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Abstract. Bagging ensembles proved to work better than boosting for
class imbalanced and noisy data. We compare performance and diver-
sity of the two best performing, in this setting, bagging ensembles:
Roughly Balanced Bagging (RBBag) and Neighbourhood Balanced Bag-
ging (NBBag). We show that NBBag makes correct prediction on a
higher than RBBag number of difficult to learn minority examples. Then
we detect a trade-off between correct recognition of difficult minority
examples and majority examples, which makes RBBag better in some
cases. We also introduce a simple but effective technique to select para-
meters for NBBag.
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1 Introduction

One of the most important challenges for supervised machine learning is learn-
ing from imbalanced data [14]. The data is imbalanced when one of the classes
has small number of examples (minority class) in comparison to other classes in
the data set (majority classes). Such situation occurs in many important appli-
cations e.g. in fraud detection, medical problems, etc. Due to the importance
of the problem, many methods to counter class imbalance has been proposed.
Following [9] we divide them into two categories: data-level and algorithm-level
approaches. By data-level approaches we understand techniques which apply
data preprocessing methods, such as re-sampling, to improve classification of
imbalanced data without changing the learning algorithm. Typically, these tech-
niques focus on switching class distribution to a more balanced one. The other
group of approaches modifies existing algorithms to better model minority class
distribution. To this category we assign also specialized ensembles which are
usually modifications of bagging or boosting; see their review in [3].

Experiments [6,10] have shown that bagging ensembles work better than
extensions of boosting, especially on noisy data sets. Further studies [1,6] demon-
strated that Roughly Balanced Bagging (RBBag), which applies specific ran-
dom under-sampling to create bootstraps, achieves the best results on G-mean
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and AUC measures among extensions of bagging. However, in the recent work
B�laszczyński and Stefanowski have proposed Neighbourhood Balanced Bagging
(NBBag), which modifies bootstrap sampling by weighting examples [2]. The
weight of an example depends from the class label and the number of examples
in the example neighbourhood which belong to the opposite class. The impact
of neighbourhood on weights is controlled by parameters: size of the neighbour-
hood and a scaling factor. It has been shown that NBBag achieves competitive
results on G-mean and better results on sensitivity measure than RBBag.

Besides results on G-mean or sensitivity metrics it is unknown how data diffi-
culty factors impact model learned by different specialized extensions of bagging
for class imbalance. Since NBBag proved to be better than RBBag on sensitiv-
ity measure, it is particularly interesting to analyze on which types of minority
examples it performs better then RBBag. Another important issue when com-
paring two ensembles is the diversity of theirs base classifiers. To the best of
our knowledge the diversity of NBBag was never investigated and experimental
studies measuring diversity in the context of the minority class are very limited.
Furthermore, the authors of NBBag noticed that the results of the classifier
significantly depend on the values of parameters [2], which need to be selected
after a careful analysis of results produced with different settings. Moreover, they
advocate that the best set-up should be elected for a particular data set.

To address these issues, in this paper we propose a method intended to auto-
matically parametrize Neighbourhood Balanced Bagging for imbalanced data
sets. We also experimentally study abilities of NBBag to deal with different
types of difficult distributions of the minority class and we compare this abilities
to its major competitor: RBBag. Additionally, we calculate diversity measure of
NBBag and compare the results to the reference algorithms.

2 Related Works

The data set is called imbalanced when one class has substantially less examples
then the others. Although the problem of class imbalance relates also to multi-
class classification in the majority of the research - and also in this paper - only
binary classification is considered. In this case we can define statistics which
measure the level of class imbalance: global imbalanced ratio IR = N−

N+
where

N− and N+ are the number of majority and minority examples, respectively.
Imbalanced data is causing many problems for standard classifiers. Never-

theless, it has been noticed that the global imbalance ratio is not the only or
even not the most important factor which makes learning difficult. Other data
difficulty factors such as class overlapping, small disjunct or lack of representa-
tiveness significantly deteriorate the quality of induced model even on exactly
balanced data. However, adding class imbalance to a data which suffers from
these difficulty factors creates a real challenge for machine learning algorithms.
It has been shown that in the imbalanced data the deterioration of learner’s
accuracy caused by other data difficulty factors affects in majority of cases only
the recognition of minority class, which usually is a class of particular interest.
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In [11] a method for identification of data difficulty factors in real data sets
was proposed. The authors distinguish 4 types of examples (enumerated from
the easiest to the hardest): safe examples (lying in the region in the feature space
dominated by the same class), borderline examples (lying in the class overlapping
area), rare examples (a small group of examples in the region of the opposite
class) and outlier examples (lying in the area dominated by the opposite class).
This types can be identified by checking the distribution of the class labels among
k nearest neighbours of the example. For instance, with k = 5, if all examples in
the neighbourhood are from the opposite class then the example is considered
to be an outlier. If there is 4 opposite-class examples it is rare and if there are
more than 3 examples from the same class, the example is a safe one. Finally,
we assign borderline type to examples with the proportion of the same class
examples and the opposite class examples equal 2:3 or 3:2.

However, extensions of bagging for imbalanced data normally do not take
into account the types of examples and are just focused on construction of more
balanced bootstrap. There are two ways of achieving this goal: by under-sampling
majority class or by over-sampling minority class. For their review see e.g. [3].

Exactly Balanced Bagging (EBBag) [7] is the representative of the first group.
It copies all minority examples to each bootstrap and then, by random sam-
pling, it adds N+ majority examples to construct a fully balanced bootstrap.
Hido et al. [6] claimed that this sampling strategy does not reflect the true
bagging philosophy and they proposed Roughly Balanced Bagging (RBBag).
RBBag samples with replacement N+ examples of the minority class and then
the majority examples are sampled in the same way except that the number of
examples is taken from binomial distribution (p = 0.5, n = N+).

The most known over-sampling extension of bagging is OverBagging
(OverBag) [13]. It samples with replacement N− majority examples to each boot-
strap and then the same amount of minority examples is added. This results in
bootstraps having multiple copies of some minority examples.

The first bagging extension which uses knowledge of data difficulty factors
is Neighbourhood Balanced Bagging (NBBag) [2]. This algorithm has two vari-
ants: over-sampling (oNBBag) and under-sampling (uNBBag) both sharing the
same idea of modifying sapling probability distribution by assigning weights to
examples. NBBag focuses bootstrap sampling toward difficult minority examples.
Weight of minority example depends on the analysis of its k nearest neighbours.
Minority example is considered the more unsafe the more it has majority exam-
ples in its neighbourhood. Hence, the formula for minority example weight is

the following: w(x) = 0.5 ·
(

(N ′
−)ψ

k + 1
)

where N ′
− is the number of majority

examples among k nearest neighbours of the example and ψ is a scaling factor.
Setting ψ = 1 causes a linear amplification of example weight with an increase of
unsafeness and setting ψ to values greater then 1 effects in an exponential ampli-
fication. Each majority example is assigned a constant weight w(x) = 0.5 · N+

N−
.

As we mentioned before, both versions of NBBag use the same sampling
schema; however, they create bootstrap samples of a different size. uNBBag
samples n = 2N+ examples resulting in a sample which is smaller than the
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entire imbalanced data set. oNBBag creates a bootstrap sample consisting of
n = N+ + N− elements. Since weights of minority examples are greater then
weights of majority examples this results in over-sampling of minority examples.

3 Performance of Bagging Extensions

Most of the extensions of bagging presented in Sect. 2 are non-parametric. They
do not introduce any new parameters, which need to be adjusted during con-
struction of an ensemble of classifiers. On the one hand, one can argue that
bagging itself is a parametric method since the adequate size of the ensemble for
a given problem is not known a priori. The size of the ensemble is an important
parameter, which may influence the performance of each of the considered exten-
sions. On the other hand, fixing this parameter enables comparison of ensembles
of the same size, which should allow to distinguish ones which perform better
than the others under the same conditions.

Another type of parameters are introduced in Neighbourhood Balanced Bag-
ging (NBBag). These are two parameters that control the characteristics of
neighbourhood: size of neighbourhood k, and scaling factor ψ. In the experi-
ments comparing NBBag to other bagging extensions [2] these two parameters
were carefully selected to provide the best average performance. The selection
was made post-hoc, i.e., first results were obtained for a number of promising
pairs of parameter values and then the best values were chosen. One down-side
of this approach is additional computational cost. The second, more important,
one is the robustness of the recommendation. In general, a change in the list of
data sets used in experiment may lead to different recommended best values.

Selection of such a type of model parameters is a known problem in machine
learning [4]. However, to our best knowledge, this problem has not been yet
considered in the context of learning from imbalanced data. Data imbalance
may limit application of some more advanced parameter selection techniques. To
put it simply, minority class examples are to valuable to spare them for selection
purposes only, while majority class examples are not. Following this observation,
we investigate application of a basic technique taken from tree learning to this
end. In the same way as reduced-error pruning uses training data [12], we divide
training data set into two stratified samples. The first sample is used for training
NBBag models and the second one to validate the trained models. After the best
parameters are selected, NBBag classifier is constructed on the whole training
set. Contrary to what was presented in [2], this technique, when construction of
a classifier is repeated, as e.g., in cross-validation, does not allow to distinguish
best values of parameters for all data sets nor even for one data set. Selection of
parameters is performed independently for each constructed classifier.

In the following we present performance of two variants of Neighbourhood
Balanced Bagging: under-sampling (uNBBag) and over-sampling (oNBBag) with
selection of k and ψ. We consider a limited set of possible values of parameters.
In case of k it is: 3, 5, 7, 11. For ψ, it is: 0.25, 0.5, 1, 1.25, 1.5, 1.75, 2, 4. During
selection of best parameter phase 1/3 of the training set is used for validation.
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The Performance of uNBBag and oNBBag is compared to Exactly Balanced
Bagging (EBBag), Over-Bagging (OverBag), and the main competitor: Roughly
Balanced Bagging (RBBag). The size of ensembles is fixed to 50 components.

Table 1. Data characteristics

data set # examples # attributes minority class IR

breast-w 699 9 malignant 1.90

abdominal-pain 723 13 positive 2.58

acl 140 6 1 2.5

new-thyroid 215 5 2 5.14

vehicle 846 18 van 3.25

car 1728 6 good 24.04

scrotal-pain 201 13 positive 2.41

ionosphere 351 34 b 1.79

pima 768 8 1 1.87

credit-g 1000 20 bad 2.33

ecoli 336 7 imU 8.60

hepatitis 155 19 1 3.84

haberman 306 4 2 2.78

breast-cancer 286 9 recurrence-events 2.36

cmc 1473 9 2 3.42

cleveland 303 13 3 7.66

hsv 122 11 4.0 7.71

abalone 4177 8 0-4 16-29 11.47

postoperative 90 8 S 2.75

solar-flare 1066 12 F 23.79

transfusion 748 4 1 3.20

yeast 1484 8 ME2 28.10

balance-scale 625 4 B 11.76

The performance of bagging ensembles is measured using: sensitivity of the
minority class (the minority class accuracy), its specificity (an accuracy of recog-
nizing majority classes), their aggregation to the geometric mean (G-mean).
For their definitions see, e.g., [5]. These measures are estimated by a stratified
10-fold cross-validation repeated ten times to reduce the variance. The differ-
ences between classifiers average results are also analyzed using Friedman and
Wilcoxon statistical tests.

The results of G-mean and sensitivity are presented in Tables 2 and 3, respec-
tively. The last row of these tables contains average ranks calculated as in the
Friedman test – the lower average rank, the better classifier. Note that, the list
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Table 2. G-mean [%] of NBBag and other compared bagging ensembles

data set EBBag OverBag uNBBag oNBBag RBBag

breast-w 96.245 96.003 96.472 96.113 96.435

abdominal-pain 79.330 79.398 81.292 80.249 80.099

acl 85.576 80.866 84.359 81.927 85.310

new-thyroid 96.515 96.497 95.867 96.634 96.308

vehicle 95.038 94.934 95.440 95.115 95.417

car 96.668 96.959 96.356 96.851 96.568

scrotal-pain 73.679 74.038 72.923 71.997 75.618

ionosphere 90.540 90.559 90.874 90.568 91.002

pima 74.849 74.358 74.852 74.068 75.626

credit-g 65.737 65.513 67.450 66.628 67.963

ecoli 88.178 83.896 88.435 85.380 88.430

hepatitis 79.137 75.816 78.035 74.762 79.457

haberman 64.144 63.329 63.742 61.779 63.533

breast-cancer 58.175 60.718 58.465 58.795 60.091

cmc 64.191 61.036 65.051 63.787 65.350

cleveland 73.628 51.629 73.260 66.754 71.130

hsv 44.080 20.501 40.957 40.155 37.494

abalone 78.845 69.230 79.517 78.706 79.035

postoperative 35.569 32.657 39.877 39.142 34.847

solar-flare 83.710 64.649 83.149 79.994 83.421

transfusion 66.607 67.748 66.449 66.476 67.143

yeast 84.018 63.167 84.475 79.557 85.016

balance-scale 2.832 23.411 43.285 59.893 54.182

average rank 2.913 4 2.478 3.435 2.174

of data sets in this comparison is the same as in [2]. Data sets in the analyzed
tables are ordered from the safest one to the most unsafe one. Characteristics
of these data sets are given in Table 1. Looking at both Tables 2 and 3, we can
make an outright observation that uNBBag and RBBag stand out as the best
performing classifiers. Another observation is that over-sampling extensions of
bagging, represented by OverBag and oNBBag, provide worse performance that
under-sampling extensions (the rest of classifiers). Detailed comparison on G-
mean gives the best average rank to RBBag, however the difference between its
rank and ranks of all other classifiers except OverBag is not significant. Fried-
man test on values of G-mean results in p-value around 0.0002, and according
to Nemenyi post-hoc test, critical difference between ranks is around 1.272. An
analogous observation is valid only for NBBag and all other classifiers except
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Table 3. Sensitivity [%] of NBBag and other compared bagging ensembles

data set EBBag OverBag uNBBag oNBBag RBBag

breast-w 96.929 95.851 97.386 96.888 96.846

abdominal-pain 82.178 75.842 84.158 80.050 79.010

acl 87 74.250 87.250 82.500 84.750

new-thyroid 95.714 95.143 95.143 96 95.143

vehicle 97.236 94.523 97.286 95.477 96.935

car 100 95.652 100 95.942 100

scrotal-pain 76.271 70.169 76.441 73.051 75.763

ionosphere 86.032 85.159 87.778 86.984 85.714

pima 80.672 74.925 81.194 79.813 78.396

credit-g 72.933 60.233 73.400 69.867 68.500

ecoli 92 76 92 84 90.571

hepatitis 83.438 67.188 79.062 69.688 77.500

haberman 56.914 59.136 63.827 66.543 55.802

breast-cancer 63.412 54 65.176 59.059 58.471

cmc 70.240 50.721 68.739 63.423 64.685

cleveland 80.286 30.571 79.143 63.429 69.143

hsv 45 7.143 40 35.714 26.429

abalone 80.925 51.224 80.776 75.851 77.045

postoperative 31.250 17.917 44.167 37.917 23.750

solar-flare 88.140 46.977 86.744 81.395 85.581

transfusion 66.517 61.236 72.697 67.753 65.674

yeast 91.765 40.980 90.392 73.529 88.431

balance-scale 99.388 7.347 94.898 79.796 66.327

average rank 1.848 4.870 1.587 3.174 3.522

OverBag. Direct comparison of RBBag and NBBag in Wilcoxon test does not
show a significant difference in G-mean (p-value in this test is around 0.247).

When we move to the observed values of sensitivity in Table 3, we can notice
considerably better average performance of uNBBag and EBBag than the rest
of classifiers. This observation is supported by results of Friedman test (with
p-value close to 0) and Nemenyi post-hoc analysis. Wilcoxon tests shows the
same result in pairs of classifiers. uNBBag achieves the best average rank in this
experiment. Nevertheless, direct comparison of uNBBag and EBBag in Wilcoxon
test does not confirm a significant difference in sensitivity (p-value 0.677).

Experimental comparison of performance of bagging extensions leads to con-
clusions, which are concordant with the ones presented in [2]. RBBag and uNBBag
are distinguished as two standing out alternatives. It should be noted that the
results presented here are not entirely comparable with these from [2], since the
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set of compared classifiers has changed. We included EBBag, which proved to be
a valuable extension. Another aspect of the presented comparison is the influence
of parameter selection on the results. Application of a relatively simple selection
technique allowed us to obtain quite satisfying results. The average performance of
NBBag has not been observably improved but variability of results for unsafe data
sets has decreased (e.g., balance-scale). We expect that a technique adapted for
imbalanced data should allow to obtain even better results.

4 Measuring Diversity of Ensembles

One of the most important characteristic of an ensemble is diversity of its com-
ponent classifiers. To put it simple, if all components make the same decision
regarding example’s classes, the construction of an ensemble is pointless. In [8]
authors compare many diversity measures and recommend use of Q-statistics
basing on ease of its interpretation. Q-statistics is defined for a pair of com-
ponents as Q = n11n00−n01n10

n11n00+n01n10
where n11 is the number of examples on which

both classifiers make correct decision, n01 and n10 are the numbers of examples
on which one classifier is wrong and the other makes a correct decision, n00 is
the number of examples on which both classifiers make incorrect decisions. This
formula is calculated for each pair of components and then its averaged for the
whole ensemble. Q = 0 means independence of component classifiers, positive Q
means that classifiers tend to recognize the same elements correctly and negative
values signify that components tend to make errors on different examples.

We calculate Q-statistic for NBBag and RBBag on all data sets from previous
experiment. Due to space limits, we do not present all the results. We only briefly
summarize this analysis. The most diversified classifier according to both median
and average of Q-statistic is uNBBag (Median(Q) = 0.61). RBBag have a bit
less diversified components (Median(Q) = 0.67) and oNBBag has the highest
averaged results on Q-statistic (Median(Q) = 0.71). The biggest differences
between algorithms is visible on haberman and on balance-scale. On these
data sets the most diversified classifier has also the highest result on G-mean
measure. On other data sets these two factors are not always related.

Further investigation of Q-statistic only for minority examples (Qmin) shows
that all analyzed algorithms are more diversified on minority class. On some
data sets classifiers achieve even negative values of Qmin. Likewise the differences
between classifiers are a little higher. The ranking of most diversified classifiers
remain the same as for over-all Q-statistic: uNBBag (Median(Qmin) = 0.40),
RBBag (Median(Qmin) = 0.47) and oNBBag (Median(Qmin) = 0.51).

Another way of investigating diversity is analysis of votes of each component
during classification of a particular example. Here, we use a margin measure
defined as follows: margin = ncorr−nincorr

ncorr+nincorr
, where ncorr and nincorr is the num-

ber of components which vote for correct and incorrect class, respectively. The
margin value equal 1 means completely certain and correct decision, margin −1
means completely certain but incorrect decision. Margin close to 0 indicates
uncertainty in making final decision (the number of classifiers voting for the
correct class is close to the number of classifiers voting for the opposite class).
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We analyze the values of margin calculated for examples with respect to their
types. Additionally, we compare margins for examples on which RBBag and
uNBBag make different decisions. In Fig. 1 we present histograms of decision
margin for minority class on a representative data set (abalone). In the first
row of the plot one can see decision margins of all examples of a particular type
(white bars) achieved by RBBag. Red bars of the histogram indicate margins
for examples which are classified incorrectly by RBBag but they are correctly
classified by uNBBag. Analogically, green bars demonstrate margin for instances
which were classified correctly only by RBBag. The second row of the plot is
constructed in the same way but for uNBBag.

Fig. 1. Histogram of RBBag (top) and uNBBag (down) margins for abalone minority
examples with respect to their types.

The first impression is that both classifiers work quite similar. Differences are
more significant on difficult examples. uNBBag and RBBag do not have problems
with correct classification of safe minority examples. Almost all of them are
classified with maximal margin. However, with increase of difficulty of examples,
both classifiers makes more errors and their confidence goes down. Particularly,
a lot of outlier examples are classified incorrectly with high confidence.

Compared algorithms make different final predictions only on more difficult
examples and it is clear that uNBBag makes correct decisions on a higher number
of minority examples. Unfortunately, there seems to be some kind of trade-off
between correct recognition of more difficult minority and majority examples:



Diversity Analysis on Imbalanced Data Using Bagging Ensembles 561

this classifier makes more incorrect decisions on majority examples than RBBag.
This is the reason why RBBag is sometimes better than uNBBag on G-mean
measure. Furthermore, it is worth to notice that when uNBBag makes correct
prediction on a minority example and RBBag makes an incorrect one, it is with
a rather low confidence. It is quite unlikely to find an example correctly classified
by uNBBag and classified incorrectly by RBBag with margin less then −0.5.

5 Conclusions

In this work, we have experimentally compared a number of promising bagging
extensions designed to handle class imbalance problem. The best performing
extensions in this comparison are: Roughly Balanced Bagging (RBBag) and
Neighbourhood Balanced Bagging (NBBag). We have introduced a simple tech-
nique for automatic selection of parameters for NBBag during learning from
imbalanced data. This technique proved to work well. Nevertheless, we believe
that another technique better adapted for the type of learning should allow
to obtain even better results. Comparative study of diversity of RBBag and
NBBag have shown that NBBag is able to make correct prediction on a higher
than RBBag number of difficult to learn minority examples. There is, however, a
trade-off between correct recognition of difficult minority examples and majority
examples, which allows RBBag to perform better in some cases.
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