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Abstract. In this paper a method of implementation of fuzzy system
on FPGA devices is presented. The method applies to a class of fuzzy
systems which are functionally equivalent to a radial basis function net-
works. In the paper the example fuzzy system was implemented on the
FPGA device with the use of the proposed method. The results confirm
a high performance of the obtained fuzzy system. This was achieved at
a reasonable consumption of the hardware resources of the FPGA.
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1 Introduction

Computational intelligence methods (see e.g. [2–4,6–10,13–15,17,29–32,34,38–
40,42,48–54,60–64]) offer suitable properties for modeling the nonlinear dynam-
ics of various types of real objects. A different types of neural networks (see e.g.
[16,55]) or fuzzy systems (see e.g. [18–27,41,43,56–59,68–74]) have a number of
useful features such as the ability to approximate any continuous non-linearity
or the ability to interpret the accumulated knowledge. However, from a practical
point of view, the other features are also important. For example, the ability to
implement in a hardware (e.g. FPGA) to obtain the operation model working
in a real time. Moreover, the implementation should be relatively simple and
economically justified.

In recent years, a large number of projects have used FPGAs to perform the
control and modeling of dynamical systems. In many cases, these projects utilize
neural networks [5], fuzzy systems or neuro-fuzzy systems [11,33]. However, in
some cases, the degree of complexity of used algorithms is very high and the
economy of this solution is questionable.

This is due to the fact that these algorithms are mainly based on arithmetic
operations for floating point numbers. In particular floating-point operations
such as divide numbers [37], exponential and trigonometric functions are char-
acterized as they have the high complexity and low performance when they are
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implemented on FPGA devices. FPGA hardware resources are not adapted to
the efficient implementation of this type of calculations. FPGAs are well suited
for the implementation of fixed-point calculations, such as addition, subtraction
and multiplication. Implementation of complex arithmetic operations based on
the floating-point numbers consumes a lot of resources of the FPGA hardware.
For this reason, in most cases fully parallel implementation of floating-point
calculations becomes economically unjustified.

In order to reduce the high consumption of resources a serial or semi-parallel
data processing algorithms are used, including the recursive implementations [37].
In this case, the demand for hardware resources significantly decreases. However,
computing efficiency drops significantly - which is an obvious drawback of such a
solution. It should be noted that in some cases this approach is highly justified.
For example, consider the control system whose duty cycle is limited by the limit
frequency of operation of actuator, for example about 20 kHz. In this case, the hard-
ware implementation of the complete control algorithm working with the cycle less
than 50µs is pointless, because the generated data are not used earlier than the
mentioned time 50µs elapses. It should be noted that there are a number of appli-
cations which drew significant benefits if the processing time is as short as pos-
sible. Examples are hardware emulators of various types of real objects used for
hardware-in-the-loop (HIL) systems.

As noted in the work [46] there are existing commercial digital real-time HIL
simulators that are characterized by 50µs to 100µs time steps and computa-
tional latency, and therefore they are not able to simulate accurately the very
fast dynamics of power electronics systems. The authors suggest that simulation
with a time step with value of 1µ or less is much more appropriate solution.
In order to obtain high processing speeds various techniques are used. They
cover both the structure of the implemented algorithm and methods of their
implementation.

The vast majority of practical implementation on FPGA widely use triangu-
lar or trapezoidal fuzzy sets. Such sets are easier to be realized in FPGA than the
ones based on a Gaussian functions [1,47]. While many theoretically developed
algorithms are based on Gaussian fuzzy sets, which sometimes are considered
to be more appropriate to represent fuzzy knowledge. Moreover, if the input
variables are represented by complementary membership functions of the fuzzy
sets it follows another benefit, namely processing technique is applied only for
activated rules. How was indicated in the paper [47], elimination of verification
of the activation degree of all fuzzy rules allows to accelerate inference process.
One of the possible techniques used in this field is the odd-even method [28].

The results presented in various papers show that in many cases relatively
high processing speed is achieved, however, at the expense of low resolution of
processed signals. This is due to the applied binary encoding using an aver-
age of 6 to 8 bits. Unfortunately, the specificity of many proposed solutions is
that increasing resolution of processed words, eg. to 12-bits, causes a significant
increase in the consumption of hardware resources.
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In this paper we propose a new method for the implementation of fuzzy
system on FPGA. This method offers good performance and accuracy with rel-
atively low consumption of hardware resources.

This paper is organized into 4 sections. Section 2 contains an idea of designing
the neuro-fuzzy structure to the limitations arising from the implementation
in hardware in FPGA devices. Implementation results are presented in Sect. 3.
Conclusions are drawn in Sect. 4.

2 The Method of Designing the Fuzzy Structure
to the Limitations Arising from the Hardware
Implementation

In this work will be considered systems using fuzzy rules of the following form

IF (x1 is xj
1) AND ... AND (xN is xN ) THEN(y is y),

where xi indicates the input to the system (i = 1..N), y is the output, xj
i are

input fuzzy sets for the j-th fuzzy rule (j = 1..M) and yj are output fuzzy sets. In
the considered systems Gaussian input fuzzy sets are used. The algebraic product
is used as a T-norm operator. Rules consequents are a singleton type and the
method of centre of gravity for singletons (COGS) is used for defuzzification. For
the sake of clarity of description we will present a system with one output. It
should be noted that such simplification does not constitute the loss of generality
for the general idea presented in this paper.

According to the theory of fuzzy logic and common practice the implemen-
tation of fuzzy system is followed in three stages: 1. fuzzification, 2. inference,
3. defuzzification. However, because of the investigated class of fuzzy systems
are functionally equivalent to a radial basis function networks [36] (it will be
explained in detail in the later in the paper), in the current paper it is proposed
a more appropriate method of hardware implementation.

The main features of the proposed method are: 1. operations are implemented
in hardware based on fixed-point and simplified floating-point arithmetic, 2.
fuzzification and inference is carried out together on the basis of functional sim-
ilarity to radial basis function networks.

The proposed method is scalable and allows adjustment of the obtained
processing speed and the use of hardware resources for a specific application.
The next part of the work will present a detailed description of the proposed
method of hardware implementation for the considered class of fuzzy structures.

2.1 The Method of Hardware Implementation of the Fuzzification
and the Inference Processes

As pointed out in [66] and cited for this statement [35] the most important
advantage of using fuzzy basis functions, rather than polynomials or radial basis
functions, etc., is that a linguistic fuzzy IF-THEN rule is naturally related to a
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fuzzy basis function. It should be noted that the way of the design of the system
and its implementation not necessarily have to be identical. The design method
should be intuitive to the man, while the implementation should be characterized
by high efficiency and low cost. Therefore, let’s look closer at the class of fuzzy
systems presented in the previous section which are functionally equivalent to a
radial basis function networks.

In the considered group of systems we assume that we are dealing with a
Gaussian input fuzzy sets and every j-th rule uses of separate input fuzzy sets
that are unshared with other rules. For each i-th input it exist a degree of
membership to the i-th input fuzzy set of j-th fuzzy rule as follows:

μj
i = exp

⎛
⎝−

(
xi − xj

i

σj
i

)2
⎞
⎠ , (1)

where xj
i and σj

i are center and width of input fuzzy set. If we use the product
as the T-norm, then the degree of activity of the j-th rule is

μj = μj
1 · μj

2 · ... · μj
N = exp

⎛
⎝−

(
x1 − xj

1

σj
1

)2

− ... −
(

xn − xj
n

σj
N

)2
⎞
⎠. (2)

Note that the action outlined above is similar to the way of calculating the values
of the radial basis function of the following form

μj = exp
(
−‖x − xj‖2

)
, (3)

in which the distance of the input x from the center of the radial fuzzy set xj

for j-th rule is defined as follows

‖x − xj‖ =

√√√√
(

x1 − x1

σj
1

)2

+ ... +

(
xN − xj

N

σj
N

)2

. (4)

This phenomenon has been observed and described in the work [36] as a func-
tional equivalence between radial basis function networks and fuzzy inference
systems. The specific form, for which each of the inputs has individually defined
width σj

i of the set is called Hyper Radial Basis Function (HRBF) [45]. In the
later part of this work the term fuzzy system (FS) refers to the category of
systems that are functionally equivalent to a radial basis function networks.

The Eq. (4) can be rewritten as

‖x − xj‖2 = wj
0 + wj

1,1x1 + wj
1,2 (x1)

2 + ... + wj
N,1xN + wj

N,2 (xN )2, (5)

where

wj
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. (6)
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The approach represented by formulas (3) and (5) offers noticeable benefits
for the implementation, namely:

1. The Gaussian function is determined only once, in contrast to the classical
approach, demanding the use of this function to determine the degree of
membership of each input separately (1). The proposed solution is therefore
beneficial because the Gaussian function is a troublesome operation in the
implementation on FPGA.

2. All other actions necessary to determine the degree of activity of fuzzy rule are
based on repetitive and simple activities such as multiplication and addition.
These actions are easy to implement on FPGA, they are carried at high speed
and consume relatively small hardware resources.

2.2 The Method of Implementation of Defuzzification Process

As it was mentioned earlier in the paper, the singleton membership functions
with centers of yj are used on the outputs of the rules. In the defuzzification
stage the centre of gravity for singletons (7) is used because of the following
features of the method: defuzzified values tend to move smoothly, have good
sensitivity to change on inputs and are easy to calculate. According to the paper
[12] the centre of gravity for singletons (COGSs) is the most realistic and widely
used method of defuzzification in many applications.

y =

M∑
j=1

μj · yj

M∑
j=1

μj

=
n

d
(7)

However, from a practical point of view, it should be noted that this method
is difficult to implement, because of used arithmetic division of real numbers.
This operation can be avoided if fuzzy system is designed in such a way that
the denominator in the formula (7) is equal to one, i.e. d = 1. This approach is
very comfortable and quite often used in practice. However, in some situations it
may be regarded as too restrictive limitation. In the general case (eg. when using
Gaussian input fuzzy sets) such a requirement is not met and the operation of
real numbers division at the output is required, as shown in Eq. (7).

In many publications this issue was analyzed and various solutions have been
proposed. For example, the paper [28] proposes the implementation of a division
operation based on method of look-up-table (LUT) and addressing with the 6-bit
word. Similarly, in the work [44] it was proposed division in which the divisor
was rounded to the 8-bit number. As you can easily guess in both cases this
resulted in a very low accuracy of the result.

In another work [37] the implementation of this operation on the basis of
single precision floating point arithmetic was used. The result is a high accuracy
but achieved at the expense of rather low performance. How it was indicated
in the cited reference the obtained floating-point divider needs 26 clock cycles
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to establish division result. Others floating-point operations like multiplication,
addition and subtraction take 5 clock cycles, while similar fixed-point operations
takes only one cycle in a typical case. This indicates that the floating-point
operations are much less efficient than a fixed-point ones in general. It is also
important to note that the floating-point operations consume a lot of hardware
resources.

In this paper it is proposed that the division operation required in (7) is
performed as in some other works which uses fixed-point arithmetic. In such a
case a multiplication by the inverse of the denominator is used instead of the
division of two numbers. Determination of the inverse of the denominator is
made on the basis of the method of look-up table (LUT). The disadvantage of
such a method is that it is necessary to use a large amount of memory to store
data in the table with an acceptable accuracy.

In this paper it is proposed to use the simplified 18-bit floating-point numbers
to store data in the table. This approach reduces the memory consumption.
FPGAs usually have a dedicated Block RAM memory, which are organized as 512
locations of 18-bits words [67]. The proposed simplified floating-point arithmetic
is therefore well suited to the optimum utilization of hardware resources.

3 Implementation Results

In our investigation it was considered a problem of hardware implementation of
particular parts of a fuzzy structure (FS). Considered structure has four inputs,
eight rules and one output. The FS was implemented in the Spartan XC6SLX45-
3C FPGA from Xilinx by means of Altium Designer and Xilinx ISE software.
To encode the values of the real numbers a 32-bit fixed-point arithmetic were
used. Widely known and biggest drawback of fixed-point arithmetic is the lim-
ited range and the need for continuous scaling of processed numbers. However,
the use of 32-bits width words made it possible to obtain a relatively wide range
at the same time fairly good accuracy. Thus, in this case this defect was some-
what minimized. Because of the necessary scaling is closely related to a specific
application, this issue will be omitted for the sake of readability of the presen-
tation. It will be presented in detail only in places that are important from the
point of view of the presented algorithm.

3.1 Fuzyfication and Inference

According to the method proposed in the previous section operations of fuzzi-
fication and inference were carried out in the overall processing of input data.
As a result, determination of the output value of the formula (5) requires a
series of operations such as multiplication and addition. It is possible to perform
these actions both in parallel, series and the in series-parallel mode. Fully paral-
lel implementation of calculations allows us to achieve high performance at the
expense of high demand on hardware resources. Serial implementation allows us
to reduce the use of hardware resources, but with a significant loss of obtained
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processing efficiency. While a semi-serial or a semi-parallel implementation allows
for compromise.

In the presented example the semi-serial implementation was used. However,
the use of high-performance fixed-point calculations made it possible to achieve
high-speed processing.

Elementary operations for the input of the rule (5) are executed in parallel
as shown in Fig. 1. The elementary function has three 32-bits width inputs. First
two inputs (W1 and W2) are the weights coefficients wj

i,1 and wj
i,2 respectively,

the third input (X) is the input to the FS, i.e. xi as defined in (5). As a result
this function performs several operations in one cycle. The register shown in
Fig. 1 acts as a component partial sum according to the formula (5). Initial
value of the register is equal to weight wj

0 and it is set in the first clock cycle.
Three 32-bit fixed point multipliers (FP MULTIPLIER 1, 2 and 3) and one 32-
bit adder (ADDER 1) generates the output within the second cycle. Using the
second 32-bit adder (ADDER 2) and one register the whole squared weighted
sum (5) for one rule with four inputs is obtained in the fifth cycle. In the sixth
cycle the LUT block indicated as EXP FUNCTION is used to determine the
output value of the nonlinear exponential function. The LUT consists of 1024
words each 12-bits width to store the shape of gausoid function with a reasonable
accuracy. Summing up, in the general case the whole process of calculation of
rule activation degree requires the following number of clock cycles

cr = 2 + N (8)

Fig. 1. The hardware implementation of the elementary function.

To calculate the output value y of the FS we need to perform the above
described processing for all M rules. This can be done in sequence (serial method)
or in parallel (for example with the use of pipelining) to obtain a different speed
processing of the implemented system. As mentioned earlier in this paper was
carried out the semi-serial implementation method.

3.2 The Defuzification Proces

In the proposed method Fig. 2 shows how all the rules are indicated in order to
determine their activation degree μj and their consequent μj · yj . While, Fig. 3
shows the module used for sequentially processing all rules. Two adders and two
registers are used to accumulate values of activation degrees and consequents of
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Fig. 2. The hardware implementation of the algorithm used to determine the conse-
quents of fuzzy rules.

all rules. The results, i.e. the nominator and the denominator of the Eq. (7) are
obtained within the following number of clock cycles

crms = M · cr. (9)

After the nominator n and denominator d are determined the one extra clock
cycle is necessary to calculate the current output value of the FS according to
used method of defuzzification (7). First of these two values is multiplied by the
reciprocal of the other (Fig. 3) in order to obtain the value of y according to the
following formula y = n · RECIPROCAL (d).

The RECIPROCAL module used for this purpose has one input and one
output which are 12-bits and 27-bits width unsigned words respectively. The
input has a fixed point 3.9 bit representation, i.e. three bits for the integer value
and nine bits for fraction. This gives the useful range of d ∈ (0; 8). Since every
single rule has the activation degree with a range of μj ∈ 〈0; 1〉 this allows to
store the information about the sum of activation degree values for many rules.
The upper limit for the used fixed point representation for the reciprocal input
is, for example, when eight rules have activation coefficient close to unity which
is rather unrealistic in properly designed system.

Fig. 3. The block diagram of the implemented fuzzy system with one output.



292 A. Przyby�l and M.J. Er

Fig. 4. The method of hardware implementation of the reciprocal function.

The RECIPROCAL module is implemented as an look-up table (LUT)
located in a read-only memory and it stories 4096 words (Fig. 4). Value of the
input of the module is treated as a 12-bit address, which indexes the table.
Each indexed word location stores the result of operation RO = 1/X in a 18-bit
simplified floating-point (SFP) format.

The SFP is proposed in this paper a nonstandard format of encoding floating-
point numbers. The SFP is an encoding format tailored to a specific application.
It allows to reduce the number of bits of a binary word and to simplify their
processing. The general idea is derived from the standard IEEE754 but limited to
the processing of positive numbers and with a limited range. In the SFP format
the 18-bit word is divided into two bitfields: 4-bits for exponent and 14-bits for
mantissa. The exponent is a positive number with range of (0; 15). It gives the
useful range for floating-point values of 〈0; 32768) with an acceptable accuracy.
For example, the accuracy is about 0.01 % for numbers with a value close to
unity or larger. In the paper the exponent is limited to the range of 〈0; 8〉 for
practical reasons.

The detailed method of processing the SFP numbers is shown in Fig. 4. Two
LUTs are used. First (ROMS 18x4096) stores the 18-bit words in SFP format.
The second one (U LUT 9x16) together with the fixed-point multiplier is used
to change the SFP format to the fixed-point one. The U LUT 9x16 is a binary
decoder which converts the 4-bits binary number (input) to the 1-of-9 output
bits. The fixed-point format which is used on the output of the RECIPROCAL
module is compatible with the rest of the system. While the SFP format is used
only in the RECIPROCAL module to store the data table. Such approach has
allowed to reduce memory consumption by more than 50 %, while maintaining
the accuracy and the processing performance at the same level.

3.3 Results

The timing analysis shows that the exemplary FS implemented in the FPGA
device is able to work with clock frequency above 50MHz, which gives the reac-
tion time below 1µs. This allows us to build a FS system, that could be useful
for some kind of applications, e.g. hardware emulators.

The implementation results presented in the Table 1 are valid for a system
with one output. However, for a system with multiple outputs the resource con-
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Table 1. Performance and the FPGA resource usage of the exemplary fuzzy system
implemented with the use of the proposed method.

Response time DSP48A1 Registers Block RAM LUTs

49 cycles 21 35 10 627

0.98µs (36 %) (0.1 %) (9 %) (2 %)

sumption will be almost the same when the serial implementation is used. Obvi-
ously, the response time will be many times larger (proportional to the number
of outputs) compared to the system with one output.

4 Summary

In this paper a method of implementation of fuzzy system on FPGA devices was
presented. The method applies to a class of fuzzy systems which are functionally
equivalent to the radial basis function networks. Thanks to this similarity it was
possible to propose the effective methods of such fuzzy systems implementation
in FPGA-type programmable systems. For a demonstration of the method the
results of the implementation of an exemplary fuzzy system in the FPGA was
presented. The results show that the FS system with four inputs, eight rules and
one output can work with the processing cycle of less than one microsecond. It
makes the proposed solution useful in practice.

Presented solution is highly scalable, because depending on the requirements
it is possible to shortening response time at the expense of increase the hardware
resources. Similarly, it is possible to increase the number of inputs and outputs
and the number of rules of the system.
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24. Cpa�lka, K., Zalasiński, M.: On-line signature verification using vertical signature
partitioning. Expert Syst. Appl. 41(9), 4170–4180 (2014)
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