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Abstract. In this paper a modification of the well-known Silhouette
validity index is proposed. This index, which can be considered a measure
of the data set partitioning accuracy, enjoys significant popularity and
is often used by researchers. The proposed modification involves using
an additional component in the original index. This approach improves
performance of the index and provides better results during a clustering
process, especially when changes of cluster separability are big. The new
version of the index is called the SILA index and its maximum value
identifies the best clustering scheme. The performance of the new index
is demonstrated for several data sets, where the popular algorithm has
been applied as underlying clustering techniques, namely the Complete–
linkage algorithm. The results prove superiority of the new approach as
compared to the original Silhouette validity index.
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1 Introduction

Clustering allows partitioning of data into homogeneous subsets (called clusters),
inside which elements are similar to each other while being different from items
in other groups. It is also called unsupervised learning or unsupervised classifica-
tion. Nowadays, a large number of clustering algorithms exist that have found use
in various fields such as data mining, bioinformatics, exploration data, etc. Clus-
tering methods can be applied to designing neural networks and neuro-fuzzy sys-
tems [2–10,16–18,30–32,37,44]. However, the results of clustering algorithms are
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strongly dependent on the right choice of input parameters. Hence, for the same
data but for different input parameters a clustering algorithm can produce dif-
ferent results. It should be noted that the number of clusters is significant input
parameter of many clustering algorithms, which is often selected in advance.
Thus, the key issue is how to properly evaluate results of data clustering. In the
literature on the subject, three main techniques are used to evaluate partitioning
of data sets, and they include external, internal or relative approaches [13,38].
The relative methods are very popular and widely used by researchers. In this
approach a clustering algorithm provides data partitioning for different values of
input parameters and next partitioning schemes are compared to find the best
results. For this purpose cluster validity indices are used. A great number of such
indices have been introduced so far, e.g., [1,11,12,14,22,39,40,45–47].

In this paper, a cluster validity index called the SILA index being a modifica-
tion of the Silhouette index is proposed. This modification allows us to improve
the index performance. Notice that the Silhouette index is often used by many
researchers to evaluate clustering results. Unfortunately, in some cases it fails to
detect correct partitioning of data sets. A detailed explanation of this problem
is presented in Sect. 2. The proposed SILA index contains a component which
corrects the index value when changes of cluster separability are considerable
during a partitioning process (see Eq. (10)). In order to present the effectiveness
of the new validity index several experiments were performed for various data
sets. This paper is organized as follows: Sect. 2 presents the Silhouette index and
detailed description of its properties. Section 3 describes a new validity index,
which is a modification of the Silhouette index. Section 4 illustrates experimental
results on artificial and real-life data sets. Finally, Sect. 5 presents conclusions.

2 Description of the Silhouette Index

Let us denote K-partition scheme of a data set X by C = {C1, C, ..., CK},
where Ck indicates kth cluster, k = 1, ..,K. Moreover, a mean of within-cluster
distances, named a(x), is defined as the average distance between a pattern x
which belongs to Ck and the rest of patterns xk also belonging to this cluster,
such that

a(x) =
1

nk − 1

∑

xk∈Ck

d (x,xk) (1)

where nk is the number of patterns in Ck and d (x,xk) is a function of the
distance between x and xk. Furthermore, the mean of distances of x to the
other patterns xl belonging to the cluster Cl, where l = 1, ...,K and l �= k, can
be written as:

δ(x,xl) =
1
nl

∑

xl∈Cl

d (x,xl) (2)

where nl is the number of patterns in Cl. Thus, the smallest distance δ(x,xl)
can be defined as:

b(x) =
K

min
l,k=1
l �=k

δ(x,xl) (3)
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The so-called silhouette width of the pattern x can be expressed as follows:

S(x) =
b(x) − a(x)

max (a(x), b(x))
(4)

Finally, the Silhouette index is defined as:

SIL =
1
n

∑

x∈X

S(x) (5)

where n is the number of patterns in the data set X. Thus, this index can be
also represented by:

SIL =
1
n

∑

x∈X

b(x) − a(x)
max(a(x), b(x))

. (6)

The Silhouette index is also called the SIL index. Unlike most of the validity
indices, the SIL index can be used for clusters of arbitrary shapes. It should be
noted that the index is based on two components, i.e., b(x) and a(x). As given
above, the first component is the smallest of the mean distances of x to the pat-
terns belonging to other clusters. Then, a(x) is defined as the average distance
between x and the rest of the patterns belonging to the same cluster. Notice that
a(x) can be also considered a measure of cluster compactness, whereas the numer-
ator of S(x), which is the difference between b(x) and a(x), can be considered a
measure of cluster separability (see Eq. (4)). It should be noted that the value of
the silhouette width is from the interval [−1, 1] and the element x is assigned to
the right cluster when S(x) is close to 1, but when it is nearly −1, x is located
in a wrong cluster. Hence, a maximum value of the Silhouette index indicates the
right partition scheme. Moreover, it should be observed that the measure of cluster
separability (numerator of Eq. (6)) essentially influences results of this index and
in some cases it can fail to detect correct data partitioning. For example, this can
happen when differences of distances between clusters are large. Figure 1 presents
an example of 2–dimensional data set, which contains three clusters labelled by
numbers 1, 2 and 3. Notice that the distances between the clusters are very dif-
ferent. Moreover, it can be seen that these clusters have several elements per class
and large differences of distances between them. Thus, the distance between clus-
ters 1 and 2 is about d1; then, between clusters 2 and 3 it is d2, and between 3 and
1 it is d3. It can be noted that the distance d1 (or d3) is much larger than d2. Let
us denote by c∗ the correct number of clusters in the data set, so it is c∗ = 3. When
the number of clusters K is more than c∗, the natural existing compact clusters
are subdivided into small ones by a clustering algorithm. In this case, the mini-
mum distance between clusters is small, which also makes this index value small
(see Eq. (4)). However, when K = c∗, the value of b(x) is equal to about d1 for x
belonging to cluster 1. Whereas b(x) is about d2 for x belonging to the cluster 2
(or 3). Consequently, a large distance between clusters 1 and 2 (or 1 and 3) makes
that the value of the factor b(x) calculated for cluster 1 is also much higher than
a(x) and the Silhouette index is high (see Eq. (6)). But when K < c∗, the value
of the index can be even higher than for K = c∗. This is because clusters 2 and 3
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Fig. 1. An example of a data set consisting of three clusters

are merged and now two new clusters are also far from each other. This means
that b(x) for both clusters is large in comparison to a(x), which does not actu-
ally increase so much. Consequently, the sum of values of silhouette widths can be
higher for K < c∗ than for K = c∗. Thus, due to large differences between clus-
ter distances, the index can indicate an incorrect number of clusters. In the next
section, a modification of the index is proposed so as to overcome this drawback.

3 Modification of the Silhouette Index

The modification involves an additional component which corrects values of the
index. Thus, the new index, called the SILA index, is defined as follows:

SILA =
1
n

(
∑

x∈X

(S(x) · A(x))

)
(7)

where the S(x) is the silhouette width (Eq. (4)). Whereas, the additional com-
ponent A(x) is expressed as:

A(x) =
1

(1 + a(x))
(8)

Thus, the new index can be represented in the following way:

SILA =
1
n

(
∑

x∈X

(
b(x) − a(x)

max (a(x), b(x))
· A(x)

))
(9)

or

SILA =
1
n

(
∑

x∈X

(
b(x) − a(x)

max (a(x), b(x))
· 1
(1 + a(x))

))
(10)

In the next section the results of the experimental studies are presented to con-
firm the effectiveness of this approach.
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4 Experimental Results

Several experiments were carried out to verify effectiveness of the new index.
They are related to determining the number of clusters for artificial and real-
life data sets when the Complete-linkage algorithm is applied as the underlying
clustering method. It should be noted that in all the experiments the Euclidean
distance and the min-max data normalization have been used. This approach is
often applied, e.g., in the Weka machine learning toolkit [43].

4.1 Data Sets

Figures 2 and 3 show the randomly generated artificial data sets which were used
in the experiments. Moreover, Table 1 presents their detailed description. These
data consist of various numbers of clusters and elements per class. For instance,
the first three of them called Data 1, Data 2 and Data 3 are 2- dimensional
with 3, 5 and 8 clusters, respectively. The next three sets called Data 4, Data
5 and Data 6 are 3-dimensional with 4, 7 and 9 clusters, respectively. As it can
be observed in Figs. 2 and 3 clusters are mostly circular and located in various
distances from each other with some of them being quite close. For example,
in Fig. 2 cluster sizes and distances between clusters are very different and they
are located in two cluster groups in general. On the other hand, Fig. 3 presents
various large clusters of 3-dimensional data sets. Here, distances between clusters
are also very different and clusters create some groups. Whereas the real-life
data were drawn from the UCI repository [20], and their detailed description is
presented in Table 2. In experiments with the data sets, the Complete-linkage
method as the underlying clustering algorithm was used for partitioning of the
data. The number of clusters K was varied from Kmax =

√
n to Kmin = 1. This

value is an accepted rule in the clustering literature [23]. Moreover, in Figs. 4,
5 and 6 a comparison of the variations of the Silhouette and the SILA indices
with respect to the number of clusters is presented. It can be seen that the
SILA index provides the correct number of clusters for the all data sets. On the
contrary, the Silhouette index incorrectly selects the partitioning schemes and
thus the index mainly provides high distinct peaks when the number of clusters
K = 2. This means that when the clustering algorithm merges clusters into
larger ones and distances between them are large, influence of the separability
measure is significant and consequently, this index provides incorrect results.
On the other hand, despite the fact that the differences of distances between
clusters are large, the SILA-index generates clear peaks which are related to
the correct partitioning of these data. It can be observed that for real-life data
sets both indices found the right number of clusters for the Iris data. However,
for the Ecoli and the Glass data the Silhouette index indicates the number of
clusters K = 2. On the other hand, the SILA index provides better results for
the Glass, i.e., K = 5. Thus, for these sets, the number of clusters is determined
more precisely by the SILA-index. Notice that when the number of clusters
K > c∗ the component A(x) poorly reduces values of this index because the
clusters sizes are not so large.
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Fig. 2. 2-dimensional artificial data sets: (a) Data 1, (b) Data 2 and (c) Data 3

0

−60
−40

−20

20

0

−60 −40 −20
20 40

−50 −30 −10 10 30

0

−60

−40

−20

20

−50

−30

−10

10

30

(a)

0

−100−80−60−40−20
204060

0

−100

−50

0

−80

−60

−40

−20

20

40

60

(b)

0

−100

−50

50

0
−80 −60 −40 −20 20 40

−70 −50 −30 −10 10 30

0

−100

−80

−60

−40

−20

20

40

60

(c)

Fig. 3. 3-dimensional artificial data sets: (a) Data 4, (b) Data 5 and (c) Data 6
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Table 1. Detailed description of the artificial data sets

Data sets No. of elements Features Classes No. of elements per class

Data 1 300 2 3 50,100,150

Data 2 170 2 5 10,20,30,50,60

Data 3 495 2 8 25,30,50,50,60,80,100,100

Data 4 550 3 4 100,100,150,200

Data 5 800 3 7 70,80,100,100,100,150,200

Data 6 460 3 9 30,30,40,40,50,50,50,70,100

Table 2. Detailed description of the real-life data sets

Data sets No. of elements Features Classes No. of elements per class

Ecoli 336 7 8 143,77,52,35,20,5,2,2

Glass 214 9 6 70,17,76,13,9,29

Iris 150 4 3 50,50,50
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Fig. 4. Variations of the Silhouette and SILA indices with respect to the number of
clusters for 2-dimensional data sets: (a) Data 1, (b) Data 2 and (c) Data 3
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Fig. 5. Variations of the Silhouette and SILA indices with respect to the number of
clusters for 3-dimensional data sets: (a) Data 4, (b) Data 5 and (c) Data 6

102 4 6 8 12 14 161 3 5 7 9 11 13 15 17
0

0.2

0.4

0.1

0.3

0.5

0.05

0.15

0.25

0.35

0.45

0.55

(a)

20102 4 6 8 12 14 16 181 3 5 7 9 11 13 15 17 19
0

0.2

0.4

0.1

0.3

0.5

(b)

102 4 6 8 12 141 3 5 7 9 11 13
0

0.2

0.4

0.1

0.3

0.5

0.05

0.15

0.25

0.35

0.45

(c)

Fig. 6. Variations of the Silhouette and SILA indices with respect to the number of
clusters for real-life data sets: (a) Glass, (b) Ecoli and (c) Iris
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5 Conclusions

In this paper, a new cluster validity index called the SILA index was proposed.
It should be noted that this new index is a modification of the Silhouette index,
which is very often used by researchers to evaluate partitioning of data. Further-
more, unlike most other indices the SILA index (also the Silhouette index) can
be used for arbitrary shaped clusters. As mentioned above, the Silhouette index
can indicate incorrect partitioning scheme when there are large differences of dis-
tances between clusters in a data set. Consequently, the new index contains an
additional component which improves its performance and overcomes the draw-
back. This component uses a measure of cluster compactness which increases when
a cluster size increases considerably and it reduces the high values of the index
caused by large differences between clusters. To investigate the behaviour of the
proposed validity index the Complete-linkage is used as the underlying clustering
algorithm. All the presented results confirm high efficiency of the SILA index. It
should also be noticed that cluster validity indices can be used during a process of
designing various neuro-fuzzy structures [15,19,21,24–29,41,42] and stream data
mining algorithms [33–36].
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30. Rutkowski, L., Cpalka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control Cybern. 31(2), 297–308 (2002)

31. Rutkowski, L., Przyby�l, A., Cpa�lka, K., Er, M.J.: Online Speed Profile Generation
for Industrial Machine Tool Based on Neuro-fuzzy Approach. In: Rutkowski, L.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part
II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

32. Rutkowski, L., Cpalka, K.: Compromise approach to neuro-fuzzy systems. Technol.
Book Ser. Frontiers Artif. Intell. Appl. 76, 85–90 (2002)

33. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining
data streams based on the McDiarmids bound. IEEE Trans. Knowl. Data Eng.
25(6), 1272–1279 (2013)

34. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining
data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data
Eng. 26(1), 108–119 (2014)

35. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data
stream mining based on the misclassification error. IEEE Trans. Neural Networks
Learn. Syst. 26(5), 1048–1059 (2015)

36. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree
for mining data streams. Inf. Sci. 266, 1–15 (2014)

37. Saitoh, D., Hara, K.: Mutual learning using nonlinear perceptron. J. Artif. Intell.
Soft Comput. Res. 5(1), 71–77 (2015)

38. Sameh, A.S., Asoke, K.N.: Development of assessment criteria for clustering algo-
rithms. Pattern Anal. Appl. 12(1), 79–98 (2009)

39. Shieh, H.-L.: Robust validity index for a modified subtractive clustering algorithm.
Appl. Soft Comput. 22, 47–59 (2014)

40. Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. Appl. (2015).
doi:10.1007/s10044-015-0525-8

41. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-
val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing. Advances in Soft Computing, pp. 570–577. Springer-Verlag, Physica-
Verlag HD, Heidelberg (2003)

42. Starczewski, J.T., Rutkowski, L.: Connectionist structures of type 2 fuzzy inference
systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
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