between intervals. In addition, it seems that
a theoretic, meta-logical establishing of the STPU2 has not been discussed yet
in a specialist literature. Some possibilities of modelling of preferences in fuzzy
temporal contexts were, somehow, demonstrated by authors of this paper in
[5–7], but without the explicit referring to STP and its extensions. From the
more practical point of view this paper analysis are motivated by the following
example of the STPU:

Example: Consider a satellite which performs a task to observe a volcano Etna
in some time-interval [0; 80]. The cloudiness can take place in time interval
j(x)= [20; 50], but it comes out gradually in this time-interval. When to begin
the observation task (beginning from the initial time-point) in order to maximize
a chance for finishing the satellite observation in a given time-interval [0; 80]?

We associate this main problem to the following (sub)problems supporting
its solution in terms of the features of “before”-relation.

Problem 1: Does the Allen relation “before” take a one or many values in the
integral-based depiction? If many, show which values from [0,1]-interval can be
taken by this relation in their integral-based depiction for linear functions.

Problem 2: If the “before”-relation can be evaluated by values from [0,1], decide
for which real parameters C > 0 this relation takes values no smaller than 0,7 ?

2 Establishing as completeness of system describing the STPU w.r.t its models.
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Fig. 1. STPU for observation task of the satellite

2 Terminological Background

The proper analysis will be prefaced by introducing a terminological background
regarding concepts of the fuzzy intervals, operations on them and the Ohlbach’s
representation of Allen’s interval relations.

Definition 1(Fuzzy Interval). Assume that f : R �→ [0.1] is a total integrable
function (not necessary continuous). Than the fuzzy interval if (corresponding
to a function f) is defined as follows: if = {(x, y),⊆ R × [0.1]|y ≤ f(x)}.

A fuzzy set (in a comparison with a crisp one) is illustrated on the picture
(Fig. 2):

Fig. 2. A crisp and a fuzzy interval

Operations of an intersection and a union of two fuzzy intervals are defined
with a use of the appropriate t-norms. Classically: (i∩j)(x) =def min{i(x), j(x)}
and (i ∪ j)(x) =def max{i(x), j(x)}.

Some Basic Transformations on Fuzzy Sets. We can associate some addi-
tional transformation with fuzzy intervals – presented in details in [11,12]. We
restrict their list to the following, especially useful:

identity(i) =def i,

integrate+(x) =def

∫ x

¬∞
i(y)dy/|i|,

integrate−(x) =def

∫ +∞

x

i(y)dy/|i|,
cutx1,x2(x) = 0, if x < x1 or x2 ≤ x; i(x) − otherwise.
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1. Before. In order to define this relation let us assume that some point-interval
relation:’p before j’ is given and let us denote it by B(j). In order to extend B(j)
to the interval-interval relation (for j and some interval i), we should average
this point-interval before-relation over the interval i. Since fuzzy intervals form
subsets of R2, all these points satisfying this new relation before(i, j) are given by

the appropriate integral, namely:
∫

i(x)B(j)dx/|i|. (|i| normalizes this integral

to be smaller than 1.)

Infinite Intervals: This general methods should be somehow modified w.r.t
the situation when either i or j or both intervals are infinite. If i is [a,∞)-type,
than nothing can be after i, thus before(i, j) must yield 0. For a contrast, if j
is (−∞, a]-type, than nothing can be before j, what leads to the same value 0.

It remains the case, when i is (−∞, a]-type, but j is finite or of [a,∞)-type. In

this case we should find some alternative, because
∫

i(x)B(j)dx will be infinite.

Therefore we take an intersection i∩minj instead of the whole infinite i. Since j is
not of a (−∞, a]-type, the intersection i∩minj must be finite and the before(i, j)
is given by:

before(i, j) =def

∫
(i(x) ∩min B(j))dx/|i(x) ∩min j(x)|.

In results, for some point-interval relation B(j) the new interval-interval relation
before(i, j) should be represented as below:

before(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if i = ∅ or i = [a, ∞) or j = ∅
1 if i = (∞, a] and i ∩ j = ∅∫

i(x) ∩min B(j)/|i(x) ∩min j(x)| if i = (∞, a] − type
∫

i(x)B(j)/|i(x)| otherwise

In order to solve this problem we will consider two fuzzy intervals i(x) and j(x).
For simplicity (but without losing of generality) we can take into account a single
Allen relation before(i, j)(x) between them localized w.r.t the y-axis as given
on the picture (Fig. 3):

i(x) j(x)

      0                  x

Fig. 3. Fuzzy intervals i(x) and j(x)
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3 Some Extension of the Fuzzy Integral Logic of Hajek
for the Fuzzy Allen Relation “before”

3.1 Requirements of the Construction

We will extend the Fuzzy Integral Logic of Hajek from [4] in order to express
the interval-interval relation “before”. In order to render it in a language of our
system we need introduce a new relation symbol, say B(i, j) for atomic terms
i, j (denoted by fuzzy intervals). In accordance with the Ohlbach’s definition of
this relation, one also need introduce the following: a) a symbol, say B(i)(x) to
represent the atomic interval-point relation before(i, x) (an interval i is’before’ a
point x) and b) a constant for normalization factor N. The point-interval relation
B(i)(x) etc. will be denoted by a symbol: B̂i

x. Because of the need of a clear
distinction between the FLI -syntax and its semantics with Allen’s relations –
the fuzzy intervals i(x), j(x) will be represented in the FLI -syntax by formulas

φi
x and φj

x (resp.). In results, we will write:
∫

ψi
tB̂

j
t dt instead of the Ohlbach’s

formula:
∫

i(x)B(j)(x)dx etc.

3.2 Syntax and Semantics

Language. For these purposes we introduce our FLI in an appropriate language
L of Lukasiewicz Propositional Logic (LukPL) with the following connectives and
constants: →,¬, ⇐⇒ ,∧ (weak conjunction), ⊗ (strong conjunction), ∨ (weak
disjunction), ⊕ (strong disjunction) and propositional constants 0 and 1. We
extend by new constants: r̂1, r̂2, r̂3 . . ., representing in the language L(FLI) the
rational numbers: r̂1, r̂2, . . . , s1, s2 . . . etc. We enrich this language by ∃– and ∀-
quantifiers to the full language of Rational Pavelka Predicate Logic RPL∀.
The alphabet of L(FLI) consists of3:

• propositional variables: φ, χ, ψ, . . . , ai, bi, . . . x, y, t . . .
• functional symbols: φt, φx−t, χt, χx−t, . . .
• predicates (of point-interval relations): B̂i

t, D̂i
t, M̂ i

t , Ŝi
t , F̂ i

t . . ..
• rational constant names: r̂1, r̂2, . . . 0̂, 1̂, scalar constants: N̂ , M̂ . . . etc.

• quantifiers: ∀,∃|
∫

()dx,

∫ ∫
()dxdy,

∫ ∞

0

()dt,

∫ t1

t0

()dt . . .

• operations: →,¬,∨,∧, •,⊕,⊗,= .

Set of Formulas FOR: The class of well-formed formulas FOR of L(FLI)
form propositional variables and rational constants as atomic formulas.
The next - formulas obtained from given φ, χ ∈ FOR by operations

¬,∨,∧,→ ,⊕,⊗,∀,∃,

∫
()dx and the formulas obtained from φi, χi ∈ FOR by

3 This system is a (slightly modified) system introduced in [8].
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operations ¬,∨,∧,→,⊕,⊗, •,∀,∃,

∫ ∞

0

()dt,

∫ t0

0

()dt,

∫ t1

t0

()dt. Finally, formulas

obtained from φi ∈ FOR and rational numbers by operations ¬,∨,∧,→,⊕,⊗, •
belong to FOR as well. These classes of formulas exhaust the list of FOR of
L(FLI).

Example:

∫ ∞

0

φt • χx−tdt → r̂ ∈ FOR, but

∫

φdx →
∫ ∞

0

χtdt does not.

The mentioned system FLI arises in L(FLI) by assuming the following

Axioms: – partially considered by Hajek in [4]:∫
(¬φ)dx = ¬

∫
φdx,

∫
(φ → χ)dx → (

∫
φdx →

∫
χdx)

∫
(φ ⊗ χ)dx = ((

∫
φdx →

∫
(φ ∧ χ)dx) →

∫
χdx))

∫ ∫
φdxdy =

∫ ∫
φdydx4 (Fubini theorem):

and new axioms defining the algebraic properties of convolutions5:∫ ∞

0

φt • χx−tdt =
∫ ∞

0

φx−t • χtdt

r̂

∫ ∞

0

φt • χx−tdt =
∫ ∞

0

(r̂φt) • χx−tdt, (r−constant) (associativity)6

∫ ∞

0

φt • (χx−t ⊕ ψt)dt =
∫ ∞

0

φt • χx−tdt ⊕
∫ ∞

0

φt • ψx−tdt (distributivity)

As inference rules we assume Modus Ponens, generalization rule for
∫

−symbol

and two new specific rules: φ∫
φdx

, φ→χ∫
φdx →

∫
χdx

and the same rules for

indexed formulas and convolution integrals.

Semantics. Our intention is to semantically represent
∫

-formulas of L(FLI)

by ‘semantic’ integrals. Because all of the considered point-interval relations
D(p, j),M(p, j) etc. are functions for the fixed j, than such “semantic” integrals
can be defined on a class of the appropriate functions.

More precisely, we will understand such integrals I as a mapping I : f ∈
Alg �→ If(x) ∈ [0, 1] (where Alg is an algebra of functions from M �= ∅ to [0.1]
containing each rational function r ∈ [0.1] and closed on ⇒ (see: [4], p. 240))

4 If both sides are defined.
5 We only present the axioms for convolution in the infinite domain. The axioms in
other cases are introduced in the same way.

6 That is wrt the scalar multiplication.
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satisfying the conditions corresponding to the presented axioms of L(FLI). For
example, it holds:

I(1 − f)dx = 1 − Ifdx, I(f ⇒ g)dx ≤ (Ifdx ⇒ Igdx) (1)

I(Ifdx)dy = I(Ifdy)dx (2)

I(f(t)g(x − t)dt = Ig(t)f(x − t)dt (3)

rIf(t)g(x − t)dt = I(rf(t))g(x − t)dt (4)

We omit the whole presentation of these corresponding conditions. They can
be found in [8] and partially in [4].

Interpretation. Let assume that Int = (�, ‖φ‖) with � �= ∅ and a (classi-
cal fuzzy) truth-value interpretation–function: ‖‖ of formulas of L(FLI). The
propositions of �Lukasiewicz logic are interpreted in the sense of ‖‖ as follows:
‖¬(ψ)‖ = 1 − x, ‖ → (φ, ψ)‖ = min{1, 1 − x + y}, ‖ ∧ (φ, ψ)‖ = min{x, y},
‖ ∧ (φ, ψ)‖ = max{x, y}, ‖ ⊗ (φ, ψ)‖ = max{0, x + y − 1}, and ‖ ⊕ (φ, ψ)‖ =
min{1, x + y} for any x, y ∈ MV-algebra A7.

We inductively expand now this interpretation for new elements of the gram-
mar L(FLI) as below. Definition of the Model: We define a model M as a

syntax (φ ∈ L(FLI)) fuzzy semantics (‖φ‖FLI)

ai, bi objects Ai, Bi for i ∈ {1, . . . , k}
φi functions f(i) for i ∈ {x, t, x − t, t − x}
∫

φdx, (

∫ ∞

0

φdx) Ifdx, (I∞
0 fdx)

φi • χi ‖φi‖ � ‖χi‖ (i like above)

φ ⊗ χ min{1, ‖φ‖ + ‖χ‖}
(‖φi ⊗ χi‖) min{1, ‖φi‖ + ‖χi‖}
∫ ∞

0

φt • χx−tdt I∞
0 g(t) � f(x − t))dt

r̂

∫ ∞

0

dt ‖r̂‖ � ‖I∞
0 f‖dt = rI∞

0 fdt
∫

φi
t • B̂j

x−tdt

̂N
I i(t)B(j)(x−t)�f(x−t))dt

N

n-tuple of the form: M = 〈|M |, {r0, r1, ..}, fi, Ifidx, I∞
0 figjdt〉 where |M | is a

countable (or finite) set {r0, r1, . . .}, fi are respectively: a set of rational num-
bers belonging to |M |, and atomic integrable functions. Ifi are integrals on the
algebra Alg of subsets of |M | and I∞

0 figjdt are convolutions of fi and gj .

7 We omit a detailed definition of MV-algebra as a structure that algebraically inter-
prets a language of a fuzzy logic, it can be easily found in [4].
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FLI turns out to be complete w.r.t such a model and undecidable. If a model
M is given, we write ‖φ‖M,v for a denotation of the truth value under evalu-
ation v for each formula of L(FLI) as a function: L(FLI) → [0, 1]. If M is
a model and v is a valuation, than: ‖r̂‖M,v = r, ‖x‖M,v = a ∈ [0, 1] for a
variable x and for a predicate Pred(t1, . . . , tk) it holds: ‖Pred(t1, . . . tk)‖M,v =
Rel(‖t1‖M,v, . . . ‖tk‖M,v) for Rel interpreting Pred in a model M.

Example 1: Consider two intervals i(x) and j(x) such that i, j ⊆ [a, b] and
two actions A and B associated with i(x) and j(x) (resp.) Let denote this by
i(x)A and j(x)B The fact that action A is parallel to B can be represented
by an integral-based during(i(x)A, j(x)B)-relation and interpreted by a model

M = 〈[a, b], iA, jB ,

∫ b

a

iAD(i(x)A, j(x)B)dx/|iA|〉.

Completeness Theorem for FLI : For each theory T over predicate L (FLI)
and for each formula φ ∈ L(FLI) it holds: |φ|FLI = ‖φ‖FLI .

Proof is very similar to the completeness proof for the Hajek’s integral logic
from [4], so it will be omitted here.

4 Solving of the Problem

In this section we intend to solve the main problem – defined and depicted
on a picture in the introductory section with two problems associated to it.
Anyhow, we preface this solution by considerations focused on analytic features
of before(i, j)-relation in terms of integrals. In particular, we present a graph of
the function representing this relation provided that the atomic point-interval
relation is linear. We decide on this linearity assumption because of a simplicity
of the further analysis.

4.1 A Formal Depiction of the Problem and Some Introductory
Assumptions

We begin with the formal depiction of the presented problems. For that reason,
let us note that the interval-interval definition of Allen’s relation before(i, j)(x)
is of the type:

before(i, j)(x) =

∫
i(x)j(x)dx

maxa

∫
i(x − a)j(x)dx

(5)

According to the above requirement let us consider their unique form for i(x)

and j(x) given by linear functions, i.e.

{
i(x) = Ax,A > 0, B < 0,

j(x) = Bx,A < 0, B > 0
(see: Fig. 1)

Than:
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(1) =

AB

∫

x2dx

AB

∫

(x − a)xdx

=

∫

x2dx
∫

(x2 − ax)dx

=
x3

3[x3

3
− ax2

2
]
=

x3

3[ 2x3−3ax2

6
]
=

2x3

2x3 − 3ax2

(6)
for some done a ∈ R.

It remains now to investigate the function f(x) = 2x3

2x3−3ax2 in order to find
its values in the fuzzy interval [0,1].

4.2 Investigation of Properties of the Considered Allen’s
Before-Relation in the Integrals-Based Representation

In this subsection we check the analytic properties of the function 2x3

2x3−3ax2 rep-
resenting the considered Allen’s relation before(i, j)(x) for fuzzy intervals i(x)
and j(x) given by linear functions.

(a) Domain of f(x).
2x3 − 3ax2 �= 0 ⇐⇒ x �= 0 or x �= 3/2a, so x ∈ R/{0, 3/2a}.

(b) Limits:

limx→−∞ 3x3

2x3−3ax2 = [−∞
−∞ ] = 1, limx→∞ 3x3

2x3−3ax2 = [∞
∞ ] = 1,

limx→( 3
2a)−

2x3

2x3−3ax2 = [2(
3a
2 )3

0− ] = −∞, limx→( 3
2a)+

2x3

2x3−3ax2 = [2(
3a
2 )3

0+ ] = ∞.

limx→( 0
0 )

−
2x3

2x3−3ax2 = [ 0
0− ] = 0, limx→( 0

0 )
+

2x3

2x3−3ax2 = [ 0
0+ ] = 0.

It allows us to visualize the graph of the function as follows: Therefore, 0 ≤
2x3

2x3−3ax2 ≤ 1 for x ∈ (−∞, 0) (Fig. 4).

y

1

         0 

             3/2a    x

Fig. 4. An outline of the function 2x3

2x3−3ax2

4.3 Some Modification of the Initial Assumptions

Let us note that the above solution holds by assumption that intervals i(x) and
j(x) meets in a point x = 0 as on the picture. One needs therefore a function
F (x−B) = 2(x−B)3

2(x−B)3−3a(x−B)2 . Its graph stems from the earlier graph of 2x3

2x3−3ax2

via translation by a vector (0, B). It looks like this: We are now interested in the
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y

1 

0     B     3/2a+B    x 

Fig. 5. A diagram of a function f(x) in the required vector translation.

y 

(0,  2B3/(2B3+ 3B2))

0 (B, 0)          3/2a +B x

Fig. 6. The fragment of a graph of a function F (x − B), which we are interested in –
as a visual representation of our problem solution.

part of this graph between x0 = 0 and x1 = B. Immediately from the graph one
can see that for x = B the function F (x − B) is not defined, but limB→0 F (x −
B) = 0. On can easily compute that F (0 − B) = −2B3

−2B3−3B2a = 2B3

−B3+3B2a < 1.
It can be visualized as follows: Therefore, the investigated function takes the
values from the interval I = (0; 2B3

2B3+3B2a ) (Figs. 5 and 6).

Example: For B = 1 we obtain an interval I1 = (0, 2
2+3a ) for done a ∈ R.

4.4 Further Properties of This Integral-Based Representation
of Allen’s Before-Relation

At the end we intend to show that our function 2x3

2x3−3ax2 is uniformly continuous.
It means that the change the fuzzy values (one for another) is “lazy” and non-
radical in the whole interval (0, B) (for arbitrary pairs of x1 and x2 from this
interval if only |x1 − x2| < ρ for some arbitrary ρ > 0.)

For this purpose let us consider its module of continuity:

| 2x3
1

2x3
1 − 3ax2

1

− 2x3
2

2x3
2 − 3ax2

2

| = |2x3
1(2x3

2 − 3ax2
2) − 2x3

2(2x3
1 − 3ax2

1)
(2x3

1 − 3ax2
1)(2x3

2 − 3ax2
2)

| = (7)

| −6ax3
1x

2
2 + 6ax3

2x
3
1

(2x3
1 − 3ax2

1)(2x
3
2 − 3ax2

2)
| = | 6ax2

1x
2
2(x2 − x1)

(2x3
1 − 3ax2

1)(2x
3
2 − 3ax2

2)
| ≤ 6a|x1 − x2|

M
=

6aρ

M
, (8)

where M is the appropriate lower bound of the last denominator. Hence ∀ε >

0 : | 2x3
1

2x3
1−3ax2

1
− 2x3

2
2x3

2−3ax2
2
| < ε if only assume ρ ≤ Mε

6a , what justifies a desired
uniform continuity of our function.
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4.5 Solving of the Main Problem

The arrangements, presented above, allow us to solve the main problem with
the observation task of a satellite and the problems associated to it in the intro-
ductory part. In order to make it let us recall that:

before(i, j) =

∫
i(x)Bef(j)(x)dx

maxa

∫
i(x − a)Bef(j)(x)dx

, (9)

for some point-interval relation Bef(j)(x). Meanwhile, we have just shown that
for linear functions defining the fuzzy intervals this general definition can be
given by:

before(i, j) =
2x3

2x3 − 3ax2
(10)

and 0 ≤ before(i, j)(x) ≤ 1 holds for x ∈ (0; 2C3

2C3+3C2a ). Nevertheless, by our
assumption C = 20 (min) we obtain that: x ∈ (0; 2•203

2•203+3•202a
) = (0; 2•8000

2•8000+1200a
).

Assuming for simplicity a = 1 we can get x ∈ (0; 16000
17200 ) = (0; 0, 9302).

Therefore, our function takes values from (0; 0, 9302).

Problem 2: For which parameters C > 0 the before(i, j)(x) -relation takes val-
ues no smaller than 0,7 ?

Solution: 0, 7 ≤ 2C3

2C3+3C2 . It is equivalent to 0 ≤ 2C3

2C3+3C2 − 0,7•(2C3+2C2)
2C3+3C2 =

1,3(C3−2,1C2)
2C3+3C2 . Let’s consider the equation 1,3(C3−2,1C2)

2C3+3C2 = 0 (for C �= 0). It leads
to the equation 1, 3(C3 − 2, 1C2 = 0 ⇐⇒ C2(1, 3C − 2, 1) = 0 ⇐⇒ 1, 3C =
2, 1 ⇐⇒ C = 2,1

1.3 . Therefore, our unequality holds for C ∈ (−∞; 0)
⋃

( 2113 ;∞).
Because we are only interested in C > 0, so the only solution is given by an
interval (2113 ;∞).

5 Concluding Remarks

It has emerged that the integral-based approach to the Allen temporal relations
allows us to specify the class of STPU-solutions. It also appears that the intu-
itively graspable point-solutions are preserved as the appropriate ones – as a
board case solution in considered situations. Finally, the construction of a fuzzy
logic system and its completeness ensures that models of STPU (in terms of
before-relation) really refer to the formal descriptions of STPU in the appropri-
ate languages. It seems that the similar procedures can be repeated for other
Allen relations in the integral-based Ohlbach’s depiction.

Anyhow, the considered STPU-problem belongs to the class of relatively ele-
mentary problems. It seems that many similar problems, with a higher compli-
cation degree – such as STPPU-problems – could be investigated in the similar
way. In this perspective, the analysis of the current paper seems to be open.
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