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Abstract. Learning of stochastically independent decisions is a well
developed theory, the main of its part being pattern recognition algo-
rithms. Learning of dependent decisions for discrete time sequences, e.g.,
for patterns forming a Markov chain and decision support systems, is
also developed, but many classes of problems still remain open. Learn-
ing sequences of decisions for systems with continuously running time
is still under development. In this paper we provide an approach that
is based on the idea of iterative learning for repetitive control systems.
A new ingredient is that our system learns to find the optimal control
that minimizes a quality criterion and attempts to find it even if there are
uncertainties in the system parameters. Such approach requires to record
and store full sequences of the system state, which can be done using a
camera for monitoring of the system states. The theory is illustrated by
an example of a laser cladding process.

Keywords: Iterative learning · Repetitive optimal control · LTI sys-
tems · Camera in the loop

1 Introduction

The idea of learning algorithms can be traced back to the early 1960s. The
main stream of research then was (and ut still is) learning classifiers or more
generally, learning the Bayes decision rules when underlying probability distri-
butions are unknown and the learning is based on a sequence of examples –
called the learning sequence. At the first stage of development of this theory
the learning was reduced to estimating unknown parameters of unknown distri-
butions. Then, the so called nonparametric approach emerged, which is based
on estimating completely unknown probability density functions (p.d.f.’s) either
by Parzen-Rosenblatt kernel methods (see [9]) or by expanding it into a com-
plete and orthonormal bases with estimated coefficients (see [12]). Up to now,
these kinds of classifiers have been further developed [17,28], the support vector
machines being the most popular. All these approaches have a common feature,
namely, after the learning phase they are applied as follows: when a new vector of
features appears, then it is classified without taking into account neither earlier
nor future decisions. Furthermore, the result of a classification does not depend
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on time, i.e., a vector of features is classified in the same way independently
of a time instant when it appears. Rutkowski [25,26] developed the theory of
learning when an environment is non-stationary. Recently, such approaches are
called: learning when a concept drift is present.

A parallel stream of research (see [15,16]) extended the bayesian decision
theory by considering that the next decision should take into account our pre-
vious decisions as a local context, as it happens in recognizing letters in a word.
In [21,22] an outer context approach in learning decisions is proposed.

However, none of the above sketched approaches to learning do not takes into
account future consequences of earlier decisions. In the framework of learning, an
approach that explicitly incorporates a system dynamics into a decision process
has been proposed by Feldbaum (see [2,3] and the bibliography cited therein).
His theory, although pleasing from the methodological point of view, occurred
to be too demanding for data, which are necessary for learning. Therefore, many
approaches, known under a common name adaptive control, have been proposed
[3]. Their common feature is gaining information about unknown parameters of
a system (or its model) during a decision process, which is split into consecutive
steps. In adaptive control approaches usually only one, but sufficiently long,
decision process is considered and the emphasis of researchers is on the stability
of the adaptation process [27].

However, a large number of control processes in industry and in robotics is
repetitive in the sense that they are repeated many times in similar circum-
stances. Repetitions of passes of a process provide additional opportunities for
learning and they are in the main focus of this paper. This class contains strictly
periodic processes (see [29]), which are not discussed here. We shall also leave
outside the scope of this paper the so called run-to-run control approach, since
it concentrates mainly on statistical, but static models of processes.

As a motivating example consider a laser cladding process. The laser head
moves back and forth, pouring and melting a metal powder. The temperature
of the melting lake is observed by an infrared camera. This temperature has to
be precisely controlled by changing the power emitted by the laser. The main
difficulty is at the end points, in which the laser head changes its direction it stays
longer than at other points. This results in an unwanted additional dropping of
a material. One can design a desirable trajectory of changing (decreasing) the
lake temperature near end points. However, the optimal control signal cannot be
calculated once and repeated without changes because of changes of the powder
properties when different parts are produced. These changes are rather slow
and we can improve the control signal, using information gained from earlier
passes. Almost the same general pattern arises in a 3D printing process. Similar
control problems arise also in the chemical industry when a batch type chemical
reactors are used. Later on we shall call a pass: one run of the laser or a robot
arm movement from place to place, or one full batch reaction etc.

In this paper we put an emphasis on learning from pass-to-pass, which is
called an iterative learning control (ILC). ILC is a common name for a large num-
ber of algorithms (see [31] for a recent survey paper). ILC theory puts emphasis
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on designing control systems for repetitive processes – see [5,20]. They should be
designed in such a way that the stability of the control process is ensured. The
stability notions for repetitive processes and ILC are nontrivial (see [7]). A num-
ber of approaches to the control problems for such systems has been proposed
(see [11,13,14]). In a number of papers the authors optimized ILC procedures
(see [1,24]). ILC for optimal control of processes is much less developed, although
some results in this direction have been obtained – see [10,19,23] – as close to
the problem statement considered in this paper. However, our approach is differ-
ent, namely, we propose an iterative learning of optimal control that is based on
functional analog of the gradient search procedure. We shall provide theorems
on its convergence and robustness to small changes of unknown parameters, but
the proofs are omitted due to page limitations. They will be published elsewhere.

The paper is organized as follows. In Sect. 2 we state the problem of iterative
learning of optimal control (ILOC). Then, in Sect. 3 we provide the algorithm of
learning for nominal system parameters. Finally, its on-line version is presented,
which is able to work when parameters are uncertain, since it collects informa-
tion from pass-to-pass behavior of the system. Notice that there is no explicit
parameters estimation in our approach. Finally, we provide an example of how
the laser power control behaves under the proposed ILOC algorithm.

2 Problem Statement

As the first step toward the problem statement we consider the well known
problem of minimization of a quadratic cost function for finding the optimal
control of the linear, time-invariant (LTI) dynamic system (LQ problem), but
with uncertain parameters. Assumptions concerning their uncertainty will be
imposed later.

Generic LQ Optimal Control Problem. The dependence of the system state
x(t) ∈ Rd at time t ∈ [0, T ] on a scalar input signal u(t) is given by

ẋ(t) = A(θ0)x(t) + b u(t), x(0) = x0, (1)

where A(θ) is a d × d matrix that depends on a vector of uncertain parameters
θ ∈ Rm, while θ = θ0 are their nominal values. In (1) b ∈ Rd is a vector of
known1 amplifications. In the above, ẋ(t) stands for d x(t)

dt , x0 is the initial state
and T is the control horizon, which is finite and this assumption is important.
We confine ourselves to scalar input signals to keep the notation simple. It will
be clear that the results can be generalized to the multi-input case.

In the standard setting (see, e.g., [4,18]) the problem is to find a control signal
u∗ ∈ L2(0, T ) for which the following cost functional J(u) attains its minimal
value:

J(u) =
∫ T

0

[
(xref (t) − x(t))tr (xref (t) − x(t)) + r u2(t)

]
dt, (2)

1 For simplicity of the exposition we omit an easy generalization to the case when also
b contains uncertain parameters.
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subject to (1) as constraints, where xref is the known reference signal to follow,
but with not too excessive use of the control signal energy, which is tuned by
selecting a weighting factor r > 0.

One can consider also a more general criterion

J(u) =
∫ T

0

[
(xref (t) − x(t))tr Q (xref (t) − x(t)) + r u2(t)

]
dt, (3)

where Q is a d×d symmetric and positive definite matrix of known weights, but
it can be reduced to (2) by transforming the state variables using Q1/2.

Assuming that there is no uncertainty in parameters, i.e., θ assumes nominal
value θ0 that are known, then also the solution of this problem is well known
(see, e.g., [4]), but we summarize it for further references. Define the Hamiltonian

H(x(t), u(t), ψ(t)) = (xref (t) − x(t))tr (xref (t) − x(t)) + r u2(t) + (4)

+ ψtr(t)
[
A

(
θ0

)
x(t) + b u(t)

]
,

where ψ(t) ∈ Rd is a vector of the adjoint variables, for which the following
ordinary differential equations (ODE) hold

ψ̇(t) = −Atr(θ0)ψ(t) + 2 (xref (t) − x(t)), ψ(T ) = 0. (5)

According to the Pontriagin’s minimum principle, if u∗(.) and x∗(.) solves the
problem (2) and (1), then there exists ψ∗(.) for which the following equations
hold:

ψ̇∗(t) = −Atr(θ0)ψ∗(t) + 2 (xref (t) − x∗(t)), ψ(T ) = 0, (6)

ẋ∗(t) = A
(
θ0

)
x∗(t) + b u∗(t), x∗(0) = x0 (7)

and for each t ∈ [0, T ] the following condition holds

d

d v
H(x∗(t), v, ψ∗(t))

∣∣∣
v=u∗(t)

= 0. (8)

For LTI systems with criterion (2) it can be proved that condition (8) is also
sufficient for the optimality of u∗(.). Furthermore, u∗(.) is the unique solution of
this problem and (8) yields

2 r u∗(t) + btr ψ∗(t) = 0, t ∈ [0, T ]. (9)

Thus, u∗(t) = P (t) (xref (t)−x(t)) where P (t) is a d×d matrix that solves the well
known matrix Riccati quadratic differential equations. Notice that both P (t) and
ψ∗(t) in (9) depend on θ0. When d is large, then finding a numerical solution
of the Riccati equations is not easy task and one can consider the approach
proposed in this paper as an alternative to the classic approach based on solving
these equations. We shall not develop this idea here in order to concentrate on
the main topic.

The following facts are crucial for further considerations.
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Fact 1. The Gateaux differential (see, e.g., [18]) of J at u ∈ L2(0, T ) in the
direction U ∈ L2(0, T ) has the following form:

d J(u + ε U)
d ε

∣∣∣
ε=0

=
∫ T

0

F (x(t), u(t), ψ(t))U(t) dt. (10)

If the Frechet derivative of J exists (see, e.g., [18]) then F is equal to it and
– in our case – it is given by

F (x(t), u(t), ψ(t)) =
d

d v
H(x(t), v, ψ(t))

∣∣∣
v=u(t)

= (11)

= 2 r u(t) + btr ψ(t),

where ψ(.) solves (5).
Fact 2. Direction U(t) = −F (x(t), u(t), ψ(t)) is locally the steepest descent

direction oh J at u(.). Furthermore, F (x∗(t), u∗(t), ψ∗(t)) ≡ 0. As one can
notice, when searching the minimum of J the Frechet derivative F can play
the same role as the gradient in searching for the minimum of a multivariate
function.

The problem of iterative learning of the optimal control for repetitive
processes. When θ in (1) is the uncertain vector of parameters, then it is
customary to invoke one of the following two approaches:

Plug-in approach – firstly estimate (identify) unknown parameters, then plug
them into (1) instead of θ0 and consider it as certain,

Adaptive control approach – estimate θ on-line and substitute it into the
control law.

Both approaches have been historically developed without taking into account
that a large number of processes to be controlled are repetitive (see the Intro-
duction section for examples). In the proposed approach we consider repeti-
tive processes and uncertainty of parameters is taken into account by feedback
between the passes of a repetitive process that bears information about the
uncertain parameters, which is then used for iterative learning approach,
without explicitly estimating them.

For n-th pass the system is described by

ẋn(t) = A(θ0)xn(t) + b un(t), xn(0) = x0, n = 1, 2, . . . , (12)

where xn(t) ∈ Rd and un(t), t ∈ [0, T ] are the system state vector and the con-
trol signal along n-th pass, respectively. Equation (12) are seemingly unrelated
between passes, but our aim is to design a learning procedure that improves
un(.), taking into account un−1(.) and xn−1(.) and introduces links between
passes. In other words, we are looking for an operator Ψ

un(.) = Ψ(xn−1(.), un−1(.)), n = 1, 2, . . . (13)
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such that
(a) limn→∞ J(un) = J(u∗), when θ = θ0,
(b) limn→∞ J(un) convergent to a value not far from J(u∗), when θ = θ1 and

δθ
def
= ||θ1 − θ1||m is sufficiently small, where ||.||m is the Euclidean norm in

Rm. Our reference point is the solution of the generic problem described in the
previous subsection.

3 Iterative Learning Algorithm

In this section we derive an iterative learning algorithm for a repetitive process,
assuming that its parameters take nominal values θ0. Then, we shall prove its
convergence and local robustness against uncertainty of parameters.

Derivation of the Learning Algorithm. According to Facts 1, 2, one can
expect that the following updates of un(.) will lead to improvements of J

un+1(t) = un(t) − γ Fn(t), t ∈ [0, T ], (14)

where γ > 0 is the step size,

Fn(t)
def
= F (xn(t), u(t), ψn(t)) =

(
2 r un(t) + btr ψn(t)

)
(15)

while ψn(.) is defined as a solution of the following adjoint equations:

ψ̇n(t) = −Atr(θ0)ψn(t) + 2 (xref (t) − xn(t)), ψn(T ) = 0. (16)

Their solution can be expressed as

ψn(t) = exp(−Atr(θ0) t)ψ0
n +

∫ t

0

exp(−Atr(θ0) (t − τ)) en(τ) dτ, (17)

where en(τ)
def
= 2 (xref (τ)−xn(τ)) and ψ0

n is selected so as to ensure ψn(T ) = 0.
After finding such ψ0

n and substituting it into (17), we obtain

ψn(t) = −
∫ T

t

exp
[−Atr(θ0) (t − τ)

]
en(τ) dτ. (18)

Substitution of this expression into (14) leads to the following learning procedure:
for t ∈ [0, T ] and n = 0, 1, . . . iterate

un+1(t) = (1 − γ 2 r)un(t) + γ btr

∫ T

t

exp
[−Atr(θ0) (t − τ)

]
en(τ) dτ. (19)

At this stage, it is worth comparing (19) with the structure of a typical ILC
algorithm that for LTI systems has (in our notation) the following form

un+1(t) = α un(t) + β̄1 en(t) + β̄2 (xn(t) − xn−1(t), t ∈ [0, T ], (20)
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where α ∈ R, β̄1, β̄2 ∈ Rd are selected in such a way that the repetitive system
with such a control law is asymptotically stable.

The similarities between (20) and (19) are apparent, but there are also impor-
tant differences: (1) the term (xn(t)−xn−1(t)) is not present in (19) and it seems
that its presence may slow down the rate of convergence of learning algorithms,
but – on the other hand – it may stabilize them, (2) the main updating com-
ponent en(t) is present in the both cases, but in (19) it is integrated (with the
weighting matrix) from t to T , which can be interpreted as the integrated pre-
diction error from now to the end of n-th pass, (3) the structure of (19) has been
derived as the descent direction of J at un(.) and all the weights, except γ, are
specified by the system description and J .

Convergence of the Learning Process. In order to select γ > 0 that locally
speeds up the learning process let us J(un − γ Fn) into the Taylor series, which
is exact in this case,

J(un+1) = J(un − γ Fn) = J(un) − γ ||Fn(.)||2 + (2 r)
γ2

2
||Fn(.)||2. (21)

A proper selection of γ > 0 requires (1−r γ) < 0, i.e., γ < 1/r in order to ensure
J(un+1) < J(un). Indeed, then we have

J(un+1) = J(un) − 1
(r + ν)

||Fn(.)||2 (22)

for arbitrary ν > 0.

Theorem 1. The learning process

un+1(t) = un(t) − 1
r + ν

(
2 r un(t) + btr ψn(t)

)
, t ∈ [0, T ], (23)

where ν > 0 and ψn(.) solves

ψ̇n(t) = −Atr(θ0)ψn(t) + 2 (xref (t) − xn(t)), ψn(T ) = 0. (24)

designed for the following repetitive process

ẋn(t) = A(θ0)xn(t) + b un(t), xn(0) = x0, n = 1, 2, . . . , (25)

is convergent to the solution of the optimal control problem for one pass in the
following sense: (a) limn→∞ J(un) = J(u∗), (b) limn→∞ ||un(.) − u∗(.)|| = 0,
(c) limn→∞ ||xn(.) − x∗(.)|| = 0.

Pass-to-pass on-line Learning. In Theorem 1 it was assumed that θ0 is
known, hence we can calculate xn(.) as a solution of (25). In this section we
present an on-line version of the learning process that uses observations of the
system state instead in order to cope with possible inaccuracies in knowledge
of θ0 and/or with from pass to pass fluctuations of these parameters, assuming
that they are not too far from θ0.
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Algorithm 1. (Pass-to-pass Learning (PPL))

Step 0. Select û0(.) ∈ L2(0, T ) (preferably obtained by running off-line several
iterations of (23), (24) and (25)). Set n = 0. Select ε > 0 as the level when
a desired accuracy is obtained.

Step 1. Apply ûn(.) along the pass to a real system, then observe and store x̂n(.).
Step 2. Calculate the adjoint states ψ̂n(.) along the pass by solving the following

equations:

˙̂
ψn(t) = −Atr(θ0) ψ̂n(t) + 2 (xref (t) − x̂n(t)), ψ̂n(T ) = 0. (26)

Adjoint states contain information on the system behavior in the future and
therefore they cannot be observed. Hence, we are forced to calculate them using
the nominal parameter values θ0 as the only available.

Step 3. Calculate F̂n(t)
def
= (2 r ûn(t) + btr ψ̂n(t), t ∈ [0, T ]. If

max
t∈[0, T ]

|F̂n(t)| > ε, (27)

then skip updating ûn(.) and use it in the next iteration. Set n := n + 1 and
go to Step 1. Otherwise, go to Step 4

Step 4. Update ûn(.) as follows:

ûn+1(t) = ûn(t) − γ F̂n(t), t ∈ [0, T ], (28)

where γ ≤ 1/(r + ν), ν > 0. Set n := n + 1 and go to Step 1.

When uncertainties in parameters are allowed, we can not be sure that the step
length in (28) is properly selected to ensure the monotonicity of the criterion. If
it does not decrease, than one should decrease γ.

Condition (27) is usually used as the stopping condition. Here, it is used to
temporarily skip updating un(.), but the algorithm is not halted, since we allow
small fluctuations of the parameters between passes. In this version the PPL
algorithm is able to detect them and reduce their influence by updating un(.)
again.

A Limiting Point of the PPL Algorithm. For theoretical considerations we
assume that:

(a) the parameters can change to a certain θ1 �= θ0 and these values are kept
for a long (infinite) time,

(b) θ1 is not too far from θ0 in the following sense: ||θ1 − θ0||d ≤ Cγ, where
γ > 0 is the step size of the PPL algorithm, while C > 0 is a certain constant,

(c) Step 3 is omitted in order to have an infinite sequence of passes with
updates.

When assumptions (a), (b), (c) hold, then the PPL algorithm can stop updat-
ing ûn only when there exists a triple x̂(.), û(.), ψ̂(.)) such that

(
2 r û(t) + btr ψ̂(t)

)
= 0, t ∈ [0, T ], (29)
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˙̂
ψ(t) = −Atr(θ0) ψ̂(t) + 2 (xref (t) − x̂(t)), ψ̂(T ) = 0, (30)

˙̂x(t) = A(θ1) x̂(t) + b û(t), x̂(0) = x0. (31)

Existence of such a triple is further assumed. Notice that in (31) we have θ1

instead of θ0. Thus, we cannot check these conditions, but we can do it in a
certain vicinity of θ0.

Theorem 2. If ||θ1 − θ0|| ≤ γ, then for the PPL algorithm we have

lim
n→∞ J(ûn) = J(û),

where û is defined through (29), (30) and (31). Furthermore,

lim
n→0

||F̂n(.)|| = ||F̂ (.)|| = 0. (32)

In order to prove the convergence of ûn to û we have to specify more precisely
the dependence of A(θ) on perturbations of θ.

Assumption 1. We shall assume that a perturbation from θ0 to θ1 for suffi-
ciently small ||θ1 − θ0|| ≤ C0 γ invokes the following change

A(θ1) = (1 + ς)A(θ0) (33)

where ς ∈ R is a parameter dependent on θ1 and θ0.

We sketch the rational arguments in favor of the above assumption. Let us
suppose that a perturbation can be expressed as follows: A(θ1) = A(θ0) + ΔA.
Notice that A(θ1)Δun(t) =

∫ T

0
exp(A(θ1) τ)Δun(t−τ) dτ . It is well known that

|| exp(A(θ0 t))||d×d ≤ exp(ω t) for a certain ω, where ||.||d×d is the matrix norm.
Furthermore, from the theory of perturbations of semigroups (see, e.g., [6,8]) it
is also known that

|| exp(A(θ0 t + ΔAt))||d×d ≤ exp((ω + ||ΔA||d×d) t) (34)
≈ 1 + ω t + ||ΔA||d×d) t.

Convergence of Learning under Perturbations. If Assumption 1 holds
and a perturbation is such that (2 r + (1 + ς)λmin) > 0, then for the sequence
generated by Algorithm PPL we have: limn→∞ ||û(.) − ûn(.)|| = 0.

4 ILOC for Laser Cladding Process

In this section we summarize simulation experiments of ILOC applied to the
laser cladding process described in the Introduction.

Lake Temperature – Laser Power Model. Our starting point is a model
that links the laser power U(t) [W], which is our input signal and the temperature
of the lake induced by the laser, which is simultaneously our state and output
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Fig. 1. The starting point Ustart(.) (panel A) and ystart(.) (panel B). Approximately
optimal input signal (panel C) and the resulting approximately optimal system state
(panel D).

variable and therefore it is denoted as y(t) [K] Using [30] as a guideline, assume
the following model:

τ ẏ(t) + y(t) = K (U(t))β , y(0) = ỹ (35)

where ỹ - given initial temperature. The parameters are explained below,
following [30] with small changes. Overall system gain (amplification) K =
K1 (V α) (Mϑ) = 1418.9, where K1 = 1.42 ∗ 103 is the system amplification,
α = −7.1 10−3, β = 6.25 10−2, ϑ = 3.0 10−3, where V = 2 [mm/sec] is the
laser traverse speed. M = 4.0 [g/min] is the cladding powder supply rate, while
τ = 210−2 [sec.] is the system time constant.

Results of simulations. We have developed ILOC procedures for linear sys-
tems, while (35) is a nonlinear system, but a simple substitution u(t) = Uβ(t)
converts it into the following linear system:

τ ẋ(t) + y(t) = K u(t), x(0) = x0. (36)

It suffices to run ILOC algorithms for (36), since rising to a positive power is the
invertible transformation and at each iteration we can calculate Un(t) = u

1/β
n (t)

and apply it to the real system.
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Notice that the adjoint equation for n-th pass has the form

ψ̇n(t) = 2 (xref (t) − xn(t)) + τ−1 ψn(t), ψn(T ) = 0., (37)

while the Frechet derivative of J is given by

F (xn(.), un(.), ψn(.))(t) = (K τ−1)ψn(t) + 2 r un(t). (38)

In the simulations reported below γ = 152 has been used. As a starting point a
signal that is shown in Fig. 1 (upper left panel) has been selected. The response
of the system (35) to this signal is shown in Fig. 1 (upper right panel).

Our aim is to simulate the learning process, which provides the temperature
shape that is close to the profile shown in Fig. 1 by the dashed line. The learn-
ing process converges quickly at the first several passes. Then, it slows down,
which is typical for gradient improvement procedures. It is however crucial that
the learning process provides quick improvements at the first phase and it is
sufficiently simple to be learnt from pass-to-pass observations. The shape of the
approximately optimal input signal is shown in Fig. 1 (lower left panel), while
the system response is sketched in Fig. 1 (lower right panel) by the solid line.
As one can notice, the lake temperature differs from the desired one by no more
than 5 [K], which is sufficient in practice. It can be further reduced by setting
less penalty for the usage of the laser energy.
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of Technology.
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